
The Unicode Standard
Version 6.2 – Core Specification

The Unicode Consortium

Edited by
Julie D. Allen, Deborah Anderson, Joe Becker, Richard Cook,
Mark Davis, Peter Edberg, Michael Everson, Asmus Freytag,
John H. Jenkins, Rick McGowan, Lisa Moore, Eric Muller,
Addison Phillips, Michel Suignard, and Ken Whistler

A Unicode Consortium
Mountain View, CA

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and
other countries.

The authors and publisher have taken care in the preparation of this specification, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The
recipient agrees to determine applicability of information provided.

Copyright © 1991–2012 Unicode, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction. For information regarding permissions, inquire
at http://www.unicode.org/reporting.html. For information about the Unicode terms of use, please
see http://www.unicode.org/copyright.html.

The Unicode Standard / the Unicode Consortium ; edited by Julie D. Allen ... [et al.]. — Version 6.2.
 Includes bibliographical references and index.
 ISBN 978-1-936213-07-8) (http://www.unicode.org/versions/Unicode6.2.0/)
 1. Unicode (Computer character set) I. Allen, Julie D. II. Unicode Consortium.
 QA268.U545 2012

ISBN 978-1-936213-07-8
Published in Mountain View, CA
September 2012

http://www.unicode.org/versions/Unicode6.2.0
http://www.unicode.org/reporting.html
http://www.unicode.org/copyright.html

Contents

Figures . xvii

Tables . xxi

Preface. xxv
Why Unicode? . xxv
What’s New? . xxv
Organization of This Standard . xxv
Unicode Standard Annexes . xxvii
The Unicode Character Database . xxviii
Unicode Code Charts . xxviii
Unicode Technical Standards and Unicode Technical Reports xxviii
Updates and Errata . xxviii
Acknowledgements . xxix

1 Introduction. 1

1.1 Coverage . 2
Standards Coverage . 2
New Characters . 3

1.2 Design Goals . 3

1.3 Text Handling. 4
Characters and Glyphs . 5
Text Elements . 5

2 General Structure . 7

2.1 Architectural Context . 7
Basic Text Processes . 8
Text Elements, Characters, and Text Processes . 8
Text Processes and Encoding . 9

2.2 Unicode Design Principles . 10
Universality . 10
Efficiency . 11
Characters, Not Glyphs . 11
Semantics . 14
Plain Text . 14
Logical Order . 15
Unification . 17
Dynamic Composition . 18
Stability . 18
Convertibility . 19

2.3 Compatibility Characters . 19
Compatibility Variants . 20
Compatibility Decomposable Characters . 20

2.4 Code Points and Characters. 21
Types of Code Points . 22

2.5 Encoding Forms. 24
UTF-32 . 26
UTF-16 . 27
UTF-8 . 27
Comparison of the Advantages of UTF-32, UTF-16, and UTF-8 28

iv Contents
2.6 Encoding Schemes . 30

2.7 Unicode Strings . 32

2.8 Unicode Allocation . 33
Planes . 33
Allocation Areas and Character Blocks . 34
Assignment of Code Points . 35

2.9 Details of Allocation . 35
Plane 0 (BMP) . 37
Plane 1 (SMP) . 38
Plane 2 (SIP) . 40
Other Planes . 40

2.10 Writing Direction . 40

2.11 Combining Characters . 41
Sequence of Base Characters and Diacritics . 42
Multiple Combining Characters . 43
Ligated Multiple Base Characters . 45
Exhibiting Nonspacing Marks in Isolation . 45
“Characters” and Grapheme Clusters . 46

2.12 Equivalent Sequences and Normalization . 46
Normalization . 47
Decompositions . 48
Non-decomposition of Overlaid Diacritics . 49

2.13 Special Characters and Noncharacters . 50
Special Noncharacter Code Points . 50
Byte Order Mark (BOM) . 50
Layout and Format Control Characters . 51
The Replacement Character . 51
Control Codes . 51

2.14 Conforming to the Unicode Standard. 51
Characteristics of Conformant Implementations . 52
Unacceptable Behavior . 52
Acceptable Behavior . 53
Supported Subsets . 53

3 Conformance . 55

3.1 Versions of the Unicode Standard . 55
Stability . 56
Version Numbering . 56
Errata and Corrigenda . 57
References to the Unicode Standard . 57
Precision in Version Citation . 57
References to Unicode Character Properties . 58
References to Unicode Algorithms . 58

3.2 Conformance Requirements . 59
Code Points Unassigned to Abstract Characters . 59
Interpretation . 59
Modification . 61
Character Encoding Forms . 62
Character Encoding Schemes . 62
Bidirectional Text . 63
Normalization Forms . 63
Normative References . 63
Unicode Algorithms . 63

Contents v
Default Casing Algorithms . 64
Unicode Standard Annexes . 64

3.3 Semantics . 65
Definitions . 65
Character Identity and Semantics . 65

3.4 Characters and Encoding . 67

3.5 Properties . 70
Types of Properties . 70
Property Values . 71
Default Property Values . 72
Classification of Properties by Their Values . 73
Property Status . 73
Context Dependence . 76
Stability of Properties . 76
Simple and Derived Properties . 78
Property Aliases . 78
Private Use . 79

3.6 Combination . 79
Combining Character Sequences . 79
Grapheme Clusters . 81
Application of Combining Marks . 83

3.7 Decomposition. 87
Compatibility Decomposition . 87
Canonical Decomposition . 88

3.8 Surrogates. 89

3.9 Unicode Encoding Forms . 89
UTF-32 . 93
UTF-16 . 93
UTF-8 . 94
Encoding Form Conversion . 95
Constraints on Conversion Processes . 96

3.10 Unicode Encoding Schemes . 98

3.11 Normalization Forms . 101
Normalization Stability . 102
Combining Classes . 102
Specification of Unicode Normalization Forms . 103
Starters . 103
Canonical Ordering Algorithm . 104
Canonical Composition Algorithm . 105
Definition of Normalization Forms . 107

3.12 Conjoining Jamo Behavior . 107
Definitions . 107
Hangul Syllable Decomposition . 109
Hangul Syllable Composition . 111
Hangul Syllable Name Generation . 112
Sample Code for Hangul Algorithms . 112

3.13 Default Case Algorithms . 115
Definitions . 115
Default Case Conversion . 117
Default Case Folding . 117
Default Case Detection . 118
Default Caseless Matching . 119

vi Contents
4 Character Properties . 121

4.1 Unicode Character Database . 122

4.2 Case . 124
Definitions of Case and Casing . 124
Case Mapping . 126

4.3 Combining Classes. 126
Reordrant, Split, and Subjoined Combining Marks 127

4.4 Directionality . 130

4.5 General Category . 130

4.6 Numeric Value . 133
Ideographic Numeric Values . 133

4.7 Bidi Mirrored . 135

4.8 Name . 135
Unicode Name Property . 137
Code Point Labels . 138
Use of Character Names in APIs and User Interfaces 138

4.9 Unicode 1.0 Names. 139

4.10 Letters, Alphabetic, and Ideographic. 139

4.11 Properties Related to Text Boundaries . 140

4.12 Characters with Unusual Properties . 140

5 Implementation Guidelines . 145

5.1 Data Structures for Character Conversion 145
Issues . 145
Multistage Tables . 146

5.2 Programming Languages and Data Types 147
Unicode Data Types for C . 147

5.3 Unknown and Missing Characters . 148

5.4 Handling Surrogate Pairs in UTF-16 . 149

5.5 Handling Numbers . 151

5.6 Normalization . 152

5.7 Compression . 153

5.8 Newline Guidelines . 153
Definitions . 153
Line Separator and Paragraph Separator . 154
Recommendations . 155

5.9 Regular Expressions . 156

5.10 Language Information in Plain Text . 157
Requirements for Language Tagging . 157
Language Tags and Han Unification . 157

5.11 Editing and Selection . 158
Consistent Text Elements . 158

5.12 Strategies for Handling Nonspacing Marks 159
Keyboard Input . 160
Truncation . 161

5.13 Rendering Nonspacing Marks . 162
Canonical Equivalence . 164
Positioning Methods . 165

5.14 Locating Text Element Boundaries . 167

5.15 Identifiers . 167

Contents vii
5.16 Sorting and Searching. 167
Culturally Expected Sorting and Searching . 168
Language-Insensitive Sorting . 168
Searching . 168
Sublinear Searching . 169

5.17 Binary Order . 170
UTF-8 in UTF-16 Order . 170
UTF-16 in UTF-8 Order . 171

5.18 Case Mappings . 172
Titlecasing . 172
Complications for Case Mapping . 172
Reversibility . 174
Caseless Matching . 175
Normalization and Casing . 177

5.19 Mapping Compatibility Variants . 177

5.20 Unicode Security . 179

5.21 Ignoring Characters in Processing . 180
Characters Ignored in Text Segmentation . 181
Characters Ignored in Line Breaking . 181
Characters Ignored in Cursive Joining . 181
Characters Ignored in Identifiers . 182
Characters Ignored in Searching and Sorting . 182
Characters Ignored for Display . 183

5.22 Best Practice for U+FFFD Substitution . 185

6 Writing Systems and Punctuation. 187

6.1 Writing Systems . 188

6.2 General Punctuation . 191
Blocks Devoted to Punctuation . 193
Format Control Characters . 193
Space Characters . 194
Dashes and Hyphens . 195
Paired Punctuation . 197
Language-Based Usage of Quotation Marks . 197
Apostrophes . 200
Other Punctuation . 200
Archaic Punctuation and Editorial Marks . 204
Indic Punctuation . 206
CJK Punctuation . 207
Unknown or Unavailable Ideographs . 208
CJK Compatibility Forms . 209

7 European Alphabetic Scripts . 211

7.1 Latin . 212
Letters of Basic Latin: U+0041–U+007A . 215
Letters of the Latin-1 Supplement: U+00C0–U+00FF 215
Latin Extended-A: U+0100–U+017F . 216
Latin Extended-B: U+0180–U+024F . 216
IPA Extensions: U+0250–U+02AF . 218
Phonetic Extensions: U+1D00–U+1DBF . 219
Latin Extended Additional: U+1E00–U+1EFF . 220
Latin Extended-C: U+2C60–U+2C7F . 220
Latin Extended-D: U+A720–U+A7FF . 221
Latin Ligatures: U+FB00–U+FB06 . 222

viii Contents
7.2 Greek. 222
Greek: U+0370–U+03FF . 222
Greek Extended: U+1F00–U+1FFF . 225
Ancient Greek Numbers: U+10140–U+1018F . 226

7.3 Coptic . 227

7.4 Cyrillic . 229
Cyrillic: U+0400–U+04FF . 230
Cyrillic Supplement: U+0500–U+052F . 230
Cyrillic Extended-A: U+2DE0–U+2DFF . 231
Cyrillic Extended-B: U+A640–U+A69F . 231

7.5 Glagolitic. 231

7.6 Armenian . 232

7.7 Georgian . 233

7.8 Modifier Letters . 235
Spacing Modifier Letters: U+02B0–U+02FF . 236
Modifier Tone Letters: U+A700–U+A71F . 237

7.9 Combining Marks. 238
Combining Diacritical Marks: U+0300–U+036F . 242
Combining Diacritical Marks Supplement: U+1DC0–U+1DFF 242
Combining Marks for Symbols: U+20D0–U+20FF 242
Combining Half Marks: U+FE20–U+FE2F . 243
Combining Marks in Other Blocks . 243

8 Middle Eastern Scripts . 245

8.1 Hebrew. 246
Hebrew: U+0590–U+05FF . 246
Alphabetic Presentation Forms: U+FB1D–U+FB4F 250

8.2 Arabic . 250
Arabic: U+0600–U+06FF . 250
Arabic Cursive Joining . 256
Arabic Ligatures . 258
Arabic Joining Groups . 259
Arabic Supplement: U+0750–U+077F . 265
Arabic Extended-A: U+08A0–U+08FF . 265
Arabic Presentation Forms-A: U+FB50–U+FDFF . 265
Arabic Presentation Forms-B: U+FE70–U+FEFF . 266

8.3 Syriac . 266
Syriac: U+0700–U+074F . 266
Syriac Shaping . 269

8.4 Samaritan . 273

8.5 Thaana . 274

9 South Asian Scripts-I . 277

9.1 Devanagari . 278
Devanagari: U+0900–U+097F . 278
Principles of the Devanagari Script . 279
Rendering Devanagari . 284
Devanagari Digits, Punctuation, and Symbols . 291
Extensions in the Main Devanagari Block . 292
Devanagari Extended: U+A8E0-U+A8FF . 293
Vedic Extensions: U+1CD0-U+1CFF . 294

9.2 Bengali (Bangla) . 295

9.3 Gurmukhi . 300

Contents ix
9.4 Gujarati . 303

9.5 Oriya . 304

9.6 Tamil. 306
Tamil: U+0B80–U+0BFF . 306
Tamil Vowels . 307
Tamil Ligatures . 308
Tamil Named Character Sequences . 311

9.7 Telugu. 313

9.8 Kannada . 315
Kannada: U+0C80–U+0CFF . 315
Principles of the Kannada Script . 315
Rendering Kannada . 317

9.9 Malayalam . 317

10 South Asian Scripts-II . 323

10.1 Sinhala . 324

10.2 Tibetan . 325

10.3 Lepcha . 335

10.4 Phags-pa . 336

10.5 Limbu . 342

10.6 Syloti Nagri . 344

10.7 Kaithi . 345

10.8 Saurashtra . 347

10.9 Sharada . 348

10.10 Takri . 349

10.11 Chakma . 350

10.12 Meetei Mayek . 351

10.13 Ol Chiki . 353

10.14 Sora Sompeng . 354

10.15 Kharoshthi . 355
Kharoshthi: U+10A00–U+10A5F . 355
Rendering Kharoshthi . 356

10.16 Brahmi . 359

11 Southeast Asian Scripts. 363

11.1 Thai . 364

11.2 Lao . 366

11.3 Myanmar. 368
Myanmar: U+1000–U+109F . 368
Myanmar Extended-A: U+AA60–U+AA7F . 371
Khamti Shan . 372
Aiton and Phake . 373

11.4 Khmer. 374
Khmer: U+1780–U+17FF . 374
Principles of the Khmer Script . 374
Khmer Symbols: U+19E0–U+19FF . 383

11.5 Tai Le . 383

11.6 New Tai Lue . 384

11.7 Tai Tham . 385

11.8 Tai Viet. 387

x Contents
11.9 Kayah Li. 389

11.10 Cham. 390

11.11 Philippine Scripts . 392
Tagalog: U+1700–U+171F . 392
Hanunóo: U+1720–U+173F . 392
Buhid: U+1740–U+175F . 392
Tagbanwa: U+1760–U+177F . 392
Principles of the Philippine Scripts . 392

11.12 Buginese . 393

11.13 Balinese . 394

11.14 Javanese . 399

11.15 Rejang . 401

11.16 Batak . 402

11.17 Sundanese. 403

12 East Asian Scripts. 405

12.1 Han . 406
CJK Unified Ideographs . 406
CJK Standards . 407
Blocks Containing Han Ideographs . 409
General Characteristics of Han Ideographs . 411
Principles of Han Unification . 414
Unification Rules . 415
Abstract Shape . 416
Han Ideograph Arrangement . 418
Radical-Stroke Indices . 419
Mappings for Han Ideographs . 419
CJK Unified Ideographs Extension B: U+20000–U+2A6D6 420
CJK Unified Ideographs Extension C: U+2A700–U+2B734 420
CJK Unified Ideographs Extension D: U+2B740–U+2B81D 420
CJK Compatibility Ideographs: U+F900–U+FAFF . 420
CJK Compatibility Supplement: U+2F800–U+2FA1D 421
Kanbun: U+3190–U+319F . 421
Symbols Derived from Han Ideographs . 421
CJK and KangXi Radicals: U+2E80–U+2FD5 . 421
CJK Additions from HKSCS and GB 18030 . 422
CJK Strokes: U+31C0–U+31EF . 423

12.2 Ideographic Description Characters . 423

12.3 Bopomofo . 426

12.4 Hiragana and Katakana . 428
Hiragana: U+3040–U+309F . 428
Katakana: U+30A0–U+30FF . 428
Katakana Phonetic Extensions: U+31F0–U+31FF . 429
Kana Supplement U+1B000–U+1B0FF . 429

12.5 Halfwidth and Fullwidth Forms . 429

12.6 Hangul . 430
Hangul Jamo: U+1100–U+11FF . 430
Hangul Jamo Extended-A: U+A960–U+A97F . 431
Hangul Jamo Extended-B: U+D7B0–U+D7FF . 431
Hangul Compatibility Jamo: U+3130–U+318F . 431
Hangul Syllables: U+AC00–U+D7A3 . 432

12.7 Yi. 433

Contents xi
13 Additional Modern Scripts . 437

13.1 Ethiopic . 438
Ethiopic: U+1200–U+137F . 438
Ethiopic Extensions . 440

13.2 Mongolian . 440

13.3 Osmanya . 447

13.4 Tifinagh . 448

13.5 N’Ko . 450

13.6 Vai . 454

13.7 Bamum. 455
Bamum: U+A6A0–U+A6FF . 455
Bamum Supplement: U+16800–U+16A3F . 456

13.8 Cherokee . 456

13.9 Canadian Aboriginal Syllabics . 457
Canadian Aboriginal Syllabics: U+1400–U+167F . 457
Canadian Aboriginal Syllabics Extended: U+18B0–U+18FF 458

13.10 Deseret . 459

13.11 Shavian. 461

13.12 Lisu . 461

13.13 Miao . 463

14 Additional Ancient and Historic Scripts . 465

14.1 Ogham . 466

14.2 Old Italic . 467

14.3 Runic . 469

14.4 Gothic . 471

14.5 Old Turkic . 472

14.6 Linear B . 473
Linear B Syllabary: U+10000–U+1007F . 473
Linear B Ideograms: U+10080–U+100FF . 473
Aegean Numbers: U+10100–U+1013F . 473

14.7 Cypriot Syllabary . 474

14.8 Ancient Anatolian Alphabets . 474
Lycian: U+10280–U+1029F . 474
Carian: U+102A0–U+102DF . 474
Lydian: U+10920–U+1093F . 474

14.9 Old South Arabian . 475

14.10 Phoenician . 477

14.11 Imperial Aramaic . 478

14.12 Mandaic . 479

14.13 Inscriptional Parthian and Inscriptional Pahlavi 481

14.14 Avestan. 482

14.15 Ugaritic . 483

14.16 Old Persian . 484

14.17 Sumero-Akkadian. 485
Cuneiform: U+12000–U+123FF . 485
Cuneiform Numbers and Punctuation: U+12400–U+1247F 487

14.18 Egyptian Hieroglyphs . 487

14.19 Meroitic Hieroglyphs and Meroitic Cursive 491

xii Contents
15 Symbols . 493

15.1 Currency Symbols . 494

15.2 Letterlike Symbols . 496
Letterlike Symbols: U+2100–U+214F . 496
Mathematical Alphanumeric Symbols: U+1D400–U+1D7FF 498
Mathematical Alphabets . 498
Fonts Used for Mathematical Alphabets . 500
Arabic Mathematical Alphabetic Symbols: U+1EE00–U+1EEFF 501

15.3 Numerals. 502
Decimal Digits . 502
Other Digits . 504
Non-Decimal Radix Systems . 505
Acrophonic Systems and Other Letter-based Numbers 506
Rumi Numeral Forms: U+10E60–U+10E7E . 507
CJK Numerals . 507
Fractions . 509
Common Indic Number Forms: U+A830–U+A83F 509

15.4 Superscript and Subscript Symbols . 510
Superscripts and Subscripts: U+2070–U+209F . 510

15.5 Mathematical Symbols . 511
Mathematical Operators: U+2200–U+22FF . 512
Supplements to Mathematical Symbols and Arrows 513
Supplemental Mathematical Operators: U+2A00–U+2AFF 514
Miscellaneous Mathematical Symbols-A: U+27C0–U+27EF 514
Miscellaneous Mathematical Symbols-B: U+2980–U+29FF 514
Miscellaneous Symbols and Arrows: U+2B00–U+2B7F 515
Arrows: U+2190–U+21FF . 515
Supplemental Arrows . 515
Standardized Variants of Mathematical Symbols . 516

15.6 Invisible Mathematical Operators . 516

15.7 Technical Symbols . 517
Control Pictures: U+2400–U+243F . 517
Miscellaneous Technical: U+2300–U+23FF . 517
Optical Character Recognition: U+2440–U+245F . 520

15.8 Geometrical Symbols . 520
Box Drawing and Block Elements . 521
Geometric Shapes: U+25A0–U+25FF . 521

15.9 Miscellaneous Symbols . 522
Miscellaneous Symbols: U+2600–U+26FF . 523
Miscellaneous Symbols and Pictographs: U+1F300–U+1F5FF 523
Emoticons: U+1F600–U+1F64F . 525
Transport and Map Symbols: U+1F680–U+1F6FF . 526
Dingbats: U+2700–U+27BF . 526
Alchemical Symbols: U+1F700–U+1F77F . 527
Mahjong Tiles: U+1F000–U+1F02F . 527
Domino Tiles: U+1F030–U+1F09F . 528
Playing Cards: U+1F0A0–U+1F0FF . 528
Yijing Hexagram Symbols: U+4DC0–U+4DFF . 529
Tai Xuan Jing Symbols: U+1D300–U+1D356 . 529
Ancient Symbols: U+10190–U+101CF . 530
Phaistos Disc Symbols: U+101D0–U+101FF . 530

Contents xiii
15.10 Enclosed and Square . 531
Enclosed Alphanumerics: U+2460–U+24FF . 533
Enclosed CJK Letters and Months: U+3200–U+32FF 533
CJK Compatibility: U+3300–U+33FF . 533
Enclosed Alphanumeric Supplement: U+1F100–U+1F1FF 534
Enclosed Ideographic Supplement: U+1F200–U+1F2FF 534

15.11 Braille . 534

15.12 Western Musical Symbols. 536

15.13 Byzantine Musical Symbols . 540

15.14 Ancient Greek Musical Notation . 540

16 Special Areas and Format Characters . 543

16.1 Control Codes. 544
Representing Control Sequences . 544
Specification of Control Code Semantics . 545

16.2 Layout Controls . 545
Line and Word Breaking . 546
Cursive Connection and Ligatures . 548
Combining Grapheme Joiner . 551
Bidirectional Ordering Controls . 553
Stateful Format Controls . 553

16.3 Deprecated Format Characters . 554

16.4 Variation Selectors . 556

16.5 Private-Use Characters. 557
Private Use Area: U+E000–U+F8FF . 558
Supplementary Private Use Areas . 559

16.6 Surrogates Area . 559

16.7 Noncharacters . 560

16.8 Specials . 561
Byte Order Mark (BOM): U+FEFF . 561
Specials: U+FFF0–U+FFF8 . 563
Annotation Characters: U+FFF9–U+FFFB . 563
Replacement Characters: U+FFFC–U+FFFD . 564

16.9 Deprecated Tag Characters . 565
Deprecated Tag Characters: U+E0000–U+E007F . 565
Syntax for Embedding Tags . 565
Working with Language Tags . 567
Unicode Conformance Issues . 568
Formal Tag Syntax . 569

17 About the Code Charts . 571

17.1 Character Names List . 571
Images in the Code Charts and Character Lists . 572
Special Characters and Code Points . 573
Character Names . 574
Informative Aliases . 574
Normative Aliases . 575
Cross References . 575
Information About Languages . 575
Case Mappings . 576
Decompositions . 576
Standardized Variation Sequences . 577
Subheads . 577

xiv Contents
17.2 CJK Unified and Compatibility Ideographs. 577
CJK Unified Ideographs . 578
Compatibility Ideographs . 579

17.3 Hangul Syllables . 579

A Notational Conventions . 581
Code Points . 581
Character Names . 581
Character Blocks . 581
Sequences . 582
Rendering . 582
Properties and Property Values . 582
Miscellaneous . 582
Extended BNF . 583
Operators . 584

B Unicode Publications and Resources . 585

B.1 The Unicode Consortium . 585
The Unicode Technical Committee . 585
Other Activities . 586

B.2 Unicode Publications . 586

B.3 Unicode Technical Standards . 586
UTS #6: A Standard Compression Scheme for Unicode 586
UTS #10: Unicode Collation Algorithm . 587
UTS #18: Unicode Regular Expressions . 587
UTS #22: Character Mapping Markup Language (CharMapML) 587
UTS #35: Unicode Locale Data Markup Language (LDML) 587
UTS #37: Unicode Ideographic Variation Database 587
UTS #39: Unicode Security Mechanisms . 587

B.4 Unicode Technical Reports . 587
UTR #16: UTF-EBCDIC . 587
UTR #17: Unicode Character Encoding Model . 588
UTR #20: Unicode in XML and Other Markup Languages 588
UTR #23: The Unicode Character Property Model . 588
UTR #25: Unicode Support for Mathematics . 588
UTR #26: Compatibility Encoding Scheme for UTF-16: 8-Bit (CESU-8) . . 588
UTR #33: Unicode Conformance Model . 588
UTR #36: Unicode Security Considerations . 588

B.5 Unicode Technical Notes. 589

B.6 Other Unicode Online Resources . 589
Unicode Online Resources . 589
How to Contact the Unicode Consortium . 591

C Relationship to ISO/IEC 10646 . 593

C.1 History . 593

C.2 Encoding Forms in ISO/IEC 10646. 597
Zero Extending . 597

C.3 UTF-8 and UTF-16 . 598
UTF-8 . 598
UTF-16 . 598

C.4 Synchronization of the Standards. 598

C.5 Identification of Features for the Unicode Standard 598

C.6 Character Names. 599

C.7 Character Functional Specifications . 599

Contents xv
D Changes from Previous Versions . 601

D.1 Versions of the Unicode Standard . 601

D.2 Clause and Definition Updates . 603

E Han Unification History . 605

E.1 Development of the URO . 605

E.2 Ideographic Rapporteur Group . 606

F Documentation of CJK Strokes. 609

R References . 615

R.1 Source Standards and Specifications . 615

R.2 Source Dictionaries for Han Unification. 622

R.3 Other Sources for the Unicode Standard . 622

R.4 Selected Resources: Technical . 638

R.5 Selected Resources: Other . 640

I General Index . 645

xvi Contents

Figures

Figure 1-1. Wide ASCII. 2
Figure 1-2. Unicode Compared to the 2022 Framework. 4
Figure 2-1. Text Elements and Characters . 9
Figure 2-2. Characters Versus Glyphs . 12
Figure 2-3. Unicode Character Code to Rendered Glyphs . 13
Figure 2-4. Bidirectional Ordering . 15
Figure 2-5. Writing Direction and Numbers . 16
Figure 2-6. Typeface Variation for the Bone Character . 17
Figure 2-7. Dynamic Composition . 18
Figure 2-8. Abstract and Encoded Characters . 22
Figure 2-9. Overlap in Legacy Mixed-Width Encodings . 25
Figure 2-10. Boundaries and Interpretation . 25
Figure 2-11. Unicode Encoding Forms . 26
Figure 2-12. Unicode Encoding Schemes . 31
Figure 2-13. Unicode Allocation . 36
Figure 2-14. Allocation on the BMP . 37
Figure 2-15. Allocation on Plane 1. 39
Figure 2-16. Writing Directions . 40
Figure 2-17. Combining Enclosing Marks for Symbols. 42
Figure 2-18. Sequence of Base Characters and Diacritics . 42
Figure 2-19. Reordered Indic Vowel Signs . 43
Figure 2-20. Properties and Combining Character Sequences 43
Figure 2-21. Stacking Sequences . 43
Figure 2-22. Ligated Multiple Base Characters . 45
Figure 2-23. Equivalent Sequences . 47
Figure 2-24. Canonical Ordering . 47
Figure 2-25. Types of Decomposables . 49
Figure 3-1. Enclosing Marks. 85
Figure 4-1. Positions of Common Combining Marks . 127
Figure 5-1. Two-Stage Tables . 147
Figure 5-2. Normalization . 152
Figure 5-3. Consistent Character Boundaries. 158
Figure 5-4. Dead Keys Versus Handwriting Sequence. 161
Figure 5-5. Truncating Grapheme Clusters . 161
Figure 5-6. Inside-Out Rule . 162
Figure 5-7. Fallback Rendering . 163
Figure 5-8. Bidirectional Placement . 163
Figure 5-9. Justification. 164
Figure 5-10. Positioning with Ligatures . 165
Figure 5-11. Positioning with Contextual Forms . 166
Figure 5-12. Positioning with Enhanced Kerning . 167
Figure 5-13. Sublinear Searching . 169
Figure 5-14. Uppercase Mapping for Turkish I . 173
Figure 5-15. Lowercase Mapping for Turkish I . 174
Figure 5-16. Casing of German Sharp S . 174
Figure 6-1. Overriding Inherent Vowels . 189
Figure 6-2. Forms of CJK Punctuation . 192
Figure 6-3. European Quotation Marks . 198

xviii Figures
Figure 6-4. Asian Quotation Marks . 199
Figure 6-5. Examples of Ancient Greek Editorial Marks . 205
Figure 6-6. Use of Greek Paragraphos . 206
Figure 6-7. CJK Parentheses . 207
Figure 7-1. Alternative Glyphs in Latin . 213
Figure 7-2. Diacritics on i and j . 214
Figure 7-3. Vietnamese Letters and Tone Marks . 214
Figure 7-4. Variations in Greek Capital Letter Upsilon . 224
Figure 7-5. Coptic Numerals . 229
Figure 7-6. Georgian Scripts and Casing. 234
Figure 7-7. Tone Letters . 237
Figure 7-8. Double Diacritics . 240
Figure 7-9. Positioning of Double Diacritics . 240
Figure 7-10. Use of CGJ with Double Diacritics. 241
Figure 7-11. Interaction of Combining Marks with Ligatures 241
Figure 7-12. Use of Vertical Line Overlay for Negation. 243
Figure 7-13. Double Diacritics and Half Marks . 244
Figure 8-1. Directionality and Cursive Connection . 250
Figure 8-2. Using a Joiner . 252
Figure 8-3. Using a Non-joiner . 252
Figure 8-4. Combinations of Joiners and Non-joiners . 252
Figure 8-5. Placement of Harakat . 253
Figure 8-6. Arabic Year Sign. 255
Figure 8-7. Syriac Abbreviation . 268
Figure 8-8. Use of SAM. 268
Figure 9-1. Dead Consonants in Devanagari . 281
Figure 9-2. Conjunct Formations in Devanagari . 282
Figure 9-3. Preventing Conjunct Forms in Devanagari . 282
Figure 9-4. Half-Consonants in Devanagari . 283
Figure 9-5. Independent Half-Forms in Devanagari . 283
Figure 9-6. Half-Consonants in Oriya. 283
Figure 9-7. Consonant Forms in Devanagari and Oriya . 284
Figure 9-8. Rendering Order in Devanagari . 288
Figure 9-9. Marathi Allographs . 291
Figure 9-10. Use of Apostrophe in Bodo, Dogri and Maithili. 292
Figure 9-11. Use of Avagraha in Dogri . 292
Figure 9-12. Requesting Bengali Consonant-Vowel Ligature 297
Figure 9-13. Blocking Bengali Consonant-Vowel Ligature . 297
Figure 9-14. Bengali Syllable tta . 298
Figure 9-15. Kssa Ligature in Tamil. 307
Figure 9-16. Tamil Two-Part Vowels . 308
Figure 9-17. Vowel Reordering Around a Tamil Conjunct. 308
Figure 9-18. Tamil Ligatures with i . 309
Figure 9-19. Spacing Forms of Tamil u . 309
Figure 9-20. Tamil Ligatures with ra . 310
Figure 9-21. Traditional Tamil Ligatures with aa. 310
Figure 9-22. Traditional Tamil Ligatures with o . 310
Figure 9-23. Traditional Tamil Ligatures with ai . 311
Figure 9-24. Vowel ai in Modern Tamil . 311
Figure 10-1. Tibetan Syllable Structure . 327
Figure 10-2. Justifying Tibetan Tseks . 334
Figure 10-3. Phags-pa Syllable Om . 338
Figure 10-4. Phags-pa Reversed Shaping. 341
Figure 10-5. Geographical Extent of the Kharoshthi Script 355

Figures xix
Figure 10-6. Kharoshthi Number 1996 . 356
Figure 10-7. Kharoshthi Rendering Example . 356
Figure 10-8. Consonant Ligatures in Brahmi . 360
Figure 11-1. Common Ligatures in Khmer. 380
Figure 11-2. Common Multiple Forms in Khmer . 380
Figure 11-3. Examples of Syllabic Order in Khmer . 382
Figure 11-4. Ligation in Muul Style in Khmer . 382
Figure 11-5. Buginese Ligature. 394
Figure 11-6. Writing dharma in Balinese . 397
Figure 11-7. Representation of Javanese Two-Part Vowels . 400
Figure 12-1. Han Spelling . 412
Figure 12-2. Semantic Context for Han Characters . 413
Figure 12-3. Three-Dimensional Conceptual Model . 415
Figure 12-4. CJK Source Separation . 415
Figure 12-5. Not Cognates, Not Unified . 416
Figure 12-6. Ideographic Component Structure . 417
Figure 12-7. The Most Superior Node of an Ideographic Component 417
Figure 12-8. Using the Ideographic Description Characters 425
Figure 12-9. Japanese Historic Kana for e and ye . 429
Figure 13-1. Mongolian Glyph Convergence . 443
Figure 13-2. Mongolian Consonant Ligation . 443
Figure 13-3. Mongolian Positional Forms . 443
Figure 13-4. Mongolian Free Variation Selector . 444
Figure 13-5. Mongolian Gender Forms. 446
Figure 13-6. Mongolian Vowel Separator . 446
Figure 13-7. Tifinagh Contextual Shaping . 449
Figure 13-8. Tifinagh Consonant Joiner and Bi-consonants. 450
Figure 13-9. Examples of N’Ko Ordinals . 452
Figure 13-10. Short Words Equivalent to Deseret Letter Names 460
Figure 14-1. Distribution of Old Italic. 469
Figure 14-2. Interpretion of Hieroglyphic Markup . 489
Figure 15-1. Alternative Glyphs for Dollar Sign . 494
Figure 15-2. Alternative Glyphs for Numero Sign . 497
Figure 15-3. Wide Mathematical Accents . 499
Figure 15-4. Style Variants and Semantic Distinctions in Mathematics 499
Figure 15-5. Easily Confused Shapes for Mathematical Glyphs 501
Figure 15-6. CJK Ideographic Numbers . 504
Figure 15-7. Regular and Old Style Digits . 505
Figure 15-8. Alternate Forms of Vulgar Fractions . 509
Figure 15-9. Usage of Crops and Quine Corners . 518
Figure 15-10. Usage of the Decimal Exponent Symbol . 520
Figure 15-11. Examples of Specialized Music Layout . 538
Figure 15-12. Precomposed Note Characters . 538
Figure 15-13. Alternative Noteheads . 539
Figure 15-14. Augmentation Dots and Articulation Symbols. 539
Figure 16-1. Prevention of Joining. 549
Figure 16-2. Exhibition of Joining Glyphs in Isolation . 550
Figure 16-3. Effect of Intervening Joiners . 550
Figure 16-4. Annotation Characters . 563
Figure 16-5. Tag Characters . 566
Figure 17-1. CJK Chart Format for the Main CJK Block. 578
Figure 17-2. CJK Chart Format for CJK Extension A . 579
Figure 17-3. CJK Chart Format for CJK Extension B . 579
Figure 17-4. CJK Chart Format for Compatibility Ideographs 579

xx Figures
Figure A-1. Example of Rendering . 582

Tables

Table 2-1. The 10 Unicode Design Principles . 11
Table 2-2. User-Perceived Characters with Multiple Code Points 12
Table 2-3. Types of Code Points . 23
Table 2-4. The Seven Unicode Encoding Schemes . 30
Table 2-5. Interaction of Combining Characters . 44
Table 2-6. Nondefault Stacking . 45
Table 3-1. Named Unicode Algorithms . 69
Table 3-2. Normative Character Properties . 74
Table 3-3. Informative Character Properties . 75
Table 3-4. Examples of Unicode Encoding Forms . 93
Table 3-5. UTF-16 Bit Distribution . 94
Table 3-6. UTF-8 Bit Distribution . 95
Table 3-7. Well-Formed UTF-8 Byte Sequences . 95
Table 3-8. Use of U+FFFD in UTF-8 Conversion . 97
Table 3-9. Summary of UTF-16BE, UTF-16LE, and UTF-16 99
Table 3-10. Summary of UTF-32BE, UTF-32LE, and UTF-32 100
Table 3-11. Combining Marks and Starter Status . 104
Table 3-12. Reorderable Pairs . 104
Table 3-13. Hangul Characters Used in Examples . 109
Table 3-14. Context Specification for Casing . 116
Table 3-15. Case Detection Examples . 119
Table 4-1. Relationship of Casing Definitions . 125
Table 4-2. Case Function Values for Strings . 125
Table 4-3. Sources for Case Mapping Information . 126
Table 4-4. Class Zero Combining Marks—Reordrant . 128
Table 4-5. Thai, Lao, and Tai Viet Logical Order Exceptions 128
Table 4-6. Class Zero Combining Marks—Split . 129
Table 4-7. Class Zero Combining Marks—Subjoined . 130
Table 4-8. Class Zero Combining Marks—Strikethrough 130
Table 4-9. General Category . 131
Table 4-10. Primary Numeric Ideographs . 134
Table 4-11. Ideographs Used as Accounting Numbers . 134
Table 4-12. Construction of Code Point Labels . 138
Table 4-13. Unusual Properties . 141
Table 5-1. Hex Values for Acronyms . 154
Table 5-2. NLF Platform Correlations . 154
Table 5-3. Typing Order Differing from Canonical Order 164
Table 5-4. Permuting Combining Class Weights . 165
Table 5-5. Casing and Normalization in Strings . 177
Table 6-1. Typology of Scripts in the Unicode Standard 191
Table 6-2. Unicode Space Characters . 194
Table 6-3. Unicode Dash Characters . 196
Table 6-4. East Asian Quotation Marks . 199
Table 6-5. Opening and Closing Forms . 199
Table 6-6. Names for the @ . 203
Table 6-7. Unicode Danda Characters . 206
Table 7-1. Nonspacing Marks Used with Greek . 222
Table 7-2. Greek Spacing and Nonspacing Pairs . 226

xxii Tables
Table 8-1. Arabic Digit Names . 254
Table 8-2. Glyph Variation in Eastern Arabic-Indic Digits 254
Table 8-3. Primary Arabic Joining Types . 257
Table 8-4. Derived Arabic Joining Types . 257
Table 8-5. Arabic Glyph Types . 257
Table 8-6. Arabic Obligatory Ligature Joining Groups . 259
Table 8-7. Arabic Ligature Notation . 259
Table 8-8. Dual-Joining Arabic Characters . 260
Table 8-9. Right-Joining Arabic Characters . 261
Table 8-10. Forms of the Arabic Letter yeh . 262
Table 8-11. Arabic Letters With Hamza Above . 264
Table 8-12. Miscellaneous Syriac Diacritic Use . 270
Table 8-13. Syriac Final Alaph Glyph Types . 270
Table 8-14. Dual-Joining Syriac Characters . 271
Table 8-15. Right-Joining Syriac Characters . 272
Table 8-16. Syriac Alaph Glyph Forms . 272
Table 8-17. Syriac Ligatures . 272
Table 8-18. Samaritan Performative Punctuation Marks . 274
Table 8-19. Thaana Glyph Placement . 275
Table 9-1. Devanagari Vowel Letters . 281
Table 9-2. Sample Devanagari Half-Forms . 289
Table 9-3. Sample Devanagari Ligatures . 290
Table 9-4. Sample Devanagari Half-Ligature Forms . 291
Table 9-5. Devanagari Vowels Used in Bihari Languges . 293
Table 9-6. Prishthamatra Orthography . 293
Table 9-7. Bengali Vowel Letters . 296
Table 9-8. Bengali Consonant-Vowel Combinations . 297
Table 9-9. Use of Apostrophe in Bangla . 299
Table 9-10. Gurmukhi Vowel Letters . 301
Table 9-11. Gurmukhi Conjuncts . 302
Table 9-12. Additional Pairin and Addha Forms in Gurmukhi 302
Table 9-13. Use of Joiners in Gurmukhi . 303
Table 9-14. Gujarati Vowel Letters . 303
Table 9-15. Gujarati Conjuncts . 304
Table 9-16. Oriya Vowel Letters . 304
Table 9-17. Oriya Conjuncts . 305
Table 9-18. Oriya Vowel Placement . 305
Table 9-19. Tamil Vowel Reordering . 307
Table 9-20. Tamil Vowel Splitting and Reordering . 308
Table 9-21. Tamil Ligatures with u . 309
Table 9-22. Tamil Vowels, Consonants, and Syllables . 312
Table 9-23. Telugu Vowel Letters . 313
Table 9-24. Rendering of Telugu na + virama . 314
Table 9-25. Kannada Vowel Letters . 316
Table 9-26. Malayalam Vowel Letters . 318
Table 9-27. Malayalam Orthographic Reform . 318
Table 9-28. Malayalam Conjuncts . 319
Table 9-29. Candrakala Examples . 319
Table 9-30. Atomic Encoding of Malayalam Chillus . 320
Table 9-31. Malayalam /rr/ and /tt/ . 320
Table 9-32. Malayalam /nr/ and /nt/ . 321
Table 10-1. Sinhala Vowel Letters . 325
Table 10-2. Lepcha Syllabic Structure . 336
Table 10-3. Phags-pa Positional Forms of I, U, E, and O . 340

Tables xxiii
Table 10-4. Contextual Glyph Mirroring in Phags-pa . 340
Table 10-5. Phags-pa Standardized Variants . 341
Table 10-6. Positions of Limbu Combining Characters . 344
Table 10-7. Takri Vowel Letters . 350
Table 10-8. Kharoshthi Vowel Signs . 357
Table 10-9. Kharoshthi Vowel Modifiers . 358
Table 10-10. Kharoshthi Consonant Modifiers . 358
Table 10-11. Examples of Kharoshthi Virama . 359
Table 10-12. Brahmi Vowel Letters . 359
Table 10-13. Brahmi Positional Digits . 361
Table 11-1. Glyph Positions in Thai Syllables . 365
Table 11-2. Glyph Positions in Lao Syllables . 367
Table 11-3. Myanmar Syllabic Structure . 371
Table 11-4. Khamti Shan Tone Marks . 372
Table 11-5. Independent Khmer Vowel Characters . 374
Table 11-6. Two Registers of Khmer Consonants . 376
Table 11-7. Khmer Subscript Consonant Signs . 377
Table 11-8. Khmer Composite Dependent Vowel Signs with Nikahit 378
Table 11-9. Khmer Subscript Independent Vowel Signs . 379
Table 11-10. Tai Le Tone Marks . 383
Table 11-11. Myanmar Digits . 384
Table 11-12. New Tai Lue Vowel Placement . 385
Table 11-13. New Tai Lue Registers and Tones . 385
Table 11-14. Tai Viet Symbols and Punctuation . 389
Table 11-15. Cham Syllabic Structure . 391
Table 11-16. Hanunóo and Buhid Vowel Sign Combinations 393
Table 11-17. Balinese Base Consonants and Conjunct Forms 395
Table 11-18. Sasak Extensions for Balinese . 396
Table 11-19. Balinese Consonant Clusters with u and u: . 397
Table 11-20. Sundanese Syllabic Structure . 404
Table 12-1. Sources for Unified Han . 407
Table 12-2. Blocks Containing Han Ideographs . 409
Table 12-3. Small Extensions to the URO . 410
Table 12-4. Common Han Characters . 411
Table 12-5. Source Encoding for Sword Variants . 416
Table 12-6. Ideographs Not Unified . 417
Table 12-7. Ideographs Unified . 418
Table 12-8. Han Ideograph Arrangement . 418
Table 12-9. Mandarin Tone Marks . 426
Table 12-10. Minnan and Hakka Tone Marks . 427
Table 12-11. Separating Jamo Characters . 431
Table 12-12. Line-Based Placement of Jungseong . 432
Table 13-1. Labialized Forms in Ethiopic -WAA . 438
Table 13-2. Labialized Forms in Ethiopic -WE . 439
Table 13-3. N’Ko Tone Diacritics on Vowels . 451
Table 13-4. Other N’Ko Diacritic Usage . 452
Table 13-5. N’Ko Letter Shaping . 453
Table 13-6. IPA Transcription of Deseret . 460
Table 13-7. Lisu Tone Letters . 462
Table 13-8. Punctuation Adopted in Lisu Orthography . 463
Table 14-1. Similar Characters in Linear B and Cypriot . 474
Table 14-2. Old South Arabian Numeric Characters . 476
Table 14-3. Number Formation in Old South Arabian . 477
Table 14-4. Number Formation in Aramaic . 479

xxiv Tables
Table 14-5. Dual-Joining Mandaic Characters . 480
Table 14-6. Right-Joining Mandaic Characters . 481
Table 14-7. Inscriptional Parthian Shaping Behavior . 482
Table 14-8. Avestan Shaping Behavior . 483
Table 14-9. Cuneiform Script Usage . 486
Table 14-10. Hieroglyphic Character Sequence . 489
Table 15-1. Currency Symbols Encoded in Other Blocks . 495
Table 15-2. Mathematical Alphanumeric Symbols . 499
Table 15-3. Script-Specific Decimal Digits . 503
Table 15-4. Compatibility Digits . 504
Table 15-5. Use of Mathematical Symbol Pieces . 519
Table 15-6. Japanese Era Names . 533
Table 15-7. Examples of Ornamentation . 539
Table 15-8. Representation of Ancient Greek Vocal and Instrumental Notation 541
Table 16-1. Control Codes Specified in the Unicode Standard 545
Table 16-2. Letter Spacing . 547
Table 16-3. Bidirectional Ordering Controls . 553
Table 16-4. Paired Stateful Controls . 554
Table 16-5. Paired Stateful Controls (Deprecated) . 554
Table 16-6. Unicode Encoding Scheme Signatures . 562
Table 16-7. U+FEFF Signature in Other Charsets . 563
Table 17-1. IRG Sources . 578
Table A-1. Extended BNF . 583
Table A-2. Character Class Examples . 584
Table A-3. Operators . 584
Table C-1. Timeline . 594
Table C-2. Zero Extending . 598
Table D-1. Versions of Unicode and ISO/IEC 10646-1 . 601
Table D-2. Allocation of Code Points by Type . 602
Table D-3. Allocation of Code Points by Type (Early Versions) 602
Table D-4. Version 5.1 Clause and Definition Updates . 603
Table D-5. Version 5.2 Clause and Definition Updates . 603
Table D-6. Version 6.0 Clause and Definition Updates . 604
Table D-7. Version 6.1 Clause and Definition Updates . 604
Table F-1. CJK Strokes . 610

Preface

This is The Unicode Standard, Version 6.2. It supersedes all earlier versions of the Unicode
Standard.

Why Unicode?

The Unicode Standard and its associated specifications provide programmers with a single
universal character encoding, extensive descriptions, and a vast amount of data about how
characters function. The specifications describe how to form words and break lines; how to
sort text in different languages; how to format numbers, dates, times, and other elements
appropriate to different languages; how to display languages whose written form flows
from right to left, such as Arabic and Hebrew, or whose written form splits, combines, and
reorders, such as languages of South Asia. These specifications include descriptions of how
to deal with security concerns regarding the many “look-alike” characters from alphabets
around the world. Without the properties and algorithms in the Unicode Standard and its
associated specifications, interoperability between different implementations would be
impossible, and much of the vast breadth of the world’s languages would lie outside the
reach of modern software.

What’s New?

Key new features that have been defined and documented since the publication of The Uni-
code Standard, Version 6.0 include:

• additional characters for languages of China, other Asian countries, and Africa

• new math characters to support educational needs in the Arabic-speaking world

• labels for properties that aid implementation

• consolidation of Hangul algorithms

• support of new display styles for many emoji characters

• improved line-breaking behavior of Hebrew and Japanese text

• improved segmentation behavior for Thai, Lao, and similar languages

• more fully specified mappings between Simplified and Traditional Chinese
characters

Support for Languages and Symbol Sets. One new character was added in the Unicode
Standard, Version 6.2, the Turkish lira sign.

Detailed Change Information. See Appendix D, Changes from Previous Versions and
http://www.unicode.org/versions/Unicode6.2.0/ for detailed information about the
changes from the previous versions of the standard, including character counts, confor-
mance clause and definition updates, and significant changes to the Unicode Character
Database and Unicode Standard Annexes.

Organization of This Standard

This core specification, together with the Unicode code charts, the Unicode Character
Database, and the Unicode Standard Annexes, defines Version 6.2 of the Unicode Standard.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.unicode.org/versions/Unicode6.2.0/
http://www.unicode.org/versions/Unicode6.2.0/

xxvi Preface
The core specification contains the general principles, requirements for conformance, and
guidelines for implementers. The character code charts and names are also available online.

Concepts, Architecture, Conformance, and Guidelines. The first five chapters of Version
6.2 introduce the Unicode Standard and provide the fundamental information needed to
produce a conforming implementation. Basic text processing, working with combining
marks, encoding forms, and normalization are all described. A special chapter on imple-
mentation guidelines answers many common questions that arise when implementing
Unicode.

Chapter 1 introduces the standard’s basic concepts, design basis, and
coverage and discusses basic text handling requirements.

Chapter 2 sets forth the fundamental principles underlying the Unicode
Standard and covers specific topics such as text processes, overall charac-
ter properties, and the use of combining marks.

Chapter 3 constitutes the formal statement of conformance. This chapter
also presents the normative algorithms for several processes, including
normalization, Korean syllable boundary determination, and default
casing.

Chapter 4 describes character properties in detail, both normative
(required) and informative. Additional character property information
appears in Unicode Standard Annex #44, “Unicode Character Database.”

Chapter 5 discusses implementation issues, including compression,
strategies for dealing with unknown and unsupported characters, and
transcoding to other standards.

Character Block Descriptions. Chapters 6 through 16 contain the character block descrip-
tions that provide basic information about each script or group of symbols and may dis-
cuss specific characters or pertinent layout information. Some of this information is
required to produce conformant implementations of these scripts and other collections of
characters.

Code Charts. Chapter 17 describes the conventions used in the code charts and the list of
character names. The code charts contain the normative character encoding assignments,
and the names list contains normative information, as well as useful cross references and
informational notes.

Appendices. The appendices contain additional information.

Appendix A documents the notational conventions used by the standard.

Appendix B provides abstracts of Unicode Technical Reports and lists
other important Unicode resources.

Appendix C details the relationship between the Unicode Standard and
ISO/IEC 10646.

Appendix D lists the changes to the Unicode Standard since Version 5.0.

Appendix E describes the history of Han unification in the Unicode Stan-
dard.

Appendix F provides additional documentation for characters encoded
in the CJK Strokes block (U+C130..U+31EF).

References and Index. The appendices are followed by a bibliography and an index to the
text of this core specification.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Preface xxvii
Glossary and Character Index. A glossary of Unicode terms and the Unicode Character
Name Index may be found at:

http://www.unicode.org/glossary/

http://www.unicode.org/charts/charindex.html

Unicode Standard Annexes

The Unicode Standard Annexes form an integral part of the Unicode Standard. Confor-
mance to a version of the Unicode Standard includes conformance to its Unicode Standard
Annexes. All versions, including the most up-to-date versions of all Unicode Standard
Annexes, are available at:

http://www.unicode.org/reports/

The following is a list of Unicode Standard Annexes:

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,”
describes specifications for the positioning of characters in text contain-
ing characters flowing from right to left, such as Arabic or Hebrew.

Unicode Standard Annex #11, “East Asian Width,” presents the specifi-
cation of an informative property for Unicode characters that is useful
when interoperating with East Asian legacy character sets.

Unicode Standard Annex #14, “Unicode Line Breaking Algorithm,” pres-
ents the specification of line breaking properties for Unicode characters.

Unicode Standard Annex #15, “Unicode Normalization Forms,”
describes Unicode normalization and provides examples and implemen-
tation strategies for it.

Unicode Standard Annex #24, “Unicode Script Property,” describes two
related Unicode code point properties. Both properties share the use of
Script property values. The Script property itself assigns single script
values to all Unicode code points, identifying a primary script associa-
tion, where possible. The Script_Extensions property assigns sets of
Script property values, providing more detail for cases where characters
are commonly used with multiple scripts.

Unicode Standard Annex #29, “Unicode Text Segmentation,” describes
algorithms for determining default boundaries between certain signifi-
cant text elements: grapheme clusters (“user-perceived characters”),
words, and sentences.

Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax,”
describes specifications for recommended defaults for the use of Uni-
code in the definitions of identifiers and in pattern-based syntax.

Unicode Standard Annex #34, “Unicode Named Character Sequences,”
defines the concept of a Unicode named character sequence.

Unicode Standard Annex #38, “Unicode Han Database (Unihan),”
describes the organization and content of the Unihan database.

Unicode Standard Annex #41, “Common References for Unicode Stan-
dard Annexes,” contains the listing of references shared by other Unicode
Standard Annexes.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.unicode.org/glossary/
http://www.unicode.org/charts/charindex.html
http://www.unicode.org/reports/

xxviii Preface
Unicode Standard Annex #42, “Unicode Character Database in XML,”
describes an XML representation of the Unicode Character Database.

Unicode Standard Annex #44, “Unicode Character Database,” provides
the core documentation for the Unicode Character Database (UCD). It
describes the layout and organization of the Unicode Character Data-
base and how the UCD specifies the formal definition of Unicode char-
acter properties.

Unicode Standard Annex #45, “U-Source Ideographs,” describes U-
source ideographs as used by the Ideographic Rapporteur Group (IRG)
in its CJK ideograph unification work.

The Unicode Character Database

The Unicode Character Database (UCD) is a collection of data files containing character
code points, character names, and character property data. It is described more fully in
Section 4.1, Unicode Character Database and in Unicode Standard Annex #44, “Unicode
Character Database.” All versions, including the most up-to-date version of the Unicode
Character Database, are found at:

http://www.unicode.org/ucd/

Information on versioning and on all versions of the Unicode Standard can be found at:

http://www.unicode.org/versions/

Unicode Code Charts

The Unicode code charts contain the character encoding assignments and the names list.
The archival, reference set of versioned 6.2 code charts may be found at:

http://www.unicode.org/charts/PDF/Unicode-6.2/

For easy lookup of characters, see the current code charts:

http://www.unicode.org/charts/

An interactive radical-stroke index to CJK ideographs is located at:

http://www.unicode.org/charts/unihanrsindex.html

Unicode Technical Standards and Unicode Technical Reports

Unicode Technical Reports and Unicode Technical Standards are separate publications and
do not form part of the Unicode Standard.

All versions of all Unicode Technical Reports and Unicode Technical Standards are avail-
able at:

http://www.unicode.org/reports/

See Appendix B, Unicode Publications and Resources, for a summary overview of important
Unicode Technical Standards and Unicode Technical Reports.

Updates and Errata

Reports of errors in the Unicode Standard, including the Unicode Character Database and
the Unicode Standard Annexes, may be reported using the reporting form:

http://www.unicode.org/reporting.html
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.unicode.org/ucd/
http://www.unicode.org/versions/
http://www.unicode.org/charts/PDF/Unicode-6.2/
http://www.unicode.org/charts/
http://www.unicode.org/charts/unihanrsindex.html
http://www.unicode.org/reports/
http://www.unicode.org/reporting.html

Preface xxix
A list of known errata is maintained at:

http://www.unicode.org/errata/

Any currently listed errata will be fixed in subsequent versions of the standard.

Acknowledgements

The Unicode Standard, Version 6.2 is the result of the dedication and contributions of
many people over several years. We would like to acknowledge the individuals whose con-
tributions were central to the design, authorship, and review of this standard. A complete
listing of acknowledgements can be found at:

http://www.unicode.org/acknowledgements/
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.unicode.org/acknowledgements/
http://www.unicode.org/errata/

xxx Preface
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 1

Introduction 1

The Unicode Standard is the universal character encoding standard for written characters
and text. It defines a consistent way of encoding multilingual text that enables the exchange
of text data internationally and creates the foundation for global software. As the default
encoding of HTML and XML, the Unicode Standard provides the underpinning for the
World Wide Web and the global business environments of today. Required in new Internet
protocols and implemented in all modern operating systems and computer languages such
as Java and C#, Unicode is the basis of software that must function all around the world.

With Unicode, the information technology industry has replaced proliferating character
sets with data stability, global interoperability and data interchange, simplified software,
and reduced development costs.

While taking the ASCII character set as its starting point, the Unicode Standard goes far
beyond ASCII’s limited ability to encode only the upper- and lowercase letters A through Z.
It provides the capacity to encode all characters used for the written languages of the
world—more than 1 million characters can be encoded. No escape sequence or control
code is required to specify any character in any language. The Unicode character encoding
treats alphabetic characters, ideographic characters, and symbols equivalently, which
means they can be used in any mixture and with equal facility (see Figure 1-1).

The Unicode Standard specifies a numeric value (code point) and a name for each of its
characters. In this respect, it is similar to other character encoding standards from ASCII
onward. In addition to character codes and names, other information is crucial to ensure
legible text: a character’s case, directionality, and alphabetic properties must be well
defined. The Unicode Standard defines these and other semantic values, and it includes
application data such as case mapping tables and character property tables as part of the
Unicode Character Database. Character properties define a character’s identity and behav-
ior; they ensure consistency in the processing and interchange of Unicode data. See
Section 4.1, Unicode Character Database.

Unicode characters are represented in one of three encoding forms: a 32-bit form (UTF-
32), a 16-bit form (UTF-16), and an 8-bit form (UTF-8). The 8-bit, byte-oriented form,
UTF-8, has been designed for ease of use with existing ASCII-based systems.

The Unicode Standard is code-for-code identical with International Standard ISO/IEC
10646. Any implementation that is conformant to Unicode is therefore conformant to ISO/
IEC 10646.

The Unicode Standard contains 1,114,112 code points, most of which are available for
encoding of characters. The majority of the common characters used in the major lan-
guages of the world are encoded in the first 65,536 code points, also known as the Basic
Multilingual Plane (BMP). The overall capacity for more than 1 million characters is more
than sufficient for all known character encoding requirements, including full coverage of
all minority and historic scripts of the world.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

2 Introduction
1.1 Coverage
The Unicode Standard, Version 6.2, contains 110,117 characters from the world’s scripts.
These characters are more than sufficient not only for modern communication for the
world’s languages, but also to represent the classical forms of many languages. The standard
includes the European alphabetic scripts, Middle Eastern right-to-left scripts, and scripts of
Asia and Africa. Many archaic and historic scripts are encoded. The Han script includes
74,616 ideographic characters defined by national, international, and industry standards of
China, Japan, Korea, Taiwan, Vietnam, and Singapore. In addition, the Unicode Standard
contains many important symbol sets, including currency symbols, punctuation marks,
mathematical symbols, technical symbols, geometric shapes, dingbats, and emoji. For over-
all character and code range information, see Chapter 2, General Structure.

Note, however, that the Unicode Standard does not encode idiosyncratic, personal, novel,
or private-use characters, nor does it encode logos or graphics. Graphologies unrelated to
text, such as dance notations, are likewise outside the scope of the Unicode Standard. Font
variants are explicitly not encoded. The Unicode Standard reserves 6,400 code points in the
BMP for private use, which may be used to assign codes to characters not included in the
repertoire of the Unicode Standard. Another 131,068 private-use code points are available
outside the BMP, should 6,400 prove insufficient for particular applications.

Standards Coverage

The Unicode Standard is a superset of all characters in widespread use today. It contains the
characters from major international and national standards as well as prominent industry
character sets. For example, Unicode incorporates the ISO/IEC 6937 and ISO/IEC 8859

Figure 1-1. Wide ASCII

Unicode TextASCII/8859-1 Text

0 1 0 0 0 0 0 1

0 1 0 1 0 0 1 1

0 1 0 0 0 0 1 1

0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1

0 0 1 0 1 1 1 1

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 1 1 0 1 0 1

0 0 1 1 1 0 0 1

0 0 1 0 1 1 0 1

0 0 1 1 0 0 0 1

0 0 1 0 0 0 0 0

0 1 1 1 0 1 0 0

0 1 1 0 0 1 0 1

0 1 1 1 1 0 0 0

0 1 1 1 0 1 0 0

A

S
C
I
I
/
8
8
5
9
-
1

t
e
x
t

A

S
C
I
I

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1

0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1

0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1

0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1

0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

1.2 Design Goals 3
families of standards, the SGML standard ISO/IEC 8879, and bibliographic standards such
as ISO 5426. Important national standards contained within Unicode include ANSI
Z39.64, KS X 1001, JIS X 0208, JIS X 0212, JIS X 0213, GB 2312, GB 18030, HKSCS, and
CNS 11643. Industry code pages and character sets from Adobe, Apple, Fujitsu, Hewlett-
Packard, IBM, Lotus, Microsoft, NEC, and Xerox are fully represented as well.

For a complete list of ISO and national standards used as sources, see References.

The Unicode Standard is fully conformant with the International Standard ISO/IEC
10646:2011, Information Technology—Universal Multiple-Octet Coded Character Set
(UCS)—Architecture and Basic Multilingual Plane, Supplementary Planes, known as the
Universal Character Set (UCS). For more information, see Appendix C, Relationship to ISO/
IEC 10646.

New Characters

The Unicode Standard continues to respond to new and changing industry demands by
encoding important new characters. As the universal character encoding, the Unicode
Standard also responds to scholarly needs. To preserve world cultural heritage, important
archaic scripts are encoded as consensus about the encoding is developed.

1.2 Design Goals
The Unicode Standard began with a simple goal: to unify the many hundreds of conflicting
ways to encode characters, replacing them with a single, universal standard. The pre-exist-
ing legacy character encodings were both inconsistent and incomplete—two encodings
could use the same codes for two different characters and use different codes for the same
characters, while none of the encodings handled any more than a small fraction of the
world’s languages. Whenever textual data was converted between different programs or
platforms, there was a substantial risk of corruption. Programs often were written only to
support particular encodings, making development of international versions expensive. As
a result, developing countries were particularly hard-hit, as it was not economically feasible
to adapt specific versions of programs for smaller markets. Technical fields such as mathe-
matics were also disadvantaged, because they were forced to use special fonts to represent
arbitrary characters, often leading to garbled content.

The designers of the Unicode Standard envisioned a uniform method of character identifi-
cation that would be more efficient and flexible than previous encoding systems. The new
system would satisfy the needs of technical and multilingual computing and would encode
a broad range of characters for all purposes, including worldwide publication.

The Unicode Standard was designed to be:

• Universal. The repertoire must be large enough to encompass all characters that
are likely to be used in general text interchange, including those in major inter-
national, national, and industry character sets.

• Efficient. Plain text is simple to parse: software does not have to maintain state
or look for special escape sequences, and character synchronization from any
point in a character stream is quick and unambiguous. A fixed character code
allows for efficient sorting, searching, display, and editing of text.

• Unambiguous. Any given Unicode code point always represents the same char-
acter.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

4 Introduction
Figure 1-2 demonstrates some of these features, contrasting the Unicode encoding with
mixtures of single-byte character sets with escape sequences to shift the meanings of bytes
in the ISO/IEC 2022 framework using multiple character encoding standards.

1.3 Text Handling
The assignment of characters is only a small fraction of what the Unicode Standard and its
associated specifications provide. The specifications give programmers extensive descrip-
tions and a vast amount of data about the handling of text, including how to:

• divide words and break lines

• sort text in different languages

• format numbers, dates, times, and other elements appropriate to different
locales

• display text for languages whose written form flows from right to left, such as
Arabic or Hebrew

• display text in which the written form splits, combines, and reorders, such as
for the languages of South Asia

• deal with security concerns regarding the many look-alike characters from
writing systems around the world

Without the properties, algorithms, and other specifications in the Unicode Standard and
its associated specifications, interoperability between different implementations would be

Figure 1-2. Unicode Compared to the 2022 Framework

2022 + 8859 + JISUnicode

or

A
0041

03B5

å
00E5

0645

0131

65E5

A

ESC

ESC

ESC

ESC

ESC

– G
2D 47

å
E5

– F
2D 46

å
E5

– C
2D 43

1

B9

M
4D

ý
FD

–
2D

$
24

B
42

F
46

|
7C

41

1B

å
E5

1B

1B

1B

1B
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

1.3 Text Handling 5
impossible. With the Unicode Standard as the foundation of text representation, all of the
text on the Web can be stored, searched, and matched with the same program code.

Characters and Glyphs

The difference between identifying a character and rendering it on screen or paper is cru-
cial to understanding the Unicode Standard’s role in text processing. The character identi-
fied by a Unicode code point is an abstract entity, such as “latin capital letter a” or
“bengali digit five”. The mark made on screen or paper, called a glyph, is a visual repre-
sentation of the character.

The Unicode Standard does not define glyph images. That is, the standard defines how
characters are interpreted, not how glyphs are rendered. Ultimately, the software or hard-
ware rendering engine of a computer is responsible for the appearance of the characters on
the screen. The Unicode Standard does not specify the precise shape, size, or orientation of
on-screen characters.

Text Elements

The successful encoding, processing, and interpretation of text requires appropriate defini-
tion of useful elements of text and the basic rules for interpreting text. The definition of
text elements often changes depending on the process that handles the text. For example,
when searching for a particular word or character written with the Latin script, one often
wishes to ignore differences of case. However, correct spelling within a document requires
case sensitivity.

The Unicode Standard does not define what is and is not a text element in different pro-
cesses; instead, it defines elements called encoded characters. An encoded character is repre-
sented by a number from 0 to 10FFFF16, called a code point. A text element, in turn, is
represented by a sequence of one or more encoded characters.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

6 Introduction
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 2

General Structure 2

This chapter describes the fundamental principles governing the design of the Unicode
Standard and presents an informal overview of its main features. The chapter starts by
placing the Unicode Standard in an architectural context by discussing the nature of text
representation and text processing and its bearing on character encoding decisions. Next,
the Unicode Design Principles are introduced—10 basic principles that convey the essence
of the standard. The Unicode Design Principles serve as a tutorial framework for under-
standing the Unicode Standard.

The chapter then moves on to the Unicode character encoding model, introducing the con-
cepts of character, code point, and encoding forms, and diagramming the relationships
between them. This provides an explanation of the encoding forms UTF-8, UTF-16, and
UTF-32 and some general guidelines regarding the circumstances under which one form
would be preferable to another.

The sections on Unicode allocation then describe the overall structure of the Unicode
codespace, showing a summary of the code charts and the locations of blocks of characters
associated with different scripts or sets of symbols.

Next, the chapter discusses the issue of writing direction and introduces several special
types of characters important for understanding the Unicode Standard. In particular, the
use of combining characters, the byte order mark, and other special characters is explored
in some detail.

The section on equivalent sequences and normalization describes the issue of multiple
equivalent representations of Unicode text and explains how text can be transformed to use
a unique and preferred representation for each character sequence.

Finally, there is an informal statement of the conformance requirements for the Unicode
Standard. This informal statement, with a number of easy-to-understand examples, gives a
general sense of what conformance to the Unicode Standard means. The rigorous, formal
definition of conformance is given in the subsequent Chapter 3, Conformance.

2.1 Architectural Context
A character code standard such as the Unicode Standard enables the implementation of
useful processes operating on textual data. The interesting end products are not the charac-
ter codes but rather the text processes, because these directly serve the needs of a system’s
users. Character codes are like nuts and bolts—minor, but essential and ubiquitous com-
ponents used in many different ways in the construction of computer software systems. No
single design of a character set can be optimal for all uses, so the architecture of the Uni-
code Standard strikes a balance among several competing requirements.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

8 General Structure
Basic Text Processes

Most computer systems provide low-level functionality for a small number of basic text
processes from which more sophisticated text-processing capabilities are built. The follow-
ing text processes are supported by most computer systems to some degree:

• Rendering characters visible (including ligatures, contextual forms, and so on)

• Breaking lines while rendering (including hyphenation)

• Modifying appearance, such as point size, kerning, underlining, slant, and
weight (light, demi, bold, and so on)

• Determining units such as “word” and “sentence”

• Interacting with users in processes such as selecting and highlighting text

• Accepting keyboard input and editing stored text through insertion and deletion

• Comparing text in operations such as in searching or determining the sort
order of two strings

• Analyzing text content in operations such as spell-checking, hyphenation, and
parsing morphology (that is, determining word roots, stems, and affixes)

• Treating text as bulk data for operations such as compressing and decompress-
ing, truncating, transmitting, and receiving

Text Elements, Characters, and Text Processes

One of the more profound challenges in designing a character encoding stems from the fact
that there is no universal set of fundamental units of text. Instead, the division of text into
text elements necessarily varies by language and text process.

