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Abstrat

We desribe eÆient onstrutions for various ryptographi primitives in private-key

as well as publi-key ryptography. Our major results are two new onstrutions of pseudo-

random funtions. We prove the pseudo-randomness of one onstrution under the assump-

tion that fatoring (Blum integers) is hard while the other onstrution is pseudo-random if

the deisional version of the DiÆe-Hellman assumption holds. Computing the value of our

funtions at any given point involves two subset produts. This is muh more eÆient than

previous proposals. Furthermore, these funtions have the advantage of being in TC

0

(the

lass of funtions omputable by onstant depth iruits onsisting of a polynomial number

of threshold gates). This fat has several interesting appliations. The simple algebrai

struture of the funtions implies additional features suh as a zero-knowledge proof for

statements of the form \y = f

s

(x)" and \y 6= f

s

(x)" given a ommitment to a key s of a

pseudo-random funtion f

s

.
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1 Introdution

This paper studies the eÆient onstrution of several fundamental ryptographi primi-

tives. Our major result are two related onstrutions of pseudo-random funtions based

on number-theoreti assumptions. The �rst onstrution gives pseudo-random funtions

i� the deisional version of the DiÆe-Hellman assumption (DDH-Assumption) holds.

The seond onstrution is at least as seure as the assumption that fatoring the so alled

Blum-integers is hard.

1

Having eÆient pseudo-random funtions based on fatoring is very

desirable sine this is one of the most established onrete intratability assumption used

in ryptography. The onstrution based on the DDH-Assumption is also attrative sine

these pseudo-random funtions are even more eÆient (in that they have a larger output

size) and sine the onstrution is linear preserving (see Remark 4.1). We onsider the study

of the DDH-Assumption (whih was reently used in quite a few interesting appliations)

to be one of the ontributions of this paper.

Properties of Our Pseudo-Random Funtions

Pseudo-random funtions were introdued by Goldreih, Goldwasser and Miali [35℄ and

have innumerable appliations (e.g., [3, 9, 22, 32, 40, 36, 50, 59℄). A distribution of funtions

is pseudo random if: (1) It is easy to sample funtions aording to the distribution and

to ompute their value. (2) It is hard to tell apart a funtion sampled aording to this

distribution from a uniformly distributed funtion given aess to the funtion as a blak-

box. The properties of our new pseudo-random funtions are:

EÆieny: Computing the value of the funtion at a given point is omparable with two

modular exponentiations and is more eÆient by an 
(n) fator than any previous

proposal (that is proven to be as seure as some standard intratability assumption).

This is essential for the eÆieny of the many appliations of pseudo-random funtions.

Depth: Given appropriate preproessing of the key, the value of the funtions at any given

point an be omputed in TC

0

, ompared with TC

1

previously (in [60℄). Therefore

this onstrution:

1. Ahieves redued lateny for omputing the funtions in parallel and in hardware

implementations.

2. Has appliations to omputational omplexity (i.e., Natural Proofs [64℄) and to

omputational learning-theory.

Simpliity: The simple algebrai struture of the funtions implies additional desirable

features. To demonstrate this, we showed in [58℄ a simple zero-knowledge proof for

the value of the funtion and other protools. We suggest the task of designing

additional protools and improving the urrent ones as a line for further researh.

More on the motivation of suh a onstrution and on pseudo-random funtions in general

an be found in Setion 2.2.

1

In fat we prove the seurity of the seond onstrution based on a generalized version of the omputa-

tional DH-Assumption (GDH-Assumption). However, breaking the GDH-Assumption modulo a ompos-

ite would imply an eÆient algorithm for fatorization (see [6, 69℄).
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The DDH-Assumption

As mentioned above, we base our onstrutions on two number-theoreti assumptions: Fa-

toring and the DDH-Assumption. While the assumption that fatoring is hard is a well-

established ryptographi assumption that needs little introdution the DDH-Assumption

is relatively new. In the following few paragraphs we briey desribe the DDH-Assumption,

its di�erent appliations and the urrent knowledge on its seurity. In addition we briey

desribe the ontribution of this paper to the study of this assumption. A more detailed

desription appears in Setion 3.1.

The DH-Assumption was introdued in the ontext of the DiÆe and Hellman [28℄ key-

exhange protool (among quite a few of the fundamental ideas and onepts of publi-key

ryptography). Any method for exhanging even a single bit, using this protool, relies on

the omputational version of the DH-Assumption (CDH-Assumption). By assuming its

(stronger) deisional version one an exhange many bits. For onreteness, we onsider

the DDH-Assumption in a subgroup of Z

�

P

(the multipliative group modulo P ) of order

Q, where P and Q are large primes and Q divides P � 1. For suh P and Q the DDH-

Assumption is:

There is no eÆient algorithm that, given hP;Q; g; g

a

; g

b

i, distinguishes between

g

a�b

and g



with non-negligible advantage, where g is a uniformly hosen element

of order Q in Z

�

P

, and a; b and  are uniformly hosen from Z

Q

(naturally all

exponentiations are in Z

�

P

).

Note that this assumption does not hold when g is a generator of Z

�

P

.

It turns out that the DDH-Assumption was assumed in quite a few previous works

(both expliitly and impliitly). All these appliations rely on the average-ase assumption

desribed above. In Setion 3.3 we show that for any given P and Q the DDH-assumption

an be redued to its worst-ase version:

There is no eÆient algorithm that, given hP;Q; g; g

a

; g

b

; g



i, deides with over-

whelming suess probability whether or not  = a � b for every a; b and  in Z

Q

and every element, g, of order Q in Z

�

P

.

The randomized redution we desribe is based on the random-self-reduibility of the

DDH-Problem that was previously used by Stadler [73℄. This redution may strengthen our

on�dene in the DDH-Assumption and in the seurity of its many appliations. Additional

evidene to the validity of the DDH-Assumption lies in the fat that it endured the extensive

researh of the related CDH-Assumption. To some extent, the DDH-Assumption is also

supported by the results on the strength of the CDH-Assumption in several groups [13,

51, 52, 69℄ and by additional results [13, 18, 70℄. For instane, Shoup [70℄ showed that

the DDH-Problem is hard for any \generi" algorithm. However, a main onlusion of this

paper is that the DDH-Assumption deserves more attention sine it implies the seurity of

many attrative ryptographi onstrutions.

The most obvious appliation of the DDH-Assumption is to the DiÆe-Hellman key-

exhange protool and to the related publi-key ryptosystem [29℄. In the ElGamal ryp-

tosystem, given the publi key g

a

, the enryption of a message m is hg

b

; g

a�b

�mi. In Setion 3
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we show how to adjust this ryptosystem in order to obtain a probabilisti enryption-

sheme whose semanti seurity (see [39℄) is equivalent to the DDH-Assumption

2

. The prie

of enrypting many bits using the ElGamal ryptosystem is a single (or two) exponentia-

tion. This is omparable with the Blum-Goldwasser ryptosystem [10℄. Other appliations

that previously appeared are [4, 14, 17, 30, 74, 73℄ and reently [24℄ (we desribe these

appliations in Setion 3.1).

To previous appliations one an add a pseudo-random generator [11, 76℄ that pratially

doubles the input length and a pseudo-random synthesizer (see de�nition in [60℄) whose

output length is similar to its arguments length. Essentially, the generator is de�ned by

G

P;g;g

a

(b) = hg

b

; g

a�b

i and the synthesizer by S

P;g

(a; b) = g

a�b

. Both these onstrutions are

overshadowed by our new onstrution of a very eÆient family of pseudo-random funtions.

The pseudo-random funtion is de�ned by n+ 1 values, ha

0

; a

1

: : : a

n

i, hosen uniformly in

Z

Q

. The value of the funtion on an n-bit input x = x

1

x

2

� � � x

n

is essentially

f

P;g;a

0

;a

1

:::a

n

(x)

def

= (g

a

0

)

Q

x

i

=1

a

i

:

For some appliations, we still need to hash this value as desribed in Setion 4.1. Note that,

after appropriate preproessing, the omputation required onsists of two subset produts.

This an be done in TC

0

(see Setion 4.3). The simple struture of the funtions gives

several attrative properties as was shown in [58℄ (see further details in Setion 2.2).

The GDH-Assumption and Fatoring

In Setion 5 we suggest a related onstrution of pseudo-random funtions that is based

on the (omputational) GDH-Assumption. This generalization of the DH-Assumption was

previously onsidered in the ontext of a key-exhange protool for a group of parties (see

e.g., [69, 74℄). The GDH-Assumption is implied by the DDH-Assumption (as shown in

[74℄ and in this paper) but the assumptions are not known to be equivalent. In addition,

the GDH-Assumption modulo a Blum-integer is not stronger than the assumption that

fatoring Blum-integers is hard (see [6, 69℄). This implies an attrative onstrution of

pseudo-random funtions that are at least as seure as Fatoring:

Let N be distributed over Blum-integers (N = P � Q, where P and Q are primes and

P = Q = 3 mod 4) and assume that (under this distribution) it is hard to fator N . Let g

be a uniformly distributed quadrati residue in Z

�

N

, let ~a = ha

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : a

n;0

; a

n;1

i

be a uniformly distributed sequene of 2n elements in [N ℄

def

= f1; 2; : : : ; Ng and let r be a

uniformly distributed bit string of the same length as N . Then the Binary funtion, f

N;g;~a;r

,

is pseudo-random. Here the value of f

N;g;~a;r

on any n-bit input, x = x

1

x

2

� � � x

n

, is de�ned

by:

f

N;g;~a;r

(x)

def

=

�

g

Q

n

i=1

a

i;x

i

�

� r

(� denotes the inner produt mod 2).

This onstrution was reently improved by Naor, Reingold and Rosen [61℄. The work

in [61℄ provides a method of expanding the one bit output of f

N;g;~a;r

to polynomially many

2

The semanti seurity of the original ryptosystem is equivalent to the DDH-Assumption only when the

message spae is restrited to the subgroup generated by g.
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bits while paying only a small overhead in the omplexity of the evaluation (i.e. one modular

multipliation for eah additional output bit). In partiular, this implies a length-preserving

pseudo-random funtion that is at least as seure as Fatoring whose evaluation requires

only a onstant number of modular multipliations per output bit.

Previous Work

In addition to introduing pseudo-random funtions, Goldreih, Goldwasser and Miali [35℄

provided a onstrution of suh funtions (GGM-Constrution) based on pseudo-random

generators. Naor and Reingold [60℄ reently showed a parallel onstrution based on a new

primitive alled a pseudo-random synthesizer. Under onrete intratability assumptions

like \fatoring is hard" this onstrution gives pseudo-random funtions in TC

1

. Our work

is motivated by [60℄ both in the task of reduing the depth of the pseudo-random funtions

and in the onstrution itself (see Setion 5.2). Parallel onstrutions of other ryptographi

primitives were provided by Impagliazzo and Naor [42℄ based on the hardness of subset sum

and fatoring, and by Blum et. al. [7℄ based on hard-to-learn problems.

