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Abstract

Small sample spaces with almost independent random variables are applied to de-

sign e�cient sequential deterministic algorithms for two problems. The �rst algorithm,

motivated by the attempt to design e�cient algorithms for the All Pairs Shortest Path

problem using fast matrix multiplication, solves the problem of computing witnesses for

the Boolean product of two matrices. That is, if A and B are two n by n matrices, and

C = AB is their Boolean product, the algorithm �nds for every entry C

ij

= 1 a witness:

an index k so that A

ik

= B

kj

= 1. Its running time exceeds that of computing the

product of two n by n matrices with small integer entries by a polylogarithmic factor.

The second algorithm is a nearly linear time deterministic procedure for constructing

a perfect hash function for a given n-subset of f1; : : : ; mg.
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1 Introduction

In this paper we show how to make two very e�cient probabilistic algorithms deterministic

at a relatively small degradation in their performance. The random choices made by a

probabilistic algorithm de�ne naturally a probability space where each choice corresponds

to a random variable. In order to remove randomness from an algorithm one should come

up with a way of �nding deterministically a successful assignment to these choices.

One approach for achieving it, known as the method of conditional probabilities, is to

search the probability space for a good choice by bisecting the probability space at every

iteration by �xing an additional choice. The value of the next bit is chosen according to some

estimator function that should approximate the probability of success given the choices �xed

so far. The number of steps is therefore proportional to the number of choices made by the

probabilistic algorithm and each step involves evaluating an estimator which usually takes

time proportional to the input size. Thus, the cost of derandomization though polynomial,

can considerably increase the complexity of the algorithm. This approach is taken in [29],

[25], (cf., also [6].)

A di�erent approach for �nding a good point is to show that the random choices made

need not be fully independent, i.e. even if some limited form of independence is obeyed,

then the algorithm is successful. A smaller probability space where the random choices obey

this limited independence is constructed. If this space is exhaustively searched, then a good

point is found. The complexity is increased by a factor proportional to the size of the space.

The size of the space is usually some polynomial in the input size. Thus again this approach

su�ers from considerable increase in time. This approach is taken in [17], [1], [15] using

probability spaces that are k-wise independent, and in [5], [23] using small bias probability

spaces and almost k-wise independence (see de�nition below in subsection 1.3).

Our goal in this work is to use these methods without incurring a signi�cant penalty in

the run time. We exploit the fact that very small (polylogarithmic) probability spaces exist

if one is willing to live with very limited independence. This form of independence is usually

too limited to be applicable directly for replacing the random choices in a probabilistic

algorithm. Our tactic will be to divide the random choices into a small (logarithmic or

polylogarithmic) number of sets of random variables with complete independence between

the sets. However within each set we will require only very limited independence. The search

algorithm �nds a good assignment by �xing the sets one by one. At every iteration all the

points of a small probability space corresponding to the current set of random variables is

examined and the one that maximizes some estimator function of the probability of success

is chosen. Since we have only a few sets of random variables and since each probability space

is small the total work is increased by only a polylogarithmic factor.

We note that the two approaches described above had been combined in a di�erent

way previously in [18, 7, 22]. The random variables used there were k-wise independent

resulting in a probability space of size O(n

k

). This probability space was then searched

using an estimator function in O(k log n) steps. This method does not seem applicable

for the problems considered here, since we could not come up with appropriate estimator

functions that were e�ciently computable.

In the following two subsections we describe the two algorithmic problems for which
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applying the above mentioned method yields e�cient deterministic algorithms: the compu-

tation of Boolean matrix multiplication with witnesses and the (deterministic) construction

of perfect hash functions. Although the two problems are not related, the algorithms we

suggest for both are similar, and are based on the same approach outlined above. In sub-

section 1.3 we review the probability spaces that have the independence properties used for

both applications.

1.1 Witnesses for matrix multiplication

Consider a Boolean matrix multiplication: C = AB, C

ij

=

W

n

k=1

(A

ik

^ B

kj

). The n

3

time

method that evaluates these expressions gives for every i; j for which C

ij

= 1 all the k's

for which A

ik

= B

kj

= 1. The subcubic methods on the other hand (see, e.g., [8]) consider

A and B as matrices of integers and do not provide any of these k's. We call a k such that

A

ik

= B

kj

= 1 a witness (for the fact that C

ij

= 1). We want to compute in addition to the

matrix C a matrix of witnesses. When there is more than one witness for a given i and j we

are satis�ed with one such witness.

We use O(n

!

) to denote the running time of some subcubic algorithm for Boolean matrix

multiplication. Our algorithm for this problem can be derived from any such algorithm

yielding a corresponding time bound as a function of w. The best asymptotic bound known at

present is the one with the exponent ! < 2:376 and is due to Coppersmith and Winograd [8].

For two functions f(n) and g(n) we let g(n) =

~

O(f(n)) denote the statement that g(n)

is O(f(n)(log n)

O(1)

).

Several researchers (see, e.g., [28], [4]) observed that there is a simple randomized algo-

rithm that computes witnesses in

~

O(n

!

) time. In Section 2 we describe a deterministic

algorithm for computing the witnesses in

~

O(n

!