For example, in traditional German orthography, the letter combination “ck” is a text ele-
ment for the process of hyphenation (where it appears as “k-k”), but not for the process of
sorting. In Spanish, the combination “ll” may be a text element for the traditional process
of sorting (where it is sorted between “l” and “m”), but not for the process of rendering. In
English, the letters “A” and “a” are usually distinct text elements for the process of render-
ing, but generally not distinct for the process of searching text. The text elements in a given
language depend upon the specific text process; a text element for spell-checking may have
different boundaries from a text element for sorting purposes. For example, in the phrase
“the quick brown fox,” the sequence “fox” is a text element for the purpose of spell-check-
ing.

In contrast, a character encoding standard provides a single set of fundamental units of
encoding, to which it uniquely assigns numerical code points. These units, called assigned
characters, are the smallest interpretable units of stored text. Text elements are then repre-
sented by a sequence of one or more characters.

Figure 2-1 illustrates the relationship between several different types of text elements and
the characters used to represent those text elements. Unicode Standard Annex #29, “Uni-
code Text Segmentation,” provides more details regarding the specifications of boundaries.

The design of the character encoding must provide precisely the set of characters that
allows programmers to design applications capable of implementing a variety of text pro-
cesses in the desired languages. Therefore, the text elements encountered in most text pro-
cesses are represented as sequences of character codes. See Unicode Standard Annex #29,
“Unicode Text Segmentation,” for detailed information on how to segment character
strings into common types of text elements. Certain text elements correspond to what
users perceive as single characters. These are called grapheme clusters.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.1 Architectural Context 9
Text Processes and Encoding

In the case of English text using an encoding scheme such as ASCII, the relationships
between the encoding and the basic text processes built on it are seemingly straightforward:
characters are generally rendered visible one by one in distinct rectangles from left to right
in linear order. Thus one character code inside the computer corresponds to one logical
character in a process such as simple English rendering.

When designing an international and multilingual text encoding such as the Unicode Stan-
dard, the relationship between the encoding and implementation of basic text processes
must be considered explicitly, for several reasons:

• Many assumptions about character rendering that hold true for the English
alphabet fail for other writing systems. Characters in these other writing sys-
tems are not necessarily rendered visible one by one in rectangles from left to
right. In many cases, character positioning is quite complex and does not pro-
ceed in a linear fashion. See Section 8.2, Arabic, and Section 9.1, Devanagari, for
detailed examples of this situation.

• It is not always obvious that one set of text characters is an optimal encoding
for a given language. For example, two approaches exist for the encoding of
accented characters commonly used in French or Swedish: ISO/IEC 8859
defines letters such as “ä” and “ö” as individual characters, whereas ISO 5426
represents them by composition with diacritics instead. In the Swedish lan-
guage, both are considered distinct letters of the alphabet, following the letter
“z”. In French, the diaeresis on a vowel merely marks it as being pronounced in
isolation. In practice, both approaches can be used to implement either lan-
guage.

• No encoding can support all basic text processes equally well. As a result, some
trade-offs are necessary. For example, following common practice, Unicode
defines separate codes for uppercase and lowercase letters. This choice causes
some text processes, such as rendering, to be carried out more easily, but other
processes, such as comparison, to become more difficult. A different encoding
design for English, such as case-shift control codes, would have the opposite
effect. In designing a new encoding scheme for complex scripts, such trade-offs
must be evaluated and decisions made explicitly, rather than unconsciously.

Figure 2-1. Text Elements and Characters

Text Elements Characters

Ç

ch

cat

C ¸

Ç

c h

c a t

(Slovak)

Composite:

Collation Unit:

Syllable:

Word:

@

@

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

10 General Structure
For these reasons, design of the Unicode Standard is not specific to the design of particular
basic text-processing algorithms. Instead, it provides an encoding that can be used with a
wide variety of algorithms. In particular, sorting and string comparison algorithms cannot
assume that the assignment of Unicode character code numbers provides an alphabetical
ordering for lexicographic string comparison. Culturally expected sorting orders require
arbitrarily complex sorting algorithms. The expected sort sequence for the same characters
differs across languages; thus, in general, no single acceptable lexicographic ordering exists.
See Unicode Technical Standard #10, “Unicode Collation Algorithm,” for the standard
default mechanism for comparing Unicode strings.

Text processes supporting many languages are often more complex than they are for Eng-
lish. The character encoding design of the Unicode Standard strives to minimize this addi-
tional complexity, enabling modern computer systems to interchange, render, and
manipulate text in a user’s own script and language—and possibly in other languages as
well.

Character Identity. Whenever Unicode makes statements about the default layout behav-
ior of characters, it is done to ensure that users and implementers face no ambiguities as to
which characters or character sequences to use for a given purpose. For bidirectional writ-
ing systems, this includes the specification of the sequence in which characters are to be
encoded so as to correspond to a specific reading order when displayed. See Section 2.10,
Writing Direction.

The actual layout in an implementation may differ in detail. A mathematical layout system,
for example, will have many additional, domain-specific rules for layout, but a well-
designed system leaves no ambiguities as to which character codes are to be used for a given
aspect of the mathematical expression being encoded.

The purpose of defining Unicode default layout behavior is not to enforce a single and spe-
cific aesthetic layout for each script, but rather to encourage uniformity in encoding. In
that way implementers of layout systems can rely on the fact that users would have chosen
a particular character sequence for a given purpose, and users can rely on the fact that
implementers will create a layout for a particular character sequence that matches the
intent of the user to within the capabilities or technical limitations of the implementation.

In other words, two users who are familiar with the standard and who are presented with
the same text ideally will choose the same sequence of character codes to encode the text. In
actual practice there are many limitations, so this goal cannot always be realized.

2.2 Unicode Design Principles
The design of the Unicode Standard reflects the 10 fundamental principles stated in
Table 2-1. Not all of these principles can be satisfied simultaneously. The design strikes a
balance between maintaining consistency for the sake of simplicity and efficiency and
maintaining compatibility for interchange with existing standards.

Universality

The Unicode Standard encodes a single, very large set of characters, encompassing all the
characters needed for worldwide use. This single repertoire is intended to be universal in
coverage, containing all the characters for textual representation in all modern writing sys-
tems, in most historic writing systems, and for symbols used in plain text.

The Unicode Standard is designed to meet the needs of diverse user communities within
each language, serving business, educational, liturgical and scientific users, and covering
the needs of both modern and historical texts.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.2 Unicode Design Principles 11
Despite its aim of universality, the Unicode Standard considers the following to be outside
its scope: writing systems for which insufficient information is available to enable reliable
encoding of characters, writing systems that have not become standardized through use,
and writing systems that are nontextual in nature.

Because the universal repertoire is known and well defined in the standard, it is possible to
specify a rich set of character semantics. By relying on those character semantics, imple-
mentations can provide detailed support for complex operations on text in a portable way.
See “Semantics” later in this section.

Efficiency

The Unicode Standard is designed to make efficient implementation possible. There are no
escape characters or shift states in the Unicode character encoding model. Each character
code has the same status as any other character code; all codes are equally accessible.

All Unicode encoding forms are self-synchronizing and non-overlapping. This makes ran-
domly accessing and searching inside streams of characters efficient.

By convention, characters of a script are grouped together as far as is practical. Not only is
this practice convenient for looking up characters in the code charts, but it makes imple-
mentations more compact and compression methods more efficient. The common punc-
tuation characters are shared.

Format characters are given specific and unambiguous functions in the Unicode Standard.
This design simplifies the support of subsets. To keep implementations simple and effi-
cient, stateful controls and format characters are avoided wherever possible.

Characters, Not Glyphs

The Unicode Standard draws a distinction between characters and glyphs. Characters are
the abstract representations of the smallest components of written language that have
semantic value. They represent primarily, but not exclusively, the letters, punctuation, and
other signs that constitute natural language text and technical notation. The letters used in
natural language text are grouped into scripts—sets of letters that are used together in writ-
ing languages. Letters in different scripts, even when they correspond either semantically or
graphically, are represented in Unicode by distinct characters. This is true even in those
instances where they correspond in semantics, pronunciation, or appearance.

Table 2-1. The 10 Unicode Design Principles

Principle Statement

Universality The Unicode Standard provides a single, universal repertoire.

Efficiency Unicode text is simple to parse and process.

Characters, not glyphs The Unicode Standard encodes characters, not glyphs.

Semantics Characters have well-defined semantics.

Plain text Unicode characters represent plain text.

Logical order The default for memory representation is logical order.

Unification The Unicode Standard unifies duplicate characters within scripts
across languages.

Dynamic composition Accented forms can be dynamically composed.

Stability Characters, once assigned, cannot be reassigned and key properties are
immutable.

Convertibility Accurate convertibility is guaranteed between the Unicode Standard
and other widely accepted standards.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

12 General Structure
Characters are represented by code points that reside only in a memory representation, as
strings in memory, on disk, or in data transmission. The Unicode Standard deals only with
character codes.

Glyphs represent the shapes that characters can have when they are rendered or displayed.
In contrast to characters, glyphs appear on the screen or paper as particular representations
of one or more characters. A repertoire of glyphs makes up a font. Glyph shape and meth-
ods of identifying and selecting glyphs are the responsibility of individual font vendors and
of appropriate standards and are not part of the Unicode Standard.

Various relationships may exist between character and glyph: a single glyph may corre-
spond to a single character or to a number of characters, or multiple glyphs may result
from a single character. The distinction between characters and glyphs is illustrated in
Figure 2-2.

Even the letter “a” has a wide variety of glyphs that can represent it. A lowercase Cyrillic “Ò”
also has a variety of glyphs; the second glyph for U+043F cyrillic small letter pe shown
in Figure 2-2 is customary for italic in Russia, while the third is customary for italic in Ser-
bia. Arabic letters are displayed with different glyphs, depending on their position in a
word; the glyphs in Figure 2-2 show independent, final, initial, and medial forms. Sequences
such as “fi” may be displayed with two independent glyphs or with a ligature glyph.

What the user thinks of as a single character—which may or may not be represented by a
single glyph—may be represented in the Unicode Standard as multiple code points. See
Table 2-2 for additional examples.

Figure 2-2. Characters Versus Glyphs

Table 2-2. User-Perceived Characters with Multiple Code Points

Glyphs Unicode Characters

U+0041 latin capital letter a

U+0066 latin small letter f
 + U+0069 latin small letter i

U+0061 latin small letter a

U+0647 arabic letter heh

U+043F cyrillic small letter pe

0063 0068

0074 02B0

0078 0323

019B 0313

00E1 0328

0069 0307 0301

30C8 309A

Native American
 languages

Lithuanian

Ainu (in kana transcription)

Slovak, traditional Spanish

Character Code Points Linguistic Usage
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.2 Unicode Design Principles 13
For certain scripts, such as Arabic and the various Indic scripts, the number of glyphs
needed to display a given script may be significantly larger than the number of characters
encoding the basic units of that script. The number of glyphs may also depend on the
orthographic style supported by the font. For example, an Arabic font intended to support
the Nastaliq style of Arabic script may possess many thousands of glyphs. However, the
character encoding employs the same few dozen letters regardless of the font style used to
depict the character data in context.

A font and its associated rendering process define an arbitrary mapping from Unicode
characters to glyphs. Some of the glyphs in a font may be independent forms for individual
characters; others may be rendering forms that do not directly correspond to any single
character.

Text rendering requires that characters in memory be mapped to glyphs. The final appear-
ance of rendered text may depend on context (neighboring characters in the memory rep-
resentation), variations in typographic design of the fonts used, and formatting
information (point size, superscript, subscript, and so on). The results on screen or paper
can differ considerably from the prototypical shape of a letter or character, as shown in
Figure 2-3.

For the Latin script, this relationship between character code sequence and glyph is rela-
tively simple and well known; for several other scripts, it is documented in this standard.
However, in all cases, fine typography requires a more elaborate set of rules than given here.
The Unicode Standard documents the default relationship between character sequences

Figure 2-3. Unicode Character Code to Rendered Glyphs

Text Character Sequence

Text
Rendering

Process

Font
(Glyph Source)

0000 1001 0010 1010
0000 1001 0100 0010
0000 1001 0011 0000
0000 1001 0100 1101
0000 1001 0010 0100
0000 1001 0011 1111

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

14 General Structure
and glyphic appearance for the purpose of ensuring that the same text content can be
stored with the same, and therefore interchangeable, sequence of character codes.

Semantics

Characters have well-defined semantics. These semantics are defined by explicitly assigned
character properties, rather than implied through the character name or the position of a
character in the code tables (see Section 3.5, Properties). The Unicode Character Database
provides machine-readable character property tables for use in implementations of pars-
ing, sorting, and other algorithms requiring semantic knowledge about the code points.
These properties are supplemented by the description of script and character behavior in
this standard. See also Unicode Technical Report #23, “The Unicode Character Property
Model.”

The Unicode Standard identifies more than 100 different character properties, including
numeric, casing, combination, and directionality properties (see Chapter 4, Character
Properties). Additional properties may be defined as needed from time to time. Where
characters are used in different ways in different languages, the relevant properties are nor-
mally defined outside the Unicode Standard. For example, Unicode Technical Standard
#10, “Unicode Collation Algorithm,” defines a set of default collation weights that can be
used with a standard algorithm. Tailorings for each language are provided in the Unicode
Common Locale Data Repository (CLDR); see Section B.6, Other Unicode Online Resources.

The Unicode Standard, by supplying a universal repertoire associated with well-defined
character semantics, does not require the code set independent model of internationaliza-
tion and text handling. That model abstracts away string handling as manipulation of byte
streams of unknown semantics to protect implementations from the details of hundreds of
different character encodings and selectively late-binds locale-specific character properties
to characters. Of course, it is always possible for code set independent implementations to
retain their model and to treat Unicode characters as just another character set in that con-
text. It is not at all unusual for Unix implementations to simply add UTF-8 as another char-
acter set, parallel to all the other character sets they support. By contrast, the Unicode
approach—because it is associated with a universal repertoire—assumes that characters
and their properties are inherently and inextricably associated. If an internationalized
application can be structured to work directly in terms of Unicode characters, all levels of
the implementation can reliably and efficiently access character storage and be assured of
the universal applicability of character property semantics.

Plain Text

Plain text is a pure sequence of character codes; plain Unicode-encoded text is therefore a
sequence of Unicode character codes. In contrast, styled text, also known as rich text, is any
text representation consisting of plain text plus added information such as a language iden-
tifier, font size, color, hypertext links, and so on. For example, the text of this specification,
a multi-font text as formatted by a book editing system, is rich text.

The simplicity of plain text gives it a natural role as a major structural element of rich text.
SGML, RTF, HTML, XML, and TEX are examples of rich text fully represented as plain text
streams, interspersing plain text data with sequences of characters that represent the addi-
tional data structures. They use special conventions embedded within the plain text file,
such as “<p>”, to distinguish the markup or tags from the “real” content. Many popular
word processing packages rely on a buffer of plain text to represent the content and imple-
ment links to a parallel store of formatting data.

The relative functional roles of both plain text and rich text are well established:

• Plain text is the underlying content stream to which formatting can be applied.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.2 Unicode Design Principles 15
• Rich text carries complex formatting information as well as text context.

• Plain text is public, standardized, and universally readable.

• Rich text representation may be implementation-specific or proprietary.

Although some rich text formats have been standardized or made public, the majority of
rich text designs are vehicles for particular implementations and are not necessarily read-
able by other implementations. Given that rich text equals plain text plus added informa-
tion, the extra information in rich text can always be stripped away to reveal the “pure” text
underneath. This operation is often employed, for example, in word processing systems
that use both their own private rich text format and plain text file format as a universal, if
limited, means of exchange. Thus, by default, plain text represents the basic, interchange-
able content of text.

Plain text represents character content only, not its appearance. It can be displayed in a var-
ity of ways and requires a rendering process to make it visible with a particular appearance.
If the same plain text sequence is given to disparate rendering processes, there is no expec-
tation that rendered text in each instance should have the same appearance. Instead, the
disparate rendering processes are simply required to make the text legible according to the
intended reading. This legibility criterion constrains the range of possible appearances. The
relationship between appearance and content of plain text may be summarized as follows:

Plain text must contain enough information to permit the text to be rendered legibly,
and nothing more.

The Unicode Standard encodes plain text. The distinction between plain text and other
forms of data in the same data stream is the function of a higher-level protocol and is not
specified by the Unicode Standard itself.

Logical Order

The order in which Unicode text is stored in the memory representation is called logical
order. This order roughly corresponds to the order in which text is typed in via the key-
board; it also roughly corresponds to phonetic order. For decimal numbers, the logical
order consistently corresponds to the most significant digit first, which is the order
expected by number-parsing software.

When displayed, this logical order often corresponds to a simple linear progression of char-
acters in one direction, such as from left to right, right to left, or top to bottom. In other
circumstances, text is displayed or printed in an order that differs from a single linear pro-
gression. Some of the clearest examples are situations where a right-to-left script (such as
Arabic or Hebrew) is mixed with a left-to-right script (such as Latin or Greek). For exam-
ple, when the text in Figure 2-4 is ordered for display the glyph that represents the first
character of the English text appears at the left. The logical start character of the Hebrew
text, however, is represented by the Hebrew glyph closest to the right margin. The succeed-
ing Hebrew glyphs are laid out to the left.

Figure 2-4. Bidirectional Ordering
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

16 General Structure
In logical order, numbers are encoded with most significant digit first, but are displayed in
different writing directions. As shown in Figure 2-5 these writing directions do not always
correspond to the writing direction of the surrounding text. The first example shows N’Ko,
a right-to-left script with digits that also render right to left. Examples 2 and 3 show
Hebrew and Arabic, in which the numbers are rendered left to right, resulting in bidirec-
tional layout. In left-to-right scripts, such as Latin and Hiragana and Katakana (for Japa-
nese), numbers follow the predominant left-to-right direction of the script, as shown in
Examples 4 and 5. When Japanese is laid out vertically, numbers are either laid out verti-
cally or may be rotated clockwise 90 degrees to follow the layout direction of the lines, as
shown in Example 6.

The Unicode Standard precisely defines the conversion of Unicode text from logical order
to the order of readable (displayed) text so as to ensure consistent legibility. Properties of
directionality inherent in characters generally determine the correct display order of text.
The Unicode Bidirectional Algorithm specifies how these properties are used to resolve
directional interactions when characters of right-to-left and left-to-right directionality are
mixed. (See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”) However,
when characters of different directionality are mixed, inherent directionality alone is occa-
sionally insufficient to render plain text legibly. The Unicode Standard therefore includes
characters to explicitly specify changes in direction when necessary. The Bidirectional
Algorithm uses these directional layout control characters together with the inherent direc-
tional properties of characters to exert exact control over the display ordering for legible
interchange. By requiring the use of this algorithm, the Unicode Standard ensures that
plain text used for simple items like file names or labels can always be correctly ordered for
display.

Besides mixing runs of differing overall text direction, there are many other cases where the
logical order does not correspond to a linear progression of characters. Combining charac-
ters (such as accents) are stored following the base character to which they apply, but are
positioned relative to that base character and thus do not follow a simple linear progression
in the final rendered text. For example, the Latin letter “Ï” is stored as “x” followed by com-
bining “Î”; the accent appears below, not to the right of the base. This position with
respect to the base holds even where the overall text progression is from top to bottom—for
example, with “Ï” appearing upright within a vertical Japanese line. Characters may also
combine into ligatures or conjuncts or otherwise change positions of their components
radically, as shown in Figure 2-3 and Figure 2-19.

There is one particular exception to the usual practice of logical order paralleling phonetic
order. With the Thai, Lao and Thai Viet scripts, users traditionally type in visual order
rather than phonetic order, resulting in some vowel letters being stored ahead of conso-
nants, even though they are pronounced after them.

Figure 2-5. Writing Direction and Numbers

Please see page 1123.

1123ページをみてください。

.1123 נא ראה עמוד
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.2 Unicode Design Principles 17
Unification

The Unicode Standard avoids duplicate encoding of characters by unifying them within
scripts across language. Common letters are given one code each, regardless of language, as
are common Chinese/Japanese/Korean (CJK) ideographs. (See Section 12.1, Han.)

Punctuation marks, symbols, and diacritics are handled in a similar manner as letters. If
they can be clearly identified with a particular script, they are encoded once for that script
and are unified across any languages that may use that script. See, for example, U+1362
ethiopic full stop, U+060F arabic sign misra, and U+0592 hebrew accent segol.
However, some punctuation or diacritic marks may be shared in common across a number
of scripts—the obvious example being Western-style punctuation characters, which are
often recently added to the writing systems of scripts other than Latin. In such cases, char-
acters are encoded only once and are intended for use with multiple scripts. Common sym-
bols are also encoded only once and are not associated with any script in particular.

It is quite normal for many characters to have different usages, such as comma “,” for either
thousands-separator (English) or decimal-separator (French). The Unicode Standard
avoids duplication of characters due to specific usage in different languages; rather, it
duplicates characters only to support compatibility with base standards. Avoidance of
duplicate encoding of characters is important to avoid visual ambiguity.

There are a few notable instances in the standard where visual ambiguity between different
characters is tolerated, however. For example, in most fonts there is little or no distinction
visible between Latin “o”, Cyrillic “o”, and Greek “o” (omicron). These are not unified
because they are characters from three different scripts, and many legacy character encod-
ings distinguish between them. As another example, there are three characters whose glyph
is the same uppercase barred D shape, but they correspond to three distinct lowercase
forms. Unifying these uppercase characters would have resulted in unnecessary complica-
tions for case mapping.

The Unicode Standard does not attempt to encode features such as language, font, size,
positioning, glyphs, and so forth. For example, it does not preserve language as a part of
character encoding: just as French i grec, German ypsilon, and English wye are all repre-
sented by the same character code, U+0057 “Y”, so too are Chinese zi, Japanese ji, and
Korean ja all represented as the same character code, U+5B57 %.

In determining whether to unify variant CJK ideograph forms across standards, the Uni-
code Standard follows the principles described in Section 12.1, Han. Where these principles
determine that two forms constitute a trivial difference, the Unicode Standard assigns a
single code. Just as for the Latin and other scripts, typeface distinctions or local preferences
in glyph shapes alone are not sufficient grounds for disunification of a character. Figure 2-6
illustrates the well-known example of the CJK ideograph for “bone,” which shows signifi-
cant shape differences from typeface to typeface, with some forms preferred in China and
some in Japan. All of these forms are considered to be the same character, encoded at
U+9AA8 in the Unicode Standard.

Many characters in the Unicode Standard could have been unified with existing visually
similar Unicode characters or could have been omitted in favor of some other Unicode
mechanism for maintaining the kinds of text distinctions for which they were intended.
However, considerations of interoperability with other standards and systems often require

Figure 2-6. Typeface Variation for the Bone Character

E F
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

18 General Structure
that such compatibility characters be included in the Unicode Standard. See Section 2.3,
Compatibility Characters. In particular, whenever font style, size, positioning or precise
glyph shape carry a specific meaning and are used in distinction to the ordinary charac-
ter—for example, in phonetic or mathematical notation—the characters are not unified.

Dynamic Composition

The Unicode Standard allows for the dynamic composition of accented forms and Hangul
syllables. Combining characters used to create composite forms are productive. Because the
process of character composition is open-ended, new forms with modifying marks may be
created from a combination of base characters followed by combining characters. For
example, the diaeresis “¨” may be combined with all vowels and a number of consonants in
languages using the Latin script and several other scripts, as shown in Figure 2-7.

Equivalent Sequences. Some text elements can be encoded either as static precomposed
forms or by dynamic composition. Common precomposed forms such as U+00DC “Ü”
latin capital letter u with diaeresis are included for compatibility with current stan-
dards. For static precomposed forms, the standard provides a mapping to an equivalent
dynamically composed sequence of characters. (See also Section 3.7, Decomposition.) Thus
different sequences of Unicode characters are considered equivalent. A precomposed char-
acter may be represented as an equivalent composed character sequence (see Section 2.12,
Equivalent Sequences and Normalization).

Stability

Certain aspects of the Unicode Standard must be absolutely stable between versions, so that
implementers and users can be guaranteed that text data, once encoded, retains the same
meaning. Most importantly, this means that once Unicode characters are assigned, their
code point assignments cannot be changed, nor can characters be removed.

Characters are retained in the standard, so that previously conforming data stay confor-
mant in future versions of the standard. Sometimes characters are deprecated—that is,
their use in new documents is strongly discouraged. While implementations should con-
tinue to recognize such characters when they are encountered, spell-checkers or editors
could warn users of their presence and suggest replacements. For more about deprecated
characters, see D13 in Section 3.4, Characters and Encoding.

Unicode character names are also never changed, so that they can be used as identifiers that
are valid across versions. See Section 4.8, Name.

Similar stability guarantees exist for certain important properties. For example, the decom-
positions are kept stable, so that it is possible to normalize a Unicode text once and have it
remain normalized in all future versions.

The most current versions of the character encoding stability policies for the Unicode Stan-
dard are maintained online at:

http://www.unicode.org/policies/stability_policy.html

Figure 2-7. Dynamic Composition

A ¨
0041 0308

$ → Ä+
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.unicode.org/policies/stability_policy.html

2.3 Compatibility Characters 19
Convertibility

Character identity is preserved for interchange with a number of different base standards,
including national, international, and vendor standards. Where variant forms (or even the
same form) are given separate codes within one base standard, they are also kept separate
within the Unicode Standard. This choice guarantees the existence of a mapping between
the Unicode Standard and base standards.

Accurate convertibility is guaranteed between the Unicode Standard and other standards in
wide usage as of May 1993. Characters have also been added to allow convertibility to sev-
eral important East Asian character sets created after that date—for example, GB 18030. In
general, a single code point in another standard will correspond to a single code point in
the Unicode Standard. Sometimes, however, a single code point in another standard corre-
sponds to a sequence of code points in the Unicode Standard, or vice versa. Conversion
between Unicode text and text in other character codes must, in general, be done by explicit
table-mapping processes. (See also Section 5.1, Data Structures for Character Conversion.)

2.3 Compatibility Characters
Conceptually, compatibility characters are characters that would not have been encoded in
the Unicode Standard except for compatibility and round-trip convertibility with other
standards. Such standards include international, national, and vendor character encoding
standards. For the most part, these are widely used standards that pre-dated Unicode, but
because continued interoperability with new standards and data sources is one of the pri-
mary design goals of the Unicode Standard, additional compatibility characters are added
as the situation warrants.

Compatibility characters can be contrasted with ordinary (or non-compatibility) characters
in the standard—ones that are generally consistent with the Unicode text model and which
would have been accepted for encoding to represent various scripts and sets of symbols,
regardless of whether those characters also existed in other character encoding standards.

For example, in the Unicode model of Arabic text the logical representation of text uses
basic Arabic letters. Rather than being directly represented in the encoded characters, the
cursive presentation of Arabic text for display is determined in context by a rendering sys-
tem. (See Section 8.2, Arabic.) However, some earlier character encodings for Arabic were
intended for use with rendering systems that required separate characters for initial,
medial, final, and isolated presentation forms of Arabic letters. To allow one-to-one map-
ping to these character sets, the Unicode Standard includes Arabic presentation forms as
compatibility characters.

The purpose for the inclusion of compatibility characters like these is not to implement or
emulate alternative text models, nor to encourage the use of plain text distinctions in char-
acters which would otherwise be better represented by higher-level protocols or other mech-
anisms. Rather, the main function of compatibility characters is to simplify interoperability
of Unicode-based systems with other data sources, and to ensure convertibility of data.

Interoperability does not require that all external characters can be mapped to single Uni-
code characters; encoding a compatibility character is not necessary when a character in
another standard can be represented as a sequence of existing Unicode characters. For
example the Shift-JIS encoding 0x839E for JIS X 0213 katakana letter ainu to can simply be
mapped to the Unicode character sequence <U+30C8, U+309A>. However, in cases where
no appropriate mapping is available, the requirement for interoperability and convertibil-
ity may be met by encoding a compatibility character for one-to-one mapping to another
standard.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

20 General Structure
Usage. The fact that a particular character is considered a compatibility character does not
mean that that character is deprecated in the standard. The use of most compatibility char-
acters in general text interchange is unproblematic. Some, however, such as the Arabic
positional forms or other compatibility characters which assume information about partic-
ular layout conventions, such as presentation forms for vertical text, can lead to problems
when used in general interchange. Caution is advised for their use. See also the discussion
of compatibility characters in Unicode Technical Report #20, “Unicode and Markup Lan-
guages.”

Allocation. The Compatibility and Specials Area contains a large number of compatibility
characters, but the Unicode Standard also contains many compatibility characters that do
not appear in that area. These include examples such as U+2163 “IV” roman numeral

four, U+2007 figure space, U+00B2 “2” superscript two, U+2502 box drawings

light vertical, and U+32D0 circled katakana a.

There is no formal listing of all compatibility characters in the Unicode Standard. This fol-
lows from the nature of the definition of compatibility characters. It is a judgement call as
to whether any particular character would have been accepted for encoding if it had not
been required for interoperability with a particular standard. Different participants in
character encoding often disagree about the appropriateness of encoding particular charac-
ters, and sometimes there are multiple justifications for encoding a given character.

Compatibility Variants

Compatibility variants are a subset of compatibility characters, and have the further charac-
teristic that they represent variants of existing, ordinary, Unicode characters.

For example, compatibility variants might represent various presentation or styled forms
of basic letters: superscript or subscript forms, variant glyph shapes, or vertical presenta-
tion forms. They also include halfwidth or fullwidth characters from East Asian character
encoding standards, Arabic contextual form glyphs from preexisting Arabic code pages,
Arabic ligatures and ligatures from other scripts, and so on. Compatibility variants also
include CJK compatibility ideographs, many of which are minor glyph variants of an
encoded unified CJK ideograph.

In contrast to compatibility variants there are the numerous compatibility characters, such
as U+2502 box drawings light vertical, U+263A white smiling face, or U+2701
upper blade scissors, which are not variants of ordinary Unicode characters. However, it
is not always possible to determine unequivocally whether a compatibility character is a
variant or not.

Compatibility Decomposable Characters

The term compatibility is further applied to Unicode characters in a different, strictly
defined sense. The concept of a compatibility decomposable character is formally defined as
any Unicode character whose compatibility decomposition is not identical to its canonical
decomposition. (See Definition D66 in Section 3.7, Decomposition, and the discussion in
Section 2.2, Unicode Design Principles.)

The list of compatibility decomposable characters is precisely defined by property values in
the Unicode Character Database, and by the rules of Unicode Normalization. (See
Section 3.11, Normalization Forms.) Because of their use in Unicode Normalization, com-
patibility decompositions are stable and cannot be changed once a character has been
encoded; the list of compatibility decomposable characters for any version of the Unicode
Standard is thus also stable.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.4 Code Points and Characters 21
Compatibility decomposable characters have also been referred to in earlier versions of the
Unicode Standard as compatibility composite characters or compatibility composites for
short, but the full term, compatibility decomposable character is preferred.

Compatibility Character Versus Compatibility Decomposable Character. In informal
discussions of the Unicode Standard, compatibility decomposable characters have also
often been referred to simply as “compatibility characters.” This is understandable, in part
because the two sets of characters largely overlap, but the concepts are actually distinct.
There are compatibility characters which are not compatibility decomposable characters,
and there are compatibility decomposable characters which are not compatibility charac-
ters.

For example, the deprecated alternate format characters such as U+206C inhibit arabic

form shaping are considered compatibility characters, but they have no decomposition
mapping, and thus by definition cannot be compatibility decomposable characters. Like-
wise for such other compatibility characters as U+2502 box drawings light vertical or
U+263A white smiling face.

There are also instances of compatibility variants which clearly are variants of other Uni-
code characters, but which have no decomposition mapping. For example, U+2EAF cjk

radical silk is a compatibility variant of U+2F77 kangxi radical silk, as well as being a
compatibility variant of U+7CF9 cjk unified ideograph-7cf9, but has no compatibility
decomposition. The numerous compatibility variants like this in the CJK Radicals Supple-
ment block were encoded for compatibility with encodings that distinguished and sepa-
rately encoded various forms of CJK radicals as symbols.

A different case is illustrated by the CJK compatibility ideographs, such as U+FA0C cjk

compatibility ideograph-fa0c. Those compatibility characters have a decomposition
mapping, but for historical reasons it is always a canonical decomposition, so they are
canonical decomposable characters, but not compatibility decomposable characters.

By way of contrast, some compatibility decomposable characters, such as modifier letters
used in phonetic orthographies, for example, U+02B0 modifier letter small h, are not
considered to be compatibility characters. They would have been accepted for encoding in
the standard on their own merits, regardless of their need for mapping to IPA. A large
number of compatibility decomposable characters like this are actually distinct symbols
used in specialized notations, whether phonetic or mathematical. In such cases, their com-
patibility mappings express their historical derivation from styled forms of standard letters.

Other compatibility decomposable characters are widely used characters serving essential
functions. U+00A0 no-break space is one example. In these and similar cases, such as
fixed-width space characters, the compatibility decompositions define possible fallback
representations.

The Unicode Character Database supplies identification and mapping information only for
compatibility decomposable characters, while compatibility variants are not formally iden-
tified or documented. Because the two sets substantially overlap, many specifications are
written in terms of compatibility decomposable characters first; if necessary, such specifi-
cations may be extended to handle other, non-decomposable compatibility variants as
required. (See also the discussion in Section 5.19, Mapping Compatibility Variants.)

2.4 Code Points and Characters
On a computer, abstract characters are encoded internally as numbers. To create a complete
character encoding, it is necessary to define the list of all characters to be encoded and to
establish systematic rules for how the numbers represent the characters.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

22 General Structure
The range of integers used to code the abstract characters is called the codespace. A particu-
lar integer in this set is called a code point. When an abstract character is mapped or
assigned to a particular code point in the codespace, it is then referred to as an encoded char-
acter.

In the Unicode Standard, the codespace consists of the integers from 0 to 10FFFF16, com-
prising 1,114,112 code points available for assigning the repertoire of abstract characters.

There are constraints on how the codespace is organized, and particular areas of the
codespace have been set aside for encoding of certain kinds of abstract characters or for
other uses in the standard. For more on the allocation of the Unicode codespace, see
Section 2.8, Unicode Allocation.

Figure 2-8 illustrates the relationship between abstract characters and code points, which
together constitute encoded characters. Note that some abstract characters may be associ-
ated with multiple, separately encoded characters (that is, be encoded “twice”). In other
instances, an abstract character may be represented by a sequence of two (or more) other
encoded characters. The solid arrows connect encoded characters with the abstract charac-
ters that they represent and encode.

When referring to code points in the Unicode Standard, the usual practice is to refer to
them by their numeric value expressed in hexadecimal, with a “U+” prefix. (See
Appendix A, Notational Conventions.) Encoded characters can also be referred to by their
code points only. To prevent ambiguity, the official Unicode name of the character is often
added; this clearly identifies the abstract character that is encoded. For example:

U+0061 latin small letter a

U+10330 gothic letter ahsa

U+201DF cjk unified ideograph-201df

Such citations refer only to the encoded character per se, associating the code point (as an
integral value) with the abstract character that is encoded.

Types of Code Points

There are many ways to categorize code points. Table 2-3 illustrates some of the categoriza-
tions and basic terminology used in the Unicode Standard. The seven basic types of code
points are formally defined in Section 3.4, Characters and Encoding. (See Definition D10a,
Code Point Type.)

Figure 2-8. Abstract and Encoded Characters

Abstract Encoded

00C5

212B

0041 030A
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.4 Code Points and Characters 23
Not all assigned code points represent abstract characters; only Graphic, Format, Control
and Private-use do. Surrogates and Noncharacters are assigned code points but are not
assigned to abstract characters. Reserved code points are assignable: any may be assigned in
a future version of the standard. The General Category provides a finer breakdown of
Graphic characters and also distinguishes between the other basic types (except between
Noncharacter and Reserved). Other properties defined in the Unicode Character Database
provide for different categorizations of Unicode code points.

Control Codes. Sixty-five code points (U+0000..U+001F and U+007F..U+009F) are
defined specifically as control codes, for compatibility with the C0 and C1 control codes of
the ISO/IEC 2022 framework. A few of these control codes are given specific interpreta-
tions by the Unicode Standard. (See Section 16.1, Control Codes.)

Noncharacters. Sixty-six code points are not used to encode characters. Noncharacters
consist of U+FDD0..U+FDEF and any code point ending in the value FFFE16 or FFFF16—
that is, U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, ... U+10FFFE, U+10FFFF. (See
Section 16.7, Noncharacters.)

Private Use. Three ranges of code points have been set aside for private use. Characters in
these areas will never be defined by the Unicode Standard. These code points can be freely
used for characters of any purpose, but successful interchange requires an agreement
between sender and receiver on their interpretation. (See Section 16.5, Private-Use Charac-
ters.)

Surrogates. Some 2,048 code points have been allocated as surrogate code points, which
are used in the UTF-16 encoding form. (See Section 16.6, Surrogates Area.)

Restricted Interchange. Code points that are not assigned to abstract characters are subject
to restrictions in interchange.

• Surrogate code points cannot be conformantly interchanged using Unicode
encoding forms. They do not correspond to Unicode scalar values and thus do

Table 2-3. Types of Code Points

Basic Type Brief Description
General
Category

Character
Status

Code Point
Status

Graphic
Letter, mark, number,
punctuation, symbol, and
spaces

L, M, N, P, S, Zs

Assigned to
abstract
character

Designated
(assigned) code
point

Format

Invisible but affects neigh-
boring characters;
includes line/paragraph
separators

Cf, Zl, Zp

Control
Usage defined by protocols
or standards outside the
Unicode Standard

Cc

Private-use
Usage defined by private
agreement outside the
Unicode Standard

Co

Surrogate
Permanently reserved for
UTF-16; restricted inter-
change

Cs

Not assigned to
abstract
character

Noncharacter
Permanently reserved for
internal usage; restricted
interchange

Cn

Reserved
Reserved for future assign-
ment; restricted inter-
change

Undesignated
(unassigned)
code point
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

24 General Structure
not have well-formed representations in any Unicode encoding form. (See
Section 3.8, Surrogates.)

• Noncharacter code points are reserved for internal use, such as for sentinel val-
ues. They should never be interchanged. They do, however, have well-formed
representations in Unicode encoding forms and survive conversions between
encoding forms. This allows sentinel values to be preserved internally across
Unicode encoding forms, even though they are not designed to be used in open
interchange.

• All implementations need to preserve reserved code points because they may
originate in implementations that use a future version of the Unicode Standard.
For example, suppose that one person is using a Unicode 5.2 system and a sec-
ond person is using a Unicode 3.2 system. The first person sends the second
person a document containing some code points newly assigned in Unicode
5.2; these code points were unassigned in Unicode 3.2. The second person may
edit the document, not changing the reserved codes, and send it on. In that case
the second person is interchanging what are, as far as the second person knows,
reserved code points.

Code Point Semantics. The semantics of most code points are established by this standard;
the exceptions are Controls, Private-use, and Noncharacters. Control codes generally have
semantics determined by other standards or protocols (such as ISO/IEC 6429), but there
are a small number of control codes for which the Unicode Standard specifies particular
semantics. See Table 16-1 in Section 16.1, Control Codes, for the exact list of those control
codes. The semantics of private-use characters are outside the scope of the Unicode Stan-
dard; their use is determined by private agreement, as, for example, between vendors. Non-
characters have semantics in internal use only.

2.5 Encoding Forms
Computers handle numbers not simply as abstract mathematical objects, but as combina-
tions of fixed-size units like bytes and 32-bit words. A character encoding model must take
this fact into account when determining how to associate numbers with the characters.

Actual implementations in computer systems represent integers in specific code units of
particular size—usually 8-bit (= byte), 16-bit, or 32-bit. In the Unicode character encoding
model, precisely defined encoding forms specify how each integer (code point) for a Uni-
code character is to be expressed as a sequence of one or more code units. The Unicode
Standard provides three distinct encoding forms for Unicode characters, using 8-bit, 16-
bit, and 32-bit units. These are named UTF-8, UTF-16, and UTF-32, respectively. The
“UTF” is a carryover from earlier terminology meaning Unicode (or UCS) Transformation
Format. Each of these three encoding forms is an equally legitimate mechanism for repre-
senting Unicode characters; each has advantages in different environments.

All three encoding forms can be used to represent the full range of encoded characters in
the Unicode Standard; they are thus fully interoperable for implementations that may
choose different encoding forms for various reasons. Each of the three Unicode encoding
forms can be efficiently transformed into either of the other two without any loss of data.

Non-overlap. Each of the Unicode encoding forms is designed with the principle of non-
overlap in mind. Figure 2-9 presents an example of an encoding where overlap is permitted.
In this encoding (Windows code page 932), characters are formed from either one or two
code bytes. Whether a sequence is one or two bytes in length depends on the first byte, so
that the values for lead bytes (of a two-byte sequence) and single bytes are disjoint. How-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.5 Encoding Forms 25
ever, single-byte values and trail-byte values can overlap. That means that when someone
searches for the character “D”, for example, he or she might find it either (mistakenly) as
the trail byte of a two-byte sequence or as a single, independent byte. To find out which
alternative is correct, a program must look backward through text.

The situation is made more complex by the fact that lead and trail bytes can also overlap, as
shown in the second part of Figure 2-9. This means that the backward scan has to repeat
until it hits the start of the text or hits a sequence that could not exist as a pair as shown in
Figure 2-10. This is not only inefficient, but also extremely error-prone: corruption of one
byte can cause entire lines of text to be corrupted.

The Unicode encoding forms avoid this problem, because none of the ranges of values for
the lead, trail, or single code units in any of those encoding forms overlap.

Non-overlap makes all of the Unicode encoding forms well behaved for searching and com-
parison. When searching for a particular character, there will never be a mismatch against
some code unit sequence that represents just part of another character. The fact that all
Unicode encoding forms observe this principle of non-overlap distinguishes them from
many legacy East Asian multibyte character encodings, for which overlap of code unit
sequences may be a significant problem for implementations.

Another aspect of non-overlap in the Unicode encoding forms is that all Unicode charac-
ters have determinate boundaries when expressed in any of the encoding forms. That is, the
edges of code unit sequences representing a character are easily determined by local exam-
ination of code units; there is never any need to scan back indefinitely in Unicode text to
correctly determine a character boundary. This property of the encoding forms has some-
times been referred to as self-synchronization. This property has another very important
implication: corruption of a single code unit corrupts only a single character; none of the
surrounding characters are affected.

For example, when randomly accessing a string, a program can find the boundary of a
character with limited backup. In UTF-16, if a pointer points to a leading surrogate, a sin-
gle backup is required. In UTF-8, if a pointer points to a byte starting with 10xxxxxx (in
binary), one to three backups are required to find the beginning of the character.

Figure 2-9. Overlap in Legacy Mixed-Width Encodings

Figure 2-10. Boundaries and Interpretation

84

44

44

84 84

84 84

D

0442

0414

0044

Trail and Single

Lead and Trail

84 84 84 84 84 84 44?? ...

D
0414 00440442
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

26 General Structure
Conformance. The Unicode Consortium fully endorses the use of any of the three Unicode
encoding forms as a conformant way of implementing the Unicode Standard. It is impor-
tant not to fall into the trap of trying to distinguish “UTF-8 versus Unicode,” for example.
UTF-8, UTF-16, and UTF-32 are all equally valid and conformant ways of implementing
the encoded characters of the Unicode Standard.

Examples. Figure 2-11 shows the three Unicode encoding forms, including how they are
related to Unicode code points.

In Figure 2-11, the UTF-32 line shows that each example character can be expressed with
one 32-bit code unit. Those code units have the same values as the code point for the char-
acter. For UTF-16, most characters can be expressed with one 16-bit code unit, whose value
is the same as the code point for the character, but characters with high code point values
require a pair of 16-bit surrogate code units instead. In UTF-8, a character may be
expressed with one, two, three, or four bytes, and the relationship between those byte val-
ues and the code point value is more complex.

UTF-8, UTF-16, and UTF-32 are further described in the subsections that follow. See each
subsection for a general overview of how each encoding form is structured and the general
benefits or drawbacks of each encoding form for particular purposes. For the detailed for-
mal definition of the encoding forms and conformance requirements, see Section 3.9, Uni-
code Encoding Forms.

UTF-32

UTF-32 is the simplest Unicode encoding form. Each Unicode code point is represented
directly by a single 32-bit code unit. Because of this, UTF-32 has a one-to-one relationship
between encoded character and code unit; it is a fixed-width character encoding form. This
makes UTF-32 an ideal form for APIs that pass single character values.

As for all of the Unicode encoding forms, UTF-32 is restricted to representation of code
points in the range 0..10FFFF16—that is, the Unicode codespace. This guarantees interop-
erability with the UTF-16 and UTF-8 encoding forms.

Fixed Width. The value of each UTF-32 code unit corresponds exactly to the Unicode code
point value. This situation differs significantly from that for UTF-16 and especially UTF-8,
where the code unit values often change unrecognizably from the code point value. For
example, U+10000 is represented as <00010000> in UTF-32 and as <F0 90 80 80> in UTF-
8. For UTF-32, it is trivial to determine a Unicode character from its UTF-32 code unit rep-
resentation. In contrast, UTF-16 and UTF-8 representations often require doing a code
unit conversion before the character can be identified in the Unicode code charts.

Preferred Usage. UTF-32 may be a preferred encoding form where memory or disk storage
space for characters is not a particular concern, but where fixed-width, single code unit

Figure 2-11. Unicode Encoding Forms

00000041 000003A9 00008A9E 00010384

0041 03A9 8A9E

41

D800 DF84

CE A9 E8 AA 9E F0 90 8E 84

UTF-32

UTF-16

UTF-8
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.5 Encoding Forms 27
access to characters is desired. UTF-32 is also a preferred encoding form for processing
characters on most Unix platforms.

UTF-16

In the UTF-16 encoding form, code points in the range U+0000..U+FFFF are represented
as a single 16-bit code unit; code points in the supplementary planes, in the range
U+10000..U+10FFFF, are represented as pairs of 16-bit code units. These pairs of special
code units are known as surrogate pairs. The values of the code units used for surrogate
pairs are completely disjunct from the code units used for the single code unit representa-
tions, thus maintaining non-overlap for all code point representations in UTF-16. For the
formal definition of surrogates, see Section 3.8, Surrogates.

Optimized for BMP. UTF-16 optimizes the representation of characters in the Basic Multi-
lingual Plane (BMP)—that is, the range U+0000..U+FFFF. For that range, which contains
the vast majority of common-use characters for all modern scripts of the world, each char-
acter requires only one 16-bit code unit, thus requiring just half the memory or storage of
the UTF-32 encoding form. For the BMP, UTF-16 can effectively be treated as if it were a
fixed-width encoding form.

Supplementary Characters and Surrogates. For supplementary characters, UTF-16
requires two 16-bit code units. The distinction between characters represented with one
versus two 16-bit code units means that formally UTF-16 is a variable-width encoding
form. That fact can create implementation difficulties if it is not carefully taken into
account; UTF-16 is somewhat more complicated to handle than UTF-32.

Preferred Usage. UTF-16 may be a preferred encoding form in many environments that
need to balance efficient access to characters with economical use of storage. It is reason-
ably compact, and all the common, heavily used characters fit into a single 16-bit code unit.

Origin. UTF-16 is the historical descendant of the earliest form of Unicode, which was
originally designed to use a fixed-width, 16-bit encoding form exclusively. The surrogates
were added to provide an encoding form for the supplementary characters at code points
past U+FFFF. The design of the surrogates made them a simple and efficient extension
mechanism that works well with older Unicode implementations and that avoids many of
the problems of other variable-width character encodings. See Section 5.4, Handling Surro-
gate Pairs in UTF-16, for more information about surrogates and their processing.

Collation. For the purpose of sorting text, binary order for data represented in the UTF-16
encoding form is not the same as code point order. This means that a slightly different
comparison implementation is needed for code point order. For more information, see
Section 5.17, Binary Order.

UTF-8

To meet the requirements of byte-oriented, ASCII-based systems, a third encoding form is
specified by the Unicode Standard: UTF-8. This variable-width encoding form preserves
ASCII transparency by making use of 8-bit code units.

Byte-Oriented. Much existing software and practice in information technology have long
depended on character data being represented as a sequence of bytes. Furthermore, many
of the protocols depend not only on ASCII values being invariant, but must make use of or
avoid special byte values that may have associated control functions. The easiest way to
adapt Unicode implementations to such a situation is to make use of an encoding form that
is already defined in terms of 8-bit code units and that represents all Unicode characters
while not disturbing or reusing any ASCII or C0 control code value. That is the function of
UTF-8.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

28 General Structure
Variable Width. UTF-8 is a variable-width encoding form, using 8-bit code units, in which
the high bits of each code unit indicate the part of the code unit sequence to which each
byte belongs. A range of 8-bit code unit values is reserved for the first, or leading, element
of a UTF-8 code unit sequences, and a completely disjunct range of 8-bit code unit values is
reserved for the subsequent, or trailing, elements of such sequences; this convention pre-
serves non-overlap for UTF-8. Table 3-6 on page 95 shows how the bits in a Unicode code
point are distributed among the bytes in the UTF-8 encoding form. See Section 3.9, Unicode
Encoding Forms, for the full, formal definition of UTF-8.

ASCII Transparency. The UTF-8 encoding form maintains transparency for all of the
ASCII code points (0x00..0x7F). That means Unicode code points U+0000..U+007F are
converted to single bytes 0x00..0x7F in UTF-8 and are thus indistinguishable from ASCII
itself. Furthermore, the values 0x00..0x7F do not appear in any byte for the representation
of any other Unicode code point, so that there can be no ambiguity. Beyond the ASCII
range of Unicode, many of the non-ideographic scripts are represented by two bytes per
code point in UTF-8; all non-surrogate code points between U+0800 and U+FFFF are rep-
resented by three bytes; and supplementary code points above U+FFFF require four bytes.

Preferred Usage. UTF-8 is typically the preferred encoding form for HTML and similar
protocols, particularly for the Internet. The ASCII transparency helps migration. UTF-8
also has the advantage that it is already inherently byte-serialized, as for most existing 8-bit
character sets; strings of UTF-8 work easily with C or other programming languages, and
many existing APIs that work for typical Asian multibyte character sets adapt to UTF-8 as
well with little or no change required.

Self-synchronizing. In environments where 8-bit character processing is required for one
reason or another, UTF-8 has the following attractive features as compared to other multi-
byte encodings:

• The first byte of a UTF-8 code unit sequence indicates the number of bytes to
follow in a multibyte sequence. This allows for very efficient forward parsing.

• It is efficient to find the start of a character when beginning from an arbitrary
location in a byte stream of UTF-8. Programs need to search at most four bytes
backward, and usually much less. It is a simple task to recognize an initial byte,
because initial bytes are constrained to a fixed range of values.

• As with the other encoding forms, there is no overlap of byte values.

Comparison of the Advantages of UTF-32, UTF-16, and UTF-8

On the face of it, UTF-32 would seem to be the obvious choice of Unicode encoding forms
for an internal processing code because it is a fixed-width encoding form. It can be confor-
mantly bound to the C and C++ wchar_t, which means that such programming languages
may offer built-in support and ready-made string APIs that programmers can take advan-
tage of. However, UTF-16 has many countervailing advantages that may lead implementers
to choose it instead as an internal processing code.

While all three encoding forms need at most 4 bytes (or 32 bits) of data for each character,
in practice UTF-32 in almost all cases for real data sets occupies twice the storage that UTF-
16 requires. Therefore, a common strategy is to have internal string storage use UTF-16 or
UTF-8 but to use UTF-32 when manipulating individual characters.

UTF-32 Versus UTF-16. On average, more than 99 percent of all UTF-16 data is expressed
using single code units. This includes nearly all of the typical characters that software needs
to handle with special operations on text—for example, format control characters. As a
consequence, most text scanning operations do not need to unpack UTF-16 surrogate pairs
at all, but rather can safely treat them as an opaque part of a character string.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.5 Encoding Forms 29
For many operations, UTF-16 is as easy to handle as UTF-32, and the performance of UTF-
16 as a processing code tends to be quite good. UTF-16 is the internal processing code of
choice for a majority of implementations supporting Unicode. Other than for Unix plat-
forms, UTF-16 provides the right mix of compact size with the ability to handle the occa-
sional character outside the BMP.

UTF-32 has somewhat of an advantage when it comes to simplicity of software coding
design and maintenance. Because the character handling is fixed width, UTF-32 processing
does not require maintaining branches in the software to test and process the double code
unit elements required for supplementary characters by UTF-16. Conversely, 32-bit indices
into large tables are not particularly memory efficient. To avoid the large memory penalties
of such indices, Unicode tables are often handled as multistage tables (see “Multistage
Tables” in Section 5.1, Data Structures for Character Conversion). In such cases, the 32-bit
code point values are sliced into smaller ranges to permit segmented access to the tables.
This is true even in typical UTF-32 implementations.

The performance of UTF-32 as a processing code may actually be worse than the perfor-
mance of UTF-16 for the same data, because the additional memory overhead means that
cache limits will be exceeded more often and memory paging will occur more frequently.
For systems with processor designs that impose penalties for 16-bit aligned access but have
very large memories, this effect may be less noticeable.

Characters Versus Code Points. In any event, Unicode code points do not necessarily
match user expectations for “characters.” For example, the following are not represented by
a single code point: a combining character sequence such as <g, acute>; a conjoining jamo
sequence for Korean; or the Devanagari conjunct “ksha.” Because some Unicode text pro-
cessing must be aware of and handle such sequences of characters as text elements, the
fixed-width encoding form advantage of UTF-32 is somewhat offset by the inherently vari-
able-width nature of processing text elements. See Unicode Technical Standard #18, “Uni-
code Regular Expressions,” for an example where commonly implemented processes deal
with inherently variable-width text elements owing to user expectations of the identity of a
“character.”

UTF-8. UTF-8 is reasonably compact in terms of the number of bytes used. It is really only
at a significant size disadvantage when used for East Asian implementations such as Chi-
nese, Japanese, and Korean, which use Han ideographs or Hangul syllables requiring three-
byte code unit sequences in UTF-8. UTF-8 is also significantly less efficient in terms of pro-
cessing than the other encoding forms.

Binary Sorting. A binary sort of UTF-8 strings gives the same ordering as a binary sort of
Unicode code points. This is obviously the same order as for a binary sort of UTF-32
strings.

All three encoding forms give the same results for binary string comparisons or string sort-
ing when dealing only with BMP characters (in the range U+0000..U+FFFF). However,
when dealing with supplementary characters (in the range U+10000..U+10FFFF), UTF-16
binary order does not match Unicode code point order. This can lead to complications
when trying to interoperate with binary sorted lists—for example, between UTF-16 sys-
tems and UTF-8 or UTF-32 systems. However, for data that is sorted according to the con-
ventions of a specific language or locale rather than using binary order, data will be ordered
the same, regardless of the encoding form.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

30 General Structure
2.6 Encoding Schemes
The discussion of Unicode encoding forms in the previous section was concerned with the
machine representation of Unicode code units. Each code unit is represented in a computer
simply as a numeric data type; just as for other numeric types, the exact way the bits are
laid out internally is irrelevant to most processing. However, interchange of textual data,
particularly between computers of different architectural types, requires consideration of
the exact ordering of the bits and bytes involved in numeric representation. Integral data,
including character data, is serialized for open interchange into well-defined sequences of
bytes. This process of byte serialization allows all applications to correctly interpret
exchanged data and to accurately reconstruct numeric values (and thereby character val-
ues) from it. In the Unicode Standard, the specifications of the distinct types of byte serial-
izations to be used with Unicode data are known as Unicode encoding schemes.

Byte Order. Modern computer architectures differ in ordering in terms of whether the most
significant byte or the least significant byte of a large numeric data type comes first in inter-
nal representation. These sequences are known as “big-endian” and “little-endian” orders,
respectively. For the Unicode 16- and 32-bit encoding forms (UTF-16 and UTF-32), the
specification of a byte serialization must take into account the big-endian or little-endian
architecture of the system on which the data is represented, so that when the data is byte
serialized for interchange it will be well defined.

A character encoding scheme consists of a specified character encoding form plus a specifi-
cation of how the code units are serialized into bytes. The Unicode Standard also specifies
the use of an initial byte order mark (BOM) to explicitly differentiate big-endian or little-
endian data in some of the Unicode encoding schemes. (See the “Byte Order Mark” subsec-
tion in Section 16.8, Specials.)

When a higher-level protocol supplies mechanisms for handling the endianness of integral
data types, it is not necessary to use Unicode encoding schemes or the byte order mark. In
those cases Unicode text is simply a sequence of integral data types.

For UTF-8, the encoding scheme consists merely of the UTF-8 code units (= bytes) in
sequence. Hence, there is no issue of big- versus little-endian byte order for data repre-
sented in UTF-8. However, for 16-bit and 32-bit encoding forms, byte serialization must
break up the code units into two or four bytes, respectively, and the order of those bytes
must be clearly defined. Because of this, and because of the rules for the use of the byte
order mark, the three encoding forms of the Unicode Standard result in a total of seven
Unicode encoding schemes, as shown in Table 2-4.

The endian order entry for UTF-8 in Table 2-4 is marked N/A because UTF-8 code units
are 8 bits in size, and the usual machine issues of endian order for larger code units do not
apply. The serialized order of the bytes must not depart from the order defined by the UTF-
8 encoding form. Use of a BOM is neither required nor recommended for UTF-8, but may
be encountered in contexts where UTF-8 data is converted from other encoding forms that

Table 2-4. The Seven Unicode Encoding Schemes

Encoding Scheme Endian Order BOM Allowed?

UTF-8 N/A yes

UTF-16
UTF-16BE
UTF-16LE

Big-endian or little-endian
Big-endian
Little-endian

yes
no
no

UTF-32
UTF-32BE
UTF-32LE

Big-endian or little-endian
Big-endian
Little-endian

yes
no
no
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.6 Encoding Schemes 31
use a BOM or where the BOM is used as a UTF-8 signature. See the “Byte Order Mark”
subsection in Section 16.8, Specials, for more information.

Encoding Scheme Versus Encoding Form. Note that some of the Unicode encoding
schemes have the same labels as the three Unicode encoding forms. This could cause con-
fusion, so it is important to keep the context clear when using these terms: character encod-
ing forms refer to integral data units in memory or in APIs, and byte order is irrelevant;
character encoding schemes refer to byte-serialized data, as for streaming I/O or in file stor-
age, and byte order must be specified or determinable.

The Internet Assigned Numbers Authority (IANA) maintains a registry of charset names
used on the Internet. Those charset names are very close in meaning to the Unicode char-
acter encoding model’s concept of character encoding schemes, and all of the Unicode
character encoding schemes are, in fact, registered as charsets. While the two concepts are
quite close and the names used are identical, some important differences may arise in terms
of the requirements for each, particularly when it comes to handling of the byte order
mark. Exercise due caution when equating the two.

Examples. Figure 2-12 illustrates the Unicode character encoding schemes, showing how
each is derived from one of the encoding forms by serialization of bytes.

In Figure 2-12, the code units used to express each example character have been serialized
into sequences of bytes. This figure should be compared with Figure 2-11, which shows the
same characters before serialization into sequences of bytes. The “BE” lines show serializa-
tion in big-endian order, whereas the “LE” lines show the bytes reversed into little-endian
order. For UTF-8, the code unit is just an 8-bit byte, so that there is no distinction between
big-endian and little-endian order. UTF-32 and UTF-16 encoding schemes using the byte
order mark are not shown in Figure 2-12, to keep the basic picture regarding serialization of
bytes clearer.

For the detailed formal definition of the Unicode encoding schemes and conformance
requirements, see Section 3.10, Unicode Encoding Schemes. For further general discussion
about character encoding forms and character encoding schemes, both for the Unicode
Standard and as applied to other character encoding standards, see Unicode Technical
Report #17, “Unicode Character Encoding Model.” For information about charsets and

Figure 2-12. Unicode Encoding Schemes

00 41 03 A9 8A 9E

41

D8 00 DF 84

CE A9 E8 AA 9E F0 90 8E 84

UTF-32BE

UTF-16BE

UTF-8

00 00 8A 9E00 00 00 41 00 00 03 A9 00 01 03 84

UTF-32LE
9E 8A 00 0041 00 00 00 A9 03 00 00 84 03 01 00

41 00 A9 03 9E 8A 00 D8 84 DF

UTF-16LE
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

32 General Structure
character conversion, see Unicode Technical Standard #22, “Character Mapping Markup
Language (CharMapML).”

2.7 Unicode Strings
A Unicode string data type is simply an ordered sequence of code units. Thus a Unicode 8-
bit string is an ordered sequence of 8-bit code units, a Unicode 16-bit string is an ordered
sequence of 16-bit code units, and a Unicode 32-bit string is an ordered sequence of 32-bit
code units.

Depending on the programming environment, a Unicode string may or may not be
required to be in the corresponding Unicode encoding form. For example, strings in Java,
C#, or ECMAScript are Unicode 16-bit strings, but are not necessarily well-formed UTF-16
sequences. In normal processing, it can be far more efficient to allow such strings to con-
tain code unit sequences that are not well-formed UTF-16—that is, isolated surrogates.
Because strings are such a fundamental component of every program, checking for isolated
surrogates in every operation that modifies strings can create significant overhead, espe-
cially because supplementary characters are extremely rare as a percentage of overall text in
programs worldwide.

It is straightforward to design basic string manipulation libraries that handle isolated sur-
rogates in a consistent and straightforward manner. They cannot ever be interpreted as
abstract characters, but they can be internally handled the same way as noncharacters
where they occur. Typically they occur only ephemerally, such as in dealing with keyboard
events. While an ideal protocol would allow keyboard events to contain complete strings,
many allow only a single UTF-16 code unit per event. As a sequence of events is transmitted
to the application, a string that is being built up by the application in response to those
events may contain isolated surrogates at any particular point in time.

Whenever such strings are specified to be in a particular Unicode encoding form—even
one with the same code unit size—the string must not violate the requirements of that
encoding form. For example, isolated surrogates in a Unicode 16-bit string are not allowed
when that string is specified to be well-formed UTF-16. (See Section 3.9, Unicode Encoding
Forms.) A number of techniques are available for dealing with an isolated surrogate, such as
omitting it, converting it into U+FFFD replacement character to produce well-formed
UTF-16, or simply halting the processing of the string with an error. For more information
on this topic, see Unicode Technical Standard #22, “Character Mapping Markup Language
(CharMapML).”
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.8 Unicode Allocation 33
2.8 Unicode Allocation
For convenience, the encoded characters of the Unicode Standard are grouped by linguistic
and functional categories, such as script or writing system. For practical reasons, there are
occasional departures from this general principle, as when punctuation associated with the
ASCII standard is kept together with other ASCII characters in the range U+0020..U+007E
rather than being grouped with other sets of general punctuation characters. By and large,
however, the code charts are arranged so that related characters can be found near each
other in the charts.

Grouping encoded characters by script or other functional categories offers the additional
benefit of supporting various space-saving techniques in actual implementations, as for
building tables or fonts.

For more information on writing systems, see Section 6.1, Writing Systems.

Planes

The Unicode codespace consists of the single range of numeric values from 0 to 10FFFF16,
but in practice it has proven convenient to think of the codespace as divided up into planes
of characters—each plane consisting of 64K code points. Because of these numeric conven-
tions, the Basic Multilingual Plane is occasionally referred to as Plane 0. The last four hexa-
decimal digits in each code point indicate a character’s position inside a plane. The
remaining digits indicate the plane. For example, U+23456 cjk unified ideograph-23456

is found at location 345616 in Plane 2.

Basic Multilingual Plane. The Basic Multilingual Plane (BMP, or Plane 0) contains the
common-use characters for all the modern scripts of the world as well as many historical
and rare characters. By far the majority of all Unicode characters for almost all textual data
can be found in the BMP.

Supplementary Multilingual Plane. The Supplementary Multilingual Plane (SMP, or
Plane 1) is dedicated to the encoding of characters for scripts or symbols which either could
not be fit into the BMP or see very infrequent usage. This includes many historic scripts, a
number of lesser-used contemporary scripts, special-purpose invented scripts, notational
systems or large pictographic symbol sets, and occasionally historic extensions of scripts
whose core sets are encoded on the BMP.

Examples include Gothic (historic), Shavian (special-purpose invented), Musical Symbols
(notational system), Domino Tiles (pictographic), and Ancient Greek Numbers (historic
extension for Greek). A number of scripts, whether of historic and contemporary use, do
not yet have their characters encoded in the Unicode Standard. The majority of scripts cur-
rently identified for encoding will eventually be allocated in the SMP. As a result, some
areas of the SMP will experience common, frequent usage.

Supplementary Ideographic Plane. The Supplementary Ideographic Plane (SIP, or Plane
2) is intended as an additional allocation area for those CJK characters that could not be fit
in the blocks set aside for more common CJK characters in the BMP. While there are a
small number of common-use CJK characters in the SIP (for example, for Cantonese
usage), the vast majority of Plane 2 characters are extremely rare or of historical interest
only.

Supplementary Special-purpose Plane. The Supplementary Special-purpose Plane (SSP,
or Plane 14) is the spillover allocation area for format control characters that do not fit into
the small allocation areas for format control characters in the BMP.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

34 General Structure
Private Use Planes. The two Private Use Planes (Planes 15 and 16) are allocated, in their
entirety, for private use. Those two planes contain a total of 131,068 characters to supple-
ment the 6,400 private-use characters located in the BMP.

Allocation Areas and Character Blocks

Allocation Areas. The Unicode Standard does not have any normatively defined concept of
areas or zones for the BMP (or other planes), but it is often handy to refer to the allocation
areas of the BMP by the general types of the characters they include. These areas are merely
a rough organizational device and do not restrict the types of characters that may end up
being allocated in them. The description and ranges of areas may change from version to
version of the standard as more new scripts, symbols, and other characters are encoded in
previously reserved ranges.

Blocks. The various allocation areas are, in turn, divided up into character blocks, which are
normatively defined, and which are used to structure the actual code charts. For a complete
listing of the normative character blocks in the Unicode Standard, see Blocks.txt in the Uni-
code Character Database.

The normative status of character blocks should not, however, be taken as indicating that
they define significant sets of characters. For the most part, the character blocks serve only
as ranges to divide up the code charts and do not necessarily imply anything else about the
types of characters found in the block. Block identity cannot be taken as a reliable guide to
the source, use, or properties of characters, for example, and it cannot be reliably used
alone to process characters. In particular:

• Blocks are simply ranges, and many contain reserved code points.

• Characters used in a single writing system may be found in several different
blocks. For example, characters used for letters for Latin-based writing systems
are found in at least 13 different blocks: Basic Latin, Latin-1 Supplement, Latin
Extended-A, Latin Extended-B, Latin Extended-C, Latin Extended-D, IPA
Extensions, Phonetic Extensions, Phonetic Extensions Supplement, Latin
Extended Additional, Spacing Modifier Letters, Combining Diacritical Marks,
and Combining Diacritical Marks Supplement.

• Characters in a block may be used with different writing systems. For example,
the danda character is encoded in the Devanagari block but is used with
numerous other scripts; Arabic combining marks in the Arabic block are used
with the Syriac script; and so on.

• Block definitions are not at all exclusive. For instance, many mathematical
operator characters are not encoded in the Mathematical Operators block—
and are not even in any block containing “Mathematical” in its name; many
currency symbols are not found in the Currency Symbols block, and so on.

For reliable specification of the properties of characters, one should instead turn to the
detailed, character-by-character property assignments available in the Unicode Character
Database. See also Chapter 4, Character Properties. For further discussion of the relation-
ship between Unicode character blocks and significant property assignments and sets of
characters, see Unicode Standard Annex #24, “Unicode Script Property,” and Unicode
Technical Standard #18, “Unicode Regular Expressions.”