The onstrution of this paper is not only more parallelizable than the onrete on-

strutions based on [35, 60℄, but it is also muh more eÆient. Though this onstrution

seems very di�erent than the onstrutions of [35, 60℄, we were able to relate the proof of

seurity of this onstrution to both [35℄ and [60℄ (see Setions 4.2 and 5).

It turns out that there are a number of researhers who observed that the average-

ase DDH-Assumption yields pseudo-random generators with good expansion. One suh

onstrution was proposed by Rako� (unpublished). A di�erent onstrution is suggested

by Gertner and Malkin [31℄. This onstrution is similar to the pseudo-random generator

one gets by saling down our pseudo-random funtions.

Organization

In Setion 2.1 we desribe the notation and onventions used in this paper. In Setion 2.2

we desribe some appliations and onstrutions of pseudo-random funtions and the mo-

tivation for our onstrution. In Setion 3 we further onsider the DDH-Assumption and

show a simple randomized redution between its worst-ase and average-ase. In Setion 4

we desribe a onstrution of pseudo-random funtions based on the DDH-Assumption,

prove its seurity and onsider its omplexity. In Setion 5 we de�ne the GDH-Assumption

and show a related onstrution of pseudo-random funtions based on this assumption. In

Setion 6 we onsider some of the possible features of our pseudo-random funtions and

suggest diretions for further researh.

2 Preliminaries

2.1 Notation and Conventions

� For any integer N the multipliative group modulo N is denoted by Z

�

N

and the

additive group modulo N is denoted by Z

N

.
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� For any integer k, denote by [k℄ the set of integers - f1; 2; : : : ; kg. For any two integers

k < m, denote by [k::m℄ the set of integers - fk; k + 1; : : : ;mg.

� For any two bit-strings of the same length, x and y, the inner produt mod 2 of x

and y is denoted by x� y.

2.2 Pseudo-Random Funtions

As mentioned in the introdution, our main result is a onstrution of a pseudo-random

funtion that is eÆient, has shallow depth and is simple. We devote this setion to motivate

suh a onstrution and to desribe previous onstrutions and appliations of pseudo-

random funtions. Good referenes on pseudo-random funtions and pseudo-randomness in

general are Goldreih [33, 34℄ and Luby [49℄.

The onept of a pseudo-random funtion-ensemble was introdued by Goldreih, Gold-

wasser and Miali [35℄. Loosely, this is an eÆient funtion-ensemble that annot be eÆ-

iently distinguished from the uniform funtion-ensemble by an adversary that has aess

to the funtions as a blak-box (see De�nition 2.1). In addition, Goldreih, Goldwasser

and Miali provided a onstrution of pseudo-random funtions (GGM-Constrution). This

onstrution uses pseudo-random generators [11, 76℄ as building bloks, whih in turn an

be obtained from any one-way funtion (as shown by Hastad, Impagliazzo, Levin and Luby

[41℄).

A pseudo-random funtion is a powerful ryptographi primitive that an replae fun-

tions truly hosen uniformly at random in many appliations. Probably, the most notable

appliations of pseudo-random funtions are in private-key ryptography. They provide par-

ties who share a ommon key straightforward protools for sending seret messages to eah

other, for identifying themselves and for authentiating messages [15, 36, 49℄. As shown by

Luby and Rako� [50℄, it is possible to eÆiently onstrut pseudo-random permutations

(whih, in partiular, an be used as blok-iphers) from pseudo-random funtions (see

also [59℄ for an \optimal" onstrution). However, pseudo-random funtions have many

other appliations inluding appliations in publi-key ryptography. For example, Bellare

and Goldwasser [3℄ showed how to use pseudo-random funtions and a non-interative zero-

knowledge proof of their values to onstrut digital-signatures. Another interesting example

was given by Goldreih [32℄ who showed how to eliminate the state in the Goldwasser-Miali-

Rivest signature sheme (the tehnique of [32℄ is very general). For some of the additional

appliations of pseudo-random funtions see [9, 22, 32, 40℄.

For quite a while, the GGM-Constrution was the only known onstrution of pseudo-

random funtions (that was proven to be as seure as some general or onrete intratability

assumption). Motivated by the inherent sequentiality of the GGM-Constrution, Naor and

Reingold [60℄ reently showed a parallel onstrution based on a new primitive alled a

pseudo-random synthesizer. In addition, they showed how to onstrut pseudo-random

synthesizers in parallel from general ryptographi-primitives (suh as trapdoor permuta-

tions) and based on several onrete intratability assumption. Their onrete onstrutions

give NC

2

(or atually TC

1

) pseudo-random funtions. In fat, our work is motivated by

[60℄, as desribed in Setion 5.2.

The onstrution of this paper gives pseudo-random funtions omputable in TC

0

(given

appropriate preproessing). We briey summarize part of the disussion that appears in

5



[60℄ on the appliations of parallel pseudo-random funtions:

� It is likely that pseudo-random funtions will be implemented in hardware (as is

the ase for DES). In suh implementations, having shallow-depth pseudo-random

funtions implies redued lateny in omputing those funtions whih, for some ap-

pliations (suh as the enryption of messages on a network), is essential.

� As was observed by Valiant [75℄, if a onept lass ontains pseudo-random funtions

then it annot be learned: There exists a distribution of onepts, omputable in

this lass, that is hard for every eÆient learning algorithms, for every \non-trivial"

distribution on the instanes even when membership queries are allowed. Notie that

the unlearnability result implied by the existene of pseudo-random funtions is very

strong. Weaker unlearnability results for NC

1

and TC

0

, based on other ryptographi

assumptions, were obtained in [1, 45, 44℄. It is also interesting to ompare with the

result of Linial, Mansour and Nisan [48℄ who showed that AC

0

an be learned in time

slightly super-polynomial under the uniform distribution on the examples.

� Another appliation of pseudo-random funtions in omplexity was suggested by

Razborov and Rudih [64℄. They showed that if a iruit lass ontains pseudo-random

funtions (that are seure against a subexponential-time adversary), then there are no

(what they alled) Natural Proofs (whih inlude all previously known lower bound

tehniques) for separating this lass from P=poly. We therefore get from our on-

strution that if the GDH-Assumption holds against a subexponential-time adversary

(and in partiular if fatoring is suÆiently hard), then there are no Natural Proofs

for separating TC

0

from P=poly.

We note that one an extrat a similar result (assuming the hardness of fatoring)

from the work of Kharitonov [45℄, whih is based on the pseudo-random generator of

Blum, Blum and Shub [8℄.

Exept of being more parallelizable, our onstrution has two additional advantages over

previous ones:

1. It is eÆient: omputing the value of the funtion at any given point is omparable

with two exponentiations. This is the �rst onstrution that seems eÆient enough

to be implemented and indeed these funtions were implemented by Langberg in

[47℄. Given the many appliations of pseudo-random funtions it is lear that having

eÆient pseudo-random funtions is an important goal.

A somewhat surprising fat is that although our onstrution is muh more eÆient

than previous ones it is still losely related to the GGM-Constrution and to the

onstrution of [60℄. The onnetion with previous onstrutions is desribed in Se-

tions 4.2 and 5.2.

2. It has a simple algebrai struture. To see our main motivation here, onsider the

Bellare-Goldwasser signature sheme. The publi key in this sheme ontains a om-

mitment for a key s of a pseudo-random funtion. The signature for a message m is

omposed of a value y and a non-interative zero-knowledge proof that y = f

s

(m).
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In order for this sheme to be attrative, we must have a simple non-interative zero-

knowledge proof for laims of the form y = f

s

(m). In this and other senarios we

might wish to have additional properties for the funtions suh as a simple funtion-

sharing sheme in the sense of [25℄. It seems that for suh properties to be possible

we need a simple onstrution of pseudo-random funtions.

In [58℄ we onsidered some desirable features of pseudo-random funtions. We also pre-

sented preliminary results in obtaining these features for our onstrution of pseudo-

random funtions: (1) A rather simple zero-knowledge proof for laims of the form

y = f

s

(m) and y 6= f

s

(m). (2) A way to distribute a pseudo-random funtion among

a set of parties suh that only an authorized subset an ompute the value of the

funtion at any given point. (3) A protool for \oblivious evaluation" of the value of

the funtion: Assume that a party, A, knows a key s of a pseudo-random funtion.

Then A and a seond party, B, an perform a protool during whih B learns exatly

one value f

s

(x) of its hoie whereas A does not learn a thing (and, in partiular,

does not learn x). We onsider the task of improving these protools and designing

additional ones to be an interesting line for further researh.

2.2.1 De�nition of Pseudo-Random Funtions

For the sake of onreteness we inlude the de�nition of pseudo-random funtions almost

as it appears in [33, 34℄:

De�nition 2.1 (eÆiently omputable pseudo-random funtion ensemble)

Let fA

n

; B

n

g

n2N

be a sequene of domains and let F = fF

n

g

n2N

be a funtion ensemble

suh that the random variable F

n

assumes values in the set of A

n

! B

n

funtions. Then

F is alled an eÆiently omputable pseudo-random funtion ensemble if the following

onditions hold:

1. (pseudo-randomness) for every probabilisti polynomial-time orale mahineM, every

onstant  > 0, and all but a �nite number of n's

�

�

�

Pr[M

F

n

(1

n

) = 1℄� Pr[M

R

n

(1

n

) = 1℄

�

�

�

<

1

n



;

where R = fR

n

g

n2N

is the orresponding uniform funtion ensemble (i.e., 8n, R

n

is

uniformly distributed over the set of A

n

! B

n

funtions).

2. (eÆient omputation) There exist probabilisti polynomial time algorithms, I and V,

and a mapping from strings to funtions, �, suh that �(I(1

n

)) and F

n

are identially

distributed and V(i; x) = (�(i))(x).

Remark 2.1 In this de�nition, as well as the other de�nitions of this paper, \eÆient

adversary" is interpreted as \probabilisti polynomial-time algorithm" and \negligible" is

interpreted as \smaller than 1=poly". In fat, all the proofs in this paper easily imply more

quantitative results. For a disussion on seurity preserving redutions see [49℄.
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3 The Deisional DiÆe-Hellman Assumption

As mentioned above, we base our �rst onstrution of pseudo-random funtions (desribed

in Setion 4) on the DDH-Assumption (the deisional version of the DH-Assumption). This

assumption is relatively new, or more aurately, was expliitly onsidered only reently.

