
On the possibility of constructing meaningful hash collisions
for public keys

Arjen Lenstra1,2, Benne de Weger2

1 Lucent Technologies, Bell Laboratories, Room 2T-504
600 Mountain Avenue, P.O.Box 636, Murray Hill, NJ 07974-0636, USA

akl at lucent dot com
2 Technische Universiteit Eindhoven

P.O.Box 513, 5600 MB Eindhoven, The Netherlands
{a.k.lenstra,b.m.m.d.weger} at tue dot nl

Abstract. It is sometimes argued (as in [4]) that finding meaningful hash collisions might prove
difficult. We show that at least one of the arguments involved is wrong, by showing that for
several common public key systems it is easy to construct pairs of meaningful and secure public
key data that either collide or share other characteristics with the hash collisions as quickly
constructed in [14]. We present some simple results, investigate what we can and cannot (yet)
achieve, and formulate some open problems of independent interest. At this point we are not yet
aware of truly interesting practical implications. Nevertheless, our results may be relevant for
the practical assessment of the recent hash collision results in [14]. For instance, we show how
to use hash collisions to construct two X.509 certificates that contain identical signatures and
that differ only in the public keys. Thus hash collisions indeed undermine one of the principles
underlying Public Key Infrastructures.

Keywords: hash collisions, public keys

1 Introduction

Based on the birthday paradox a random collision for any n-bit hash function can be con-
structed after an effort proportional to 2n/2 hash applications, no matter how good the hash
function is. From the results presented at the Crypto 2004 rump session (cf. [14]), and since
then described in more detail in [15], [16], [17], and [18], it follows that for many well known
hash functions the effort required to find random collisions is considerably lower. Indeed, in
some cases the ease with which collisions can be found is disconcerting.

However, most of the hash functions affected by the results announced in [14] were already
known to be weak. Prudent applications that relied on their random collision resistance should
have been phased out years ago. Their application in digital certificates, however, is still
rather common. In particular MD5, one of the affected hash functions, is still being used by
Certification Authorities to generate new certificates. The affected hash functions are also
widely used for integrity protection of binary data. For example, executables distributed over
the Internet often come with a published hash value so that users can check that the proper
code was downloaded. And the occurrence of changes in the contents of a file system can be
detected by hash checking programs such as Tripwire.

We sketch the arguments that such applications are not affected by the lack of random
collision resistance. A successful attack on an existing certificate (or some other data structure
such as an executable) requires second preimage resistance: given a pre-specified value and its
hash, it must be practically infeasible to find another value with the same hash. As far as we are
aware, the results announced in [14] do not imply that second preimages are essentially easier
to find than they should, namely effort proportional to 2n for an n-bit hash function. According

to a result first published in [3] and later (and independently) generalized in [7], second
preimages for many common hash functions can be found in overall runtime proportional to
2n−k for reasonably sized k > 0, but at memory cost 2k. Thus, using the full cost time×memory
of an attack effort, as suggested in [1] and [19], finding a second preimage can still be argued
to cost the full 2n. In any case, certificates that existed well before the results from [14] were
obtained should be fine.

For newly to be constructed data structures such as certificates the argument goes that
random collisions do not suffice because the values to be hashed are meaningful (cf. [4]
and [11]). A certificate, e.g. an X.509 or PGP certificate, is a highly structured document, and
also executable code will have a lot of structure to be able to execute properly. Nevertheless,
both these data structures may contain pieces of data that look random, and may have been
constructed to fit a hash collision. A hash collision may be inserted on purpose inside an
executable; see [5] and [10] for interesting exploit ideas in this area. The Diffie-Hellman group
size may be related to a random-looking large prime, which is a system parameter that could
be hard-coded into a binary executable. As was shown in [6], given any hash collision as for
instance presented in [14], it is trivial to construct a ‘real’ Diffie-Hellman prime and a ‘fake’
one that hash to the same value. In certificates there will be random looking binary data
related to public keys. One may ask whether the mathematical requirements that lie behind
public key constructions enforce so much meaningful structure that it may be expected to be
incompatible with the collision requirement. We show that this is not the case.

The collisions found by [14] all have a special structure: two inputs are found that hash
to the same value, and that differ in a few spread-out and precisely specified bit positions
only. This leads us to the following question. Suppose the value to be hashed contains an
RSA modulus, i.e., a hard to factor composite integer, or an element gv for a (sub)group
generator g and secret exponent v. How would one come up with two different RSA moduli
or two different powers of g that have the subtle differences that seem to be required for the
collisions as constructed in [14]?

Having the right type of difference structure does not, as far as we know, imply a hash
collision. Indeed, it is as yet unclear to us what conditions have to be imposed on the matching
bits in order to realize the collisions announced in [14], but it is clear from [15] that they will
be severe. Presently, specially crafted data blocks seem to be required for collisions. But
colliding data blocks can be used to generate more collisions as follows. All affected hash
functions are based on the Merkle-Damg̊ard construction, where a compression function is
iteratively applied to a changing chaining variable and the successive data blocks followed
by a length dependent final block. New collisions can therefore be constructed by appending
arbitrary, but identical, data to any existing pair of colliding data consisting of the same
number of blocks. Thus, to produce two different but colliding public keys one could try to
use the specially crafted data blocks as their most significant parts, and then append equal
data blocks, carefully chosen such that well-formed and secure public keys result.

Apparently, colliding data blocks can be found for the compression function with an
arbitrary value of the chaining variable. This implies that identical data can also be prepended
to colliding pairs if the resulting data have the same length and the colliding pairs have been
specifically crafted to work with the chaining variable value that results from the prepended
data.