) time. It is essentially a derandomization

of a modi�ed version of the simple randomized algorithm using the approach outlined in

the Introduction, i.e. the combination of small sample spaces and the method of conditional

probabilities. A di�erent, more complicated algorithm for this problem, whose running time

is slightly inferior, i.e. not

~

O(n

!

) (but is also O(n

!+o(1)

)), has been found by Galil and

Margalit [20], [14].

The main motivation for studying the computation of witnesses for Boolean matrix mul-

tiplication is the observation of Galil and Margalit that this problem is crucial for the design

of e�cient algorithms for the All-Pairs-Shortest-Path problem for graphs with small integer

weights which are based on fast matrix multiplication. E�cient algorithms for computing

the distances in this way were initiated in [3] and improved (for some special cases) in [13],

[28]. The attempt to extend this method for computing the shortest paths as well leads

naturally to the above problem, which already found other (related) applications as well.

See [4, 14, 20, 28] for more details.

1.2 Perfect hash functions

For a set S � f1; : : : ;mg a perfect hash function is a mapping h : f1; : : : ;mg 7! f1; : : : ; ng

which is 1-1 on S. H is an (m;n; k)-family of perfect hash functions if 8S � f1; : : : ;mg of

size k there is an h 2 H that is perfect for S. We will be interested mainly in the case k = n.
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The requirements from a perfect hash function are

� Succinct representation - the mapping h can be described by a relatively small number

of bits.

� E�cient evaluation - given a value x 2 f1; : : : ;mg and the description of h, there

should be an e�cient method of computing h(x).

� An e�cient construction - given S there should be an e�cient way of �nding h 2 H

that is perfect for S

Perfect hash functions have been investigated extensively (see e.g. [9, 10, 11, 12, 16, 19,

21, 26, 27, 30]). It is known (and not too di�cult to show, see [11], [16], [24]) that the

minimum possible number of bits required to represent such a mapping is �(n+ log logm)

for all m � 2n.

Fredman, Koml�os and Szemer�edi [12] developed a method for constructing perfect hash

functions. Given a set S, their method can supply a mapping with the required properties

in almost linear expected randomized running time. Deterministically, however, they only

describe a variant of their algorithm that works in worst-case running time O(n

3

logm). In

Section 3 we describe a construction of perfect hash functions and a deterministic algorithm

that for a given S in time O(n logm log

4

n) �nds a mapping with the above properties.

Note that the size of the input is �(n logm) and hence this algorithm is optimal, up to a

polylogarithmic factor. In case m is polynomial in n, the representation of the mapping

h constructed requires O(n) bits. Given x computing h(x) takes O(1) operations. In the

general case, the size of the mapping h requires O(n + log n log logm) bits. The time to

evaluate h(x) depends on the computational model (i.e. what operations can be performed

in one step): it is either O(

logm

logn

) in a weak model or O(1) in a strong one (see more about

the model in Section 3).

1.3 Small bias probability spaces

Let 
 be a probability space with n random variables x

1

; x

2

; : : : x

n

. We say that 
 is a c-wise

�-bias probability space if for any nonempty subset S of x

1

; x

2

; : : : x

n

of size at most c we

have

jProb[

M

i2S

x

i

= 0]� Prob[

M

i2S

x

i

= 1]j < �:

The property of a c-wise �-bias probability space that we use is that for any subset S of

x

1

; x

2

; : : : x

n

of size i � c the probability that the random variables of S attain a certain

con�guration deviates from 1=2

i

by at most �. Therefore c-wise �-bias probability spaces are

described as almost c-wise independent.

The known constructions of these probability spaces are of size polynomial in c; 1=� and

log n (often described by saying that the number of random bits required to sample from

them is O(log 1=� + log c + log log n)). Therefore if 1=� is logarithmic in n and c is at most

logarithmic in n the size of the probability space is still polylogarithmic in n. To be more

precise, the construction of [23], as optimized in [2], yields a probability space of sizeO(

c logn

�

3

)

and the ones in [5] yield probability spaces of size O(

c

2

log

2

n

�

2

).
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2 Boolean matrix multiplication with witnesses

All the matrices in this section are n by n matrices, unless otherwise speci�ed. If M is such

a matrix, we let M

ij

denote the entry in its ith row and jth column. Let A and B be two

matrices with f0; 1g entries, and let C be their product over the integers. Our objective

is to �nd witnesses for all the positive entries of C, i.e., for each entry C

ij

> 0 of C we

wish to �nd a k such that A

ik

= B

kj

= 1. This is clearly equivalent to the problem of

�nding witnesses in the Boolean case. As observed by several researchers there is a simple

randomized algorithm that solves this problem in expected running time

~

O(n

!

). Here we

consider deterministic algorithms for the problem. Our algorithm, described in the next two

subsections, is a derandomized version of a modi�cation of the simple randomized solution.

Its running time is

~

O(n

!

). The analysis of the algorithm is presented in subsection 2.3,

where it is also shown how to replace the probabilistic steps with deterministic ones.

2.1 Outline and intuition of the algorithm

The starting observation is that �nding witnesses for entries which are 1 is easy: if E and F

are two matrices with f0; 1g entries and G = EF is the result of their multiplication over the

integers, then one multiplication of matrices with entries of size at most n su�ces for �nding

witnesses for all the entries of G which are precisely 1. Indeed, simply replace every 1-entry

in the kth row of F by k (for all 1 � k � n) to get a matrix F

0

and compute G

0

= EF

0

.