We therefore devote this setion to a disussion of the DDH-Assumption: we desribe and

de�ne the assumption, onsider some of its di�erent appliations and the urrent knowledge

on its seurity. Furthermore, we show in Setion 3.3 a randomized redution of the worst-

ase DDH-Assumption to its average ase. In Setion 5 we desribe a related onstrution

of pseudo-random funtions based on a more onservative assumption: the assumption that

fatoring Blum-integers is hard (in fat, this onstrution is based on the GDH-Assumption

that in turn an be redued to Fatoring).

3.1 Bakground

The DH-Assumption was introdued in the ontext of the DiÆe and Hellman [28℄ key-

exhange protool. Informally, a key-exhange protool is a way for two parties, A and B,

to agree on a ommon key, K

A;B

, while ommuniating over an inseure (but authentiated)

hannel. Suh a protool is seure if any eÆient third party, C, with aess to the om-

muniation between A and B (but not to their private random strings) annot tell apart

K

A;B

from a random value (i.e., K

A;B

is pseudo-random to C). This guarantees that it is

omputationally infeasible for an eavesdropper to gain \any" partial information on K

A;B

.

Given a large prime P and a generator g of Z

�

P

(both publily known), the DiÆe-Hellman

key-exhange protool goes as follows: A hooses an integer a uniformly at random in [P�2℄

and sends g

a

to B. In return B hooses an integer b uniformly at random in [P � 2℄ and

sends g

b

to A. Both A and B an now ompute g

a�b

and their ommon key, K

A;B

, is de�ned

by g

a�b

in some publily known manner. For this protool to be seure we must have, at

the minimum, that the CDH-Assumption holds:

Given hg; g

a

; g

b

i, it is hard to ompute g

a�b

.

The reason is that if this assumption does not hold, then C (as above) an also ompute

K

A;B

.

One method to produe the key, K

A;B

, is to apply the Goldreih-Levin [37℄ hard-ore

funtion

3

to g

a�b

(an important improvement on the seurity of suh an appliation was made

by Shoup [70℄). If the CDH-Assumption holds, then this method indeed gives a pseudo-

random key. However, the proof in [37℄ only implies the pseudo-randomness of the key in

ase its length is at most logarithmi in the seurity parameter. A muh more ambitious

method is to take g

a�b

itself as the key. For instane, in the ElGamal ryptosystem, given the

publi key g

a

the enryption of a messagem is hg

b

; g

a�b

�mi. The seurity of the key-exhange

protool now relies on the DDH-Assumption:

Given hg; g

a

; g

b

; zi, it is hard to deide whether or not z = g

a�b

.

3

For example, to get a key of one bit, we an de�ne K

A;B

to be the inner produt mod 2 of g

a�b

and a

random string r (hosen by one of the parties and sent to the other over the inseure hannel).
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However, when g is a generator of Z

�

P

, we have that g

a

and g

b

do give some information

on g

a�b

. For example, if either g

a

or g

b

is a quadrati residue, then so is g

a�b

. A standard

solution for this problem is to take g to be a generator of the subgroup of Z

�

P

of order Q,

where Q is a large prime divisor of P � 1. In fat, for most appliations, using g of order Q

is an advantage sine Q may be muh smaller than P (say, 160 bits long) whih results in a

substantial improvement in eÆieny. The reason that Q may be so small is that all known

subexponential algorithms for omputing the disrete log are subexponential in the length

of P (as long as P � 1 is not too smooth) even when applied to the subgroup of size Q

generated by g (see, [53, 62℄ for surveys on algorithms for the disrete log; the best known

algorithm for general groups has time square root of the size of the largest prime divisor of

the group).

How Muh Con�dene Can we Have in the DDH-Assumption?

It is lear that the omputational DH-Problem is at most as hard as omputing the disrete

log (given hg; g

a

i �nd a). Reent works by Maurer and Wolf [51℄ and Boneh and Lipton

[12℄ show that in several settings these two problems are in fat equivalent. For example,

Maurer and Wolf showed that given some information whih only depends on P and an

eÆient algorithm for omputing the DH-Problem in Z

�

P

, one an eÆiently ompute the

disrete log in Z

�

P

(so in some non-uniform sense these problems are equivalent). Shoup [70℄

showed that there are no eÆient \generi" algorithms for omputing the disrete log or

the DH-Problem, where loosely speaking, a generi algorithm is one that does not exploit

any speial properties of the enoding of group elements. A bit more formally, a generi

algorithm is one that works for a \blak-box" group (where eah element has a random

enoding and given the enodings of a and b the algorithm an query for the enodings of

a+ b and �a).

Perhaps the best evidene for the validity of the CDH-Assumption is the fat that

it endured extensive researh over the last two deades. This researh does not seem to

undermine the (stronger) deisional version of the DH-Assumption as well. In addition,

the DDH-Assumption did appear both expliitly and impliitly in several previous works.

However, it seems that, given the many appliations of the DDH-Assumption, a more

extensive study of its seurity is in plae.

To some extent, the DDH-Assumption is supported by the work of Shoup [70℄ and the

work of Boneh and Venkatesan [13℄. Shoup showed that the DDH-Problem is hard for any

generi algorithm (where a generi algorithm is as de�ned above). Boneh and Venkatesan

showed that omputing the k (�

p

logP ) most signi�ant bits of g

a�b

(given hg; g

a

; g

b

i) is

as hard as omputing g

a�b

itself. A reent result with appliations to the DDH-Assumption

was shown by Canetti, Friedlander and Shparlinski [18℄.

In Setion 3.3 we prove an attrative feature of the DDH-Assumption: There is a quite

simple randomized redution between its worst-ase and its average-ase for �xed P and Q.

More spei�ally:

For any primes P and Q (suh that Q divides P � 1), the following statements

are equivalent:

� Given hP;Q; g; g

a

; g

b

i, it is easy to distinguish with non-negligible advantage

9



between g

a�b

and g



, where g is a uniformly hosen element of order Q in

Z

�

P

, and a; b and  are uniformly hosen from Z

Q

.

� Given hP;Q; g; g

a

; g

b

; g



i, it is easy to deide with overwhelming suess

probability whether or not  = a � b, where a; b and  are any three elements

in Z

Q

and g is any element of order Q in Z

�

P

.

This redution is based on the random-self-reduibility of the DDH-Problem that was pre-

viously used by Stadler [73℄. The redution may strengthen our on�dene in the DDH-

Assumption and in the seurity of its appliations.

For most appliations of the DDH-Assumption (inluding ours) there is no reason to

insist on working in a subgroup of Z

�

P

(where P is a prime). Therefore, a natural question

is how valid is this assumption for other groups. Spei� groups that were onsidered in

the ontext of the CDH-Assumption are: (1) Z

�

N

where N is a omposite. MCurley and

Shmuely [52, 69℄ showed that for many of those groups breaking the CDH-Assumption is

at least as hard as fatoring N . (2) Ellipti-urve groups, for whih (in some ases) no

subexponential algorithms for the disrete log are urrently known. We stress that the

randomized redution mentioned above relies on the primality of the order of g.

The Deisional DH-Assumption is Very Attrative

It turns out that the DDH-Assumption was assumed in several previous works (both expli-

itly and impliitly). In the following, we briey refer to some of those works and desribe

some additional appliations.

The most obvious appliation of the DDH-Assumption is to the DiÆe-Hellman key-

exhange protool and to the related publi-key ryptosystem, namely the ElGamal ryp-

tosystem - given the publi key g

a

the enryption of a message m is hg

b

; g

a�b

�mi. Assume

that the message spae is restrited to the subgroup generated by g. In this ase, it is

easy to see that the semanti seurity (see [39℄) of the ryptosystem is equivalent to the

DDH-Assumption. In the general ase (without the restrition on the message spae), we

an use the following related ryptosystem: given the publi key hg

a

; hi the enryption of

a message m is hg

b

; h(g

a�b

) � mi, where h is a pair-wise independent hash funtion from

n-bit strings to strings of approximately the length of Q (see Lemma 4.2 for more details

on the role of h). Therefore, given the DDH-Assumption, we get a probabilisti enryption

of many bits for the prie of a single (or two) exponentiation. This is omparable with the

Blum-Goldwasser ryptosystem [10℄.

Other appliations that previously appeared are:

� Bellare and Miali [4℄ showed an eÆient non-interative oblivious transfer of many

bits that relies on the DDH-Assumption.

� Brands [14℄ pointed out that several suggestions for undeniable signatures (as the one

in [19℄ where this onept was introdued) impliitly rely on the DDH-Assumption. If

this assumption does not hold then suh shemes are in fat ordinary digital signatures.

� Canetti [17℄ gave a simple onstrution based on the DDH-Assumption for a new

ryptographi primitive alled \Orale Hashing" (later renamed \perfetly one-way
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probabilisti hash funtions"). Loosely, these are hash funtions that \hide all partial

information" on their input.

� Franklin and Haber [30℄ showed a onstrution of a joint enryption sheme based on

the DDH-Assumption modulo a omposite. Using this sheme they showed how to

obtain an eÆient protool for seure iruit omputation.

� Stadler [73℄ presents veri�able seret sharing based on the DDH-Assumption.

� Steiner, Tsudik and Waidner [74℄ showed how to extend the DiÆe-Hellman protool

to a key-exhange protool for a group of parties. They redued the seurity of the

extended protool to the DDH-Assumption (by showing that the DDH-Assumption

implies the deisional GDH-Assumption).

A very attrative appliation of the DDH-Assumption was reently proposed by Cramer

and Shoup [24℄. They have presented a new publi-key ryptosystem that is seure against

adaptive hosen iphertext attaks. Both enryption and deryption in this ryptosystem

only require a few exponentiations (in addition to universal one-way hashing).

To all these appliations we an add:

� A pseudo-random generator that pratially doubles the input length. Essentially, the

generator is de�ned by G

P;Q;g;g

a

(b) = hg

b

; g

a�b

i.

4

As mentioned in the introdution,

several unpublished onstrutions of pseudo-random generators based on the DDH-

Assumption were previously suggested.

� A pseudo-random synthesizer (see de�nition in [60℄) whose output length is similar to

its arguments length, essentially de�ned by S

P;Q;g

(a; b) = g

a�b

.

Both these onstrutions are overshadowed by the onstrution of pseudo-random funtions

introdued in Setion 4.1.

3.2 Formal De�nition

To formalize the DDH-Assumption, we �rst need to speify an eÆiently samplable distri-

bution for P , Q and g (where g is an element of order Q in Z

�

P

).