Allocation Order. The allocation order of various scripts and other groups of characters
reflects the historical evolution of the Unicode Standard. While there is a certain geo-
graphic sense to the ordering of the allocation areas for the scripts, this is only a very loose
correlation. The empty spaces will be filled with future script encodings on a space-avail-
able basis. The relevant character encoding committees follow an organized roadmap to
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.9 Details of Allocation 35
help them decide where to encode new scripts within the available space. Until the charac-
ters for a script are actually standardized, however, there are no absolute guarantees where
future allocations will occur. In general, implementations should not make assumptions
about where future scripts may be encoded based on the identity of neighboring blocks of
characters already encoded.

Assignment of Code Points

Code points in the Unicode Standard are assigned using the following guidelines:

• Where there is a single accepted standard for a script, the Unicode Standard
generally follows it for the relative order of characters within that script.

• The first 256 codes follow precisely the arrangement of ISO/IEC 8859-1 (Latin
1), of which 7-bit ASCII (ISO/IEC 646 IRV) accounts for the first 128 code
positions.

• Characters with common characteristics are located together contiguously. For
example, the primary Arabic character block was modeled after ISO/IEC
8859-6. The Arabic script characters used in Persian, Urdu, and other lan-
guages, but not included in ISO/IEC 8859-6, are allocated after the primary
Arabic character block. Right-to-left scripts are grouped together.

• In most cases, scripts with fewer than 128 characters are allocated so as not to
cross 128-code-point boundaries (that is, they fit in ranges nn00..nn7F or
nn80..nnFF). For supplementary characters, an additional constraint not to
cross 1,024-code-point boundaries is applied (that is, scripts fit in ranges
nn000..nn3FF, nn400..nn7FF, nn800..nnBFF, or nnC00..nnFFF). Such con-
straints enable better optimizations for tasks such as building tables for access
to character properties.

• Codes that represent letters, punctuation, symbols, and diacritics that are gen-
erally shared by multiple languages or scripts are grouped together in several
locations.

• The Unicode Standard does not correlate character code allocation with lan-
guage-dependent collation or case. For more information on collation order,
see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

• Unified CJK ideographs are laid out in four sections, each of which is arranged
according to the Han ideograph arrangement defined in Section 12.1, Han. This
ordering is roughly based on a radical-stroke count order.

2.9 Details of Allocation
This section provides a more detailed summary of the way characters are allocated in the
Unicode Standard. Figure 2-13 gives an overall picture of the allocation areas of the Uni-
code Standard, with an emphasis on the identities of the planes. The following subsections
discuss the allocation details for specific planes.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

36 General Structure
Figure 2-13. Unicode Allocation

For allocations on Plane 0 (BMP) and
Plane 1 (SMP), see the detail figures

CJK Unified Ideographs Extension B, C, & D

CJK Compatibility Ideographs Supplement

Tags and Ideographic Variation Selectors

Supplementary Private Use Area-A

Supplementary Private Use Area-B

Graphic

Format or Control

Private Use

Reserved

Detail on other figures
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.9 Details of Allocation 37
Plane 0 (BMP)

Figure 2-14 shows the Basic Multilingual Plane (BMP) in an expanded format to illustrate
the allocation substructure of that plane in more detail. This section describes each alloca-
tion area, in the order of their location on the BMP.

ASCII and Latin-1 Compatibility Area. For compatibility with the ASCII and ISO 8859-1,
Latin-1 standards, this area contains the same repertoire and ordering as Latin-1. Accord-
ingly, it contains the basic Latin alphabet, European digits, and then the same collection of
miscellaneous punctuation, symbols, and additional Latin letters as are found in Latin-1.

Figure 2-14. Allocation on the BMP

2E00-2E7F Supplemental Punctuation Area

0000-00FF ASCII & Latin-1 Compatibility Area
0100-058F General Scripts Area
0590-08FF General Scripts Area (RTL)

2C00-2DFF General Scripts Area

0900-1FFF General Scripts Area

2000-2BFF Punctuation and Symbols Area

2E80-33FF CJK Miscellaneous Area

3400-9FFF CJKV Unified Ideographs Area
 (not to scale)

A000-ABFF General Scripts Area (Asia & Africa)

AC00-D7FF Hangul Syllables Area

D800-DFFF Surrogate Codes

E000-F8FF Private Use Area

F900-FFFF Compatibility Area

0000

0900

2000

3400

A000

AC00

D800
E000

F900

2C00

(FFFF)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

38 General Structure
General Scripts Area. The General Scripts Area contains a large number of modern-use
scripts of the world, including Latin, Greek, Cyrillic, Arabic, and so on. Most of the charac-
ters encoded in this area are graphic characters. A subrange of the General Scripts Area is
set aside for right-to-left scripts, including Hebrew, Arabic, Thaana, and N’Ko.

Punctuation and Symbols Area. This area is devoted mostly to all kinds of symbols,
including many characters for use in mathematical notation. It also contains general punc-
tuation, as well as most of the important format control characters.

Supplementary General Scripts Area. This area contains scripts or extensions to scripts
that did not fit in the General Scripts Area itself. It contains the Glagolitic, Coptic, and Tifi-
nagh scripts, plus extensions for the Latin, Cyrillic, Georgian, and Ethiopic scripts.

CJK Miscellaneous Area. The CJK Miscellaneous Area contains some East Asian scripts, such
as Hiragana and Katakana for Japanese, punctuation typically used with East Asian scripts,
lists of CJK radical symbols, and a large number of East Asian compatibility characters.

CJKV Ideographs Area. This area contains almost all the unified Han ideographs in the
BMP. It is subdivided into a block for the Unified Repertoire and Ordering (the initial block
of 20,902 unified Han ideographs plus 38 later additions) and another block containing
Extension A (an additional 6,582 unified Han ideographs).

General Scripts Area (Asia and Africa). This area contains numerous blocks for additional
scripts of Asia and Africa, such as Yi, Cham, Vai, and Bamum. It also contains more spill-
over blocks with additional characters for the Latin, Devanagari, Myanmar, and Hangul
scripts.

Hangul Area. This area consists of one large block containing 11,172 precomposed Hangul
syllables, and one small block with additional, historic Hangul jamo extensions.

Surrogates Area. The Surrogates Area contains only surrogate code points and no encoded
characters. See Section 16.6, Surrogates Area, for more details.

Private Use Area. The Private Use Area in the BMP contains 6,400 private-use characters.

Compatibility and Specials Area. This area contains many compatibility variants of char-
acters from widely used corporate and national standards that have other representations
in the Unicode Standard. For example, it contains Arabic presentation forms, whereas the
basic characters for the Arabic script are located in the General Scripts Area. The Compat-
ibility and Specials Area also contains a few important format control characters and other
special characters. See Section 16.8, Specials, for more details.

Plane 1 (SMP)

Figure 2-15 shows Plane 1, the Supplementary Multilingual Plane (SMP), in expanded for-
mat to illustrate the allocation substructure of that plane in more detail.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.9 Details of Allocation 39
General Scripts Areas. These areas contain a large number of historic scripts, as well as a
few regional scripts which have some current use. The first of these areas also contains a
small number of symbols and numbers associated with ancient scripts.

General Scripts Areas (RTL). There are two subranges in the SMP which are set aside for
historic right-to-left scripts, such as Phoenician, Kharoshthi, and Avestan. The second of
these currently has no assigned characters, but it also defaults to Bidi_Class=R and is
reserved for the encoding of other historic right-to-left scripts or symbols.

Cuneiform and Hieroglyphic Area. This area contains two large, ancient scripts: Sumero-
Akkadian Cuneiform and Egyptian Hieroglyphs. Other large hieroglyphic and picto-
graphic scripts will be allocated in this area in the future.

Ideographic Scripts Area. This area is set aside for large, historic siniform (but non-Han)
logosyllabic scripts such as Tangut, Jurchen, Khitan, and Naxi. As of Unicode 6.2 no char-
acters are yet encoded in this area.

Symbols Areas. The first of these SMP Symbols Areas contains sets of symbols for nota-
tional systems, such as musical symbols and mathematical alphanumeric symbols. The sec-
ond contains various game symbols, and large sets of miscellaneous symbols and
pictographs, mostly used in compatibility mapping of East Asian character sets. Notable
among these are emoji and emoticons.

Figure 2-15. Allocation on Plane 1

1 0000
1 0800

1 D000

1 E800

1 BC00

1 7000
1 6000

1 1D80
1 1000

(1 FFFF)

General Scripts Area
General Scripts Area (RTL)
General Scripts Area

Cuneiform & Hieroglyphic Area

General Scripts Area

Ideographic Scripts Area

General Scripts Area

Symbols Area

General Scripts Area (RTL)
Symbols Area

1 F000
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

40 General Structure
Plane 2 (SIP)

Plane 2, the Supplementary Ideographic Plane (SIP), consists primarily of one big area,
starting from the first code point in the plane, that is dedicated to encoding additional uni-
fied CJK characters. A much smaller area, toward the end of the plane, is dedicated to addi-
tional CJK compatibility ideographic characters—which are basically just duplicated
character encodings required for round-trip conversion to various existing legacy East
Asian character sets. The CJK compatibility ideographic characters in Plane 2 are currently
all dedicated to round-trip conversion for the CNS standard and are intended to supple-
ment the CJK compatibility ideographic characters in the BMP, a smaller number of char-
acters dedicated to round-trip conversion for various Korean, Chinese, and Japanese
standards.

Other Planes

The first 4,096 code positions on Plane 14 form an area set aside for special characters that
have the Default_Ignorable_Code_Point property. A small number of language tag charac-
ters, plus some supplementary variation selection characters, have been allocated there. All
remaining code positions on Plane 14 are reserved for future allocation of other special-
purpose characters.

Plane 15 and Plane 16 are allocated, in their entirety, for private use. Those two planes con-
tain a total of 131,068 characters, to supplement the 6,400 private-use characters located in
the BMP.

All other planes are reserved; there are no characters assigned in them. The last two code
positions of all planes are permanently set aside as noncharacters. (See Section 2.13, Special
Characters and Noncharacters).

2.10 Writing Direction
Individual writing systems have different conventions for arranging characters into lines on
a page or screen. Such conventions are referred to as a script’s directionality. For example, in
the Latin script, characters are arranged horizontally from left to right to form lines, and
lines are arranged from top to bottom, as shown in the first example of Figure 2-16.

Bidirectional. In most Semitic scripts such as Hebrew and Arabic, characters are arranged
from right to left into lines, although digits run the other way, making the scripts inherently
bidirectional, as shown in the second example in Figure 2-16. In addition, left-to-right and
right-to-left scripts are frequently used together. In all such cases, arranging characters into
lines becomes more complex. The Unicode Standard defines an algorithm to determine the
layout of a line, based on the inherent directionality of each character, and supplemented
by a small set of directional controls. See Unicode Standard Annex #9, “Unicode Bidirec-
tional Algorithm,” for more information.

Figure 2-16. Writing Directions
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.11 Combining Characters 41
Vertical. East Asian scripts are frequently written in vertical lines in which characters are
arranged from top to bottom. Lines are arranged from right to left, as shown in the third
example in Figure 2-16. Such scripts may also be written horizontally, from left to right.
Most East Asian characters have the same shape and orientation when displayed horizon-
tally or vertically, but many punctuation characters change their shape when displayed ver-
tically. In a vertical context, letters and words from other scripts are generally rotated
through 90-degree angles so that they, too, read from top to bottom.

In contrast to the bidirectional case, the choice to lay out text either vertically or horizon-
tally is treated as a formatting style. Therefore, the Unicode Standard does not provide
directionality controls to specify that choice.

Mongolian is usually written from top to bottom, with lines arranged from left to right, as
shown in the fourth example. When Mongolian is written horizontally, the characters are
rotated.

Boustrophedon. Early Greek used a system called boustrophedon (literally, “ox-turning”).
In boustrophedon writing, characters are arranged into horizontal lines, but the individual
lines alternate between right to left and left to right, the way an ox goes back and forth
when plowing a field, as shown in the fifth example. The letter images are mirrored in
accordance with the direction of each individual line.

Other Historical Directionalities. Other script directionalities are found in historical writ-
ing systems. For example, some ancient Numidian texts are written from bottom to top,
and Egyptian hieroglyphics can be written with varying directions for individual lines.

The historical directionalities are of interest almost exclusively to scholars intent on repro-
ducing the exact visual content of ancient texts. The Unicode Standard does not provide
direct support for them. Fixed texts can, however, be written in boustrophedon or in other
directional conventions by using hard line breaks and directionality overrides or the equiv-
alent markup.

2.11 Combining Characters
Combining Characters. Characters intended to be positioned relative to an associated base
character are depicted in the character code charts above, below, or through a dotted circle.
When rendered, the glyphs that depict these characters are intended to be positioned rela-
tive to the glyph depicting the preceding base character in some combination. The Unicode
Standard distinguishes two types of combining characters: spacing and nonspacing. Non-
spacing combining characters do not occupy a spacing position by themselves. Neverthe-
less, the combination of a base character and a nonspacing character may have a different
advance width than the base character by itself. For example, an “î” may be slightly wider
than a plain “i”. The spacing or nonspacing properties of a combining character are defined
in the Unicode Character Database.

All combining characters can be applied to any base character and can, in principle, be used
with any script. As with other characters, the allocation of a combining character to one
block or another identifies only its primary usage; it is not intended to define or limit the
range of characters to which it may be applied. In the Unicode Standard, all sequences of
character codes are permitted.

This does not create an obligation on implementations to support all possible combina-
tions equally well. Thus, while application of an Arabic annotation mark to a Han charac-
ter or a Devanagari consonant is permitted, it is unlikely to be supported well in rendering
or to make much sense.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

42 General Structure
Diacritics. Diacritics are the principal class of nonspacing combining characters used with
the Latin, Greek, and Cyrillic scripts and their relatives. In the Unicode Standard, the term
“diacritic” is defined very broadly to include accents as well as other nonspacing marks.

Symbol Diacritics. Some diacritical marks are applied primarily to symbols. These com-
bining marks are allocated in the Combining Diacritical Marks for Symbols block, to dis-
tinguish them from diacritic marks applied primarily to letters.

Enclosing Combining Marks. Figure 2-17 shows examples of combining enclosing marks
for symbols. The combination of an enclosing mark with a base character has the appear-
ance of a symbol. As discussed in “Properties” later in this section, it is best to limit the use
of combining enclosing marks to characters that encode symbols. A few symbol characters
are intended primarily for use with enclosing combining marks. For example, U+2139
information source is a symbol intended for use with U+20DD combining enclosing

circle or U+20E2 combining enclosing screen. U+2621 caution sign is a winding
road symbol that can be used in combination with U+20E4 combining enclosing

upward pointing triangle or U+20DF combining enclosing diamond.

Script-Specific Combining Characters. Some scripts, such as Hebrew, Arabic, and the
scripts of India and Southeast Asia, have both spacing and nonspacing combining charac-
ters specific to those scripts. Many of these combining characters encode vowel letters. As
such, they are not generally referred to as diacritics, but may have script-specific terminol-
ogy such as harakat (Arabic) or matra (Devanagari). See Section 7.9, Combining Marks.

Sequence of Base Characters and Diacritics

In the Unicode Standard, all combining characters are to be used in sequence following the
base characters to which they apply. The sequence of Unicode characters <U+0061 “a”
latin small letter a, U+0308 “!”combining diaeresis, U+0075 “u” latin small let-

ter u> unambiguously represents “äu” and not “aü”, as shown in Figure 2-18.

Ordering. The ordering convention used by the Unicode Standard—placing combining
marks after the base character to which they apply—is consistent with the logical order of
combining characters in Semitic and Indic scripts, the great majority of which (logically or
phonetically) follow the base characters with which they are associated. This convention
also conforms to the way modern font technology handles the rendering of nonspacing
graphical forms (glyphs), so that mapping from character memory representation order to
font rendering order is simplified. It is different from the convention used in the biblio-
graphic standard ISO 5426.

Figure 2-17. Combining Enclosing Marks for Symbols

Figure 2-18. Sequence of Base Characters and Diacritics

+

26A1

2615

20E4

20E0

2139

2621

20DD

20DF

→$

$

$

$+

+

+→

→

→

ℹ ℹ

a + ¨ + u
 0061 0308 0075

äu (not aü)$ →
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.11 Combining Characters 43
Indic Vowel Signs. Some Indic vowel signs are rendered to the left of a consonant letter or
consonant cluster, even though their logical order in the Unicode encoding follows the con-
sonant letter. In the charts, these vowels are depicted to the left of dotted circles (see
Figure 2-19). The coding of these vowels in pronunciation order and not in visual order is
consistent with the ISCII standard.

Properties. A sequence of a base character plus one or more combining characters gener-
ally has the same properties as the base character. For example, “A” followed by “ˆ” has the
same properties as “Â”. For this reason, most Unicode algorithms ensure that such
sequences behave the same way as the corresponding base character. However, when the
combining character is an enclosing combining mark—in other words, when its
General_Category value is Me—the resulting sequence has the appearance of a symbol. In
Figure 2-20, enclosing the exclamation mark with U+20E4 combining enclosing upward

pointing triangle produces a sequence that looks like U+26A0 warning sign.

Because the properties of U+0021 exclamation mark are that of a punctuation character,
they are different from those of U+26A0 warning sign. For example, the two will behave
differently for line breaking. To avoid unexpected results, it is best to limit the use of com-
bining enclosing marks to characters that encode symbols. For that reason, the warning
sign is separately encoded as a miscellaneous symbol in the Unicode Standard and does not
have a decomposition.

Multiple Combining Characters

In some instances, more than one diacritical mark is applied to a single base character (see
Figure 2-21). The Unicode Standard does not restrict the number of combining characters
that may follow a base character. The following discussion summarizes the default treat-
ment of multiple combining characters. (For further discussion, see Section 3.6, Combina-
tion.)

If the combining characters can interact typographically—for example, U+0304 combin-

ing macron and U+0308 combining diaeresis—then the order of graphic display is

Figure 2-19. Reordered Indic Vowel Signs

Figure 2-20. Properties and Combining Character Sequences

Figure 2-21. Stacking Sequences

” + Á Á”
092B 093F

→$

0021 20E4 26A0

→+ ≠$

Characters Glyphs

a
˙

¨ ˜
ˆ
ä̃

ˆ˙0061 0308 0303 0323 032D

0E02 0E36 0E49
+

+ + + +

+

$ $ $ $

$ $

→

→

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

44 General Structure
determined by the order of coded characters (see Table 2-5). By default, the diacritics or
other combining characters are positioned from the base character’s glyph outward. Com-
bining characters placed above a base character will be stacked vertically, starting with the
first encountered in the logical store and continuing for as many marks above as are
required by the character codes following the base character. For combining characters
placed below a base character, the situation is reversed, with the combining characters
starting from the base character and stacking downward.

When combining characters do not interact typographically, the relative ordering of con-
tiguous combining marks cannot result in any visual distinction and thus is insignificant.

Another example of multiple combining characters above the base character can be found
in Thai, where a consonant letter can have above it one of the vowels U+0E34 through
U+0E37 and, above that, one of four tone marks U+0E48 through U+0E4B. The order of
character codes that produces this graphic display is base consonant character + vowel char-
acter + tone mark character, as shown in Figure 2-21.

Many combining characters have specific typographical traditions that provide detailed
rules for the expected rendering. These rules override the default stacking behavior. For
example, certain combinations of combining marks are sometimes positioned horizontally
rather than stacking or by ligature with an adjacent nonspacing mark (see Table 2-6). When
positioned horizontally, the order of codes is reflected by positioning in the predominant
direction of the script with which the codes are used. For example, in a left-to-right script,
horizontal accents would be coded from left to right. In Table 2-6, the top example is cor-
rect and the bottom example is incorrect.

Such override behavior is associated with specific scripts or alphabets. For example, when
used with the Greek script, the “breathing marks” U+0313 combining comma above

(psili) and U+0314 combining reversed comma above (dasia) require that, when used
together with a following acute or grave accent, they be rendered side-by-side rather than

Table 2-5. Interaction of Combining Characters

LATIN SMALL LETTER A WITH TILDE
LATIN SMALL LETTER A + COMBINING TILDE

LATIN SMALL LETTER A WITH DOT ABOVE
LATIN SMALL LETTER A + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A WITH DOT BELOW + COMBINING TILDE
LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING TILDE

LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE
LATIN SMALL LETTER A WITH CIRCUMFLEX + COMBINING ACUTE
LATIN SMALL LETTER A + COMBINING CIRCUMFLEX + COMBINING ACUTE

LATIN SMALL LETTER A ACUTE + COMBINING CIRCUMFLEX
LATIN SMALL LETTER A + COMBINING ACUTE + COMBINING CIRCUMFLEX

LATIN SMALL LETTER A + COMBINING DOT ABOVE + COMBINING DOT BELOW

Glyph Equivalent Sequences

LATIN SMALL LETTER A WITH DOT BELOW + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH DOT ABOVE + COMBINING DOT BELOW
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.11 Combining Characters 45
the accent marks being stacked above the breathing marks. The order of codes here is base
character code + breathing mark code + accent mark code. This example demonstrates the
script-dependent or writing-system-dependent nature of rendering combining diacritical
marks.

For additional examples of script-specific departure from default stacking of sequences of
combining marks, see the discussion of positioning of multiple points and marks in
Section 8.1, Hebrew, or the discussion of nondefault placement of Arabic vowel marks
accompanying Figure 8-5 in Section 8.2, Arabic.

The Unicode Standard specifies default stacking behavior to offer guidance about which
character codes are to be used in which order to represent the text, so that texts containing
multiple combining marks can be interchanged reliably. The Unicode Standard does not
aim to regulate or restrict typographical tradition.

Ligated Multiple Base Characters

When the glyphs representing two base characters merge to form a ligature, the combining
characters must be rendered correctly in relation to the ligated glyph (see Figure 2-22).
Internally, the software must distinguish between the nonspacing marks that apply to posi-
tions relative to the first part of the ligature glyph and those that apply to the second part.
(For a discussion of general methods of positioning nonspacing marks, see Section 5.12,
Strategies for Handling Nonspacing Marks.)

For more information, see “Application of Combining Marks” in Section 3.11, Normaliza-
tion Forms.

Ligated base characters with multiple combining marks do not commonly occur in most
scripts. However, in some scripts, such as Arabic, this situation occurs quite often when
vowel marks are used. It arises because of the large number of ligatures in Arabic, where
each element of a ligature is a consonant, which in turn can have a vowel mark attached to
it. Ligatures can even occur with three or more characters merging; vowel marks may be
attached to each part.

Exhibiting Nonspacing Marks in Isolation

Nonspacing combining marks used by the Unicode Standard may be exhibited in apparent
isolation by applying them to U+00A0 no-break space. This convention might be
employed, for example, when talking about the combining mark itself as a mark, rather

Table 2-6. Nondefault Stacking

Figure 2-22. Ligated Multiple Base Characters

GREEK SMALL LETTER ALPHA
+ COMBINING COMMA ABOVE (psili)
+ COMBINING ACUTE ACCENT (oxia)

GREEK SMALL LETTER ALPHA
+ COMBINING ACUTE ACCENT (oxia)
+ COMBINING COMMA ABOVE (psili)

This is
correct

This is
incorrect

0066

f $ $ →+ ˜ i+ + . fĩ.
0303 0069 0323
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

46 General Structure
than using it in its normal way in text (that is, applied as an accent to a base letter or in
other combinations).

Prior to Version 4.1 of the Unicode Standard, the standard recommended the use of
U+0020 space for display of isolated combining marks. This practice is no longer recom-
mended because of potential conflicts with the handling of sequences of U+0020 space

characters in such contexts as XML. For additional ways of displaying some diacritical
marks, see “Spacing Clones of Diacritics” in Section 7.9, Combining Marks.

“Characters” and Grapheme Clusters

End users have various concepts about what constitutes a letter or “character” in the writ-
ing system for their language or languages. The precise scope of these end-user “characters”
depends on the particular written language and the orthography it uses. In addition to the
many instances of accented letters, they may extend to digraphs such as Slovak “ch”, tri-
graphs or longer combinations, and sequences using spacing letter modifiers, such as “kw”.
Such concepts are often important for processes such as collation, for the definition of
characters in regular expressions, and for counting “character” positions within text. In
instances such as these, what the user thinks of as a character may affect how the collation
or regular expression will be defined or how the “characters” will be counted. Words and
other higher-level text elements generally do not split within elements that a user thinks of
as a character, even when the Unicode representation of them may consist of a sequence of
encoded characters.

The variety of these end-user-perceived characters is quite great—particularly for digraphs,
ligatures, or syllabic units. Furthermore, it depends on the particular language and writing
system that may be involved. Despite this variety, however, the core concept “characters
that should be kept together” can be defined for the Unicode Standard in a language-inde-
pendent way. This core concept is known as a grapheme cluster, and it consists of any com-
bining character sequence that contains only nonspacing combining marks or any sequence
of characters that constitutes a Hangul syllable (possibly followed by one or more nonspac-
ing marks). An implementation operating on such a cluster would almost never want to
break between its elements for rendering, editing, or other such text processes; the graph-
eme cluster is treated as a single unit. Unicode Standard Annex #29, “Unicode Text Seg-
mentation,” provides a complete formal definition of a grapheme cluster and discusses its
application in the context of editing and other text processes. Implementations also may
tailor the definition of a grapheme cluster, so that under limited circumstances, particular
to one written language or another, the grapheme cluster may more closely pertain to what
end users think of as “characters” for that language.

2.12 Equivalent Sequences and Normalization
In cases involving two or more sequences considered to be equivalent, the Unicode Stan-
dard does not prescribe one particular sequence as being the correct one; instead, each
sequence is merely equivalent to the others. Figure 2-23 illustrates the two major forms of
equivalent sequences formally defined by the Unicode Standard. In the first example, the
sequences are canonically equivalent. Both sequences should display and be interpreted the
same way. The second and third examples illustrate different compatibility sequences.
Compatible-equivalent sequences may have format differences in display and may be inter-
preted differently in some contexts.

If an application or user attempts to distinguish between canonically equivalent sequences,
as shown in the first example in Figure 2-23, there is no guarantee that other applications
would recognize the same distinctions. To prevent the introduction of interoperability
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.12 Equivalent Sequences and Normalization 47
problems between applications, such distinctions must be avoided wherever possible. Mak-
ing distinctions between compatibly equivalent sequences is less problematical. However,
in restricted contexts, such as the use of identifiers, avoiding compatibly equivalent
sequences reduces possible security issues. See Unicode Technical Report #36, “Unicode
Security Considerations.”

Normalization

Where a unique representation is required, a normalized form of Unicode text can be used
to eliminate unwanted distinctions. The Unicode Standard defines four normalization
forms: Normalization Form D (NFD), Normalization Form KD (NFKD), Normalization
Form C (NFC), and Normalization Form KC (NFKC). Roughly speaking, NFD and NFKD
decompose characters where possible, while NFC and NFKC compose characters where
possible. For more information, see Unicode Standard Annex #15, “Unicode Normaliza-
tion Forms,” and Section 3.11, Normalization Forms.

A key part of normalization is to provide a unique canonical order for visually nondistinct
sequences of combining characters. Figure 2-24 shows the effect of canonical ordering for
multiple combining marks applied to the same base character.

In the first row of Figure 2-24, the two sequences are visually nondistinct and, therefore,
equivalent. The sequence on the right has been put into canonical order by reordering in
ascending order of the Canonical_Combining_Class (ccc) values. The ccc values are shown
below each character. The second row of Figure 2-24 shows an example where combining
marks interact typographically—the two sequences have different stacking order, and the
order of combining marks is significant. Because the two combining marks have been given

Figure 2-23. Equivalent Sequences

Figure 2-24. Canonical Ordering

@̈B + Ä B + A +
LJ + A L + J + A

2 + ¼ 2 + 1 + ⁄ + 4≈

≡
≈

 0031 2044 00340032 00BC 0032

 01C7 0041 004C 004A 0041

 0042 00C4 0042 0041 0308

A + ˛ + ´

A + ´ + ¨

0041

A + ´ + ˛

A + ¨ + ´

0301 0328

0041 0301 0308

0301

03010308

0328

non-interacting

interacting

ccc=0

ccc=230ccc=230

ccc=230 ccc=230 ccc=230 ccc=230

ccc=202 ccc=202ccc=0 ccc=0

ccc=0

0041

0041

$ $ $ $

$ $ $ $
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

48 General Structure
the same combining class, their ordering is retained under canonical reordering. Thus the
two sequences in the second row are not equivalent.

Decompositions

Precomposed characters are formally known as decomposables, because they have decom-
positions to one or more other characters. There are two types of decompositions:

• Canonical. The character and its decomposition should be treated as essentially
equivalent.

• Compatibility. The decomposition may remove some information (typically
formatting information) that is important to preserve in particular contexts.

Types of Decomposables. Conceptually, a decomposition implies reducing a character to
an equivalent sequence of constituent parts, such as mapping an accented character to a
base character followed by a combining accent. The vast majority of nontrivial decomposi-
tions are indeed a mapping from a character code to a character sequence. However, in a
small number of exceptional cases, there is a mapping from one character to another char-
acter, such as the mapping from ohm to capital omega. Finally, there are the “trivial”
decompositions, which are simply a mapping of a character to itself. They are really an
indication that a character cannot be decomposed, but are defined so that all characters
formally have a decomposition. The definition of decomposable is written to encompass
only the nontrivial types of decompositions; therefore these characters are considered non-
decomposable.

In summary, three types of characters are distinguished based on their decomposition
behavior:

• Canonical decomposable. A character that is not identical to its canonical
decomposition.

• Compatibility decomposable. A character whose compatibility decomposition is
not identical to its canonical decomposition.

• Nondecomposable. A character that is identical to both its canonical decomposi-
tion and its compatibility decomposition. In other words, the character has
trivial decompositions (decompositions to itself). Loosely speaking, these char-
acters are said to have “no decomposition,” even though, for completeness, the
algorithm that defines decomposition maps such characters to themselves.

Because of the way decompositions are defined, a character cannot have a nontrivial
canonical decomposition while having a trivial compatibility decomposition. Characters
with a trivial compatibility decomposition are therefore always nondecomposables.

Examples. Figure 2-25 illustrates these three types. Compatibility decompositions that are
redundant because they are identical to the canonical decompositions are not shown. The
figure illustrates two important points:

• Decompositions may be to single characters or to sequences of characters.
Decompositions to a single character, also known as singleton decompositions,
are seen for the ohm sign and the halfwidth katakana ka in Figure 2-25. Because
of examples like these, decomposable characters in Unicode do not always con-
sist of obvious, separate parts; one can know their status only by examining the
data tables for the standard.

• A very small number of characters are both canonical and compatibility
decomposable. The example shown in Figure 2-25 is for the Greek hooked upsi-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.12 Equivalent Sequences and Normalization 49
lon symbol with an acute accent. It has a canonical decomposition to one
sequence and a compatibility decomposition to a different sequence.

For more precise definitions of these terms, see Chapter 3, Conformance.

Non-decomposition of Overlaid Diacritics

Most characters that one thinks of as being a letter “plus accent” have formal decomposi-
tions in the Unicode Standard. For example, see the canonical decomposable U+00C1
latin capital letter a with acute shown in Figure 2-25.

Based on that pattern for accented letters, implementers often also expect to encounter for-
mal decompositions for characters which use various overlaid diacritics such as slashes and
bars to form new Latin (or Cyrillic) letters. For example, one might expect a decomposition
for U+00D8 latin capital letter o with stroke involving U+0338 combining long

solidus overlay.

However, such decompositions involving overlaid diacritics are not formally defined in the
Unicode Standard. For historical and implementation reasons, there are no decomposi-
tions for characters with overlaid diacritics such as slashes and bars, nor for most diacritic
hooks, swashes, tails, and other similar modifications to the graphic form of a base charac-
ter. Such characters include such prototypical overlaid diacritic letters as U+0268 latin

small letter i with stroke, but also characters with hooks and descenders, such as
U+0188 latin small letter c with hook, U+049B cyrillic small letter ka with

descender, and U+0499 cyrillic small letter ze with descender.

The three exceptional attached diacritics which are regularly decomposed are U+0327
combining cedilla, U+0328 combining ogonek, and U+031B combining horn (used
in Vietnamese letters).

One cannot determine the decomposition status of a Latin letter from its Unicode name,
despite the existence of phrases such as “...with acute” or “...with stroke”. The norma-
tive decomposition mappings listed in the Unicode Character Database are the only formal
definition of decomposition status.

Figure 2-25. Types of Decomposables

2126 03A9 FF76 30AB

0041

a
0061

Nondecomposables

Canonical decomposables Compatibility decomposables

Á
00C1

A
0041

03D203D3

03D2

03A5

03D3

006B3384

0301

0301

0301

0301

}

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

50 General Structure
Because the Unicode characters with overlaid diacritics or similar modifications to their
base form shapes have no formal decompositions, some kinds of text processing that would
ordinarily use Normalization Form D (NFD) internally to separate base letters from
accents may end up simulating decompositions instead. Effectively, this processing treats
overlaid diacritics as if they were represented by a separately encoded combining mark. For
example, a common operation in searching or matching is to sort (or match) while ignor-
ing accents and diacritics on letters. This is easy to do with characters that formally decom-
pose; the text is decomposed, and then the combining marks for the accents are ignored.
However, for letters with overlaid diacritics, the effect of ignoring the diacritic has to be
simulated instead with data tables that go beyond simple use of Unicode decomposition
mappings.

Security Issue. The lack of formal decompositions for characters with overlaid diacritics
means that there are increased opportunities for spoofing involving such characters. The
display of a base letter plus a combining overlaid mark such as U+0335 combining short

stroke overlay may look the same as the encoded base letter with bar diacritic, but the
two sequences are not canonically equivalent and would not be folded together by Unicode
normalization.

For more information and data for handling these confusable sequences involving overlaid
diacritics, see Unicode Technical Report #36, “Unicode Security Considerations.”

2.13 Special Characters and Noncharacters
The Unicode Standard includes a small number of important characters with special
behavior; some of them are introduced in this section. It is important that implementa-
tions treat these characters properly. For a list of these and similar characters, see
Section 4.12, Characters with Unusual Properties; for more information about such charac-
ters, see Section 16.1, Control Codes; Section 16.2, Layout Controls; Section 16.7, Noncharac-
ters; and Section 16.8, Specials.

Special Noncharacter Code Points

The Unicode Standard contains a number of code points that are intentionally not used to
represent assigned characters. These code points are known as noncharacters. They are per-
manently reserved for internal use and should never be used for open interchange of Uni-
code text. For more information on noncharacters, see Section 16.7, Noncharacters.

Byte Order Mark (BOM)

The UTF-16 and UTF-32 encoding forms of Unicode plain text are sensitive to the byte
ordering that is used when serializing text into a sequence of bytes, such as when writing
data to a file or transferring data across a network. Some processors place the least signifi-
cant byte in the initial position; others place the most significant byte in the initial position.
Ideally, all implementations of the Unicode Standard would follow only one set of byte
order rules, but this scheme would force one class of processors to swap the byte order on
reading and writing plain text files, even when the file never leaves the system on which it
was created.

To have an efficient way to indicate which byte order is used in a text, the Unicode Standard
contains two code points, U+FEFF zero width no-break space (byte order mark) and
U+FFFE (a noncharacter), which are the byte-ordered mirror images of each other. When
a BOM is received with the opposite byte order, it will be recognized as a noncharacter and
can therefore be used to detect the intended byte order of the text. The BOM is not a con-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.14 Conforming to the Unicode Standard 51
trol character that selects the byte order of the text; rather, its function is to allow recipients
to determine which byte ordering is used in a file.

Unicode Signature. An initial BOM may also serve as an implicit marker to identify a file as
containing Unicode text. For UTF-16, the sequence FE16 FF16 (or its byte-reversed coun-
terpart, FF16 FE16) is exceedingly rare at the outset of text files that use other character
encodings. The corresponding UTF-8 BOM sequence, EF16 BB16 BF16, is also exceedingly
rare. In either case, it is therefore unlikely to be confused with real text data. The same is
true for both single-byte and multibyte encodings.

Data streams (or files) that begin with the U+FEFF byte order mark are likely to contain
Unicode characters. It is recommended that applications sending or receiving untyped data
streams of coded characters use this signature. If other signaling methods are used, signa-
tures should not be employed.

Conformance to the Unicode Standard does not require the use of the BOM as such a sig-
nature. See Section 16.8, Specials, for more information on the byte order mark and its use
as an encoding signature.

Layout and Format Control Characters

The Unicode Standard defines several characters that are used to control joining behavior,
bidirectional ordering control, and alternative formats for display. Their specific use in lay-
out and formatting is described in Section 16.2, Layout Controls.

The Replacement Character

U+FFFD replacement character is the general substitute character in the Unicode
Standard. It can be substituted for any “unknown” character in another encoding that can-
not be mapped in terms of known Unicode characters (see Section 5.3, Unknown and Miss-
ing Characters, and Section 16.8, Specials).

Control Codes

In addition to the special characters defined in the Unicode Standard for a number of pur-
poses, the standard incorporates the legacy control codes for compatibility with the ISO/
IEC 2022 framework, ASCII, and the various protocols that make use of control codes.
Rather than simply being defined as byte values, however, the legacy control codes are
assigned to Unicode code points: U+0000..U+001F, U+007F..U+009F. Those code points
for control codes must be represented consistently with the various Unicode encoding
forms when they are used with other Unicode characters. For more information on control
codes, see Section 16.1, Control Codes.

2.14 Conforming to the Unicode Standard
Conformance requirements are a set of unambiguous criteria to which a conformant
implementation of a standard must adhere, so that it can interoperate with other confor-
mant implementations. The universal scope of the Unicode Standard complicates the task
of rigorously defining such conformance requirements for all aspects of the standard. Mak-
ing conformance requirements overly confining runs the risk of unnecessarily restricting
the breadth of text operations that can be implemented with the Unicode Standard or of
limiting them to a one-size-fits-all lowest common denominator. In many cases, therefore,
the conformance requirements deliberately cover only minimal requirements, falling far
short of providing a complete description of the behavior of an implementation. Neverthe-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

52 General Structure
less, there are many core aspects of the standard for which a precise and exhaustive defini-
tion of conformant behavior is possible.

This section gives examples of both conformant and nonconformant implementation
behavior, illustrating key aspects of the formal statement of conformance requirements
found in Chapter 3, Conformance.

Characteristics of Conformant Implementations

An implementation that conforms to the Unicode Standard has the following characteris-
tics:

It treats characters according to the specified Unicode encoding form.

• The byte sequence <20 20> is interpreted as U+2020 ‘†’ dagger in the UTF-16
encoding form.

• The same byte sequence <20 20> is interpreted as the sequence of two spaces,
<U+0020, U+0020>, in the UTF-8 encoding form.

It interprets characters according to the identities, properties, and rules defined for them in
this standard.

• U+2423 is ‘’ open box, not ‘’ hiragana small i (which is the meaning of the
bytes 242316 in JIS).

• U+00F4 ‘ô’ is equivalent to U+006F ‘o’ followed by U+0302 ‘u’, but not equiva-
lent to U+0302 followed by U+006F.

• U+05D0 ‘’ followed by U+05D1 ‘’ looks like ‘’, not ‘’ when displayed.

When an implementation supports the display of Arabic, Hebrew, or other right-to-left
characters and displays those characters, they must be ordered according to the Bidirec-
tional Algorithm described in Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm.”

When an implementation supports Arabic, Devanagari, or other scripts with complex
shaping for their characters and displays those characters, at a minimum the characters are
shaped according to the relevant block descriptions. (More sophisticated shaping can be
used if available.)

Unacceptable Behavior

It is unacceptable for a conforming implementation:

To use unassigned codes.

• U+2073 is unassigned and not usable for ‘3’ (superscript 3) or any other charac-
ter.

To corrupt unsupported characters.

• U+03A1 “P” greek capital letter rho should not be changed to U+00A1
(first byte dropped), U+0050 (mapped to Latin letter P), U+A103 (bytes
reversed), or anything other than U+03A1.

To remove or alter uninterpreted code points in text that purports to be unmodified.

• U+2029 is paragraph separator and should not be dropped by applications
that do not support it.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

2.14 Conforming to the Unicode Standard 53
Acceptable Behavior

It is acceptable for a conforming implementation:

To support only a subset of the Unicode characters.

• An application might not provide mathematical symbols or the Thai script, for
example.

To transform data knowingly.

• Uppercase conversion: ‘a’ transformed to ‘A’

• Romaji to kana: ‘kyo’ transformed to

• Decomposition: U+247D ‘(10)’ decomposed to <U+0028, U+0031, U+0030,
U+0029>

To build higher-level protocols on the character set.

• Examples are defining a file format for compression of characters or for use
with rich text.

To define private-use characters.

• Examples of characters that might be defined for private use include additional
ideographic characters (gaiji) or existing corporate logo characters.

To not support the Bidirectional Algorithm or character shaping in implementations that do
not support complex scripts, such as Arabic and Devanagari.

To not support the Bidirectional Algorithm or character shaping in implementations that do
not display characters, as, for example, on servers or in programs that simply parse or trans-
code text, such as an XML parser.

Code conversion between other character encodings and the Unicode Standard will be con-
sidered conformant if the conversion is accurate in both directions.

Supported Subsets

The Unicode Standard does not require that an application be capable of interpreting and
rendering all Unicode characters so as to be conformant. Many systems will have fonts for
only some scripts, but not for others; sorting and other text-processing rules may be imple-
mented for only a limited set of languages. As a result, an implementation is able to inter-
pret a subset of characters.

The Unicode Standard provides no formalized method for identifying an implemented
subset. Furthermore, such a subset is typically different for different aspects of an imple-
mentation. For example, an application may be able to read, write, and store any Unicode
character and to sort one subset according to the rules of one or more languages (and the
rest arbitrarily), but have access to fonts for only a single script. The same implementation
may be able to render additional scripts as soon as additional fonts are installed in its envi-
ronment. Therefore, the subset of interpretable characters is typically not a static concept.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

54 General Structure
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 3

Conformance 3

This chapter defines conformance to the Unicode Standard in terms of the principles and
encoding architecture it embodies. The first section defines the format for referencing the
Unicode Standard and Unicode properties. The second section consists of the conformance
clauses, followed by sections that define more precisely the technical terms used in those
clauses. The remaining sections contain the formal algorithms that are part of confor-
mance and referenced by the conformance clause. Additional definitions and algorithms
that are part of this standard can be found in the Unicode Standard Annexes listed at the
end of Section 3.2, Conformance Requirements.

In this chapter, conformance clauses are identified with the letter C. Definitions are identi-
fied with the letter D. Bulleted items are explanatory comments regarding definitions or
subclauses.

A number of clauses and definitions have been updated from their wording in prior ver-
sions of the Unicode Standard. A detailed listing of these changes since Version 5.0, as well
as a listing of any new definitions added, is is available in Section D.2, Clause and Definition
Updates.

For information on implementing best practices, see Chapter 5, Implementation Guidelines.

3.1 Versions of the Unicode Standard
For most character encodings, the character repertoire is fixed (and often small). Once the
repertoire is decided upon, it is never changed. Addition of a new abstract character to a
given repertoire creates a new repertoire, which will be treated either as an update of the
existing character encoding or as a completely new character encoding.

For the Unicode Standard, by contrast, the repertoire is inherently open. Because Unicode
is a universal encoding, any abstract character that could ever be encoded is a potential can-
didate to be encoded, regardless of whether the character is currently known.

Each new version of the Unicode Standard supersedes the previous one, but implementa-
tions—and, more significantly, data—are not updated instantly. In general, major and
minor version changes include new characters, which do not create particular problems
with old data. The Unicode Technical Committee will neither remove nor move characters.
Characters may be deprecated, but this does not remove them from the standard or from
existing data. The code point for a deprecated character will never be reassigned to a differ-
ent character, but the use of a deprecated character is strongly discouraged. These rules
make the encoded characters of a new version backward-compatible with previous ver-
sions.

Implementations should be prepared to be forward-compatible with respect to Unicode
versions. That is, they should accept text that may be expressed in future versions of this
standard, recognizing that new characters may be assigned in those versions. Thus they
should handle incoming unassigned code points as they do unsupported characters. (See
Section 5.3, Unknown and Missing Characters.)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

56 Conformance
A version change may also involve changes to the properties of existing characters. When
this situation occurs, modifications are made to the Unicode Character Database and a new
update version is issued for the standard. Changes to the data files may alter program
behavior that depends on them. However, such changes to properties and to data files are
never made lightly. They are made only after careful deliberation by the Unicode Technical
Committee has determined that there is an error, inconsistency, or other serious problem
in the property assignments.

Stability

Each version of the Unicode Standard, once published, is absolutely stable and will never
change. Implementations or specifications that refer to a specific version of the Unicode
Standard can rely upon this stability. When implementations or specifications are
upgraded to a future version of the Unicode Standard, then changes to them may be neces-
sary. Note that even errata and corrigenda do not formally change the text of a published
version; see “Errata and Corrigenda” later in this section.

Some features of the Unicode Standard are guaranteed to be stable across versions. These
include the names and code positions of characters, their decompositions, and several
other character properties for which stability is important to implementations. See also
“Stability of Properties” in Section 3.5, Properties. The formal statement of such stability
guarantees is contained in the policies on character encoding stability found on the Uni-
code Web site. See the subsection “Policies” in Section B.6, Other Unicode Online Resources.
See the discussion of backward compatibility in section 2.5 of Unicode Standard Annex
#31, “Unicode Identifier and Pattern Syntax,” and the subsection “Interacting with Down-
level Systems” in Section 5.3, Unknown and Missing Characters.

Version Numbering

Version numbers for the Unicode Standard consist of three fields, denoting the major ver-
sion, the minor version, and the update version, respectively. For example, “Unicode 5.2.0”
indicates major version 5 of the Unicode Standard, minor version 2 of Unicode 5, and
update version 0 of minor version Unicode 5.2.

Additional information on the current and past versions of the Unicode Standard can be
found on the Unicode Web site. See the subsection “Versions” in Section B.6, Other Unicode
Online Resources. The online document contains the precise list of contributing files from
the Unicode Character Database and the Unicode Standard Annexes, which are formally
part of each version of the Unicode Standard.

Major and Minor Versions. Major and minor versions have significant additions to the
standard, including, but not limited to, additions to the repertoire of encoded characters.
Both are published as an updated core specification, together with associated updates to
Unicode Standard Annexes and the Unicode Character Database. Such versions consolidate
all errata and corrigenda and supersede any prior documentation for major, minor, or
update versions.

A major version typically is of more importance to implementations; however, even update
versions may be important to particular companies or other organizations. Major and
minor versions are often synchronization points with related standards, such as with ISO/
IEC 10646.

Prior to Version 5.2, minor versions of the standard were published as online amendments
expressed as textual changes to the previous version, rather than as fully consolidated new
editions of the core specification.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.1 Versions of the Unicode Standard 57
Update Version. An update version represents relatively small changes to the standard, typ-
ically updates to the data files of the Unicode Character Database. An update version never
involves any additions to the character repertoire. These versions are published as modifi-
cations to the data files, and, on occasion, include documentation of small updates for
selected errata or corrigenda.

Formally, each new version of the Unicode Standard supersedes all earlier versions. How-
ever, because of the differences in the way versions are documented, update versions gener-
ally do not obsolete the documentation of the immediately prior version of the standard.

Errata and Corrigenda

From time to time it may be necessary to publish errata or corrigenda to the Unicode Stan-
dard. Such errata and corrigenda will be published on the Unicode Web site. See
Section B.6, Other Unicode Online Resources, for information on how to report errors in the
standard.

Errata. Errata correct errors in the text or other informative material, such as the represen-
tative glyphs in the code charts. See the subsection “Updates and Errata” in Section B.6,
Other Unicode Online Resources. Whenever a new major or minor version of the standard is
published, all errata up to that point are incorporated into the core specification, code
charts, or other components of the standard.

Corrigenda. Occasionally errors may be important enough that a corrigendum is issued
prior to the next version of the Unicode Standard. Such a corrigendum does not change the
contents of the previous version. Instead, it provides a mechanism for an implementation,
protocol, or other standard to cite the previous version of the Unicode Standard with the
corrigendum applied. If a citation does not specifically mention the corrigendum, the cor-
rigendum does not apply. For more information on citing corrigenda, see “Versions” in
Section B.6, Other Unicode Online Resources.

References to the Unicode Standard

The documents associated with the major, minor, and update versions are called the major
reference, minor reference, and update reference, respectively. For example, consider Uni-
code Version 3.1.1. The major reference for that version is The Unicode Standard, Version
3.0 (ISBN 0-201-61633-5). The minor reference is Unicode Standard Annex #27, “The Uni-
code Standard, Version 3.1.” The update reference is Unicode Version 3.1.1. The exact list of
contributory files, Unicode Standard Annexes, and Unicode Character Database files can
be found at Enumerated Version 3.1.1.

The reference for this version, Version 6.2.0, of the Unicode Standard, is

The Unicode Consortium. The Unicode Standard, Version 6.2.0, defined
by: The Unicode Standard, Version 6.2 (Mountain View, CA: The Uni-
code Consortium, 2012. ISBN 978-1-936213-07-8)

References to an update (or minor version prior to Version 5.2.0) include a reference to
both the major version and the documents modifying it. For the standard citation format
for other versions of the Unicode Standard, see “Versions” in Section B.6, Other Unicode
Online Resources.

Precision in Version Citation

Because Unicode has an open repertoire with relatively frequent updates, it is important
not to over-specify the version number. Wherever the precise behavior of all Unicode char-
acters needs to be cited, the full three-field version number should be used, as in the first
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

58 Conformance
example below. However, trailing zeros are often omitted, as in the second example. In such
a case, writing 3.1 is in all respects equivalent to writing 3.1.0.

1. The Unicode Standard, Version 3.1.1

2. The Unicode Standard, Version 3.1

3. The Unicode Standard, Version 3.0 or later

4. The Unicode Standard

Where some basic level of content is all that is important, phrasing such as in the third
example can be used. Where the important information is simply the overall architecture
and semantics of the Unicode Standard, the version can be omitted entirely, as in example 4.

References to Unicode Character Properties

Properties and property values have defined names and abbreviations, such as

Property: General_Category (gc)

Property Value: Uppercase_Letter (Lu)

To reference a given property and property value, these aliases are used, as in this example:

The property value Uppercase_Letter from the General_Category prop-
erty, as specified in Version 6.2.0 of the Unicode Standard.

Then cite that version of the standard, using the standard citation format that is provided
for each version of the Unicode Standard.

When referencing multi-word properties or property values, it is permissible to omit the
underscores in these aliases or to replace them by spaces.

When referencing a Unicode character property, it is customary to prepend the word “Uni-
code” to the name of the property, unless it is clear from context that the Unicode Standard
is the source of the specification.

References to Unicode Algorithms

A reference to a Unicode algorithm must specify the name of the algorithm or its abbrevia-
tion, followed by the version of the Unicode Standard, as in this example:

The Unicode Bidirectional Algorithm, as specified in Version 6.2.0 of the
Unicode Standard.

See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,”
(http://www.unicode.org/reports/tr9/tr9-25.html)

Where algorithms allow tailoring, the reference must state whether any such tailorings were
applied or are applicable. For algorithms contained in a Unicode Standard Annex, the doc-
ument itself and its location on the Unicode Web site may be cited as the location of the
specification.

When referencing a Unicode algorithm it is customary to prepend the word “Unicode” to
the name of the algorithm, unless it is clear from the context that the Unicode Standard is
the source of the specification.

Omitting a version number when referencing a Unicode algorithm may be appropriate
when such a reference is meant as a generic reference to the overall algorithm. Such a
generic reference may also be employed in the sense of latest available version of the algo-
rithm. However, for specific and detailed conformance claims for Unicode algorithms,
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.2 Conformance Requirements 59
generic references are generally not sufficient, and a full version number must accompany
the reference.

3.2 Conformance Requirements
This section presents the clauses specifying the formal conformance requirements for pro-
cesses implementing Version 6.2 of the Unicode Standard.

In addition to this core specification, the Unicode Standard, Version 6.2.0, includes a num-
ber of Unicode Standard Annexes (UAXes) and the Unicode Character Database. At the
end of this section there is a list of those annexes that are considered an integral part of the
Unicode Standard, Version 6.2.0, and therefore covered by these conformance require-
ments.

The Unicode Character Database contains an extensive specification of normative and
informative character properties completing the formal definition of the Unicode Stan-
dard. See Chapter 4, Character Properties, for more information.

Not all conformance requirements are relevant to all implementations at all times because
implementations may not support the particular characters or operations for which a given
conformance requirement may be relevant. See Section 2.14, Conforming to the Unicode
Standard, for more information.

In this section, conformance clauses are identified with the letter C.

Code Points Unassigned to Abstract Characters

C1 A process shall not interpret a high-surrogate code point or a low-surrogate code point
as an abstract character.

• The high-surrogate and low-surrogate code points are designated for surrogate
code units in the UTF-16 character encoding form. They are unassigned to any
abstract character.

C2 A process shall not interpret a noncharacter code point as an abstract character.

• The noncharacter code points may be used internally, such as for sentinel val-
ues or delimiters, but should not be exchanged publicly.

C3 A process shall not interpret an unassigned code point as an abstract character.

• This clause does not preclude the assignment of certain generic semantics to
unassigned code points (for example, rendering with a glyph to indicate the
position within a character block) that allow for graceful behavior in the pres-
ence of code points that are outside a supported subset.

• Unassigned code points may have default property values. (See D26.)

• Code points whose use has not yet been designated may be assigned to abstract
characters in future versions of the standard. Because of this fact, due care in
the handling of generic semantics for such code points is likely to provide better
robustness for implementations that may encounter data based on future ver-
sions of the standard.

Interpretation

Interpretation of characters is the key conformance requirement for the Unicode Standard,
as it is for any coded character set standard. In legacy character set standards, the single
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

60 Conformance
conformance requirement is generally stated in terms of the interpretation of bit patterns
used as characters. Conforming to a particular standard requires interpreting bit patterns
used as characters according to the list of character names and the glyphs shown in the
associated code table that form the bulk of that standard.

Interpretation of characters is a more complex issue for the Unicode Standard. It includes
the core issue of interpreting code points used as characters according to the names and
representative glyphs shown in the code charts, of course. However, the Unicode Standard
also specifies character properties, behavior, and interactions between characters. Such
information about characters is considered an integral part of the “character semantics
established by this standard.”

Information about the properties, behavior, and interactions between Unicode characters
is provided in the Unicode Character Database and in the Unicode Standard Annexes.
Additional information can be found throughout the other chapters of this core specifica-
tion for the Unicode Standard. However, because of the need to keep extended discussions
of scripts, sets of symbols, and other characters readable, material in other chapters is not
always labeled as to its normative or informative status. In general, supplementary seman-
tic information about a character is considered normative when it contributes directly to
the identification of the character or its behavior. Additional information provided about
the history of scripts, the languages which use particular characters, and so forth, is merely
informative. Thus, for example, the rules about Devanagari rendering specified in
Section 9.1, Devanagari, or the rules about Arabic character shaping specified in Section 8.2,
Arabic, are normative: they spell out important details about how those characters behave
in conjunction with each other that is necessary for proper and complete interpretation of
the respective Unicode characters covered in each section.

C4 A process shall interpret a coded character sequence according to the character seman-
tics established by this standard, if that process does interpret that coded character
sequence.

• This restriction does not preclude internal transformations that are never visi-
ble external to the process.

C5 A process shall not assume that it is required to interpret any particular coded character
sequence.

• Processes that interpret only a subset of Unicode characters are allowed; there is
no blanket requirement to interpret all Unicode characters.

• Any means for specifying a subset of characters that a process can interpret is
outside the scope of this standard.

• The semantics of a private-use code point is outside the scope of this standard.

• Although these clauses are not intended to preclude enumerations or specifica-
tions of the characters that a process or system is able to interpret, they do sep-
arate supported subset enumerations from the question of conformance. In
actuality, any system may occasionally receive an unfamiliar character code that
it is unable to interpret.

C6 A process shall not assume that the interpretations of two canonical-equivalent charac-
ter sequences are distinct.

• The implications of this conformance clause are twofold. First, a process is
never required to give different interpretations to two different, but canonical-
equivalent character sequences. Second, no process can assume that another
process will make a distinction between two different, but canonical-equivalent
character sequences.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.2 Conformance Requirements 61
• Ideally, an implementation would always interpret two canonical-equivalent
character sequences identically. There are practical circumstances under which
implementations may reasonably distinguish them.

• Even processes that normally do not distinguish between canonical-equivalent
character sequences can have reasonable exception behavior. Some examples of
this behavior include graceful fallback processing by processes unable to sup-
port correct positioning of nonspacing marks; “Show Hidden Text” modes that
reveal memory representation structure; and the choice of ignoring collating
behavior of combining character sequences that are not part of the repertoire of
a specified language (see Section 5.12, Strategies for Handling Nonspacing
Marks).

Modification

C7 When a process purports not to modify the interpretation of a valid coded character
sequence, it shall make no change to that coded character sequence other than the possi-
ble replacement of character sequences by their canonical-equivalent sequences.

• Replacement of a character sequence by a compatibility-equivalent sequence
does modify the interpretation of the text.

• Replacement or deletion of a character sequence that the process cannot or
does not interpret does modify the interpretation of the text.

• Changing the bit or byte ordering of a character sequence when transforming it
between different machine architectures does not modify the interpretation of
the text.

• Changing a valid coded character sequence from one Unicode character encod-
ing form to another does not modify the interpretation of the text.

• Changing the byte serialization of a code unit sequence from one Unicode
character encoding scheme to another does not modify the interpretation of
the text.

• If a noncharacter that does not have a specific internal use is unexpectedly
encountered in processing, an implementation may signal an error or replace
the noncharacter with U+FFFD replacement character. If the implementa-
tion chooses to replace, delete or ignore a noncharacter, such an action consti-
tutes a modification in the interpretation of the text. In general, a noncharacter
should be treated as an unassigned code point. For example, an API that
returned a character property value for a noncharacter would return the same
value as the default value for an unassigned code point.

• Note that security problems can result if noncharacter code points are removed
from text received from external sources. For more information, see
Section 16.7, Noncharacters, and Unicode Technical Report #36, “Unicode Secu-
rity Considerations.”

• All processes and higher-level protocols are required to abide by conformance
clause C7 at a minimum. However, higher-level protocols may define addi-
tional equivalences that do not constitute modifications under that protocol.
For example, a higher-level protocol may allow a sequence of spaces to be
replaced by a single space.

• There are important security issues associated with the correct interpretation
and display of text. For more information, see Unicode Technical Report #36,
“Unicode Security Considerations.”
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

62 Conformance
Character Encoding Forms

C8 When a process interprets a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall interpret that code unit sequence according to the corre-
sponding code point sequence.

• The specification of the code unit sequences for UTF-8 is given in D92.

• The specification of the code unit sequences for UTF-16 is given in D91.

• The specification of the code unit sequences for UTF-32 is given in D90.

C9 When a process generates a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall not emit ill-formed code unit sequences.

• The definition of each Unicode character encoding form specifies the ill-
formed code unit sequences in the character encoding form. For example, the
definition of UTF-8 (D92) specifies that code unit sequences such as <C0 AF>
are ill-formed.

C10 When a process interprets a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall treat ill-formed code unit sequences as an error condition
and shall not interpret such sequences as characters.

• For example, in UTF-8 every code unit of the form 110xxxx2 must be followed
by a code unit of the form 10xxxxxx2. A sequence such as 110xxxxx2 0xxxxxxx2
is ill-formed and must never be generated. When faced with this ill-formed
code unit sequence while transforming or interpreting text, a conformant pro-
cess must treat the first code unit 110xxxxx2 as an illegally terminated code unit
sequence—for example, by signaling an error, filtering the code unit out, or
representing the code unit with a marker such as U+FFFD replacement

character.

• Conformant processes cannot interpret ill-formed code unit sequences. How-
ever, the conformance clauses do not prevent processes from operating on code
unit sequences that do not purport to be in a Unicode character encoding form.
For example, for performance reasons a low-level string operation may simply
operate directly on code units, without interpreting them as characters. See,
especially, the discussion under D89.

• Utility programs are not prevented from operating on “mangled” text. For
example, a UTF-8 file could have had CRLF sequences introduced at every 80
bytes by a bad mailer program. This could result in some UTF-8 byte sequences
being interrupted by CRLFs, producing illegal byte sequences. This mangled
text is no longer UTF-8. It is permissible for a conformant program to repair
such text, recognizing that the mangled text was originally well-formed UTF-8
byte sequences. However, such repair of mangled data is a special case, and it
must not be used in circumstances where it would cause security problems.
There are important security issues associated with encoding conversion, espe-
cially with the conversion of malformed text. For more information, see Uni-
code Technical Report #36, “Unicode Security Considerations.”

Character Encoding Schemes

C11 When a process interprets a byte sequence which purports to be in a Unicode character
encoding scheme, it shall interpret that byte sequence according to the byte order and
specifications for the use of the byte order mark established by this standard for that
character encoding scheme.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.2 Conformance Requirements 63
• Machine architectures differ in ordering in terms of whether the most signifi-
cant byte or the least significant byte comes first. These sequences are known as
“big-endian” and “little-endian” orders, respectively.

• For example, when using UTF-16LE, pairs of bytes are interpreted as UTF-16
code units using the little-endian byte order convention, and any initial <FF
FE> sequence is interpreted as U+FEFF zero width no-break space (part of
the text), rather than as a byte order mark (not part of the text). (See D97.)

Bidirectional Text

C12 A process that displays text containing supported right-to-left characters or embedding
codes shall display all visible representations of characters (excluding format characters)
in the same order as if the Bidirectional Algorithm had been applied to the text, unless
tailored by a higher-level protocol as permitted by the specification.

• The Bidirectional Algorithm is specified in Unicode Standard Annex #9, “Uni-
code Bidirectional Algorithm.”

Normalization Forms

C13 A process that produces Unicode text that purports to be in a Normalization Form shall
do so in accordance with the specifications in Section 3.11, Normalization Forms.

C14 A process that tests Unicode text to determine whether it is in a Normalization Form
shall do so in accordance with the specifications in Section 3.11, Normalization Forms.

C15 A process that purports to transform text into a Normalization Form must be able to
produce the results of the conformance test specified in Unicode Standard Annex #15,
“Unicode Normalization Forms.”

• This means that when a process uses the input specified in the conformance
test, its output must match the expected output of the test.

Normative References

C16 Normative references to the Unicode Standard itself, to property aliases, to property
value aliases, or to Unicode algorithms shall follow the formats specified in Section 3.1,
Versions of the Unicode Standard.

C17 Higher-level protocols shall not make normative references to provisional properties.

• Higher-level protocols may make normative references to informative proper-
ties.

Unicode Algorithms

C18 If a process purports to implement a Unicode algorithm, it shall conform to the specifi-
cation of that algorithm in the standard, including any tailoring by a higher-level pro-
tocol as permitted by the specification.

• The term Unicode algorithm is defined at D17.

• An implementation claiming conformance to a Unicode algorithm need only
guarantee that it produces the same results as those specified in the logical
description of the process; it is not required to follow the actual described pro-
cedure in detail. This allows room for alternative strategies and optimizations
in implementation.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

64 Conformance
C19 The specification of an algorithm may prohibit or limit tailoring by a higher-level pro-
tocol. If a process that purports to implement a Unicode algorithm applies a tailoring,
that fact must be disclosed.

• For example, the algorithms for normalization and canonical ordering are not
tailorable. The Bidirectional Algorithm allows some tailoring by higher-level
protocols. The Unicode Default Case algorithms may be tailored without limi-
tation.

Default Casing Algorithms

C20 An implementation that purports to support Default Case Conversion, Default Case
Detection, or Default Caseless Matching shall do so in accordance with the definitions
and specifications in Section 3.13, Default Case Algorithms.

• A conformant implementation may perform casing operations that are differ-
ent from the default algorithms, perhaps tailored to a particular orthography,
so long as the fact that a tailoring is applied is disclosed.

Unicode Standard Annexes

The following standard annexes are approved and considered part of Version 6.2 of the
Unicode Standard. These annexes may contain either normative or informative material, or
both. Any reference to Version 6.2 of the standard automatically includes these standard
annexes.

• UAX #9: Unicode Bidirectional Algorithm, Version 6.2.0

• UAX #11: East Asian Width, Version 6.2.0

• UAX #14: Unicode Line Breaking Algorithm, Version 6.2.0

• UAX #15: Unicode Normalization Forms, Version 6.2.0

• UAX #24: Unicode Script Property, Version 6.2.0

• UAX #29: Unicode Text Segmentation, Version 6.2.0

• UAX #31: Unicode Identifier and Pattern Syntax, Version 6.2.0

• UAX #34: Unicode Named Character Sequences, Version 6.2.0

• UAX #38: Unicode Han Database (Unihan), Version 6.2.0

• UAX #41: Common References for Unicode Standard Annexes, Version 6.2.0

• UAX #42: Unicode Character Database in XML, Version 6.2.0

• UAX #44: Unicode Character Database, Version 6.2.0

• UAX #45: U-Source Ideographs

Conformance to the Unicode Standard requires conformance to the specifications con-
tained in these annexes, as detailed in the conformance clauses listed earlier in this section.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.3 Semantics 65
3.3 Semantics

Definitions

This and the following sections more precisely define the terms that are used in the confor-
mance clauses.

A small number of definitions have been updated from their wording in Version 5.0 of the
Unicode Standard. A detailed listing of these changes, as well as a listing of any new defini-
tions added since Version 5.0, is available in Section D.2, Clause and Definition Updates.

Character Identity and Semantics

D1 Normative behavior: The normative behaviors of the Unicode Standard consist of
the following list or any other behaviors specified in the conformance clauses:

• Character combination

• Canonical decomposition

• Compatibility decomposition

• Canonical ordering behavior

• Bidirectional behavior, as specified in the Unicode Bidirectional Algorithm (see
Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”)

• Conjoining jamo behavior, as specified in Section 3.12, Conjoining Jamo Behav-
ior

• Variation selection, as specified in Section 16.4, Variation Selectors

• Normalization, as specified in Section 3.11, Normalization Forms

• Default casing, as specified in Section 3.13, Default Case Algorithms

D2 Character identity: The identity of a character is established by its character name
and representative glyph in the code charts.

• A character may have a broader range of use than the most literal interpretation
of its name might indicate; the coded representation, name, and representative
glyph need to be assessed in context when establishing the identity of a charac-
ter. For example, U+002E full stop can represent a sentence period, an abbre-
viation period, a decimal number separator in English, a thousands number
separator in German, and so on. The character name itself is unique, but may
be misleading. See “Character Names” in Section 17.1, Character Names List.

• Consistency with the representative glyph does not require that the images be
identical or even graphically similar; rather, it means that both images are gen-
erally recognized to be representations of the same character. Representing the
character U+0061 latin small letter a by the glyph “X” would violate its
character identity.

D3 Character semantics: The semantics of a character are determined by its identity,
normative properties, and behavior.

• Some normative behavior is default behavior; this behavior can be overridden
by higher-level protocols. However, in the absence of such protocols, the behav-
ior must be observed so as to follow the character semantics.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

66 Conformance
• The character combination properties and the canonical ordering behavior
cannot be overridden by higher-level protocols. The purpose of this constraint
is to guarantee that the order of combining marks in text and the results of nor-
malization are predictable.

D4 Character name: A unique string used to identify each abstract character encoded in
the standard.

• The character names in the Unicode Standard match those of the English edi-
tion of ISO/IEC 10646.

• Character names are immutable and cannot be overridden; they are stable
identifiers. For more information, see Section 4.8, Name.

• The name of a Unicode character is also formally a character property in the
Unicode Character Database. Its long property alias is “Name” and its short
property alias is “na”. Its value is the unique string label associated with the
encoded character.

• The detailed specification of the Unicode character names, including rules for
derivation of some ranges of characters, is given in Section 4.8, Name. That sec-
tion also describes the relationship between the normative value of the Name
property and the contents of the corresponding data field in UnicodeData.txt
in the Unicode Character Database.

D5 Character name alias: An additional unique string identifier, other than the charac-
ter name, associated with an encoded character in the standard.

• Character name aliases are assigned when there is a serious clerical defect with
a character name, such that the character name itself may be misleading regard-
ing the identity of the character. A character name alias constitutes an alternate
identifier for the character.

• Character name aliases are also assigned to provide string identifiers for control
codes and to recognize widely used alternative names and abbreviations for
control codes, format characters and other special-use characters.

• Character name aliases are unique within the common namespace shared by
character names, character name aliases, and named character sequences.