Now observe that if G

ij

= 1 and G

0

ij

= k then k is a witness for G

ij

.

The idea (of both the randomized and deterministic algorithms) is to dilute F gradually,

thus making the entries of G go down to 0, however not before passing through 1. Therefore

if G

ij

= ` and every entry in F is made zero with probability roughly 1=`, then G

ij

becomes 1

with probability bounded away from zero. A way of achieving it simultaneously for all entries

is to work in phases, where in each phase every '1' entry of F is zeroed with probability 1=2.

At each phase also �nd witnesses for all entries of G that became 1. If G

ij

= ` then for the

(i; j) entry of EF after log ` such phases there is a constant probability of turning G

ij

into a

1 and thus enabling the discovery of a witness. By repeating this process log n times, there

is a high probability of discovering all the witnesses.

The choices we must make in the execution of the algorithm is which entries of F to zero

at what phase. In the randomized algorithm all choices are independent, and thus the size

of the probability is exponential in O(n log

2

n). In order to remove the randomness from

the witness �nding algorithm we follow the paradigm outlined in the Introduction. Random

choices corresponding to di�erent phases remain independent, however, the choices made in

a phase will be highly dependent. We must also �nd a good estimate of progress. The key

point is that for our estimate of progress it is su�cient that the choices within a phase be

made according to a c-wise �-bias sample space for c and 1=� that are logarithmic in n. Our

notion of progress is de�ned by two \contradicting" conditions: �rst the total sum of entries

in G must go down signi�cantly at every round (by at least a constant fraction). This implies

that in O(log n) rounds we get that G vanishes. The second condition is that we do not lose

too many entries of G, where by lose we mean that they go from a large value to 0 without

passing through 1.
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The second condition turns out to be too strong. We relax it by specifying some bound c

(not coincidently, the same c as above) such that we would like every entry to pass through

the range f1; : : : ; cg before vanishing. We show how to �nd a witness in this case as well.

The fraction of entries that disobey the second condition should be small enough to assure

that at least a constant fraction of the entries do not skip the desired range. The set of

good assignments to the choices of a phase is obtained by an exhaustive search among all

the sample space for an assignment that progresses nicely. This is repeated for all phases

and the whole process is repeated O(log n) times until all entries have a witness.

2.2 Detailed description of the algorithm

De�ne c = dlog log n+ 9e and � =

8

2

c

. For two matrices E and F with f0; 1g entries de�ne

G = E ^ F by G

ij

= E

ij

^ F

ij

.

Besides A,B and C = AB our algorithm employs two sequences of f0; 1g matrices:

R

1

; R

2

: : : ; R

t+1

and D

1

;D

2

; : : :D

t+1

where t = d1 + 3 log

4=3

ne. For matrices R and R

0

we

say that R

0

is a dilution of R if for every 1 � j; k � n we have R

j;k

� R

0

j;k

. The sequence

R

1

; R

2

: : :R

t+1

is monotonically decreasing, i.e. for every 1 � i � t R

i+1

is a dilution of R

i

.

We now describe the algorithm; the way to perform steps 4b and 4c will be described later.

The de�nition of a good dilution is given below.

� While not all witnesses are known

1. Let L be the set of all positive entries of C for which there are no known witnesses.

2. Let R

1

be the all 1 matrix.

3. Let D

1

 A � (B ^R

1

)

4. For i = 1 to t = d1 + 3 log

4=3

ne, Perform the following:

(a) Let L

0

be the set of all non-zero entries of D

i

in L which are at most c.

(b) Find witnesses for all entries in L

0

.

(c) R

i+1

 good dilution of R

i

(see de�nition of \good" below)

(d) D

i+1

 A � (B ^R

i+1

) (The matrix multiplication is over the integers)

A matrix R

i+1

is good with respect to R

i

(in step 4c above) if the following two conditions

hold:

a) The total sum of the entries of D

i+1

= A � (B ^ R

i+1

) is at most 3=4 of the total of the

entries of D

i

= A � (B ^ R

i

). (Observe that this guarantees that after 1 + 3 log

4=3

n

iterations of good R

i

's all the entries of D will vanish.)

b) The fraction of entries in L that are 0 in D

i+1

, among those larger than c in D

i

is at

most �.
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2.3 Analysis of the algorithm

We �rst analyse one iteration of a randomized version of the algorithm (Lemma 1), then

analyse it when the sample space has a small bias (Lemma 2) and �nally we show that this

su�ces for achieving a deterministic algorithm.

Lemma 1 For any 1 � i � t, suppose that R

i+1

 R

i

^ S in step 4c where S is a random

0; 1 matrix, then the R

i+1

is good with probability at least 1=6.

The lemma follows from the following three claims:

Claim 1 The probability that the sum of entries of D

i+1

is at most 3=4 the sum of entries

of D

i

is at least 1=3.