Let n be the seurity parameter. For some funtion ` : N ! N we want to hoose an

n-bit prime P with an `(n)-bit prime Q that divides P � 1. A natural way to do this is to

hoose P and Q uniformly at random subjet to those onstraints. However, it is possible

to onsider di�erent distributions. For example, it is not inoneivable that the assumption

holds when for every n we have a single possible hoie of P , Q and g. Another ommon

example is letting P and Q satisfy P = 2 � Q + 1 (although hoosing a smaller Q may

inrease the eÆieny of most appliations). In order to keep our results general, we let

P , Q and g be generated by some probabilisti polynomial-time algorithm IG (where IG

stands for instane generator). On input 1

n

the output of IG is distributed over triplets

4

In fat, the output of G

P;Q;g;g

a

is a pseudo-random pair of values in the subgroup generated by g. In

order to obtain a pseudo-random value in f0; 1g

`

, for ` of approximately twie the length of Q, one needs

to hash the output of the generator (see Lemma 4.2). A similar observation holds for the onstrutions of

pseudo-random synthesizers and pseudo-random funtions.
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hP;Q; gi, where P is an n-bit prime, Q a (large) prime divisor of P � 1 and g an element

of order Q in Z

�

P

. Any instantiation of IG will imply a di�erent DDH-Assumption and a

di�erent onstrution of pseudo-random funtions. Our proof of pseudo-randomness of the

funtions based on the DDH-Assumption is independent of the partiular instantiation of

IG.

For the various appliations of the DDH-Assumption we need its average-ase version.

Namely, when a and b are uniformly hosen and  is either a � b or uniformly hosen. In

Setion 3.3 it is shown that a worst-ase hoie of a; b and  an be redued to a uniform

hoie. Similarly, the assumption is not strengthened if g (generated by IG) is taken to be

a uniformly hosen element of order Q in Z

�

P

.

Assumption 3.1 (Deisional DiÆe-Hellman) For every probabilisti polynomial-time

algorithm A, every onstant � > 0 and all but a �nite number of n's

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g



) = 1℄

�

�

�

<

1

n

�

;

where the probabilities are taken over the random bits of A, the hoie of hP;Q; gi aording

to the distribution IG(1

n

) and the hoie of a; b and  uniformly at random in Z

Q

.

3.3 A Randomized Redution

In this subsetion we use a simple randomized redution to show that for every P;Q and g

the DDH-Problem is either very hard on the average or very easy in the worst-ase. Given

the urrent knowledge of the DDH-Problem, suh a result strengthens our belief in the

DDH-Assumption. The main part of the redution (Lemma 3.2) was previously used by

Stadler [73℄.

De�nition 3.1 For any hP;Q; gi suh that P is a prime, Q a prime divisor of P � 1 and

g an element of order Q in Z

�

P

the funtion DDH

P;Q;g

is de�ned by

DDH

P;Q;g

(g

a

; g

b

; g



) =

(

1 if  = a � b

0 otherwise

for any three elements a; b;  in Z

Q

.

Theorem 3.1 Let A be any probabilisti algorithm with running time t = t(n) and � = �(n)

any positive funtion suh that 1=� is eÆiently onstrutible. There exist a polynomial

p = p(n) and a probabilisti algorithm A

0

with running time (t(n) � p(n))=(�(n))

2

suh that,

for any hoie of hP;Q; gi as in De�nition 3.1, if:

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g



) = 1℄

�

�

�

> �(n);

where the probabilities are taken over the random bits of A and the hoie of a; b and 

uniformly at random in Z

Q

, then for any a; b and  in Z

Q

:

Pr[A

0

(P;Q; g; g

a

; g

b

; g



) 6= DDH

P;Q;g

(g

a

; g

b

; g



)℄ < 2

�n

;

where the probability is only over the random bits of A

0

.

In partiular, if A is probabilisti polynomial-time and �(n) � 1=poly(n), then A

0

is also

probabilisti polynomial-time.

12



Blum and Miali [11℄ introdued the onept of random-self-reduibility (and random-

ized redutions). Informally, a problem is random-self-reduible if solving the problem on

any instane x an be eÆiently redued to solving the problem on a random instane y

(or on a polynomial number of random instanes). That is, for any instane x, a ran-

dom instane y an be eÆiently sampled using a random string r suh that given r and

the solution of the problem on y it is easy to ompute the solution of the problem on x.

A problem that is random-self-reduible an either be eÆiently solved for every instane

with overwhelming suess probability or it annot be solved for a random instane with

non-negligible suess probability.

Our randomized redution is losely related to other known redutions. Blum and

Miali [11℄ showed that for any spei� prime P and generator g, the disrete log problem

is random-self-reduible: given hP; g; g

a

i for any a it is easy to generate a random instane

hP; g; g

a+r

= g

a

� g

r

i (where r is uniform in [P � 1℄). Given the solution for the random

instane (i.e., a+ r) it is easy to ompute the solution for the original instane (i.e., a). A

similar property was shown for the CDH-Problem (e.g. [51℄): given hP; g; g

a

; g

b

i for any a

and b it is easy to generate a random instane hP; g; g

a+r

; g

b+s

i (where r and s are uniform

in [P � 1℄). Given the solution for the random instane (i.e., z = g

(a+r)�(b+s)

) it is easy to

ompute the solution for the original instane (i.e., g

a�b

= z � (g

a

)

�s

� (g

b

)

�r

� g

�s�r

).

However, in order to prove Theorem 3.1, we need a somewhat di�erent redution. In

partiular, we need to use the fat that g is an element of prime order: Theorem 3.1 an

only hold when g is a generator of Z

�

P

if the DDH-Problem is always easy (in whih ase

the theorem holds trivially).

Lemma 3.2 There exists a probabilisti polynomial-time algorithm, R suh that on any

input

hP;Q; g; g

a

; g

b

; g



i;

where P is a prime, Q a prime divisor of P � 1, g an element of order Q in Z

�

P

and a; b; 

are three elements in Z

Q

the output of R is:

hP;Q; g; g

a

0

; g

b

0

; g



0

i;

where if  = a � b, then a

0

and b

0

are uniform in Z

Q

and 

0

= a

0

� b

0

and if  6= a � b, then a

0

; b

0

and 

0

are all uniform in Z

Q

.

Proof: R hooses s

1

; s

2

and r uniformly in Z

Q

, omputes

g

a

0

= (g

a

)

r

� g

s

1

;

g

b

0

= g

b

� g

s

2

;

g



0

= (g



)

r

� (g

a

)

r�s

2

� (g

b

)

s

1

� g

s

1

�s

2

and outputs

hP;Q; g; g

a

0

; g

b

0

; g



0

i:

Let  = a � b+ e for e in Z

Q

then:

a

0

= r � a+ s

1

; b

0

= b+ s

2

; 

0

= a

0

b

0

+ e � r:
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If e = 0 we have that a

0

and b

0

are uniformly distributed in Z

Q

and 

0

= a

0

� b

0

. If e 6= 0 we

have that a

0

; b

0

and 

0

are all uniformly distributed in Z

Q

(this is the plae we use the fat

that Q is a prime whih implies that e � r is uniformly distributed in Z

Q

). Therefore, the

output of R has the desired distribution. 2

Proof: (of Theorem 3.1) Let A be any probabilisti algorithm with running time t = t(n),

let � = �(n) be any positive funtion suh that 1=� is eÆiently onstrutible and let hP;Q; gi

be as in De�nition 3.1. Assume that:

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g



) = 1℄

�

�

�

> �(n);

where the probabilities are taken over the random bits of A and the hoie of a; b and 

uniformly at random in Z

Q

.

Let R be the probabilisti polynomial-time algorithm that is guaranteed to exist by

Lemma 3.2. By the de�nition of R and our assumption, we have that for any a; b and

 6= a � b in Z

Q

:

�

�

�

Pr[A(R(P;Q; g; g

a

; g

b

; g

a�b

)) = 1℄� Pr[A(R(P;Q; g; g

a

; g

b

; g



)) = 1℄

�

�

�

> �(n):

Now the probabilities are only taken over the random bits of A and R. Therefore, by

standard methods of ampli�ation (see e.g., [34℄ and referenes therein) we an de�ne a

probabilisti algorithm A

0

suh that for any a; b and  6= a � b in Z

Q

:

Pr[A

0

(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A

0

(P;Q; g; g

a

; g

b

; g



) = 1℄ > 1� 2

�n

:

On any input hP;Q; g; g

a

; g

b

; g



i, the output of A

0

is essentially a threshold funtion of

O(n=(�(n))

2

) independent values - A(R(P;Q; g; g

a

; g

b

; g



)). It is lear that A

0

satis�es the

onditions required in Theorem 3.1. 2

4 Constrution of Pseudo-Random Funtions

In this setion we desribe a onstrution of pseudo-random funtions based on the DDH-

Assumption, prove its seurity and onsider its omplexity. A related onstrution (based

on a weaker assumption) is desribed in Setion 5.

4.1 Constrution and Main Result

Constrution 4.1 We de�ne the funtion ensemble F = fF

n

g

n2N

. For every n, a key of

a funtion in F

n

is a tuple, hP;Q; g;~ai, where P is an n-bit prime, Q a prime divisor of

P � 1, g an element of order Q in Z

�

P

and ~a = ha

0

; a

1

; : : : a

n

i a sequene of n+ 1 elements

of Z

Q

. For any n-bit input, x = x

1

x

2

� � � x

n

, the funtion f

P;Q;g;~a

is de�ned by:

f

P;Q;g;~a

(x)

def

= (g

a

0

)

Q

x

i

=1

a

i

:

The distribution of funtions in F

n

is indued by the following distribution on their keys: ~a

is uniform in its range and the distribution of hP;Q; gi is IG(1

n

).
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It is lear that F is eÆiently omputable (sine IG is eÆient). The pseudo-randomness

property of F is the following:

Theorem 4.1 Let F = fF

n

g

n2N

be as in Constrution 4.1. If the DDH-Assumption (As-

sumption 3.1) holds, then for every probabilisti polynomial-time orale mahine M, every

onstant � > 0, and all but a �nite number of n's

�

�

�

Pr[M

f

P;Q;g;~a

(P;Q; g) = 1℄� Pr[M

R

P;Q;g

(P;Q; g) = 1℄

�

�

�

<

1

n

�

;

where in the �rst probability, f

P;Q;g;~a

is distributed aording to F

n

, and in the seond

probability, the distribution of hP;Q; gi is IG(1

n

) and R

P;Q;g

is uniformly hosen in the set

of funtions with domain f0; 1g

n

and range hgi (the subgroup of Z

�

P

generated by g).

Moreover, if there exists a probabilisti orale mahine with running time t = t(n) that

distinguishes f

P;Q;g;~a

from R

P;Q;g

(as above) with advantage � = �(n). Then there exists

a probabilisti algorithm with running time poly(n) � t(n) that breaks the DDH-Assumption

with advantage �(n)=n.