• More than one character name alias may be assigned to a given Unicode char-
acter. For example, the control code U+000D is given a character name alias for
its ISO 6429 control function as carriage return, but is also given a character
name alias for its widely used abbreviation “CR”.

• Character name aliases are a formal, normative part of the standard and should
be distinguished from the informative, editorial aliases provided in the code
charts. See Section 17.1, Character Names List, for the notational conventions
used to distinguish the two.

D6 Namespace: A set of names together with name matching rules, so that all names are
distinct under the matching rules.

• Within a given namespace all names must be unique, although the same name
may be used with a different meaning in a different namespace.

• Character names, character name aliases, and named character sequences share
a single namespace in the Unicode Standard.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.4 Characters and Encoding 67
3.4 Characters and Encoding
D7 Abstract character: A unit of information used for the organization, control, or rep-

resentation of textual data.

• When representing data, the nature of that data is generally symbolic as
opposed to some other kind of data (for example, aural or visual). Examples of
such symbolic data include letters, ideographs, digits, punctuation, technical
symbols, and dingbats.

• An abstract character has no concrete form and should not be confused with a
glyph.

• An abstract character does not necessarily correspond to what a user thinks of
as a “character” and should not be confused with a grapheme.

• The abstract characters encoded by the Unicode Standard are known as Uni-
code abstract characters.

• Abstract characters not directly encoded by the Unicode Standard can often be
represented by the use of combining character sequences.

D8 Abstract character sequence: An ordered sequence of one or more abstract characters.

D9 Unicode codespace: A range of integers from 0 to 10FFFF16.

• This particular range is defined for the codespace in the Unicode Standard.
Other character encoding standards may use other codespaces.

D10 Code point: Any value in the Unicode codespace.

• A code point is also known as a code position.

• See D77 for the definition of code unit.

D10a Code point type: Any of the seven fundamental classes of code points in the standard:
Graphic, Format, Control, Private-Use, Surrogate, Noncharacter, Reserved.

• See Table 2-3 for a summary of the meaning and use of each class.

• For Noncharacter, see also D14 Noncharacter.

• For Reserved, see also D15 Reserved code point.

• For Private-Use, see also D49 Private-use code point.

• For Surrogate, see also D71 High-surrogate code point and D73 Low-surrogate
code point.

D11 Encoded character: An association (or mapping) between an abstract character and a
code point.

• An encoded character is also referred to as a coded character.

• While an encoded character is formally defined in terms of the mapping
between an abstract character and a code point, informally it can be thought of
as an abstract character taken together with its assigned code point.

• Occasionally, for compatibility with other standards, a single abstract character
may correspond to more than one code point—for example, “Å” corresponds
both to U+00C5 Å latin capital letter a with ring above and to U+212B
Å angstrom sign.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

68 Conformance
• A single abstract character may also be represented by a sequence of code
points—for example, latin capital letter g with acute may be represented by the
sequence <U+0047 latin capital letter g, U+0301 combining acute

accent>, rather than being mapped to a single code point.

D12 Coded character sequence: An ordered sequence of one or more code points.

• A coded character sequence is also known as a coded character representation.

• Normally a coded character sequence consists of a sequence of encoded charac-
ters, but it may also include noncharacters or reserved code points.

• Internally, a process may choose to make use of noncharacter code points in its
coded character sequences. However, such noncharacter code points may not
be interpreted as abstract characters (see conformance clause C2). Their
removal by a conformant process constitutes modification of interpretation of
the coded character sequence (see conformance clause C7).

• Reserved code points are included in coded character sequences, so that the
conformance requirements regarding interpretation and modification are
properly defined when a Unicode-conformant implementation encounters
coded character sequences produced under a future version of the standard.

Unless specified otherwise for clarity, in the text of the Unicode Standard the term character
alone designates an encoded character. Similarly, the term character sequence alone desig-
nates a coded character sequence.

D13 Deprecated character: A coded character whose use is strongly discouraged.

• Deprecated characters are retained in the standard indefinitely, but should not
be used. They are retained in the standard so that previously conforming data
stay conformant in future versions of the standard.

• Deprecated characters typically consist of characters with significant architec-
tural problems, or ones which cause implementation problems. Some examples
of characters deprecated on these grounds include tag characters (see
Section 16.9, Deprecated Tag Characters) and the alternate format characters
(see Section 16.3, Deprecated Format Characters).

• Deprecated characters are explicitly indicated in the Unicode Code Charts.
They are also given an explicit property value of Deprecated=True in the Uni-
code Character Database.

• Deprecated characters should not be confused with obsolete characters, which
are historical. Obsolete characters do not occur in modern text, but they are
not deprecated; their use is not discouraged.

D14 Noncharacter: A code point that is permanently reserved for internal use and that
should never be interchanged. Noncharacters consist of the values U+nFFFE and
U+nFFFF (where n is from 0 to 1016) and the values U+FDD0..U+FDEF.

• For more information, see Section 16.7, Noncharacters.

• These code points are permanently reserved as noncharacters.

D15 Reserved code point: Any code point of the Unicode Standard that is reserved for
future assignment. Also known as an unassigned code point.

• Surrogate code points and noncharacters are considered assigned code points,
but not assigned characters.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.4 Characters and Encoding 69
• For a summary classification of reserved and other types of code points, see
Table 2-3.

In general, a conforming process may indicate the presence of a code point whose use has
not been designated (for example, by showing a missing glyph in rendering or by signaling
an appropriate error in a streaming protocol), even though it is forbidden by the standard
from interpreting that code point as an abstract character.

D16 Higher-level protocol: Any agreement on the interpretation of Unicode characters
that extends beyond the scope of this standard.

• Such an agreement need not be formally announced in data; it may be implicit
in the context.

• The specification of some Unicode algorithms may limit the scope of what a
conformant higher-level protocol may do.

D17 Unicode algorithm: The logical description of a process used to achieve a specified
result involving Unicode characters.

• This definition, as used in the Unicode Standard and other publications of the
Unicode Consortium, is intentionally broad so as to allow precise logical
description of required results, without constraining implementations to fol-
low the precise steps of that logical description.

D18 Named Unicode algorithm: A Unicode algorithm that is specified in the Unicode
Standard or in other standards published by the Unicode Consortium and that is
given an explicit name for ease of reference.

• Named Unicode algorithms are cited in titlecase in the Unicode Standard.

Table 3-1 lists the named Unicode algorithms and indicates the locations of their specifica-
tions. Details regarding conformance to these algorithms and any restrictions they place on
the scope of allowable tailoring by higher-level protocols can be found in the specifications.
In some cases, a named Unicode algorithm is provided for information only. When exter-
nally referenced, a named Unicode algorithm may be prefixed with the qualifier “Unicode”
to make the connection of the algorithm to the Unicode Standard and other Unicode spec-
ifications clear. Thus, for example, the Bidirectional Algorithm is generally referred to by its
full name, “Unicode Bidirectional Algorithm.” As much as is practical, the titles of Unicode
Standard Annexes which define Unicode algorithms consist of the name of the Unicode
algorithm they specify. In a few cases, named Unicode algorithms are also widely known by
their acronyms, and those acronyms are also listed in Table 3-1.

Table 3-1. Named Unicode Algorithms

Name Description

Canonical Ordering Section 3.11

Canonical Composition Section 3.11

Normalization Section 3.11

Hangul Syllable Composition Section 3.12

Hangul Syllable Decomposition Section 3.12

Hangul Syllable Name Generation Section 3.12

Default Case Conversion Section 3.13

Default Case Detection Section 3.13

Default Caseless Matching Section 3.13

Bidirectional Algorithm (UBA) UAX #9

Line Breaking Algorithm UAX #14

Character Segmentation UAX #29
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

70 Conformance
3.5 Properties
The Unicode Standard specifies many different types of character properties. This section
provides the basic definitions related to character properties.

The actual values of Unicode character properties are specified in the Unicode Character
Database. See Section 4.1, Unicode Character Database, for an overview of those data files.
Chapter 4, Character Properties, contains more detailed descriptions of some particular,
important character properties. Additional properties that are specific to particular charac-
ters (such as the definition and use of the right-to-left override character or zero width space)
are discussed in the relevant sections of this standard.

The interpretation of some properties (such as the case of a character) is independent of
context, whereas the interpretation of other properties (such as directionality) is applicable
to a character sequence as a whole, rather than to the individual characters that compose
the sequence.

Types of Properties

D19 Property: A named attribute of an entity in the Unicode Standard, associated with a
defined set of values.

• The lists of code point and encoded character properties for the Unicode Stan-
dard are documented in Unicode Standard Annex #44, “Unicode Character
Database,” and in Unicode Standard Annex #38, “Unicode Han Database (Uni-
han).”

• The file PropertyAliases.txt in the Unicode Character Database provides a
machine-readable list of the non-Unihan properties and their names.

D20 Code point property: A property of code points.

• Code point properties refer to attributes of code points per se, based on archi-
tectural considerations of this standard, irrespective of any particular encoded
character.

• Thus the Surrogate property and the Noncharacter property are code point
properties.

D21 Abstract character property: A property of abstract characters.

Word Segmentation UAX #29

Sentence Segmentation UAX #29

Hangul Syllable Boundary Determination UAX #29

Default Identifier Determination UAX #31

Alternative Identifier Determination UAX #31

Pattern Syntax Determination UAX #31

Identifier Normalization UAX #31

Identifier Case Folding UAX #31

Standard Compression Scheme for Unicode (SCSU) UTS #6

Unicode Collation Algorithm (UCA) UTS #10

Table 3-1. Named Unicode Algorithms (Continued)

Name Description
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.5 Properties 71
• Abstract character properties refer to attributes of abstract characters per se,
based on their independent existence as elements of writing systems or other
notational systems, irrespective of their encoding in the Unicode Standard.

• Thus the Alphabetic property, the Punctuation property, the Hex_Digit prop-
erty, the Numeric_Value property, and so on are properties of abstract charac-
ters and are associated with those characters whether encoded in the Unicode
Standard or in any other character encoding—or even prior to their being
encoded in any character encoding standard.

D22 Encoded character property: A property of encoded characters in the Unicode Stan-
dard.

• For each encoded character property there is a mapping from every code point
to some value in the set of values associated with that property.

Encoded character properties are defined this way to facilitate the implementation of char-
acter property APIs based on the Unicode Character Database. Typically, an API will take a
property and a code point as input, and will return a value for that property as output,
interpreting it as the “character property” for the “character” encoded at that code point.
However, to be useful, such APIs must return meaningful values for unassigned code
points, as well as for encoded characters.

In some instances an encoded character property in the Unicode Standard is exactly equiv-
alent to a code point property. For example, the Pattern_Syntax property simply defines a
range of code points that are reserved for pattern syntax. (See Unicode Standard Annex
#31, “Unicode Identifier and Pattern Syntax.”)

In other instances, an encoded character property directly reflects an abstract character
property, but extends the domain of the property to include all code points, including
unassigned code points. For Boolean properties, such as the Hex_Digit property, typically
an encoded character property will be true for the encoded characters with that abstract
character property and will be false for all other code points, including unassigned code
points, noncharacters, private-use characters, and encoded characters for which the
abstract character property is inapplicable or irrelevant.

However, in many instances, an encoded character property is semantically complex and
may telescope together values associated with a number of abstract character properties
and/or code point properties. The General_Category property is an example—it contains
values associated with several abstract character properties (such as Letter, Punctuation,
and Symbol) as well as code point properties (such as \p{gc=Cs} for the Surrogate code
point property).

In the text of this standard the terms “Unicode character property,” “character property,”
and “property” without qualifier generally refer to an encoded character property, unless
otherwise indicated.

A list of the encoded character properties formally considered to be a part of the Unicode
Standard can be found in PropertyAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

Property Values

D23 Property value: One of the set of values associated with an encoded character prop-
erty.

• For example, the East_Asian_Width [EAW] property has the possible values
“Narrow”, “Neutral”, “Wide”, “Ambiguous”, and “Unassigned”.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

72 Conformance
A list of the values associated with encoded character properties in the Unicode Standard
can be found in PropertyValueAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

D24 Explicit property value: A value for an encoded character property that is explicitly
associated with a code point in one of the data files of the Unicode Character Data-
base.

D25 Implicit property value: A value for an encoded character property that is given by a
generic rule or by an “otherwise” clause in one of the data files of the Unicode Char-
acter Database.

• Implicit property values are used to avoid having to explicitly list values for
more than 1 million code points (most of them unassigned) for every property.

Default Property Values

To work properly in implementations, unassigned code points must be given default prop-
erty values as if they were characters, because various algorithms require property values to
be assigned to every code point before they can function at all.

Default property values are not uniform across all unassigned code points, because certain
ranges of code points need different values for particular properties to maximize compati-
bility with expected future assignments. This means that some encoded character proper-
ties have multiple default values. For example, the Bidi_Class property defines a range of
unassigned code points as having the “R” value, another range of unassigned code points as
having the “AL” value, and the otherwise case as having the “L” value. For information on
the default values for each encoded character property, see its description in the Unicode
Character Database.

Default property values for unassigned code points are normative. They should not be
changed by implementations to other values.

Default property values are also provided for private-use characters. Because the interpre-
tation of private-use characters is subject to private agreement between the parties which
exchange them, most default property values for those characters are overridable by
higher-level protocols, to match the agreed-upon semantics for the characters. There are
important exceptions for a few properties and Unicode algorithms. See Section 16.5, Pri-
vate-Use Characters.

D26 Default property value: The value (or in some cases small set of values) of a property
associated with unassigned code points or with encoded characters for which the
property is irrelevant.

• For example, for most Boolean properties, “false” is the default property value.
In such cases, the default property value used for unassigned code points may
be the same value that is used for many assigned characters as well.

• Some properties, particularly enumerated properties, specify a particular,
unique value as their default value. For example, “XX” is the default property
value for the Line_Break property.

• A default property value is typically defined implicitly, to avoid having to repeat
long lists of unassigned code points.

• In the case of some properties with arbitrary string values, the default property
value is an implied null value. For example, the fact that there is no Unicode
character name for unassigned code points is equivalent to saying that the
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.5 Properties 73
default property value for the Name property for an unassigned code point is a
null string.

Classification of Properties by Their Values

D27 Enumerated property: A property with a small set of named values.

• As characters are added to the Unicode Standard, the set of values may need to
be extended in the future, but enumerated properties have a relatively fixed set
of possible values.

D28 Closed enumeration: An enumerated property for which the set of values is closed
and will not be extended for future versions of the Unicode Standard.

• The General_Category and Bidi_Class properties are the only closed enumera-
tions, except for the Boolean properties.

D29 Boolean property: A closed enumerated property whose set of values is limited to
“true” and “false”.

• The presence or absence of the property is the essential information.

D30 Numeric property: A numeric property is a property whose value is a number that
can take on any integer or real value.

• An example is the Numeric_Value property. There is no implied limit to the
number of possible distinct values for the property, except the limitations on
representing integers or real numbers in computers.

D31 String-valued property: A property whose value is a string.

• The Canonical_Decomposition property is a string-valued property.

D32 Catalog property: A property that is an enumerated property, typically unrelated to
an algorithm, that may be extended in each successive version of the Unicode Stan-
dard.

• Examples are the Age, Block, and Script properties. Additional new values for
the set of enumerated values for these properties may be added each time the
standard is revised. A new value for Age is added for each new Unicode version,
a new value for Block is added for each new block added to the standard, and a
new value for Script is added for each new script added to the standard.

Most properties have a single value associated with each code point. However, some prop-
erties may instead associate a set of multiple different values with each code point. See Sec-
tion 5.7.6, Properties Whose Values Are Sets of Values, in Unicode Standard Annex #44,
“Unicode Character Database.”

Property Status

Each Unicode character property has one of several different statuses: normative, informa-
tive, contributory, or provisional. Each of these statuses is formally defined below, with
some explanation and examples. In addition, normative properties can be subclassified,
based on whether or not they can be overridden by conformant higher-level protocols.

The full list of currently defined Unicode character properties is provided in Unicode Stan-
dard Annex #44, “Unicode Character Database” and in Unicode Standard Annex #38,
“Unicode Han Database (Unihan).” The tables of properties in those documents specify the
status of each property explicitly. The data file PropertyAliases.txt provides a machine-
readable listing of the character properties, except for those associated with the Unicode
Han Database. The long alias for each property in PropertyAliases.txt also serves as the for-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

74 Conformance
mal name of that property. In case of any discrepancy between the listing in PropertyAlia-
ses.txt and the listing in Unicode Standard Annex #44 or any other text of the Unicode
Standard, the listing in PropertyAliases.txt should be taken as definitive. The tag for each
Unihan-related character property documented in Unicode Standard Annex #38 serves as
the formal name of that property.

D33 Normative property: A Unicode character property used in the specification of the
standard.

Specification that a character property is normative means that implementations which
claim conformance to a particular version of the Unicode Standard and which make use of
that particular property must follow the specifications of the standard for that property for
the implementation to be conformant. For example, the Bidi_Class property is required for
conformance whenever rendering text that requires bidirectional layout, such as Arabic or
Hebrew.

Whenever a normative process depends on a property in a specified way, that property is
designated as normative.

The fact that a given Unicode character property is normative does not mean that the val-
ues of the property will never change for particular characters. Corrections and extensions
to the standard in the future may require minor changes to normative values, even though
the Unicode Technical Committee strives to minimize such changes. See also “Stability of
Properties” later in this section.

Some of the normative Unicode algorithms depend critically on particular property values
for their behavior. Normalization, for example, defines an aspect of textual interoperability
that many applications rely on to be absolutely stable. As a result, some of the normative
properties disallow any kind of overriding by higher-level protocols. Thus the decomposi-
tion of Unicode characters is both normative and not overridable; no higher-level protocol
may override these values, because to do so would result in non-interoperable results for
the normalization of Unicode text. Other normative properties, such as case mapping, are
overridable by higher-level protocols, because their intent is to provide a common basis for
behavior. Nevertheless, they may require tailoring for particular local cultural conventions
or particular implementations.

D34 Overridable property: A normative property whose values may be overridden by
conformant higher-level protocols.

• For example, the Canonical_Decomposition property is not overridable. The
Uppercase property can be overridden.

Some important normative character properties of the Unicode Standard are listed in
Table 3-2, with an indication of which sections in the standard provide a general descrip-
tion of the properties and their use. Other normative properties are documented in the
Unicode Character Database. In all cases, the Unicode Character Database provides the
definitive list of character properties and the exact list of property value assignments for
each version of the standard.

Table 3-2. Normative Character Properties

Property Description

Bidi_Class (directionality) UAX #9 and Section 4.4

Bidi_Mirrored UAX #9 and Section 4.7

Block Section 17.1

Canonical_Combining_Class Section 3.11 and Section 4.3

Case-related properties Section 3.13, Section 4.2, and UAX #44

Composition_Exclusion Section 3.11
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.5 Properties 75
D35 Informative property: A Unicode character property whose values are provided for
information only.

A conformant implementation of the Unicode Standard is free to use or change informa-
tive property values as it may require, while remaining conformant to the standard. An
implementer always has the option of establishing a protocol to convey the fact that infor-
mative properties are being used in distinct ways.

Informative properties capture expert implementation experience. When an informative
property is explicitly specified in the Unicode Character Database, its use is strongly rec-
ommended for implementations to encourage comparable behavior between implementa-
tions. Note that it is possible for an informative property in one version of the Unicode
Standard to become a normative property in a subsequent version of the standard if its use
starts to acquire conformance implications in some part of the standard.

Table 3-3 provides a partial list of the more important informative character properties. For
a complete listing, see the Unicode Character Database.

D35a Contributory property: A simple property defined merely to make the statement of a
rule defining a derived property more compact or general.

Contributory properties typically consist of short lists of exceptional characters which are
used as part of the definition of a more generic normative or informative property. In most
cases, such properties are given names starting with “Other”, as Other_Alphabetic or
Other_Default_Ignorable_Code_Point.

Contributory properties are not themselves subject to stability guarantees, but they are
sometimes specified in order to make it easier to state the definition of a derived property
which itself is subject to a stability guarantee, such as the derived, normative identifier-

Decomposition_Mapping Section 3.7 and Section 3.11

Default_Ignorable_Code_Point Section 5.21

Deprecated Section 3.1

General_Category Section 4.5

Hangul_Syllable_Type Section 3.12 and UAX #29

Joining_Type and Joining_Group Section 8.2

Name Section 4.8

Noncharacter_Code_Point Section 16.7

Numeric_Value Section 4.6

White_Space UAX #44

Table 3-3. Informative Character Properties

Property Description

Dash Section 6.2 and Table 6-3

East_Asian_Width Section 12.4 and UAX #11

Letter-related properties Section 4.10

Line_Break Section 16.1, Section 16.2, and UAX #14

Mathematical Section 15.5

Script UAX #24

Space Section 6.2 and Table 6-2

Unicode_1_Name Section 4.9

Table 3-2. Normative Character Properties (Continued)

Property Description
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

76 Conformance
related properties, XID_Start and XID_Continue. The complete list of contributory prop-
erties is documented in Unicode Standard Annex #44, “Unicode Character Database.”

D36 Provisional property: A Unicode character property whose values are unapproved
and tentative, and which may be incomplete or otherwise not in a usable state.

• Provisional properties may be removed from future versions of the standard,
without prior notice.

Some of the information provided about characters in the Unicode Character Database
constitutes provisional data. This data may capture partial or preliminary information. It
may contain errors or omissions, or otherwise not be ready for systematic use; however, it is
included in the data files for distribution partly to encourage review and improvement of
the information. For example, a number of the tags in the Unihan database file (Uni-
han.zip) provide provisional property values of various sorts about Han characters.

The data files of the Unicode Character Database may also contain various annotations and
comments about characters, and those annotations and comments should be considered
provisional. Implementations should not attempt to parse annotations and comments out
of the data files and treat them as informative character properties per se.

Section 4.12, Characters with Unusual Properties, provides additional lists of Unicode char-
acters with unusual behavior, including many format controls discussed in detail elsewhere
in the standard. Although in many instances those characters and their behavior have nor-
mative implications, the particular subclassification provided in Table 4-13 does not
directly correspond to any formal definition of Unicode character properties. Therefore
that subclassification itself should also be considered provisional and potentially subject to
change.

Context Dependence

D37 Context-dependent property: A property that applies to a code point in the context of
a longer code point sequence.

• For example, the lowercase mapping of a Greek sigma depends on the context
of the surrounding characters.

D38 Context-independent property: A property that is not context dependent; it applies to
a code point in isolation.

Stability of Properties

D39 Stable transformation: A transformation T on a property P is stable with respect to
an algorithm A if the result of the algorithm on the transformed property A(T(P)) is
the same as the original result A(P) for all code points.

D40 Stable property: A property is stable with respect to a particular algorithm or process
as long as possible changes in the assignment of property values are restricted in
such a manner that the result of the algorithm on the property continues to be the
same as the original result for all previously assigned code points.

• As new characters are assigned to previously unassigned code points, the
replacement of any default values for these code points with actual property
values must maintain stability.

D41 Fixed property: A property whose values (other than a default value), once associated
with a specific code point, are fixed and will not be changed, except to correct obvi-
ous or clerical errors.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.5 Properties 77
• For a fixed property, any default values can be replaced without restriction by
actual property values as new characters are assigned to previously unassigned
code points. Examples of fixed properties include Age and
Hangul_Syllable_Type.

• Designating a property as fixed does not imply stability or immutability (see
“Stability” in Section 3.1, Versions of the Unicode Standard). While the age of a
character, for example, is established by the version of the Unicode Standard to
which it was added, errors in the published listing of the property value could
be corrected. For some other properties, even the correction of such errors is
prohibited by explicit guarantees of property stability.

D42 Immutable property: A fixed property that is also subject to a stability guarantee pre-
venting any change in the published listing of property values other than assignment
of new values to formerly unassigned code points.

• An immutable property is trivially stable with respect to all algorithms.

• An example of an immutable property is the Unicode character name itself.
Because character names are values of an immutable property, misspellings and
incorrect names will never be corrected clerically. Any errata will be noted in a
comment in the character names list and, where needed, an informative char-
acter name alias will be provided.

• When an encoded character property representing a code point property is
immutable, none of its values can ever change. This follows from the fact that
the code points themselves do not change, and the status of the property is
unaffected by whether a particular abstract character is encoded at a code point
later. An example of such a property is the Pattern_Syntax property; all values
of that property are unchangeable for all code points, forever.

• In the more typical case of an immutable property, the values for existing
encoded characters cannot change, but when a new character is encoded, the
formerly unassigned code point changes from having a default value for the
property to having one of its nondefault values. Once that nondefault value is
published, it can no longer be changed.

D43 Stabilized property: A property that is neither extended to new characters nor main-
tained in any other manner, but that is retained in the Unicode Character Database.

• A stabilized property is also a fixed property.

D44 Deprecated property: A property whose use by implementations is discouraged.

• One of the reasons a property may be deprecated is because a different combi-
nation of properties better expresses the intended semantics.

• Where sufficiently widespread legacy support exists for the deprecated prop-
erty, not all implementations may be able to discontinue the use of the depre-
cated property. In such a case, a deprecated property may be extended to new
characters so as to maintain it in a usable and consistent state.

Informative or normative properties in the standard will not be removed even when they
are supplanted by other properties or are no longer useful. However, they may be stabilized
and/or deprecated.

The complete list of stability policies which affect character properties, their values, and
their aliases, is available online. See the subsection “Policies” in Section B.6, Other Unicode
Online Resources.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

78 Conformance
Simple and Derived Properties

D45 Simple property: A Unicode character property whose values are specified directly in
the Unicode Character Database (or elsewhere in the standard) and whose values
cannot be derived from other simple properties.

D46 Derived property: A Unicode character property whose values are algorithmically
derived from some combination of simple properties.

The Unicode Character Database lists a number of derived properties explicitly. Even
though these values can be derived, they are provided as lists because the derivation may
not be trivial and because explicit lists are easier to understand, reference, and implement.
Good examples of derived properties include the ID_Start and ID_Continue properties,
which can be used to specify a formal identifier syntax for Unicode characters. The details
of how derived properties are computed can be found in the documentation for the Uni-
code Character Database.

Property Aliases

To enable normative references to Unicode character properties, formal aliases for proper-
ties and for property values are defined as part of the Unicode Character Database.

D47 Property alias: A unique identifier for a particular Unicode character property.

• The identifiers used for property aliases contain only ASCII alphanumeric
characters or the underscore character.

• Short and long forms for each property alias are defined. The short forms are
typically just two or three characters long to facilitate their use as attributes for
tags in markup languages. For example, “General_Category” is the long form
and “gc” is the short form of the property alias for the General Category prop-
erty. The long form serves as the formal name for the character property.

• Property aliases are defined in the file PropertyAliases.txt lists all of the non-
Unihan properties that are part of each version of the standard. The Unihan
properties are listed in Unicode Standard Annex #38, “Unicode Han Database
(Unihan).”

• Property aliases of normative properties are themselves normative.

D48 Property value alias: A unique identifier for a particular enumerated value for a par-
ticular Unicode character property.

• The identifiers used for property value aliases contain only ASCII alphanu-
meric characters or the underscore character, or have the special value “n/a”.

• Short and long forms for property value aliases are defined. For example,
“Currency_Symbol” is the long form and “Sc” is the short form of the property
value alias for the currency symbol value of the General Category property.

• Property value aliases are defined in the file PropertyValueAliases.txt in the
Unicode Character Database.

• Property value aliases are unique identifiers only in the context of the particular
property with which they are associated. The same identifier string might be
associated with an entirely different value for a different property. The combi-
nation of a property alias and a property value alias is, however, guaranteed to
be unique.

• Property value aliases referring to values of normative properties are themselves
normative.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.6 Combination 79
The property aliases and property value aliases can be used, for example, in XML formats
of property data, for regular-expression property tests, and in other programmatic textual
descriptions of Unicode property data. Thus “gc=Lu” is a formal way of specifying that the
General Category of a character (using the property alias “gc”) has the value of being an
uppercase letter (using the property value alias “Lu”).

Private Use

D49 Private-use code point: Code points in the ranges U+E000..U+F8FF, U+F0000..
U+FFFFD, and U+100000..U+10FFFD.

• Private-use code points are considered to be assigned characters, but the
abstract characters associated with them have no interpretation specified by
this standard. They can be given any interpretation by conformant processes.

• Private-use code points are be given default property values, but these default
values are overridable by higher-level protocols that give those private-use code
points a specific interpretation. See Section 16.5, Private-Use Characters.

3.6 Combination

Combining Character Sequences

D50 Graphic character: A character with the General Category of Letter (L), Combining
Mark (M), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

• Graphic characters specifically exclude the line and paragraph separators (Zl,
Zp), as well as the characters with the General Category of Other (Cn, Cs, Cc,
Cf).

• The interpretation of private-use characters (Co) as graphic characters or not is
determined by the implementation.

• For more information, see Chapter 2, General Structure, especially Section 2.4,
Code Points and Characters, and Table 2-3.

D51 Base character: Any graphic character except for those with the General Category of
Combining Mark (M).

• Most Unicode characters are base characters. In terms of General Category val-
ues, a base character is any code point that has one of the following categories:
Letter (L), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

• Base characters do not include control characters or format controls.

• Base characters are independent graphic characters, but this does not preclude
the presentation of base characters from adopting different contextual forms or
participating in ligatures.

• The interpretation of private-use characters (Co) as base characters or not is
determined by the implementation. However, the default interpretation of pri-
vate-use characters should be as base characters, in the absence of other infor-
mation.

D51a Extended base: Any base character, or any standard Korean syllable block.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

80 Conformance
• This term is defined to take into account the fact that sequences of Korean con-
joining jamo characters behave as if they were a single Hangul syllable charac-
ter, so that the entire sequence of jamos constitutes a base.

• For the definition of standard Korean syllable block, see D134 in Section 3.12,
Conjoining Jamo Behavior.

D52 Combining character: A character with the General Category of Combining Mark
(M).

• Combining characters consist of all characters with the General Category val-
ues of Spacing Combining Mark (Mc), Nonspacing Mark (Mn), and Enclosing
Mark (Me).

• All characters with non-zero canonical combining class are combining charac-
ters, but the reverse is not the case: there are combining characters with a zero
canonical combining class.

• The interpretation of private-use characters (Co) as combining characters or
not is determined by the implementation.

• These characters are not normally used in isolation unless they are being
described. They include such characters as accents, diacritics, Hebrew points,
Arabic vowel signs, and Indic matras.

• The graphic positioning of a combining character depends on the last preced-
ing base character, unless they are separated by a character that is neither a
combining character nor either zero width joiner or zero width non-

joiner. The combining character is said to apply to that base character.

• There may be no such base character, such as when a combining character is at
the start of text or follows a control or format character—for example, a car-
riage return, tab, or right-left mark. In such cases, the combining characters
are called isolated combining characters.

• With isolated combining characters or when a process is unable to perform
graphical combination, a process may present a combining character without
graphical combination; that is, it may present it as if it were a base character.

• The representative images of combining characters are depicted with a dotted
circle in the code charts. When presented in graphical combination with a pre-
ceding base character, that base character is intended to appear in the position
occupied by the dotted circle.

D53 Nonspacing mark: A combining character with the General Category of Nonspacing
Mark (Mn) or Enclosing Mark (Me).

• The position of a nonspacing mark in presentation depends on its base charac-
ter. It generally does not consume space along the visual baseline in and of
itself.

• Such characters may be large enough to affect the placement of their base char-
acter relative to preceding and succeeding base characters. For example, a cir-
cumflex applied to an “i” may affect spacing (“î”), as might the character
U+20DD combining enclosing circle.

D54 Enclosing mark: A nonspacing mark with the General Category of Enclosing Mark
(Me).

• Enclosing marks are a subclass of nonspacing marks that surround a base char-
acter, rather than merely being placed over, under, or through it.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.6 Combination 81
D55 Spacing mark: A combining character that is not a nonspacing mark.

• Examples include U+093F devanagari vowel sign i. In general, the behavior
of spacing marks does not differ greatly from that of base characters.

• Spacing marks such as U+0BCA tamil vowel sign o may be rendered on both
sides of a base character, but are not enclosing marks.

D56 Combining character sequence: A maximal character sequence consisting of either a
base character followed by a sequence of one or more characters where each is a
combining character, zero width joiner, or zero width non-joiner; or a
sequence of one or more characters where each is a combining character, zero

width joiner, or zero width non-joiner.

• When identifying a combining character sequence in Unicode text, the defini-
tion of the combining character sequence is applied maximally. For example, in
the sequence <c, dot-below, caron, acute, a>, the entire sequence <c, dot-
below, caron, acute> is identified as the combining character sequence, rather
than the alternative of identifying <c, dot-below> as a combining character
sequence followed by a separate (defective) combining character sequence
<caron, acute>.

D56a Extended combining character sequence: A maximal character sequence consisting of
either an extended base followed by a sequence of one or more characters where
each is a combining character, zero width joiner, or zero width non-joiner ; or
a sequence of one or more characters where each is a combining character, zero

width joiner, or zero width non-joiner.

• Combining character sequence is commonly abbreviated as CCS, and extended
combining character sequence is commonly abbreviated as ECCS.

D57 Defective combining character sequence: A combining character sequence that does
not start with a base character.

• Defective combining character sequences occur when a sequence of combining
characters appears at the start of a string or follows a control or format charac-
ter. Such sequences are defective from the point of view of handling of combin-
ing marks, but are not ill-formed. (See D84.)

Grapheme Clusters

D58 Grapheme base: A character with the property Grapheme_Base, or any standard
Korean syllable block.

• Characters with the property Grapheme_Base include all base characters (with
the exception of U+FF9E..U+FF9F) plus most spacing marks.

• The concept of a grapheme base is introduced to simplify discussion of the
graphical application of nonspacing marks to other elements of text. A graph-
eme base may consist of a spacing (combining) mark, which distinguishes it
from a base character per se. A grapheme base may also itself consist of a
sequence of characters, in the case of the standard Korean syllable block.

• For the definition of standard Korean syllable block, see D134 in Section 3.12,
Conjoining Jamo Behavior.

D59 Grapheme extender: A character with the property Grapheme_Extend.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

82 Conformance
• Grapheme extender characters consist of all nonspacing marks, zero width

joiner, zero width non-joiner, U+FF9E, U+FF9F, and a small number of
spacing marks.

• A grapheme extender can be conceived of primarily as the kind of nonspacing
graphical mark that is applied above or below another spacing character.

• zero width joiner and zero width non-joiner are formally defined to be
grapheme extenders so that their presence does not break up a sequence of
other grapheme extenders.

• The small number of spacing marks that have the property Grapheme_Extend
are all the second parts of a two-part combining mark.

• The set of characters with the Grapheme_Extend property and the set of char-
acters with the Grapheme_Base property are disjoint, by definition.

D60 Grapheme cluster: The text between grapheme cluster boundaries as specified by
Unicode Standard Annex #29, “Unicode Text Segmentation.”

• This definition of “grapheme cluster” is generic. The specification of grapheme
cluster boundary segmentation in UAX #29 includes two alternatives, for
“extended grapheme clusters” and for “legacy grapheme clusters.” Further-
more, the segmentation algorithm in UAX #29 is tailorable.

• The grapheme cluster represents a horizontally segmentable unit of text, con-
sisting of some grapheme base (which may consist of a Korean syllable)
together with any number of nonspacing marks applied to it.

• A grapheme cluster is similar, but not identical to a combining character
sequence. A combining character sequence starts with a base character and
extends across any subsequent sequence of combining marks, nonspacing or
spacing. A combining character sequence is most directly relevant to processing
issues related to normalization, comparison, and searching.

• A grapheme cluster typically starts with a grapheme base and then extends
across any subsequent sequence of nonspacing marks. A grapheme cluster is
most directly relevant to text rendering and processes such as cursor placement
and text selection in editing, but may also be relevant to comparison and
searching.

• For many processes, a grapheme cluster behaves as if it were a single character
with the same properties as its grapheme base. Effectively, nonspacing marks
apply graphically to the base, but do not change its properties. For example, <x,
macron> behaves in line breaking or bidirectional layout as if it were the char-
acter x.

D61 Extended grapheme cluster: The text between extended grapheme cluster boundaries
as specified by Unicode Standard Annex #29, “Unicode Text Segmentation.”

• Extended grapheme clusters are defined in a parallel manner to legacy graph-
eme clusters, but also include sequences of spacing marks.

• Grapheme clusters and extended grapheme clusters may not have any particu-
lar linguistic significance, but are used to break up a string of text into units for
processing.

• Grapheme clusters and extended grapheme clusters may be adjusted for partic-
ular processing requirements, by tailoring the rules for grapheme cluster seg-
mentation specified in Unicode Standard Annex #29, “Unicode Text
Segmentation.”
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.6 Combination 83
Application of Combining Marks

A number of principles in the Unicode Standard relate to the application of combining
marks. These principles are listed in this section, with an indication of which are consid-
ered to be normative and which are considered to be guidelines.

In particular, guidelines for rendering of combining marks in conjunction with other char-
acters should be considered as appropriate for defining default rendering behavior, in the
absence of more specific information about rendering. It is often the case that combining
marks in complex scripts or even particular, general-use nonspacing marks will have ren-
dering requirements that depart significantly from the general guidelines. Rendering pro-
cesses should, as appropriate, make use of available information about specific typographic
practices and conventions so as to produce best rendering of text.

To help in the clarification of the principles regarding the application of combining marks,
a distinction is made between dependence and graphical application.

D61a Dependence: A combining mark is said to depend on its associated base character.

• The associated base character is the base character in the combining character
sequence that a combining mark is part of.

• A combining mark in a defective combining character sequence has no associ-
ated base character and thus cannot be said to depend on any particular base
character. This is one of the reasons why fallback processing is required for
defective combining character sequences.

• Dependence concerns all combining marks, including spacing marks and com-
bining marks that have no visible display.

D61b Graphical application: A nonspacing mark is said to apply to its associated grapheme
base.

• The associated grapheme base is the grapheme base in the grapheme cluster
that a nonspacing mark is part of.

• A nonspacing mark in a defective combining character sequence is not part of a
grapheme cluster and is subject to the same kinds of fallback processing as for
any defective combining character sequence.

• Graphic application concerns visual rendering issues and thus is an issue for
nonspacing marks that have visible glyphs. Those glyphs interact, in rendering,
with their grapheme base.

Throughout the text of the standard, whenever the situation is clear, discussion of combin-
ing marks often simply talks about combining marks “applying” to their base. In the proto-
typical case of a nonspacing accent mark applying to a single base character letter, this
simplification is not problematical, because the nonspacing mark both depends (notion-
ally) on its base character and simultaneously applies (graphically) to its grapheme base,
affecting its display. The finer distinctions are needed when dealing with the edge cases,
such as combining marks that have no display glyph, graphical application of nonspacing
marks to Korean syllables, and the behavior of spacing combining marks.

The distinction made here between notional dependence and graphical application does
not preclude spacing marks or even sequences of base characters from having effects on
neighboring characters in rendering. Thus spacing forms of dependent vowels (matras) in
Indic scripts may trigger particular kinds of conjunct formation or may be repositioned in
ways that influence the rendering of other characters. (See Chapter 9, South Asian Scripts-I,
for many examples.) Similarly, sequences of base characters may form ligatures in render-
ing. (See “Cursive Connection and Ligatures” in Section 16.2, Layout Controls.)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

84 Conformance
The following listing specifies the principles regarding application of combining marks.
Many of these principles are illustrated in Section 2.11, Combining Characters, and
Section 7.9, Combining Marks.

P1 [Normative] Combining character order: Combining characters follow the base
character on which they depend.

• This principle follows from the definition of a combining character sequence.

• Thus the character sequence <U+0061 “a” latin small letter a, U+0308 “!”
combining diaeresis, U+0075 “u” latin small letter u> is unambiguously
interpreted (and displayed) as “äu”, not “aü”. See Figure 2-18.

P2 [Guideline] Inside-out application. Nonspacing marks with the same combining
class are generally positioned graphically outward from the grapheme base to
which they apply.

• The most numerous and important instances of this principle involve nonspac-
ing marks applied either directly above or below a grapheme base. See
Figure 2-21.

• In a sequence of two nonspacing marks above a grapheme base, the first nons-
pacing mark is placed directly above the grapheme base, and the second is then
placed above the first nonspacing mark.

• In a sequence of two nonspacing marks below a grapheme base, the first nons-
pacing mark is placed directly below the grapheme base, and the second is then
placed below the first nonspacing mark.

• This rendering behavior for nonspacing marks can be generalized to sequences
of any length, although practical considerations usually limit such sequences to
no more than two or three marks above and/or below a grapheme base.

• The principle of inside-out application is also referred to as default stacking
behavior for nonspacing marks.

P3 [Guideline] Side-by-side application. Notwithstanding the principle of inside-out
application, some specific nonspacing marks may override the default stacking
behavior and are positioned side-by-side over (or under) a grapheme base, rather
than stacking vertically.

• Such side-by-side positioning may reflect language-specific orthographic rules,
such as for Vietnamese diacritics and tone marks or for polytonic Greek breath-
ing and accent marks. See Table 2-6.

• When positioned side-by-side, the visual rendering order of a sequence of non-
spacing marks reflects the dominant order of the script with which they are
used. Thus, in Greek, the first nonspacing mark in such a sequence will be posi-
tioned to the left side above a grapheme base, and the second to the right side
above the grapheme base. In Hebrew, the opposite positioning is used for side-
by-side placement.

P4 [Guideline] Traditional typographical behavior will sometimes override the
default placement or rendering of nonspacing marks.

• Because of typographical conflict with the descender of a base character, a com-
bining comma below placed on a lowercase “g” is traditionally rendered as if it
were an inverted comma above. See Figure 7-1.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.6 Combination 85
• Because of typographical conflict with the ascender of a base chracter, a com-
bining há`ek (caron) is traditionally rendered as an apostrophe when placed,
for example, on a lowercase “d”. See Figure 7-1.

• The relative placement of vowel marks in Arabic cannot be predicted by default
stacking behavior alone, but depends on traditional rules of Arabic typography.
See Figure 8-5.

P5 [Normative] Nondistinct order. Nonspacing marks with different, non-zero com-
bining classes may occur in different orders without affecting either the visual dis-
play of a combining character sequence or the interpretation of that sequence.

• For example, if one nonspacing mark occurs above a grapheme base and
another nonspacing mark occurs below it, they will have distinct combining
classes. The order in which they occur in the combining character sequence
does not matter for the display or interpretation of the resulting grapheme clus-
ter.

• The introduction of the combining class for characters and its use in canonical
ordering in the standard is to precisely define canonical equivalence and
thereby clarify exactly which such alternate sequences must be considered as
identical for display and interpretation. See Figure 2-24.

• In cases of nondistinct order, the order of combining marks has no linguistic
significance. The order does not reflect how “closely bound” they are to the
base. After canonical reordering, the order may no longer reflect the typed-in
sequence. Rendering systems should be prepared to deal with common typed-in
sequences and with canonically reordered sequences. See Table 5-3.

• Inserting a combining grapheme joiner between two combining marks with
nondistinct order prevents their canonical reordering. For more information,
see “Combining Grapheme Joiner” in Section 16.2, Layout Controls.

P6 [Guideline] Enclosing marks surround their grapheme base and any intervening
nonspacing marks.

• This implies that enclosing marks successively surround previous enclosing
marks. See Figure 3-1.

• Dynamic application of enclosing marks—particularly sequences of enclosing
marks—is beyond the capability of most fonts and simple rendering processes.
It is not unexpected to find fallback rendering in cases such as that illustrated in
Figure 3-1.

P7 [Guideline] Double diacritic nonspacing marks, such as U+0360 combining dou-

ble tilde, apply to their grapheme base, but are intended to be rendered with
glyphs that encompass a following grapheme base as well.

• Because such double diacritic display spans combinations of elements that
would otherwise be considered grapheme clusters, the support of double dia-
critics in rendering may involve special handling for cursor placement and text
selection. See Figure 7-8 for an example.

Figure 3-1. Enclosing Marks

a ¨ ä$ →$ $
09A4 20DE 0308 20DD

+ + +
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

86 Conformance
P8 [Guideline] When double diacritic nonspacing marks interact with normal nons-
pacing marks in a grapheme cluster, they “float” to the outermost layer of the stack
of rendered marks (either above or below).

• This behavior can be conceived of as a kind of looser binding of such double
diacritics to their bases. In effect, all other nonspacing marks are applied first,
and then the double diacritic will span the resulting stacks. See Figure 7-9 for an
example.

• Double diacritic nonspacing marks are also given a very high combining class,
so that in canonical order they appear at or near the end of any combining
character sequence. Figure 7-10 shows an example of the use of CGJ to block
this reordering.

• The interaction of enclosing marks and double diacritics is not well defined
graphically. Many fonts and rendering processes may not be able to handle
combinations of these marks. It is not recommended to use combinations of
these together in the same grapheme cluster.

P9 [Guideline] When a nonspacing mark is applied to the letters i and j or any other
character with the Soft_Dotted property, the inherent dot on the base character is
suppressed in display.

• See Figure 7-2 for an example.

• For languages such as Lithuanian, in which both a dot and an accent must be
displayed, use U+0307 combining dot above. For guidelines in handling this
situation in case mapping, see Section 5.18, Case Mappings.

Combining Marks and Korean Syllables. When a grapheme cluster comprises a Korean
syllable, a combining mark applies to that entire syllable. For example, in the following
sequence the grave is applied to the entire Korean syllable, not just to the last jamo:

U+1100 ! choseong kiyeok + U+1161 " jungseong a + U+0300 & grave →
(

If the combining mark in question is an enclosing combining mark, then it would enclose
the entire Korean syllable, rather than the last jamo in it:

U+1100 ! choseong kiyeok + U+1161 " jungseong a + U+20DD %
enclosing circle →)

This treatment of the application of combining marks with respect to Korean syllables fol-
lows from the implications of canonical equivalence. It should be noted, however, that
older implementations may have supported the application of an enclosing combining
mark to an entire Indic consonant conjunct or to a sequence of grapheme clusters linked
together by combining grapheme joiners. Such an approach has a number of technical
problems and leads to interoperability defects, so it is strongly recommended that imple-
mentations do not follow it.

For more information on the recommended use of the combining grapheme joiner, see the
subsection “Combining Grapheme Joiner” in Section 16.2, Layout Controls. For more dis-
cussion regarding the application of combining marks in general, see Section 7.9, Combin-
ing Marks.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.7 Decomposition 87
3.7 Decomposition
D62 Decomposition mapping: A mapping from a character to a sequence of one or more

characters that is a canonical or compatibility equivalent, and that is listed in the
character names list or described in Section 3.12, Conjoining Jamo Behavior.

• Each character has at most one decomposition mapping. The mappings in
Section 3.12, Conjoining Jamo Behavior, are canonical mappings. The mappings
in the character names list are identified as either canonical or compatibility
mappings (see Section 17.1, Character Names List).

D63 Decomposable character: A character that is equivalent to a sequence of one or more
other characters, according to the decomposition mappings found in the Unicode
Character Database, and those described in Section 3.12, Conjoining Jamo Behavior.

• A decomposable character is also referred to as a precomposed character or com-
posite character.

• The decomposition mappings from the Unicode Character Database are also
given in Section 17.1, Character Names List.

D64 Decomposition: A sequence of one or more characters that is equivalent to a decom-
posable character. A full decomposition of a character sequence results from decom-
posing each of the characters in the sequence until no characters can be further
decomposed.

Compatibility Decomposition

D65 Compatibility decomposition: The decomposition of a character or character
sequence that results from recursively applying both the compatibility mappings and
the canonical mappings found in the Unicode Character Database, and those
described in Section 3.12, Conjoining Jamo Behavior, until no characters can be fur-
ther decomposed, and then reordering nonspacing marks according to Section 3.11,
Normalization Forms.

• The decomposition mappings from the Unicode Character Database are also
given in Section 17.1, Character Names List.

• Some compatibility decompositions remove formatting information.

D66 Compatibility decomposable character: A character whose compatibility decomposi-
tion is not identical to its canonical decomposition. It may also be known as a com-
patibility precomposed character or a compatibility composite character.

• For example, U+00B5 micro sign has no canonical decomposition mapping,
so its canonical decomposition is the same as the character itself. It has a com-
patibility decomposition to U+03BC greek small letter mu. Because micro

sign has a compatibility decomposition that is not equal to its canonical
decomposition, it is a compatibility decomposable character.

• For example, U+03D3 greek upsilon with acute and hook symbol canon-
ically decomposes to the sequence <U+03D2 greek upsilon with hook sym-

bol, U+0301 combining acute accent>. That sequence has a compatibility
decomposition of <U+03A5 greek capital letter upsilon, U+0301 com-

bining acute accent>. Because greek upsilon with acute and hook sym-

bol has a compatibility decomposition that is not equal to its canonical
decomposition, it is a compatibility decomposable character.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

88 Conformance
• This term should not be confused with the term “compatibility character,”
which is discussed in Section 2.3, Compatibility Characters.

• Many compatibility decomposable characters are included in the Unicode
Standard solely to represent distinctions in other base standards. They support
transmission and processing of legacy data. Their use is discouraged other than
for legacy data or other special circumstances.

• Some widely used and indispensable characters, such as NBSP, are compatibil-
ity decomposable characters for historical reasons. Their use is not discour-
aged.

• A large number of compatibility decomposable characters are used in phonetic
and mathematical notation, where their use is not discouraged.

• For historical reasons, some characters that might have been given a compati-
bility decomposition were not, in fact, decomposed. The Normalization Stabil-
ity Policy prohibits adding decompositions for such cases in the future, so that
normalization forms will stay stable. See the subsection “Policies” in
Section B.6, Other Unicode Online Resources.

• Replacing a compatibility decomposable character by its compatibility decom-
position may lose round-trip convertibility with a base standard.

D67 Compatibility equivalent: Two character sequences are said to be compatibility
equivalents if their full compatibility decompositions are identical.

Canonical Decomposition

D68 Canonical decomposition: The decomposition of a character or character sequence
that results from recursively applying the canonical mappings found in the Unicode
Character Database and those described in Section 3.12, Conjoining Jamo Behavior,
until no characters can be further decomposed, and then reordering nonspacing
marks according to Section 3.11, Normalization Forms.

• The decomposition mappings from the Unicode Character Database are also
printed in Section 17.1, Character Names List.

• A canonical decomposition does not remove formatting information.

D69 Canonical decomposable character: A character that is not identical to its canonical
decomposition. It may also be known as a canonical precomposed character or a
canonical composite character.

• For example, U+00E0 latin small letter a with grave is a canonical
decomposable character because its canonical decomposition is to the sequence
<U+0061 latin small letter a, U+0300 combining grave accent>.
U+212A kelvin sign is a canonical decomposable character because its canon-
ical decomposition is to U+004B latin capital letter k.

D70 Canonical equivalent: Two character sequences are said to be canonical equivalents if
their full canonical decompositions are identical.

• For example, the sequences <o, combining-diaeresis> and <ö> are canonical
equivalents. Canonical equivalence is a Unicode property. It should not be con-
fused with language-specific collation or matching, which may add other
equivalencies. For example, in Swedish, ö is treated as a completely different let-
ter from o and is collated after z. In German, ö is weakly equivalent to oe and is
collated with oe. In English, ö is just an o with a diacritic that indicates that it is
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.8 Surrogates 89
pronounced separately from the previous letter (as in coöperate) and is collated
with o.

• By definition, all canonical-equivalent sequences are also compatibility-equiva-
lent sequences.

For information on the use of decomposition in normalization, see Section 3.11, Normal-
ization Forms.

3.8 Surrogates
D71 High-surrogate code point: A Unicode code point in the range U+D800 to U+DBFF.

D72 High-surrogate code unit: A 16-bit code unit in the range D80016 to DBFF16, used in
UTF-16 as the leading code unit of a surrogate pair.

D73 Low-surrogate code point: A Unicode code point in the range U+DC00 to U+DFFF.

D74 Low-surrogate code unit: A 16-bit code unit in the range DC0016 to DFFF16, used in
UTF-16 as the trailing code unit of a surrogate pair.

• High-surrogate and low-surrogate code points are designated only for that use.

• High-surrogate and low-surrogate code units are used only in the context of the
UTF-16 character encoding form.

D75 Surrogate pair: A representation for a single abstract character that consists of a
sequence of two 16-bit code units, where the first value of the pair is a high-surro-
gate code unit and the second value is a low-surrogate code unit.

• Surrogate pairs are used only in UTF-16. (See Section 3.9, Unicode Encoding
Forms.)

• Isolated surrogate code units have no interpretation on their own. Certain
other isolated code units in other encoding forms also have no interpretation
on their own. For example, the isolated byte 8016 has no interpretation in UTF-
8; it can be used only as part of a multibyte sequence. (See Table 3-7.)

• Sometimes high-surrogate code units are referred to as leading surrogates. Low-
surrogate code units are then referred to as trailing surrogates. This is analogous
to usage in UTF-8, which has leading bytes and trailing bytes.

• For more information, see Section 16.6, Surrogates Area, and Section 5.4, Han-
dling Surrogate Pairs in UTF-16.

3.9 Unicode Encoding Forms
The Unicode Standard supports three character encoding forms: UTF-32, UTF-16, and
UTF-8. Each encoding form maps the Unicode code points U+0000..U+D7FF and
U+E000..U+10FFFF to unique code unit sequences. The size of the code unit is specified
for each encoding form. This section presents the formal definition of each of these encod-
ing forms.

D76 Unicode scalar value: Any Unicode code point except high-surrogate and low-surro-
gate code points.

• As a result of this definition, the set of Unicode scalar values consists of the
ranges 0 to D7FF16 and E00016 to 10FFFF16, inclusive.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

90 Conformance
D77 Code unit: The minimal bit combination that can represent a unit of encoded text
for processing or interchange.

• Code units are particular units of computer storage. Other character encoding
standards typically use code units defined as 8-bit units—that is, octets. The
Unicode Standard uses 8-bit code units in the UTF-8 encoding form, 16-bit
code units in the UTF-16 encoding form, and 32-bit code units in the UTF-32
encoding form.

• A code unit is also referred to as a code value in the information industry.

• In the Unicode Standard, specific values of some code units cannot be used to
represent an encoded character in isolation. This restriction applies to isolated
surrogate code units in UTF-16 and to the bytes 80–FF in UTF-8. Similar
restrictions apply for the implementations of other character encoding stan-
dards; for example, the bytes 81–9F, E0–FC in SJIS (Shift-JIS) cannot represent
an encoded character by themselves.

• For information on use of wchar_t or other programming language types to
represent Unicode code units, see “ANSI/ISO C wchar_t” in Section 5.2, Pro-
gramming Languages and Data Types.

D78 Code unit sequence: An ordered sequence of one or more code units.

• When the code unit is an 8-bit unit, a code unit sequence may also be referred
to as a byte sequence.

• A code unit sequence may consist of a single code unit.

• In the context of programming languages, the value of a string data type basi-
cally consists of a code unit sequence. Informally, a code unit sequence is itself
just referred to as a string, and a byte sequence is referred to as a byte string. Care
must be taken in making this terminological equivalence, however, because the
formally defined concept of a string may have additional requirements or com-
plications in programming languages. For example, a string is defined as a
pointer to char in the C language and is conventionally terminated with a NULL
character. In object-oriented languages, a string is a complex object, with asso-
ciated methods, and its value may or may not consist of merely a code unit
sequence.

• Depending on the structure of a character encoding standard, it may be neces-
sary to use a code unit sequence (of more than one unit) to represent a single
encoded character. For example, the code unit in SJIS is a byte: encoded charac-
ters such as “a” can be represented with a single byte in SJIS, whereas ideo-
graphs require a sequence of two code units. The Unicode Standard also makes
use of code unit sequences whose length is greater than one code unit.

D79 A Unicode encoding form assigns each Unicode scalar value to a unique code unit
sequence.

• For historical reasons, the Unicode encoding forms are also referred to as Uni-
code (or UCS) transformation formats (UTF). That term is actually ambiguous
between its usage for encoding forms and encoding schemes.

• The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is one-to-one. This property guarantees
that a reverse mapping can always be derived. Given the mapping of any Uni-
code scalar value to a particular code unit sequence for a given encoding form,
one can derive the original Unicode scalar value unambiguously from that code
unit sequence.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.9 Unicode Encoding Forms 91
• The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is not onto. In other words, for any
given encoding form, there exist code unit sequences that have no associated
Unicode scalar value.

• To ensure that the mapping for a Unicode encoding form is one-to-one, all
Unicode scalar values, including those corresponding to noncharacter code
points and unassigned code points, must be mapped to unique code unit
sequences. Note that this requirement does not extend to high-surrogate and
low-surrogate code points, which are excluded by definition from the set of
Unicode scalar values.

D80 Unicode string: A code unit sequence containing code units of a particular Unicode
encoding form.

• In the rawest form, Unicode strings may be implemented simply as arrays of
the appropriate integral data type, consisting of a sequence of code units lined
up one immediately after the other.

• A single Unicode string must contain only code units from a single Unicode
encoding form. It is not permissible to mix forms within a string.

D81 Unicode 8-bit string: A Unicode string containing only UTF-8 code units.

D82 Unicode 16-bit string: A Unicode string containing only UTF-16 code units.

D83 Unicode 32-bit string: A Unicode string containing only UTF-32 code units.

D84 Ill-formed: A Unicode code unit sequence that purports to be in a Unicode encoding
form is called ill-formed if and only if it does not follow the specification of that Uni-
code encoding form.

• Any code unit sequence that would correspond to a code point outside the
defined range of Unicode scalar values would, for example, be ill-formed.

• UTF-8 has some strong constraints on the possible byte ranges for leading and
trailing bytes. A violation of those constraints would produce a code unit
sequence that could not be mapped to a Unicode scalar value, resulting in an
ill-formed code unit sequence.

D84a Ill-formed code unit subsequence: A non-empty subsequence of a Unicode code unit
sequence X which does not contain any code units which also belong to any minimal
well-formed subsequence of X.

• In other words, an ill-formed code unit subsequence cannot overlap with a
minimal well-formed subsequence.

D85 Well-formed: A Unicode code unit sequence that purports to be in a Unicode encod-
ing form is called well-formed if and only if it does follow the specification of that
Unicode encoding form.

D85a Minimal well-formed code unit subsequence: A well-formed Unicode code unit
sequence that maps to a single Unicode scalar value.

• For UTF-8, see the specification in D92 and Table 3-7.

• For UTF-16, see the specification in D91.

• For UTF-32, see the specification in D90.

A well-formed Unicode code unit sequence can be partitioned into one or more minimal
well-formed code unit sequences for the given Unicode encoding form. Any Unicode code
unit sequence can be partitioned into subsequences that are either well-formed or ill-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

92 Conformance
formed. The sequence as a whole is well-formed if and only if it contains no ill-formed sub-
sequence. The sequence as a whole is ill-formed if and only if it contains at least one ill-
formed subsequence.

D86 Well-formed UTF-8 code unit sequence: A well-formed Unicode code unit sequence
of UTF-8 code units.

• The UTF-8 code unit sequence <41 C3 B1 42> is well-formed, because it can be
partitioned into subsequences, all of which match the specification for UTF-8
in Table 3-7. It consists of the following minimal well-formed code unit subse-
quences: <41>, <C3 B1>, and <42>.

• The UTF-8 code unit sequence <41 C2 C3 B1 42> is ill-formed, because it con-
tains one ill-formed subsequence. There is no subsequence for the C2 byte
which matches the specification for UTF-8 in Table 3-7. The code unit sequence
is partitioned into one minimal well-formed code unit subsequence, <41>, fol-
lowed by one ill-formed code unit subsequence, <C2>, followed by two mini-
mal well-formed code unit subsequences, <C3 B1> and <42>.

• In isolation, the UTF-8 code unit sequence <C2 C3> would be ill-formed, but
in the context of the UTF-8 code unit sequence <41 C2 C3 B1 42>, <C2 C3>
does not constitute an ill-formed code unit subsequence, because the C3 byte is
actually the first byte of the minimal well-formed UTF-8 code unit subse-
quence <C3 B1>. Ill-formed code unit subsequences do not overlap with mini-
mal well-formed code unit subsequences.

D87 Well-formed UTF-16 code unit sequence: A well-formed Unicode code unit sequence
of UTF-16 code units.

D88 Well-formed UTF-32 code unit sequence: A well-formed Unicode code unit sequence
of UTF-32 code units.

D89 In a Unicode encoding form: A Unicode string is said to be in a particular Unicode
encoding form if and only if it consists of a well-formed Unicode code unit sequence
of that Unicode encoding form.

• A Unicode string consisting of a well-formed UTF-8 code unit sequence is said
to be in UTF-8. Such a Unicode string is referred to as a valid UTF-8 string, or a
UTF-8 string for short.

• A Unicode string consisting of a well-formed UTF-16 code unit sequence is said
to be in UTF-16. Such a Unicode string is referred to as a valid UTF-16 string,
or a UTF-16 string for short.

• A Unicode string consisting of a well-formed UTF-32 code unit sequence is said
to be in UTF-32. Such a Unicode string is referred to as a valid UTF-32 string,
or a UTF-32 string for short.

Unicode strings need not contain well-formed code unit sequences under all conditions.
This is equivalent to saying that a particular Unicode string need not be in a Unicode
encoding form.

• For example, it is perfectly reasonable to talk about an operation that takes the
two Unicode 16-bit strings, <004D D800> and <DF02 004D>, each of which
contains an ill-formed UTF-16 code unit sequence, and concatenates them to
form another Unicode string <004D D800 DF02 004D>, which contains a well-
formed UTF-16 code unit sequence. The first two Unicode strings are not in
UTF-16, but the resultant Unicode string is.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.9 Unicode Encoding Forms 93
• As another example, the code unit sequence <C0 80 61 F3> is a Unicode 8-bit
string, but does not consist of a well-formed UTF-8 code unit sequence. That
code unit sequence could not result from the specification of the UTF-8 encod-
ing form and is thus ill-formed. (The same code unit sequence could, of course,
be well-formed in the context of some other character encoding standard using
8-bit code units, such as ISO/IEC 8859-1, or vendor code pages.)

If a Unicode string purports to be in a Unicode encoding form, then it must not contain any
ill-formed code unit subsequence.

If a process which verifies that a Unicode string is in a Unicode encoding form encounters
an ill-formed code unit subsequence in that string, then it must not identify that string as
being in that Unicode encoding form.

A process which interprets a Unicode string must not interpret any ill-formed code unit
subsequences in the string as characters. (See conformance clause C10.) Furthermore, such
a process must not treat any adjacent well-formed code unit sequences as being part of
those ill-formed code unit sequences.

Table 3-4 gives examples that summarize the three Unicode encoding forms.

UTF-32

D90 UTF-32 encoding form: The Unicode encoding form that assigns each Unicode scalar
value to a single unsigned 32-bit code unit with the same numeric value as the Uni-
code scalar value.

• In UTF-32, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <0000004D 00000430 00004E8C 00010302>.

• Because surrogate code points are not included in the set of Unicode scalar val-
ues, UTF-32 code units in the range 0000D80016..0000DFFF16 are ill-formed.

• Any UTF-32 code unit greater than 0010FFFF16 is ill-formed.

For a discussion of the relationship between UTF-32 and UCS-4 encoding form defined in
ISO/IEC 10646, see Section C.2, Encoding Forms in ISO/IEC 10646.

UTF-16

D91 UTF-16 encoding form: The Unicode encoding form that assigns each Unicode scalar
value in the ranges U+0000..U+D7FF and U+E000..U+FFFF to a single unsigned

Table 3-4. Examples of Unicode Encoding Forms

Code Point Encoding Form Code Unit Sequence

U+004D UTF-32 0000004D

UTF-16 004D

UTF-8 4D

U+0430 UTF-32 00000430

UTF-16 0430

UTF-8 D0 B0

U+4E8C UTF-32 00004E8C

UTF-16 4E8C

UTF-8 E4 BA 8C

U+10302 UTF-32 00010302

UTF-16 D800 DF02

UTF-8 F0 90 8C 82
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

94 Conformance
16-bit code unit with the same numeric value as the Unicode scalar value, and that
assigns each Unicode scalar value in the range U+10000..U+10FFFF to a surrogate
pair, according to Table 3-5.

• In UTF-16, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <004D 0430 4E8C D800 DF02>, where <D800 DF02> corresponds to
U+10302.

• Because surrogate code points are not Unicode scalar values, isolated UTF-16
code units in the range D80016..DFFF16 are ill-formed.

Table 3-5 specifies the bit distribution for the UTF-16 encoding form. Note that for Uni-
code scalar values equal to or greater than U+10000, UTF-16 uses surrogate pairs. Calcula-
tion of the surrogate pair values involves subtraction of 1000016, to account for the starting
offset to the scalar value. ISO/IEC 10646 specifies an equivalent UTF-16 encoding form.
For details, see Section C.3, UTF-8 and UTF-16.

Note: wwww = uuuuu - 1

UTF-8

D92 UTF-8 encoding form: The Unicode encoding form that assigns each Unicode scalar
value to an unsigned byte sequence of one to four bytes in length, as specified in
Table 3-6 and Table 3-7.

• In UTF-8, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <4D D0 B0 E4 BA 8C F0 90 8C 82>, where <4D> corresponds to U+004D,
<D0 B0> corresponds to U+0430, <E4 BA 8C> corresponds to U+4E8C, and
<F0 90 8C 82> corresponds to U+10302.

• Any UTF-8 byte sequence that does not match the patterns listed in Table 3-7 is
ill-formed.

• Before the Unicode Standard, Version 3.1, the problematic “non-shortest form”
byte sequences in UTF-8 were those where BMP characters could be repre-
sented in more than one way. These sequences are ill-formed, because they are
not allowed by Table 3-7.

• Because surrogate code points are not Unicode scalar values, any UTF-8 byte
sequence that would otherwise map to code points D800..DFFF is ill-formed.

Table 3-6 specifies the bit distribution for the UTF-8 encoding form, showing the ranges of
Unicode scalar values corresponding to one-, two-, three-, and four-byte sequences. For a
discussion of the difference in the formulation of UTF-8 in ISO/IEC 10646, see Section C.3,
UTF-8 and UTF-16.

Table 3-7 lists all of the byte sequences that are well-formed in UTF-8. A range of byte val-
ues such as A0..BF indicates that any byte from A0 to BF (inclusive) is well-formed in that
position. Any byte value outside of the ranges listed is ill-formed. For example:

• The byte sequence <C0 AF> is ill-formed, because C0 is not well-formed in the
“First Byte” column.

Table 3-5. UTF-16 Bit Distribution

Scalar Value UTF-16

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

000uuuuuxxxxxxxxxxxxxxxx 110110wwwwxxxxxx 110111xxxxxxxxxx
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.9 Unicode Encoding Forms 95
• The byte sequence <E0 9F 80> is ill-formed, because in the row where E0 is
well-formed as a first byte, 9F is not well-formed as a second byte.

• The byte sequence <F4 80 83 92> is well-formed, because every byte in that
sequence matches a byte range in a row of the table (the last row).

In Table 3-7, cases where a trailing byte range is not 80..BF are shown in bold italic to draw
attention to them. These exceptions to the general pattern occur only in the second byte of
a sequence.

As a consequence of the well-formedness conditions specified in Table 3-7, the following
byte values are disallowed in UTF-8: C0–C1, F5–FF.

Encoding Form Conversion

D93 Encoding form conversion: A conversion defined directly between the code unit
sequences of one Unicode encoding form and the code unit sequences of another
Unicode encoding form.

• In implementations of the Unicode Standard, a typical API will logically convert
the input code unit sequence into Unicode scalar values (code points) and then
convert those Unicode scalar values into the output code unit sequence. Proper
analysis of the encoding forms makes it possible to convert the code units
directly, thereby obtaining the same results but with a more efficient process.

• A conformant encoding form conversion will treat any ill-formed code unit
sequence as an error condition. (See conformance clause C10.) This guarantees
that it will neither interpret nor emit an ill-formed code unit sequence. Any
implementation of encoding form conversion must take this requirement into
account, because an encoding form conversion implicitly involves a verification
that the Unicode strings being converted do, in fact, contain well-formed code
unit sequences.