To see this, observe that the expected sum of entries of D

i+1

is 1=2 the sum of entries

of D

i

, since for every 1 � j; k; l � n such that A

jk

= (B ^ R

i

)

kl

= 1 the probability that

(B ^R

i+1

)

kl

= 1 is exactly 1=2. The claim then follows from Markov's Inequality. 2

Claim 2 The probability that a �xed entry of D

i

which is at least c drops down to 0 in D

i+1

is at most 1=2

c

.

This is obvious. Observe that the claim holds even if we only assume that every c entries

of S are independent. 2

Claim 3 The probability that more than a fraction � of the entries in L that had a value at

least c in D

i

drop to 0 in D

i+1

is at most

1

2

c

1

�

=

1

8

.

This follows from Claim 2 by Markov's Inequality. 2

Since Claims 1 and 3 describe the event we are interested in and 1=3 � 1=8 > 1=6 the

lemma follows. 2

De�ne � =

1

2

c+1

. The crucial point is to observe that the proof of the above lemma still

holds, with almost no change, if the matrix S is not totally random but its entries are chosen

from a c-wise �-dependent distribution in the sense of [23], [5]. Recall that if m random

variables whose range is f0; 1g are c-wise �-dependent then every subset of j � c of them

attains each of the possible 2

j

con�gurations of 0 and 1 with probability that deviates from

1=2

j

by at most �.

Lemma 2 If R

i+1

 R

i

^ S in step 4c where the entries of S are chosen as n

2

random

variables that are c-wise �-dependent, then R

i+1

is good with probability at least 1=12 � 2�.

We note that in fact it is su�cient to choose only one column from a c-wise �-dependent

sample space and copy it n times. However, this changes the size of the sample space by a

constant factor only. The proof of Lemma 2 is by the following modi�ed three claims, whose

proofs are analogous to those of the corresponding previous ones.

Claim 4 The probability that the sum of entries of D

i+1

is at most 3=4 the sum of entries

of D

i

is at least 1=3 � 2�. 2
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Claim 5 The probability that a �xed entry of D

i

which is at least c drops down to 0 in D

i+1

is at most 1=2

c

+ �. 2

Claim 6 The probability that more than a fraction � of the entries in L that had a value

least c in D

i

drop to 0 in D

i+1

is at most (

1

2

c

+ �)

1

�

<

2

2

c

1

�

= 1=4. 2

Since Claims 4 and 6 describe the event we are interested in and 1=3� 2�� 1=4 > 1=12� 2�

the lemma follows. 2

As shown in [23] and in [5] there are explicit probability spaces with n

2

random variables

which are c-wise �-dependent, whose size is

(log(n) � c �

1

�

)

2+o(1)

;

which is less than, e.g., O((log n)

5

). Moreover, these spaces can be easily constructed in time

negligible with respect to the total running time of our algorithm.

Suppose that in step 4c all the matrices S de�ned by such a probability space are searched,

until a good one is found. Checking whether a matrix is good requires only matrix multipli-

cation plus O(n

2

) operations. Therefore the inner loop (starting at step 4) takes polynomial

in log n times matrix multiplication time.

Executing Step 4b: It is important to note that during the performance of step 4c, while

considering all possible matrices S provided by our distribution, we can accomplish step 4b

(of the next iteration) as well. To see this we need

Claim 7 If R

i+1

 R

i

^ S in step 4c where the entries of S are chosen as n

2

random

variables that are c-wise �-dependent, then for each entry in L

0

there is a positive probability

to be precisely 1 in D

i+1

.

This follows since if S is chosen uniformly at random, then the probability that an entry

in L

0

is precisely 1 in D

i+1

is at least c=2

c

and this event depends on at most c variables. 2

To apply the claim, recall the observation at the beginning of Section 2.1, that we can

�nd witnesses for entries that are at most 1. If we replace each matrix multiplication in

the search for a good S by two matrix multiplications as described in that observation, we

complete steps 4b and 4c together.

Analysis of the outer loop: In every iteration of the inner loop 4 at most an � fraction

of the entries of L are \thrown" (i.e. their witness will not be found in this iteration of the

outer loop). Therefore at least 1� (1 + 3 log

4=3

n)� fraction of the entries of D in L will not

be thrown during the completion of these iterations. For those entries, which are at least

1=2 of the entries in L, a witness is found. Therefore, only O(log n) iterations of the outer

loop are required, implying the desired

~

O(n

!

) total running time.

We have thus proved the following:

Theorem 1 The witnesses for the Boolean multiplication of two n by n matrices can be

found in deterministic

~

O(n

!

) time.
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3 E�cient deterministic construction of perfect hash

functions

In this Section we describe an e�cient method of constructing perfect hash functions. Recall

that for a set S � f1; : : : ;mg a perfect hash function is a mapping of f1; : : : ;mg onto

f1; : : : ; ng which is 1-1 on S.

We are given a set of n elements out of f1; : : : ;mg and the goal is to build a perfect hash

function from f1; : : : ;mg to a range which is O(n) with the properties listed in Section 1.2

(Given a function that maps to a range of size O(n), another function which maps to a range

of size n can be constructed using the technique in [12] or in [10].)

Outline of the FKS scheme: Our scheme has the same structure as the one of Fredman,

Koml�os and Szemer�edi [12] which we now review: The FKS scheme consists of two levels.