Remark 4.1 The \moreover" part of Theorem 4.1 implies that the seurity of the funtions

does not signi�antly derease when the number of queries the distinguisher makes inreases.

More formally, we have that this redution is in fat linear-preserving (see [49℄). This is

a strong and quite unique property (and in partiular it is very di�erent from the proofs of

seurity for the funtions in [35, 60℄).

Given Theorem 4.1, we have that F is \almost" an eÆiently omputable pseudo-random

funtion ensemble. There is one di�erene: A funtion f

P;Q;g;~a

in F

n

has domain f0; 1g

n

and

range hgi. Therefore, di�erent funtions in F

n

have di�erent ranges whih deviates from

the standard de�nition of pseudo-random funtions (De�nition 2.1). However, for many

appliations of pseudo-random funtions this deviation does not present a problem (e.g.,

the appliations of pseudo-random funtions to private-key authentiation and identi�ation

and their appliations to digital signatures [3℄). In addition, it is rather easy to onstrut

from F pseudo-random funtions under De�nition 2.1. In order to show this, we need the

following lemma whih is a simple orollary of the leftover hash lemma [41, 43℄:

Lemma 4.2 Let n; ` and e be three positive integers suh that 3e + 1 < ` < n. Let X �

f0; 1g

n

be a set of at least 2

`�1

elements and x uniformly distributed in X. Let H be a

family of pair-wise independent, f0; 1g

n

! f0; 1g

`�1�3e

, hash funtions. Then for all but a

2

�e

fration of h 2 H the uniform distribution over f0; 1g

`�1�3e

and h(x) are of statistial

distane of at most 2

�e

.

Lemma 4.2 suggests the following onstrution:

Constrution 4.2 Let ` = `(n) be an integer-valued funtion suh that for any output,

hP;Q; gi, of IG(1

n

) we have that Q is `(n)-bit long. Let F = fF

n

g

n2N

be as in Constru-

tion 4.1 and 8n; let H

n

be a family of pair-wise independent, f0; 1g

n

! f0; 1g

b`(n)=2

, hash

funtions. We de�ne the funtion ensemble

~

F = f

~

F

n

g

n2N

. For every n, a key of a funtion
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in

~

F

n

is a pair, hk; hi, where k is a key of a funtion in F

n

and h 2 H

n

. For any n-bit

input, x, the funtion

~

f

k;h

is de�ned by:

~

f

k;h

(x)

def

= h(f

k

(x)):

The distribution of funtions in

~

F

n

is indued by the following distribution on their keys: h

is uniform in H

n

and the distribution of k is the same as the distribution of keys in F

n

.

Note that hoosing the range of the hash funtions to be f0; 1g

b`(n)=2

is arbitrary. One

an hoose the range to be f0; 1g

`(n)�e(n)

for any funtion e(n) suh that 2

�e(n)

is negligible.

Theorem 4.3 If the DDH-Assumption (Assumption 3.1) holds, then

~

F = f

~

F

n

g

n2N

(as in

Constrution 4.2) is an eÆiently omputable pseudo-random funtion ensemble.

Proof: The proof easily follows from Theorem 4.1 and Lemma 4.2. From Theorem 4.1 a

funtion f

P;Q;g;~a

seleted from F

n

is indistinguishable from a uniform funtion with domain

f0; 1g

n

and range hgi. The size of hgi is at least 2

`�1

. Therefore, from Lemma 4.2, for all

but a negligible fration of the hash funtions h in H

n

, the distribution of h(x) where x is

uniform in hgi is indistinguishable from the uniform distribution on b`=2-bit strings. We

an therefore onlude that a distinguisher for

~

F an be used to distinguish F from truly

random funtions. 2

Remark 4.2 This proof implies that

~

F = f

~

F

n

g

n2N

remains indistinguishable from the

uniform funtion-ensemble even when the distinguisher has aess to hP;Q; gi and to h (as

in the de�nition of funtions in

~

F

n

).

4.2 Proof of Seurity

There are a few possible approahes to proving Theorem 4.1. One approah is related to

the onstrution of [60℄ (and in partiular to the onept of an n-dimensional synthesizer).

Indeed, the onstrution of [60℄ has motivated the onstrutions of this paper (the onnetion

is desribed in Setion 5.2). However, the proof we give here for Theorem 4.1 follows

an analogous line to the proof of seurity for the GGM-Constrution of pseudo-random

funtions [35℄. This may seem surprising sine the two onstrutions look very di�erent.

Nevertheless, in some sense, one may view our onstrution as a areful appliation (or a

generalization) of the GGM-Constrution. In the following few paragraphs we desribe the

similarities and di�erenes between the two onstrutions.

Let G be a pseudo-random generator that doubles its input. De�ne G

0

and G

1

suh that

for any n-bit string x, both G

0

(x) and G

1

(x) are n-bit strings and G(x) = hG

0

(x); G

1

(x)i.

Under the GGM-Constrution, the key of a pseudo-random funtion f

s

: f0; 1g

n

! f0; 1g

n

is a uniformly hosen n-bit string s. For any n-bit input, x = x

1

x

2

� � � x

n

, the funtion f

s

is

de�ned by:

f

s

(x)

def

= G

x

n

(� � � (G

x

2

(G

x

1

(s)) � � �):

The de�nition of f

s

an be thought of as a reursive labeling proess of a depth-n binary

tree. The key s is the label of the root and it indues a labeling of all the nodes in the

tree. The labels of the 2

n

leaves orrespond to the 2

n

di�erent outputs of the funtion.
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In ontrast, in our onstrution no tree appears in the design and no partiular order is

attahed to the input bits. Nevertheless, we were able to relate the proof of seurity of the

two onstrutions.

The DDH-Assumption implies a simple pseudo-random generator that pratially dou-

bles its input: G

P;Q;g;g

a

(b)

def

= hg

b

; g

a�b

i (whose output is a pseudo-random pair of values

in the subgroup generated by g) . It is tempting to use this generator for the GGM-

Constrution. However, a straightforward appliation of the GGM-Constrution would

give a rather ineÆient funtion. We therefore suggest a slight hange to the de�nition of

the generator:

~

G

P;Q;g;g

a

(g

b

) = h

~

G

0

P;Q;g;g

a

(g

b

);

~

G

1

P;Q;g;g

a

(g

b

)i

def

= hg

b

; g

a�b

i:

At a �rst look this seems absurd:

~

G

P;Q;g;g

a

is not eÆiently omputable unless the DH-

Problem is easy. Therefore, if

~

G

P;Q;g;g

a

is eÆiently omputable, then it is not pseudo-

random. However,

~

G

P;Q;g;g

a

has the following property that allows us to use a generalization

of the GGM-Constrution:

~

G

P;Q;g;g

a

(g

b

) is eÆiently omputable if either a or b are known.

A more general way to state this is:

1.

~

G

P;Q;g;g

a

is eÆiently omputable (on any input), given the random bits that were

used to sample it (in partiular, given a).

2. For any

~

G

P;Q;g;g

a

, it is easy to generate the distribution of its output,

~

G

P;Q;g;g

a

(g

b

),

on a uniformly hosen input (this fat implies Lemma 4.4).

We now obtain the pseudo-random funtions of Constrution 4.1 using the GGM-Constrution

where at eah level of the onstrution we use a di�erent value, g

a

, for the generator:

f

P;Q;g;a

0

;a

1

;:::;a

n

(x)

def

=

~

G

x

n

P;Q;g;g

a

n

(� � � (

~

G

x

2

P;Q;g;g

a

2

(

~

G

x

1

P;Q;g;g

a

1

(g

a

0

)) � � �):

We turn to the formal proof of Theorem 4.1. First we show (in Lemma 4.4) that

a polynomial sample, h

~

G

P;Q;g;g

a

(g

b

1

); : : :

~

G

P;Q;g;g

a

(g

b

t

)i is pseudo-random i� a single sam-

ple,

~

G

P;Q;g;g

a

(g

b

), is pseudo-random. In preliminary versions of this paper the proof of

Lemma 4.4 used a hybrid-argument based on property (2) above (whih is similar to the

orresponding argument in [35℄). However, Vitor Shoup (personal ommuniation) has

pointed out that one an use the randomized-redution of the DDH-Problem (see Se-

tion 3.3) for an alternative proof of the lemma. The new proof is both simpler and more

seurity-preserving. Given a distinguisher for the polynomial-sample we get a distinguisher

for the single sample that ahieves the same advantage. Based on this property, the seu-

rity of the funtions in our proof of Theorem 4.1 does not signi�antly derease when the

number of queries the distinguisher makes inreases (whih is very di�erent from the proofs

of seurity for the funtions in [35, 60℄).

De�nition 4.1 Let n and t be any pair of positive integers. De�ne the two distributions

I

n;t

R

and I

n;t

PR

as follows:

I

n;t

R

def

= hP;Q; g; g

a

; g

b

1

; g



1

; : : : ; g

b

t

; g



t

i
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and

I

n;t

PR

def

= hP;Q; g; g

a

; g

b

1

; g

a�b

1

; : : : ; g

b

t

; g

a�b

t

i;

where hP;Q; gi is distributed aording to IG(1

n

) and all the values in ha; b

1

; : : : ; b

t

; 

1

; : : : ; 

t

i

are uniform in Z

Q

.

Lemma 4.4 (Indistinguishability of a Polynomial Sample) If the DDH-Assumption (As-

sumption 3.1) holds, then for every probabilisti polynomial-time algorithm D, every poly-

nomial t(�), every onstant � > 0 and all but a �nite number of n's

�

�

�

Pr[D(I

n;t(n)

PR

) = 1℄� Pr[D(I

n;t(n)

R

) = 1℄

�

�

�

<

1

n

�

:

Moreover, if there exists a probabilisti algorithm with running time p = p(n) that dis-

tinguishes I

n;t(n)

PR

from I

n;t(n)

R

(as above) with advantage � = �(n). Then there exists a prob-

abilisti algorithm with running time poly(n) � t(n) + p(n) that breaks the DDH-Assumption

with advantage �(n).

Proof: It is enough to prove the \moreover" part of the lemma as setting �(n) =

1

n

�

it

implies the �rst part of the lemma.

Let � = �(n) be any positive real-valued funtion. Assume that there exists a probabilis-

ti algorithm D with running time p = p(n) and a polynomial t(�) suh that for in�nitely

many n's

�

�

�

Pr[D(I

n;t(n)

PR

) = 1℄� Pr[D(I

n;t(n)

R

) = 1℄

�

�

�

> �(n):

We de�ne a probabilisti algorithm A with running time poly(n) � t(n) + p(n) suh that for

in�nitely many n's

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g



) = 1℄

�

�

�

> �(n);

where the probabilities are taken over the random bits of A, the hoie of hP;Q; gi aording

to the distribution IG(1

n

) and the hoie of a; b and  uniformly at random in Z

Q

.