Table 3-6. UTF-8 Bit Distribution

Scalar Value First Byte Second Byte Third Byte Fourth Byte

00000000 0xxxxxxx 0xxxxxxx

00000yyy yyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 3-7. Well-Formed UTF-8 Byte Sequences

Code Points First Byte Second Byte Third Byte Fourth Byte

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

96 Conformance
Constraints on Conversion Processes

The requirement not to interpret any ill-formed code unit subsequences in a string as char-
acters (see conformance clause C10) has important consequences for conversion processes.
Such processes may, for example, interpret UTF-8 code unit sequences as Unicode charac-
ter sequences. If the converter encounters an ill-formed UTF-8 code unit sequence which
starts with a valid first byte, but which does not continue with valid successor bytes (see
Table 3-7), it must not consume the successor bytes as part of the ill-formed subsequence
whenever those successor bytes themselves constitute part of a well-formed UTF-8 code
unit subsequence.

If an implementation of a UTF-8 conversion process stops at the first error encountered,
without reporting the end of any ill-formed UTF-8 code unit subsequence, then the
requirement makes little practical difference. However, the requirement does introduce a
significant constraint if the UTF-8 converter continues past the point of a detected error,
perhaps by substituting one or more U+FFFD replacement characters for the uninterpreta-
ble, ill-formed UTF-8 code unit subsequence. For example, with the input UTF-8 code unit
sequence <C2 41 42>, such a UTF-8 conversion process must not return <U+FFFD> or
<U+FFFD, U+0042>, because either of those outputs would be the result of misinterpret-
ing a well-formed subsequence as being part of the ill-formed subsequence. The expected
return value for such a process would instead be <U+FFFD, U+0041, U+0042>.

For a UTF-8 conversion process to consume valid successor bytes is not only non-confor-
mant, but also leaves the converter open to security exploits. See Unicode Technical Report
#36, “Unicode Security Considerations.”

Although a UTF-8 conversion process is required to never consume well-formed subse-
quences as part of its error handling for ill-formed subsequences, such a process is not oth-
erwise constrained in how it deals with any ill-formed subsequence itself. An ill-formed
subsequence consisting of more than one code unit could be treated as a single error or as
multiple errors. For example, in processing the UTF-8 code unit sequence <F0 80 80 41>,
the only formal requirement mandated by Unicode conformance for a converter is that the
<41> be processed and correctly interpreted as <U+0041>. The converter could return
<U+FFFD, U+0041>, handling <F0 80 80> as a single error, or <U+FFFD, U+FFFD,
U+FFFD, U+0041>, handling each byte of <F0 80 80> as a separate error, or could take
other approaches to signalling <F0 80 80> as an ill-formed code unit subsequence.

Best Practices for Using U+FFFD. When using U+FFFD to replace ill-formed subse-
quences encountered during conversion, there are various logically possible approaches to
associate U+FFFD with all or part of an ill-formed subsequence. To promote interoperabil-
ity in the implementation of conversion processes, the Unicode Standard recommends a
particular best practice. The following definitions simplify the discussion of this best prac-
tice:

D93a Unconvertible offset: An offset in a code unit sequence for which no code unit subse-
quence starting at that offset is well-formed.

D93b Maximal subpart of an ill-formed subsequence: The longest code unit subsequence
starting at an unconvertible offset that is either:

 a. the initial subsequence of a well-formed code unit sequence, or

 b. a subsequence of length one.

• The term maximal subpart of an ill-formed subsequence can be abbreviated to
maximal subpart when it is clear in context that the subsequence in question is
ill-formed.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.9 Unicode Encoding Forms 97
• This definition can be trivially applied to the UTF-32 or UTF-16 encoding
forms, but is primarily of interest when converting UTF-8 strings.

• For example, in the ill-formed UTF-8 sequence <41 C0 AF 41 F4 80 80 41>,
there are two ill-formed subsequences: <C0 AF> and <F4 80 80>, each sepa-
rated by <41>, which is well-formed. Applying the definition of maximal sub-
parts for these ill-formed subsequences, in the first case <C0> is a maximal
subpart, because that byte value can never be the first byte of a well-formed
UTF-8 sequence. In the second subsequence, <F4 80 80> is a maximal subpart,
because up to that point all three bytes match the specification for UTF-8. It is
only when followed by <41> that the sequence of <F4 80 80> can be deter-
mined to be ill-formed, because the specification requires a following byte in
the range 80..BF, instead.

• Another example illustrates the application of the concept of maximal subpart
for UTF-8 continuation bytes outside the allowable ranges defined in Table 3-7.
The UTF-8 sequence <41 E0 9F 80 41> is ill-formed, because <9F> is not an
allowed second byte of a UTF-8 sequence commencing with <E0>. In this case,
there is an unconvertible offset at <E0> and the maximal subpart at that offset
is also <E0>. The subsequence <E0 9F> cannot be a maximal subpart, because
it is not an initial subsequence of any well-formed UTF-8 code unit sequence.

Using the definition for maximal subpart, the best practice can be stated simply as:

Whenever an unconvertible offset is reached during conversion of a code
unit sequence:

1. The maximal subpart at that offset should be replaced by a single
U+FFFD.

2. The conversion should proceed at the offset immediately after the max-
imal subpart.

This sounds complicated, but it reflects the way optimized conversion processes are typi-
cally constructed, particularly for UTF-8. A sequence of code units will be processed up to
the point where the sequence either can be unambiguously interpreted as a particular Uni-
code code point or where the converter recognizes that the code units collected so far con-
stitute an ill-formed subsequence. At that point, the converter can emit a single U+FFFD
for the collected (but ill-formed) code unit(s) and move on, without having to further
accumulate state. The maximal subpart could be the start of a well-formed sequence,
except that the sequence lacks the proper continuation. Alternatively, the converter may
have found a continuation code unit or some other code unit which cannot be the start of
a well-formed sequence.

To illustrate this policy, consider the ill-formed UTF-8 sequence <61 F1 80 80 E1 80 C2 62
80 63 80 BF 64>. Possible alternative approaches for a UTF-8 converter using U+FFFD are
illustrated in Table 3-8.

The recommended conversion policy would have the outcome shown in Row 2 of
Table 3-8, rather than Row 1 or Row 3. For example, a UTF-8 converter would detect that
<F1 80 80> constituted a maximal subpart of the ill-formed subsequence as soon as it

Table 3-8. Use of U+FFFD in UTF-8 Conversion

61 F1 80 80 E1 80 C2 62 80 63 80 BF 64

1 0061 FFFD 0062 FFFD 0063 FFFD 0064

2 0061 FFFD FFFD FFFD 0062 FFFD 0063 FFFD FFFD 0064

3 0061 FFFD FFFD FFFD FFFD FFFD FFFD 0062 FFFD 0063 FFFD FFFD 0064
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

98 Conformance
encountered the subsequent code unit <E1>, so at that point, it would emit a single
U+FFFD and then continue attempting to convert from the <E1> code unit—and so forth
to the end of the code unit sequence to convert. The UTF-8 converter would detect that the
code unit <80> in the sequence <62 80 63> is not well-formed, and would replace it by
U+FFFD. Neither of the code units <80> or <BF> in the sequence <63 80 BF 64> is the
start of a potentially well-formed sequence; therefore each of them is separately replaced by
U+FFFD. For a discussion of the generalization of this approach for conversion of other
character sets to Unicode, see Section 5.22, Best Practice for U+FFFD Substitution.

3.10 Unicode Encoding Schemes
D94 Unicode encoding scheme: A specified byte serialization for a Unicode encoding

form, including the specification of the handling of a byte order mark (BOM), if
allowed.

• For historical reasons, the Unicode encoding schemes are also referred to as
Unicode (or UCS) transformation formats (UTF). That term is, however, ambig-
uous between its usage for encoding forms and encoding schemes.

The Unicode Standard supports seven encoding schemes. This section presents the formal
definition of each of these encoding schemes.

D95 UTF-8 encoding scheme: The Unicode encoding scheme that serializes a UTF-8 code
unit sequence in exactly the same order as the code unit sequence itself.

• In the UTF-8 encoding scheme, the UTF-8 code unit sequence <4D D0 B0 E4
BA 8C F0 90 8C 82> is serialized as <4D D0 B0 E4 BA 8C F0 90 8C 82>.

• Because the UTF-8 encoding form already deals in ordered byte sequences, the
UTF-8 encoding scheme is trivial. The byte ordering is already obvious and
completely defined by the UTF-8 code unit sequence itself. The UTF-8 encod-
ing scheme is defined merely for completeness of the Unicode character encod-
ing model.

• While there is obviously no need for a byte order signature when using UTF-8,
there are occasions when processes convert UTF-16 or UTF-32 data containing
a byte order mark into UTF-8. When represented in UTF-8, the byte order
mark turns into the byte sequence <EF BB BF>. Its usage at the beginning of a
UTF-8 data stream is neither required nor recommended by the Unicode Stan-
dard, but its presence does not affect conformance to the UTF-8 encoding
scheme. Identification of the <EF BB BF> byte sequence at the beginning of a
data stream can, however, be taken as a near-certain indication that the data
stream is using the UTF-8 encoding scheme.

D96 UTF-16BE encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in big-endian format.

• In UTF-16BE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02>
is serialized as <00 4D 04 30 4E 8C D8 00 DF 02>.

• In UTF-16BE, an initial byte sequence <FE FF> is interpreted as U+FEFF zero

width no-break space.

D97 UTF-16LE encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in little-endian format.

• In UTF-16LE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02>
is serialized as <4D 00 30 04 8C 4E 00 D8 02 DF>.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.10 Unicode Encoding Schemes 99
• In UTF-16LE, an initial byte sequence <FF FE> is interpreted as U+FEFF zero

width no-break space.

D98 UTF-16 encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in either big-endian or little-endian format.

• In the UTF-16 encoding scheme, the UTF-16 code unit sequence <004D 0430
4E8C D800 DF02> is serialized as <FE FF 00 4D 04 30 4E 8C D8 00 DF 02> or
<FF FE 4D 00 30 04 8C 4E 00 D8 02 DF> or <00 4D 04 30 4E 8C D8 00 DF 02>.

• In the UTF-16 encoding scheme, an initial byte sequence corresponding to
U+FEFF is interpreted as a byte order mark; it is used to distinguish between
the two byte orders. An initial byte sequence <FE FF> indicates big-endian
order, and an initial byte sequence <FF FE> indicates little-endian order. The
BOM is not considered part of the content of the text.

• The UTF-16 encoding scheme may or may not begin with a BOM. However,
when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-16 encoding scheme is big-endian.

Table 3-9 gives examples that summarize the three Unicode encoding schemes for the UTF-
16 encoding form.

D99 UTF-32BE encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in big-endian format.

• In UTF-32BE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C
00010302> is serialized as <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

• In UTF-32BE, an initial byte sequence <00 00 FE FF> is interpreted as U+FEFF
zero width no-break space.

D100 UTF-32LE encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in little-endian format.

Table 3-9. Summary of UTF-16BE, UTF-16LE, and UTF-16

Code Unit Sequence Encoding Scheme Byte Sequence(s)

004D UTF-16BE 00 4D

UTF-16LE 4D 00

UTF-16 FE FF 00 4D
FF FE 4D 00
00 4D

0430 UTF-16BE 04 30

UTF-16LE 30 04

UTF-16 FE FF 04 30
FF FE 30 04
04 30

4E8C UTF-16BE 4E 8C

UTF-16LE 8C 4E

UTF-16 FE FF 4E 8C
FF FE 8C 4E
4E 8C

D800 DF02 UTF-16BE D8 00 DF 02

UTF-16LE 00 D8 02 DF

UTF-16 FE FF D8 00 DF 02
FF FE 00 D8 02 DF
D8 00 DF 02
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

100 Conformance
• In UTF-32LE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C
00010302> is serialized as <4D 00 00 00 30 04 00 00 8C 4E 00 00 02 03 01 00>.

• In UTF-32LE, an initial byte sequence <FF FE 00 00> is interpreted as U+FEFF
zero width no-break space.

D101 UTF-32 encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in either big-endian or little-endian format.

• In the UTF-32 encoding scheme, the UTF-32 code unit sequence <0000004D
00000430 00004E8C 00010302> is serialized as <00 00 FE FF 00 00 00 4D 00 00
04 30 00 00 4E 8C 00 01 03 02> or <FF FE 00 00 4D 00 00 00 30 04 00 00 8C 4E
00 00 02 03 01 00> or <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

• In the UTF-32 encoding scheme, an initial byte sequence corresponding to
U+FEFF is interpreted as a byte order mark; it is used to distinguish between
the two byte orders. An initial byte sequence <00 00 FE FF> indicates big-
endian order, and an initial byte sequence <FF FE 00 00> indicates little-endian
order. The BOM is not considered part of the content of the text.

• The UTF-32 encoding scheme may or may not begin with a BOM. However,
when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-32 encoding scheme is big-endian.

Table 3-10 gives examples that summarize the three Unicode encoding schemes for the
UTF-32 encoding form.

The terms UTF-8, UTF-16, and UTF-32, when used unqualified, are ambiguous between
their sense as Unicode encoding forms or Unicode encoding schemes. For UTF-8, this
ambiguity is usually innocuous, because the UTF-8 encoding scheme is trivially derived
from the byte sequences defined for the UTF-8 encoding form. However, for UTF-16 and
UTF-32, the ambiguity is more problematical. As encoding forms, UTF-16 and UTF-32
refer to code units in memory; there is no associated byte orientation, and a BOM is never

Table 3-10. Summary of UTF-32BE, UTF-32LE, and UTF-32

Code Unit Sequence Encoding Scheme Byte Sequence(s)

0000004D UTF-32BE 00 00 00 4D

UTF-32LE 4D 00 00 00

UTF-32 00 00 FE FF 00 00 00 4D
FF FE 00 00 4D 00 00 00
00 00 00 4D

00000430 UTF-32BE 00 00 04 30

UTF-32LE 30 04 00 00

UTF-32 00 00 FE FF 00 00 04 30
FF FE 00 00 30 04 00 00
00 00 04 30

00004E8C UTF-32BE 00 00 4E 8C

UTF-32LE 8C 4E 00 00

UTF-32 00 00 FE FF 00 00 4E 8C
FF FE 00 00 8C 4E 00 00
00 00 4E 8C

00010302 UTF-32BE 00 01 03 02

UTF-32LE 02 03 01 00

UTF-32 00 00 FE FF 00 01 03 02
FF FE 00 00 02 03 01 00
00 01 03 02
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.11 Normalization Forms 101
used. As encoding schemes, UTF-16 and UTF-32 refer to serialized bytes, as for streaming
data or in files; they may have either byte orientation, and a BOM may be present.

When the usage of the short terms “UTF-16” or “UTF-32” might be misinterpreted, and
where a distinction between their use as referring to Unicode encoding forms or to Uni-
code encoding schemes is important, the full terms, as defined in this chapter of the Uni-
code Standard, should be used. For example, use UTF-16 encoding form or UTF-16
encoding scheme. These terms may also be abbreviated to UTF-16 CEF or UTF-16 CES,
respectively.

When converting between different encoding schemes, extreme care must be taken in han-
dling any initial byte order marks. For example, if one converted a UTF-16 byte serializa-
tion with an initial byte order mark to a UTF-8 byte serialization, thereby converting the
byte order mark to <EF BB BF> in the UTF-8 form, the <EF BB BF> would now be ambig-
uous as to its status as a byte order mark (from its source) or as an initial zero width no-
break space. If the UTF-8 byte serialization were then converted to UTF-16BE and the ini-
tial <EF BB BF> were converted to <FE FF>, the interpretation of the U+FEFF character
would have been modified by the conversion. This would be nonconformant behavior
according to conformance clause C7, because the change between byte serializations would
have resulted in modification of the interpretation of the text. This is one reason why the
use of the initial byte sequence <EF BB BF> as a signature on UTF-8 byte sequences is not
recommended by the Unicode Standard.

3.11 Normalization Forms
The concepts of canonical equivalent (D70) or compatibility equivalent (D67) characters
in the Unicode Standard make it necessary to have a full, formal definition of equivalence
for Unicode strings. String equivalence is determined by a process called normalization,
whereby strings are converted into forms which are compared directly for identity.

This section provides the formal definitions of the four Unicode Normalization Forms. It
defines the Canonical Ordering Algorithm and the Canonical Composition Algorithm
which are used to convert Unicode strings to one of the Unicode Normalization Forms for
comparison. It also formally defines Unicode Combining Classes—values assigned to all
Unicode characters and used by the Canonical Ordering Algorithm.

Note: In versions of the Unicode Standard up to Version 5.1.0, the Unicode Normalization
Forms and the Canonical Composition Algorithm were defined in Unicode Standard
Annex #15, “Unicode Normalization Forms.” Those definitions have now been consoli-
dated in this chapter, for clarity of exposition of the normative definitions and algorithms
involved in Unicode normalization. However, because implementation of Unicode nor-
malization is quite complex, implementers are still advised to fully consult Unicode Stan-
dard Annex #15, “Unicode Normalization Forms,” which contains more detailed
explanations, examples, and implementation strategies.

Unicode normalization should be carefully distinguished from Unicode collation. Both
processes involve comparison of Unicode strings. However, the point of Unicode normal-
ization is to make a determination of canonical (or compatibility) equivalence or non-
equivalence of strings—it does not provide any rank-ordering information about those
strings. Unicode collation, on the other hand, is designed to provide orderable weights or
“keys” for strings; those keys can then be used to sort strings into ordered lists. Unicode
normalization is not tailorable; normalization equivalence relationships between strings
are exact and unchangeable. Unicode collation, on the other hand, is designed to be tailor-
able to allow many kinds of localized and other specialized orderings of strings. For more
information, see Unicode Technical Standard #10, “Unicode Collation Algorithm.”
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

102 Conformance
D102 [Moved to Section 3.6, Combination and renumbered as D61a.]

D103 [Moved to Section 3.6, Combination and renumbered as D61b.]

Normalization Stability

A very important attribute of the Unicode Normalization Forms is that they must remain
stable between versions of the Unicode Standard. A Unicode string normalized to a partic-
ular Unicode Normalization Form in one version of the standard is guaranteed to remain
in that Normalization Form for implementations of future versions of the standard. In
order to ensure this stability, there are strong constraints on changes of any character prop-
erties that are involved in the specification of normalization—in particular, the combining
class and the decomposition of characters. The details of those constraints are spelled out
in the Normalization Stability Policy. See the subsection “Policies” in Section B.6, Other
Unicode Online Resources. The requirement for stability of normalization also constrains
what kinds of characters can be encoded in future versions of the standard. For an extended
discussion of this topic, see Section 3, Versioning and Stability, in Unicode Standard Annex
#15, “Unicode Normalization Forms.”

Combining Classes

Each character in the Unicode Standard has a combining class associated with it. The com-
bining class is a numerical value used by the Canonical Ordering Algorithm to determine
which sequences of combining marks are to be considered canonically equivalent and
which are not. Canonical equivalence is the criterion used to determine whether two char-
acter sequences are considered identical for interpretation.

D104 Combining class: A numeric value in the range 0..254 given to each Unicode code
point, formally defined as the property Canonical_Combining_Class.

• The combining class for each encoded character in the standard is specified in
the file UnicodeData.txt in the Unicode Character Database. Any code point
not listed in that data file defaults to \p{Canonical_Combining_Class = 0} (or
\p{ccc = 0} for short).

• An extracted listing of combining classes, sorted by numeric value, is provided
in the file DerivedCombiningClass.txt in the Unicode Character Database.

• Only combining marks have a combining class other than zero. Almost all com-
bining marks with a class other than zero are also nonspacing marks, with a few
exceptions. Also, not all nonspacing marks have a non-zero combining class.
Thus, while the correlation between ^\p{ccc=0] and \p{gc=Mn} is close, it is
not exact, and implementations should not depend on the two concepts being
identical.

D105 Fixed position class: A subset of the range of numeric values for combining classes—
specifically, any value in the range 10..199.

• Fixed position classes are assigned to a small number of Hebrew, Arabic, Syriac,
Telugu, Thai, Lao, and Tibetan combining marks whose positions were con-
ceived of as occurring in a fixed position with respect to their grapheme base,
regardless of any other combining mark that might also apply to the grapheme
base.

• Not all Arabic vowel points or Indic matras are given fixed position classes. The
existence of fixed position classes in the standard is an historical artifact of an
earlier stage in its development, prior to the formal standardization of the Uni-
code Normalization Forms.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.11 Normalization Forms 103
D106 Typographic interaction: Graphical application of one nonspacing mark in a position
relative to a grapheme base that is already occupied by another nonspacing mark, so
that some rendering adjustment must be done (such as default stacking or side-by-
side placement) to avoid illegible overprinting or crashing of glyphs.

The assignment of combining class values for Unicode characters was originally done with
the goal in mind of defining distinct numeric values for each group of nonspacing marks
that would typographically interact. Thus all generic nonspacing marks placed above the
base character are given the same value, \p{ccc=230}, while all generic nonspacing marks
placed below are given the value \p{ccc=220}. Nonspacing marks that tend to sit on one
“shoulder” or another of a grapheme base, or that may actually be attached to the graph-
eme base itself when applied, have their own combining classes.

The design of canonical ordering generally assures that:

• When two combining characters C1 and C2 do typographically interact, the
sequence C1+ C2 is not canonically equivalent to C2+ C1.

• When two combining characters C1 and C2 do not typographically interact, the
sequence C1+ C2 is canonically equivalent to C2+ C1.

This is roughly correct for the normal cases of detached, generic nonspacing marks placed
above and below base letters. However, the ramifications of complex rendering for many
scripts ensure that there are always some edge cases involving typographic interaction
between combining marks of distinct combining classes. This has turned out to be particu-
larly true for some of the fixed position classes for Hebrew and Arabic, for which a distinct
combining class is no guarantee that there will be no typographic interaction for rendering.

Because of these considerations, particular combining class values should be taken only as
a guideline regarding issues of typographic interaction of combining marks.

The only normative use of combining class values is as input to the Canonical Ordering
Algorithm, where they are used to normatively distinguish between sequences of combin-
ing marks that are canonically equivalent and those that are not.

Specification of Unicode Normalization Forms

The specification of Unicode Normalization Forms applies to all Unicode coded character
sequences (D12). For clarity of exposition in the definitions and rules specified here, the
terms “character” and “character sequence” are used, but coded character sequences refer
also to sequences containing noncharacters or reserved code points. Unicode Normaliza-
tion Forms are specified for all Unicode code points, and not just for ordinary, assigned
graphic characters.

Starters

D107 Starter: Any code point (assigned or not) with combining class of zero (ccc=0).

• Note that ccc=0 is the default value for the Canonical_Combining_Class prop-
erty, so that all reserved code points are Starters by definition. Noncharacters
are also Starters by definition. All control characters, format characters, and
private-use characters are also Starters.

• Private agreements cannot override the value of the Canonical_Combining_Class
property for private-use characters.

Among the graphic characters, all those with General_Category values other than gc=M
are Starters. Some combining marks have ccc=0 and thus are also Starters. Combining
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

104 Conformance
marks with ccc other than 0 are not Starters. Table 3-11 summarizes the relationship
between types of combining marks and their status as Starters.

The term Starter refers, in concept, to the starting character of a combining character
sequence (D56), because all combining character sequences except defective combining
character sequences (D57) commence with a ccc=0 character—in other words, they start
with a Starter. However, because the specification of Unicode Normalization Forms must
apply to all possible coded character sequences, and not just to typical combining character
sequences, the behavior of a code point for Unicode Normalization Forms is specified
entirely in terms of its status as a Starter or a non-starter, together with its
Decomposition_Mapping value.

Canonical Ordering Algorithm

D108 Reorderable pair: Two adjacent characters A and B in a coded character sequence <A,
B> are a Reorderable Pair if and only if ccc(A) > ccc(B) > 0.

D109 Canonical Ordering Algorithm: In a decomposed character sequence D, exchange the
positions of the characters in each Reorderable Pair until the sequence contains no
more Reorderable Pairs.

• In effect, the Canonical Ordering Algorithm is a local bubble sort that guaran-
tees that a Canonical Decomposition or a Compatibility Decomposition will
contain no subsequences in which a combining mark is followed directly by
another combining mark that has a lower, non-zero combining class.

• Canonical ordering is defined in terms of application of the Canonical Order-
ing Algorithm to an entire decomposed sequence. For example, canonical
decomposition of the sequence <U+1E0B latin small letter d with dot

above, U+0323 combining dot below> would result in the sequence
<U+0064 latin small letter d, U+0307 combining dot above, U+0323
combining dot below>, a sequence which is not yet in canonical order. Most
decompositions for Unicode strings are already in canonical order.

Table 3-12 gives some examples of sequences of characters, showing which of them consti-
tute a Reorderable Pair and the reasons for that determination. Except for the base charac-
ter “a”, the other characters in the example table are combining marks; character names are
abbreviated in the Sequence column to make the examples clearer.

Table 3-11. Combining Marks and Starter Status

Description gc ccc Starter
Nonspacing Mn 0 Yes

>0 No
Spacing Mc 0 Yes

>0 No
Enclosing Me 0 Yes

Table 3-12. Reorderable Pairs

Sequence
Combining
Classes

Reorderable? Reason

<a, acute> 0, 230 No ccc(A)=0

<acute, a> 230, 0 No ccc(B)=0

<diaeresis, acute> 230, 230 No ccc(A)=ccc(B)

<cedilla, acute> 202, 230 No ccc(A)<ccc(B)

<acute, cedilla> 230, 202 Yes ccc(A)>ccc(B)
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.11 Normalization Forms 105
Canonical Composition Algorithm

D110 Singleton decomposition: A canonical decomposition mapping from a character to a
different single character.

• The default value for the Decomposition_Mapping property for a code point
(including any private-use character, any noncharacter, and any unassigned
code point) is the code point itself. This default value does not count as a sin-
gleton decomposition, because it does not map a character to a different charac-
ter. Private agreements cannot override the decomposition mapping for
private-use characters

• Example: U+2126 ohm sign has a singleton decomposition to U+03A9 greek

capital letter omega.

• A character with a singleton decomposition is often referred to simply as a sin-
gleton for short.

D110aExpanding canonical decomposition: A canonical decomposition mapping from a
character to a sequence of more than one character.

D110bStarter decomposition: An expanding canonical decomposition for which both the
character being mapped and the first character of the resulting sequence are Starters.

• Definitions D110a and D110b are introduced to simplify the following defini-
tion of non-starter decomposition and make it more precise.

D111 Non-starter decomposition: An expanding canonical decomposition which is not a
starter decomposition.

• Example: U+0344 combining greek dialytika tonos has an expanding
canonical decomposition to the sequence <U+0308 combining diaeresis,
U+0301 combining acute accent>. U+0344 is a non-starter, and the first
character in its decomposition is a non-starter. Therefore, on two counts,
U+0344 has a non-starter decomposition.

• Example: U+0F73 tibetan vowel sign ii has an expanding canonical decom-
position to the sequence <U+0F71 tibetan vowel sign aa, U+0F72 tibetan

vowel sign i>. The first character in that sequence is a non-starter. Therefore
U+0F73 has a non-starter decomposition, even though U+0F73 is a Starter.

• As of the current version of the standard, there are no instances of the third
possible situation: a non-starter character with an expanding canonical decom-
position to a sequence whose first character is a Starter.

D112 Composition exclusion: A Canonical Decomposable Character (D69) which has the
property value Composition_Exclusion=True.

• The list of Composition Exclusions is provided in CompositionExclusions.txt
in the Unicode Character Database.

D113 Full composition exclusion: A Canonical Decomposable Character which has the
property value Full_Composition_Exclusion=True.

• Full composition exclusions consist of the entire list of composition exclusions
plus all characters with singleton decompositions or with non-starter decom-
positions.

• For convenience in implementation of Unicode normalization, the derived
property Full_Composition_Exclusion is computed, and all characters with the
property value Full_Composition_Exclusion=True are listed in DerivedNor-
malizationProps.txt in the Unicode Character Database.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

106 Conformance
D114 Primary composite: A Canonical Decomposable Character (D69) which is not a Full
Composition Exclusion.

• For any given version of the Unicode Standard, the list of primary composites
can be computed by extracting all canonical decomposable characters from
UnicodeData.txt in the Unicode Character Database, adding the list of precom-
posed Hangul syllables (D132), and subtracting the list of Full Decomposition
Exclusions.

D115 Blocked: Let A and C be two characters in a coded character sequence <A, ... C>. C is
blocked from A if and only if ccc(A)=0 and there exists some character B between A
and C in the coded character sequence, i.e., <A, ... B, ... C>, and either ccc(B)=0 or
ccc(B) >= ccc(C).

• Because the Canonical Composition Algorithm operates on a string which is
already in canonical order, testing whether a character is blocked requires look-
ing only at the immediately preceding character in the string.

D116 Non-blocked pair: A pair of characters <A, ... C> in a coded character sequence, in
which C is not blocked from A.

• It is important for proper implementation of the Canonical Composition Algo-
rithm to be aware that a Non-blocked Pair need not be contiguous.

D117 Canonical Composition Algorithm: Starting from the second character in the coded
character sequence (of a Canonical Decomposition or Compatibility Decomposi-
tion) and proceeding sequentially to the final character, perform the following steps:

R1 Seek back (left) in the coded character sequence from the character C to find the
last Starter L preceding C in the character sequence.

R2 If there is such an L, and C is not blocked from L, and there exists a Primary Com-
posite P which is canonically equivalent to the sequence <L, C>, then replace L by
P in the sequence and delete C from the sequence.

• When the algorithm completes, all Non-blocked Pairs canonically equivalent to
a Primary Composite will have been systematically replaced by those Primary
Composites.

• The replacement of the Starter L in R2 requires continuing to check the suc-
ceeding characters until the character at that position is no longer part of any
Non-blocked Pair that can be replaced by a Primary Composite. For example,
consider the following hypothetical coded character sequence: <U+007A z,
U+0335 short stroke overlay, U+0327 cedilla, U+0324 diaeresis below, U+0301
acute>. None of the first three combining marks forms a Primary Composite
with the letter z. However, the fourth combining mark in the sequence, acute,
does form a Primary Composite with z, and it is not Blocked from the z. There-
fore, R2 mandates the replacement of the sequence <U+007A z, ... U+0301
acute> with <U+017A z-acute, ...>, even though there are three other combin-
ing marks intervening in the sequence.

• The character C in R1 is not necessarily a non-starter. It is necessary to check all
characters in the sequence, because there are sequences <L, C> where both L
and C are Starters, yet there is a Primary Composite P which is canonically
equivalent to that sequence. For example, Indic two-part vowels often have
canonical decompositions into sequences of two spacing vowel signs, each of
which has Canonical_Combining_Class=0 and which is thus a Starter by defi-
nition. Nevertheless, such a decomposed sequence has an equivalent Primary
Composite.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.12 Conjoining Jamo Behavior 107
Definition of Normalization Forms

The Unicode Standard specifies four normalization forms. Informally, two of these forms
are defined by maximal decomposition of equivalent sequences, and two of these forms are
defined by maximal composition of equivalent sequences. Each is then differentiated based
on whether it employs a Canonical Decomposition or a Compatibility Decomposition.

D118 Normalization Form D (NFD): The Canonical Decomposition of a coded character
sequence.

D119 Normalization Form KD (NFKD): The Compatibility Decomposition of a coded
character sequence.

D120 Normalization Form C (NFC): The Canonical Composition of the Canonical
Decomposition of a coded character sequence.

D121 Normalization Form KC (NFKC): The Canonical Composition of the Compatibility
Decomposition of a coded character sequence.

Logically, to get the NFD or NFKD (maximally decomposed) normalization form for a
Unicode string, one first computes the full decomposition of that string and then applies
the Canonical Ordering Algorithm to it.

Logically, to get the NFC or NFKC (maximally composed) normalization form for a Uni-
code string, one first computes the NFD or NFKD normalization form for that string, and
then applies the Canonical Composition Algorithm to it.

3.12 Conjoining Jamo Behavior
The Unicode Standard contains both a large set of precomposed modern Hangul syllables
and a set of conjoining Hangul jamo, which can be used to encode archaic Korean syllable
blocks as well as modern Korean syllable blocks. This section describes how to

• Determine the canonical decomposition of precomposed Hangul syllables.

• Compose jamo characters into precomposed Hangul syllables.

• Algorithmically determine the names of precomposed Hangul syllables.

For more information, see the “Hangul Syllables” and “Hangul Jamo” subsections in
Section 12.6, Hangul. Hangul syllables are a special case of grapheme clusters. For the algo-
rithm to determine syllable boundaries in a sequence of conjoining jamo characters, see
Section 8, “Hangul Syllable Boundary Determination” in Unicode Standard Annex #29,
“Unicode Text Segmentation.”

Definitions

The following definitions use the Hangul_Syllable_Type property, which is defined in the
UCD file HangulSyllableType.txt.

D122 Leading consonant: A character with the Hangul_Syllable_Type property value
Leading_Jamo. Abbreviated as L.

• When not occurring in clusters, the term leading consonant is equivalent to syl-
lable-initial character.

D123 Choseong: A sequence of one or more leading consonants.

• In Modern Korean, a choseong consists of a single jamo. In Old Korean, a
sequence of more than one leading consonant may occur.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

108 Conformance
• Equivalent to syllable-initial cluster.

D124 Choseong filler: U+115F hangul choseong filler. Abbreviated as Lf.

• A choseong filler stands in for a missing choseong to make a well-formed Korean
syllable.

D125 Vowel: A character with the Hangul_Syllable_Type property value Vowel_Jamo.
Abbreviated as V.

• When not occurring in clusters, the term vowel is equivalent to syllable-peak
character.

D126 Jungseong: A sequence of one or more vowels.

• In Modern Korean, a jungseong consists of a single jamo. In Old Korean, a
sequence of more than one vowel may occur.

• Equivalent to syllable-peak cluster.

D127 Jungseong filler: U+1160 hangul jungseong filler. Abbreviated as Vf.

• A jungseong filler stands in for a missing jungseong to make a well-formed
Korean syllable.

D128 Trailing consonant: A character with the Hangul_Syllable_Type property value
Trailing_Jamo. Abbreviated as T.

• When not occurring in clusters, the term trailing consonant is equivalent to syl-
lable-final character.

D129 Jongseong: A sequence of one or more trailing consonants.

• In Modern Korean, a jongseong consists of a single jamo. In Old Korean, a
sequence of more than one trailing consonant may occur.

• Equivalent to syllable-final cluster.

D130 LV_Syllable: A character with Hangul_Syllable_Type property value LV_Syllable.
Abbreviated as LV.

• An LV_Syllable has a canonical decomposition to a sequence of the form <L, V>.

D131 LVT_Syllable: A character with Hangul_Syllable_Type property value LVT_Syllable.
Abbreviated as LVT.

• An LVT_Syllable has a canonical decomposition to a sequence of the form <LV, T>.

D132 Precomposed Hangul syllable: A character that is either an LV_Syllable or an
LVT_Syllable.

D133 Syllable block: A sequence of Korean characters that should be grouped into a single
square cell for display.

• This is different from a precomposed Hangul syllable and is meant to include
sequences needed for the representation of Old Korean syllables.

• A syllable block may contain a precomposed Hangul syllable plus other charac-
ters.

D134 Standard Korean syllable block: A sequence of one or more L followed by a sequence
of one or more V and a sequence of zero or more T, or any other sequence that is
canonically equivalent.

• All precomposed Hangul syllables, which have the form LV or LVT, are standard
Korean syllable blocks.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.12 Conjoining Jamo Behavior 109
• Alternatively, a standard Korean syllable block may be expressed as a sequence
of a choseong and a jungseong, optionally followed by a jongseong.

• A choseong filler may substitute for a missing leading consonant, and a jung-
seong filler may substitute for a missing vowel.

• This definition is used in Unicode Standard Annex #29, “Unicode Text Seg-
mentation,” as part of the algorithm for determining syllable boundaries in a
sequence of conjoining jamo characters.

Hangul Syllable Decomposition

The following algorithm specifes how to take a precomposed Hangul syllable s and arith-
metically derive its full canonical decomposition d. This normative mapping for precom-
posed Hangul syllables is referenced by D68, Canonical decomposition, in Section 3.7,
Decomposition.

This algorithm, as well as the other Hangul-related algorithms defined in the following
text, is first specified in pseudo-code. Then each is exemplified, showing its application to a
particular Hangul character or sequence. The Hangul characters used in those examples are
shown in Table 3-13. Finally, each algorithm is then further exemplified with an implemen-
tation as a Java method at the end of this section.

Common Constants. Define the following consonants:

SBase = AC0016
LBase = 110016
VBase = 116116
TBase = 11A716
LCount = 19
VCount = 21
TCount = 28
NCount = 588 (VCount * TCount)
SCount = 11172 (LCount * NCount)

TBase is set to one less than the beginning of the range of trailing consonants, which starts
at U+11A8. TCount is set to one more than the number of trailing consonants relevant to
the decomposition algorithm: (11C216 - 11A816 + 1) + 1. NCount is thus the number of
precomposed Hangul syllables starting with the same leading consonant, counting both
the LV_Syllables and the LVT_Syllables for each possible trailing consonant. SCount is the
total number of precomposed Hangul syllables.

Syllable Index. First compute the index of the precomposed Hangul syllable s:

SIndex = s - SBase

Table 3-13. Hangul Characters Used in Examples

Code Point Glyph Character Name Jamo Short Name

U+D4DB L hangul syllable pwilh

U+1111 hangul choseong phieuph P

U+1171 hangul jungseong wi WI

U+11B6 hangul jongseong rieul-hieuh LH
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

110 Conformance
Arithmetic Decomposition Mapping. If the precomposed Hangul syllable s with the index
SIndex (defined above) has the Hangul_Syllable_Type value LV, then it has a canonical
decomposition mapping into a sequence of an L jamo and a V jamo, <LPart, VPart>:

LIndex = SIndex div NCount
VIndex = (SIndex mod NCount) div TCount

LPart = LBase + LIndex
VPart = VBase + VIndex

If the precomposed Hangul syllable s with the index SIndex (defined above) has the
Hangul_Syllable_Type value LVT, then it has a canonical decomposition mapping into a
sequence of an LV_Syllable and a T jamo, <LVPart, TPart>:

LVIndex = (SIndex div TCount) * TCount
TIndex = SIndex mod TCount

LVPart = SBase + LVIndex
TPart = TBase + TIndex

In this specification, the “div” operator refers to integer division (rounded down). The
“mod” operator refers to the modulo operation, equivalent to the integer remainder for
positive numbers.

The canonical decomposition mappings calculated this way are equivalent to the values of
the Unicode character property Decomposition_Mapping (dm), for each precomposed
Hangul syllable.

Full Canonical Decomposition. The full canonical decomposition for a Unicode character
is defined as the recursive application of canonical decomposition mappings. The canoni-
cal decomposition mapping of an LVT_Syllable contains an LVPart which itself is a pre-
composed Hangul syllable and thus must be further decomposed. However, it is simplest to
unwind the recursion and directly calculate the resulting <LPart, VPart, TPart> sequence
instead. For full canonical decomposition of a precomposed Hangul syllable, compute the
indices and components as follows:

LIndex = SIndex div NCount
VIndex = (SIndex mod NCount) div TCount
TIndex = SIndex mod TCount

LPart = LBase + LIndex
VPart = VBase + VIndex
TPart = TBase + TIndex if TIndex > 0

If TIndex = 0, then there is no trailing consonant, so map the precomposed Hangul syllable
s to its full decomposition d = <LPart, VPart>. Otherwise, there is a trailing consonant, so
map s to its full decomposition d = <LPart, VPart, TPart>.

Example. For the precomposed Hangul syllable U+D4DB, compute the indices and com-
ponents:

SIndex = 10459
LIndex = 17
VIndex = 16
TIndex = 15

LPart = LBase + 17 = 111116
VPart = VBase + 16 = 117116
TPart = TBase + 15 = 11B616

Then map the precomposed syllable to the calculated sequence of components, which con-
stitute its full canonical decomposition:

U+D4DB → <U+1111, U+1171, U+11B6>
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.12 Conjoining Jamo Behavior 111
Note that the canonical decomposition mapping for U+D4DB would be <U+D4CC,
U+11B6>, but in computing the full canonical decomposition, that sequence would only
be an intermediate step.

Hangul Syllable Composition

The following algorithm specifes how to take a canonically decomposed sequence of Han-
gul jamo characters d and arithmetically derive its mapping to an equivalent precomposed
Hangul syllable s. This normative mapping can be used to calculate the Primary Composite
for a sequence of Hangul jamo characters, as specified in D117, Canonical Composition
Algorithm, in Section 3.11, Normalization Forms. Strictly speaking, this algorithm is simply
the inverse of the full canonical decomposition mappings specified by the Hangul Syllable
Decomposition Algorithm. However, it is useful to have a summary specification of that
inverse mapping as a separate algorithm, for convenience in implementation.

Note that the presence of any non-jamo starter or any combining character between two of
the jamos in the sequence d would constitute a blocking context, and would prevent canon-
ical composition. See D115, Blocked, in Section 3.11, Normalization Forms.

Arithmetic Primary Composite Mapping. Given a Hangul jamo sequence <LPart, VPart>,
where the LPart is in the range U+1100..U+1112, and where the VPart is in the range
U+1161..U+1175, compute the indices and syllable mapping:

LIndex = LPart - LBase
VIndex = VPart - VBase
LVIndex = LIndex * NCount + VIndex * TCount

s = SBase + LVIndex

Given a Hangul jamo sequence <LPart, VPart, TPart>, where the LPart is in the range
U+1100..U+1112, where the VPart is in the range U+1161..U+1175, and where the TPart
is in the range U+11A8..U+11C2, compute the indices and syllable mapping:

LIndex = LPart - LBase
VIndex = VPart - VBase
TIndex = TPart - TBase
LVIndex = LIndex * NCount + VIndex * TCount

s = SBase + LVIndex + TIndex

The mappings just specified deal with canonically decomposed sequences of Hangul jamo
characters. However, for completeness, the following mapping is also defined to deal with
cases in which Hangul data is not canonically decomposed. Given a sequence <LVPart,
TPart>, where the LVPart is a precomposed Hangul syllable of Hangul_Syllable_Type LV,
and where the TPart is in the range U+11A8..U+11C2, compute the index and syllable
mapping:

TIndex = TPart - TBase
s = LVPart + TIndex

Example. For the canonically decomposed Hangul jamo sequence <U+1111, U+1171,
U+11B6>, compute the indices and syllable mapping:

LIndex = 17
VIndex = 16
TIndex = 15

LVIndex = 17 * 588 + 16 * 28 = 9996 + 448 = 10444
s = AC0016 + 10444 + 15 = D4DB16

Then map the Hangul jamo sequence to this precomposed Hangul syllable as its Primary
Composite:

<U+1111, U+1171, U+11B6> → U+D4DB
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

112 Conformance
Hangul Syllable Name Generation

The Unicode character names for precomposed Hangul syllables are derived algorithmi-
cally from the Jamo_Short_Name property values for each of the Hangul jamo characters
in the full canonical decomposition of that syllable. That derivation is specified here.

Full Canonical Decomposition. First construct the full canonical decomposition d for the
precomposed Hangul syllable s, as specified by the Hangul Syllable Decomposition Algo-
rithm:

s → d = <LPart, VPart, (TPart)>
Jamo Short Name Mapping. For each part of the full canonical decomposition d, look up
the Jamo_Short_Name property value, as specified in Jamo.txt in the Unicode Character
Database. If there is no TPart in the full canonical decomposition, then the third value is set
to be a null string:

JSNL = Jamo_Short_Name(LPart)
JSNV = Jamo_Short_Name(VPart)
JSNT = Jamo_Short_Name(TPart) if TPart exists, else ""

Name Concatenation. The Unicode character name for s is then constructed by starting
with the constant string “HANGUL SYLLABLE” and then concatenating each of the three
Jamo short name values, in order:

Name = "HANGUL SYLLABLE " + JSNL + JSNV + JSNT

Example. For the precomposed Hangul syllable U+D4DB, construct the full canonical
decomposition:

U+D4DB → <U+1111, U+1171, U+11B6>
Look up the Jamo_Short_Name values for each of the Hangul jamo in the canonical
decomposition:

JSNL = Jamo_Short_Name(U+1111) = "P"

JSNV = Jamo_Short_Name(U+1171) = "WI"

JSNT = Jamo_Short_Name(U+11B6) = "LH"

Concatenate the pieces:

Name = "HANGUL SYLLABLE " + "P" + "WI" + "LH"

= "HANGUL SYLLABLE PWILH"

Sample Code for Hangul Algorithms

This section provides sample Java code illustrating the three Hangul-related algorithms.

Common Constants. This code snippet defines the common constants used in the methods
that follow.

static final int
 SBase = 0xAC00,
 LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7,
 LCount = 19, VCount = 21, TCount = 28,
 NCount = VCount * TCount, // 588
 SCount = LCount * NCount; // 11172

Hangul Decomposition. The Hangul Decomposition Algorithm as specified above directly
decomposes precomposed Hangul syllable characters into a sequence of either two or three
Hangul jamo characters. The sample method here does precisely that:

public static String decomposeHangul(char s) {
 int SIndex = s - SBase;
 if (SIndex < 0 || SIndex >= SCount) {
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.12 Conjoining Jamo Behavior 113
 return String.valueOf(s);
 }
 StringBuffer result = new StringBuffer();
 int L = LBase + SIndex / NCount;
 int V = VBase + (SIndex % NCount) / TCount;
 int T = TBase + SIndex % TCount;
 result.append((char)L);
 result.append((char)V);
 if (T != TBase) result.append((char)T);
 return result.toString();
 }

The Hangul Decomposition Algorithm could also be expressed equivalently as a recursion
of binary decompositions, as is the case for other non-Hangul characters. All LVT syllables
would decompose into an LV syllable plus a T jamo. The LV syllables themselves would in
turn decompose into an L jamo plus a V jamo. This approach can be used to produce
somewhat more compact code than what is illustrated in this sample method.

Hangul Composition. An important feature of Hangul composition is that whenever the
source string is not in Normalization Form D or Normalization Form KD, one must not
detect only character sequences of the form <L, V> and <L, V, T>. It is also necessary to
catch the sequences of the form <LV, T>. To guarantee uniqueness, such sequences must
also be composed. This extra processing is illustrated in step 2 of the sample method
defined here.

public static String composeHangul(String source) {
 int len = source.length();
 if (len == 0) return "";
 StringBuffer result = new StringBuffer();
 char last = source.charAt(0); // copy first char
 result.append(last);

 for (int i = 1; i < len; ++i) {
 char ch = source.charAt(i);

 // 1. check to see if two current characters are L and V
 int LIndex = last - LBase;
 if (0 <= LIndex && LIndex < LCount) {
 int VIndex = ch - VBase;
 if (0 <= VIndex && VIndex < VCount) {

 // make syllable of form LV

last = (char)(SBase + (LIndex * VCount + VIndex)
* TCount);

result.setCharAt(result.length()-1, last); // reset last
continue; // discard ch

 }
 }

 // 2. check to see if two current characters are LV and T
 int SIndex = last - SBase;
 if (0 <= SIndex && SIndex < SCount

&& (SIndex % TCount) == 0) {
 int TIndex = ch - TBase;
 if (0 < TIndex && TIndex < TCount) {

 // make syllable of form LVT
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

114 Conformance
 last += TIndex;
 result.setCharAt(result.length()-1, last); // reset last
 continue; // discard ch
 }
 }
 // if neither case was true, just add the character
 last = ch;
 result.append(ch);
 }
 return result.toString();
 }

Hangul Character Name Generation. Hangul decomposition is also used when generating
the names for precomposed Hangul syllables. This is apparent in the following sample
method for constructing a Hangul syllable name. The content of the three tables used in
this method can be derived from the data file Jamo.txt in the Unicode Character Database.

public static String getHangulName(char s) {
 int SIndex = s - SBase;
 if (0 > SIndex || SIndex >= SCount) {
 throw new IllegalArgumentException("Not a Hangul Syllable: "

+ s);
 }
 StringBuffer result = new StringBuffer();
 int LIndex = SIndex / NCount;
 int VIndex = (SIndex % NCount) / TCount;
 int TIndex = SIndex % TCount;
 return "HANGUL SYLLABLE " + JAMO_L_TABLE[LIndex]
 + JAMO_V_TABLE[VIndex] + JAMO_T_TABLE[TIndex];
 }

 static private String[] JAMO_L_TABLE = {
 "G", "GG", "N", "D", "DD", "R", "M", "B", "BB",
 "S", "SS", "", "J", "JJ", "C", "K", "T", "P", "H"
 };

 static private String[] JAMO_V_TABLE = {
 "A", "AE", "YA", "YAE", "EO", "E", "YEO", "YE", "O",
 "WA", "WAE", "OE", "YO", "U", "WEO", "WE", "WI",
 "YU", "EU", "YI", "I"
 };

 static private String[] JAMO_T_TABLE = {
 "", "G", "GG", "GS", "N", "NJ", "NH", "D", "L", "LG", "LM",
 "LB", "LS", "LT", "LP", "LH", "M", "B", "BS",
 "S", "SS", "NG", "J", "C", "K", "T", "P", "H"
 };

Additional Transformations for Hangul Jamo. Additional transformations can be per-
formed on sequences of Hangul jamo for various purposes. For example, to regularize
sequences of Hangul jamo into standard Korean syllable blocks, the choseong or jungseong
fillers can be inserted, as described in Unicode Standard Annex #29, “Unicode Text Seg-
mentation.”

For keyboard input, additional compositions may be performed. For example, a sequence
of trailing consonants kf + sf may be combined into a single, complex jamo ksf. In addition,
some Hangul input methods do not require a distinction on input between initial and final
consonants, and may instead change between them on the basis of context. For example, in
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.13 Default Case Algorithms 115
the keyboard sequence mi + em + ni + si + am, the consonant ni would be reinterpreted as
nf, because there is no possible syllable nsa. This results in the two syllables men and sa.

3.13 Default Case Algorithms
This section specifies the default algorithms for case conversion, case detection, and case-
less matching. For information about the data sources for case mapping, see Section 4.2,
Case. For a general discussion of case mapping operations, see Section 5.18, Case Mappings.

All of these specifications are logical specifications. Particular implementations can opti-
mize the processes as long as they provide the same results.

Tailoring. The default casing operations are intended for use in the absence of tailoring for
particular languages and environments. Where a particular environment requires tailoring
of casing operations to produce correct results, use of such tailoring does not violate con-
formance to the standard.

Data that assist the implementation of certain tailorings are published in SpecialCasing.txt
in the Unicode Character Database. Most notably, these include:

• Casing rules for the Turkish dotted capital I and dotless small i.

• Casing rules for the retention of dots over i for Lithuanian letters with addi-
tional accents.

Examples of case tailorings which are not covered by data in SpecialCasing.txt include:

• Titlecasing of IJ at the start of words in Dutch

• Removal of accents when uppercasing letters in Greek

• Titlecasing of second or subsequent letters in words in orthographies that
include caseless letters such as apostrophes

• Uppercasing of U+00DF “ß” latin small letter sharp s to U+1E9E latin

capital letter sharp s

The preferred mechanism for defining tailored casing operations is the Unicode Common
Locale Data Repository (CLDR), where tailorings such as these can be specified on a per-
language basis, as needed.

Tailorings of case operations may or may not be desired, depending on the nature of the
implementation in question. For more about complications in case mapping, see the dis-
cussion in Section 5.18, Case Mappings.

Definitions

The full case mappings for Unicode characters are obtained by using the mappings from
SpecialCasing.txt plus the mappings from UnicodeData.txt, excluding any of the latter
mappings that would conflict. Any character that does not have a mapping in these files is
considered to map to itself. The full case mappings of a character C are referred to as
Lowercase_Mapping(C), Titlecase_Mapping(C), and Uppercase_Mapping(C). The full
case folding of a character C is referred to as Case_Folding(C).

Detection of case and case mapping requires more than just the General_Category values
(Lu, Lt, Ll). The following definitions are used:

D135 A character C is defined to be cased if and only if C has the Lowercase or Uppercase
property or has a General_Category value of Titlecase_Letter.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

116 Conformance
• The Uppercase and Lowercase property values are specified in the data file
DerivedCoreProperties.txt in the Unicode Character Database. The derived
property Cased is also listed in DerivedCoreProperties.txt.

D136 A character C is defined to be case-ignorable if C has the value MidLetter or the value
MidNumLet for the Word_Break property or its General_Category is one of
Nonspacing_Mark (Mn), Enclosing_Mark (Me), Format (Cf), Modifier_Letter
(Lm), or Modifier_Symbol (Sk)

• The Word_Break property is defined in the data file WordBreakProperty.txt in
the Unicode Character Database.

• The derived property Case_Ignorable is listed in the data file DerivedCoreProp-
erties.txt in the Unicode Character Database.

• The Case_Ignorable property is defined for use in the context specifications of
Table 3-14. It is a narrow-use property, and is not intended for use in other con-
texts. The more broadly applicable string casing function, isCased(X), is
defined in D143.

D137 Case-ignorable sequence: A sequence of zero or more case-ignorable characters.

D138 A character C is in a particular casing context for context-dependent matching if and
only if it matches the corresponding specification in Table 3-14.

In Table 3-14, a description of each context is followed by the equivalent regular expres-
sion(s) describing the context before C, the context after C, or both. The regular expres-
sions use the syntax of Unicode Technical Standard #18, “Unicode Regular Expressions,”
with one addition: “!” means that the expression does not match. All of the regular expres-
sions are case-sensitive.

The regular-expression operator * in Table 3-14 is “possessive,” consuming as many charac-
ters as possible, with no backup. This is significant in the case of Final_Sigma, because the
sets of case-ignorable and cased characters are not disjoint: for example, they both contain
U+0345 ypogegrammeni. Thus, the Before condition is not satisfied if C is preceded by

Table 3-14. Context Specification for Casing

Context Description Regular Expressions

Final_Sigma C is preceded by a sequence consisting
of a cased letter and then zero or more
case-ignorable characters, and C is
not followed by a sequence consisting
of zero or more case-ignorable char-
acters and then a cased letter.

Before C \p{cased} (\p{case-ignorable})*

After C ! ((\p{case-ignorable})*
\p{cased})

After_Soft_D
otted

There is a Soft_Dotted character before
C, with no intervening character of
combining class 0 or 230 (Above).

Before C [\p{Soft_Dotted}]
([^\p{ccc=230} \p{ccc=0}])*

More_Above C is followed by a character of combin-
ing class 230 (Above) with no inter-
vening character of combining class 0
or 230 (Above).

After C [^\p{ccc=230}\p{ccc=0}]*
[\p{ccc=230}]

Before_Dot C is followed by combining dot
above (U+0307). Any sequence of
characters with a combining class that
is neither 0 nor 230 may intervene
between the current character and the
combining dot above.

After C ([^\p{ccc=230} \p{ccc=0}])*
[\u0307]

After_I There is an uppercase I before C, and
there is no intervening combining
character class 230 (Above) or 0.

Before C [I] ([^\p{ccc=230} \p{ccc=0}])*
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.13 Default Case Algorithms 117
only U+0345, but would be satisfied by the sequence <capital-alpha, ypogegrammeni>.
Similarly, the After condition is satisfied if C is only followed by ypogegrammeni, but would
not satisfied by the sequence <ypogegrammeni, capital-alpha>.

Default Case Conversion

The following rules specify the default case conversion operations for Unicode strings.
These rules use the full case conversion operations, Uppercase_Mapping(C),
Lowercase_Mapping(C), and Titlecase_Mapping(C), as well as the context-dependent
mappings based on the casing context, as specified in Table 3-14.

For a string X:

R1 toUppercase(X): Map each character C in X to Uppercase_Mapping(C).

R2 toLowercase(X): Map each character C in X to Lowercase_Mapping(C).

R3 toTitlecase(X): Find the word boundaries in X according to Unicode Standard
Annex #29, “Unicode Text Segmentation.” For each word boundary, find the first
cased character F following the word boundary. If F exists, map F to
Titlecase_Mapping(F); then map all characters C between F and the following
word boundary to Lowercase_Mapping(C).

The default case conversion operations may be tailored for specific requirements. A com-
mon variant, for example, is to make use of simple case conversion, rather than full case
conversion. Language- or locale-specific tailorings of these rules may also be used.

Default Case Folding

Case folding is related to case conversion. However, the main purpose of case folding is to
contribute to caseless matching of strings, whereas the main purpose of case conversion is
to put strings into a particular cased form.

Unicode Default Case Folding is built on the toLowercase(X) transform, with some adapta-
tions specifically for caseless matching. Context-dependent mappings based on the casing
context are not used.

Default Case Folding does not preserve normalization forms. A string in a particular Uni-
code normalization form may not be in that normalization form after it has been case-
folded.

Default Case Folding is based on the full case conversion operation, Lowercase_Mapping,
which includes conversions to lowercase forms that may change string length, but is
adapted specifically for caseless matching. In particular, any two strings which are consid-
ered to be case variants of each other under any of the full case conversions, toUpper-
case(X), toLowercase(X), or toTitlecase(X) will fold to the same string by the
toCasefold(X) operation:

R4 toCasefold(X): Map each character C in X to Case_Folding(C).

• Case_Folding(C) uses the mappings with the status field value “C” or “F” in the
data file CaseFolding.txt in the Unicode Character Database.

A modified form of Default Case Folding is designed for best behavior when doing caseless
matching of strings interpreted as identifiers. This folding is based on Case_Folding(C),
but also removes any characters which have the Unicode property value
Default_Ignorable_Code_Point=True. It also maps characters to their NFKC equivalent
sequences. Once the mapping for a string is complete, the resulting string is then normal-
ized to NFC. That last normalization step simplifies the statement of the use of this folding
for caseless matching.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

118 Conformance
R5 toNFKC_Casefold(X): Map each character C in X to NFKC_Casefold(C) and then
normalize the resulting string to NFC.

• The mapping NFKC_Casefold (short alias NFKC_CF) is specified in the data
file DerivedNormalizationProps.txt in the Unicode Character Database.

• The derived binary property Changes_When_NFKC_Casefolded is also listed
in the data file DerivedNormalizationProps.txt in the Unicode Character Data-
base.

For more information on the use of NFKC_Casefold and caseless matching for identifiers,
see Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax.”

Default Case Detection

The casing status of a string can be determined by using the casing operations defined ear-
lier. The following definitions provide a specification. They assume that X and Y are
strings. In the following, functional names beginning with “is” are binary functions which
take the string X and return true when the string as a whole matches the given casing status.
For example, isLowerCase(X) would be true if the string X as a whole is lowercase. In con-
trast, the Unicode character properties such as Lowercase are properties of individual char-
acters.

For each definition, there is also a related Unicode character property which has a name
beginning with “Changes_When_”. That property indicates whether each character is
affected by a particular casing operation; it can be used to optimize implementations of
Default Case Detection for strings.

When case conversion is applied to a string that is decomposed (or more precisely, normal-
ized to NFD), applying the case conversion character by character does not affect the nor-
malization status of the string. Therefore, these definitions are specified in terms of
Normalization Form NFD. To make the definitions easier to read, they adopt the conven-
tion that the string Y equals toNFD(X).

D139 isLowercase(X): isLowercase(X) is true when toLowercase(Y) = Y.

• For example, isLowercase(“combining mark”) is true, and isLowercase(“Com-
bining mark”) is false.

• The derived binary property Changes_When_Lowercased is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

D140 isUppercase(X): isUppercase(X) is true when toUppercase(Y) = Y.

• For example, isUppercase(“COMBINING MARK”) is true, and isUpper-
case(“Combining mark”) is false.

• The derived binary property Changes_When_Uppercased is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

D141 isTitlecase(X): isTitlecase(X) is true when toTitlecase(Y) = Y.

• For example, isTitlecase(“Combining Mark”) is true, and isTitlecase(“Combin-
ing mark”) is false.

• The derived binary property Changes_When_Titlecased is listed in the data file
DerivedCoreProperties.txt in the Unicode Character Database.

D142 isCasefolded(X): isCasefolded(X) is true when toCasefold(Y) = Y.

• For example, isCasefolded(“heiss”) is true, and isCasefolded(“heiß”) is false.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

3.13 Default Case Algorithms 119
• The derived binary property Changes_When_Casefolded is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

Uncased characters do not affect the results of casing detection operations such as the
string function isLowercase(X). Thus a space or a number added to a string does not affect
the results.

The examples in Table 3-15 show that these conditions are not mutually exclusive. “A2” is
both uppercase and titlecase; “3” is uncased, so it is simultaneously lowercase, uppercase,
and titlecase.

Only when a string, such as “123”, contains no cased letters will all three conditions,—
isLowercase, isUppercase, and isTitlecase—evaluate as true. This combination of condi-
tions can be used to check for the presence of cased letters, using the following definition:

D143 isCased(X): isCased(X) is true when isLowercase(X) is false, or isUppercase(X) is
false, or isTitlecase(X) is false.

• Any string X for which isCased(X) is true contains at least one character that
has a case mapping other than to itself.

• For example, isCased(“123”) is false because all the characters in “123” have
case mappings to themselves, while isCased(“abc”) and isCased(“A12”) are
both true.

• The derived binary property Changes_When_Casemapped is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

To find out whether a string contains only lowercase letters, implementations need to test
for (isLowercase(X) and isCased(X)).

Default Caseless Matching

Default caseless matching is the process of comparing two strings for case-insensitive
equality. The definitions of Unicode Default Caseless Matching build on the definitions of
Unicode Default Case Folding.

Default Caseless Matching uses full case folding:

D144 A string X is a caseless match for a string Y if and only if:
toCasefold(X) = toCasefold(Y)

When comparing strings for case-insensitive equality, the strings should also be normal-
ized for most correct results. For example, the case folding of U+00C5 Å latin capital

letter a with ring above is U+00E5 å latin small letter a with ring above,
whereas the case folding of the sequence <U+0041 “A” latin capital letter a, U+030A
combining ring above> is the sequence <U+0061 “a” latin small letter a, U+030A
combining ring above>. Simply doing a binary comparison of the results of case folding
both strings will not catch the fact that the resulting case-folded strings are canonical-
equivalent sequences. In principle, normalization needs to be done after case folding,
because case folding does not preserve the normalized form of strings in all instances. This

Table 3-15. Case Detection Examples

Case Letter Name Alphanumeric Digit

Lowercase a john smith a2 3

Uppercase A JOHN SMITH A2 3

Titlecase A John Smith A2 3
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

120 Conformance
requirement for normalization is covered in the following definition for canonical caseless
matching:

D145 A string X is a canonical caseless match for a string Y if and only if:
NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))

The invocations of canonical decomposition (NFD normalization) before case folding in
D145 are to catch very infrequent edge cases. Normalization is not required before case
folding, except for the character U+0345 n combining greek ypogegrammeni and any
characters that have it as part of their canonical decomposition, such as U+1FC3 o greek

small letter eta with ypogegrammeni. In practice, optimized versions of canonical
caseless matching can catch these special cases, thereby avoiding an extra normalization
step for each comparison.

In some instances, implementers may wish to ignore compatibility differences between
characters when comparing strings for case-insensitive equality. The correct way to do this
makes use of the following definition for compatibility caseless matching:

D146 A string X is a compatibility caseless match for a string Y if and only if:
NFKD(toCasefold(NFKD(toCasefold(NFD(X))))) =

NFKD(toCasefold(NFKD(toCasefold(NFD(Y)))))

Compatibility caseless matching requires an extra cycle of case folding and normalization
for each string compared, because the NFKD normalization of a compatibility character
such as U+3392 square mhz may result in a sequence of alphabetic characters which must
again be case folded (and normalized) to be compared correctly.

Caseless matching for identifiers can be simplified and optimized by using the
NFKC_Casefold mapping. That mapping incorporates internally the derived results of iter-
ated case folding and NFKD normalization. It also maps away characters with the property
value Default_Ignorable_Code_Point=True, which should not make a difference when
comparing identifiers.

The following defines identifier caseless matching:

D147 A string X is an identifier caseless match for a string Y if and only if:
toNFKC_Casefold(NFD(X)) = toNFKC_Casefold(NFD(Y))
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 4

Character Properties 4

The Unicode Standard associates a rich set of semantics with characters and, in some
instances, with code points. The support of character semantics is required for confor-
mance; see Section 3.2, Conformance Requirements. Where character semantics can be
expressed formally, they are provided as machine-readable lists of character properties in
the Unicode Character Database (UCD). This chapter gives an overview of character prop-
erties, their status and attributes, followed by an overview of the UCD and more detailed
notes on some important character properties. For a further discussion of character prop-
erties, see Unicode Technical Report #23, “Unicode Character Property Model.”

Status and Attributes. Character properties may be normative, informative, contributory,
or provisional. Normative properties are those required for conformance. Many Unicode
character properties can be overridden by implementations as needed. Section 3.2, Confor-
mance Requirements, specifies when such overrides must be documented. A few properties,
such as Noncharacter_Code_Point, may not be overridden. See Section 3.5, Properties, for
the formal discussion of the status and attributes of properties.

Consistency of Properties. The Unicode Standard is the product of many compromises. It
has to strike a balance between uniformity of treatment for similar characters and compat-
ibility with existing practice for characters inherited from legacy encodings. Because of this
balancing act, one can expect a certain number of anomalies in character properties. For
example, some pairs of characters might have been treated as canonical equivalents but are
left unequivalent for compatibility with legacy differences. This situation pertains to
U+00B5 micro sign and U+03BC greek small letter mu, as well as to certain
Korean jamo.

In addition, some characters might have had properties differing in some ways from those
assigned in this standard, but those properties are left as is for compatibility with existing
practice. This situation can be seen with the halfwidth voicing marks for Japanese
(U+FF9E halfwidth katakana voiced sound mark and U+FF9F halfwidth

katakana semi-voiced sound mark), which might have been better analyzed as spacing
combining marks. Another examples consists of the conjoining Hangul jamo, which might
have been better analyzed as an initial base character followed by formally combining
medial and final characters. In the interest of efficiency and uniformity in algorithms,
implementations may take advantage of such reanalyses of character properties, as long as
this does not conflict with the conformance requirements with respect to normative prop-

Disclaimer

The content of all character property tables has been verified as far as possible by
the Unicode Consortium. However, in case of conflict, the most authoritative ver-
sion of the information for this version of the Unicode Standard is that supplied
in the Unicode Character Database on the Unicode Web site. The contents of all
the tables in this chapter may be superseded or augmented by information in future
versions of the Unicode Standard.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

122 Character Properties
erties. See Section 3.5, Properties; Section 3.2, Conformance Requirements; and Section 3.3,
Semantics, for more information.

4.1 Unicode Character Database
The Unicode Character Database (UCD) consists of a set of files that define the Unicode
character properties and internal mappings. For each property, the files determine the
assignment of property values to each code point. The UCD also supplies recommended
property aliases and property value aliases for textual parsing and display in environments
such as regular expressions.

The properties include the following:

• Name

• General Category (basic partition into letters, numbers, symbols, punctuation,
and so on)

• Other important general characteristics (whitespace, dash, ideographic, alpha-
betic, noncharacter, deprecated, and so on)

• Display-related properties (bidirectional class, shaping, mirroring, width, and
so on)

• Casing (upper, lower, title, folding—both simple and full)

• Numeric values and types

• Script and Block

• Normalization properties (decompositions, decomposition type, canonical
combining class, composition exclusions, and so on)

• Age (version of the standard in which the code point was first designated)

• Boundaries (grapheme cluster, word, line, and sentence)

See Unicode Standard Annex #44, “Unicode Character Database,” for more details on the
character properties and their values, the status of properties, their distribution across data
files, and the file formats.

Unihan Database. In addition, a large number of properties specific to CJK ideographs are
defined in the Unicode Character Database. These properties include source information,
radical and stroke counts, phonetic values, meanings, and mappings to many East Asian
standards. The values for all these properties are listed in the file Unihan.zip, also known as
the Unihan Database. For a complete description and documentation of the properties
themselves, see Unicode Standard Annex #38, “Unicode Han Database (Unihan).” (See also
“Online Unihan Database” in Section B.6, Other Unicode Online Resources.)

Many properties apply to both ideographs and other characters. These are not specified in
the Unihan Database.

Stability. While the Unicode Consortium strives to minimize changes to character prop-
erty data, occasionally character properties must be updated. When this situation occurs, a
new version of the Unicode Character Database is created, containing updated data files.
Data file changes are associated with specific, numbered versions of the standard; character
properties are never silently corrected between official versions.

Each version of the Unicode Character Database, once published, is absolutely stable and
will never change. Implementations or specifications that refer to a specific version of the
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.1 Unicode Character Database 123
UCD can rely upon this stability. Detailed policies on character encoding stability as they
relate to properties are found on the Unicode Web site. See the subsection “Policies” in
Section B.6, Other Unicode Online Resources. See also the discussion of versioning and sta-
bility in Section 3.1, Versions of the Unicode Standard.