In this paper we investigate the various problems and possibilities. We show how we can
generate public keys with prescribed differences but with a priori unknown most significant
parts. Even though the resulting public keys will, in general, not collide, it cannot be excluded,

2

and it can indeed be expected, that in the future new collision methods will be found that have
different, less severe restrictions. Therefore it is relevant to know if the two requirements—
being meaningful and having the proper difference structure—are mutually exclusive or not,
and if not if examples can be constructed in a reasonable amount of time. We address this
question both for RSA and for discrete logarithm systems. We explicitly restrict ourselves
to known and secure private keys as the construction of unknown or non-secure private keys
is hardly challenging (cf. [12]): for instance, a number that differs slightly from a proper
RSA modulus may be expected to behave as a random number (with respect to factorization
properties), is thus often enough easy to factor, and thereby insecure. And if it turns out to
be too hard to factor, it is useless because the secure private key cannot be found.

Furthermore, using the appending trick, we show how we can generate actually colliding
pairs consisting of proper public RSA keys, albeit with moduli comprised of unbalanced prime
factors. Combining this construction with the prepending idea, we show how very closely
related X.509 certificates can be constructed that have identical signatures on different hard to
factor moduli. It is conceivable that such certificate ‘pairs’ may be used for ulterior purposes.

We are not aware yet of real life practical implications of our results. Our sole goal is to
point out that one may have to be more careful than expected when relying on the ‘meaningful
message’ argument against hash collisions in certification applications.

A summary of our results is as follows. It is straightforward to generate secure pairs of RSA
moduli with any small difference structure. For the sake of completeness our simple method
is presented in Section 2 along with some runtimes of a proof-of-concept implementation.
Furthermore, in Section 2 it is shown how any actual Merkle-Damg̊ard based hash collision
can be used to construct colliding pairs consisting of two hard to factor moduli, and how
such moduli can be embedded in X.509 certificates with identical signatures. For discrete
logarithm systems there is a much greater variety of results, and even some interesting open
questions. Briefly, one can do almost anything one desires if one may pick any generator of
the full multiplicative group, but if a prescribed generator, or a subgroup generator, has to be
used, then we cannot say much yet. Our observations are presented in Section 3. In Section 4
we investigate the practicality of generating colliding DL system parameters, à la Kelsey and
Laurie [6]. Some attack scenarios and applications that use our constructions are sketched in
Section 5.

2 Generating pairs of hard to factor moduli

The first problem we address in this section is constructing pairs of RSA public key values
that differ in a prescribed small number of bit positions. The second problem is constructing
pairs of colliding hard to factor moduli, with an application to the construction of pairs of
X.509 certificates.

An RSA public key value ordinarily consists of an RSA modulus and a public exponent.
A single RSA modulus with two different public exponents that differ in the prescribed way
is in principle a solution to the first problem. But in practice one often fixes the public
exponent (popular values are 3, 17, and 65537), and even if one does not, selecting two proper
public exponents that differ in the right way is trivial and does not lead to an entertaining
mathematical question.
The first problem: RSA moduli with prescribed difference. We address the more in-
teresting problem where the public exponent is fixed and where the two RSA moduli differ in

3

the prescribed bit positions. The latter is the case if the XOR of the regular binary represen-
tations of the moduli consists of the prescribed bits. Unfortunately, the XOR of two integers
is not a convenient representation-independent mathematical operation. This slightly com-
plicates matters. If the hamming weight of the prescribed XOR is small, however, the XOR
corresponds often enough to the regular, representation-independent integer difference. There-
fore a probabilistic method to generate moduli with a prescribed difference may be expected
to eventually produce a pair with the right XOR.
Algorithm to generate moduli with prescribed difference. Let N ∈ Z>0 be an integer
indicating the bitlength of the RSA moduli we wish to construct, and let δ be a positive even
integer of at most N bits containing the desired difference. We describe a fast probabilistic
method to construct two secure N -bit RSA moduli m and n such that m− n = δ:

– Let ` be a small positive integer that is about 2 log2(N).
– Pick distinct primes p and q of bitlength N/2 − `, calculate integers r = δ/p mod q and
s = (rp− δ)/q, then for any k

p(r + kq)− q(s+ kp) = δ.

– Search for the smallest integer k such that r+kq and s+kp are both prime and such that
p(r + kq) and q(s+ kp) both have bitlength N .

– For the resulting k let m = p(r + kq) and n = q(s+ kp).
– If k cannot be found, pick another random p or q (or both), recalculate r and s, and repeat

the search for k.

Runtime analysis. Because the more or less independent (N/2+ `)-bit numbers r+kq and
s+kp have to be simultaneously prime, one may expect that the number of k’s to be searched
is close to (N/2)2. Thus, a single choice of p and q should suffice if 2` is somewhat bigger than
(N/2)2, which is the case if ` ≈ 2 log2(N). The algorithm can be expected to require O(N2)
tests for primality. Depending on the underlying arithmetic and how the primality tests are
implemented – usually by means of trial division combined with a probabilistic compositeness
test – the overall runtime should be between O(N4) and O(N5).

A larger ` leads to fewer choices for p and q and thus a faster algorithm, but it also leads
to larger size differences in the factors of the resulting RSA moduli m and n. The algorithm
can be forced to produce balanced primes (i.e., having the same bitlength) by taking ` = 0,
and for instance allowing only k = 0, but then it can also be expected to run O(N) times
slower.
From prescribed difference to prescribed XOR. If required, and as discussed above, the
method presented above may be repeated until the resulting m and n satisfy m XOR n = δ
(where, strictly speaking, m and n in the last equation should be replaced by one’s favorite
binary representation of m and n). The number of executions may be expected to increase
exponentially with the hamming weight H(δ) of δ. If H(δ) is small, as apparently required
for the type of collisions constructed in [14], this works satisfactorily.