Let the input of A be hP;Q; g; g

a

; g

b

; g

~

i, where P is n-bit long and ~ is either a � b or

uniform in Z

Q

. Using a randomized redution similar to that in the proof of Lemma 3.2, A

generates t(n) random pairs g

b

i

; g

~

i

suh that 8i; ~

i

= a � b

i

i� ~ = a � b. A now invokes D on

these values to distinguish between the two possible distributions of its own input. More

formally, A exeutes the following algorithm:

1. De�ne t = t(n) and sample eah one of the values in hd

1

; : : : ; d

t

; e

1

; : : : ; e

t

i uniformly

at random in Z

Q

.

2. De�ne the sequene I to be

hP;Q; g; g

a

;

~

R

d

1

;e

1

(g

a

; g

b

; g

~

); : : : ;

~

R

d

t

;e

t

(g

a

; g

b

; g

~

)i;

where

8i;

~

R

d

i

;e

i

(g

a

; g

b

; g

~

)

def

=

�

g

b

�

d

i

� g

e

i

;

�

g

~

�

d

i

� (g

a

)

e

i

:

3. Output D(I)
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Denote by g

b

i

; g

~

i

the value

~

R

d

i

;e

i

(g

a

; g

b

; g

~

). By the same arguments used in the proof

of Lemma 3.2 we have that:

� If ~ = a � b, then b

1

; : : : ; b

t

are uniform in Z

Q

(and independent of eah other and of

a) and 8i; ~

i

= a � b

i

.

� If ~ 6= a � b, then b

1

; : : : ; b

t

; ~

1

; : : : ; ~

t

are all uniform in Z

Q

(and independent of eah

other and of a).

Therefore, by the de�nitions of A, I

n;t

PR

and I

n;t

R

it easily follows that:

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄ = Pr[D(I

n;t

PR

) = 1℄

and Pr[A(P;Q; g; g

a

; g

b

; g



) = 1℄ = Pr[D(I

n;t

R

) = 1℄:

It is now immediate that in�nitely many n's

�

�

�

Pr[A(P;Q; g; g

a

; g

b

; g

a�b

) = 1℄� Pr[A(P;Q; g; g

a

; g

b

; g



) = 1℄

�

�

�

> �(n);

where the probabilities are as above. 2

The proof of Theorem 4.1 given Lemma 4.4 uses an hybrid argument, whih is a proof-

tehnique for showing that two distributions are indistinguishable. See [33, 34℄ for details

on hybrid arguments. Loosely, the method for showing that D and D

0

are indistinguishable

is to (1) De�ne a polynomial-length sequene of eÆient distributions D

0

;D

1

; : : : ;D

m

with

D

0

= D and D

m

= D

0

. (2) Show that any two neighboring distributions D

j�1

and D

j

are indistinguishable. In fat, in the uniform version of this argument (e.g. in the proof

of Theorem 4.1) we usually show that it is hard to distinguish D

J�1

and D

J

where J

is uniformly hosen in [m℄. Furthermore, in the proof of Theorem 4.1 (as well as in the

orresponding proofs in [35, 60℄) the n + 1 distributions that are (impliitly) de�ned are

not eÆiently samplable. For example, one of the two extreme distributions is of uniform

funtions (whih is ertainly not eÆiently samplable). Nevertheless, a uniform funtion

an be eÆiently \simulated" by an algorithm that answers eah query at random (under

the restrition of keeping onsisteny of its answers for repeating queries). Sine all other

intermediate funtion distributions an be \simulated" in the same sense we an still apply

the hybrid argument. We now turn to the formal proof (where the arguments desribed

above are impliit).

Proof: (of Theorem 4.1) It is enough to prove the \moreover" part of the theorem as

setting �(n) =

1

n

�

it implies the �rst part of the theorem.

Let � = �(n) be any positive real-valued funtion. Assume that there exists a proba-

bilisti orale mahine M with running time t = t(n) suh that for in�nitely many n's

�

�

�

Pr[M

f

P;Q;g;~a

(P;Q; g) = 1℄� Pr[M

R

P;Q;g

(P;Q; g) = 1℄

�

�

�

> �(n);

where the probabilities are as in Theorem 4.1. We de�ne a probabilisti algorithm D with

running time poly(n) � t(n), suh that for in�nitely many n's

�

�

�

Pr[D(I

n;t(n)

PR

) = 1℄� Pr[D(I

n;t(n)

R

) = 1℄

�

�

�

>

1

n

� �(n):
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By Lemma 4.4, this ompletes the proof of the theorem.

On any input hP;Q; g; g

a

; g

b

1

; g

~

1

; g

b

2

; g

~

2

; : : : ; g

b

t

; g

~

t

i, where P is n bits long (and either

eah ~

i

is a � b

i

or eah ~

i

is uniform in Z

Q

), D exeutes the following algorithm:

1. Sample J uniformly at random in [n℄.

2. Sample eah one of the values in ha

J+1

; a

J+2

; : : : ; a

n

i uniformly at random in Z

Q

.

3. Invoke M on input hP;Q; gi and answer its queries in the following way: Let the

queries asked by M be hx

1

; x

2

; : : : x

m

i. The i

th

query x

i

is an n-bit string. Denote

x

i

= �x

i

x

i

J

x

i

J+1

� � � x

i

n

, where �x

i

is a (J � 1)-bit string and x

i

J

; x

i

J+1

; : : : ; x

i

n

are single

bits. To answer the i

th

query de�ne ` = `(i) = minfi

0

j�x

i

0

= �x

i

g and answer the query

by

8

<

:

(g

~

`

)

Q

x

i

k

=1;k>J

a

k

if x

i

J

= 1

(g

b

`

)

Q

x

i

k

=1;k>J

a

k

if x

i

J

= 0

These answers are well de�ned sine m � t.

4. Output whatever M outputs.

From the de�nition of D we have that for f

P;Q;g;~a

and R

P;Q;g

as in Theorem 4.1,

Pr[D(I

n;t

PR

) = 1 j J = 1℄ = Pr[M

f

P;Q;g;~a

(P;Q; g) = 1℄;

Pr[D(I

n;t

R

) = 1 j J = n℄ = Pr[M

R

P;Q;g

(P;Q; g) = 1℄

and for any 0 < j < n

Pr[D(I

n;t

R

) = 1 j J = j℄ = Pr[D(I

n;t

PR

) = 1 j J = j + 1℄:

By the assumption we get that for in�nitely many n's

�

�

�

Pr[D(I

n;t

PR

) = 1℄� Pr[D(I

n;t

R

) = 1℄

�

�

�

=

�

�

�

�

�

1

n

�

n

X

j=1

Pr[D(I

n;t

PR

) = 1 j J = j℄�

1

n

�

n

X

j=1

Pr[D(I

n;t

R

) = 1 j J = j℄

�

�

�

�

�

=

1

n

�

�

�

�

Pr[D(I

n;t

PR

) = 1 j J = 1℄� Pr[D(I

n;t

R

) = 1 j J = n℄

�

�

�

=

1

n

�

�

�

�

Pr[M

f

P;Q;g;~a

(P;Q; g) = 1℄� Pr[M

R

P;Q;g

(P;Q; g) = 1℄

�

�

�

>

1

n

� �(n):

This ompletes the proof of the theorem. 2
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4.3 EÆieny of the Constrution

Consider a funtion f

P;Q;g;~a

2 F

n

(where ~a = ha

0

; a

1

; : : : a

n

i) as in Constrution 4.1. Com-

puting the value of this funtion at any given point, x, involves one multiple produt (a

produt of polynomially many numbers), y = a

0

�

Q

x

i

=1

a

i

(whih an be performed mod-

ulo Q), and one modular exponentiation, g

y

. This gives a pseudo-random funtion whih is

muh more eÆient than previous onstrutions. Furthermore, one an use preproessing

in order to get improved eÆieny. The most obvious preproessing is omputing the values

g

2

i

(for every positive integer i up to the length of Q). Now omputing the value of the

funtion requires two multiple produts modulo a prime

5

. Additional preproessing an

redue the work by a fator of O(log n) (see Brikell et. al. [16℄). Atually, to ompute the

value of the pseudo-random funtion of Constrution 4.2, we also need one appliation of

a pair-wise independent hash funtion but this operation is very heap ompared with a

multiple produt or a modular exponentiation.

As desribed in the Introdution and in Setion 2.2, we are also interested in �nding

the parallel-time omplexity of the pseudo-random funtions. In order to do so, let us

�rst reall the result of Beame, Cook and Hoover [2℄ who showed that division and related

operations inluding multiple produt are omputable inNC

1

. Based on this result, Reif and

Tate [65, 66℄ showed that these operations are also omputable in TC

0

. The exat depth

required for these operations was onsidered in [71, 72℄ where it was shown that multiple

sum is in TC

0

2

, multipliation and division in TC

0

3

and multiple produt in TC

0

4

(reall

that for every integer d the lass of funtions omputable by depth d iruits onsisting of

a polynomial number of threshold gates is denoted by TC

0

d

).

By the results above, we immediately get that after preproessing (i.e., omputing the

values g

2

i

), it is possible to evaluate the funtion f

P;Q;g;~a

in TC

0

(sine all the neessary

operations an be performed in TC

0

):

Theorem 4.5 Let F = fF

n

g

n2N

be as in Constrution 4.1. Then there exists a polynomial,

p(�), and an integer i suh that for every n 2 N and every funtion f

k

2 F

n

there exists a

depth d threshold iruit of size bounded by p(n) that omputes f

k

.

The exat depth of the funtions: As disussed above, Theorem 4.5 an be obtained by

a naive appliation of the results in [71, 72℄. In [58℄, we noted that a more detailed analysis

of the funtion f

P;Q;g;~a

implies further optimization in the depth. We desribed several

methods that enable to evaluate this funtion in TC

0

5

(using additional preproessing): First,

note that in both multiple produts we an assume any preproessing of the values in the

multipliation (sine these values are taken from the sequene ha

0

; a

1

; : : : a

n

i or from the set

fg

2

i

g). Seond, we don't need the atual value of the �rst multiple produt, y =

Q

x

i

=1

a

i

:

Computing values r

i

(obtained by the CRT-representation) for whih y =

P

m

i

� r

i

(where

the values m

i

are known in advane and an be preproessed) is just as good. Finally, the

value P is also known in advane. Therefore, the depth of the �nal modular redution an

be redued by preomputing the values 2

i

mod P . Using similar ideas and a muh more

areful analysis, Krause and Luks [46℄ managed to further redue the depth to four. This is

5

In the ase that Q is muh smaller than P we have that the �rst multiple produt is muh heaper than

the seond
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espeially interesting as pseudo-random funtions annot be evaluated in TC

0

2

(see [46℄ for

exat statements). This means that the depth required for evaluating the pseudo-random

funtions of this paper is almost the smallest possible. An natural question whih remains

open is whether there exist pseudo-random funtions in TC

0

3

.