Aliases. Character properties and their values are given formal aliases to make it easier to
refer to them consistently in specifications and in implementations, such as regular expres-
sions, which may use them. These aliases are listed exhaustively in the Unicode Character
Database, in the data files PropertyAliases.txt and PropertyValueAliases.txt.

Many of the aliases have both a long form and a short form. For example, the General Cat-
egory has a long alias “General_Category” and a short alias “gc”. The long alias is more
comprehensible and is usually used in the text of the standard when referring to a particu-
lar character property. The short alias is more appropriate for use in regular expressions
and other algorithmic contexts.

In comparing aliases programmatically, loose matching is appropriate. That entails ignor-
ing case differences and any whitespace, underscore, and hyphen characters. For example,
“GeneralCategory”, “general_category”, and “GENERAL-CATEGORY” would all be con-
sidered equivalent property aliases. See Unicode Standard Annex #44, “Unicode Character
Database,” for further discussion of property and property value matching.

For each character property whose values are not purely numeric, the Unicode Character
Database provides a list of value aliases. For example, one of the values of the Line_Break
property is given the long alias “Open_Punctuation” and the short alias “OP”.

Property aliases and property value aliases can be combined in regular expressions that
pick out a particular value of a particular property. For example, “\p{lb=OP}” means the
Open_Punctuation value of the Line_Break property, and “\p{gc=Lu}” means the
Uppercase_Letter value of the General_Category property.

Property aliases define a namespace. No two character properties have the same alias. For
each property, the set of corresponding property value aliases constitutes its own
namespace. No constraint prevents property value aliases for different properties from hav-
ing the same property value alias. Thus “B” is the short alias for the Paragraph_Separator
value of the Bidi_Class property; “B” is also the short alias for the Below value of the
Canonical_Combining_Class property. However, because of the namespace restrictions,
any combination of a property alias plus an appropriate property value alias is guaranteed
to constitute a unique string, as in “\p{bc=B}” versus “\p{ccc=B}”.

For a recommended use of property and property value aliases, see Unicode Technical
Standard #18, “Unicode Regular Expressions.” Aliases are also used for normatively refer-
encing properties, as described in Section 3.1, Versions of the Unicode Standard.

UCD in XML. Starting with Unicode Version 5.1.0, the complete Unicode Character Data-
base is also available formatted in XML. This includes both the non-Han part of the Uni-
code Character Database and all of the content of the Unihan Database. For details
regarding the XML schema, file names, grouping conventions, and other considerations,
see Unicode Standard Annex #42, “Unicode Character Database in XML.”

Online Availability. All versions of the UCD are available online on the Unicode Web site.
See the subsections “Online Unicode Character Database” and “Online Unihan Database”
in Section B.6, Other Unicode Online Resources.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

124 Character Properties
4.2 Case
Case is a normative property of characters in certain alphabets whereby characters are con-
sidered to be variants of a single letter. These variants, which may differ markedly in shape
and size, are called the uppercase letter (also known as capital or majuscule) and the lower-
case letter (also known as small or minuscule). The uppercase letter is generally larger than
the lowercase letter.

Because of the inclusion of certain composite characters for compatibility, such as U+01F1
latin capital letter dz, a third case, called titlecase, is used where the first character of a
word must be capitalized. An example of such a character is U+01F2 latin capital letter

d with small letter z. The three case forms are UPPERCASE, Titlecase, and lowercase.

For those scripts that have case (Latin, Greek, Coptic, Cyrillic, Glagolitic, Armenian,
Deseret, and archaic Georgian), uppercase characters typically contain the word capital in
their names. Lowercase characters typically contain the word small. However, this is not a
reliable guide. The word small in the names of characters from scripts other than those just
listed has nothing to do with case. There are other exceptions as well, such as small capital
letters that are not formally uppercase. Some Greek characters with capital in their names
are actually titlecase. (Note that while the archaic Georgian script contained upper- and
lowercase pairs, they are not used in modern Georgian. See Section 7.7, Georgian.)

Definitions of Case and Casing

The Unicode Standard has more than one formal definition of lowercase, uppercase, and
related casing processes. This is the result of the inherent complexity of case relationships
and of defining case-related behavior on the basis of individual character properties. This
section clarifies the distinctions involved in the formal definition of casing in the standard.
The additional complications for titlecase are omitted from the discussion; titlecase dis-
tinctions apply only to a handful of compatibility characters.

The first set of values involved in the definition of case are based on the General_Category
property in UnicodeData.txt. The relevant values are General_Category=Ll
(Lowercase_Letter) and General_Category=Lu (Uppercase_Letter). For most ordinary let-
ters of bicameral scripts such as Latin, Greek, and Cyrillic, these values are obvious and
non-problematical. However, the General_Category property is, by design, a partition of
the Unicode codespace. This means that each Unicode character can only have one
General_Category value, which results in some odd edge cases for modifier letters, letter-
like symbols and letterlike numbers. As a consequence, not every Unicode character that
looks like a lowercase character necessarily ends up with General_Category=Ll, and not
every Unicode character that looks like an uppercase character ends up with
General_Category=Lu.

The second set of definitions relevant to case consist of the derived binary properties, Low-
ercase and Uppercase, specified in DerivedCoreProperties.txt in the Unicode Character
Database. Those derived properties augment the General_Category values by adding the
additional characters that ordinary users think of as being lowercase or uppercase, based
primarily on their letterforms. The additional characters are included in the derivations by
means of the contributory properties, Other_Lowercase and Other_Uppercase, defined in
PropList.txt. For example, Other_Lowercase adds the various modifier letters that are let-
terlike in shape, the circled lowercase letter symbols, and the compatibility lowercase
Roman numerals. Other_Uppercase adds the circled uppercase letter symbols, and the
compatibility uppercase Roman numerals.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.2 Case 125
A third set of definitions for case is fundamentally different in kind, and does not consist of
character properties at all. The functions isLowercase and isUppercase are string functions
returning a binary True/False value. These functions are defined in Section 3.13, Default
Case Algorithms, and depend on case mapping relations, rather than being based on letter-
forms per se. Basically, isLowercase is True for a string if the result of applying the toLower-
case mapping operation for a string is the same as the string itself.

Table 4-1 illustrates the various possibilities for how these definitions interact, as applied to
exemplary single characters or single character strings.

Note that for “caseless” characters, such as U+02B0, U+1D34, and U+02BD, isLowerCase
and isUpperCase are both True, because the inclusion of a caseless letter in a string is not
criterial for determining the casing of the string—a caseless letter always case maps to itself.

On the other hand, all modifier letters derived from letter shapes are also notionally lower-
case, whether the letterform itself is a minuscule or a majuscule in shape. Thus U+1D34
modifier letter capital h is actually Lowercase=True. Other modifier letters not derived
from letter shapes, such as U+02BD, are neither Lowercase nor Uppercase.

The string functions isLowerCase and isUpperCase also apply to strings longer than one
character, of course, for which the character properties General_Category, LowerCase, and
Uppercase are not relevant. In Table 4-2, the string function isTitleCase is also illustrated,
to show its applicability for the same strings.

Programmers concerned with manipulating Unicode strings should generally be dealing
with the string functions such as isLowerCase (and its functional cousin, toLowerCase),
unless they are working directly with single character properties. Care is always advised,
however, when dealing with case in the Unicode Standard, as expectations based simply on
the behavior of the basic Latin alphabet (A..Z, a..z) do not generalize easily across the entire
repertoire of Unicode characters, and because case for modifier letters, in particular, can
result in unexpected behavior.

Table 4-1. Relationship of Casing Definitions

Code Character gc Lowercase Uppercase isLowerCase(S) isUpperCase(S)

0068 h Ll True False True False

0048 H Lu False True False True

24D7 b So True False True False

24BD a So False True False True

02B0 c Lm True False True True

1D34 d Lm True False True True

02BD e Lm False False True True

Table 4-2. Case Function Values for Strings

Codes String isLowerCase(S) isUpperCase(S) isTitleCase(S)

0068 0068 hh True False False

0048 0048 HH False True False

0048 0068 Hh False False True

0068 0048 hH False False False
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

126 Character Properties
Case Mapping

The default case mapping tables defined in the Unicode Standard are normative, but may
be overridden to match user or implementation requirements. The Unicode Character
Database contains four files with case mapping information, as shown in Table 4-3. Full
case mappings for Unicode characters are obtained by using the basic mappings from
UnicodeData.txt and extending or overriding them where necessary with the mappings
from SpecialCasing.txt. Full case mappings may depend on the context surrounding the
character in the original string.

Some characters have a “best” single-character mapping in UnicodeData.txt as well as a full
mapping in SpecialCasing.txt. Any character that does not have a mapping in these files is
considered to map to itself. For more information on case mappings, see Section 5.18, Case
Mappings.

The single-character mappings in UnicodeData.txt are insufficient for languages such as
German. Therefore, only legacy implementations that cannot handle case mappings that
increase string lengths should use UnicodeData.txt case mappings alone.

A set of charts that show the latest case mappings is also available on the Unicode Web site.
See “Charts” in Section B.6, Other Unicode Online Resources.

4.3 Combining Classes
Each combining character has a normative canonical combining class. This class is used
with the Canonical Ordering Algorithm to determine which combining characters interact
typographically and to determine how the canonical ordering of sequences of combining
characters takes place. Class zero combining characters act like base letters for the purpose
of determining canonical order. Combining characters with non-zero classes participate in
reordering for the purpose of determining the canonical order of sequences of characters.
(See Section 3.11, Normalization Forms, for the specification of the algorithm.)

The list of combining characters and their canonical combining class appears in the Uni-
code Character Database. Most combining characters are nonspacing.

The canonical order of character sequences does not imply any kind of linguistic correct-
ness or linguistic preference for ordering of combining marks in sequences. For more
information on rendering combining marks, see Section 5.13, Rendering Nonspacing Marks.

Class zero combining marks are never reordered by the Canonical Ordering Algorithm.
Except for class zero, the exact numerical values of the combining classes are of no impor-

Table 4-3. Sources for Case Mapping Information

File Name Description

UnicodeData.txt Contains the case mappings that map to a single character. These do not
increase the length of strings, nor do they contain context-dependent map-
pings.

SpecialCasing.txt Contains additional case mappings that map to more than one character, such
as “ß” to “SS”. Also contains context-dependent mappings, with flags to distin-
guish them from the normal mappings, as well as some locale-dependent
mappings.

CaseFolding.txt Contains data for performing locale-independent case folding, as described in
“Caseless Matching,” in Section 5.18, Case Mappings.

PropList.txt Contains the definition of the property Soft_Dotted, which is used in the con-
text specification for casing. See D138 in Section 3.13, Default Case Algorithms.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.3 Combining Classes 127
tance in canonical equivalence, although the relative magnitude of the classes is significant.
For example, it is crucial that the combining class of the cedilla be lower than the combin-
ing class of the dot below, although their exact values of 202 and 220 are not important for
implementations.

Certain classes tend to correspond with particular rendering positions relative to the base
character, as shown in Figure 4-1.

Reordrant, Split, and Subjoined Combining Marks

In some scripts, the rendering of combining marks is notably complex. This is true in par-
ticular of the Brahmi-derived scripts of South and Southeast Asia, whose vowels are often
encoded as class zero combining marks in the Unicode Standard, known as matras for the
Indic scripts.

In the case of simple combining marks, as for the accent marks of the Latin script, the nor-
mative Unicode combining class of that combining mark typically corresponds to its posi-
tional placement with regard to a base letter, as described earlier. However, in the case of
the combining marks representing vowels (and sometimes consonants) in the Brahmi-
derived scripts, all of the combining marks are given the normative combining class of zero,
regardless of their positional placement within an aksara. The placement and rendering of
a class zero combining mark cannot be derived from its combining class alone, but rather
depends on having more information about the particulars of the script involved. In some
instances, the position may migrate in different historical periods for a script or may even
differ depending on font style.

Such matters are not treated as normative character properties in the Unicode Standard,
because they are more properly considered properties of the glyphs and fonts used for ren-
dering. However, to assist implementers, this section subcategorizes some class zero com-
bining marks for Brahmi-derived scripts, pointing out significant types that need to be
handled consistently.

Reordrant Class Zero Combining Marks. In many instances in Indic scripts, a vowel is rep-
resented in logical order after the consonant of a syllable, but is displayed before (to the left
of) the consonant when rendered. Such combining marks are termed reordrant to reflect
their visual reordering to the left of a consonant (or, in some instances, a consonant clus-
ter). Special handling is required for selection and editing of these marks. In particular, the
possibility that the combining mark may be reordered left past a cluster, and not simply
past the immediate preceding character in the backing store, requires attention to the
details for each script involved.

The visual reordering of these reordrant class zero combining marks has nothing to do with
the reordering of combining character sequences in the Canonical Ordering Algorithm. All
of these marks are class zero and thus are never reordered by the Canonical Ordering Algo-
rithm for normalization. The reordering is purely a presentational issue for glyphs during
rendering of text.

Figure 4-1. Positions of Common Combining Marks

230

202

220

216
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

128 Character Properties
Table 4-4 lists reordrant class zero combining marks in the Unicode Standard.

In addition, there are historically related vowel characters in the Thai, Lao, and Tai Viet
scripts that, for legacy reasons, are not treated as combining marks. Instead, for Thai, Lao,
and Tai Viet these vowels are represented in the backing store in visual order and require no
reordering for rendering. The trade-off is that they have to be rearranged logically for
searching and sorting. Because of that processing requirement, these characters are given a
formal character property assignment, the Logical_Order_Exception property, as listed in
Table 4-5. See PropList.txt in the Unicode Character Database.

Split Class Zero Combining Marks. In addition to the reordrant class zero combining
marks, there are a number of class zero combining marks whose representative glyph typi-
cally consists of two parts, which are split into different positions with respect to the conso-
nant (or consonant cluster) in an aksara. Sometimes these glyphic pieces are rendered both
to the left and the right of a consonant. Sometimes one piece is rendered above or below the
consonant and the other piece is rendered to the left or the right. Particularly in the
instances where some piece of the glyph is rendered to the left of the consonant, these split
class zero combining marks pose similar implementation problems as for the reordrant
marks.

Table 4-4. Class Zero Combining Marks—Reordrant

Script Code Points

Devanagari 093F, 094E

Bengali 09BF, 09C7, 09C8

Gurmukhi 0A3F

Gujarati 0ABF

Oriya 0B47

Tamil 0BC6, 0BC7, 0BC8

Malayalam 0D46, 0D47, 0D48

Sinhala 0DD9, 0DDA, 0DDB

Myanmar 1031, 1084

Khmer 17C1, 17C2, 17C3

New Tai Lue 19B5, 19B6, 19B7, 19BA

Buginese 1A19, 1A1B

Tai Tham 1A55, 1A6E, 1A6F, 1A70, 1A71, 1A72

Balinese 1B3E, 1B3F

Sundanese 1BA6

Lepcha 1C27, 1C28, 1C29, 1C34, 1C35

Javanese A9BA, A9BB

Cham AA2F, AA30, AA34

Meetei Mayek AAEB, AAEE

Kaithi 110B1

Chakma 1112C

Sharada 11184

Takri 116AE

Table 4-5. Thai, Lao, and Tai Viet Logical Order Exceptions

Script Code Points

Thai 0E40..0E44

Lao 0EC0..0EC4

Tai Viet AAB5, AAB6, AAB9, AABB, AABC
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.3 Combining Classes 129
Table 4-6 lists split class zero combining marks in the Unicode Standard, subgrouped by
positional patterns.

One should pay very careful attention to all split class zero combining marks in implemen-
tations. Not only do they pose issues for rendering and editing, but they also often have
canonical equivalences defined involving the separate pieces, when those pieces are also
encoded as characters. As a consequence, the split combining marks may constitute excep-
tional cases under normalization. Some of the Tibetan split combining marks are depre-
cated.

The split vowels also pose difficult problems for understanding the standard, as the phono-
logical status of the vowel phonemes, the encoding status of the characters (including any
canonical equivalences), and the graphical status of the glyphs are easily confused, both for
native users of the script and for engineers working on implementations of the standard.

Subjoined Class Zero Combining Marks. Brahmi-derived scripts that are not represented
in the Unicode Standard with a virama may have class zero combining marks to represent
subjoined forms of consonants. These correspond graphologically to what would be repre-
sented by a sequence of virama plus consonant in other related scripts. The subjoined con-
sonants do not pose particular rendering problems, at least not in comparison to other
combining marks, but they should be noted as constituting an exception to the normal pat-
tern in Brahmi-derived scripts of consonants being represented with base letters. This
exception needs to be taken into account when doing linguistic processing or searching and
sorting.

Table 4-7 lists subjoined class zero combining marks in the Unicode Standard.

These Limbu consonants, while logically considered subjoined combining marks, are ren-
dered mostly at the lower right of a base letter, rather than directly beneath them.

Table 4-6. Class Zero Combining Marks—Split

Glyph Positions Script Code Points

Left and right Bengali 09CB, 09CC

Oriya 0B4B

Tamil 0BCA, 0BCB, 0BCC

Malayalam 0D4A, 0D4B, 0D4C

Sinhala 0DDC, 0DDE

Khmer 17C0, 17C4, 17C5

Balinese 1B40, 1B41

Left and top Oriya 0B48

Sinhala 0DDA

Khmer 17BE

Left, top, and right Oriya 0B4C

Sinhala 0DDD

Khmer 17BF

Top and right Oriya 0B57

Kannada 0CC0, 0CC7, 0CC8, 0CCA, 0CCB

Limbu 1925, 1926

Balinese 1B43

Top and bottom Telugu 0C48

Tibetan 0F73, 0F76, 0F77, 0F78, 0F79, 0F81

Balinese 1B3C

Top, bottom, and right Balinese 1B3D

Bottom and right Balinese 1B3B
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

130 Character Properties
Strikethrough Class Zero Combining Marks. The Kharoshthi script is unique in having
some class zero combining marks for vowels that are struck through a consonant, rather
than being placed in a position around the consonant. These are also called out in Table 4-8
specifically as a warning that they may involve particular problems for implementations.

4.4 Directionality
Directional behavior is interpreted according to the Unicode Bidirectional Algorithm (see
Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”). For this purpose, all
characters of the Unicode Standard possess a normative directional type, defined by the
Bidi_Class (bc) property in the Unicode Character Database. The directional types left-to-
right and right-to-left are called strong types, and characters of these types are called strong
directional characters. Left-to-right types include most alphabetic and syllabic characters
as well as all Han ideographic characters. Right-to-left types include the letters of predom-
inantly right-to-left scripts, such as Arabic, Hebrew, and Syriac, as well as most punctua-
tion specific to those scripts. In addition, the Unicode Bidirectional Algorithm uses weak
types and neutrals. Interpretation of directional properties according to the Unicode Bidi-
rectional Algorithm is needed for layout of right-to-left scripts such as Arabic and Hebrew.

4.5 General Category
The Unicode Character Database defines a General_Category property for all Unicode
code points. The General_Category value for a character serves as a basic classification of
that character, based on its primary usage. The property extends the widely used subdivi-
sion of ASCII characters into letters, digits, punctuation, and symbols—a useful classifica-
tion that needs to be elaborated and further subdivided to remain appropriate for the larger
and more comprehensive scope of the Unicode Standard.

Each Unicode code point is assigned a normative General_Category value. Each value of
the General_Category is given a two-letter property value alias, where the first letter gives
information about a major class and the second letter designates a subclass of that major
class. In each class, the subclass “other” merely collects the remaining characters of the
major class. For example, the subclass “No” (Number, other) includes all characters of the
Number class that are not a decimal digit or letter. These characters may have little in com-
mon besides their membership in the same major class.

Table 4-9 enumerates the General_Category values, giving a short description of each
value. See Table 2-3 for the relationship between General_Category values and basic types
of code points.

There are several other conventions for how General_Category values are assigned to Uni-
code characters. Many characters have multiple uses, and not all such uses can be captured

Table 4-7. Class Zero Combining Marks—Subjoined

Script Code Points

Tibetan 0F90..0F97, 0F99..0FBC

Limbu 1929, 192A, 192B

Table 4-8. Class Zero Combining Marks—Strikethrough

Script Code Points

Kharoshthi 10A01, 10A06
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.5 General Category 131
by a single, simple partition property such as General_Category. Thus, many letters often
serve dual functions as numerals in traditional numeral systems. Examples can be found in
the Roman numeral system, in Greek usage of letters as numbers, in Hebrew, and similarly
for many scripts. In such cases the General_Category is assigned based on the primary let-
ter usage of the character, even though it may also have numeric values, occur in numeric
expressions, or be used symbolically in mathematical expressions, and so on.

The General_Category gc=Nl is reserved primarily for letterlike number forms which are
not technically digits. For example, the compatibility Roman numeral characters,
U+2160..U+217F, all have gc=Nl. Because of the compatibility status of these characters,
the recommended way to represent Roman numerals is with regular Latin letters (gc=Ll or
gc=Lu). These letters derive their numeric status from conventional usage to express
Roman numerals, rather than from their General_Category value.

Currency symbols (gc=Sc), by contrast, are given their General_Category value based
entirely on their function as symbols for currency, even though they are often derived from
letters and may appear similar to other diacritic-marked letters that get assigned one of the
letter-related General_Category values.

Pairs of opening and closing punctuation are given their General_Category values (gc=Ps
for opening and gc=Pe for closing) based on the most typical usage and orientation of such
pairs. Occasional usage of such punctuation marks unpaired or in opposite orientation cer-
tainly occurs, however, and is in no way prevented by their General_Category values.

Table 4-9. General Category

 Lu = Letter, uppercase
 Ll = Letter, lowercase
 Lt = Letter, titlecase
 Lm = Letter, modifier
 Lo = Letter, other

 Mn = Mark, nonspacing
 Mc = Mark, spacing combining
 Me = Mark, enclosing

 Nd = Number, decimal digit
 Nl = Number, letter
 No = Number, other

 Pc = Punctuation, connector
 Pd = Punctuation, dash
 Ps = Punctuation, open
 Pe = Punctuation, close
 Pi = Punctuation, initial quote (may behave like Ps or Pe depending on usage)
 Pf = Punctuation, final quote (may behave like Ps or Pe depending on usage)
 Po = Punctuation, other

 Sm = Symbol, math
 Sc = Symbol, currency
 Sk = Symbol, modifier
 So = Symbol, other

 Zs = Separator, space
 Zl = Separator, line
 Zp = Separator, paragraph

 Cc = Other, control
 Cf = Other, format
 Cs = Other, surrogate
 Co = Other, private use
 Cn = Other, not assigned (including noncharacters)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

132 Character Properties
Similarly, characters whose General_Category identifies them primarily as a symbol or as a
mathematical symbol may function in other contexts as punctuation or even paired punc-
tuation. The most obvious such case is for U+003C “<” less-than sign and U+003E “>”
greater-than sign. These are given the General_Category gc=Sm because their primary
identity is as mathematical relational signs. However, as is obvious from HTML and XML,
they also serve ubiquitously as paired bracket punctuation characters in many formal syn-
taxes.

A common use of the General_Category of a Unicode character is in the derivation of
properties for the determination of text boundaries, as in Unicode Standard Annex #29,
“Unicode Text Segmentation.” Other common uses include determining language identifi-
ers for programming, scripting, and markup, as in Unicode Standard Annex #31, “Unicode
Identifier and Pattern Syntax,” and in regular expression languages such as Perl. For more
information, see Unicode Technical Standard #18, “Unicode Regular Expressions.”

This property is also used to support common APIs such as isDigit(). Common func-
tions such as isLetter()and isUppercase()do not extend well to the larger and more
complex repertoire of Unicode. While it is possible to naively extend these functions to
Unicode using the General_Category and other properties, they will not work for the entire
range of Unicode characters and the kinds of tasks for which people intend them. For more
appropriate approaches, see Unicode Standard Annex #31, “Unicode Identifier and Pattern
Syntax”; Unicode Standard Annex #29, “Unicode Text Segmentation”; Section 5.18, Case
Mappings; and Section 4.10, Letters, Alphabetic, and Ideographic.

Although the General_Category property is normative, and its values are used in the deri-
vation of many other properties referred to by Unicode algorithms, it does not follow that
the General_Category always provides the most appropriate classification of a character for
any given purpose. Implementations are not required to treat characters solely according to
their General_Category values when classifying them in various contexts. The following
examples illustrate some typical cases in which an implementation might reasonably
diverge from General_Category values for a character when grouping characters as “punc-
tuation,” “symbols,” and so forth.

• A character picker application might classify U+0023 # number sign among
symbols, or perhaps under both symbols and punctuation.

• An “Ignore Punctuation” option for a search might choose not to ignore
U+0040 @ commercial at.

• A layout engine might treat U+0021 ! exclamation sign as a mathematical
operator in the context of a mathematical equation, and lay it out differently
than if the same character were used as terminal punctuation in text.

• A regular expression syntax could provide an operator to match all punctua-
tion, but include characters other than those limited to gc=P (for example,
U+00A7 § section sign).

The general rule is that if an implementation purports to be using the Unicode
General_Category property, then it must use the exact values specified in the Unicode
Character Database for that claim to be conformant. Thus, if a regular expression syntax
explicitly supports the Unicode General_Category property and matches gc=P, then that
match must be based on the precise UCD values.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.6 Numeric Value 133
4.6 Numeric Value
Numeric_Value and Numeric_Type are normative properties of characters that represent
numbers. Characters with a non-default Numeric_Type include numbers and number
forms such as fractions, subscripts, superscripts, Roman numerals, encircled numbers, and
many script-specific digits and numbers.

In some traditional numbering systems, ordinary letters may also be used with a numeric
value. Examples include Greek letters used numerically, Hebrew gematria, and even Latin
letters when used in outlines (II.A.1.b). Letter characters used in this way are not given
Numeric_Type or Numeric_Value property values, to prevent simplistic parsers from treat-
ing them numerically by mistake. The Unicode Character Database gives the
Numeric_Type and Numeric_Value property values only for Unicode characters that nor-
mally represent numbers.

Decimal Digits. Decimal digits, as commonly understood, are digits used to form decimal-
radix numbers. They include script-specific digits, but exclude characters such as Roman
numerals and Greek acrophonic numerals, which do not form decimal-radix expressions.
(Note that <1, 5> = 15 = fifteen, but <I, V> = IV = four.)

The Numeric_Type=decimal property value (which is correlated with the
General_Category=Nd property value) is limited to those numeric characters that are used
in decimal-radix numbers and for which a full set of digits has been encoded in a contigu-
ous range, with ascending order of Numeric_Value, and with the digit zero as the first code
point in the range.

Decimal digits, as defined in the Unicode Standard by these property assignments, exclude
some characters, such as the CJK ideographic digits (see the first ten entries in Table 4-10),
which are not encoded in a contiguous sequence. Decimal digits also exclude the compati-
bility subscript and superscript digits, to prevent simplistic parsers from misinterpreting
their values in context. (For more information on superscript and subscripts, see
Section 15.4, Superscript and Subscript Symbols.) Numbers other than decimal digits can be
used in numerical expressions, and may be interpreted by a numeric parser, but it is up to
the implementation to determine such specialized uses.

Script-Specific Digits. The Unicode Standard encodes separate characters for the digits
specific to a given script. Examples are the digits used with the Arabic script or those of the
various Indic scripts. See Table 15-3 for a list of script-specific digits. For naming conven-
tions relevant to the Arabic digits, see the introduction to Section 8.2, Arabic.

Ideographic Numeric Values

CJK ideographs also may have numeric values. The primary numeric ideographs are
shown in Table 4-10. When used to represent numbers in decimal notation, zero is repre-
sented by U+3007. Otherwise, zero is represented by U+96F6.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

134 Character Properties
Ideographic accounting numbers are commonly used on checks and other financial instru-
ments to minimize the possibilities of misinterpretation or fraud in the representation of
numerical values. The set of accounting numbers varies somewhat between Japanese, Chi-
nese, and Korean usage. Table 4-11 gives a fairly complete listing of the known accounting
characters. Some of these characters are ideographs with other meanings pressed into ser-
vice as accounting numbers; others are used only as accounting numbers.

In Japan, U+67D2 is also pronounced urusi, meaning “lacquer,” and is treated as a variant
of the standard character for “lacquer,” U+6F06.

The Unihan Database gives the most up-to-date and complete listing of primary numeric
ideographs and ideographs used as accounting numbers, including those for CJK reper-
toire extensions beyond the Unified Repertoire and Ordering. See Unicode Standard Annex
#38, “Unicode Han Database (Unihan),” for more details.

Table 4-10. Primary Numeric Ideographs

Code Point Value
U+96F6 0
U+4E00 1
U+4E8C 2
U+4E09 3
U+56DB 4
U+4E94 5
U+516D 6
U+4E03 7
U+516B 8
U+4E5D 9
U+5341 10
U+767E 100
U+5343 1,000
U+4E07 10,000
U+5104 100,000,000 (10,000 × 10,000)
U+4EBF 100,000,000 (10,000 × 10,000)
U+5146 1,000,000,000,000 (10,000 × 10,000 × 10,000)

Table 4-11. Ideographs Used as Accounting Numbers

Number Multiple Uses Accounting Use Only
1 U+58F9, U+58F1 U+5F0C
2 U+8CAE, U+8CB3, U+8D30, U+5F10, U+5F0D
3 U+53C3, U+53C2 U+53C1, U+5F0E
4 U+8086
5 U+4F0D
6 U+9678, U+9646
7 U+67D2
8 U+634C
9 U+7396
10 U+62FE
100 U+964C U+4F70
1,000 U+4EDF
10,000 U+842C
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.7 Bidi Mirrored 135
4.7 Bidi Mirrored
Bidi Mirrored is a normative property of characters such as parentheses, whose images are
mirrored horizontally in text that is laid out from right to left. For example, U+0028 left

parenthesis is interpreted as opening parenthesis; in a left-to-right context it will appear as
“(”, while in a right-to-left context it will appear as the mirrored glyph “)”.

Paired delimiters are mirrored even when they are used in unusual ways, as, for example, in
the mathematical expressions [a,b) or]a,b[. If any of these expression is displayed from
right to left, then the mirrored glyphs are used. Because of the difficulty in interpreting
such expressions, authors of bidirectional text need to make sure that readers can deter-
mine the desired directionality of the text from context.

For some mathematical symbols, the “mirrored” form is not an exact mirror image. For
example, the direction of the circular arrow in U+2232 clockwise contour integral

reflects the direction of the integration in coordinate space, not the text direction. In a
right-to-left context, the integral sign would be mirrored, but the circular arrow would
retain its direction. In a similar manner, the bidi-mirrored form of U+221B cube root

would be composed of a mirrored radix symbol with a non-mirrored digit “3”. For more
information, see Unicode Technical Report #25, “Unicode Support for Mathematics.”

The list of mirrored characters appears in the Unicode Character Database. Note that mir-
roring is not limited to paired characters, but that any character with the mirrored property
will need two mirrored glyphs—for example, U+222B integral. This requirement is nec-
essary to render the character properly in a bidirectional context. It is the default behavior
in Unicode text. (For more information, see the “Semantics of Paired Punctuation” subsec-
tion in Section 6.2, General Punctuation.)

This property is not to be confused with the related Bidi Mirroring Glyph property, an
informative property, that can assist in rendering mirrored characters in a right-to-left
context. For more information, see BidiMirroring.txt in the Unicode Character Database.

4.8 Name
Unicode characters have names that serve as unique identifiers for each character. The
character names in the Unicode Standard are identical to those of the English-language edi-
tion of ISO/IEC 10646.

Where possible, character names are derived from existing conventional names of a charac-
ter or symbol in English, but in many cases the character names nevertheless differ from
traditional names widely used by relevant user communities. The character names of sym-
bols and punctuation characters often describe their shape, rather than their function,
because these characters are used in many different contexts. See also “Color Words in Uni-
code Character Names” in Section 15.9, Miscellaneous Symbols.

Character names are listed in the code charts.

Stability. Once assigned, a character name is immutable. It will never be changed in subse-
quent versions of the Unicode Standard. Implementers and users can rely on the fact that a
character name uniquely represents a given character.

Character Name Syntax. Unicode character names, as listed in the code charts, contain
only uppercase Latin letters A through Z, digits, space, and hyphen-minus. In more detail,
character names reflect the following rules:
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

136 Character Properties
R1 Only Latin capital letters A to Z (U+0041..U+0056), ASCII digits (U+0030..
U+0039), U+0020 space, and U+002D hyphen-minus occur in character names.

R2 Digits do not occur as the first character of a character name, nor immediately fol-
lowing a space character.

R3 U+002D hyphen-minus does not occur as the first or last character of a character
name, nor immediately preceding or following another hyphen-minus character.
(In other words, multiple occurrences of U+002D in sequence are not allowed.)

R4 A space does not occur as the first or last character of a character name, nor imme-
diately preceding or following another space character. (In other words, multiple
spaces in sequence are not allowed.)

See Appendix A, Notational Conventions, for the typographical conventions used when
printing character names in the text of the standard.

Names as Identifiers. Character names are constructed so that they can easily be trans-
posed into formal identifiers in another context, such as a computer language. Because
Unicode character names do not contain any underscore (“_”) characters, a common strat-
egy is to replace any hyphen-minus or space in a character name by a single “_” when con-
structing a formal identifier from a character name. This strategy automatically results in a
syntactically correct identifier in most formal languages. Furthermore, such identifiers are
guaranteed to be unique, because of the special rules for character name matching.

Character Name Matching. When matching identifiers transposed from character names,
it is possible to ignore case, whitespace, and all medial hyphen-minus characters (or any “_”
replacing a hyphen-minus), except for the hyphen-minus in U+1180 hangul jungseong o-

e, and still result in a unique match. For example, “ZERO WIDTH SPACE” is equivalent to
“zero-width-space” or “ZERO_WIDTH_SPACE” or “ZeroWidthSpace”. However,
“TIBETAN LETTER A” should not match “TIBETAN LETTER -A”, because in that instance
the hyphen-minus is not medial between two letters, but is instead preceded by a space. For
more information on character name matching, see Section 5.7, “Matching Rules” in Uni-
code Standard Annex #44, “Unicode Character Database.”

Named Character Sequences. Occasionally, character sequences are also given a normative
name in the Unicode Standard. The names for such sequences are taken from the same
namespace as character names, and are also unique. For details, see Unicode Standard
Annex #34, “Unicode Named Character Sequences.” Named character sequences are not
listed in the code charts; instead, they are listed in the file NamedSequences.txt in the Uni-
code Character Database.

The names for named character sequences are also immutable. Once assigned, they will
never be changed in subsequent versions of the Unicode Standard.

Character Name Aliases. Sometimes errors in a character name are discovered after publi-
cation. Because character names are immutable, such errors are not corrected by changing
the names. However, in some limited instances (as for obvious typos in a character name),
the Unicode Standard publishes an additional, corrected name as a normative character
name alias. (See Definition D5 in Section 3.3, Semantics.) Character name aliases are
immutable once published and are also guaranteed to be unique in the namespace for char-
acter names. A character may, in principle, have more than one normative character name
alias.

Character name aliases which serve to correct errors in character names are listed in the
code charts, using a special typographical convention explained in Section 17.1, Character
Names List. They are also separately listed in the file NameAliases.txt in the Unicode Char-
acter Database.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.8 Name 137
In addition to such corrections, the file NameAliases.txt contains aliases that give definitive
labels to control codes, which have no actual Unicode character name. Additional aliases
match existing and widely used alternative names and abbreviations for control codes and
for Unicode format characters. Specifying these additional, normative character name
aliases serves two major functions. First, it provides a set of well-defined aliases for use in
regular expression matching and searching, where users might expect to be able to use
established names or abbreviations for control codes and the like, but where those names
or abbreviations are not part of the actual Unicode Name property. Second, because char-
acter name aliases are guaranteed to be unique in the Unicode namespace, having them
defined for control codes and abbreviations prevents the potential for accidental collisions
between de facto current use and names which might be chosen in the future for newly
encoded Unicode characters.

A normative character name alias is distinct from the informative aliases listed in the code
charts. Informative aliases merely point out other common names in use for a given char-
acter. Informative aliases are not immutable and are not guaranteed to be unique; they
therefore cannot serve as an identifier for a character. Their main purposes are to help
readers of the standard to locate and to identify particular characters.

Unicode Name Property

Formally, the character name for a Unicode character is the value of the normative charac-
ter property, “Name”. Most Unicode character properties are defined by enumeration in
one of the data files of the Unicode Character Database, but the Name property is instead
defined in part by enumeration and in part by rule. A significant proportion of Unicode
characters belong to large sets, such as Han ideographs and Hangul syllables, for which the
character names are best defined by generative rule, rather than one-by-one naming.

Formal Definition of the Name Property. The Name property (short alias: “na”) is a string
property, defined as follows:

• For Hangul syllables, the Name property value is derived by rule, as specified in
Section 3.12, Conjoining Jamo Behavior, under “Hangul Syllable Name Genera-
tion,” by combining a fixed prefix and appropriate values of the
Jamo_Short_Name property. For example, the name of U+D4DB is hangul

syllable pwilh, constructed by concatenation of “hangul syllable ” and
three Jamo_Short_Name property values, “p” + “wi” + “lh”.

• For ideographs, the Name property value is derived by concatenating the string
“cjk unified ideograph-” or “cjk compatibility ideograph-” to the code
point, expressed in hexadecimal, with the usual 4- to 6-digit convention. For
example, the name of U+4E00 is cjk unified ideograph-4e00. Field 1 of the
UnicodeData.txt data file uses a special convention to indicate the ranges of
ideographs for which the Name property is derived by rule.

• For all other Graphic characters and for all Format characters, the Name prop-
erty value is as listed in Field 1 of UnicodeData.txt. For example, U+0A15 gur-

mukhi letter ka or U+200D zero width joiner.

• For all other Unicode code points of all other types (Control, Private-Use, Sur-
rogate, Noncharacter, and Reserved), the value of the Name property is the null
string. In other words, na=“”.

The generic term “character name” refers to the Name property value for an encoded Uni-
code character. An expression such as, “The reserved code point U+30000 has no name,” is
shorthand for the more precise statement that the reserved code point U+30000 (as for all
code points of type Reserved) has a property value of na=“” for the Name property.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

138 Character Properties
Name Uniqueness. The Unicode Name property values are unique for all non-null values,
but not every Unicode code point has a unique Unicode Name property value. Further-
more, because Unicode character names, character name aliases, and named character
sequences constitute a single, unique namespace, the Name property value uniqueness
requirement applies to all three kinds of names.

Interpretation of Field 1 of UnicodeData.txt. Where Field 1 of UnicodeData.txt contains a
string enclosed in angle brackets, “<” and “>”, such a string is not a character name, but a
meta-label indicating some other information—for example, the start or end of a character
range. In these cases, the Name property value for that code point is either empty (na=“”)
or is given by one of the rules described above. In all other cases, the value of Field 1 (that is,
the string of characters between the first and second semicolon separators on each line)
corresponds to the normative value of the Name property for that code point.

Control Codes. The Unicode Standard does not define character names for control codes
(characters with General_Category=Cc). In other words, all control codes have a property
value of na=“” for the Name property. Control codes are instead listed in UnicodeData.txt
with a special label “<control>” in Field 1. This value is not a character name, but instead
indicates the code point type (see Definition D10a in Section 3.4, Characters and Encoding).
For control characters, the values of the informative Unicode 1.0 name property
(Unicode_1_Name) in Field 10 match the names of the associated control functions from
ISO/IEC 6429. (See Section 4.9, Unicode 1.0 Names.)

Code Point Labels

To provide unique, meaningful labels for code points that do not have character names, the
Unicode Standard uses a convention for code point labeling.

For each code point type without character names, code point labels are constructed by
using a lowercase prefix derived from the code point type, followed by a hyphen-minus and
then a 4- to 6-digit hexadecimal representation of the code point. The label construction
for the five affected code point types is illustrated in Table 4-12.

To avoid any possible confusion with actual, non-null Name property values, constructed
Unicode code point labels are often displayed between angle brackets: <control-0009>,
<noncharacter-FFFF>, and so on. This convention is used consistently in the data files for
the Unicode Character Database.

A constructed code point label is distinguished from the designation of the code point itself
(for example, “U+0009” or “U+FFFF”), which is also a unique identifier, as described in
Appendix A, Notational Conventions.

Use of Character Names in APIs and User Interfaces

Use in APIs. APIs which return the value of a Unicode “character name” for a given code
point might vary somewhat in their behavior. An API which is defined as strictly returning
the value of the Unicode Name property (the “na” attribute), should return a null string for

Table 4-12. Construction of Code Point Labels

Type Label

Control control-NNNN

Reserved reserved-NNNN

Noncharacter noncharacter-NNNN

Private-Use private-use-NNNN

Surrogate surrogate-NNNN
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.9 Unicode 1.0 Names 139
any Unicode code point other than graphic or format characters, as that is the actual value
of the property for such code points. On the other hand, an API which returns a name for
Unicode code points, but which is expected to provide useful, unique labels for unassigned,
reserved code points and other special code point types, should return the value of the Uni-
code Name property for any code point for which it is non-null, but should otherwise con-
struct a code point label to stand in for a character name.

User Interfaces. A list of Unicode character names may not always be the most appropriate
set of choices to present to a user in a user interface. Many common characters do not have
a single name for all English-speaking user communities and, of course, their native name
in another language is likely to be different altogether. The names of many characters in the
Unicode Standard are based on specific Latin transcription of the sounds they represent.
There are often competing transcription schemes. For all these reasons, it can be more
effective for a user interface to use names that were translated or otherwise adjusted to meet
the expectations of the targeted user community. By also listing the formal character name,
a user interface could ensure that users can unambiguously refer to the character by the
name documented in the Unicode Standard.

4.9 Unicode 1.0 Names
The Unicode_1_Name property is an informative property referring to the name of charac-
ters in Version 1.0 of the Unicode Standard. Values of the Unicode_1_Name property are
provided in UnicodeData.txt in the Unicode Character Database in cases where the Version
1.0 name of a character differed from the current name of that character. A significant
number of names for Unicode characters in Version 1.0 were changed during the process of
merging the repertoire of the Unicode Standard with ISO/IEC 10646 in 1991. Character
name changes are now strictly prohibited by the Unicode Character Encoding Stability Pol-
icy, and no character name has been changed since Version 2.0.

The Version 1.0 names are primarily of historic interest regarding the early development of
the Unicode Standard. However, where a Version 1.0 character name provides additional
useful information about the identity of a character, it is explicitly listed in the code charts.
For example, U+00B6 pilcrow sign has its Version 1.0 name, paragraph sign, listed for
clarity.

The status of the Unicode_1_Name property values in the case of control codes differs from
that for other characters. The Unicode Standard, Version 1.0, gave names to the C0 control
codes, U+0000..U+001F, U+007F, based on then-current practice for reference to ASCII
control codes. Unicode 1.0 gave no names to the C1 control codes, U+0080..U+009F. The
values of the Unicode_1_Name property have been updated for the control codes to reflect
the ISO/IEC 6429 standard names for control functions. Those names can be seen as anno-
tations in the code charts. In a few instances, because of updates to ISO/IEC 6429, those
names may differ from the names that actually occurred in Unicode 1.0. For example, the
Unicode 1.0 name of U+0009 was horizontal tabulation, but the ISO/IEC 6429 name
for this function is character tabulation, and the commonly used alias is, of course,
merely tab.

4.10 Letters, Alphabetic, and Ideographic
Letters and Syllables. The concept of a letter is used in many contexts. Computer language
standards often characterize identifiers as consisting of letters, syllables, ideographs, and
digits, but do not specify exactly what a “letter,” “syllable,” “ideograph,” or “digit” is, leav-
ing the definitions implicitly either to a character encoding standard or to a locale specifi-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

140 Character Properties
cation. The large scope of the Unicode Standard means that it includes many writing
systems for which these distinctions are not as self-evident as they may once have been for
systems designed to work primarily for Western European languages and Japanese. In par-
ticular, while the Unicode Standard includes various “alphabets” and “syllabaries,” it also
includes writing systems that fall somewhere in between. As a result, no attempt is made to
draw a sharp property distinction between letters and syllables.

Alphabetic. The Alphabetic property is a derived informative property of the primary units
of alphabets and/or syllabaries, whether combining or noncombining. Included in this
group would be composite characters that are canonical equivalents to a combining char-
acter sequence of an alphabetic base character plus one or more combining characters; let-
ter digraphs; contextual variants of alphabetic characters; ligatures of alphabetic characters;
contextual variants of ligatures; modifier letters; letterlike symbols that are compatibility
equivalents of single alphabetic letters; and miscellaneous letter elements. Notably,
U+00AA feminine ordinal indicator and U+00BA masculine ordinal indicator are
simply abbreviatory forms involving a Latin letter and should be considered alphabetic
rather than nonalphabetic symbols.

Ideographic. The Ideographic property is an informative property defined in the Unicode
Character Database. The Ideographic property is used, for example, in determining line
breaking behavior. Characters with the Ideographic property include Unified CJK Ideo-
graphs, CJK Compatibility Ideographs, and characters from other blocks—for example,
U+3007 ideographic number zero and U+3006 ideographic closing mark. For more
information about Han ideographs, see Section 12.1, Han. For more about ideographs and
logosyllabaries in general, see Section 6.1, Writing Systems.

4.11 Properties Related to Text Boundaries
The determination of text boundaries, such as word breaks or line breaks, involves contex-
tual analysis of potential break points and the characters that surround them. Such an anal-
ysis is based on the classification of all Unicode characters by their default interaction with
each particular type of text boundary. For example, the Line_Break property defines the
default behavior of Unicode characters with respect to line breaking.

A number of characters have special behavior in the context of determining text boundar-
ies. These characters are described in more detail in the subsection on “Line and Word
Breaking” in Section 16.2, Layout Controls. For more information about text boundaries
and these characters, see Unicode Standard Annex #14, “Unicode Line Breaking Algo-
rithm,” and Unicode Standard Annex #29, “Unicode Text Segmentation.”

4.12 Characters with Unusual Properties
The behavior of most characters does not require special attention in this standard. How-
ever, the characters in Table 4-13 exhibit special behavior. Many other characters behave in
special ways but are not noted here, either because they do not affect surrounding text in
the same way or because their use is intended for well-defined contexts. Examples include
the compatibility characters for block drawing, the symbol pieces for large mathematical
operators, and many punctuation symbols that need special handling in certain circum-
stances. Such characters are more fully described in the following chapters.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.12 Characters with Unusual Properties 141
Table 4-13. Unusual Properties

Function Description Code Point and Name

Fraction formatting Section 6.2 2044 fraction slash

Special behavior with non-
spacing marks

Section 2.11, Sec-
tion 6.2, and
Section 16.2

0020 space
00A0 no-break space

Double nonspacing marks Section 7.9 035C combining double breve below
035D combining double breve
035E combining double macron
035F combining double macron below
0360 combining double tilde
0361 combining double inverted breve
0362 combining double rightwards arrow
below

1DCD combining double circumflex above

Combining half marks Section 7.9 FE20 combining ligature left half
FE21 combining ligature right half
FE22 combining double tilde left half
FE23 combining double tilde right half
FE24 combining macron left half
FE25 combining macron right half

Cursive joining and liga-
tion control

Section 16.2 200C zero width non-joiner
200D zero width joiner

Collation weighting and
sequence interpretation

Section 16.2 034F combining grapheme joiner

Bidirectional ordering Section 16.2 200E left-to-right mark
200F right-to-left mark
202A left-to-right embedding
202B right-to-left embedding
202C pop directional formatting
202D left-to-right override
202E right-to-left override

Mathematical expression
formatting

Section 15.6 2061 function application
2062 invisible times
2063 invisible separator
2064 invisible plus

Deprecated alternate for-
matting

Section 16.3 206A inhibit symmetric swapping
206B activate symmetric swapping
206C inhibit arabic form shaping
206D activate arabic form shaping
206E national digit shapes
206F nominal digit shapes

Prefixed format control Section 8.2, Sec-
tion 8.3, and
Section 10.7

0600 arabic number sign
0601 arabic sign sanah
0602 arabic footnote marker
0603 arabic sign safha
0604 arabic sign samvat
06DD arabic end of ayah
070F syriac abbreviation mark
110BD kaithi number sign
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

142 Character Properties
Brahmi-derived script
dead-character formation

Chapter 9, Chap-
ter 10, and
Chapter 11

094D devanagari sign virama
09CD bengali sign virama
0A4D gurmukhi sign virama
0ACD gujarati sign virama
0B4D oriya sign virama
0BCD tamil sign virama
0C4D telugu sign virama
0CCD kannada sign virama
0D4D malayalam sign virama
0DCA sinhala sign al-lakuna
0E3A thai character phinthu
1039 myanmar sign virama
1714 tagalog sign virama
1734 hanunoo sign pamudpod
17D2 khmer sign coeng
1A60 tai tham sign sakot
1B44 balinese adeg adeg
1BAA sundanese sign pamaaeh
A806 syloti nagri sign hasanta
A8C4 saurashtra sign virama
A953 rejang virama
A9C0 javanese pangkon
AAF6 meetei mayek virama
ABED meetei mayek apun iyek
10A3F kharoshthi virama
110B9 kaithi sign virama
11133 chakma virama
111C0 sharada sign virama
116B6 takri sign virama

Historical viramas with
other functions

Section 10.2 and
Section 10.5

0F84 tibetan mark halanta
103A myanmar sign asat
ABED meetei mayek apun iyek
193B limbu sign sa-i
11134 chakma maayyaa

Mongolian variation selec-
tors

Section 13.2 180B mongolian free variation selector one
180C mongolian free variation selector two
180D mongolian free variation selector three
180E mongolian vowel separator

Generic variation selectors Section 16.4 FE00..FE0F variation selector-1..variation
selector-16

E0100..E01EF variation selector-17..variation
selector-256

Tag characters Section 16.9 E0001 language tag
E0020..E007F language tag space..cancel tag

Ideographic variation
indication

Section 6.2 303E ideographic variation indicator

Ideographic description Section 12.2 2FF0..2FFB ideographic description character
left to right..ideographic description char-
acter overlaid

Interlinear annotation Section 16.8 FFF9 interlinear annotation anchor
FFFA interlinear annotation separator
FFFB interlinear annotation terminator

Object replacement Section 16.8 FFFC object replacement character

Code conversion fallback Section 16.8 FFFD replacement character

Table 4-13. Unusual Properties (Continued)

Function Description Code Point and Name
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

4.12 Characters with Unusual Properties 143
Musical format control Section 15.12 1D173 musical symbol begin beam
1D174 musical symbol end beam
1D175 musical symbol begin tie
1D176 musical symbol end tie
1D177 musical symbol begin slur
1D178 musical symbol end slur
1D179 musical symbol begin phrase
1D17A musical symbol end phrase

Line break controls Section 16.2 00AD soft hyphen
200B zero width space
2060 word joiner

Byte order signature Section 16.8 FEFF zero width no-break space

Table 4-13. Unusual Properties (Continued)

Function Description Code Point and Name
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

144 Character Properties
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 5

Implementation Guidelines 5

It is possible to implement a substantial subset of the Unicode Standard as “wide ASCII”
with little change to existing programming practice. However, the Unicode Standard also
provides for languages and writing systems that have more complex behavior than English
does. Whether one is implementing a new operating system from the ground up or
enhancing existing programming environments or applications, it is necessary to examine
many aspects of current programming practice and conventions to deal with this more
complex behavior.

This chapter covers a series of short, self-contained topics that are useful for implementers.
The information and examples presented here are meant to help implementers understand
and apply the design and features of the Unicode Standard. That is, they are meant to pro-
mote good practice in implementations conforming to the Unicode Standard.

These recommended guidelines are not normative and are not binding on the imple-
menter, but are intended to represent best practice. When implementing the Unicode Stan-
dard, it is important to look not only at the letter of the conformance rules, but also at their
spirit. Many of the following guidelines have been created specifically to assist people who
run into issues with conformant implementations, while reflecting the requirements of
actual usage.

5.1 Data Structures for Character Conversion
The Unicode Standard exists in a world of other text and character encoding standards—
some private, some national, some international. A major strength of the Unicode Stan-
dard is the number of other important standards that it incorporates. In many cases, the
Unicode Standard included duplicate characters to guarantee round-trip transcoding to
established and widely used standards.

Issues

Conversion of characters between standards is not always a straightforward proposition.
Many characters have mixed semantics in one standard and may correspond to more than
one character in another. Sometimes standards give duplicate encodings for the same char-
acter; at other times the interpretation of a whole set of characters may depend on the appli-
cation. Finally, there are subtle differences in what a standard may consider a character.

For these reasons, mapping tables are usually required to map between the Unicode Stan-
dard and another standard. Mapping tables need to be used consistently for text data
exchange to avoid modification and loss of text data. For details, see Unicode Technical
Standard #22, “Character Mapping Markup Language (CharMapML).” By contrast, con-
versions between different Unicode encoding forms are fast, lossless permutations.

There are important security issues associated with encoding conversion. For more infor-
mation, see Unicode Technical Report #36, “Unicode Security Considerations.”
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

146 Implementation Guidelines
The Unicode Standard can be used as a pivot to transcode among n different standards.
This process, which is sometimes called triangulation, reduces the number of mapping
tables that an implementation needs from O(n2) to O(n).

Multistage Tables

Tables require space. Even small character sets often map to characters from several differ-
ent blocks in the Unicode Standard and thus may contain up to 64K entries (for the BMP)
or 1,088K entries (for the entire codespace) in at least one direction. Several techniques
exist to reduce the memory space requirements for mapping tables. These techniques apply
not only to transcoding tables, but also to many other tables needed to implement the Uni-
code Standard, including character property data, case mapping, collation tables, and
glyph selection tables.

Flat Tables. If diskspace is not at issue, virtual memory architectures yield acceptable
working set sizes even for flat tables because the frequency of usage among characters dif-
fers widely. Even small character sets contain many infrequently used characters. In addi-
tion, data intended to be mapped into a given character set generally does not contain
characters from all blocks of the Unicode Standard (usually, only a few blocks at a time
need to be transcoded to a given character set). This situation leaves certain sections of the
mapping tables unused—and therefore paged to disk. The effect is most pronounced for
large tables mapping from the Unicode Standard to other character sets, which have large
sections simply containing mappings to the default character, or the “unmappable charac-
ter” entry.

Ranges. It may be tempting to “optimize” these tables for space by providing elaborate pro-
visions for nested ranges or similar devices. This practice leads to unnecessary performance
costs on modern, highly pipelined processor architectures because of branch penalties. A
faster solution is to use an optimized two-stage table, which can be coded without any test or
branch instructions. Hash tables can also be used for space optimization, although they are
not as fast as multistage tables.

Two-Stage Tables. Two-stage tables are a commonly employed mechanism to reduce table
size (see Figure 5-1). They use an array of pointers and a default value. If a pointer is NULL,
the value returned by a lookup operation in the table is the default value. Otherwise, the
pointer references a block of values used for the second stage of the lookup. For BMP char-
acters, it is quite efficient to organize such two-stage tables in terms of high byte and low
byte values. The first stage is an array of 256 pointers, and each of the secondary blocks
contains 256 values indexed by the low byte in the code point. For supplementary charac-
ters, it is often advisable to structure the pointers and second-stage arrays somewhat differ-
ently, so as to take best advantage of the very sparse distribution of supplementary
characters in the remaining codespace.

Optimized Two-Stage Table. Wherever any blocks are identical, the pointers just point to
the same block. For transcoding tables, this case occurs generally for a block containing
only mappings to the default or “unmappable” character. Instead of using NULL pointers
and a default value, one “shared” block of default entries is created. This block is pointed to
by all first-stage table entries, for which no character value can be mapped. By avoiding
tests and branches, this strategy provides access time that approaches the simple array
access, but at a great savings in storage.

Multistage Table Tuning. Given a table of arbitrary size and content, it is a relatively simple
matter to write a small utility that can calculate the optimal number of stages and their
width for a multistage table. Tuning the number of stages and the width of their arrays of
index pointers can result in various trade-offs of table size versus average access time.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.2 Programming Languages and Data Types 147
5.2 Programming Languages and Data Types
Programming languages provide for the representation and handling of characters and
strings via data types, data constants (literals), and methods. Explicit support for Unicode
helps with the development of multilingual applications. In some programming languages,
strings are expressed as sequences (arrays) of primitive types, exactly corresponding to
sequences of code units of one of the Unicode encoding forms. In other languages, strings
are objects, but indexing into strings follows the semantics of addressing code units of a
particular encoding form.

Data types for “characters” generally hold just a single Unicode code point value for low-
level processing and lookup of character property values. When a primitive data type is
used for single-code point values, a signed integer type can be useful; negative values can
hold “sentinel” values like end-of-string or end-of-file, which can be easily distinguished
from Unicode code point values. However, in most APIs, string types should be used to
accommodate user-perceived characters, which may require sequences of code points.

Unicode Data Types for C

ISO/IEC Technical Report 19769, Extensions for the programming language C to support new
character types, defines data types for the three Unicode encoding forms (UTF-8, UTF-16,
and UTF-32), syntax for Unicode string and character literals, and methods for the conver-
sion between the Unicode encoding forms. No other methods are specified.

Unicode strings are encoded as arrays of primitive types as usual. For UTF-8, UTF-16, and
UTF-32, the basic types are char, char16_t, and char32_t, respectively. The ISO Tech-
nical Report assumes that char is at least 8 bits wide for use with UTF-8. While char and
wchar_t may be signed or unsigned types, the new char16_t and char32_t types are
defined to be unsigned integer types.

Unlike the specification in the wchar_t programming model, the Unicode data types do
not require that a single string base unit alone (especially char or char16_t) must be able
to store any one character (code point).

Figure 5-1. Two-Stage Tables
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

148 Implementation Guidelines
UTF-16 string and character literals are written with a lowercase u as a prefix, similar to the
L prefix for wchar_t literals. UTF-32 literals are written with an uppercase U as a prefix.
Characters outside the basic character set are available for use in string literals through the
\uhhhh and \Uhhhhhhhh escape sequences.

These types and semantics are available in a compiler if the <uchar.h> header is present
and defines the __STDC_UTF_16__ (for char16_t) and __STDC_UTF_32__ (for
char32_t) macros.

Because Technical Report 19769 was not available when UTF-16 was first introduced,
many implementations have been supporting a 16-bit wchar_t to contain UTF-16 code
units. Such usage is not conformant to the C standard, because supplementary characters
require use of pairs of wchar_t units in this case.

ANSI/ISO C wchar_t. With the wchar_t wide character type, ANSI/ISO C provides for
inclusion of fixed-width, wide characters. ANSI/ISO C leaves the semantics of the wide
character set to the specific implementation but requires that the characters from the por-
table C execution set correspond to their wide character equivalents by zero extension. The
Unicode characters in the ASCII range U+0020 to U+007E satisfy these conditions. Thus, if
an implementation uses ASCII to code the portable C execution set, the use of the Unicode
character set for the wchar_t type, in either UTF-16 or UTF-32 form, fulfills the require-
ment.

The width of wchar_t is compiler-specific and can be as small as 8 bits. Consequently,
programs that need to be portable across any C or C++ compiler should not use wchar_t
for storing Unicode text. The wchar_t type is intended for storing compiler-defined wide
characters, which may be Unicode characters in some compilers. However, programmers
who want a UTF-16 implementation can use a macro or typedef (for example, UNICHAR)
that can be compiled as unsigned short or wchar_t depending on the target compiler
and platform. Other programmers who want a UTF-32 implementation can use a macro or
typedef that might be compiled as unsigned int or wchar_t, depending on the target
compiler and platform. This choice enables correct compilation on different platforms and
compilers. Where a 16-bit implementation of wchar_t is guaranteed, such macros or
typedefs may be predefined (for example, TCHAR on the Win32 API).

On systems where the native character type or wchar_t is implemented as a 32-bit quan-
tity, an implementation may use the UTF-32 form to represent Unicode characters.

A limitation of the ISO/ANSI C model is its assumption that characters can always be pro-
cessed in isolation. Implementations that choose to go beyond the ISO/ANSI C model may
find it useful to mix widths within their APIs. For example, an implementation may have a
32-bit wchar_t and process strings in any of the UTF-8, UTF-16, or UTF-32 forms.
Another implementation may have a 16-bit wchar_t and process strings as UTF-8 or
UTF-16, but have additional APIs that process individual characters as UTF-32 or deal with
pairs of UTF-16 code units.

5.3 Unknown and Missing Characters
This section briefly discusses how users or implementers might deal with characters that
are not supported or that, although supported, are unavailable for legible rendering.

Reserved and Private-Use Character Codes. There are two classes of code points that even
a “complete” implementation of the Unicode Standard cannot necessarily interpret cor-
rectly:
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.4 Handling Surrogate Pairs in UTF-16 149
• Code points that are reserved

• Code points in the Private Use Area for which no private agreement exists

An implementation should not attempt to interpret such code points. However, in practice,
applications must deal with unassigned code points or private-use characters. This may
occur, for example, when the application is handling text that originated on a system
implementing a later release of the Unicode Standard, with additional assigned characters.

Options for rendering such unknown code points include printing the code point as four
to six hexadecimal digits, printing a black or white box, using appropriate glyphs such as
for reserved and | for private use, or simply displaying nothing. An implementation
should not blindly delete such characters, nor should it unintentionally transform them
into something else.

Interpretable but Unrenderable Characters. An implementation may receive a code point
that is assigned to a character in the Unicode character encoding, but be unable to render it
because it lacks a font for the code point or is otherwise incapable of rendering it appropri-
ately.

In this case, an implementation might be able to provide limited feedback to the user’s que-
ries, such as being able to sort the data properly, show its script, or otherwise display the
code point in a default manner. An implementation can distinguish between unrenderable
(but assigned) code points and unassigned code points by printing the former with distinc-
tive glyphs that give some general indication of their type, such as A, B, C, D, E, F, G,
H, J, R, S, and so on.

Default Ignorable Code Points. Normally, characters outside the repertoire of supported
characters for an implementation would be graphical characters displayed with a fallback
glyph, such as a black box. However, certain special-use characters, such as format controls
or variation selectors, do not have visible glyphs of their own, although they may have an
effect on the display of other characters. When such a special-use character is not sup-
ported by an implementation, it should not be displayed with a visible fallback glyph, but
instead simply not be rendered at all. The list of such characters which should not be ren-
dered with a fallback glyph is defined by the Default_Ignorable_Code_Point property in
the Unicode Character Database. For more information, see Section 5.21, Ignoring Charac-
ters in Processing.

Interacting with Downlevel Systems. Versions of the Unicode Standard after Unicode 2.0
are strict supersets of Unicode 2.0 and all intervening versions. The Derived Age property
tracks the version of the standard at which a particular character was added to the standard.
This information can be particularly helpful in some interactions with downlevel systems.
If the protocol used for communication between the systems provides for an announce-
ment of the Unicode version on each one, an uplevel system can predict which recently
added characters will appear as unassigned characters to the downlevel system.

5.4 Handling Surrogate Pairs in UTF-16
The method used by UTF-16 to address the 1,048,576 supplementary code points that can-
not be represented by a single 16-bit value is called surrogate pairs. A surrogate pair consists
of a high-surrogate code unit (leading surrogate) followed by a low-surrogate code unit
(trailing surrogate), as described in the specifications in Section 3.8, Surrogates, and the
UTF-16 portion of Section 3.9, Unicode Encoding Forms.

In well-formed UTF-16, a trailing surrogate can be preceded only by a leading surrogate
and not by another trailing surrogate, a non-surrogate, or the start of text. A leading surro-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

150 Implementation Guidelines
gate can be followed only by a trailing surrogate and not by another leading surrogate, a
non-surrogate, or the end of text. Maintaining the well-formedness of a UTF-16 code
sequence or accessing characters within a UTF-16 code sequence therefore puts additional
requirements on some text processes. Surrogate pairs are designed to minimize this impact.

Leading surrogates and trailing surrogates are assigned to disjoint ranges of code units. In
UTF-16, non-surrogate code points can never be represented with code unit values in those
ranges. Because the ranges are disjoint, each code unit in well-formed UTF-16 must meet
one of only three possible conditions:

• A single non-surrogate code unit, representing a code point between 0 and
D7FF16 or between E00016 and FFFF16

• A leading surrogate, representing the first part of a surrogate pair

• A trailing surrogate, representing the second part of a surrogate pair

By accessing at most two code units, a process using the UTF-16 encoding form can there-
fore interpret any Unicode character. Determining character boundaries requires at most
scanning one preceding or one following code unit without regard to any other context.

As long as an implementation does not remove either of a pair of surrogate code units or
incorrectly insert another character between them, the integrity of the data is maintained.
Moreover, even if the data becomes corrupted, the corruption remains localized, unlike
with some other multibyte encodings such as Shift-JIS or EUC. Corrupting a single UTF-
16 code unit affects only a single character. Because of non-overlap (see Section 2.5, Encod-
ing Forms), this kind of error does not propagate throughout the rest of the text.

UTF-16 enjoys a beneficial frequency distribution in that, for the majority of all text data,
surrogate pairs will be very rare; non-surrogate code points, by contrast, will be very com-
mon. Not only does this help to limit the performance penalty incurred when handling a
variable-width encoding, but it also allows many processes either to take no specific action
for surrogates or to handle surrogate pairs with existing mechanisms that are already
needed to handle character sequences.

Implementations should fully support surrogate pairs in processing UTF-16 text. Without
surrogate support, an implementation would not interpret any supplementary characters
or guarantee the integrity of surrogate pairs. This might apply, for example, to an older
implementation, conformant to Unicode Version 1.1 or earlier, before UTF-16 was defined.
Support for supplementary characters is important because a significant number of them
are relevant for modern use, despite their low frequency.

The individual components of implementations may have different levels of support for
surrogates, as long as those components are assembled and communicate correctly. Low-
level string processing, where a Unicode string is not interpreted but is handled simply as
an array of code units, may ignore surrogate pairs. With such strings, for example, a trun-
cation operation with an arbitrary offset might break a surrogate pair. (For further discus-
sion, see Section 2.7, Unicode Strings.) For performance in string operations, such behavior
is reasonable at a low level, but it requires higher-level processes to ensure that offsets are
on character boundaries so as to guarantee the integrity of surrogate pairs.

Strategies for Surrogate Pair Support. Many implementations that handle advanced fea-
tures of the Unicode Standard can easily be modified to support surrogate pairs in UTF-16.
For example:

• Text collation can be handled by treating those surrogate pairs as “grouped
characters,” such as is done for “ij” in Dutch or “ch” in Slovak.

• Text entry can be handled by having a keyboard generate two Unicode code
points with a single keypress, much as an ENTER key can generate CRLF or an
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.5 Handling Numbers 151
Arabic keyboard can have a “lam-alef ” key that generates a sequence of two
characters, lam and alef.

• Truncation can be handled with the same mechanism as used to keep combin-
ing marks with base characters. For more information, see Unicode Standard
Annex #29, “Unicode Text Segmentation.”

Users are prevented from damaging the text if a text editor keeps insertion points (also
known as carets) on character boundaries.

Implementations using UTF-8 and Unicode 8-bit strings necessitate similar consider-
ations. The main difference from handling UTF-16 is that in the UTF-8 case the only char-
acters that are represented with single code units (single bytes) in UTF-8 are the ASCII
characters, U+0000..U+007F. Characters represented with multibyte sequences are very
common in UTF-8, unlike surrogate pairs in UTF-16, which are rather uncommon. This
difference in frequency may result in different strategies for handling the multibyte
sequences in UTF-8.

5.5 Handling Numbers
There are many sets of characters that represent decimal digits in different scripts. Systems
that interpret those characters numerically should provide the correct numerical values.
For example, the sequence <U+0968 devanagari digit two, U+0966 devanagari digit

zero> when numerically interpreted has the value twenty.

When converting binary numerical values to a visual form, digits can be chosen from dif-
ferent scripts. For example, the value twenty can be represented either by <U+0032 digit

two, U+0030 digit zero> or by <U+0968 devanagari digit two, U+0966 devanagari

digit zero> or by <U+0662 arabic-indic digit two, U+0660 arabic-indic digit

zero>. It is recommended that systems allow users to choose the format of the resulting
digits by replacing the appropriate occurrence of U+0030 digit zero with U+0660 ara-

bic-indic digit zero, and so on. (See Chapter 4, Character Properties, for the information
needed to implement formatting and scanning numerical values.)