It is much faster, however, to include the test for the XOR condition directly in the
algorithm before r + kq and s + kp are subjected to a primality test. In that case ` may be
chosen about H(δ) larger to minimize the number of p and q choices, but that also leads to an
even larger size difference between the factors. As shown in the runtimes below, the overhead
caused by the XOR condition compared to the difference is quite small.
Security considerations. Given two regular RSA moduli m and n, their difference δ =
|m − n| can obviously be calculated. But knowledge of δ and the factorization of one of the

4

moduli, does, with the present state of the art in integer factorization, not make it easier
to factor the other modulus, irrespective of any special properties that δ may have. Indeed,
if the other modulus could be factored, the RSA cryptosystem would not be worth much.
If m is the product of randomly selected primes p and r of the same size, as is the case in
regular RSA, then r = δ/p mod q for any other RSA modulus n with prime factor q and
δ = m − n. Thus, the randomly selected prime factor r satisfies the same identity that was
used to determine r in our algorithm above (given p, q, and δ), but as argued that does not
make r easier to calculate given just q and δ (but not p). This shows that the ‘` = 0 and allow
only k = 0’ case of our algorithm produces RSA moduli pairs that are as hard to factor as
regular RSA moduli, and that knowledge of the factorization of one of them does not reveal
any information about the factors of the other.

The same argument and conclusion applies in the case of regular RSA moduli with unbal-
anced factors: with the present state of the art such factors are not easier to find than others
(assuming the smallest one is not exceptionally small), also not if the difference with another
similarly unbalanced RSA modulus is known. If an N -bit RSA modulus m has an (N/2− `)-
bit factor p with (N/2+ `)-bit cofactor r̃, both randomly selected, then r̃ mod q = δ/p mod q
for any other RSA modulus n with (N/2−`)-bit prime factor q and δ = m−n. The randomly
selected prime factor r̃ when taken modulo q satisfies the same identity that was used to
determine r in our algorithm and the cofactor s̃ of q in n, when taken modulo p, satisfies the
same identity, with r replaced by r̃ mod q, that was used to determine s in our algorithm.
Because m− n = δ the integers r̃, r, s̃, and s satisfy r̃ − r = kq and s̃− s = kp for the same
integer valued k. This means that the allegedly hard to find r̃ equals the prime factor r + kq
as determined by our algorithm.
Runtimes. Lots of obvious tricks can be used when implementing the above algorithm. We
do not elaborate but just note that over a wide range of bitlengths, namely N ranging from
1024 to 4096 the average runtime to generate a pair of moduli m, n with m XOR n = δ grows
slightly faster than N4. For δ = 2927 +2687 +2607 +2415 +2175 +295 with H(δ) = 6, a possible
interpretation of a δ suggested by one of the examples in [14], we found the following runtimes
on a 1GHz Pentium III, averaged over 100 modulus pairs per bitlength and using the fast
unbalanced size approach: N = 1024 in 9.2 seconds, N = 1536 in 42 seconds, N = 2048 in 133
seconds, N = 3072 in 773 seconds, and N = 4096 in 2650 seconds. As expected, the ‘` = 0
and allow only k=0’ variant works considerably slower, but we have not conducted enough
experiments to be able to present meaningful runtime data. If the condition m XOR n = δ is
replaced by m− n = δ the average runtimes are about 10% faster.
Remark on simultaneous versus consecutive construction. The method presented
in this section simultaneously constructs two moduli with a prescribed difference. One may
wonder if the moduli have to be constructed simultaneously and whether consecutive con-
struction is possible: given a difference δ and an RSA modulus m (either with known or
unknown factorization), efficiently find a secure RSA modulus n (and its factorization) such
that m XOR n = δ. But if this were possible, any modulus could be efficiently factored
given its (easy to calculate) difference δ with m. Thus, it is highly unlikely that moduli with
prescribed differences can be constructed both efficiently and consecutively.
The second problem: actually colliding hard to factor moduli. The object of our
investigation so far has been to find out if the requirement to be meaningful (i.e., proper RSA
moduli) excludes the apparent requirement of a prescribed difference structure. As shown
above, that is not the case: proper RSA moduli with any prescribed difference can easily be
constructed. A much stronger result would be to construct RSA moduli that actually do have

5

the same hash value. We don’t know yet how to do this if the two moduli must have factors of
approximately equal size, a customary property of RSA moduli. We can, however, construct
actually colliding composite moduli that are, with the proper parameter choices, as hard to
factor as regular RSA moduli but for which, in a typical application, the largest prime factor
is about three times longer than the smallest factor. Unbalanced moduli for instance occur
in [13]. Our method combines the ideas mentioned in the introduction and earlier in this
section with the construction from [8].
Algorithm to generate actually colliding hard to factor moduli. Let b1 and b2
be two bitstrings of equal bitlength B that collide under a Merkle-Damg̊ard based hash
function. Following [14], B could be 512 if b1 and b2 collide under MD4, or 1024 if they
collide under MD5. It is a consequence of the Merkle-Damg̊ard construction that for any
bitstring b the concatenations b1||b and b2||b also collide. Denoting by N > B the desired
bitlength of the resulting moduli, we are thus looking for a bitstring b of length N −B such
that the integers m1 and m2 represented by b1||b and b2||b, respectively, are hard to factor
composites. Assuming that N − B is sufficiently large, let p1 and p2 be two independently
chosen random primes such that p1p2 has bitlength somewhat smaller than N − B. Two
primes of bitlength (N −B)/2− log2(B) should do in practice. Using the Chinese Remainder
Theorem, find an integer b0, 0 ≤ b0 < p1p2 such that pi divides bi2N−B + b0 for i = 1, 2.
Finally, look for the smallest integer k ≥ 0 with b0 +kp1p2 < 2N−B and such that the integers
qi = (bi2N−B + b0 +kp1p2)/pi are prime for i = 1, 2. If such an integer k does not exist, select
new p1 and p2 and try again. The resulting moduli are mi = piqi = bi||b for i = 1, 2, where
b = b0 + kp1p2 is to be interpreted as (N − B)-bit integer. The security of each modulus
constructed in this fashion, though unproven, is argued in [8]; since then no weaknesses in
this construction have been published. Since p1 and p2 are independent, knowledge of the
factorization of one of the moduli does not reveal information about the factorization of the
other one. The argument follows the lines of the security argument presented earlier in this
section. We do not elaborate.