The �rst level function, denoted by h, maps the elements of f1; : : : ;mg into a range of size

O(n); all the elements that were sent to the same location i are further hashed using a second

level hash function h

i

. The second level hash function h

i

should be 1-1 on the subset that

was hashed to location i by h. For every i in the range of h we allocate as much space as

the range of h

i

which we denote by r

i

. The perfect hash function is now de�ned as follows:

if x 2 f1; : : : ;mg is mapped to i by h, then the scheme maps x to h

i

(x) +

X

1�j<i

r

j

. The size

of the range is therefore

P

i

r

i

.

Let s

i

(h) = jfxjx 2 S and h(x) = igj, i.e s

i

= s

i

(h) denotes the number of elements

mapped to i. The property we require h to satisfy is that

P

n

i=1

�

s

i

(h)

2

�

should be O(n). The

size of the range of h

i

will be O(

�

s

i

2

�

). The functions suggested by [12] for both levels were

of the form (k �x mod p) mod r where p is an appropriate prime, r is n for the �rst level and

s

2

i

for the second level.

Overview of the new scheme:

The scheme consists of more than one level of hashing. The �rst level is a hash function

which is used to partition the elements according to their hash value, where S

i

is the set

of all elements with hash value i. Then, each S

i

is going to be mapped to a separate �nal

region, say R

i

, where the size of R

i

depends on jS

i

j. This �rst hash function is of the same

form h(x) = Ax where A is a log(n)� log(m) matrix over GF [2] and x is treated as a vector

of length logm over GF [2]. The mapping of S

i

into R

i

consists of either one more level of

hashing or two more levels, depending on how large S

i

is. If S

i

is su�ciently small, then

there is only one more hash function that maps S

i

into R

i

, and it is of the same form as

[12]. If S

i

is large enough, then there are two more levels of hashing to map S

i

into R

i

,

where the bottom level is the same form as [12] but the upper level (which we will refer to

as the intermediate) is of the form h(x) = Ax where A is a matrix over GF [2] of appropriate

dimensions.

Our main di�culty is coming up with the �rst level hash function h. Given the proper h

we can allocate relatively long time for �nding the second and third level functions: even if

constructing a good (i.e. 1-1) h

i

takes time proportional to O(s

2

i

), then the total amount of

work in the second step would still be linear. In fact, �nding a perfect hash function of the

form (k �x mod p) mod r requires time proportional to s

3

i

logm. For the sake of completeness

we outline in Section 3.2 how to achieve this.

9



Finding the top level hash function h and the intermediate level h

i

's is done using the

approach outline in the Introduction to the paper. Instead of choosing h from a collection at

random we select it by considering it a concatenation of one-bit functions and �xing each one

in turn. We must show that the one-bit functions can be chosen from a very small collection

(de�ned by a small bias sample space) and that there is a good estimator of progress (which

will be the number of pairs that must be separated).

Model: Since we are interested in fast on-line evaluation of the constructed perfect hash

function we must specify the computational power of the evaluator. The weakest model we

consider only assumes that the evaluator can access in one operation the memory that stores

the description of the perfect hash function and retrieve a word of width at most log n. It

needs only very simple arithmetic, basically addition. Note that in this weak model we can

perform a lot of computation in O(1) time using pre-stored tables of of size O(n) as we can

see in the following example.

Consider the function f

r

(x) = r � x where r and x are in f0; 1g

logm

and f

r

computes

their inner product over GF [2]. Partition r into k =

logm

logn�log logm

parts r

1

; r

2

; : : : r

k

. For

each r

j

arrange a table of size n= logm such that for 0 � y < n= logm entry y in the table

contains the inner product of y and r

j

where y and r

j

are considered as vectors of length

log n � log logm over GF [2]. Given these tables, evaluating f

r

j

(x) requires k operations:

access the tables at entries x

1

; x

2

; x

k

and Xor the results. If m is polynomial in n than this

is O(1) operations and in general takes O(logm= log n) time. This example is important to

us, since the top level hash function is of the form h(x) = Ax where the multiplication is

over GF [2]

A stronger model is to assume that any operation on words of sizeO(logm) takes constant

time. Thus we count only accesses to the memory (which may be interesting sometimes).

3.1 First level hash function

To �nd the �rst level hash function we solve the following problem for all t in the range

f1; : : : log ng: given a set S � f1; : : : ;mg of size n, construct a function h : f1; : : : ;mg 7!

f1; : : : 2

t

g such that if s

i

(h) = jfxjx 2 S and h(x) = igj then

P

2

t

i=1

�

s

i

(h)

2

�

� q = e

2

�

n

2

�

=2

t

.

Note that q is only a constant factor larger than the expected value of

P

i

�

s

i

2

�

in case h is

chosen at random from all functions f1; : : : ;mg 7! f1; : : : 2

t

g.

