
Construting Pseudo-Random Permutations with a Presribed

Struture

Moni Naor

�

Omer Reingold

y

Abstrat

We show how to onstrut pseudo-random permutations that satisfy a ertain yle restri-

tion, for example that the permutation be yli (onsisting of one yle ontaining all the

elements) or an involution (a self-inverse permutation) with no �xed points. The onstrution

an be based on any (unrestrited) pseudo-random permutation. The resulting permutations

are de�ned suintly and their evaluation at a given point is eÆient. Furthermore, they enjoy

a fast forward property, i.e. it is possible to iterate them at a very small ost.

1 Introdution

A family of permutations P

`

= fP

k

: f0; 1g

n

7! f0; 1g

n

jk 2 f0; 1g

`

g is alled (ryptographi)

pseudo-random if it satis�es the following:

Suint Representation: For a permutation P

k

2 P, k an be thought of as the key. The

length ` of k should be small i.e. polynomial in n.

EÆient Computation: Given k 2 f0; 1g

`

and x 2 f0; 1g

n

omputing y = P

k

(x) an be done eÆ-

iently. Similarly, given y 2 f0; 1g

n

omputing x = P

�1

k

(x) an be done eÆiently. EÆiently

means in time polynomial in `.

Indistinguishability: It is omputationally infeasible to distinguish whether a given permutation

� is (i) a random member of the family P or (ii) a truly random permutation on n-bit strings.

The aess the distinguisher has to the permutation � is blak-box, i.e. it an give x and

obtain �(x) and give y and obtain �

�1

(y) for x's and y's of its hoie

1

.

We measure the advantage " of distinguishing ases (i) and (ii) as a funtion of m, the number

of times the distinguisher gets to all the blak-box for � (in either diretion) and t, the running

time of the distinguisher. Ideally " should be a negligible funtion in ` times a polynomial in

t and m.

Pseudo-random permutations were de�ned by Luby and Rako� [5℄ as a formalization of blok-

iphers. They also showed how to onstrut suh families based on pseudo-random funtions,

�

Dept. of Computer Siene and Applied Math, Weizmann Institute of Siene, Rehovot 76100, Israel. E-mail:

naor�wisdom.weizmann.a.il. Part of this work was done while visiting Stanford University and the IBM Almaden

Researh Center.

y

AT&T Labs - Researh. Room A243, 180 Park Avenue, Bldg. 103, Florham Park, NJ, 07932, USA. E-mail:

omer�researh.att.om.

1

Sometimes a distintion is made as to whether the inverse permutation is available to the adversary or not, but

we always assume that it is available.

1



as de�ned by Goldreih Goldwasser and Miali [2℄. These permutations and onstrutions have

reeived a lot of attention sine then (f. [6℄).

Suppose now that we are interested in onstruting a pseudo-random yli permutation, i.e.

a family C of yli permutations (the yle type of a yli permutation onsists of a single yle

that ontains all the elements) whose members annot be distinguished from a random yli

permutation. Suh a question arises, for instane, from the work of Shamir and Tsaban [8℄ who

wanted to suintly de�ne and generate a non-repeating sequene of randomly looking n-bit values

X

1

;X

2

: : :. If one has a random looking yli permutation � , then de�ning x

1

= �(1) and X

i+1

=

�(X

i

) yields suh a sequene.

In this work we show that it is possible to solve this problem and in fat a more general one.

For any �xed yle type, it is possible to onstrut a family of permutations with the presribed

type that is indistinguishable from a random permutation of this type.

1.1 De�nitions

We now formally de�ne the permutations we are trying to onstrut. A yle type of a permutation �

is a list stating how many yles of eah size there are in � . E.g. if � = (164)(57)(238), then the yle

type of � is \one yle of size 2 and two yles of size 3" (whih an be denoted by f(2; 1)(3; 2)g). Let

C be a yle type. We say that a family of permutations F

C

= fP

k

: f0; 1g

n

7! f0; 1g

n

jk 2 f0; 1g

`

g

is pseudo-random of type C if it satis�es the following:

Cyle type: Eah P

k

2 F

C

has yle type C.

Suint Representation: The length ` of k (the key of P

k

) should be small (polynomial in n).

EÆient Computation: Given k 2 f0; 1g

`

and x 2 f0; 1g

n

omputing y = P

k

(x) an be done

eÆiently. Similarly, given y 2 f0; 1g

n

omputing x = P

�1

k

(x) an be done eÆiently (in time

polynomial in `.)

Indistinguishability: It is omputationally infeasible to distinguish whether a given permutation

� is (i) a random member of the family F

C

or (ii) a truly random permutation of yle type

C. The aess the distinguisher has to the permutation � is blak-box, i.e. it an give x and

obtain �(x) and give y and obtain �

�1

(y) for x's and y's of its hoie.

We measure the advantage " of distinguishing ases (i) and (ii) as a funtion of m, the number

of times the distinguisher gets to all the blak-box for � (in either diretion) and t, the running

time of the distinguisher.