Remark 4.3 Similar analysis holds for eÆieny and depth of the pseudo-random fun-

tions of Constrution 5.1.

5 Constrution Based on Fatoring or the GDH-Assumption

In this setion we show an additional onstrution of pseudo-random funtions - Constru-

tion 5.1, that is very similar to Constrution 4.2. The seurity of Constrution 5.1 is redued

to the GDH-Assumption whih is a generalization of the omputational DH-Assumption.

This onstrution is interesting for two main reasons:

1. The GDH-Assumption is implied by the DDH-Assumption but they are not known

to be equivalent. Therefore, Constrution 5.1 may still be valid even if the DDH-

Assumption does not hold. In addition, the GDH-Assumption modulo a so alled

Blum-integer is not stronger than the assumption that fatoring Blum-integers is

hard. This gives an attrative onstrution of pseudo-random funtions that is at

least as seure as Fatoring (whih was reently improved in [61℄).

2. Constrution 5.1 is based on a somewhat di�erent methodology than Constrution 4.2.

It may be easier to apply this methodology in order to onstrut pseudo-random

funtions based on additional assumptions (in fat, Constrution 4.2 was obtained as

a modi�ation of Constrution 5.1).

5.1 The GDH-Assumption

The GDH-Assumption was previously onsidered in the ontext of a key-exhange protool

for a group of parties (see e.g., [69, 74℄). In this protool, party i 2 [n℄ hooses a seret

value, a

i

. After exeuting the protool, eah of these parties an ompute g

Q

i2[n℄

a

i

and

this value de�nes their ommon key. While exeuting the protool, an eavesdropper may

learn values of the form g

Q

i2I

a

i

for several proper subsets I of [n℄. It is essential to assume

that even with this knowledge it is hard to ompute g

Q

i2[n℄

a

i

. The GDH-Assumption is

even stronger: Informally, this assumption says that it is hard to ompute g

Q

i2[n℄

a

i

for an

algorithm that an query g

Q

i2I

a

i

for any proper subset, I of [n℄ of its hoie.

To remain onsistent with the DDH-Assumption, we state the GDH-Assumption (As-

sumption 5.1) in a subgroup of Z

�

P

of order Q (where P and Q are primes). In fat,

the orresponding assumption in any other group implies a orresponding onstrution of

pseudo-random funtions. For example, sine breaking the GDH-Assumption modulo a

omposite is at least as hard as fatoring [6, 69℄, we obtain in Setion 5.4 a onstrution of

pseudo-random funtions whih is at least as seure as Fatoring. Furthermore, in ontrast

with the DDH-Assumption, one an onsider the GDH-Assumption in Z

�

P

itself (i.e., when

g is a generator of Z

�

P

).

In order to formalize the GDH-Assumption, we use the following de�nition:
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De�nition 5.1 Let hP;Q; gi be any possible output of IG(1

n

) and let ~a = h~a

1

; ~a

2

; : : : ~a

n

i be

any sequene of n elements of Z

Q

. De�ne the funtion h

P;Q;g;~a

with domain f0; 1g

n

suh

that for any n-bit input, x = x

1

x

2

� � � x

n

,

h

P;Q;g;~a

(x)

def

= g

Q

x

i

=1

~a

i

:

De�ne h

r

P;Q;g;~a

to be the restrition of h

P;Q;g;~a

to inputs f0; 1g

n

n f1

n

g.

Assumption 5.1 (Generalized DiÆe-Hellman) For every probabilisti polynomial-time

orale mahine A, every onstant � > 0 and all but a �nite number of n's

Pr[A

h

r

P;Q;g;~a

(P;Q; g) = h

P;Q;g;~a

(1

n

)℄ <

1

n

�

;

where the probability is taken over the random bits of A, the hoie of hP;Q; gi aording to

the distribution IG(1

n

) and the hoie of eah of the values in ~a = h~a

1

; ~a

2

; : : : ~a

n

i uniformly

at random in Z

Q

.

As a orollary of Theorem 4.1 we have that if the DDH-Assumption holds, then so does

the GDH-Assumption. In fat, we get that the DDH-Assumption implies the deisional

GDH-Assumption (this was also previously shown in [74℄):

Corollary 5.1 If the DDH-Assumption (Assumption 3.1) holds, then for every probabilisti

polynomial-time orale mahine A, every onstant � > 0 and all but a �nite number of n's

�

�

�

Pr[A

h

r

P;Q;g;~a

(P;Q; g; h

P;Q;g;~a

(1

n

)) = 1℄� Pr[A

h

r

P;Q;g;~a

(P;Q; g; g



) = 1℄

�

�

�

<

1

n

�

;

where the probabilities are taken over the random bits of A, the hoie of hP;Q; gi aording

to the distribution IG(1

n

), the hoie of eah of the values in ~a = h~a

1

; ~a

2

; : : : ~a

n

i uniformly

at random in Z

Q

and the hoie of  uniformly at random in Z

Q

.

5.2 Motivation to the onstrution

Constrution 5.1 is motivated by the onept of pseudo-random synthesizers and the on-

strution of pseudo-random funtions using pseudo-random synthesizers as building bloks

[60℄. Informally, a pseudo-random synthesizer, S, is:

An eÆiently omputable funtion of two arguments suh that given polynomially-

many, uniformly-hosen, inputs for eah argument, fx

i

g

m

i=1

and fy

i

g

m

i=1

, the

output of S on all the ombinations, (S(x

i

; y

j

))

m

i;j=1

, annot be eÆiently distin-

guished from uniform.

A natural generalization is a k-dimensional pseudo-random synthesizer. Informally, a k-

dimensional pseudo-random synthesizer, S, may be de�ned to be:

An eÆiently omputable funtion of k arguments suh that given polynomially-

many, uniformly-hosen, inputs for eah argument,

nn

x

j

i

o

m

i=1

o

k

j=1

, the output

of S on all the ombinations, M =

�

S(x

1

i

1

; x

2

i

2

; : : : ; x

k

i

k

)

�

m

i

1

;i

2

;:::;i

k

=1

, annot be

eÆiently distinguished from uniform by an algorithm that an aess M at

points of its hoie.
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The onstrution of [60℄ an be viewed as �rst reursively applying a 2-dimensional

synthesizer to get an n-dimensional synthesizer, S, and then de�ning the pseudo-random

funtion, f , by:

f

ha

1;0

;a

1;1

;a

2;0

;a

2;1

;:::a

n;0

;a

n;1

i

(�

1

�

2

: : : �

n

)

def

= S(a

1;�

1

; a

2;�

2

; : : : ; a

n;�

n

):

However, using this onstrution, the depth of the n-dimensional synthesizer (and the

pseudo-random funtions) is larger by a logarithmi fator than the depth of the 2-dimensional

synthesizer. Therefore, a natural problem is to ome up with a diret onstrution of an

n-dimensional synthesizer.

In this setion it is shown that under the GDH-Assumption the funtion, S

P;Q;g;r

, de-

�ned by S

P;Q;g;r

(a

1

; a

2

; : : : ; a

n

)

def

=

�

g

Q

n

i=1

a

i

�

� r, is an n-dimensional synthesizer. Con-

strution 5.1 is then obtained as desribed above.

5.3 The Constrution

We turn to the onstrution of pseudo-random funtions:

Constrution 5.1 We de�ne the funtion ensemble F = fF

n

g

n2N

. For every n, a key of

a funtion in F

n

is a tuple, hP;Q; g;~a; ri, where P is an n-bit prime, Q a prime divisor

of P � 1, g an element of order Q in Z

�

P

, ~a = ha

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : a

n;0

; a

n;1

i a sequene

of 2n elements of Z

Q

and r an n-bit string. For any n-bit input, x = x

1

x

2

� � � x

n

, the

Binary-funtion, f

P;Q;g;~a;r

, is de�ned by:

f

P;Q;g;~a;r

(x)

def

=

�

g

Q

n

i=1

a

i;x

i

�

� r;

(where � denotes the inner produt mod 2). The distribution of funtions in F

n

is indued

by the following distribution on their keys: ~a and r are uniform in their range and the

distribution of hP;Q; gi is IG(1

n

).

Theorem 5.2 If the GDH-Assumption (Assumption 5.1) holds, then F = fF

n

g

n2N

(as in

Constrution 5.1) is an eÆiently omputable pseudo-random funtion ensemble.

In order to prove Theorem 5.2 we need the following orollary of the Goldreih-Levin

hard-ore-bit theorem [37℄ (more preisely, the setting of this orollary is somewhat di�erent

than the one onsidered in [37℄ but their result still applies):

Corollary 5.3 If the GDH-Assumption (Assumption 5.1) holds, then for every probabilisti

polynomial-time orale mahine A, every onstant � > 0 and all but a �nite number of n's

�

�

�

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1℄� Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1℄

�

�

�

<

1

n

�

;

where the probabilities are taken over the random bits of A, the hoie of hP;Q; gi aording

to the distribution IG(1

n

), the hoie of eah of the values in ~a = h~a

1

; ~a

2

; : : : ~a

n

i uniformly at

random in Z

Q

, the hoie of r uniformly at random in f0; 1g

n

and the hoie of � uniformly

at random in f0; 1g.
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Proof:(of Theorem 5.2) Let F = fF

n

g

n2N

be as in Constrution 5.1. It is lear that F

is eÆiently omputable. Assume that F is not pseudo-random, then there exists a prob-

abilisti polynomial-time orale mahine M and a onstant � > 0 suh that for in�nitely

many n's

�

�

�

Pr[M

f

P;Q;g;~a;r

(P;Q; g; r) = 1℄� Pr[M

R

n

(P;Q; g; r) = 1℄

�

�

�

>

1

n

�

;

where in the �rst probability, f

P;Q;g;~a;r

is distributed aording to F

n

, and in the seond

probability R

n

is uniformly distributed over the set of f0; 1g

n

! f0; 1g funtions, hP;Q; gi

is distributed aording to IG(1

n

) and r is a uniformly hosen n bit string.

Let t(�) be a polynomial that bounds the running time of M. We de�ne a probabilisti

polynomial-time orale mahine A suh that for in�nitely many n's

�

�

�

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1℄� Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1℄

�

�

�

>

1

n

�

� t(n)

;

where the probabilities are as in Corollary 5.3. By Corollary 5.3 this would ontradit the

GDH-Assumption and would omplete the proof of the theorem.