The following example with B = 1024 and N = 2048 was found after a brief search:

b1 = D131DD02 C5E6EEC4 693D9A06 98AFF95C 2FCAB587 12467EAB 4004583E B8FB7F89

55AD3406 09F4B302 83E48883 2571415A 085125E8 F7CDC99F D91DBDF2 80373C5B

960B1DD1 DC417B9C E4D897F4 5A6555D5 35739AC7 F0EBFD0C 3029F166 D109B18F

75277F79 30D55CEB 22E8ADBA 79CC155C ED74CBDD 5FC5D36D B19B0AD8 35CCA7E3

b2 = D131DD02 C5E6EEC4 693D9A06 98AFF95C 2FCAB507 12467EAB 4004583E B8FB7F89

55AD3406 09F4B302 83E48883 25F1415A 085125E8 F7CDC99F D91DBD72 80373C5B

960B1DD1 DC417B9C E4D897F4 5A6555D5 35739A47 F0EBFD0C 3029F166 D109B18F

75277F79 30D55CEB 22E8ADBA 794C155C ED74CBDD 5FC5D36D B19B0A58 35CCA7E3

b = 6DC99F24 E608F367 296D6536 91D7A2D7 4D216E84 8E7AF0AE 1C0E8B9D 59B3F3F1

D3F6AB04 70832664 2C1AD4B8 E19C43E6 81B97B54 0960D2A2 3F92D141 D25FF166

B71BEADC 1C34D830 2EFE0453 CFB4B06E F058C6A1 0D9DA967 382B53AD 549F4118

7294E310 A093A4BD 849CD94D EAE6B25A 85E88C04 41973141 8CD5FFCF 17AF7703

p1 = E8C208AE 3809DD82 969E9DC6 858D6C06 EB811E54 928D2BD9 71CD4847 776B0CB1

EB7C1DC3 B3C8EE47 87D30965 812D8356 3A041081 019D72D1 205B3CB6 4F35A23F

p2 = EFDA8662 E6AF382B 95011409 17CFC002 078B87C7 BBC6A6EC 7BBA4566 DAD95449

07F74D4D 58D6002C D7C493A4 1836A8DE AD6C5771 02754860 4F698DF3 D6B7C107.

Here b1 and b2 are taken from [14], b1||b and b2||b are both 2048-bit integers with 512-bit
prime factors p1 and p2, respectively, with prime cofactors, and MD5(b1||b) = MD5(b2||b) =

6

116346B2 D5C5E569 F4B65C52 B8125B07. As analyzed in [9], according to the current state of the art
in factoring these moduli are as hard to factor as regular 2048-bit RSA moduli.
Remark. Given the restrictions of the MD5-collisions as found by the methods from [14]
and [15], our method does not allow us to target 1024-bit moduli that collide under MD5, only
substantially larger ones. Asymptotically, with growing modulus size but fixed collision size,
the prime factors in the moduli ultimately become balanced. The above method can easily
be changed to produce a colliding pair of balanced N -bit RSA modulus and N -bit prime.

At the time of writing of this note a pair of X.509 certificates is under construction that
are different only in the hard to factor RSA moduli, but that have the same CA signature.
A detailed description of our approach will be given in the full version of this note. Briefly,
it works as follows. Based on the initial part of the data to be certified, a value of the MD5
chaining variable is determined. Using this value as initialization vector, a pair of 1024-bit
values that collide under MD5 is calculated using the methods from [15]. This collision is used
as described above to produce two colliding hard to factor 2048-bit moduli, which then enables
the construction of two X.509 certificates with identical signatures. It is interesting to note
that, given the limitations of the MD5-collision methods from [14] and [15], X.509 certificates
for 2048-bit RSA moduli should, for the time being, be regarded with more suspicion than
X.509 certificates for 1024-bit RSA moduli.

3 Generating DL public keys with prescribed difference

The problem. In the previous section RSA moduli were constructed with a prescribed XOR
of small hamming weight by looking for sufficiently many pairs of moduli with a particular
integer difference. Thus, the XOR-requirement was translated into a regular integer difference
because the latter is something that makes arithmetic sense. In this section we want to
generate discrete logarithm related public key values with a prescribed small XOR: for a
generator g of some multiplicatively written group of known finite order, we want integers a1

and a2 (the secret keys) such that ga1 and ga2 (the public values) have a prescribed small
XOR. Obviously, ga1 XOR ga2 depends on the way group elements are represented. For most
common representations that we are aware of the XOR operation does not correspond to a
mathematical operation that we can work with. Elements of binary fields are an exception:
there XOR is the same as addition.
Representation of elements of multiplicative groups of finite fields. If 〈g〉 lives
in a multiplicative group of a prime field of characteristic p, the group elements can be
represented as non-zero integers modulo p, and the XOR can, probabilistically if p > 2 and
deterministically if p = 2, be replaced by the regular integer difference modulo p, similar to
what was done in Section 2. In this case the resulting requirement ga1 − ga2 = δ even has
the advantage that it makes sense mathematically speaking, since the underlying field allows
both multiplication and addition. Because of this convenience, multiplicative groups of prime
fields is the case we concentrate on in this section. Multiplicative groups of extension fields
have the same advantage, and most of what is presented below applies to that case as well.
Representation issues for elements of other types of groups. Other cryptographically
popular groups are groups of elliptic curves over finite fields. In this case the group element
ga1 to be hashed1 is represented as some number of finite field elements that represent the

1 Note that we keep using multiplicative notation for the group operation, and that our “ga1” would more
commonly be denoted “a1g” in the elliptic curve cryptoworld.