2 The onstrution

Let C be a yle type of permutations on N = 2

n

elements. Let � be some �xed permutation

on n-bit strings whose yle type is C. We assume that it is easy given x to �nd �(x) as well as

�

�1

(x). For instane, if we are interested in yli permutations, then � an be (0; 1; 2; : : : 2

n

� 1)).

Let P

`

= fP

k

: f0; 1g

n

7! f0; 1g

n

jk 2 f0; 1g

`

g be a family of pseudo-random permutations. Then

F

C

, the family of pseudo-random permutations of yle type C is de�ned as

F

C

= fF

k

= P

k

Æ � Æ P

�1

k

jk 2 f0; 1g

`

g:

In other words, a permutation in F

C

is determined by an `-bit key that de�ne a permutation

P

k

2 P

`

. To evaluate F

k

(x) one omputes P

�1

k

(�(P

k

(x))). In order to evaluate F

�1

k

(y) one

2



omputes P

�1

k

(�

�1

(P

k

(y))). Both diretions require two invoations of the original pseudo-random

permutation and a single evaluation of � or �

�1

.

Why does it work? The fat that the members of F

C

have the desired yle type follows from

a well known theorem in elementary group theory that states that the yle strutures of the

permutations � and � Æ � Æ �

�1

are the same

2

. We an show an even stronger statement:

Theorem 1 Let � be a some permutation with yle type C and let � be a random permutation,

then the permutation � Æ � Æ �

�1

is distributed uniformly among the permutations with the same

yle type C as �.

Proof: Let �, � and �

0

be three permutations with yle type C. De�ne two sets of permutations

� = f�j � = �Æ�Æ�

�1

g and �

0

= f�j �

0

= �Æ�Æ�

�1

g. It is enough to show that � and �

0

have the

same size. The main observation is that there exists a permutation P suh that �

0

= P Æ � Æ P

�1

.

Given this laim we get a 1-to-1 and onto mapping between � and �

0

: every permutation � 2 �

is mapped to �

0

= P Æ �. It remains to prove the laim. Let (i

0

; i

1

; : : : i



) be a yle in � and

(i

0

0

; i

0

1

; : : : i

0



) be a yle of the same length in �

0

. It is easy to see that (P

�1

(i

0

); P

�1

(i

1

); : : : P

�1

(i



))

is a yle in P Æ � Æ P

�1

. Therefore, if we de�ne P (i

0

j

) = i

j

for j = 1 : : : m, we get that the yle in

� is mapped to a orresponding yle in �

0

. To de�ne P suh that �

0

= P Æ � Æ P

�1

, we an just

ontinue mapping all of the yles in � to a unique orresponding (same length) yle in �

0

. Note

that this (arbitrary) orrespondene between yles is possible sine � and �

0

have the same yle

type. 2

From this theorem we an dedue the seurity of the onstrution:

Theorem 2 Suppose that we have an adversary D that an distinguish with advantage at least "

whether a given permutation is (i) a random member of F

C

or (ii) a random permutation with yle

type C, while makingm alls to the permutation and running in time t. Then there is a distinguisher

D

0

for the family P that runs in time O(t) and makes 2m alls to the input permutation and has "

advantage of distinguishing a member of P from a truly random permutation.

Proof: The theorem follows from a simulation argument: given � as a blak-box, D

0

simulates

D on the permutation � = � Æ � Æ �

�1

: whenever D requests to evaluate its input permutation

� on a point x, D

0

requests for �(x) and then requests for �

�1

on �(�(X)); it then feeds D with

the result (a similar proess is done when D requests the inverse of x. D

0

outputs the same guess

(`random'/`pseudo-random') as D.

Clearly if D makes m alls to the input permutation, then D

0

makes 2m alls. Let D[� ℄ denote

the output of D when the input permutation is � . From Theorem 1 we an onlude that

Pr[D[� ℄ = `random' j� is random of yle type C℄ = Pr[D

0

[�℄ = `random' j� is random℄

and by the de�nition of the onstrution

Pr[D[� ℄ = `pseudo-random' j� 2 F

C

℄ = Pr[D

0

[�℄ = `pseudo-random' j� 2 P℄:

Hene if D distinguishes with advantage ", so does D

0

. The number of alls to the input

permutation D

0

makes is twie that of D, The running time of D

0

is similar to that of D, exept

that D

0

needs to all � for eah operation. Assuming that this an be done in O(1) time, we have

the desired result. 2

2

K�orner [3℄ says that some may label this fat as a andidate for the dullest theorem, but it turns out to have

played an important role in ryptography (and world history), in the breaking of The Enigma, the Seond World

War German enryption mahine.

3



3 Appliations and Properties

Involutions An interesting family of permutations this method allows us to onstrut are pseudo-

random involutions. An involution is a permutation that is the inverse of itself. The advantage of

using suh permutations for enryption is that the enryption operation and deryption operation

are idential (this is not neessarily a good property for an enryption sheme, but it may be useful

in some situations.) The enryption done by the Enigma was an involution.