We �nd h in a step by step manner, forming it as a concatenation of one bit functions

f

1

; f

2

; : : : ; f

t

where f

j

: f1; : : : ;mg 7! f0; 1g. After we have decided on f

1

; f

2

; : : : f

j

we

determine f

j+1

using an estimator function which we try to reduce. The estimator which we

use is

P

j

(f

1

; f

2

; : : : f

j

) =

X

i2f0;1g

j

 

s

i

(f

1

; f

2

; : : : f

j

)

2

!

where s

i

(f

1

; f

2

; : : : f

j

) = jS

i

(f

1

; : : : ; f

j

)j and S

i

(f

1

; : : : ; f

j

) = fxjx 2 S and f

1

f

2

: : : f

j

(x) = ig

is the set of all elements that were mapped by the �rst j functions to i. The motivation for

choosing this estimator is the observation that P

j

(f

1

; : : : ; f

j

)=2

t�j

is the conditional expec-

tation of the number of pairs mapped to the same point by h given the chosen f

1

: : : f

j

and

assuming the rest of the bit functions will be chosen randomly.
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P

0

is

�

n

2

�

and if the j + 1 function is random, then

E[P

j+1

(f

1

; f

2

; : : : f

j+1

)jf

1

; f

2

; : : : f

j

] =

1

2

P

j

(f

1

; f

2

; : : : f

j

);

since the expected contribution from each pair of elements that have not been separated so

far is 1=2.

What should we do in order to reduce the randomness and yet get that the expectation

of P

j+1

(f

1

; f

2

; : : : f

j+1

) is at most half of P

j

(f

1

; f

2

; : : : f

j

)? It is enough to have that for any

two distinct x; y 2 f1; : : : ;mg the probability that f

j+1

(x) = f

j+1

(y) is at most 1=2. This is

true if f

j

is selected by choosing a random vector r 2 f0; 1g

logm

and then setting f

j

(x) to

be the inner product modulo 2 of x and r (x is treated as a vector in f0; 1g

logm

). Searching

among all such vectors for a \good" one requires m tests, far more that we are willing to

spend. Instead, we use a small collection of vectors in f0; 1g

logm

which (almost) preserves

this property.

Suppose that f

j

is chosen from some collection F . If the probability that f

j

(x) and f

j

(y)

are equal is at most 1=2 + � then E[P

j+1

(f

1

; f

2

; : : : f

j+1

)] is at most (1=2 + �)P

j

(f

1

; f

2

; : : : f

j

)

and we know that there must be some function f 2 F such that if we set f

j+1

to be f ,

then we get that P

j+1

(f

1

; f

2

; : : : f

j+1

) � (1=2 + �)P

j

(f

1

; f

2

; : : : f

j

). If we let F be the set of

points of a sample space with any pairwise �-dependent distribution on m variables, then a

randomly chosen f from F satis�es the above requirement. (An equivalent description of the

properties of F is to say that we let F be the set of functions corresponding to computing

inner products with the columns of the generating matrix of a linear error correcting code

over GF [2] of dimension logm, length jF j and distance at least (

1

2

� �)jF j. This is true since

the requirement here is only almost pairwise independence.)

As mentioned in subsection 1.3, there are explicit collections F as above of size jF j �

O(log(m)=�

3

) (using the construction of [2]), and somewhat simpler constructions of size

O(log

2

(m)=�

2

) ( given in [5]). Searching all of F is therefore possible in polylogarithmic time.

By maintaining the sets S

i

(f

1

; f

2

; : : : f

j

) we can check in O(n) time (when m is polynomial

in n) whether a given f 2 F is good (i.e., achieves P

j+1

(f

1

; f

2

; : : : f

j+1

) that does not exceed

(1=2 + �)P

j

(f

1

; f

2

; : : : f

j

) ): we simply go over these sets and examine to what size subsets

these are split by introducing f as f

j+1

.

The procedure is therefore:

� set � = 1=t and �nd a collection F of m random variables that are pairwise �-bias with

jF j � O(log(m)=�

3

).

� For j = 1 to t

1. For all f 2 F compute P (f) = P

j

(f

1

; f

2

; : : : f

j�1

; f)

2. Choose f

j

as the f with the smallest P (f)

� Set h = f

1

; f

2

; : : : f

t

.

We know that the choice at step 2 implies that

P

j

(f

1

; f

2

; : : : f

j

) � (1=2 + �) � P

j�1

(f

1

; f

2

; : : : f

j�1

):
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Therefore

P (h) = P (f

1

; f

2

; : : : ; f

t

) � (1=2 + �)

t

� P

0

= (1=2 + �)

t

�

 

n

2

!

= (1 + 2�)

t

� 2

�t

�

 

n

2

!

= (1 + 2=t)

t

� 2

�t

�

 

n

2

!

� e

2

 

n

2

!

=2

t

The total amount of work is O(t�jF j�n). (The time for constructing the sample space F is

negligible compared with the the time to �nd h). Since in our case we can choose t = dlog ne

and jF j = O(t

3

logm) = O(logm log

3

n) this gives a total running time of O(n logm log

4

n).

For these parameters we have that

P

n

i=1

s

2

i

(h) � O(n).

It is worth noting that by precomputing and storing linear sized tables (as illustrated in

the model description) we can make the computation of h to be constant time under the

strictest de�nition (i.e. the weaker model), as long as m is polynomial in n. For general m

the time is O(logm= log n).