7

coordinates of certain ‘points’, either projectively or affinely represented, or in some cases
even trickier as just a single coordinate, possibly with an additional sign bit. Given such a
representation, it is not always immediately clear how the XOR operation should be translated
into an integer subtraction that is meaningful in elliptic curve groups. It is conceivable that,
for instance, the integer difference of the x-coordinates allows a meaningful interpretation,
again with characteristic 2 fields as a possibly more convenient special case. We leave this
topic, and the possibility of yet other groups, for future research.
Restriction to multiplicative groups of prime fields. Unless specified otherwise, in the
remainder of this section we are working in the finite field Z/pZ with, as usual, multiplication
and addition the same as integer multiplication and addition modulo p. The problem we
are mostly interested in is: given δ ∈ Z/pZ find non-trivial solutions to ga1 − ga2 = δ with
g ∈ (Z/pZ)∗ and integers a1 and a2. Several different cases and variants can be distinguished,
depending on the assumptions one is willing to make.
Variant I: Prescribed generator g of (Z/pZ)∗ and δ 6= 0. Assume that g is a fixed
prescribed generator of (Z/pZ)∗ and that δ 6= 0. Obviously, if the discrete logarithm problem
in 〈g〉 = (Z/pZ)∗ can be solved, ga1 − ga2 = δ can be solved as well: a solution with any
desired non-zero value z = a1 − a2 can be targeted by finding the discrete logarithm a2 with
respect to g of δ/(gz − 1), i.e., a2 such that ga2 = δ/(gz − 1). It follows that there are about
p different solutions to ga1 − ga2 = δ.

The other way around, however, is unclear: if ga1 − ga2 = δ can be solved for a1 and a2,
can the discrete logarithm problem in 〈g〉 = (Z/pZ)∗ be solved? Annoyingly, we don’t know.
Intuitively, the sheer number of solutions to ga1 − ga2 = δ for fixed δ and g seems to obstruct
all attempts to reduce the discrete logarithm problem to it. This is illustrated by the fact
that if the ga1 − ga2 = δ oracle would produce solutions a1, a2 with fixed z = a1 − a2, the
reduction to the discrete logarithm problem becomes straightforward: to solve gy = x for y
(i.e., given g and x), apply the ga1 − ga2 = δ oracle to δ = (gz − 1)x and set y equal to the
resulting a2.

Lacking a reduction for the general case (i.e., non-fixed a1−a2) from the discrete logarithm
problem, neither do we know if, given δ and g, solving ga1 − ga2 = δ for a1 and a2 is easy.
We conjecture that the problem is hard, and pose the reduction from the regular discrete
logarithm problem to it as an interesting open question.

Summarizing, if δ 6= 0 and g is a given generator of the full multiplicative group modulo
p, the problem of finding a1, a2 with ga1 − ga2 = δ is equivalent to the discrete logarithm
problem in 〈g〉 if a1−a2 is fixed, and the problem is open (but at most as hard as the discrete
logarithm problem) if a1 − a2 is not pre-specified.
Variant II: Prescribed generator g of a true subgroup of (Z/pZ)∗ and δ 6= 0. Let
again δ 6= 0, but now let g be a fixed prescribed generator of a true subgroup of (Z/pZ)∗. For
instance, g could have order q for a sufficiently large prime divisor q of p−1, in our opinion the
most interesting case for the hash collision application that we have in mind. If z = a1−a2 is
pre-specified, not much is different: a solution to ga1 − ga2 = δ exists if δ/(gz − 1) ∈ 〈g〉 and if
so, it can be found by solving a discrete logarithm problem in 〈g〉, and the discrete logarithm
problem gy = x given an x ∈ 〈g〉 can be solved by finding a fixed z = a1 − a2 solution to
ga1 − ga2 = (gz − 1)x.

But the situation is unclear if a1 and a2 may vary independently: we do not even know
how to establish whether or not a solution exists. We observe that for the cryptographically
reasonable case where g has prime order q, with q a 160-bit prime dividing a 1024-bit p− 1,
the element ga1 −ga2 of Z/pZ can assume at most q2 ≈ 2320 different values. This means that

8

the vast majority of unrestricted choices for δ is infeasible and that a δ for which a solution
would exist would have to be constructed with care. However, the δ’s that we are interested
in have low hamming weight. This makes it exceedingly unlikely that a solution exists at all.
For instance, for H(δ) = 6 there are fewer than 251 different δ’s. For each of these δ we may
assume that it is of the form ga1 − ga2 with probability at most ≈ 2320/21024. Thus, with
overwhelming probability, none of the δ’s will be of the form ga1 − ga2 . And, even if one of
them has the proper form, we don’t know how to find out.
Variant III: Free choice of generator of (Z/pZ)∗ and δ 6= 0. Now suppose that just
δ 6= 0 is given, but that one is free to determine a generator g of (Z/pZ)∗, with p either given
or to be determined to one’s liking. Thus, the problem is solving ga1 − ga2 = δ for integers
a1 and a2 and a generator g of the multiplicative group (Z/pZ)∗ of a prime field Z/pZ. Not
surprisingly, this makes finding solutions much easier. For instance, one could look for a prime
p and small integers u and v such that the polynomial Xu −Xv − δ ∈ (Z/pZ)[X] has a root
h ∈ (Z/pZ)∗ (for instance, by fixing u = 2 and v = 1 and varying p until a root exists). Next,
one picks a random integer w coprime to p− 1 and calculates g = h1/w, a1 = uw mod (p− 1),
and a2 = vw mod (p − 1). As a result ga1 − ga2 = δ. With appropriately chosen p it can
quickly be verified if g is indeed a generator; if not, one tries again with a different w or p,
whatever is appropriate.