The onstrution is exatly as in Setion 2. Fix � to be the involution mapping even i's to i+1

and odd i's to i� 1. Then the resulting family F

I

= fF

k

= P

k

Æ � Æ P

�1

k

jk 2 f0; 1g

`

g is a family of

pseudo-random involutions with no �xed-points.

t-wise independent permutations: The ombinatorial ounterpart to ryptographi pseudo-

randomness is (almost) t-wise independene. While there are no known good onstrutions of

exat t-wise independent permutations for t > 3, various approximations are possible (see [6℄ for a

disussion). Suppose that we are interested in a family of t-wise independent permutations that has

yle type C, i.e. onsidering the permutation at any t values has the same distribution as a random

permutation with yle type C. If we have a family H of 2t-wise independent permutations, then

H

C

= fh Æ � Æ h

�1

jh 2 Hg is a t-wise independent family with yle type C. This follows from

appealing to Theorem 2. Similarly, if H is an approximation to a 2t-wise independent permutation,

then H

C

is a related approximation to a t-wise independent family with yle type C.

Fast Forward Property: The onstrution of F

C

has the appealing property that it is possible

to iterate F

k

on itself at `zero' ost. To ompute F

(m)

k

(x) for any m;x and F

k

2 F

C

note that

F

(m)

k

(x) = P

�1

k

(�(P

k

(P

�1

k

(� � � �)))) = P

�1

k

(�

(m)

(P

k

(x))):

Therefore, assuming � is suh where fast forward is possible, then omputing F

(m)

k

(x) has of the

same omplexity as F

k

(x). For instane, in the ase of the yli permutation, performing m

iterations amounts to omputing P

�1

k

(P

k

(x) +m mod 2

n

):

We an therefore allow the adversary queries of the form (x;m) that will be answered by

F

(m)

k

(x). Here, again, a simple adaptation of Theorem 2 implies that suh queries annot enable

distinguishing F

k

from a random permutation of the given yle type, unless P is weak as well.

Finally, another operation that an be performed eÆiently and is relevant when the yle type

ontains yles of medium length is to test whether two elements x

1

and x

2

are in the same yle

of the given permutation F

k

. If x

1

and x

2

are in the same yle, then there exists an m suh that

x

2

= F

(m)

k

(x

1

) and therefore P

k

(x

2

) = �

(m)

(P

k

(x

1

)). Therefore x

1

and x

2

are in the same yle i�

P

k

(x

2

) and P

k

(x

2

) are in the same yle in � (whih we assume an be determined easily).

4 Open Problems

We showed how to onstrut a family of pseudo-random permutations where it is possible to quikly

iterate the permutation. However, this works only for a �xed yle type. The question is whether

it is possible to onstrut a family of permutations suh that (i) The yle type distribution is lose

to that of a random permutation (ii) It is possible to iterate a member of the family very quikly.

(iii) The family is indistinguishable from truly random permutations even with the fast iteration

queries.

4



Using the approah of this paper it is suÆient to onstrut a family of permutations C that

satis�es (i) and (ii). Composing it with a (regular) pseudo-random permutation will yield property

(iii) as well. Note that a pseudo-random yli permutation satis�es properties (ii) and (iii) (but

not (i)), sine it is not easy to distinguish suh a permutation from a random one (it should require

roughly 2

n=2

evaluations).

Another interesting question is whether it is possible to onstrut pseudo-random funtions that

an be iterated. The need for suh funtions (or the k-wise independent version of them) arises

in algorithmi appliations suh as Pollard's rho method [7℄ and Hellman's time-spae tradeo� for

inverting funtion ([4℄, see also [1℄). Here, again, the approah of this paper tells us that it is

suÆient to ome up with a family F of funtions that has the orret distribution on the \tree

struture" as well as the ability to ompute iterations, but is not neessarily pseudo-random. Then

for any P that is a (regular) family of pseudo-random permutations, the family fP

�1

Æ F Æ P jF 2

F ; P 2 Pg has all the desired properties.

Referenes

[1℄ A. Fiat, M. Naor, Rigorous Time/Spae Trade-o�s for Inverting Funtions, SIAM J. Comput.

29, 1999, pp. 790{803.

[2℄ O. Goldreih, S. Goldwasser and S. Miali, How to onstrut random funtions, J. of the

ACM., vol. 33, 1986, pp. 792-807.

[3℄ T. W. K�orner, The Pleasure of Counting, Cambridge Univ. Press, 1997.

[4℄ M. E. Hellman, A ryptanalyti time-memory tradeo�, IEEE Transations on Information

Theory 26, 1980, pp. 289{294.

[5℄ M. Luby and C. Rako�, How to onstrut pseudorandom permutations and pseudorandom

funtions, SIAM J. Comput. 17, 1988, pp. 373-386.

[6℄ M. Naor and O. Reingold, On the Constrution of Pseudorandom Permutations: Luby-Rako�

Revisited. Journal of Cryptology 12(1), 1999, pp. 29{66.

[7℄ J. M. Pollard, A Monte Carlo method for fatorization, BIT 15, 1975, pp. 331{334.

[8℄ A. Shamir and B. Tsaban, Guaranteeing the diversity of Pseudorandom Generators,

Manusript.

5