Fullwidth variants of the ASCII digits are simply compatibility variants of regular digits
and should be treated as regular Western digits.

The Roman numerals, Greek acrophonic numerals, and East Asian ideographic numerals
are decimal numeral writing systems, but they are not formally decimal radix digit systems.
That is, it is not possible to do a one-to-one transcoding to forms such as 123456.789. Such
systems are appropriate only for positive integer writing.

It is also possible to write numbers in two ways with CJK ideographic digits. For example,
Figure 15-6 shows how the number 1,234 can be written. Supporting these ideographic dig-
its for numerical parsing means that implementations must be smart about distinguishing
between the two cases.

Digits often occur in situations where they need to be parsed, but are not part of numbers.
One such example is alphanumeric identifiers (see Unicode Standard Annex #31, “Unicode
Identifier and Pattern Syntax”).

Only in higher-level protocols, such as when implementing a full mathematical formula
parser, do considerations such as superscripting and subscripting of digits become crucial
for numerical interpretation.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

152 Implementation Guidelines
5.6 Normalization
Alternative Spellings. The Unicode Standard contains explicit codes for the most fre-
quently used accented characters. These characters can also be composed; in the case of
accented letters, characters can be composed from a base character and nonspacing
mark(s).

The Unicode Standard provides decompositions for characters that can be composed using
a base character plus one or more nonspacing marks. The decomposition mappings are
specific to a particular version of the Unicode Standard. Further decomposition mappings
may be added to the standard for new characters encoded in the future; however, no exist-
ing decomposition mapping for a currently encoded character will ever be removed or
changed, nor will a decomposition mapping be added for a currently encoded character.
These constraints on changes for decomposition are enforced by the Normalization Stabil-
ity Policy. See the subsection “Policies” in Section B.6, Other Unicode Online Resources.

Normalization. Systems may normalize Unicode-encoded text to one particular sequence,
such as normalizing composite character sequences into precomposed characters, or vice
versa (see Figure 5-2).

Compared to the number of possible combinations, only a relatively small number of pre-
composed base character plus nonspacing marks have independent Unicode character val-
ues.

Systems that cannot handle nonspacing marks can normalize to precomposed characters;
this option can accommodate most modern Latin-based languages. Such systems can use
fallback rendering techniques to at least visually indicate combinations that they cannot
handle (see the “Fallback Rendering” subsection of Section 5.13, Rendering Nonspacing
Marks).

In systems that can handle nonspacing marks, it may be useful to normalize so as to elimi-
nate precomposed characters. This approach allows such systems to have a homogeneous
representation of composed characters and maintain a consistent treatment of such char-
acters. However, in most cases, it does not require too much extra work to support mixed
forms, which is the simpler route.

The Unicode Normalization Forms are defined in Section 3.11, Normalization Forms. For
further information about implementation of normalization, see also Unicode Standard
Annex #15, “Unicode Normalization Forms.” For a general discussion of issues related to
normalization, see “Equivalent Sequences” in Section 2.2, Unicode Design Principles; and
Section 2.11, Combining Characters.

Figure 5-2. Normalization

DecomposedPrecomposed

Unnormalized

òa · ë ˜¨

ä· ë̃ ò a · e ˜ o¨ ¨ @̀

@ @

@ @ @

@

@

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.7 Compression 153
5.7 Compression
Using the Unicode character encoding may increase the amount of storage or memory
space dedicated to the text portion of files. Compressing Unicode-encoded files or strings
can therefore be an attractive option if the text portion is a large part of the volume of data
compared to binary and numeric data, and if the processing overhead of the compression
and decompression is acceptable.

Compression always constitutes a higher-level protocol and makes interchange dependent
on knowledge of the compression method employed. For a detailed discussion of compres-
sion and a standard compression scheme for Unicode, see Unicode Technical Standard #6,
“A Standard Compression Scheme for Unicode.”

Encoding forms defined in Section 2.5, Encoding Forms, have different storage characteris-
tics. For example, as long as text contains only characters from the Basic Latin (ASCII)
block, it occupies the same amount of space whether it is encoded with the UTF-8 or ASCII
codes. Conversely, text consisting of CJK ideographs encoded with UTF-8 will require
more space than equivalent text encoded with UTF-16.

For processing rather than storage, the Unicode encoding form is usually selected for easy
interoperability with existing APIs. Where there is a choice, the trade-off between decoding
complexity (high for UTF-8, low for UTF-16, trivial for UTF-32) and memory and cache
bandwidth (high for UTF-32, low for UTF-8 or UTF-16) should be considered.

5.8 Newline Guidelines
Newlines are represented on different platforms by carriage return (CR), line feed (LF),
CRLF, or next line (NEL). Not only are newlines represented by different characters on dif-
ferent platforms, but they also have ambiguous behavior even on the same platform. These
characters are often transcoded directly into the corresponding Unicode code points when
a character set is transcoded; this means that even programs handling pure Unicode have to
deal with the problems. Especially with the advent of the Web, where text on a single
machine can arise from many sources, this causes a significant problem.

Newline characters are used to explicitly indicate line boundaries. For more information,
see Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.” Newlines are also
handled specially in the context of regular expressions. For information, see Unicode Tech-
nical Standard #18, “Unicode Regular Expressions.” For the use of these characters in
markup languages, see Unicode Technical Report #20, “Unicode in XML and Other
Markup Languages.”

Definitions

Table 5-1 provides hexadecimal values for the acronyms used in these guidelines. The acro-
nyms shown in Table 5-1 correspond to characters or sequences of characters. The name
column shows the usual names used to refer to the characters in question, whereas the
other columns show the Unicode, ASCII, and EBCDIC encoded values for the characters.

Encoding. Except for LS and PS, the newline characters discussed here are encoded as con-
trol codes. Many control codes were originally designed for device control but, together
with TAB, the newline characters are commonly used as part of plain text. For more infor-
mation on how Unicode encodes control codes, see Section 16.1, Control Codes.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

154 Implementation Guidelines
Notation. This discussion of newline guidelines uses lowercase when referring to functions
having to do with line determination, but uses the acronyms when referring to the actual
characters involved. Keys on keyboards are indicated in all caps. For example:

The line separator may be expressed by LS in Unicode text or CR on some
platforms. It may be entered into text with the SHIFT-RETURN key.

EBCDIC. Table 5-1 shows the two mappings of LF and NEL used by EBCDIC systems. The
first EBCDIC column shows the default control code mapping of these characters, which is
used in most EBCDIC environments. The second column shows the z/OS Unix System Ser-
vices mapping of LF and NEL. That mapping arises from the use of the LF character for the
newline function in C programs and in Unix environments, while text files on z/OS tradi-
tionally use NEL for the newline function.

NEL (next line) is not actually defined in 7-bit ASCII. It is defined in the ISO control func-
tion standard, ISO 6429, as a C1 control function. However, the 0x85 mapping shown in
the ASCII column in Table 5-1 is the usual way that this C1 control function is mapped in
ASCII-based character encodings.

Newline Function. The acronym NLF (newline function) stands for the generic control
function for indication of a new line break. It may be represented by different characters,
depending on the platform, as shown in Table 5-2.

Line Separator and Paragraph Separator

A paragraph separator—independent of how it is encoded—is used to indicate a separa-
tion between paragraphs. A line separator indicates where a line break alone should occur,
typically within a paragraph. For example:

This is a paragraph with a line separator at this point,
causing the word “causing” to appear on a different line, but not causing
the typical paragraph indentation, sentence breaking, line spacing, or
change in flush (right, center, or left paragraphs).

Table 5-1. Hex Values for Acronyms

Acronym Name Unicode ASCII EBCDIC

Default z/OS

CR carriage return 000D 0D 0D 0D

LF line feed 000A 0A 25 15

CRLF carriage return and
line feed

<000D 000A> <0D 0A> <0D 25> <0D 15>

NEL next line 0085 85 15 25

VT vertical tab 000B 0B 0B 0B

FF form feed 000C 0C 0C 0C

LS line separator 2028 n/a n/a n/a

PS paragraph separator 2029 n/a n/a n/a

Table 5-2. NLF Platform Correlations

Platform NLF Value
MacOS 9.x and earlier CR
MacOS X LF
Unix LF
Windows CRLF
EBCDIC-based OS NEL
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.8 Newline Guidelines 155
For comparison, line separators basically correspond to HTML
, and paragraph sep-
arators to older usage of HTML <P> (modern HTML delimits paragraphs by enclosing
them in <P>...</P>). In word processors, paragraph separators are usually entered using a
keyboard RETURN or ENTER; line separators are usually entered using a modified
RETURN or ENTER, such as SHIFT-ENTER.

A record separator is used to separate records. For example, when exchanging tabular data,
a common format is to tab-separate the cells and use a CRLF at the end of a line of cells. This
function is not precisely the same as line separation, but the same characters are often used.

Traditionally, NLF started out as a line separator (and sometimes record separator). It is
still used as a line separator in simple text editors such as program editors. As platforms
and programs started to handle word processing with automatic line-wrap, these charac-
ters were reinterpreted to stand for paragraph separators. For example, even such simple
programs as the Windows Notepad program and the Mac SimpleText program interpret
their platform’s NLF as a paragraph separator, not a line separator.

Once NLF was reinterpreted to stand for a paragraph separator, in some cases another con-
trol character was pressed into service as a line separator. For example, vertical tabulation
VT is used in Microsoft Word. However, the choice of character for line separator is even
less standardized than the choice of character for NLF.

Many Internet protocols and a lot of existing text treat NLF as a line separator, so an imple-
menter cannot simply treat NLF as a paragraph separator in all circumstances.

Recommendations

The Unicode Standard defines two unambiguous separator characters: U+2029 para-

graph separator (PS) and U+2028 line separator (LS). In Unicode text, the PS and LS
characters should be used wherever the desired function is unambiguous. Otherwise, the
following recommendations specify how to cope with an NLF when converting from other
character sets to Unicode, when interpreting characters in text, and when converting from
Unicode to other character sets.

Note that even if an implementer knows which characters represent NLF on a particular
platform, CR, LF, CRLF, and NEL should be treated the same on input and in interpreta-
tion. Only on output is it necessary to distinguish between them.

Converting from Other Character Code Sets

R1 If the exact usage of any NLF is known, convert it to LS or PS.

R1a If the exact usage of any NLF is unknown, remap it to the platform NLF.

Recommendation R1a does not really help in interpreting Unicode text unless the imple-
menter is the only source of that text, because another implementer may have left in LF, CR,
CRLF, or NEL.

Interpreting Characters in Text

R2 Always interpret PS as paragraph separator and LS as line separator.

R2a In word processing, interpret any NLF the same as PS.

R2b In simple text editors, interpret any NLF the same as LS.

In line breaking, both PS and LS terminate a line; therefore, the Unicode Line Breaking
Algorithm in Unicode Standard Annex #14, “Unicode Line Breaking Algorithm,” is defined
such that any NLF causes a line break.

R2c In parsing, choose the safest interpretation.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

156 Implementation Guidelines
For example, in recommendation R2c an implementer dealing with sentence break heuris-
tics would reason in the following way that it is safer to interpret any NLF as LS:

• Suppose an NLF were interpreted as LS, when it was meant to be PS. Because
most paragraphs are terminated with punctuation anyway, this would cause
misidentification of sentence boundaries in only a few cases.

• Suppose an NLF were interpreted as PS, when it was meant to be LS. In this
case, line breaks would cause sentence breaks, which would result in significant
problems with the sentence break heuristics.

Converting to Other Character Code Sets

R3 If the intended target is known, map NLF, LS, and PS depending on the target con-
ventions.

For example, when mapping to Microsoft Word’s internal conventions for documents, LS
would be mapped to VT, and PS and any NLF would be mapped to CRLF.

R3a If the intended target is unknown, map NLF, LS, and PS to the platform newline
convention (CR, LF, CRLF, or NEL).

In Java, for example, this is done by mapping to a string nlf, defined as follows:

String nlf = System.getProperties("line.separator");

Input and Output

R4 A readline function should stop at NLF, LS, FF, or PS. In the typical implemen-
tation, it does not include the NLF, LS, PS, or FF that caused it to stop.

Because the separator is lost, the use of such a readline function is limited to text pro-
cessing, where there is no difference among the types of separators.

R4a A writeline (or newline) function should convert NLF, LS, and PS according
to the recommendations R3 and R3a.

In C, gets is defined to terminate at a newline and replaces the newline with '\0', while
fgets is defined to terminate at a newline and includes the newline in the array into which
it copies the data. C implementations interpret '\n' either as LF or as the underlying plat-
form newline NLF, depending on where it occurs. EBCDIC C compilers substitute the rel-
evant codes, based on the EBCDIC execution set.

Page Separator

FF is commonly used as a page separator, and it should be interpreted that way in text.
When displaying on the screen, it causes the text after the separator to be forced to the next
page. It is interpreted in the same way as the LS for line breaking, in parsing, or in input
segmentation such as readline. FF does not interrupt a paragraph, as paragraphs can and
do span page boundaries.

5.9 Regular Expressions
Byte-oriented regular expression engines require extensions to handle Unicode success-
fully. The following issues are involved in such extensions:

• Unicode is a large character set—regular expression engines that are adapted to
handle only small character sets may not scale well.

• Unicode encompasses a wide variety of languages that can have very different
characteristics than English or other Western European text.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.10 Language Information in Plain Text 157
For detailed information on the requirements of Unicode regular expressions, see Unicode
Technical Standard #18, “Unicode Regular Expressions.”

5.10 Language Information in Plain Text

Requirements for Language Tagging

The requirement for language information embedded in plain text data is often overstated.
Many commonplace operations such as collation seldom require this extra information. In
collation, for example, foreign language text is generally collated as if it were not in a foreign
language. (See Unicode Technical Standard #10, “Unicode Collation Algorithm,” for more
information.) For example, an index in an English book would not sort the Slovak word
“chlieb” after “czar,” where it would be collated in Slovak, nor would an English atlas put
the Swedish city of Örebro after Zanzibar, where it would appear in Swedish.

Text to speech is also an area where the case for embedded language information is over-
stated. Although language information may be useful in performing text-to-speech opera-
tions, modern software for doing acceptable text-to-speech must be so sophisticated in
performing grammatical analysis of text that the extra work in determining the language is
not significant in practice.

Language information can be useful in certain operations, such as spell-checking or
hyphenating a mixed-language document. It is also useful in choosing the default font for a
run of unstyled text; for example, the ellipsis character may have a very different appear-
ance in Japanese fonts than in European fonts. Modern font and layout technologies pro-
duce different results based on language information. For example, the angle of the acute
accent may be different for French and Polish.

Language Tags and Han Unification

A common misunderstanding about Unicode Han unification is the mistaken belief that
Han characters cannot be rendered properly without language information. This idea
might lead an implementer to conclude that language information must always be added to
plain text using the tags. However, this implication is incorrect. The goal and methods of
Han unification were to ensure that the text remained legible. Although font, size, width,
and other format specifications need to be added to produce precisely the same appearance
on the source and target machines, plain text remains legible in the absence of these speci-
fications.

There should never be any confusion in Unicode, because the distinctions between the uni-
fied characters are all within the range of stylistic variations that exist in each country. No
unification in Unicode should make it impossible for a reader to identify a character if it
appears in a different font. Where precise font information is important, it is best conveyed
in a rich text format.

Typical Scenarios. The following e-mail scenarios illustrate that the need for language
information with Han characters is often overstated:

• Scenario 1. A Japanese user sends out untagged Japanese text. Readers are Japa-
nese (with Japanese fonts). Readers see no differences from what they expect.

• Scenario 2. A Japanese user sends out an untagged mixture of Japanese and
Chinese text. Readers are Japanese (with Japanese fonts) and Chinese (with
Chinese fonts). Readers see the mixed text with only one font, but the text is
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

158 Implementation Guidelines
still legible. Readers recognize the difference between the languages by the con-
tent.

• Scenario 3. A Japanese user sends out a mixture of Japanese and Chinese text.
Text is marked with font, size, width, and so on, because the exact format is
important. Readers have the fonts and other display support. Readers see the
mixed text with different fonts for different languages. They recognize the dif-
ference between the languages by the content, and see the text with glyphs that
are more typical for the particular language.

It is common even in printed matter to render passages of foreign language text in native-
language fonts, just for familiarity. For example, Chinese text in a Japanese document is
commonly rendered in a Japanese font.

5.11 Editing and Selection

Consistent Text Elements

As far as a user is concerned, the underlying representation of text is not a material con-
cern, but it is important that an editing interface present a uniform implementation of
what the user thinks of as characters. (See “‘Characters’ and Grapheme Clusters” in
Section 2.11, Combining Characters.) The user expects them to behave as units in terms of
mouse selection, arrow key movement, backspacing, and so on. For example, when such
behavior is implemented, and an accented letter is represented by a sequence of base char-
acter plus a nonspacing combining mark, using the right arrow key would logically skip
from the start of the base character to the end of the last nonspacing character.

In some cases, editing a user-perceived “character” or visual cluster element by element
may be the preferred way. For example, a system might have the backspace key delete by
using the underlying code point, while the delete key could delete an entire cluster. More-
over, because of the way keyboards and input method editors are implemented, there often
may not be a one-to-one relationship between what the user thinks of as a character and
the key or key sequence used to input it.

Three types of boundaries are generally useful in editing and selecting within words: cluster
boundaries, stacked boundaries and atomic character boundaries.

Cluster Boundaries. Arbitrarily defined cluster boundaries may occur in scripts such as
Devanagari, for which selection may be defined as applying to syllables or parts of syllables.
In such cases, combining character sequences such as ka + vowel sign a or conjunct clusters
such as ka + halant + ta are selected as a single unit. (See Figure 5-3.)

Figure 5-3. Consistent Character Boundaries

RôleStack

Atomic Rôle

Cluster Rôle

∑Ê’¸–

∑Ê’¸–
∑Ê’¸–

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.12 Strategies for Handling Nonspacing Marks 159
Stacked Boundaries. Stacked boundaries are generally somewhat finer than cluster bound-
aries. Free-standing elements (such as vowel sign a in Devanagari) can be independently
selected, but any elements that “stack” (including vertical ligatures such as Arabic lam +
meem in Figure 5-3) can be selected only as a single unit. Stacked boundaries treat default
grapheme clusters as single entities, much like composite characters. (See Unicode Stan-
dard Annex #29, “Unicode Text Segmentation,” for the definition of default grapheme clus-
ters and for a discussion of how grapheme clusters can be tailored to meet the needs of
defining arbitrary cluster boundaries.)

Atomic Character Boundaries. The use of atomic character boundaries is closest to selec-
tion of individual Unicode characters. However, most modern systems indicate selection
with some sort of rectangular highlighting. This approach places restrictions on the consis-
tency of editing because some sequences of characters do not linearly progress from the
start of the line. When characters stack, two mechanisms are used to visually indicate par-
tial selection: linear and nonlinear boundaries.

Linear Boundaries. Use of linear boundaries treats the entire width of the resultant glyph
as belonging to the first character of the sequence, and the remaining characters in the
backing-store representation as having no width and being visually afterward.

This option is the simplest mechanism. The advantage of this system is that it requires very
little additional implementation work. The disadvantage is that it is never easy to select
narrow characters, let alone a zero-width character. Mechanically, it requires the user to
select just to the right of the nonspacing mark and drag just to the left. It also does not
allow the selection of individual nonspacing marks if more than one is present.

Nonlinear Boundaries. Use of nonlinear boundaries divides any stacked element into
parts. For example, picking a point halfway across a lam + meem ligature can represent the
division between the characters. One can either allow highlighting with multiple rectangles
or use another method such as coloring the individual characters.

With more work, a precomposed character can behave in deletion as if it were a composed
character sequence with atomic character boundaries. This procedure involves deriving the
character’s decomposition on the fly to get the components to be used in simulation. For
example, deletion occurs by decomposing, removing the last character, then recomposing
(if more than one character remains). However, this technique does not work in general
editing and selection.

In most editing systems, the code point is the smallest addressable item, so the selection
and assignment of properties (such as font, color, letterspacing, and so on) cannot be done
on any finer basis than the code point. Thus the accent on an “e” could not be colored dif-
ferently than the base in a precomposed character, although it could be colored differently
if the text were stored internally in a decomposed form.

Just as there is no single notion of text element, so there is no single notion of editing char-
acter boundaries. At different times, users may want different degrees of granularity in the
editing process. Two methods suggest themselves. First, the user may set a global preference
for the character boundaries. Second, the user may have alternative command mecha-
nisms, such as Shift-Delete, which give more (or less) fine control than the default mode.

5.12 Strategies for Handling Nonspacing Marks
By following these guidelines, a programmer should be able to implement systems and
routines that provide for the effective and efficient use of nonspacing marks in a wide
variety of applications and systems. The programmer also has the choice between minimal
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

160 Implementation Guidelines
techniques that apply to the vast majority of existing systems and more sophisticated tech-
niques that apply to more demanding situations, such as higher-end desktop publishing.

In this section and the following section, the terms nonspacing mark and combining charac-
ter are used interchangeably. The terms diacritic, accent, stress mark, Hebrew point, Arabic
vowel, and others are sometimes used instead of nonspacing mark. (They refer to particular
types of nonspacing marks.) Properly speaking, a nonspacing mark is any combining char-
acter that does not add space along the writing direction. For a formal definition of non-
spacing mark, see Section 3.6, Combination.

A relatively small number of implementation features are needed to support nonspacing
marks. Different levels of implementation are also possible. A minimal system yields good
results and is relatively simple to implement. Most of the features required by such a system
are simply modifications of existing software.

As nonspacing marks are required for a number of writing systems, such as Arabic,
Hebrew, and those of South Asia, many vendors already have systems capable of dealing
with these characters and can use their experience to produce general-purpose software for
handling these characters in the Unicode Standard.

Rendering. Composite character sequences can be rendered effectively by means of a fairly
simple mechanism. In simple character rendering, a nonspacing combining mark has a
zero advance width, and a composite character sequence will have the same width as the
base character.

Wherever a sequence of base character plus one or more nonspacing marks occurs, the
glyphs for the nonspacing marks can be positioned relative to the base. The ligature mech-
anisms in the fonts can also substitute a glyph representing the combined form. In some
cases the width of the base should change because of an applied accent, such as with “î”.
The ligature or contextual form mechanisms in the font can be used to change the width of
the base in cases where this is required.

Other Processes. Correct multilingual comparison routines must already be able to com-
pare a sequence of characters as one character, or one character as if it were a sequence.
Such routines can also handle combining character sequences when supplied with the
appropriate data. When searching strings, remember to check for additional nonspacing
marks in the target string that may affect the interpretation of the last matching character.

Line breaking algorithms generally use state machines for determining word breaks. Such
algorithms can be easily adapted to prevent separation of nonspacing marks from base
characters. (See also the discussion in Section 5.6, Normalization. For details in particular
contexts, see Unicode Technical Standard #10, “Unicode Collation Algorithm”; Unicode
Standard Annex #14, “Unicode Line Breaking Algorithm”; and Unicode Standard Annex
#29, “Unicode Text Segmentation.”)

Keyboard Input

A common implementation for the input of combining character sequences is the use of
dead keys. These keys match the mechanics used by typewriters to generate such sequences
through overtyping the base character after the nonspacing mark. In computer implemen-
tations, keyboards enter a special state when a dead key is pressed for the accent and emit a
precomposed character only when one of a limited number of “legal” base characters is
entered. It is straightforward to adapt such a system to emit combining character sequences
or precomposed characters as needed.

Typists, especially in the Latin script, are trained on systems that work using dead keys.
However, many scripts in the Unicode Standard (including the Latin script) may be imple-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.12 Strategies for Handling Nonspacing Marks 161
mented according to the handwriting sequence, in which users type the base character first,
followed by the accents or other nonspacing marks (see Figure 5-4).

In the case of handwriting sequence, each keystroke produces a distinct, natural change on
the screen; there are no hidden states. To add an accent to any existing character, the user
positions the insertion point (caret) after the character and types the accent.

Truncation

There are two types of truncation: truncation by character count and truncation by dis-
played width. Truncation by character count can entail loss (be lossy) or be lossless.

Truncation by character count is used where, due to storage restrictions, a limited number
of characters can be entered into a field; it is also used where text is broken into buffers for
transmission and other purposes. The latter case can be lossless if buffers are recombined
seamlessly before processing or if lookahead is performed for possible combining character
sequences straddling buffers.

When fitting data into a field of limited storage length, some information will be lost. The
preferred position for truncating text in that situation is on a grapheme cluster boundary.
As Figure 5-5 shows, such truncation can mean truncating at an earlier point than the last
character that would have fit within the physical storage limitation. (See Unicode Standard
Annex #29, “Unicode Text Segmentation.”)

Truncation by displayed width is used for visual display in a narrow field. In this case, trun-
cation occurs on the basis of the width of the resulting string rather than on the basis of a
character count. In simple systems, it is easiest to truncate by width, starting from the end
and working backward by subtracting character widths as one goes. Because a trailing non-

Figure 5-4. Dead Keys Versus Handwriting Sequence

Figure 5-5. Truncating Grapheme Clusters

Dead Key Handwriting

Zrich

Zrich

Zürich
u

¨
Zurich

Zürich

Zrich
u

¨

Clipping

Ellipsis

On Grapheme Cluster
Boundaries J o s e ´

José

Jo...

@
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

162 Implementation Guidelines
spacing mark does not contribute to the measurement of the string, the result will not sep-
arate nonspacing marks from their base characters.

If the textual environment is more sophisticated, the widths of characters may depend on
their context, due to effects such as kerning, ligatures, or contextual formation. For such
systems, the width of a precomposed character, such as an “ï”, may be different than the
width of a narrow base character alone. To handle these cases, a final check should be made
on any truncation result derived from successive subtractions.

A different option is simply to clip the characters graphically. Unfortunately, this may result
in clipping off part of a character, which can be visually confusing. Also, if the clipping
occurs between characters, it may not give any visual feedback that characters are being
omitted. A graphic or ellipsis can be used to give this visual feedback.

5.13 Rendering Nonspacing Marks
This discussion assumes the use of proportional fonts, where the widths of individual char-
acters can vary. Various techniques can be used with monospaced fonts. In general, how-
ever, it is possible to get only a semblance of a correct rendering for most scripts in such
fonts.

When rendering a sequence consisting of more than one nonspacing mark, the nonspacing
marks should, by default, be stacked outward from the base character. That is, if two nons-
pacing marks appear over a base character, then the first nonspacing mark should appear
on top of the base character, and the second nonspacing mark should appear on top of the
first. If two nonspacing marks appear under a base character, then the first nonspacing
mark should appear beneath the base character, and the second nonspacing mark should
appear below the first (see Section 2.11, Combining Characters). This default treatment of
multiple, potentially interacting nonspacing marks is known as the inside-out rule (see
Figure 5-6).

This default behavior may be altered based on typographic preferences or on knowledge of
the specific orthographic treatment to be given to multiple nonspacing marks in the con-
text of a particular writing system. For example, in the modern Vietnamese writing system,
an acute or grave accent (serving as a tone mark) may be positioned slightly to one side of
a circumflex accent rather than directly above it. If the text to be displayed is known to
employ a different typographic convention (either implicitly through knowledge of the
language of the text or explicitly through rich text-style bindings), then an alternative posi-
tioning may be given to multiple nonspacing marks instead of that specified by the default
inside-out rule.

Fallback Rendering. Several methods are available to deal with an unknown composed
character sequence that is outside of a fixed, renderable set (see Figure 5-7). One method

Figure 5-6. Inside-Out Rule

Characters Glyphs

a
˙

¨ ˜
ˆ
ä̃

ˆ˙0061 0308 0303 0323 032D

0E02 0E36 0E49
+

+ + + +

+

$ $ $ $

$ $

→

→

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.13 Rendering Nonspacing Marks 163
(Show Hidden) indicates the inability to draw the sequence by drawing the base character
first and then rendering the nonspacing mark as an individual unit, with the nonspacing
mark positioned on a dotted circle. (This convention is used in the Unicode code charts.)

Another method (Simple Overlap) uses a default fixed position for an overlapping zero-
width nonspacing mark. This position is generally high enough to make sure that the mark
does not collide with capital letters. This will mean that this mark is placed too high above
many lowercase letters. For example, the default positioning of a circumflex can be above
the ascent, which will place it above capital letters. Even though the result will not be par-
ticularly attractive for letters such as g-circumflex, the result should generally be recogniz-
able in the case of single nonspacing marks.

In a degenerate case, a nonspacing mark occurs as the first character in the text or is sepa-
rated from its base character by a line separator, paragraph separator, or other format char-
acter that causes a positional separation. This result is called a defective combining
character sequence (see Section 3.6, Combination). Defective combining character
sequences should be rendered as if they had a no-break space as a base character. (See
Section 7.9, Combining Marks.)

Bidirectional Positioning. In bidirectional text, the nonspacing marks are reordered with
their base characters; that is, they visually apply to the same base character after the algo-
rithm is used (see Figure 5-8). There are a few ways to accomplish this positioning.

Figure 5-7. Fallback Rendering

Figure 5-8. Bidirectional Placement

Ggˆ ˆ G@g@ˆ ˆ
“Ideal” “Show

Hidden”
“Simple
Overlap”

Ĝĝ

Backing Store

Screen Order

Glyph Metrics

Aligned Glyphs

Ug @̂ V@

U@Vg @̂

UxxxVˆ
xgx x x x

ˆ
xgx UV xx
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

164 Implementation Guidelines
The simplest method is similar to the Simple Overlap fallback method. In the Bidirectional
Algorithm, combining marks take the level of their base character. In that case, Arabic and
Hebrew nonspacing marks would come to the left of their base characters. The font is
designed so that instead of overlapping to the left, the Arabic and Hebrew nonspacing
marks overlap to the right. In Figure 5-8, the “glyph metrics” line shows the pen start and
end for each glyph with such a design. After aligning the start and end points, the final
result shows each nonspacing mark attached to the corresponding base letter. More sophis-
ticated rendering could then apply the positioning methods outlined in the next section.

Some rendering software may require keeping the nonspacing mark glyphs consistently
ordered to the right of the base character glyphs. In that case, a second pass can be done
after producing the “screen order” to put the odd-level nonspacing marks on the right of
their base characters. As the levels of nonspacing marks will be the same as their base char-
acters, this pass can swap the order of nonspacing mark glyphs and base character glyphs in
right-to-left (odd) levels. (See Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm.”)

Justification. Typically, full justification of text adds extra space at space characters so as to
widen a line; however, if there are too few (or no) space characters, some systems add extra
letterspacing between characters (see Figure 5-9). This process needs to be modified if zero-
width nonspacing marks are present in the text. Otherwise, if extra justifying space is added
after the base character, it can have the effect of visually separating the nonspacing mark
from its base.

Because nonspacing marks always follow their base character, proper justification adds let-
terspacing between characters only if the second character is a base character.

Canonical Equivalence

Canonical equivalence must be taken into account in rendering multiple accents, so that
any two canonically equivalent sequences display as the same. This is particularly impor-
tant when the canonical order is not the customary keyboarding order, which happens in
Arabic with vowel signs or in Hebrew with points. In those cases, a rendering system may
be presented with either the typical typing order or the canonical order resulting from nor-
malization, as shown in Table 5-3.

With a restricted repertoire of nonspacing mark sequences, such as those required for Ara-
bic, a ligature mechanism can be used to get the right appearance, as described earlier.

Figure 5-9. Justification

Table 5-3. Typing Order Differing from Canonical Order

Typical Typing Order Canonical Order

U+0631 J arabic letter reh + U+0651 L
arabic shadda + U+064B K arabic
fathatan

U+0631 J arabic letter reh + U+064B K
arabic fathatan + U+0651 L arabic
shadda

66 points/6 positions
= 11 points per position
66 points/5 positions
= 13.2 points per position

Zürich

Z ü r i c h
üZ r i c h
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.13 Rendering Nonspacing Marks 165
When a fallback mechanism for placing accents based on their combining class is
employed, the system should logically reorder the marks before applying the mechanism.

Rendering systems should handle any of the canonically equivalent orders of combining
marks. This is not a performance issue: the amount of time necessary to reorder combining
marks is insignificant compared to the time necessary to carry out other work required for
rendering.

A rendering system can reorder the marks internally if necessary, as long as the resulting
sequence is canonically equivalent. In particular, any permutation of the non-zero combin-
ing class values can be used for a canonical-equivalent internal ordering. For example, a
rendering system could internally permute weights to have U+0651 arabic shadda pre-
cede all vowel signs. This would use the remapping shown in Table 5-4.

Only non-zero combining class values can be changed, and they can be permuted only, not
combined or split. This can be restated as follows:

• Two characters that have the same combining class values cannot be given dis-
tinct internal weights.

• Two characters that have distinct combining class values cannot be given the
same internal weight.

• Characters with a combining class of zero must be given an internal weight of
zero.

Positioning Methods

A number of methods are available to position nonspacing marks so that they are in the
correct location relative to the base character and previous nonspacing marks.

Positioning with Ligatures. A fixed set of combining character sequences can be rendered
effectively by means of fairly simple substitution, as shown in Figure 5-10.

Wherever the glyphs representing a sequence of <base character, nonspacing mark> occur,
a glyph representing the combined form is substituted. Because the nonspacing mark has a
zero advance width, the composed character sequence will automatically have the same

Table 5-4. Permuting Combining Class Weights

Combining
Class

Internal
Weight

27 → 33
28 → 27
29 → 28
30 → 29
31 → 30
32 → 31
33 → 32

Figure 5-10. Positioning with Ligatures

a
A
f i

¨
¨ ä

Ä
fi

$ →

$ →

→

+

+

+

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

166 Implementation Guidelines
width as the base character. More sophisticated text rendering systems may take additional
measures to account for those cases where the composed character sequence kerns differ-
ently or has a slightly different advance width than the base character.

Positioning with ligatures is perhaps the simplest method of supporting nonspacing marks.
Whenever there is a small, fixed set, such as those corresponding to the precomposed char-
acters of ISO/IEC 8859-1 (Latin-1), this method is straightforward to apply. Because the
composed character sequence almost always has the same width as the base character, ren-
dering, measurement, and editing of these characters are much easier than for the general
case of ligatures.

If a combining character sequence does not form a ligature, then either positioning with
contextual forms or positioning with enhanced kerning can be applied. If they are not
available, then a fallback method can be used.

Positioning with Contextual Forms. A more general method of dealing with positioning
of nonspacing marks is to use contextual formation (see Figure 5-11). In this case for Deva-
nagari, a consonant RA is rendered with a nonspacing glyph (reph) positioned above a base
consonant. (See “Rendering Devanagari” in Section 9.1, Devanagari.) Depending on the
position of the stem for the corresponding base consonant glyph, a contextual choice is
made between reph glyphs with different side bearings, so that the tip of the reph will be
placed correctly with respect to the base consonant’s stem. Base glyphs generally fall into a
fairly small number of classes, depending on their general shape and width, so a corre-
sponding number of contextually distinct glyphs for the nonspacing mark suffice to pro-
duce correct rendering.

In general cases, a number of different heights of glyphs can be chosen to allow stacking of
glyphs, at least for a few deep. (When these bounds are exceeded, then the fallback methods
can be used.) This method can be combined with the ligature method so that in specific
cases ligatures can be used to produce fine variations in position and shape.

Positioning with Enhanced Kerning. A third technique for positioning diacritics is an
extension of the normal process of kerning to be both horizontal and vertical (see
Figure 5-12). Typically, kerning maps from pairs of glyphs to a positioning offset. For
example, in the word “To” the “o” should nest slightly under the “T”. An extension of this
system maps to both a vertical and a horizontal offset, allowing glyphs to be positioned
arbitrarily.

For effective use in the general case, the kerning process must be extended to handle more
than simple kerning pairs, as multiple diacritics may occur after a base letter.

Positioning with enhanced kerning can be combined with the ligature method so that in
specific cases ligatures can be used to produce fine variations in position and shape.

Figure 5-11. Positioning with Contextual Forms

→

→

=

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.14 Locating Text Element Boundaries 167
5.14 Locating Text Element Boundaries
A string of Unicode-encoded text often needs to be broken up into text elements program-
matically. Common examples of text elements include what users think of as characters,
words, lines, and sentences. The precise determination of text elements may vary according
to locale, even as to what constitutes a “character.” The goal of matching user perceptions
cannot always be met, because the text alone does not always contain enough information
to decide boundaries unambiguously. For example, the period (U+002E full stop) is used
ambiguously—sometimes for end-of-sentence purposes, sometimes for abbreviations, and
sometimes for numbers. In most cases, however, programmatic text boundaries can match
user perceptions quite closely, or at least not surprise the user.

Rather than concentrate on algorithmically searching for text elements themselves, a sim-
pler computation looks instead at detecting the boundaries between those text elements.
Precise definitions of the default Unicode mechanisms for determining such text element
boundaries are found in Unicode Standard Annex #14, “Unicode Line Breaking Algo-
rithm,” and in Unicode Standard Annex #29, “Unicode Text Segmentation.”

5.15 Identifiers
A common task facing an implementer of the Unicode Standard is the provision of a pars-
ing and/or lexing engine for identifiers. To assist in the standard treatment of identifiers in
Unicode character-based parsers, a set of guidelines is provided in Unicode Standard
Annex #31, “Unicode Identifier and Pattern Syntax,” as a recommended default for the def-
inition of identifier syntax. That document provides details regarding the syntax and con-
formance considerations. Associated data files defining the character properties referred to
by the identifier syntax can be found in the Unicode Character Database.

5.16 Sorting and Searching
Sorting and searching overlap in that both implement degrees of equivalence of terms to be
compared. In the case of searching, equivalence defines when terms match (for example, it
determines when case distinctions are meaningful). In the case of sorting, equivalence
affects the proximity of terms in a sorted list. These determinations of equivalence often
depend on the application and language, but for an implementation supporting the Uni-
code Standard, sorting and searching must always take into account the Unicode character
equivalence and canonical ordering defined in Chapter 3, Conformance.

Figure 5-12. Positioning with Enhanced Kerning

To

T o ẃ

ẃ

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

168 Implementation Guidelines
Culturally Expected Sorting and Searching

Sort orders vary from culture to culture, and many specific applications require variations.
Sort order can be by word or sentence, case-sensitive or case-insensitive, ignoring accents
or not. It can also be either phonetic or based on the appearance of the character, such as
ordering by stroke and radical for East Asian ideographs. Phonetic sorting of Han charac-
ters requires use of either a lookup dictionary of words or special programs to maintain an
associated phonetic spelling for the words in the text.

Languages vary not only regarding which types of sorts to use (and in which order they are
to be applied), but also in what constitutes a fundamental element for sorting. For exam-
ple, Swedish treats U+00C4 latin capital letter a with diaeresis as an individual let-
ter, sorting it after z in the alphabet; German, however, sorts it either like ae or like other
accented forms of ä following a. Spanish traditionally sorted the digraph ll as if it were a let-
ter between l and m. Examples from other languages (and scripts) abound.

As a result, it is not possible either to arrange characters in an encoding such that simple
binary string comparison produces the desired collation order or to provide single-level
sort-weight tables. The latter implies that character encoding details have only an indirect
influence on culturally expected sorting.

Unicode Technical Standard #10, “Unicode Collation Algorithm” (UCA), describes the
issues involved in culturally appropriate sorting and searching, and provides a specification
for how to compare two Unicode strings while remaining conformant to the requirements
of the Unicode Standard. The UCA also supplies the Default Unicode Collation Element
Table as the data specifiying the default collation order. Searching algorithms, whether
brute-force or sublinear, can be adapted to provide language-sensitive searching as
described in the UCA.

Language-Insensitive Sorting

In some circumstances, an application may need to do language-insensitive sorting—that
is, sorting of textual data without consideration of language-specific cultural expectations
about how strings should be ordered. For example, a temporary index may need only to be
in some well-defined order, but the exact details of the order may not matter or be visible to
users. However, even in these circumstances, implementers should be aware of some issues.

First, some subtle differences arise in binary ordering between the three Unicode encoding
forms. Implementations that need to do only binary comparisons between Unicode strings
still need to take this issue into account so as not to create interoperability problems
between applications using different encoding forms. See Section 5.17, Binary Order, for
further discussion.

Many applications of sorting or searching need to be case-insensitive, even while not caring
about language-specific differences in ordering. This is the result of the design of protocols
that may be very old but that are still of great current relevance. Traditionally, implementa-
tions did case-insensitive comparison by effectively mapping both strings to uppercase
before doing a binary comparison. This approach is, however, not more generally extensi-
ble to the full repertoire of the Unicode Standard. The correct approach to case-insensitive
comparison is to make use of case folding, as described in Section 5.18, Case Mappings.

Searching

Searching is subject to many of the same issues as comparison. Other features are often
added, such as only matching words (that is, where a word boundary appears on each side
of the match). One technique is to code a fast search for a weak match. When a candidate is
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.16 Sorting and Searching 169
found, additional tests can be made for other criteria (such as matching diacriticals, word
match, case match, and so on).

When searching strings, it is necessary to check for trailing nonspacing marks in the target
string that may affect the interpretation of the last matching character. That is, a search for
“San Jose” may find a match in the string “Visiting San José, Costa Rica, is a...”. If an exact
(diacritic) match is desired, then this match should be rejected. If a weak match is sought,
then the match should be accepted, but any trailing nonspacing marks should be included
when returning the location and length of the target substring. The mechanisms discussed
in Unicode Standard Annex #29, “Unicode Text Segmentation,” can be used for this pur-
pose.

One important application of weak equivalence is case-insensitive searching. Many tradi-
tional implementations map both the search string and the target text to uppercase. How-
ever, case mappings are language-dependent and not unambiguous. The preferred method
of implementing case insensitivity is described in Section 5.18, Case Mappings.

A related issue can arise because of inaccurate mappings from external character sets. To
deal with this problem, characters that are easily confused by users can be kept in a weak
equivalency class (d-bar, eth, capital d-bar, capital eth). This approach tends to do
a better job of meeting users’ expectations when searching for named files or other objects.

Sublinear Searching

International searching is clearly possible using the information in the collation, just by
using brute force. However, this tactic requires an O(m*n) algorithm in the worst case and
an O(m) algorithm in common cases, where n is the number of characters in the pattern
that is being searched for and m is the number of characters in the target to be searched.

A number of algorithms allow for fast searching of simple text, using sublinear algorithms.
These algorithms have only O(m/n) complexity in common cases by skipping over charac-
ters in the target. Several implementers have adapted one of these algorithms to search text
pre-transformed according to a collation algorithm, which allows for fast searching with
native-language matching (see Figure 5-13).

The main problems with adapting a language-aware collation algorithm for sublinear
searching relate to multiple mappings and ignorables. Additionally, sublinear algorithms
precompute tables of information. Mechanisms like the two-stage tables shown in
Figure 5-1 are efficient tools in reducing memory requirements.

Figure 5-13. Sublinear Searching

T h e _ q u i c k _ b r o w n …
q u i c k

q u i c k
q u i c k

q u i c k
q u i c k
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

170 Implementation Guidelines
5.17 Binary Order
When comparing text that is visible to end users, a correct linguistic sort should be used, as
described in Section 5.16, Sorting and Searching. However, in many circumstances the only
requirement is for a fast, well-defined ordering. In such cases, a binary ordering can be
used.

Not all encoding forms of Unicode have the same binary order. UTF-8 and UTF-32 data,
and UTF-16 data containing only BMP characters, sort in code point order, whereas UTF-
16 data containing a mix of BMP and supplementary characters does not. This is because
supplementary characters are encoded in UTF-16 with pairs of surrogate code units that
have lower values (D80016..DFFF16) than some BMP code points.

Furthermore, when UTF-16 or UTF-32 data is serialized using one of the Unicode encod-
ing schemes and compared byte-by-byte, the resulting byte sequences may or may not have
the same binary ordering, because swapping the order of bytes will affect the overall order-
ing of the data. Due to these factors, text in the UTF-16BE, UTF-16LE, and UTF-32LE
encoding schemes does not sort in code point order.

In general, the default binary sorting order for Unicode text should be code point order.
However, it may be necessary to match the code unit ordering of a particular encoding
form (or the byte ordering of a particular encoding scheme) so as to duplicate the ordering
used in a different application.

Some sample routines are provided here for sorting one encoding form in the binary order
of another encoding form.

UTF-8 in UTF-16 Order

The following comparison function for UTF-8 yields the same results as UTF-16 binary
comparison. In the code, notice that it is necessary to do extra work only once per string,
not once per byte. That work can consist of simply remapping through a small array; there
are no extra conditional branches that could slow down the processing.

int strcmp8like16(unsigned char* a, unsigned char* b) {

 while (true) {

 int ac = *a++;

 int bc = *b++;

 if (ac != bc) return rotate[ac] - rotate[bc];

 if (ac == 0) return 0;

 }

}

static char rotate[256] =

{0x00, ..., 0x0F,

 0x10, ..., 0x1F,

 . .

 . .

 . .

 0xD0, ..., 0xDF,

 0xE0, ..., 0xED, 0xF3, 0xF4,

 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF5, ..., 0xFF};
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.17 Binary Order 171
The rotate array is formed by taking an array of 256 bytes from 0x00 to 0xFF, and rotating
0xEE to 0xF4, the initial byte values of UTF-8 for the code points in the range
U+E000..U+10FFFF. These rotated values are shown in boldface. When this rotation is
performed on the initial bytes of UTF-8, it has the effect of making code points
U+10000..U+10FFFF sort below U+E000..U+FFFF, thus mimicking the ordering of UTF-
16.

UTF-16 in UTF-8 Order

The following code can be used to sort UTF-16 in code point order. As in the routine for
sorting UTF-8 in UTF-16 order, the extra cost is incurred once per function call, not once
per character.

int strcmp16like8(Unichar* a, Unichar* b) {

 while (true) {

 int ac = *a++;

 int bc = *b++;

 if (ac != bc) {

 return (Unichar)(ac + utf16Fixup[ac>>11]) -

 (Unichar)(bc + utf16Fixup[bc>>11]);

 }

 if (ac == 0) return 0;

 }

}

static const Unichar utf16Fixup[32]={

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0x2000, 0xf800, 0xf800, 0xf800, 0xf800

};

This code uses Unichar as an unsigned 16-bit integral type. The construction of the
utf16Fixup array is based on the following concept. The range of UTF-16 values is
divided up into thirty-two 2K chunks. The 28th chunk corresponds to the values
0xD800..0xDFFF—that is, the surrogate code units. The 29th through 32nd chunks corre-
spond to the values 0xE000..0xFFFF. The addition of 0x2000 to the surrogate code units
rotates them up to the range 0xF800..0xFFFF. Adding 0xF800 to the values 0xE000..0xFFFF
and ignoring the unsigned integer overflow rotates them down to the range
0xD800..0xF7FF. Calculating the final difference for the return from the rotated values pro-
duces the same result as basing the comparison on code points, rather than the UTF-16
code units. The use of the hack of unsigned integer overflow on addition avoids the need
for a conditional test to accomplish the rotation of values.

Note that this mechanism works correctly only on well-formed UTF-16 text. A modified
algorithm must be used to operate on 16-bit Unicode strings that could contain isolated
surrogates.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

172 Implementation Guidelines
5.18 Case Mappings
Case is a normative property of characters in specific alphabets such as Latin, Greek, Cyril-
lic, Armenian, and archaic Georgian, whereby characters are considered to be variants of a
single letter. These variants, which may differ markedly in shape and size, are called the
uppercase letter (also known as capital or majuscule) and the lowercase letter (also known
as small or minuscule). The uppercase letter is generally larger than the lowercase letter.
Alphabets with case differences are called bicameral; those without are called unicameral.
For example, the archaic Georgian script contained upper- and lowercase pairs, but they
are not used in modern Georgian. See Section 7.7, Georgian, for more information.

The case mappings in the Unicode Character Database (UCD) are normative. This follows
from their use in defining the case foldings in CaseFolding.txt and from the use of case
foldings to define case-insensitive identifiers in Unicode Standard Annex #31, “Unicode
Identifier and Pattern Syntax.” However, the normative status of case mappings does not
preclude the adaptation of case mapping processes to local conventions, as discussed below.
See also the Unicode Common Locale Data Repository (CLDR), in Section B.6, Other Uni-
code Online Resources, for extensive data regarding local and language-specific casing con-
ventions.

Titlecasing

Titlecasing refers to a casing practice wherein the first letter of a word is an uppercase letter
and the rest of the letters are lowercase. This typically applies, for example, to initial words
of sentences and to proper nouns. Depending on the language and orthographic practice,
this convention may apply to other words as well, as for common nouns in German.

Titlecasing also applies to entire strings, as in instances of headings or titles of documents,
for which multiple words are titlecased. The choice of which words to titlecase in headings
and titles is dependent on language and local conventions. For example, “The Merry Wives
of Windsor” is the appropriate titlecasing of that play’s name in English, with the word “of”
not titlecased. In German, however, the title is “Die lustigen Weiber von Windsor,” and
both “lustigen” and “von” are not titlecased. In French even fewer words are titlecased: “Les
joyeuses commères de Windsor.”

Moreover, the determination of what actually constitutes a word is language dependent,
and this can influence which letter or letters of a “word” are uppercased when titlecasing
strings. For example l’arbre is considered two words in French, whereas can’t is considered
one word in English.

The need for a normative Titlecase_Mapping property in the Unicode Standard derives
from the fact that the standard contains certain digraph characters for compatibility. These
digraph compatibility characters, such as U+01F3 “dz” latin small letter dz, require
one form when being uppercased, U+01F1 “DZ” latin capital letter dz, and another
form when being titlecased, U+01F2 “Dz” latin capital letter d with small letter z.
The latter form is informally referred to as a titlecase character, because it is mixed case,
with the first letter uppercase. Most characters in the standard have identical values for
their Titlecase_Mapping and Uppercase_Mapping; however, the two values are distin-
guished for these few digraph compatibility characters.

Complications for Case Mapping

A number of complications to case mappings occur once the repertoire of characters is
expanded beyond ASCII.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.18 Case Mappings 173
Change in Length. Case mappings may produce strings of different lengths than the origi-
nal. For example, the German character U+00DF ß latin small letter sharp s expands
when uppercased to the sequence of two characters “SS”. Such expansion also occurs where
there is no precomposed character corresponding to a case mapping, such as with U+0149
N latin small letter n preceded by apostrophe. The maximum string expansion as a
result of case mapping in the Unicode Standard is three. For example, uppercasing U+0390
t greek small letter iota with dialytika and tonos results in three characters.

The lengths of case-mapped strings may also differ from their originals depending on the
Unicode encoding form. For example, the Turkish strings “topkapc” (with a dotless i) and
“TOPKAPI” have the same number of characters and are the same length in UTF-16 and
UTF-32; however, in UTF-8, the representation of the uppercase form takes only seven
bytes, whereas the lowercase form takes eight bytes. By comparison, the German strings
“heiß” and “HEISS” have a different number of characters and differ in length in UTF-16
and UTF-32, but in UTF-8 both strings are encoded using the same number of bytes.

Greek iota subscript. The character U+0345 n combining greek ypogegrammeni (iota
subscript) requires special handling. As discussed in Section 7.2, Greek, the iota-subscript
characters used to represent ancient text have special case mappings. Normally, the upper-
case and lowercase forms of alpha-iota-subscript will map back and forth. In some
instances, uppercase words should be transformed into their older spellings by removing
accents and changing the iota subscript into a capital iota (and perhaps even removing
spaces).

Context-dependent Case Mappings. Characters may have different case mappings,
depending on the context surrounding the character in the original string. For example,
U+03A3 “” greek capital letter sigma lowercases to U+03C3 “” greek small let-

ter sigma if it is followed by another letter, but lowercases to U+03C2 “” greek small

letter final sigma if it is not.

Because only a few context-sensitive case mappings exist, and because they involve only a
very few characters, implementations may choose to hard-code the treatment of these
characters for casing operations rather than using data-driven code based on the Unicode
Character Database. However, if this approach is taken, each time the implementation is
upgraded to a new version of the Unicode Standard, hard-coded casing operations should
be checked for consistency with the updated data. See SpecialCasing.txt in the Unicode
Character Database for details of context-sensitive case mappings.

Locale-dependent Case Mappings. The principal example of a case mapping that depends
on the locale is Turkish, where U+0131 “” latin small letter dotless i maps to
U+0049 “I” latin capital letter i and U+0069 “i” latin small letter i maps to
U+0130 “” latin capital letter i with dot above. Figure 5-14 shows the uppercase
mapping for Turkish i and canonically equivalent sequences.

Figure 5-14. Uppercase Mapping for Turkish I

i I

Iı

i + ˙ I + ˙

0069 0049

0131 0049

00490069 0307

Normal Turkish

0307

i I

Iı

i + ˙ + ˙

0069 0130

0131 0049

01300069 0307 0307

˙

İ@ @@ @
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

174 Implementation Guidelines
Figure 5-15 shows the lowercase mapping for Turkish i.

In both of the Turkish case mapping figures, a mapping with a double-sided arrow round-
trips—that is, the opposite case mapping results in the original sequence. A mapping with
a single-sided arrow does not round-trip.

Caseless Characters. Because many characters are really caseless (most of the IPA block, for
example) and have no matching uppercase, the process of uppercasing a string does not
mean that it will no longer contain any lowercase letters.

German sharp s. The German sharp s character has several complications in case mapping.
Not only does its uppercase mapping expand in length, but its default case-pairings are
asymmetrical. The default case mapping operations follow standard German orthography,
which uses the string “SS” as the regular uppercase mapping for U+00DF ß latin small

letter sharp s. In contrast, the alternate, single character uppercase form, U+1E9E latin

capital letter sharp s, is intended for typographical representations of signage and
uppercase titles, and in other environments where users require the sharp s to be preserved
in uppercase. Overall, such usage is uncommon. Thus, when using the default Unicode cas-
ing operations, capital sharp s will lowercase to small sharp s, but not vice versa: small sharp
s uppercases to “SS”, as shown in Figure 5-16. A tailored casing operation is needed in cir-
cumstances requiring small sharp s to uppercase to capital sharp s.

Reversibility

No casing operations are reversible. For example:

toUpperCase(toLowerCase(“John Brown”)) → “JOHN BROWN”

toLowerCase(toUpperCase(“John Brown”)) → “john brown”

There are even single words like vederLa in Italian or the name McGowan in English, which
are neither upper-, lower-, nor titlecase. This format is sometimes called inner-caps—or
more informally camelcase—and it is often used in programming and in Web names. Once
the string “McGowan” has been uppercased, lowercased, or titlecased, the original cannot

Figure 5-15. Lowercase Mapping for Turkish I

Figure 5-16. Casing of German Sharp S

I i

I + ˙ i + ˙

0049 0069

0130

00690049 0307

Normal Turkish

0307

I ı

i

i + ˙

0049 0131

0069

0049 00690307
I

i + ˙
0069 0307

I
0130

˙İ @

@ @@

Default Casing Tailored Casing

ß ß ẞ

SSss

ẞ

SSss
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.18 Case Mappings 175
be recovered by applying another uppercase, lowercase, or titlecase operation. There are
also single characters that do not have reversible mappings, such as the Greek sigmas.

For word processors that use a single command-key sequence to toggle the selection
through different casings, it is recommended to save the original string and return to it via
the sequence of keys. The user interface would produce the following results in response to
a series of command keys. In the following example, notice that the original string is
restored every fourth time.

1. The quick brown

2. THE QUICK BROWN

3. the quick brown

4. The Quick Brown

5. The quick brown (repeating from here on)

Uppercase, titlecase, and lowercase can be represented in a word processor by using a char-
acter style. Removing the character style restores the text to its original state. However, if
this approach is taken, any spell-checking software needs to be aware of the case style so
that it can check the spelling against the actual appearance.

Caseless Matching

Caseless matching is implemented using case folding, which is the process of mapping char-
acters of different case to a single form, so that case differences in strings are erased. Case
folding allows for fast caseless matches in lookups because only binary comparison is
required. It is more than just conversion to lowercase. For example, it correctly handles
cases such as the Greek sigma, so that “xy{|” and “butu” will match.

Normally, the original source string is not replaced by the folded string because that substi-
tution may erase important information. For example, the name “Marco di Silva” would be
folded to “marco di silva,” losing the information regarding which letters are capitalized.
Typically, the original string is stored along with a case-folded version for fast comparisons.

The CaseFolding.txt file in the Unicode Character Database is used to perform locale-inde-
pendent case folding. This file is generated from the case mappings in the Unicode Charac-
ter Database, using both the single-character mappings and the multicharacter mappings.
It folds all characters having different case forms together into a common form. To com-
pare two strings for caseless matching, one can fold each string using this data and then use
a binary comparison.

Case folding logically involves a set of equivalence classes constructed from the Unicode
Character Database case mappings as follows.

For each character X in Unicode, apply the following rules in order:

R1 If X is already in an equivalence class, continue to the next character. Otherwise,
form a new equivalence class and add X.

R2 Add any other character that uppercases, lowercases, or titlecases to anything in
the equivalence class.

R3 Add any other characters to which anything in the equivalence class uppercases,
lowercases, or titlecases.

R4 Repeat R2 and R3 until nothing further is added.

R5 From each class, one representative element (a single lowercase letter where possi-
ble) is chosen to be the common form.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

176 Implementation Guidelines
Each equivalence class is completely disjoint from all the others, and every Unicode charac-
ter is in one equivalence class. CaseFolding.txt thus contains the mappings from other
characters in the equivalence classes to their common forms. As an exception, the case fold-
ings for dotless i and dotted I do not follow the derivation algorithm for all other case fold-
ings. Instead, their case foldings are hard-coded in the derivation for best default matching
behavior. There are alternate case foldings for these characters, which can be used for case
folding for Turkic languages. However, the use of those alternate case foldings does not
maintain canonical equivalence. Furthermore, it is often undesirable to have differing
behavior for caseless matching. Because language information is often not available when
caseless matching is applied to strings, it also may not be clear which alternate to choose.

The Unicode case folding algorithm is defined to be simpler and more efficient than case
mappings. It is context-insensitive and language-independent (except for the optional,
alternate Turkic case foldings). As a result, there are a few rare cases where a caseless match
does not match pairs of strings as expected; the most notable instance of this is for Lithua-
nian. In Lithuanian typography for dictionary use, an “i” retains its dot when a grave,
acute, or tilde accent is placed above it. This convention is represented in Unicode by using
an explicit combining dot above, occurring in sequence between the “i” and the respective
accent. (See Figure 7-2.) When case folded using the default case folding algorithm, strings
containing these sequences will still contain the combining dot above. In the unusual situ-
ation where case folding needs to be tailored to provide for these special Lithuanian dic-
tionary requirements, strings can be preprocessed to remove any combining dot above
characters occurring between an “i” and a subsequent accent, so that the folded strings will
match correctly.

Where case distinctions are not important, other distinctions between Unicode characters
(in particular, compatibility distinctions) are generally ignored as well. In such circum-
stances, text can be normalized to Normalization Form NFKC or NFKD after case folding,
thereby producing a normalized form that erases both compatibility distinctions and case
distinctions. However, such normalization should generally be done only on a restricted
repertoire, such as identifiers (alphanumerics). See Unicode Standard Annex #15, “Uni-
code Normalization Forms,” and Unicode Standard Annex #31, “Unicode Identifier and
Pattern Syntax,” for more information. For a summary, see “Equivalent Sequences” in
Section 2.2, Unicode Design Principles.

Caseless matching is only an approximation of the language-specific rules governing the
strength of comparisons. Language-specific case matching can be derived from the colla-
tion data for the language, where only the first- and second-level differences are used. For
more information, see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

In most environments, such as in file systems, text is not and cannot be tagged with lan-
guage information. In such cases, the language-specific mappings must not be used. Other-
wise, data structures such as B-trees might be built based on one set of case foldings and
used based on a different set of case foldings. This discrepancy would cause those data
structures to become corrupt. For such environments, a constant, language-independent,
default case folding is required.

Stability. The definition of case folding is guaranteed to be stable, in that any string of
characters case folded according to these rules will remain case folded in Version 5.0 or later
of the Unicode Standard. To achieve this stability, no new lowercase character will be added
to the Unicode Standard as a casing pair of an existing upper- or titlecase character that has
no lowercase pair. See the subsection “Policies” in Section B.6, Other Unicode Online
Resources.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.19 Mapping Compatibility Variants 177
Normalization and Casing

Casing operations as defined in Section 3.13, Default Case Algorithms, preserve canonical
equivalence, but are not guaranteed to preserve Normalization Forms. That is, some strings
in a particular Normalization Form (for example, NFC) will no longer be in that form after
the casing operation is performed. Consider the strings shown in the example in Table 5-5.

The original string is in Normalization Form NFC format. When uppercased, the small j
with caron turns into an uppercase J with a separate caron. If followed by a combining mark
below, that sequence is not in a normalized form. The combining marks have to be put in
canonical order for the sequence to be normalized.

If text in a particular system is to be consistently normalized to a particular form such as
NFC, then the casing operators should be modified to normalize after performing their
core function. The actual process can be optimized; there are only a few instances where a
casing operation causes a string to become denormalized. If a system specifically checks for
those instances, then normalization can be avoided where not needed.

Normalization also interacts with case folding. For any string X, let Q(X) = NFC(toCase-
fold(NFD(X))). In other words, Q(X) is the result of normalizing X, then case folding the
result, then putting the result into Normalization Form NFC format. Because of the way
normalization and case folding are defined, Q(Q(X)) = Q(X). Repeatedly applying Q does
not change the result; case folding is closed under canonical normalization for either Nor-
malization Form NFC or NFD.

Case folding is not, however, closed under compatibility normalization for either Normal-
ization Form NFKD or NFKC. That is, given R(X) = NFKC(toCasefold(NFD(X))),
there are some strings such that R(R(X)) ≠ R(X). NFKC_Casefold, a derived property, is
closed under both case folding and NFKC normalization. The property values for
NFKC_Casefold are found in DerivedNormalizationProps.txt in the Unicode Character
Database.

5.19 Mapping Compatibility Variants
Identifying one character as a compatibility variant of another character (or sequence of
characters) suggests that in many circumstances the first can be remapped to the second
without the loss of any textual information other than formatting and layout. (See
Section 2.3, Compatibility Characters.)

Such remappings or foldings can be done in different ways. In the case of compatibility
decomposable characters, remapping occurs as a result of normalizing to the NFKD or
NFKC forms defined by Unicode Normalization. Other compatibility characters which are
not compatibility decomposable characters may be remapped by various kinds of folding;
for example, KangXi radical symbols in the range U+2F00..U+2FDF might be substituted
by the corresponding CJK unified ideographs of the same appearance.

Table 5-5. Casing and Normalization in Strings

Original (NFC) MÎ <U+01F0 latin small letter j with caron,
U+0323 combining dot below>

Uppercased JOÎ <U+004A latin capital letter j,
U+030C combining caron,
U+0323 combining dot below>

Uppercased NFC JÎO <U+004A latin capital letter j,
U+0323 combining dot below,
U+030C combining caron>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

178 Implementation Guidelines
However, such remapping should not be performed indiscriminately, because many of the
compatibility characters are included in the standard precisely to allow systems to maintain
one-to-one mappings to other existing character encoding standards. In such cases, a
remapping would lose information that is important to maintaining some distinction in
the original encoding.

Thus an implementation must proceed with due caution—replacing a character with its
compatibility decomposition or otherwise folding compatibility characters together with
ordinary Unicode characters may change not only formatting information, but also other
textual distinctions on which some other process may depend.

In many cases there exists a visual relationship between a compatibility character and an
ordinary character that is akin to a font style or directionality difference. Replacing such
characters with unstyled characters could affect the meaning of the text. Replacing them
with rich text would preserve the meaning for a human reader, but could cause some pro-
grams that depend on the distinction to behave unpredictably. This issue particularly
affects compatibility characters used in mathematical notation. For more discussion of
these issues, see Unicode Technical Report #20, “Unicode in XML and other Markup Lan-
guages,” and Unicode Technical Report #25, “Unicode Support for Mathematics.”

In other circumstances, remapping compatibility characters can be very useful. For exam-
ple, transient remapping of compatibility decomposable characters using NFKC or NFKD
normalization forms is very useful for performing “loose matches” on character strings.
See also Unicode Technical Standard #10, “Unicode Collation Algorithm,” for the role of
compatibility character remapping when establishing collation weights for Unicode
strings.

Confusables. The visual similarities between compatibility variants and ordinary charac-
ters can make them confusable with other characters, something that can be exploited in
possible security attacks. Compatibility variants should thus be avoided in certain usage
domains, such as personal or network identifiers. The usual practice for avoiding compati-
bility variants is to restrict such strings to those already in Normalization Form NFKC; this
practice eliminates any compatibility decomposable characters. Compatibility decompos-
able characters can also be remapped on input by processes handling personal or network
identifiers, using Normalization Form NFKC.

This general implementation approach to the problems associated with visual similarities
among compatibility variants, by focusing first on the remapping of compatibility decom-
posable characters, is a useful for two reasons. First, the large majority of compatibility
variants are in fact also compatibility decomposable characters, so this approach deals with
the biggest portion of the problem. Second, it is simply and reproducibly implementable in
terms of a well-defined Unicode Normalization Form.

Extending restrictions on usage to other compatibility variants is more problematical,
because there is no exact specification of which characters are compatibility variants. Fur-
thermore, there may be valid reasons to restrict usage of certain characters which may be
visually confusable or otherwise problematical for some process, even though they are not
generally considered to be compatibility variants. Best practice in such cases is to depend
on carefully constructed and justified lists of confusable characters.

For more information on security implications and a discussion of confusables, see Uni-
code Technical Report #36, “Unicode Security Considerations” and Unicode Technical
Standard #39, “Unicode Security Mechanisms.”
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.20 Unicode Security 179
5.20 Unicode Security
It is sometimes claimed that the Unicode Standard poses new security issues. Some of these
claims revolve around unique features of the Unicode Standard, such as its encoding forms.
Others have to do with generic issues, such as character spoofing, which also apply to any
other character encoding, but which are seen as more severe threats when considered from
the point of view of the Unicode Standard.

This section examines some of these issues and makes some implementation recommenda-
tions that should help in designing secure applications using the Unicode Standard.

Alternate Encodings. A basic security issue arises whenever there are alternate encodings
for the “same” character. In such circumstances, it is always possible for security-conscious
modules to make different assumptions about the representation of text. This conceivably
can result in situations where a security watchdog module of some sort is screening for pro-
hibited text or characters, but misses the same characters represented in an alternative
form. If a subsequent processing module then treats the alternative form as if it were what
the security watchdog was attempting to prohibit, one potentially has a situation where a
hostile outside process can circumvent the security software. Whether such circumvention
can be exploited in any way depends entirely on the system in question.

Some earlier versions of the Unicode Standard included enough leniency in the definition
of the UTF-8 encoding form, particularly regarding the so-called non-shortest form, to raise
questions about the security of applications using UTF-8 strings. However, the conformance
requirements on UTF-8 and other encoding forms in the Unicode Standard have been
tightened so that no encoding form now allows any sort of alternate representation, includ-
ing non-shortest form UTF-8. Each Unicode code point has a single, unique encoding in
any particular Unicode encoding form. Properly coded applications should not be subject
to attacks on the basis of code points having multiple encodings in UTF-8 (or UTF-16).

However, another level of alternate representation has raised other security questions: the
canonical equivalences between precomposed characters and combining character
sequences that represent the same abstract characters. This is a different kind of alternate
representation problem—not one of the encoding forms per se, but one of visually identi-
cal characters having two distinct representations (one as a single encoded character and
one as a sequence of base form plus combining mark, for example). The issue here is differ-
ent from that for alternate encodings in UTF-8. Canonically equivalent representations for
the “same” string are perfectly valid and expected in Unicode. The conformance require-
ment, however, is that conforming implementations cannot be required to make an inter-
pretation distinction between canonically equivalent representations. The way for a
security-conscious application to guarantee this is to carefully observe the normalization
specifications (see Unicode Standard Annex #15, “Unicode Normalization Forms”) so that
data is handled consistently in a normalized form.

Spoofing. Another security issue is spoofing, meaning the deliberate misspelling of a
domain name, or user name, or other string in a form designed to trick unwary users into
interacting with a hostile Web site as if it was a trusted site (or user). In this case, the confu-
sion is not at the level of the software process handling the code points, but rather in the
human end users, who see one character but mistake it for another, and who then can be
fooled into doing something that will breach security or otherwise result in unintended
results.