Obviously, this works extremely quickly, and solutions to ga1−ga2 = δ can be generated on
the fly. The disadvantage of the solution is, however, that any party that knows a1 (or a2) can
easily derive a2 (or a1) because va1 = ua2 mod (p− 1) for small u and v. In our ‘application’
this is not a problem if one wants to spoof one’s own certificate. Also, suspicious parties that
do not know either a1 or a2 may nevertheless find out that ga1 and ga2 have matching small
powers. It would be much nicer if the secrets (a1 and a2) are truly independent, as is the
case for our RSA solution. We don’t know how to do this. Similarly, we do not know how to
efficiently force g into a sufficiently large but relatively small (compared to p) subgroup.
Variant IV: Two different generators, any δ. In our final variant we take g again as a
generator of (Z/pZ)∗, take any δ ∈ Z/pZ including δ = 0, and ask for a solution h, a1, a2 to
ga1 − ha2 = δ. Obviously, this is trivial, even if a1 is fixed or kept secret by hiding it in ga1 :
for an appropriate a2 of one’s choice compute h as the a2th root of ga1 − δ. For subgroups
the case δ 6= 0 cannot be expected to work, as argued above.

The most interesting application of this simple method is the case δ = 0. Not only does
δ = 0 guarantee a hash collision, it can be made to work in any group or subgroup, not just
the simple case (Z/pZ)∗ we are mostly considering here, and g and h may generate entirely
different (sub)groups, as long as the representations of the group elements is sufficiently
‘similar’: for instance, an element of (Z/pZ)∗ can be interpreted as an element of (Z/p′Z)∗

for any p′ > p, and most of the time vice versa as long as p′ − p is relatively small. Because,
furthermore, just ga1 but not a1 itself is required, coming up with one’s own secret exponent
and generator (possibly of another group) seems to be the perfect way to spoof someone else’s
certificate on ga1 . This illustrates that one should never trust a generator whose construction
method is not specified, since it may have been concocted to collide, for some exponents, with
a ‘standard’ or otherwise prescribed generator.

It follows that in practical cases of discrete logarithm related public keys, information
about the generator and (sub)group (the system parameters) must be included in the cer-
tificate or that the system parameters must be properly authenticated in some other way.
Although this is well known, we are not aware of any description in the cryptographic lit-
erature of this particular – and particularly trivial – reason why discrete logarithm system

9

parameters must be authenticated. We suspect it is part of the crypto-folklore; this is sup-
ported by the fact that, according to [20], this issue came up in the P1363 standards group
from time to time.
Remark on actually colliding powers of a fixed g. As shown above, δ = 0 and the
freedom to select a generator makes it trivial to generate actually colliding powers. One may
wonder if less straightforward examples with a fixed generator g can be constructed in a way
similar to the construction shown at the end of Section 2. Let N be such that the elements of
〈g〉 can be represented as bitstrings of length N , and let (b1, b2) be a pair of B-bit values that
collide under a Merkle-Damg̊ard hash. The question is if an (N −B)-bit value b and integers
a1 and a2 can be found such that the colliding values b1||b and b2||b satisfy b1||b = ga1 and
b2||b = ga2 . We don’t know how to do this – except that it can be done in any number of
ways if discrete logarithms with respect to g can be computed. The ability to solve Variant I,
however, makes it possible to solve the related problem of finding b such that b12N−B +b = ga1

and b22N−B + b = ga2 : simply take δ = (b1− b2)2N−B, apply Variant I to find a1 and a2 with
ga1 − ga2 = δ and define b = ga1 − b12N−B, which equals ga2 − b22N−B. Unfortunately, the
resulting b will in general not be an (N −B)-bit value, so that the ‘+’ cannot be interpreted
as ‘||’, and the resulting pair (ga1 , ga2) will most likely no longer collide.

4 Generating colliding DL system parameters

John Kelsey suggested on a mailing list to generate Diffie-Hellman system parameters (specifi-
cally a large prime) for which a collision with cryptographically weak system parameters exists,
to facilitate compromising private keys. Immediately Ben Laurie produced a large prime and
a composite replacement with the same MD5-value (cf. [6]). Laurie’s composite number, how-
ever, seems to be far from smooth and is hardly useful for the intended purpose. Therefore,
the question is raised whether we can produce large primes p for which the discrete logarithm
problem in (Z/pZ)∗ is hard and that collide (e.g. for MD4 or MD5) with moduli for which
the discrete logarithm problem is easy.

Denote by p1 and p2 the colliding moduli. We assume that p1 is prime and that the discrete
logarithm problem in the multiplicative group (Z/p1Z)∗ is hard. This means that p1 should
be large enough (i.e., say, 1024 bits) and that p1 − 1 should contain a prime factor of, say,
at least 160 bits. The last requirement complicates the description somewhat and may, if the
large prime order subgroup is not explicitly needed, be omitted based on the argument that
in most cases such a prime factor will exist. The number p2 must be chosen in such a way
that discrete logarithms modulo p2 are easy. This can be achieved as follows.

1. Construct p2 such that it is the product of relatively small primes. Discrete logarithms
modulo p2 can be calculated by computing them in the finite fields defined by the prime
factors of p2. This can effectively be done using subexponential-time index calculus based
methods if the prime factors are at most, say, 400 bits.

2. Construct p2 such that it is prime but such that the prime factors of p2 − 1 are small
enough so that discrete logarithms in (Z/p2Z)∗ can be computed using the Pohlig-Hellman
method. This means that the prime factors of p2 − 1 should be at most about 100 bits.

3. Combining the two methods above: a composite p2 such that the finite fields defined by
the prime factors of p2 have multiplicative groups with orders divisible by primes of at
most about 100 bits.

10

Construction of pairs of colliding moduli (p1, p2) based on an existing hash collision is straight-
forward, and in practice a bit cumbersome. Below we sketch how pairs may be constructed
that satisfy one of the first two possibilities for p2.