Given aess to h

r

P;Q;g;~a

and on input hP;Q; g; r; ~�i (where we expet ~� to either be

uniformly hosen or to be (h

P;Q;g;~a

(1

n

))� r), A exeutes the following algorithm:

1. De�ne t = t(n) and sample J uniformly at random in [t℄.

2. Sample eah one of hb

1

; b

2

; : : : ; b

n

i uniformly at random in Z

Q

.

3. Invoke M on input hP;Q; g; ri and answer its queries in the following way: Let the

queries asked by M be hx

1

; x

2

; : : : x

m

i and assume without loss of generality that all

those queries are distint.

� Answer eah one of the �rst J � 1 queries with a uniformly hosen bit.

� Answer the J

th

query with ~�.

� Let x

i

be the i

th

query for i > J and de�ne the n-bit string z = z

1

z

2

: : : z

n

suh

that z

k

is 1 if the k

th

bit of x

i

and the k

th

bit of x

J

are equal and 0 otherwise.

Sine x

i

6= x

J

we have that z 6= 1

n

. Finally, answer the i

th

query with

�

�

h

r

P;Q;g;~a

(z)

�

Q

z

k

=0

b

k

�

� r:

4. Output whatever M outputs.

From the de�nition of A we have that all its answers to queries x

i

for i > J are f

P;Q;g;~a;r

(x

i

),

where ~a = ha

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : a

n;0

; a

n;1

i depends on the J

th

query x

J

= x

J

1

x

J

2

: : : x

J

n

as

follows: For every 1 � k � n if x

J

k

= 0 then a

k;0

= ~a

k

and a

k;1

= b

k

and if x

J

k

= 1

then a

k;1

= ~a

k

and a

k;0

= b

k

. The �rst J � 1 queries are answered by A uniformly at

random. The only answer that depends on ~� is the J

th

answer itself. This answer is of

ourse uniformly distributed in ase ~� is uniform. It is also not hard to verify that the J

th

answer is f

P;Q;g;~a;r

(x

J

) in ase ~� = (h

P;Q;g;~a

(1

n

))� r. We an therefore onlude that:
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Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1 j J = 1℄

= Pr[M

f

P;Q;g;~a;r

(P;Q; g; r) = 1℄;

as well as

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1 j J = t(n)℄

= Pr[M

R

n

(P;Q; g; r) = 1℄;

and

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1 j J = j℄

= Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1 j J = j + 1℄;

where the probabilities are as above. Therefore, by the standard hybrid argument we get

from the assumption that for in�nitely many n's

�

�

�

Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; (h

P;Q;g;~a

(1

n

))� r) = 1℄� Pr[A

h

r

P;Q;g;~a

(P;Q; g; r; �) = 1℄

�

�

�

>

1

n

�

� t(n)

:

2

Remark 5.1 From the proof of Theorem 5.2 we get that F is pseudo-random even if the

distinguisher (denoted by M in the proof) has aess to P;Q; g and r.

5.4 Pseudo-Random Funtions at Least as Seure as Fatoring

The proof of Theorem 5.2 does not rely on the spei� group for whih the GDH-Assumption

is de�ned. Therefore, the orresponding assumption in any other group implies a orre-

sponding onstrution of pseudo-random funtions. An espeially interesting example is

taking the GDH-Assumption modulo a omposite. Sine breaking this assumption is at

least as hard as fatoring [6, 69℄, we obtain an attrative onstrution of pseudo-random

funtions whih is at least as seure as Fatoring. As mentioned in the introdution, this

onstrution was reently improved in [61℄. In this subsetion, we repeat the de�nition of

the GDH-Assumption and the onstrution of pseudo-random funtions with the group set

to Z

�

N

, where N is a Blum-integer. The proof of seurity is pratially the same as the proof

of Theorem 5.2 (and is therefore omitted).

Similarly to the ase of the DDH-Assumption, we keep our results general by letting the

omposite N be generated by some polynomial-time algorithm FIG (where FIG stands

for fatoring-instane-generator). We assume that on input 1

n

of FIG its output, N , is

distributed over 2n� bit integers, where N = P �Q for two n� bit primes, P and Q, suh

that P � Q � 3 mod 4 (suh an integer is known as a Blum-integer).
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The GDH-Assumption Modulo a Composite:

De�nition 5.2 Let N be any possible output of FIG(1

n

), let g be any quadrati-residue in

Z

�

N

and let ~a = h~a

1

; ~a

2

; : : : ~a

n

i be any sequene of n elements of [N ℄. De�ne the funtion

h

N;g;~a

with domain f0; 1g

n

suh that for any n-bit input, x = x

1

x

2

� � � x

n

,

h

N;g;~a

(x)

def

= g

Q

x

i

=1

~a

i

:

De�ne h

r

N;g;~a

to be the restrition of h

N;g;~a

to inputs f0; 1g

n

n f1

n

g.

Assumption 5.2 (Generalized DiÆe-Hellman in Z

�

N

) For every probabilisti polynomial-

time orale mahine A, for every onstant � > 0 and all but a �nite number of n's

Pr[A

h

r

N;g;~a

(N; g) = h

N;g;~a

(1

n

)℄ <

1

n

�

;

where the probability is taken over the random bits of A, the hoie of N aording to the

distribution FIG(1

n

), the hoie of g uniformly at random in the set of quadrati-residues

in Z

�

N

and the hoie of eah of the values in ~a = h~a

1

; ~a

2

; : : : ~a

n

i uniformly at random in

[N ℄.

The Constrution and its Seurity:

Constrution 5.2 We de�ne the funtion ensemble F = fF

n

g

n2N

. For every n, a key of

a funtion in F

n

is a tuple, hN; g;~a; ri, where N is a 2n-bit Blum-integer, g is a quadrati-

residue in Z

�

N

, ~a = ha

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : a

n;0

; a

n;1

i is a sequene of 2n values in [N ℄ and

r is a 2n-bit string. For any n-bit input, x = x

1

x

2

� � � x

n

, the Binary-funtion, f

N;g;~a;r

, is

de�ned by:

f

N;g;~a;r

(x)

def

=

�

g

Q

n

i=1

a

i;x

i

�

� r:

The distribution of funtions in F

n

is indued by the following distribution on their keys:

g;~a and r are uniform in their range and the distribution of N is FIG(1

n

).

In the same way Theorem 5.2 is proven, we get that:

Theorem 5.4 If the GDH-Assumption in Z

�

N

(Assumption 5.1) holds, then F = fF

n

g

n2N

(as in Constrution 5.2) is an eÆiently omputable pseudo-random funtion ensemble.

However, breaking the GDH-Assumption in Z

�

N

is at least as hard as fatoring N :

Theorem 5.5 ([6, 69℄) If the GDH-Assumption in Z

�

N

(Assumption 5.1) does not hold,

then there exists a probabilisti polynomial-time orale mahine A and a onstant � > 0

suh that for in�nitely many n,

Pr[A(P �Q) = hP;Qi℄ >

1

n

�

;

where the distribution of N = P �Q is FIG(1

n

).

Furthermore, the redution is linear-preserving (see [49℄): Assume that there exists a

probabilisti algorithm A

0

with running-time t(n) that breaks the GDH-Assumption in Z

�

N

with probability �(n). Then there exists a probabilisti algorithm A with running-time t(n) �

poly(n) for fatoring with suess-probability �(n).
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We an therefore dedue that:

Corollary 5.6 (of Theorem 5.4 and Theorem 5.5) Let F = fF

n

g

n2N

be as in Constru-

tion 5.2 and assume that F is not an eÆiently omputable pseudo-random funtion en-

semble. Then there exists a probabilisti polynomial-time algorithm A and a onstant � > 0

suh that for in�nitely many n's:

Pr[A(P �Q) = hP;Qi℄ >

1

n

�

;

where the distribution of N = P �Q is FIG(1

n

).

6 Additional Features and Further Researh

This paper shows two, very eÆient, onstrutions of pseudo-random funtions. The �rst

onstrution is based on the deisional DH-Assumption (Assumption 3.1) and the seond

onstrution is based on a generalization of the omputational DH-Assumption (Assump-

tion 5.1). Therefore, a natural line for further researh is the study of the validity of these

assumptions and the relations between these assumptions and the standard omputational

DH-Assumption. Sine our onstrutions an be based on the orresponding assumptions

for other groups (e.g., in ellipti-urve groups), it is interesting to study the validity of these

assumptions as well.

The pseudo-random funtions of Construtions 4.2 and 5.1 have a simple algebrai

struture. We onsider this to be an important advantage over all previous onstrutions,

mainly sine several attrative features seem more likely to exist for a simple onstrution of

pseudo-random funtions. In [58℄ we presented preliminary results in obtaining suh features

for our onstrution of pseudo-random funtions: (1) A rather simple zero-knowledge proof

for laims of the form y = f

s

(m) and y 6= f

s

(m). (2) A way to distribute a pseudo-random

funtion among a set of parties suh that only an authorized subset an ompute the value

of the funtion at any given point. (3) A protool for \oblivious evaluation" of the value of

the funtion: Assume that a party, A, knows a key s of a pseudo-random funtion. Then A

and a seond party, B, an perform a protool during whih B learns exatly one value f

s

(x)

of its hoie whereas A does not learn a thing (and, in partiular, does not learn x). Though

there is muh room for improving these designs, they are still a signi�ant improvement over

the protools that are available for all previous onstrutions of pseudo-random funtions

(inluding ommonly used blok-iphers suh as DES) and they serve as a demonstration

to the potential of our onstrution.

We onsider the task of improving the protools given in [58℄ and designing additional

ones to be an interesting line for further researh. A partiularly interesting example arises

by the work of Bellare and Goldwasser [3℄. They suggest a way to design a digital-signature

sheme that is very attrative given eÆient pseudo-random funtions and an eÆient non-

interative zero-knowledge proof for laims of the form y = f

s

(m) (when a ommitment to a

key s of a pseudo-random funtion f

s

is available as part of the publi-key). Another very

attrative sheme one may desire is a funtion-sharing sheme for pseudo-random funtions

(in an analogous meaning to funtion-sharing shemes for trapdoor one-way permutations
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as de�ned in [25℄). Two examples for appliations of suh shemes are eÆient metering of

web usage [55℄ and the distribution of KDCs (key-distribution enters) [57℄.

In Setion 5.2 the onept of a k-dimensional pseudo-random synthesizer and the im-

mediate onstrution of pseudo-random funtions from n-dimensional synthesizers are de-

sribed. Assumption 5.1 gives a simple onstrution of an n-dimensional synthesizer whih

indeed translates to a onstrution of pseudo-random funtions (Constrution 5.1). An in-

teresting problem is to onstrut eÆient n-dimensional synthesizers using other intratabil-

ity assumptions.
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