3.2 Resolving collisions of S

i

(h)

We now turn to the question of resolving the collisions of S

i

(h). Suppose that we attempt to

resolve the collisions of S

i

(h) using a second level a l�a Fredman, Koml�os and Szemer�edi [12] as

briey explained below. First observe that for any set S of k elements in f1; : : : ;mg there is

a prime p � k

2

logm so that for any two distinct x; y 2 S, x (mod p) 6= y (mod p). Indeed,

this follows from the fact that every prime that does not satisfy the above property divides

the product �

x;y2S;x<y

(y � x), which is smaller than m

k

2

=2

and the fact that the product

of all primes up to x is e

(1+o(1))x

. Given h, for any i we can �nd a prime p

i

� s

2

i

(h) logm

such that all the elements of S

i

(h) are di�erent mod p

i

. Searching for this p

i

does not take

more time than testing all the primes smaller than s

2

i

(h) logm where each test takes time

s

i

(h). Therefore the total time is at most s

2

i

(h) � logm � s

i

(h) = s

3

i

(h) logm. Given p

i

, we

need to �nd k

i

� p

i

such that the function h

i

(x) = (k

i

� x mod p

i

) mod s

2

i

(h) is perfect on

S

i

(h) (we are assured of its existence, since k � (x � y) mod p

i

is uniformly distributed if k

is chosen at random from f0; : : : ; p

i

� 1g and x 6= y). Again, this does not take more time

than p

i

� s

i

(h) � s

3

i

(h) logm. Therefore the total amount of work is

X

i

s

3

i

(h) log(m) � log(m)(

X

i

s

2

i

(h))

1:5

(1)

which is at most O(n

1:5

logm) since

P

i

s

2

i

(h) � O(n).

As for the length of the representation, for every i we need O(log s

i

+ log logm) bits,

making it O(n log n + n log logm) bits altogether. However Schmidt and Siegel [27] have

12



found a way to amortize the cost. They choose the functions so that representing them

requires O(n + log logm) bits only. We briey describe this method: for each S

i

(h) at least

half the primes p � s

2

i

(h) logm are good (i.e 1-1 on S

i

(h)) and given p

i

at least half the k

i

are good. Therefore, many S

i

(h) can have the same p and k. We construct a collection of

functions of the form (kx mod p) mod s

2

in the following way: we partition the S

i

(h)'s into

(at most) 1=2 log n sets such that the jth set has all the i for which 2

j

� s

i

(h) � 2

j+1

� 1.

For each 1 � j � 1=2 log n �nd a p and a k that is good for 1=4 of the S

i

' of the jth

set, then one that is good for 1=4 of the remaining members and so on. The size of the

collection is O(log

2

n) and for every S

i

(h) at least one function in the collection is perfect for

S

i

(h). Furthermore, because of the way the collection was constructed, we can encode for

every i which hash function should be used using only O(n) bits by giving the more popular

functions shorter codes using, say, Hu�man coding. The additional time this coding requires

is at most O(

P

i

s

2

i

(h) logm) which is O(n logm).

The resulting total time, O(n

1:5

logm), is larger than we are aiming for. However, notice

that the small s

i

(h)'s do not contribute much to the excess. We set (somewhat arbitrarily) a

threshold at log n and call those i's such that s

i

(h) � log n small and the remaining i's large.

For any small i we choose h

i

as described in the preceding paragraph. The total amount of

work this takes is

O(

X

s

i

�logn

s

3

i

logm) � O(

X

s

2

i

) logm log n = O(n log n logm):

The large i's are those that contribute the most to (1). For them we employ a two level

scheme, but note that since

P

s

2

i

is O(n) our problem is easier than the original problem.

Instead of mapping S

i

to a range of size O(s

i

), we can map it to an exclusive range of size s

2

i

without violating the condition that the total range size be O(n). Thus we have a relaxed

version of the original problem, since the range can be much larger than the set for which

we are resolving the collisions.

Note also that there are at most O(n= log

2

n) large i's, since

O(n) �

X

s

2

i

�

X

large i

s

2

i

�

X

large i

log

2

n = (# of large i) log

2

n

This means that we have some exibility in the size of the representation as well (which is

signi�cant, since there is a log log n lower bound on the size of the description of h

i

).

We now describe in detail how to deal with the large i's. First, h

i

is chosen by a sim-

ilar method to which h was chosen. I.e., h

i

is composed in a step by step manner as the

concatenation of the one-bit functions g

1

; g

2

; : : :

The estimator we use is, as in the construction of h,

P

i

k

(g

1

; g

2

; : : : g

k

) =

X

j2f0;1g

k

 

s

ij

(g

1

; g

2

; : : : g

k

)

2

!

where s

ij

(g

1

; g

2

; : : : g

k

) = jS

ij

(g

1

; : : : ; g

k

)j and

S

ij

(g

1

; : : : ; g

k

) = fxjx 2 S

i

(h) and g

1

g

2

: : : g

k

(x) = jg:

The procedure is now
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� Set � = (2

1:25=2

�1)=2 and t

i

= 2 log s

i

(h). (The choice of � guarantees that (1+2�)

2 log s

i

will be at most s

1:25

i

.) Find a sample space G of m random variables that are pairwise

�-bias with jGj � O(log(m)=�

3

) (here we should use the construction in [2]).

� For k = 1 to t

i

1. For all g 2 G compute P

i

(g) = P

i

k

(g

i

1

; g

i

2

; : : : g

i

k�1

; g)

2. Choose g

i

k

as the g with the smallest P

i

(g)

� Set h

i

= g

i

1

; g

i

2

; : : : g

i

t

i

.