Let b1, b2 be a known pair of colliding B-bit values. If a large enough prime factor is
explicitly desired in p1 − 1, then generate a 160-bit prime q. Generate a number of small
primes of, say, 32 bits, such that their product M is approximately B bits long (or ≈ B−160,
if q has been generated). Values b can now be constructed, efficiently and in large quantities,
such that p1 = b1||b and p2 = b2||b are 2B-bit numbers, the large smooth factor M either
divides p2 or p2− 1 (depending on whether the first or the second possibility for p2 is chosen)
and, if applicable, q divides p1 − 1. Among those b’s, look for values such that p1 is prime,
and such that p2/M or (p2 − 1)/M has all prime factors of the required size. This requires
factoring an approximately B-bit (or B+160-bit, if q is used) number, which sometimes may
be doable, but often will be difficult.

To give an indication how many b’s are needed, we consider the easiest case where B = 512
(as for the MD4 collisions from [14]), q is not used, and where we attempt to realize the first
possibility for p2. Let ψ(x, y) be the number of y-smooth integers below x. Based on De
Bruijn’s estimate in [2]

logψ(x, y) ≈ log x
log y

log
(

1 +
y

log x

)
+

y

log y
log

(
1 +

log x
y

)

(neglecting error terms) we estimate that we have to generate 1.3 million b values before a
good one turns up. This is feasible, despite the fact that each b requires a primality test (for
p1), possibly followed by a smoothness test on a number of approximately 512 bits (p2/M). For
B = 1024 (as for the MD5 collisions from [14]), however, one may expect that the number of
b’s to be inspected grows by a factor of at least 104, and the numbers involved get considerably
larger. For instance, the smoothness tests would have to be applied to approximately 1024-bit
numbers. Thus, constructing p1 and p2 for B = 1024 becomes a rather time-consuming task.

We mention just one example that we generated using a known MD4-collision (cf. [14]):

b1 = 839C7A4D 7A92CB56 78A5D5B9 EEA5A757 3C8A74DE B366C3DC 20A083B6 9F5D2A3B

B3719DC6 9891E9F9 5E809FD7 E8B23BA6 318EDD45 E51FE397 08BF9427 E9C3E8B9

b2 = 839C7A4D 7A92CBD6 78A5D529 EEA5A757 3C8A74DE B366C3DC 20A083B6 9F5D2A3B

B3719DC6 9891E9F9 5E809FD7 E8B23BA6 318EDC45 E51FE397 08BF9427 E9C3E8B9

b = 13F449AF C2986A9E 529F545E 70E08FD0 54E5A316 EF7909EE 5157F452 236A8B1A

C6945C7F 0EC7C00D 09E36FB8 03D954F3 B31E82C3 89A7DFD2 3A84A6FA CF35AA79

where p2 = b2||b has the prime factorization

3× B6F× 2B97× 8105× 817D× 8225× 8447× 85A3× 85EB× 87DD× 8AB5× 9043× 92A1× 944B× 95E3× 96FB×
997D×9B9F×9D15×9DE7×A141×A175×A243×A26B×A4F3×A56D×A5D9×A673×AB5B×B01B×B17F×B1A9×
B567× B951× B993× 2D061× 4C24E1× D3357A5× 16164973× 7FD131763× 98BB302F87× 20A7312C4827D×
6AFB9B7C2BE3A759× 22EDF99B7227D62C8846F× 1780C6C1BB502D4E9F6627C7B47519E02D95B.

Here the largest prime factor has 145 bits, so p2 can be considered sufficiently smooth. Gen-
erating this example took several hours, the bottleneck being the factorization attempts of
the candidate p2’s.

11

5 Attack scenarios and applications

We describe some possible (ab)uses of colliding public keys. None of our examples is truly
convincing, and we welcome more realistic scenarios.

One possible scenario is that Alice generates colliding public keys for her own use. We
assume that it is possible to manufacture certificates for these public keys in such a way that
the parts of the certificates that are signed by a Certification Authority (CA) also collide, so
that the signatures are in fact identical. For RSA we have shown how this goal can actually
be achieved for X.509 certificates. Then Alice can ask the CA for certification of one of her
public keys, and obtain a valid certificate. By replacing the public key with the other one,
she can craft a second certificate that is equally valid as the first one. If so desired this can
be done without any involvement of the CA, in which case she obtains two valid certificates
for the price of only one.

The resulting certificates differ in only a few bit positions in random looking data, and are
therefore hard to distinguish by a cursory glance of the human eye. For standard certificate
validating software both certificates will be acceptable, as the signature can be verified with
the CA’s public key.

A ‘positive’ application of the pairs of X.509 certificates would be that it enables Alice to
distribute two RSA certificates, one for encryption and the other for signature purposes, for
the transmission cost of just one certificate plus the few positions where the RSA moduli differ.
Indeed, the CA may knowingly participate in this application and verify that Alice knows
both factorizations. However, if that is not done and the CA is tricked into signing one of the
keys without being aware of the other one, the principle underlying Public Key Infrastructure
that a CA guarantees the binding between an identity and a public key, has been violated. A
CA usually requires its customers to provide proof of possession of the corresponding private
key, to prevent key substitution attacks in which somebody tries to certify another person’s
public key in his own name. Although the way our certificates have been constructed makes
it highly improbable that somebody could come up with either of them independent of Alice,
it should be clear that the proof of possession principle has been violated. It would be more
interesting to be able to produce two colliding certificates that have differences in the subject
name, but at present this seems infeasible because it requires finding a second preimage.

Alice can also, maliciously, spread her two certificates in different user groups (different
in space or time). When Bob sends Alice an encrypted message that has been encrypted
by means of the wrong certificate, Alice may deny to be able to read it. When however the
dispute is seriously investigated, it will be revealed that Alice has two colliding certificates.
Alice may claim that she does not know how this is possible, but as finding second preimages
still is prohibitively expensive, it is clear that either Alice is lying, or she has been misled by
the key pair generating software.