As before, we are assured that at the end of the procedure

X

j

 

s

ij

(h

i

)

2

!

= P

i

(h

i

)

= P

i

(g

i

1

; g

i

2

; : : : ; g

i

t

i

) � (1=2 + �)

t

i

� P

i

0

= (1=2 + �)

t

i

�

 

s

i

(h)

2

!

= (1 + 2�)

t

i

� 2

�t

i

�

 

s

i

(h)

2

!

= (1 + 2�)

2 log s

i

(h)

� 2

�2 log s

i

(h)

�

 

s

i

(h)

2

!

� s

1:25

i

=2

The amount of work spent constructing h

i

is O(s

i

logm log n) and therefore the amount of

work spent constructing all the h

i

's is O(n log n logm).

The third level hash functions h

ij

are chosen by the method described above for the

functions h

i

corresponding to small s

i

. The total amount of work is

O(

X

j

s

3

ij

logm) � O(logm(

X

j

s

2

ij

)

1:5

) � O((s

1:25

i

)

1:5

logm) � O(s

2

i

(h) logm):

Since

P

s

2

i

(h) � O(n) we conclude that the total amount of work for the computation of all

the third level functions on the large s

i

(h) is at most O(n logm).

Note that since � is �xed the size of G is O(logm). The description of h

i

is simply a

subset of the members of G. Therefore, as with the �rst level hash function, we have that

by precomputing and storing linear sized tables (the same tables for all the h

i

's!) we can

make the computation of h to be constant time under the strictest de�nition, as long as m

is polynomial in n.

The length of the description of the function (including all the levels) is the sum of:

1. The number of bits needed to describe h, which is log n logm (it can be compressed to

log n log jF j)
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2. The number of bits to describe the second and third level hash functions: for the

small i's representing h

i

requires O(log logm + log s

i

(h)) bits. However, using the

amortization, all the h

i

's can be represented by O(n+ log logm) bits. For the large i's

for which s

i

(h) > log n, �rst recall that there can be at most n= log

2

n of them. Also, the

description of each h

i

is simply that of a subset of G which can be described byO(logm)

bits. It follows that for the second level for these h

i

's at most O(n= log

2

n � logm) bits

su�ce. For a �xed i, all the third level functions h

ij

can easily be represented by

O(s

2

i

(log s

i

+ log logm) bits. However this can be reduced to O(s

2

i

+ log logm) via

amortization. Since

P

i

s

2

i

is O(n), all the third level hash functions together require

at most O(n= log

2

n � log logm+ n) bits.

3. Some bookkeeping information, e.g.

P

1�j<i

r

j

for all 1 � i � n: This can be done

using O(n) bits (see e.g. [10]).

4. Tables to allow fast computation of h and the intermediate h

i

's - O(n) bits.

For m = n

O(1)

the total number of bits is therefore linear in n and we obtain the following:

Theorem 2 For any polynomial q(n) there is a deterministic algorithm that constructs a

perfect hash function for a given subset S � f1; : : :mg of cardinality n where m = q(n).

The perfect hash function can be found in time

~

O(n), its description requires O(n) bits of

representation and the value of the hash function on any x 2 f1; : : : ;mg can be computed in

constant time.

If m is superpolynomial in n then we can still get something: we �rst �nd a 1-1 mapping

of S into f1; : : : ; n

3

g using the same method to construct the �rst level hash function but

with � a �xed constant (as we do for the intermediate level). This takes timeO(n logm log n).

We proceed from there on as if the range is n

3

, getting an additional

~

O(n) factor. The only

problem in computing the hash value of a given i 2 f1; : : : ;mg quickly is the time to compute

the initial hash function. Depending on the exact computational model (i.e. what we assume

that can be done in O(1) time) it may take O(logm= log n) time or O(1) to compute it.

Theorem 3 For any m there is a deterministic algorithm that constructs a perfect hash

function for a given subset S � f1; : : :mg of cardinality n. The perfect hash function can be

found in time

~

O(n logm), its description requires O(n + log n � log logm) bits and the value

of the hash function on any x 2 f1; : : : ;mg can be computed in O(logm= log n) time (or

constant time if we assume the stronger model).

Remark: We do not know whether the scheme described above can be made implicit, i.e.

not requiring any additional memory to represent the function (in the sense of [9]). The

methods described in [10] and [9] for making the FKS scheme implicit are applicable here

as well. The problem however seems to be in �nding a deterministic way of doing the

encoding in nearly linear time. Consider for instance the following problem: given n=4

values v

1

; v

2

; : : : v

n=4

in f0; : : : n � 1g �nd n=4 disjoint pairs (x

1

; y

1

); (x

2

; y

2

); : : : (x

n=4

; y

n=4

)

such that v

i

= x

i

� y

i

mod n. The deterministic algorithm for this problem seems to take

O(n

2

) time.
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Remark: One can construct a similar alternative algorithm, which uses only two levels, by

using a 3-wise �-dependent distribution in the �rst level to conclude that by the end of this

level the inequality

P

�

s

i

3

�

= O(n) holds. We omit the details.
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