Alice can produce digital signatures with one key pair, that are considered perfectly valid
in one user group, and invalid in the other. This may be convenient for Alice, when she wants
to convince one person of something, and to deny it to another person. Again, on serious
investigation the colliding certificates will be revealed.

Another possible scenario is that Alice does not generate key pairs herself, but obtains
her key pair(s) from a Key Generation Centre (KGC). This KGC may maliciously produce
colliding public keys, of which one is sold to Alice, and the other one kept for the KGC’s own
use, without Alice’s consent. The KGC can distribute Alice’s false certificate to Bob, and then
Bob, when he thinks he is sending a message that only Alice can decrypt, ends up sending a

12

message that only the KGC or a party collaborating with it can decrypt. Furthermore, when
Alice sends a signed message to Bob, Bob will not accept her signature. So this constitutes
a small denial of service attack. Note that a KGC in principle always has the possibility to
eavesdrop on encrypted messages to Alice, and to spoof her signature. Our ability to construct
colliding certificate does not add much value to this malicious application.

In all the above cases, when the colliding public keys are both secure keys, it cannot
be detected from one key (or one certificate) that it has a twin sister. When e.g. one of the
colliding public keys is intentionally weak, e.g. a prime as opposed to a composite modulus, this
can be in principle detected by compositeness testing. Unless there is a concrete suspicion such
tests are not carried out in practice, since they would make the public operation substantially
more costly.

For the case of colliding DL-parameters a realistic scenario has already been described by
John Kelsey [6]. Note that in this case the ‘fake’ DL-prime can be detected by compositeness
testing or factoring attempts.

In conclusion it seems that possibilities for abuse seem not abundant, as the two public
keys are very much related, and generated at the same time by the same person. Nevertheless,
the principle of Public Key Infrastructure, being a certified binding between an identity
and a public key, is violated by some of the scenarios we have described, based on random
collisions for (a.o.) the hash function MD5, which is still popular and in use by certificate
generating institutions. Particularly worrying is that any person, including the certificate
owner, the Certification Authority, and any other party trusting a certificate, cannot tell
from the information in one certificate whether or not there exists a second public key or
certificate with the same hash or digital signature on it. In particular, the relying party (the
one that does the public key operation with somebody else’s public key) cannot be sure
anymore that the certificate owner indeed is in possession of the corresponding private key.

6 Conclusion

We demonstrated that on the basis of the existence of random hash collisions, in particular
those for MD5 as shown by Wang et al. in [14], one can craft public keys and even valid
certificates that violate one of the principles underlying Public Key Infrastructures. We feel
that this is an important reason why hash functions that have been subject to collision attacks
should no longer be allowed in certificate generation.

Acknowledgment. Acknowledgments are due to Hendrik W. Lenstra, Berry Schoenmakers,
and Mike Wiener for helpful remarks and fruitful discussions.

References

1. D.J. Bernstein, Circuits for integer factorization: a proposal, manuscript, November 2001; available at
cr.yp.to/papers.html#nfscircuit.

2. N.G. De Bruijn, On the number of positive integers ≤ x and free of prime factors > y, II, Indag. Math. 38
(1966) 239-247.

3. R.D. Dean Formal aspects of mobile code security, PhD thesis, Princeton University, January 1999,
http://www.cs.princeton.edu/sip/pub /ddean-dissertation.php3A.

4. Recent collision attacks on hash functions: ECRYPT position paper, november 2004.

5. D. Kaminsky, MD5 to be considered harmful someday, preprint, december 2004,
http://www.doxpara.com/md5 someday.pdf.

13

6. J. Kelsey, B. Laurie, Contributions to the mailing list ”cryptography@metzdowd.com”, December 22, 2004,
available at http://diswww.mit.edu/bloom-picayune/crypto/16587.

7. J. Kelsey, B. Schneier, Second preimages on n-bit hash functions for much less than 2n work, eprint archive
2004/304, http://eprint.iacr.org/2004/304.

8. A.K. Lenstra, Generating RSA moduli with a predetermined portion, Asiacrypt’98, Springer-Verlag LNCS
1514 (1998), 1–10.

9. A.K. Lenstra, Unbelievable security, Asiacrypt 2001, LNCS 2248, Springer-Verlag 2001, 67–86.
10. O. Mikle, Practical Attacks on Digital Signatures Using MD5 Message Digest, eprint archive 2004/356,

http://eprint.iacr.org/2004/356.
11. J. Randall, M. Szydlo, Collisions for SHA0, MD5, HAVAL, MD4, and RIPEMD, but SHA1 still secure,

RSA Laboratories technical notes, http://www.rsasecurity.com/rsalabs/node.asp?id=2738.
12. E. Rescorla, What’s the Worst That Could Happen? presentation at the DI-

MACS Workshop on Cryptography: Theory Meets Practice October 14–15, 2004,
http://dimacs.rutgers.edu/Workshops/Practice/slides/rescorla.pdf.

13. A. Shamir, RSA for paranoids, RSA Laboratories’ Cryptobytes, v. 1, no. 3 (1995) 1–4.
14. X. Wang, D. Feng, X. Lai, H. Yu, Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD,

eprint archive 2004/199, http://eprint.iacr.org/2004/199, presented at the Crypto 2004 rump session,
August 17, 2004.

15. X. Wang and H. Yu , How to Break MD5 and Other Hash Functions, EuroCrypt 2005, to appear.
16. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, Cryptanalysis for Hash Functions MD4 and RIPEMD,

EuroCrypt 2005, to appear.
17. X. Wang, H. Chen, X. Yu, How to Find Another Kind of Collision for MD4 Efficiently, Preprint, 2004.
18. X. Wang, D. Feng, X. Yu, An Attack on Hash Function HAVAL-128, Preprint, 2004.
19. M.J. Wiener, The full cost of cryptanalytic attacks, Journal of Cryptology 17 (2004) 105–124.
20. M. Wiener, personal communication, November 17, 2004.

14