To be effective, spoofing does not require an exact visual match—for example, using the
digit “1” instead of the letter “l”. The Unicode Standard contains many confusables—that is,
characters whose glyphs, due to historical derivation or sheer coincidence, resemble each
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

180 Implementation Guidelines
other more or less closely. Certain security-sensitive applications or systems may be vulner-
able due to possible misinterpretation of these confusables by their users.

Many legacy character sets, including ISO/IEC 8859-1 or even ASCII, also contain confus-
ables, albeit usually far fewer of them than in the Unicode Standard simply because of the
sheer scale of Unicode. The legacy character sets all carry the same type of risks when it
comes to spoofing, so there is nothing unique or inadequate about Unicode in this regard.
Similar steps will be needed in system design to assure integrity and to lessen the potential
for security risks, no matter which character encoding is used.

The Unicode Standard encodes characters, not glyphs, and it is impractical for many rea-
sons to try to avoid spoofing by simply assigning a single character code for every possible
confusable glyph among all the world’s writing systems. By unifying an encoding based
strictly on appearance, many common text-processing tasks would become convoluted or
impossible. For example, Latin B and Greek Beta look the same in most fonts, but lower-
case to two different letters, Latin b and Greek beta, which have very distinct appear-
ances. A simplistic fix to the confusability of Latin B and Greek Beta would result in great
difficulties in processing Latin and Greek data, and in many cases in data corruptions as
well.

Because all character encodings inherently have instances of characters that might be con-
fused with one another under some conditions, and because the use of different fonts to
display characters might even introduce confusions between characters that the designers
of character encodings could not prevent, character spoofing must be addressed by other
means. Systems or applications that are security-conscious can test explicitly for known
spoofings, such as “MICROS0FT,” “A0L,” or the like (substituting the digit “0” for the letter
“O”). Unicode-based systems can provide visual clues so that users can ensure that labels,
such as domain names, are within a single script to prevent cross-script spoofing. However,
provision of such clues is clearly the responsibility of the system or application, rather than
being a security condition that could be met by somehow choosing a “secure” character
encoding that was not subject to spoofing. No such character encoding exists.

Unicode Standard Annex #24, “Unicode Script Property,” presents a classification of Uni-
code characters by script. By using such a classification, a program can check that labels
consist only of characters from a given script or characters that are expected to be used with
more than one script (such as the “Common” or “Inherited” script names defined in Uni-
code Standard Annex #24, “Unicode Script Property”). Because cross-script names may be
legitimate, the best method of alerting a user might be to highlight any unexpected bound-
aries between scripts and let the user determine the legitimacy of such a string explicitly.

For further discussion of security issues, see Unicode Technical Report #36, “Unicode Secu-
rity Considerations,” and Unicode Technical Standard #39, “Unicode Security Mecha-
nisms.”

5.21 Ignoring Characters in Processing
The majority of encoded characters in the Unicode Standard are ordinary graphic charac-
ters. However, the standard also includes a significant number of special-use characters.
For example, format characters (General_Category=Cf) are often defined to have very par-
ticular effects in text processing. These effects may impact one kind of text process, but be
completely irrelevant for other text processes. Format characters also typically have no vis-
ible display of their own, but may impact the display of neighboring graphic characters.
Technically, variation selectors are not format characters, but combining marks. However,
variation selectors and other “invisible” combining marks also have special behavior in text
processing.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.21 Ignoring Characters in Processing 181
Other sections of the Unicode Standard specify the intended effects of such characters in
detail. See, for example, Section 16.2, Layout Controls and Section 16.4, Variation Selectors.
This section, on the other hand, approaches the issue by discussing which kinds of format
characters (and other characters) are ignored for different kinds of text processes, and pro-
viding pointers to related implementation guidelines.

How these kinds of special-use characters are displayed or not displayed in various contexts
is of particular importance. Many have no inherent display of their own, so pose questions
both for normal rendering for display and for fallback rendering. Because of this, a partic-
ularly detailed discussion of ignoring characters for display can be found toward the end of
this section.

Characters Ignored in Text Segmentation

Processing for text segmentation boundaries generally ignores certain characters which are
irrelevant to the determination of those boundaries. The exact classes of characters depend
on which type of text segmentation is involved.

When parsing grapheme cluster boundaries, characters used to extend grapheme clusters
are ignored for boundary determination. These include nonspacing combining marks and
enclosing marks, but also two important format characters, U+200C zero width non-

joiner and U+200D zero width joiner. The exact list of characters involved is specified
by the property value: Grapheme_Cluster_Break=Extend.

When parsing word or sentence boundaries, the set of characters which are ignored for
boundary determination is enlarged somewhat, to include spacing combining marks and
most format characters. For word breaking, the exact list of characters is specified by means
of two property values: Word_Break=Extend or Word_Break=Format. For sentence break-
ing, the corresponding property values are: Sentence_Break=Extend or
Sentence_Break=Format.

For a detailed discussion of text segmentation, see Unicode Standard Annex #29, “Unicode
Text Segmentation.” In particular, see Section 6.2, Replacing Ignore Rules, in that annex, for
implementation notes about the rules which ignore classes of characters for segmentation.

Characters Ignored in Line Breaking

Most control characters and format characters are ignored for line break determination,
and do not contribute to line width. The Unicode Line Breaking Algorithm handles this
class of characters by giving them the same Line_Break property value as combining marks:
Line_Break=CM. For a detailed discussion, see Unicode Standard Annex #14, “Unicode
Line Breaking Algorithm.”

When expanding or compressing intercharacter space, as part of text justification and
determination of line breaks, the presence of U+200B zero width space or U+2060 word

joiner is generally ignored. There are, however, occasional exceptions. See, for example,
the discussion of “Thai-style” letter spacing in Section 16.2, Layout Controls.

Characters Ignored in Cursive Joining

U+200C zero width non-joiner and U+200D zero width joiner are format controls
specifically intended to influence cursive joining. However, there are other format controls
which are explicitly ignored when processing text for cursive joining. In particular, U+2060
word joiner, U+FEFF zero width no-break space, and U+200B zero width space

influence text segmentation and line breaking, but should be ignored for cursive joining.
U+034F combining grapheme joiner is also ignored for cursive joining.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

182 Implementation Guidelines
More generally, there is a broad class of characters whose occurrence in a string should be
ignored when calculating cursive connections between adjacent letters subject to cursive
joining. This class is defined by the property value, Joining_Type=Transparent, and
includes all nonspacing marks and most format characters other than ZWNJ and ZWJ. See
the detailed discussion of cursive joining in Section 16.2, Layout Controls.

Characters Ignored in Identifiers

Characters with the property Default_Ignorable_Code_Point (DICP) are generally not rec-
ommended for inclusion in identifiers. Such characters include many (but not all) format
characters, as well as variation selectors. Exceptions are the cursive joining format charac-
ters, U+200C zero width non-joiner and U+200D zero width joiner, which in limited
circumstances may be used to make visual distinctions deemed necessary for identifiers.

There are several possible approaches for ensuring that characters with DICP=True are not
significant for comparison of identifiers. A strict formal syntax definition may simply pro-
hibit their inclusion in identifier strings altogether. However, comparison of identifiers
often involves a folding operation, such as case folding. In applications which implement
identifier folding based on the toNFKC_CaseFold transformation, DICP=True characters
are removed from a string by that transformation. With such an approach, DICP=True
characters can be said to be “ignored” in identifier comparison, and their presence or
absence in a given identifier string is irrelevant to the comparison. See Unicode Standard
Annex #31, “Unicode Identifier and Pattern Syntax,” for a detailed discussion of normaliza-
tion and case folding of identifiers and of the handling of format characters in identifiers.

Characters Ignored in Searching and Sorting

Searching and string matching is another context in which particular characters may be
ignored. Typically, users expect that certain characters, such as punctuation, will be
ignored when looking for string matches against a target string, or they expect that certain
character distinctions, such as case differences, will be ignored. Exact binary string com-
parisons in such circumstances produce the wrong results.

At its core, sorting string data involves using a string matching algorithm to determine
which strings count as equal. In any comparison of strings which do not count as equal,
sorting additionally requires the ability to determine which string comes before and which
after in the collation order. It is important to have a well-defined concept of which charac-
ters “do not make a difference,” and are thus ignored for the results of the sorting.

Some Unicode characters almost never make a significant difference for searching, string
matching, and sorting. For example, U+200C zero width non-joiner and U+200D zero

width joiner may impact cursive joining or ligature formation, but are not intended to
represent semantic differences between strings. At a first level of approximation, most Uni-
code format controls should be ignored for searching and sorting. However, there is no
unique way to use Unicode character properties to devise an exact list of which characters
should always be ignored for searching and sorting, in part because the criteria for any par-
ticular search or sort can vary so widely.

The Unicode algorithm which addresses this issue generically is defined in Unicode Techni-
cal Standard #10, “Unicode Collation Algorithm.” The Default Unicode Collation Element
Table (DUCET), documented in that standard, provides collation weights for all Unicode
characters; many of those weights are set up so that the characters will be ignored by default
for sorting. A string matching algorithm can also be based on the weights in that table.
Additionally, the UCA provides options for ignoring distinctions between related charac-
ters, such as uppercase versus lowercase letters, or letters with or without accents. The UCA
provides a mechanism to tailor the DUCET. This mechanism not only enables the general
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.21 Ignoring Characters in Processing 183
algorithm to support different tailored tables which allow for language-specific orderings
of characters, it also makes it possible to specify very precisely which characters should or
should not be ignored for any particular search or sort.

Characters Ignored for Display

There are two distinct cases to consider when determining whether a particular character
should be “ignored” for display. The first case involves normal rendering, when a process
supports the character in question. The second case involves fallback rendering, when the
character in question is outside the repertoire which can be supported for normal render-
ing, so that a fallback to exceptional rendering for unknown characters is required.

In this discussion, “display” is used as shorthand for the entire text rendering process,
which typically involves a combination of rendering software and font definition. Having a
display glyph for a character defined in a font is not sufficient to render it for screen display
or for printing; rendering software is involved as well. On the other hand, fonts may con-
tain complex rendering logic which contributes to the text rendering process. This discus-
sion is not meant to preclude any particular approach to the design of a full text rendering
process. A phrase such as, “a font displays a glyph for the character,” or “a font displays no
glyph for the character,” is simply a general way of describing the intended display outcome
for rendering that character.

Normal Rendering. Many characters, including format characters and variation selectors,
have no visible glyph or advance width directly associated with them. Such characters with-
out glyphs are typically shown in the code charts with special display glyphs using a dotted
box and a mnemonic label. (See Section 17.1, Character Names List, for code chart display
conventions.) Outside of the particular context of code chart display, a font will typically
display no glyph for such characters. However, it is not unusual for format characters and
variation selectors to have a visible effect on other characters in their vicinity. For example,
ZWJ and ZWNJ may affect cursive joining or the appearance of ligatures. A variation selec-
tor may change the choice of glyph for display of the base character it follows. In such cases,
even though the format character or variation selector has no visible glyph of its own, it
would be inappropriate to say that it is ignored for display, because the intent of its use is to
change the display in some visible way. Additional cases where a format character has no
glyph, but may otherwise affect display include:

• Bidirectional format characters do not affect the glyph forms of displayed char-
acters, but may cause significant rearrangements of spans of text in a line.

• U+00AD Á soft hyphen has a null default appearance in the middle of a
line: the appearance of “therÁapist” is simply “therapist”—no visible glyph.
In line break processing, it indicates a possible intraword break. At any intra-
word break that is used for a line break—whether resulting from this character
or by some automatic process—a hyphen glyph (perhaps with spelling
changes) or some other indication can be shown, depending on language and
context.

In other contexts, a format character may have no visible effect on display at all. For exam-
ple, a ZWJ might occur in text between two characters which are not subject to cursive
joining and for which no ligature is available or appropriate: <x, ZWJ, x>. In such a case,
the ZWJ simply has no visible effect, and one can meaningfully say that it is ignored for dis-
play. Another example is a variation selector following a base character for which no stan-
dardized or registered variation sequence exists. In that case, the variation selector has no
effect on the display of the text.

Finally, there are some format characters whose function is not intended to affect display.
U+200B zero width space affects word segmentation, but has no visible display. U+034F
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

184 Implementation Guidelines
combining grapheme joiner is likewise always ignored for display. Additional examples
include:

• U+2060 É word joiner does not produce a visible change in the appearance
of surrounding characters; instead, its only effect is to indicate that there should
be no line break at that point.

• U+2061 Ê function application has no effect on the text display and is
used only in internal mathematical expression processing.

The fact that format characters and variation selectors have no visible glyphs does not
mean that such characters must always be invisible. An implementation can, for example,
show a visible glyph on request, such as in a “Show Hidden” mode. A particular use of a
“Show Hidden” mode is to display a visible indication of misplaced or ineffectual format
characters. For example, a sequence of two adjacent joiners, <..., ZWJ, ZWJ, ...>, is a case
where the extra ZWJ should have no effect.

Format characters with no visible glyphs are different from space characters. Space charac-
ters, such as U+0020 space, are classified as graphic characters. Although they do not have
visible glyphs for display, they have advance widths. Technically, that counts as a “glyph” in
a font—it is simply a blank glyph “with no pixels turned on.” Like other graphic characters,
a space character can be visibly selected in text. Line separation characters, such as the car-
riage return, do not clearly exhibit their advance width, because they always occur at the
end of a line, but most implementations give them a visible advance width when they are
selected. Hence, they are classed together with space characters; both are given the
White_Space property. Whitespace characters are not considered to be ignored for display.

Fallback Rendering. Fallback rendering occurs when a text process needs to display a char-
acter or sequence of characters, but lacks the rendering resources to display that character
correctly. The typical situation results from having text to display without an appropriate
font covering the repertoire of characters used in that text. The recommended behavior for
display in such cases is to fall back to some visible, but generic, glyph display for graphic
characters, so that at least it is clear that there are characters present—and usually, how
many are present. (See Section 5.3, Unknown and Missing Characters.) However, variation
selectors and some format characters are special—it is not appropriate for fallback render-
ing to display them with visible glyphs. This is illustrated by the following examples.

First consider an ordinary graphic character. For example, if an implementation does not
support U+0915 devanagari letter ka, it should not ignore that character for display.
Displaying nothing would give the user the impression that the character does not occur in
the text at all. The recommendation in that case is to display a “last-resort” glyph or a visi-
ble “missing glyph” box, instead.

Contrast that with the typical situation for a format character, such as ZWJ. If an imple-
mentation does not support that character at all, the best practice is to ignore it completely
for display, without showing a last-resort glyph or a visible box in its place. This is because
even for normal rendering a ZWJ is invisible—its visible effects are on other characters.
When an implementation does not support the behavior of a ZWJ, it has no way of show-
ing the effects on neighboring characters.

Default Ignorable Code Point. The list of characters which should be ignored for display in
fallback rendering is given by a character property: Default_Ignorable_Code_Point
(DICP). Those characters include almost all format characters, all variation selectors, and a
few other exceptional characters, such as Hangul fillers. The exact list is defined in Derived-
CoreProperties.txt in the Unicode Character Database.

The Default_Ignorable_Code_Point property is also given to certain ranges of unassigned
code points: U+2060..U+206F, U+FFF0..U+FFF8, and U+E0000..U+E0FFF. These ranges
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

5.22 Best Practice for U+FFFD Substitution 185
are designed and reserved for future encoding of format characters and similar special-use
characters, to allow a certain degree of forward compatibility. Implementations which
encounter unassigned code points in these ranges should ignore them for display in fall-
back rendering.

Surrogate code points, private-use characters, and control characters are not given the
Default_Ignorable_Code_Point property. To avoid security problems, such characters or
code points, when not interpreted and not displayable by normal rendering, should be dis-
played in fallback rendering with a fallback glyph, so that there is a visible indication of
their presence in the text. For more information, see Unicode Technical Report #36, “Uni-
code Security Considerations.”

A small number of format characters (General_Category=Cf) are also not given the
Default_Ignorable_Code_Point property. This may surprise implementers, who often
assume that all format characters are generally ignored in fallback display. The exact list of
these exceptional format characters can be found in the Unicode Character Database.
There are, however, two important sets of such format characters to note. First, there are
the visible format characters which span groups of numbers, particularly for the Arabic
script—for example, U+0601 arabic sign sanah, the Arabic year sign. Such number-
spanning marks always have a visible display. See “Other Signs Spanning Numbers” in
Section 8.2, Arabic for more discussion of the use and display of these signs. The other nota-
ble set of exceptional format characters is the interlinear annotation characters: U+FFF9
interlinear annotation anchor through U+FFFB interlinear annotation termi-

nation. These annotation characters should have a visible glyph display for fallback ren-
dering, because if they are simply not displayed, there is too much potential to misread the
resulting displayed text. See “Annotation Characters” in Section 16.8, Specials for more dis-
cussion of the use and display of interlinear annotation characters.

5.22 Best Practice for U+FFFD Substitution
When converting text from one character encoding to another, a conversion algorithm may
encounter unconvertible code units. This is most commonly caused by some sort of cor-
ruption of the source data, so that it does not correctly follow the specification for that
character encoding. Examples include dropping a byte in a multibyte encoding such as
Shift-JIS, improper concatenation of strings, a mismatch between an encoding declaration
and actual encoding of text, use of non-shortest form for UTF-8, and so on.

When a conversion algorithm encounters such unconvertible data, the usual practice is
either to throw an exception or to use a defined substitution character to represent the
unconvertible data. In the case of conversion to one of the encoding forms of the Unicode
Standard, the substitution character is defined as U+FFFD replacement character.
However, there are different possible ways to use U+FFFD. This section describes the best
practice.

For conversion between different encoding forms of the Unicode Standard, Section 3.9,
Unicode Encoding Forms defines best practice for the use of U+FFFD. The basic formula-
tion is as follows:

Whenever an unconvertible offset is reached during conversion of a code
unit sequence:

1. The maximal subpart at that offset should be replaced by a single
U+FFFD.

2. The conversion should proceed at the offset immediately after the max-
imal subpart.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

186 Implementation Guidelines
In that formulation, the term “maximal subpart” refers to a maximal subpart of an ill-
formed subsequence, which is precisely defined in Section 3.9, Unicode Encoding Forms for
Unicode encoding forms. Essentially, a conversion algorithm gathers up the longest
sequence of code units that could be the start of a valid, convertible sequence, but which is
not actually convertible. For example, consider the first three bytes of a four-byte UTF-8
sequence, followed by a byte which cannot be a valid continuation byte: <F4 80 80 41>. In
that case <F4 80 80> would be the maximal subpart that would be replaced by a single
U+FFFD. If there is not any start of a valid, convertible sequence in the unconvertible data
at a particular offset, then the maximal subpart would consist of a single code unit.

This practice reflects the way conversion processes are typically constructed, particularly
for UTF-8. An optimized conversion algorithm simply walks an offset down the source
data string until it collects a sequence it can convert or until it reaches the first offset at
which it knows it cannot convert that sequence. At that point it either throws an exception
or it substitutes the unconvertible sequence it has collected with a single U+FFFD and then
moves on to the next offset in the source.

Although the definition of best practice for U+FFFD substitution in Section 3.9, Unicode
Encoding Forms technically applies only to conversion between Unicode encoding forms,
that principle for dealing with substitution for unconvertible sequences can be extended
easily to cover the more general case of conversion of any external character encoding to
Unicode. The more general statement is as follows:

Whenever an unconvertible offset is reached during conversion of a code
unit sequence to Unicode:

1. Find the longest code unit sequence that is the initial subsequence of
some sequence that could be converted. If there is such a sequence, replace
it with a single U+FFFD; otherwise replace a single code unit with a sin-
gle U+FFFD.

2. The conversion should proceed at the offset immediately after the sub-
sequence which has been replaced.

When dealing with conversion mappings from external character encodings to Unicode,
one needs to take into account the fact that the mapping may be many-to-one. The conver-
sion algorithm needs to find the longest sequence that is valid for conversion, so that it does
not prematurely convert a code unit that could be part of a longer valid sequence. (This
problem does not occur when converting between Unicode encoding forms, which are all
constructed to be non-overlapping and one-to-one transforms.)

The requirement for finding the longest valid sequence for conversion is then generalized
to the case of replacement of invalid sequences. The conversion should proceed as far as it
can down the input string while the input could still be interpreted as starting some valid
sequence. Then if the conversion fails, all of the code units that have been collected to that
point are replaced with a single U+FFFD. If there is no valid code unit at all, a single code
unit is replaced.

For legacy character encodings and other character encodings defined externally, the Uni-
code Standard cannot precisely specify what is well-formed or ill-formed. Therefore, best
practice for U+FFFD substitution is defined in terms of what is convertible or unconvert-
ible in particular cases. Ultimately, that depends on the content of character mapping tables
and their accompanying conversion algorithms. To the extent that implementations share
common character mapping tables, they can obtain interoperable conversion results, not
only for the convertible data, but also for any data unconvertible by those tables. Unicode
Technical Standard #22, “Character Mapping Markup Language,” provides an XML format
for precisely specifying character mapping tables, which can be used to help guarantee
interoperable conversions.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 6

Writing Systems and
Punctuation 6

This chapter begins the portion of the Unicode Standard devoted to the detailed descrip-
tion of each script or other related group of Unicode characters. Each of the subsequent
chapters presents a historically or geographically related group of scripts. This chapter
presents a general introduction to writing systems, explains how they can be used to classify
scripts, and then presents a detailed discussion of punctuation characters that are shared
across scripts.

Scripts and Blocks. The codespace of the Unicode Standard is divided into subparts called
blocks. Character blocks generally contain characters from a single script, and in many
cases, a script is fully represented in its character block; however, some scripts are encoded
using several blocks, which are not always adjacent. Discussion of scripts and other groups
of characters are structured by character blocks. Corresponding subsection headers iden-
tify each block and its associated range of Unicode code points. The Unicode code charts
are also organized by character blocks.

Scripts and Writing Systems. There are many different kinds of writing systems in the
world. Their variety poses some significant issues for character encoding in the Unicode
Standard as well as for implementers of the standard. Those who first approach the Uni-
code Standard without a background in writing systems may find the huge list of scripts
bewilderingly complex. Therefore, before considering the script descriptions in detail, this
chapter first presents a brief introduction to the types of writing systems. That introduc-
tion explains basic terminology about scripts and character types that will be used again
and again when discussing particular scripts.

Punctuation. The rest of this chapter deals with a special case: punctuation marks, which
tend to be scattered about in different blocks and which may be used in common by many
scripts. Punctuation characters occur in several widely separated places in the character
blocks, including Basic Latin, Latin-1 Supplement, General Punctuation, Supplemental
Punctuation, and CJK Symbols and Punctuation. There are also occasional punctuation
characters in character blocks for specific scripts.

Most punctuation characters are intended for common usage with any script, although
some of them are script-specific. Some scripts use both common and script-specific punc-
tuation characters, usually as the result of recent adoption of standard Western punctua-
tion marks. While punctuation characters vary in details of appearance and function
between different languages and scripts, their overall purpose is shared: They serve to sep-
arate or otherwise organize units of text, such as sentences and phrases, thereby helping to
clarify the meaning of the text. Certain punctuation characters also occur in mathematical
and scientific formulae.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

188 Writing Systems and Punctuation
6.1 Writing Systems
This section presents a brief introduction to writing systems. It describes the different
kinds of writing systems and relates them to the encoded scripts found in the Unicode
Standard. This framework may help to make the variety of scripts, modern and historic, a
little less daunting. The terminology used here follows that developed by Peter T. Daniels, a
leading expert on writing systems of the world.

The term writing system has two mutually exclusive meanings in this standard. As used in
this section, “writing system” refers to a way that families of scripts may be classified by
how they represent the sounds or words of human language. For example, the writing sys-
tem of the Latin script is alphabetic. In other places in the standard, “writing system” refers
to the way a particular language is written. For example, the modern Japanese writing sys-
tem uses four scripts: Han ideographs, Hiragana, Katakana and Latin (Romaji).

Alphabets. A writing system that consists of letters for the writing of both consonants and
vowels is called an alphabet. The term “alphabet” is derived from the first two letters of the
Greek script: alpha, beta. Consonants and vowels have equal status as letters in such a sys-
tem. The Latin alphabet is the most widespread and well-known example of an alphabet,
having been adapted for use in writing thousands of languages.

The correspondence between letters and sounds may be either more or less exact. Many
alphabets do not exhibit a one-to-one correspondence between distinct sounds and letters
or groups of letters used to represent them; often this is an indication of original spellings
that were not changed as the language changed. Not only are many sounds represented by
letter combinations, such as “th” in English, but the language may have evolved since the
writing conventions were settled. Examples range from cases such as Italian or Finnish,
where the match between letter and sound is rather close, to English, which has notoriously
complex and arbitrary spelling.

Phonetic alphabets, in contrast, are used specifically for the precise transcription of the
sounds of languages. The best known of these alphabets is the International Phonetic Alpha-
bet, an adaptation and extension of the Latin alphabet by the addition of new letters and
marks for specific sounds and modifications of sounds. Unlike normal alphabets, the intent
of phonetic alphabets is that their letters exactly represent sounds. Phonetic alphabets are
not used as general-purpose writing systems per se, but it is not uncommon for a formerly
unwritten language to have an alphabet developed for it based on a phonetic alphabet.

Abjads. A writing system in which only consonants are indicated is an abjad. The main let-
ters are all consonants (or long vowels), with other vowels either left out entirely or option-
ally indicated with the use of secondary marks on the consonants. The Phoenician script is
a prototypical abjad; a better-known example is the Arabic writing system. The term
“abjad” is derived from the first four letters of the traditional order of the Arabic script:
alef, beh, jeem, dal. Abjads are often, although not exclusively, associated with Semitic lan-
guages, which have word structures particularly well suited to the use of consonantal writ-
ing. Some abjads allow consonant letters to mark long vowels, as the use of waw and yeh in
Arabic for /u:/ or /i:/.

Hebrew and Arabic are typically written without any vowel marking at all. The vowels,
when they do occur in writing, are referred to as points or harakat, and are indicated by the
use of diacritic dots and other marks placed above and below the consonantal letters.

Syllabaries. In a syllabary, each symbol of the system typically represents both a consonant
and a vowel, or in some instances more than one consonant and a vowel. One of the best-
known examples of a syllabary is Hiragana, used for Japanese, in which the units of the sys-
tem represent the syllables ka, ki, ku, ke, ko, sa, si, su, se, so, and so on. In general parlance,
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.1 Writing Systems 189
the elements of a syllabary are not called letters, but rather syllables. This can lead to some
confusion, however, because letters of alphabets and units of other writing systems are also
used, singly or in combinations, to write syllables of languages. So in a broad sense, the
term “letter” can be used to refer to the syllables of a syllabary.

In syllabaries such as Cherokee, Hiragana, Katakana, and Yi, each symbol has a unique
shape, with no particular shape relation to any of the consonant(s) or vowels of the sylla-
bles. In other cases, however, the syllabic symbols of a syllabary are not atomic; they can be
built up out of parts that have a consistent relationship to the phonological parts of the syl-
lable. The best example of this is the Hangul writing system for Korean. Each Hangul sylla-
ble is made up of a part for the initial consonant (or consonant cluster), a part for the vowel
(or diphthong), and an optional part for the final consonant (or consonant cluster). The
relationship between the sounds and the graphic parts to represent them is systematic
enough for Korean that the graphic parts collectively are known as jamos and constitute a
kind of alphabet on their own.

The jamos of the Hangul writing system have another characteristic: their shapes are not
completely arbitrary, but were devised with intentionally iconic shapes relating them to
articulatory features of the sounds they represent in Korean. The Hangul writing system
has thus also been classified as a featural syllabary.

Abugidas. Abugidas represent a kind of blend of syllabic and alphabetic characteristics in a
writing system. The Ethiopic script is an abugida. The term “abugida” is derived from the
first four letters of the letters of the Ethiopic script in the Semitic order: alf, bet, gaml, dant.
The order of vowels (-ä -u -i -a) is that of the traditional vowel order in the first four col-
umns of the Ethiopic syllable chart. Historically, abugidas spread across South Asia and
were adapted by many languages, often of phonologically very different types.

This process has also resulted in many extensions, innovations, and/or simplifications of
the original patterns. The best-known example of an abugida is the Devanagari script, used
in modern times to write Hindi and many other Indian languages, and used classically to
write Sanskrit. See Section 9.1, Devanagari, for a detailed description of how Devanagari
works and is rendered.

In an abugida, each consonant letter carries an inherent vowel, usually /a/. There are also
vowel letters, often distinguished between a set of independent vowel letters, which occur
on their own, and dependent vowel letters, or matras, which are subordinate to consonant
letters. When a dependent vowel letter follows a consonant letter, the vowel overrides the
inherent vowel of the consonant. This is shown schematically in Figure 6-1.

Abugidas also typically contain a special element usually referred to as a halant, virama, or
killer, which, when applied to a consonant letter with its inherent vowel, has the effect of
removing the inherent vowel, resulting in a bare consonant sound.

Because of legacy practice, three distinct approaches have been taken in the Unicode Stan-
dard for the encoding of abugidas: the Devanagari model, the Tibetan model, and the Thai
model. The Devanagari model, used for most abugidas, encodes an explicit virama charac-
ter and represents text in its logical order. The Thai model departs from the Devanagari
model in that it represents text in its visual display order, based on the typewriter legacy,
rather than in logical order. The Tibetan model avoids an explicit virama, instead encoding a
sequence of subjoined consonants to represent consonants occurring in clusters in a syllable.

Figure 6-1. Overriding Inherent Vowels

ka + i → ki

ka + u → ku

ka + e → ke

ka + o → ko
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

190 Writing Systems and Punctuation
The Ethiopic script is traditionally analyzed as an abugida, because the base character for
each consonantal series is understood as having an inherent vowel. However, Ethiopic lacks
some of the typical features of Brahmi-derived scripts, such as halants and matras. Histor-
ically, it was derived from early Semitic scripts and in its earliest form was an abjad. In its
traditional presentation and its encoding in the Unicode Standard, it is now treated more
like a syllabary.

Logosyllabaries. The final major category of writing system is known as the logosyllabary.
In a logosyllabary, the units of the writing system are used primarily to write words and/or
morphemes of words, with some subsidiary usage to represent syllabic sounds per se.

The best example of a logosyllabary is the Han script, used for writing Chinese and bor-
rowed by a number of other East Asian languages for use as part of their writing systems.
The term for a unit of the Han script is hànzì l% in Chinese, kanji l% in Japanese, and
hanja l% in Korean. In many instances this unit also constitutes a word, but more typi-
cally, two or more units together are used to write a word.

The basic unit of a logosyllabary has variously been referred to as an ideograph (also ideo-
gram), a logograph (also logogram), or a sinogram. Other terms exist as well, and especially
for poorly understood or undeciphered writing systems, the units of writing may simply be
called signs. Notionally, a logograph (or logogram) is a unit of writing which represents a
word or morpheme, whereas an ideograph (or ideogram) is a unit of writing which repre-
sents an idea or concept. However, the lines between these terms are often unclear, and
usage varies widely. The Unicode Standard makes no principled distinction between these
terms, but rather follows the customary usage associated with a given script or writing sys-
tem. For the Han script, the term CJK ideograph (or Han ideograph) is used.

There are a number of other historical examples of logosyllabaries, such as Tangut, many of
which may eventually be encoded in the Unicode Standard. They vary in the degree to
which they combine logographic writing principles, where the symbols stand for mor-
phemes or entire words, and syllabic writing principles, where the symbols come to repre-
sent syllables per se, divorced from their meaning as morphemes or words. In some notable
instances, as for Sumero-Akkadian cuneiform, a logosyllabary may evolve through time
into a syllabary or alphabet by shedding its use of logographs. In other instances, as for the
Han script, the use of logographic characters is very well entrenched and persistent. How-
ever, even for the Han script a small number of characters are used purely to represent syl-
labic sounds, so as to be able to represent such things as foreign personal names and place
names.

Egyptian hieroglyphs constitute another mixed example. The majority of the hieroglyphs
are logographs, but Egyptian hieroglyphs also contain a well-defined subset that functions
as an alphabet, in addition to other signs that represent sequences of consonants. And some
hieroglyphs serve as semantic determinatives, rather than logographs in their own right—
a function which bears some comparison to the way radicals work in CJK ideographs. To
simplify the overall typology of Unicode scripts, Egyptian hieroglyphs and other hiero-
glyphic systems are lumped together with true logosyllabaries such as Han, but there are
many differences in detail. For more about Egyptian hieroglyphs, in particular, see
Section 14.18, Egyptian Hieroglyphs.

The classification of a writing system is often somewhat blurred by complications in the
exact ways in which it matches up written elements to the phonemes or syllables of a lan-
guage. For example, although Hiragana is classified as a syllabary, it does not always have
an exact match between syllables and written elements. Syllables with long vowels are not
written with a single element, but rather with a sequence of elements. Thus the syllable
with a long vowel k^ is written with two separate Hiragana symbols, {ku}+{u}. Because of
these kinds of complications, one must always be careful not to assume too much about the
structure of a writing system from its nominal classification.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 191
Typology of Scripts in the Unicode Standard. Table 6-1 lists all of the scripts currently
encoded in the Unicode Standard, showing the writing system type for each. The list is an
approximate guide, rather than a definitive classification, because of the mix of features
seen in many scripts. The writing systems for some languages may be quite complex, mix-
ing more than one type of script together in a composite system. Japanese is the best exam-
ple; it mixes a logosyllabary (Han), two syllabaries (Hiragana and Katakana), and one
alphabet (Latin, for romaji).

Notational Systems. In addition to scripts for written natural languages, there are nota-
tional systems for other kinds of information. Some of these more closely resemble text
than others. The Unicode Standard encodes symbols for use with mathematical notation,
Western and Byzantine musical notation, and Braille, as well as symbols for use in divina-
tion, such as the Yijing hexagrams. Notational systems can be classified by how closely they
resemble text. Even notational systems that do not fully resemble text may have symbols
used in text. In the case of musical notation, for example, while the full notation is two-
dimensional, many of the encoded symbols are frequently referenced in texts about music
and musical notation.

6.2 General Punctuation
Punctuation characters—for example, U+002C comma and U+2022 bullet—are
encoded only once, rather than being encoded again and again for particular scripts; such
general-purpose punctuation may be used for any script or mixture of scripts. In contrast,
punctuation principally used with a specific script is found in the block corresponding to
that script, such as U+058A armenian hyphen, U+061B “” arabic semicolon, or the
punctuation used with CJK ideographs in the CJK Symbols and Punctuation block. Script-
specific punctuation characters may be unique in function, have different directionality, or
be distinct in appearance or usage from their generic counterparts.

Punctuation intended for use with several related scripts is often encoded with the princi-
pal script for the group. For example, U+1735 philippine single punctuation is
encoded in a single location in the Hanunóo block, but it is intended for use with all four of
the Philippine scripts.

Table 6-1. Typology of Scripts in the Unicode Standard

Alphabets

Latin, Greek, Cyrillic, Armenian, Thaana, Mandaic, Georgian,
Ogham, Runic, Mongolian, Glagolitic, Coptic, Tifinagh, Old
Italic, Gothic, Ugaritic, Old Persian, Deseret, Shavian, Osmanya,
N’Ko, Ol Chiki, Kayah Li, Carian, Lycian, Lydian, Avestan, Lisu,
Old Turkic, Meroitic Cursive, Meroitic Hieroglyphs

Abjads Hebrew, Arabic, Syriac, Phoenician, Samaritan, Imperial Aramaic,
Old South Arabian, Inscriptional Parthian, Inscriptional Pahlavi

Abugidas

Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu,
Kannada, Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar,
Tagalog, Hanunóo, Buhid, Tagbanwa, Khmer, Limbu, Tai Le, New
Tai Lue, Buginese, Syloti Nagri, Kharoshthi, Balinese, Phags-pa,
Sundanese, Batak, Lepcha, Saurashtra, Rejang, Cham, Tai Tham,
Tai Viet, Javanese, Meetei Mayek, Brahmi, Kaithi, Chakma, Sha-
rada, Sora Sompeng, Takri

Logosyllabaries Han, Sumero-Akkadian, Egyptian Hieroglyphs

Simple Syllabaries Cherokee, Hiragana, Katakana, Bopomofo, Yi, Linear B, Cypriot,
Ethiopic, Canadian Aboriginal Syllabics, Vai, Bamum, Miao

Featural Syllabaries Hangul
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

192 Writing Systems and Punctuation
Use and Interpretation. The use and interpretation of punctuation characters can be heav-
ily context dependent. For example, U+002E full stop can be used as sentence-ending
punctuation, an abbreviation indicator, a decimal point, and so on.

Many Unicode algorithms, such as the Bidirectional Algorithm and Line Breaking Algo-
rithm, both of which treat numeric punctuation differently from text punctuation, resolve
the status of any ambiguous punctuation mark depending on whether it is part of a num-
ber context.

Legacy character encoding standards commonly include generic characters for punctua-
tion instead of the more precisely specified characters used in printing. Examples include
the single and double quotes, period, dash, and space. The Unicode Standard includes
these generic characters, but also encodes the unambiguous characters independently: var-
ious forms of quotation marks, em dash, en dash, minus, hyphen, em space, en space, hair
space, zero width space, and so on.

Rendering. Punctuation characters vary in appearance with the font style, just like the sur-
rounding text characters. In some cases, where used in the context of a particular script, a
specific glyph style is preferred. For example, U+002E full stop should appear square
when used with Armenian, but is typically circular when used with Latin. For mixed Latin/
Armenian text, two fonts (or one font allowing for context-dependent glyph variation)
may need to be used to render the character faithfully.

Writing Direction. Punctuation characters shared across scripts have no inherent direc-
tionality. In a bidirectional context, their display direction is resolved according to the rules
in Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.” Certain script-specific
punctuation marks have an inherent directionality that matches the writing direction of
the script. For an example, see “Dandas” later in this section. The image of certain paired
punctuation marks, specifically those that are brackets, is mirrored when the character is
part of a right-to-left directional run (see Section 4.7, Bidi Mirrored). Mirroring ensures
that the opening and closing semantics of the character remains independent of the writing
direction. The same is generally not true for other punctuation marks even when their
image is not bilaterally symmetric, such as slash or the curly quotes. See also “Paired Punc-
tuation” later in this section.

In vertical writing, many punctuation characters have special vertical glyphs. Normally,
fonts contain both the horizontal and vertical glyphs, and the selection of the appropriate
glyph is based on the text orientation in effect at rendering time. However, see “CJK Com-
patibility Forms: Vertical Forms” later in this section.

Figure 6-2 shows a set of three common shapes used for ideographic comma and ideographic
full stop. The first shape in each row is that used for horizontal text, the last shape is that for
vertical text. The centered form may be used with both horizontal and vertical text. See also
Figure 6-4 for an example of vertical and horizontal forms for quotation marks.

Layout Controls. A number of characters in the blocks described in this section are not
graphic punctuation characters, but rather affect the operation of layout algorithms. For a
description of those characters, see Section 16.2, Layout Controls.

Figure 6-2. Forms of CJK Punctuation

、
。。。

、 、
Horizontal Centered Vertical
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 193
Encoding Characters with Multiple Semantic Values. Some of the punctuation characters
in the ASCII range (U+0020..U+007F) have multiple uses, either through ambiguity in the
original standards or through accumulated reinterpretations of a limited code set. For
example, 2716 is defined in ANSI X3.4 as apostrophe (closing single quotation mark; acute
accent), and 2D16 is defined as hyphen-minus. In general, the Unicode Standard provides
the same interpretation for the equivalent code points, without adding to or subtracting
from their semantics. The Unicode Standard supplies unambiguous codes elsewhere for the
most useful particular interpretations of these ASCII values; the corresponding unambigu-
ous characters are cross-referenced in the character names list for this block. For more
information, see “Apostrophes,” “Space Characters,” and “Dashes and Hyphens” later in
this section.

Blocks Devoted to Punctuation

For compatibility with widely used legacy character sets, the Basic Latin (ASCII) block
(U+0000..U+007F) and the Latin-1 Supplement block (U+0080..U+00FF) contain several
of the most common punctuation signs. They are isolated from the larger body of Unicode
punctuation, signs, and symbols only because their relative code locations within ASCII
and Latin-1 are so widely used in standards and software. The Unicode Standard has a
number of blocks devoted specifically to encoding collections of punctuation characters.

The General Punctuation block (U+2000..U+206F) contains the most common punctua-
tion characters widely used in Latin typography, as well as a few specialized punctuation
marks and a large number of format control characters. All of these punctuation characters
are intended for generic use, and in principle they could be used with any script.

The Supplemental Punctuation block (U+2E00..U+2E7F) is devoted to less commonly
encountered punctuation marks, including those used in specialized notational systems or
occurring primarily in ancient manuscript traditions.

The CJK Symbols and Punctuation block (U+3000..U+303F) has the most commonly
occurring punctuation specific to East Asian typography—that is, typography involving
the rendering of text with CJK ideographs.

The Vertical Forms block (U+FE10..U+FE1F), the CJK Compatibility Forms block
(U+FE30..U+FE4F), the Small Form Variants block (U+FE50..U+FE6F), and the Half-
width and Fullwidth Forms block (U+FF00..U+FFEF) contain many compatibility charac-
ters for punctuation marks, encoded for compatibility with a number of East Asian
character encoding standards. Their primary use is for round-trip mapping with those leg-
acy standards. For vertical text, the regular punctuation characters are used instead, with
alternate glyphs for vertical layout supplied by the font.

The punctuation characters in these various blocks are discussed below in terms of their
general types.

Format Control Characters

Format control characters are special characters that have no visible glyph of their own, but
that affect the display of characters to which they are adjacent, or that have other special-
ized functions such as serving as invisible anchor points in text. All format control charac-
ters have General_Category=Cf. A significant number of format control characters are
encoded in the General Punctuation block, but their descriptions are found in other sec-
tions.

Cursive joining controls, as well as U+200B zero width space, U+2028 line separator,
U+2029 paragraph separator, and U+2060 word joiner, are described in Section 16.2,
Layout Controls. Bidirectional ordering controls are also discussed in Section 16.2, Layout
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

194 Writing Systems and Punctuation
Controls, but their detailed use is specified in Unicode Standard Annex #9, “Unicode Bidi-
rectional Algorithm.”

Invisible operators are explained in Section 15.6, Invisible Mathematical Operators. Depre-
cated format characters related to obsolete models of Arabic text processing are described
in Section 16.3, Deprecated Format Characters.

The reserved code points U+2064..U+2069 and U+FFF0..U+FFF8, as well as any reserved
code points in the range U+E0000..U+E0FFF, are reserved for the possible future encoding
of other format control characters. Because of this, they are treated as default ignorable
code points. For more information, see Section 5.21, Ignoring Characters in Processing.

Space Characters

Space characters are found in several character blocks in the Unicode Standard. The list of
space characters appears in Table 6-2.

The space characters in the Unicode Standard can be identified by their General Category,
[gc=Zs], in the Unicode Character Database. One exceptional “space” character is U+200B
zero width space. This character, although called a “space” in its name, does not actually
have any width or visible glyph in display. It functions primarily to indicate word boundar-
ies in writing systems that do not actually use orthographic spaces to separate words in text.
It is given the General Category [gc=Cf] and is treated as a format control character, rather
than as a space character, in implementations. Further discussion of U+200B zero width

space, as well as other zero-width characters with special properties, can be found in
Section 16.2, Layout Controls.

The most commonly used space character is U+0020 space. In ideographic text, U+3000
ideographic space is commonly used because its width matches that of the ideographs.

The main difference among other space characters is their width. U+2000..U+2006 are
standard quad widths used in typography. U+2007 figure space has a fixed width, known
as tabular width, which is the same width as digits used in tables. U+2008 punctuation

space is a space defined to be the same width as a period. U+2009 thin space and U+200A
hair space are successively smaller-width spaces used for narrow word gaps and for justi-
fication of type. The fixed-width space characters (U+2000..U+200A) are derived from
conventional (hot lead) typography. Algorithmic kerning and justification in computerized

Table 6-2. Unicode Space Characters

Code Name
U+0020 space
U+00A0 no-break space
U+1680 ogham space mark
U+180E mongolian vowel separator
U+2000 en quad
U+2001 em quad
U+2002 en space
U+2003 em space
U+2004 three-per-em space
U+2005 four-per-em space
U+2006 six-per-em space
U+2007 figure space
U+2008 punctuation space
U+2009 thin space
U+200A hair space
U+202F narrow no-break space
U+205F medium mathematical space
U+3000 ideographic space
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 195
typography do not use these characters. However, where they are used (for example, in
typesetting mathematical formulae), their width is generally font-specified, and they typi-
cally do not expand during justification. The exception is U+2009 thin space, which
sometimes gets adjusted.

In addition to the various fixed-width space characters, there are a few script-specific space
characters in the Unicode Standard. U+1680 ogham space mark is unusual in that it is
generally rendered with a visible horizontal line, rather than being blank.

No-Break Space. U+00A0 no-break space (NBSP) is the non-breaking counterpart of
U+0020 space. It has the same width, but behaves differently for line breaking. For more
information, see Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.”

Unlike U+0020, U+00A0 no-break space behaves as a numeric separator for the purposes
of bidirectional layout. See Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm,” for a detailed discussion of the Unicode Bidirectional Algorithm.

U+00A0 no-break space has an additional, important function in the Unicode Standard.
It may serve as the base character for displaying a nonspacing combining mark in apparent
isolation. Versions of the standard prior to Version 4.1 indicated that U+0020 space could
also be used for this function, but space is no longer recommended, because of potential
interactions with the handling of space in XML and other markup languages. See
Section 2.11, Combining Characters, for further discussion.

Narrow No-Break Space. U+202F narrow no-break space (NNBSP) is a narrow version
of U+00A0 no-break space, which except for its display width behaves exactly the same in
its line breaking behavior. It is regularly used in Mongolian in certain grammatical contexts
(before a particle), where it also influences the shaping of the glyphs for the particle. In
Mongolian text, the NNBSP is typically displayed with 1/3 the width of a normal space
character. The NNBSP can be used to represent the narrow space occurring around punc-
tuation characters in French typography, which is called an “espace fine insécable.”

Dashes and Hyphens

Because of its prevalence in legacy encodings, U+002D hyphen-minus is the most com-
mon of the dash characters used to represent a hyphen. It has ambiguous semantic value
and is rendered with an average width. U+2010 hyphen represents the hyphen as found in
words such as “left-to-right.” It is rendered with a narrow width. When typesetting text,
U+2010 hyphen is preferred over U+002D hyphen-minus. U+2011 non-breaking

hyphen has the same semantic value as U+2010 hyphen, but should not be broken across
lines.

U+2012 figure dash has the same (ambiguous) semantic as the U+002D hyphen-minus,
but has the same width as digits (if they are monospaced). U+2013 en dash is used to indi-
cate a range of values, such as 1973–1984, although in some languages hyphen is used for
that purpose. The en dash should be distinguished from the U+2212 minus sign, which is
an arithmetic operator. Although it is not preferred in mathematical typesetting, typogra-
phers sometimes use U+2013 en dash to represent the minus sign, particularly a unary
minus. When interpreting formulas, U+002D hyphen-minus, U+2012 figure dash, and
U+2212 minus sign should each be taken as indicating a minus sign, as in “x = a - b”, unless
a higher-level protocol precisely defines which of these characters serves that function.

U+2014 em dash is used to make a break—like this—in the flow of a sentence. (Some
typographers prefer to use U+2013 en dash set off with spaces – like this – to make the
same kind of break.) Like many other conventions for punctuation characters, such usage
may depend on language. This kind of dash is commonly represented with a typewriter as
a double hyphen. In older mathematical typography, U+2014 em dash may also used to
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

196 Writing Systems and Punctuation
indicate a binary minus sign. U+2015 horizontal bar is used to introduce quoted text in
some typographic styles.

Dashes and hyphen characters may also be found in other character blocks in the Unicode
Standard. A list of dash and hyphen characters appears in Table 6-3. For a description of the
line breaking behavior of dashes and hyphens, see Unicode Standard Annex #14, “Unicode
Line Breaking Algorithm.”

Soft Hyphen. Despite its name, U+00AD soft hyphen is not a hyphen, but rather an
invisible format character used to indicate optional intraword breaks. As described in
Section 16.2, Layout Controls, its effect on the appearance of the text depends on the lan-
guage and script used.

Tilde. Although several shapes are commonly used to render U+007E “~” tilde, modern
fonts generally render it with a center line glyph, as shown here and in the code charts.
However, it may also appear as a raised, spacing tilde, serving as a spacing clone of U+0303
“u” combining tilde (see “Spacing Clones of Diacritics” in Section 7.1, Latin). This is a
form common in older implementations, particularly for terminal emulation and type-
writer-style fonts.

Some of the common uses of a tilde include indication of alternation, an approximate
value, or, in some notational systems, indication of a logical negation. In the latter context,
it is really being used as a shape-based substitute character for the more precise U+00AC
“¬” not sign. A tilde is also used in dictionaries to repeat the defined term in examples. In
that usage, as well as when used as punctuation to indicate alternation, it is more appropri-
ately represented by a wider form, encoded as U+2053 “n” swung dash. U+02DC “o”
small tilde is a modifier letter encoded explicitly as the spacing form of the combining
tilde as a diacritic. For mathematical usage, U+223C “~” tilde operator should be used
to unambiguously encode the operator.

Table 6-3. Unicode Dash Characters

Code Name
U+002D hyphen-minus
U+007E tilde (when used as swung dash)
U+058A armenian hyphen
U+05BE hebrew punctuation maqaf
U+1400 canadian syllabics hyphen
U+1806 mongolian todo soft hyphen
U+2010 hyphen
U+2011 non-breaking hyphen
U+2012 figure dash
U+2013 en dash
U+2014 em dash
U+2015 horizontal bar (= quotation dash)
U+2053 swung dash
U+207B superscript minus
U+208B subscript minus
U+2212 minus sign
U+2E17 double oblique hyphen
U+301C wave dash
U+3030 wavy dash
U+30A0 katakana-hiragana double hyphen
U+FE31 presentation form for vertical em dash
U+FE32 presentation form for vertical en dash
U+FE58 small em dash
U+FE63 small hyphen-minus
U+FF0D fullwidth hyphen-minus
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 197
Dictionary Abbreviation Symbols. In addition to the widespread use of tilde in dictionar-
ies, more specialized dictionaries may make use of symbols consisting of hyphens or tildes
with dots or circles above or below them to abbreviate the representation of inflected or
derived forms (plurals, case forms, and so on) in lexical entries. U+2E1A hyphen with

diaeresis, for example, is typically used in German dictionaries as a short way of indicat-
ing that the addition of a plural suffix also causes placement of an umlaut on the main stem
vowel. U+2E1B tilde with ring above indicates a change in capitalization for a derived
form, and so on. Such conventions are particularly widespread in German dictionaries, but
may also appear in other dictionaries influenced by German lexicography.

Paired Punctuation

Mirroring of Paired Punctuation. Paired punctuation marks such as parentheses
(U+0028, U+0029), square brackets (U+005B, U+005D), and braces (U+007B, U+007D)
are interpreted semantically rather than graphically in the context of bidirectional or verti-
cal texts; that is, the orientation of these characters toward the enclosed text is maintained
by the software, independent of the writing direction. In a bidirectional context, the glyphs
are adjusted as described in Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm.” (See also Section 4.7, Bidi Mirrored.) During display, the software must ensure that
the rendered glyph is the correct one in the context of bidirectional or vertical texts.

Paired punctuation marks containing the qualifier “left” in their name are taken to denote
opening; characters whose name contains the qualifier “right” are taken to denote closing.
For example, U+0028 left parenthesis and U+0029 right parenthesis are interpreted
as opening and closing parentheses, respectively. In a right-to-left directional run, U+0028
is rendered as “)”. In a left-to-right run, the same character is rendered as “(”. In some
mathematical usage, brackets may not be paired, or may be deliberately used in the
reversed sense, such as]a,b[. Mirroring assures that in a right-to-left environment, such
specialized mathematical text continues to read]b,a[and not [b, a]. See also “Language-
Based Usage of Quotation Marks” later in this section.

Quotation Marks and Brackets. Like brackets, quotation marks occur in pairs, with some
overlap in usage and semantics between these two types of punctuation marks. For exam-
ple, some of the CJK quotation marks resemble brackets in appearance, and they are often
used when brackets would be used in non-CJK text. Similarly, both single and double guil-
lemets may be treated more like brackets than quotation marks.

Some of the editing marks used in annotated editions of scholarly texts exhibit features of
both quotation marks and brackets. The particular convention employed by the editors
determines whether editing marks are used in pairs, which editing marks form a pair, and
which is the opening character. Unlike brackets, quotation marks are not mirrored in a
bidirectional context.

Horizontal brackets—for example, those used in annotating mathematical expressions—
are not paired punctuation, even though the set includes both top and bottom brackets. See
“Horizontal Brackets” in Section 15.7, Technical Symbols, for more information.

Language-Based Usage of Quotation Marks

U+0022 quotation mark is the most commonly used character for quotation mark. How-
ever, it has ambiguous semantics and direction. Most keyboard layouts support only
U+0022 quotation mark, therefore word processors commonly offer a facility for auto-
matically converting the U+0022 quotation mark to a contextually selected curly quote
glyph.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

198 Writing Systems and Punctuation
European Usage. The use of quotation marks differs systematically by language and by
medium. In European typography, it is common to use guillemets (single or double angle
quotation marks) for books and, except for some languages, curly quotation marks in
office automation. Single guillemets may be used for quotes inside quotes. The following
description does not attempt to be complete, but intends to document a range of known
usages of quotation mark characters. Some of these usages are also illustrated in Figure 6-3.
In this section, the words single and double are omitted from character names where there is
no conflict or both are meant.

Dutch, English, Italian, Portugese, Spanish, and Turkish use a left quotation mark and a
right quotation mark for opening and closing quotations, respectively. It is typical to alter-
nate single and double quotes for quotes within quotes. Whether single or double quotes
are used for the outer quotes depends on local and stylistic conventions.

Czech, German, and Slovak use the low-9 style of quotation mark for opening instead of
the standard open quotes. They employ the left quotation mark style of quotation mark for
closing instead of the more common right quotation mark forms. When guillemets are used
in German books, they point to the quoted text. This style is the inverse of French usage.

Danish, Finnish, Norwegian, and Swedish use the same right quotation mark character for
both the opening and closing quotation character. This usage is employed both for office
automation purposes and for books. Books sometimes use the guillemet, U+00BB right-

pointing double angle quotation mark, for both opening and closing.

Hungarian and Polish usage of quotation marks is similar to the Scandinavian usage,
except that they use low double quotes for opening quotations. Presumably, these lan-
guages avoid the low single quote so as to prevent confusion with the comma.

French, Greek, Russian, and Slovenian, among others, use the guillemets, but Slovenian
usage is the same as German usage in their direction. Of these languages, at least French
inserts space between text and quotation marks. In the French case, U+00A0 no-break

space can be used for the space that is enclosed between quotation mark and text; this
choice helps line breaking algorithms.

East Asian Usage. The glyph for each quotation mark character for an Asian character set
occupies predominantly a single quadrant of the character cell. The quadrant used depends
on whether the character is opening or closing and whether the glyph is for use with hori-
zontal or vertical text.

The pairs of quotation characters are listed in Table 6-4.

Glyph Variation. The glyphs for “double-prime” quotation marks consist of a pair of
wedges, slanted either forward or backward, with the tips of the wedges pointing either up

Figure 6-3. European Quotation Marks

Single right quote = apostrophe

Usage depends on language

‘quote’ don’t

“English” « French »

„German“ »Slovenian«

”Swedish” »Swedish books»
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 199
or down. In a pair of double-prime quotes, the closing and the opening character of the
pair slant in opposite directions. Two common variations exist, as shown in Figure 6-4. To
confuse matters more, another form of double-prime quotation marks is used with West-
ern-style horizontal text, in addition to the curly single or double quotes.

Three pairs of quotation marks are used with Western-style horizontal text, as shown in
Table 6-5.

Overloaded Character Codes. The character codes for standard quotes can refer to regular
narrow quotes from a Latin font used with Latin text as well as to wide quotes from an
Asian font used with other wide characters. This situation can be handled with some suc-
cess where the text is marked up with language tags. For more information on narrow and
wide characters, see Unicode Standard Annex #11, “East Asian Width.”

Consequences for Semantics. The semantics of U+00AB, U+00BB (double guillemets),
and U+201D right double quotation mark are context dependent. The semantics of
U+201A and U+201B low-9 quotation marks are always opening; this usage is distinct
from the usage of U+301F low double prime quotation mark, which is unambiguously
closing. All other quotation marks may represent opening or closing quotation marks
depending on the usage.

Table 6-4. East Asian Quotation Marks

Style Opening Closing

Corner bracket 300C 300D

White corner bracket 300E 300F

Double prime 301D 301F

Figure 6-4. Asian Quotation Marks

Table 6-5. Opening and Closing Forms

Style Opening Closing Comment

Single 2018 2019 Rendered as “wide” character

Double 201C 201D Rendered as “wide” character

Double prime 301D 301E

Horizontal and vertical glyphs

Glyphs for overloaded character codes

“Text”
Font style-based glyph alternates
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

200 Writing Systems and Punctuation
Apostrophes

U+0027 apostrophe is the most commonly used character for apostrophe. For historical
reasons, U+0027 is a particularly overloaded character. In ASCII, it is used to represent a
punctuation mark (such as right single quotation mark, left single quotation mark, apos-
trophe punctuation, vertical line, or prime) or a modifier letter (such as apostrophe modi-
fier or acute accent). Punctuation marks generally break words; modifier letters generally
are considered part of a word.

When text is set, U+2019 right single quotation mark is preferred as apostrophe, but
only U+0027 is present on keyboards. Word processors commonly offer a facility for auto-
matically converting the U+0027 apostrophe to a contextually selected curly quotation
glyph. In these systems, a U+0027 in the data stream is always represented as a straight ver-
tical line and can never represent a curly apostrophe or a right quotation mark.

Letter Apostrophe. U+02BC modifier letter apostrophe is preferred where the apos-
trophe is to represent a modifier letter (for example, in transliterations to indicate a glottal
stop). In the latter case, it is also referred to as a letter apostrophe.

Punctuation Apostrophe. U+2019 right single quotation mark is preferred where the
character is to represent a punctuation mark, as for contractions: “We’ve been here before.”
In this latter case, U+2019 is also referred to as a punctuation apostrophe.

An implementation cannot assume that users’ text always adheres to the distinction
between these characters. The text may come from different sources, including mapping
from other character sets that do not make this distinction between the letter apostrophe
and the punctuation apostrophe/right single quotation mark. In that case, all of them will
generally be represented by U+2019.

The semantics of U+2019 are therefore context dependent. For example, if surrounded by
letters or digits on both sides, it behaves as an in-text punctuation character and does not
separate words or lines.

Other Punctuation

Hyphenation Point. U+2027 hyphenation point is a raised dot used to indicate correct
word breaking, as in dic·tion·ar·ies. It is a punctuation mark, to be distinguished from
U+00B7 middle dot, which has multiple semantics.

Word Separator Middle Dot. Historic texts in many scripts, especially those that are hand-
written (manuscripts), sometimes use a raised dot to separate words. Such word-separating
punctuation is comparable in function to the use of space to separate words in modern
typography.

U+2E31 word separator middle dot is a middle dot punctuation mark which is analo-
gous in function to the script-specific character U+16EB runic single punctuation, but
is for use with any script that needs a raised dot for separating words. For example, it can be
used for the word-separating dot seen in Avestan or Samaritan texts.

Fraction Slash. U+2044 fraction slash is used between digits to form numeric fractions,
such as 2/3 and 3/9. The standard form of a fraction built using the fraction slash is defined
as follows: any sequence of one or more decimal digits (General Category = Nd), followed
by the fraction slash, followed by any sequence of one or more decimal digits. Such a frac-
tion should be displayed as a unit, such as ¾ or !. The precise choice of display can depend
on additional formatting information.

If the displaying software is incapable of mapping the fraction to a unit, then it can also be
displayed as a simple linear sequence as a fallback (for example, 3/4). If the fraction is to be
separated from a previous number, then a space can be used, choosing the appropriate
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 201
width (normal, thin, zero width, and so on). For example, 1 + thin space + 3 + fraction

slash + 4 is displayed as 1¾.

Spacing Overscores and Underscores. U+203E overline is the above-the-line counterpart
to U+005F low line. It is a spacing character, not to be confused with U+0305 combining

overline. As with all overscores and underscores, a sequence of these characters should
connect in an unbroken line. The overscoring characters also must be distinguished from
U+0304 combining macron, which does not connect horizontally in this way.

Doubled Punctuation. Several doubled punctuation characters that have compatibility
decompositions into a sequence of two punctuation marks are also encoded as single char-
acters: U+203C double exclamation mark, U+2048 question exclamation mark, and
U+2049 exclamation question mark. These doubled punctuation marks are included as
an implementation convenience for East Asian and Mongolian text, when rendered verti-
cally.

Period or Full Stop. The period, or U+002E full stop, can be circular or square in appear-
ance, depending on the font or script. The hollow circle period used in East Asian texts is
separately encoded as U+3002 ideographic full stop. Likewise, Armenian, Arabic, Ethi-
opic, and several other script-specific periods are coded separately because of their signifi-
cantly different appearance.

In contrast, the various functions of the period, such as its use as sentence-ending punctu-
ation, an abbreviation mark, or a decimal point, are not separately encoded. The specific
semantic therefore depends on context.

In old-style numerals, where numbers vary in placement above and below the baseline, a
decimal or thousands separator may be displayed with a dot that is raised above the base-
line. Because it would be inadvisable to have a stylistic variation between old-style and
new-style numerals that actually changes the underlying representation of text, the Uni-
code Standard considers this raised dot to be merely a glyphic variant of U+002E “.” full

stop. For other characters in this range that have alternative glyphs, the Unicode character
is displayed with the basic or most common glyph; rendering software may present any
other graphical form of that character.

Ellipsis. The omission of text is often indicated by a sequence of three dots “...”, a punctua-
tion convention called ellipsis. Typographic traditions vary in how they lay out these dots.
In some cases the dots are closely spaced; in other cases the dots are spaced farther apart.
U+2026 horizontal ellipsis is the ordinary Unicode character intended for the represen-
tation of an ellipsis in text and typically shows the dots separated with a moderate degree of
spacing. A sequence of three U+002E full stop characters can also be used to indicate an
ellipsis, in which case the space between the dots will depend on the font used for render-
ing. For example, in a monowidth font, a sequence of three full stops will be wider than the
horizontal ellipsis, but in a typical proportional font, a full stop is very narrow and a
sequence of three of them will be more tightly spaced than the the dots in horizontal ellipsis.

Conventions that use four dots for an ellipsis in certain grammatical contexts should repre-
sent them either as a sequence of <full stop, horizontal ellipsis> or <horizontal ellipsis, full
stop> or simply as a sequence of four full stop characters, depending on the requirements of
those conventions.

In East Asian typographic traditions, particularly in Japan, an ellipsis is raised to the center
line of text. This effect requires the use of a Japanese-specific font, or at least a specific
glyph for the horizontal ellipsis character.

Vertical Ellipsis. When text is laid out vertically, the ellipsis is normally oriented so that the
dots run from top to bottom. Most commonly, an East Asian font will contain a vertically
oriented glyph variant of U+2026 for use in vertical text layout. U+FE19 presentation
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

202 Writing Systems and Punctuation
form for vertical horizontal ellipsis is a compatibility character for use in mapping
to the GB 18030 standard; it would not usually be used for an ellipsis except in systems that
cannot handle the contextual choice of glyph variants for vertical rendering. U+22EE ver-

tical ellipsis and U+22EF midline horizontal ellipsis are part of a set of special ellip-
sis characters used for row or column elision in matrix notation. Their use is restricted to
mathematical contexts; they should not be used as glyph variants of the ordinary punctua-
tion ellipsis for East Asian typography.

U+205D tricolon has a superficial resemblance to a vertical ellipsis, but is part of a set of
dot delimiter punctuation marks for various manuscript traditions. As for the colon, the
dots in the tricolon are always oriented vertically.

Leader Dots. Leader dots are typically seen in contexts such as a table of contents or in
indices, where they represent a kind of style line, guiding the eye from an entry in the table
to its associated page number. Usually leader dots are generated automatically by page for-
matting software and do not require the use of encoded characters. However, there are
occasional plain text contexts in which a string of leader dots is represented as a sequence of
characters. U+2024 one dot leader and U+2025 two dot leader are intended for such
usage. U+2026 horizontal ellipsis can also serve as a three-dot version of leader dots.
These leader dot characters can be used to control, to a certain extent, the spacing of leader
dots based on font design, in contexts where a simple sequence of full stops will not suffice.

U+2024 one dot leader also serves as a “semicolon” punctuation in Armenian, where it
is distinguished from U+002E full stop. See Section 7.6, Armenian.

Other Basic Latin Punctuation Marks. The interword punctuation marks encoded in the
Basic Latin block are used for a variety of other purposes. This can complicate the tasks of
parsers trying to determine sentence boundaries. As noted later in this section, some can be
used as numeric separators. Both period and U+003A “:” colon can be used to mark
abbreviations as in “etc.” or as in the Swedish abbreviation “S:ta” for “Sankta”. U+0021 “!”
exclamation mark is used as a mathematical operator (factorial). U+003F “?” question

mark is often used as a substitution character when mapping Unicode characters to other
character sets where they do not have a representation. This practice can lead to unex-
pected results when the converted data are file names from a file system that supports “?” as
a wildcard character.

Canonical Equivalence Issues for Greek Punctuation. Some commonly used Greek punc-
tuation marks are encoded in the Greek and Coptic block, but are canonical equivalents to
generic punctuation marks encoded in the C0 Controls and Basic Latin block, because they
are indistinguishable in shape. Thus, U+037E “;” greek question mark is canonically
equivalent to U+003B “;” semicolon, and U+0387 “·” greek ano teleia is canonically
equivalent to U+00B7 “·” middle dot. In these cases, as for other canonical singletons, the
preferred form is the character that the canonical singletons are mapped to, namely
U+003B and U+00B7 respectively. Those are the characters that will appear in any normal-
ized form of Unicode text, even when used in Greek text as Greek punctuation. Text seg-
mentation algorithms need to be aware of this issue, as the kinds of text units delimited by
a semicolon or a middle dot in Greek text will typically differ from those in Latin text.

The character properties for U+00B7 middle dot are particularly problematical, in part
because of identifier issues for that character. There is no guarantee that all of its properties
align exactly with U+0387 greek ano teleia, because the latter’s properties are based on
the limited function of the middle dot in Greek as a delimiting punctuation mark.

Bullets. U+2022 bullet is the typical character for a bullet. Within the general punctua-
tion, several alternative forms for bullets are separately encoded: U+2023 triangular

bullet, U+204C black leftwards bullet, and so on. U+00B7 middle dot also often
functions as a small bullet. Bullets mark the head of specially formatted paragraphs, often
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 203
occurring in lists, and may use arbitrary graphics or dingbat forms as well as more conven-
tional bullet forms. U+261E white right pointing index, for example, is often used to
highlight a note in text, as a kind of gaudy bullet.

Paragraph Marks. U+00A7 section sign and U+00B6 pilcrow sign are often used as
visible indications of sections or paragraphs of text, in editorial markup, to show format
modes, and so on. Which character indicates sections and which character indicates
paragraphs may vary by convention. U+204B reversed pilcrow sign is a fairly common
alternate representation of the paragraph mark.

Numeric Separators. Any of the characters U+002C comma, U+002E full stop, and the
Arabic characters U+060C, U+066B, or U+066C (and possibly others) can be used as
numeric separator characters, depending on the locale and user customizations.

Commercial Minus. U+2052 % commercial minus sign is used in commercial or tax-
related forms or publications in several European countries, including Germany and Scan-
dinavia. The string “./.” is used as a fallback representation for this character.

The symbol may also appear as a marginal note in letters, denoting enclosures. One varia-
tion replaces the top dot with a digit indicating the number of enclosures.

An additional usage of the sign appears in the Uralic Phonetic Alphabet (UPA), where it
marks a structurally related borrowed element of different pronunciation. In Finland and a
number of other European countries, the dingbats % and ! are always used for “correct”
and “incorrect,” respectively, in marking a student’s paper. This contrasts with American
practice, for example, where ! and " might be used for “correct” and “incorrect,” respec-
tively, in the same context.

At Sign. U+0040 commercial at has acquired a prominent modern use as part of the syn-
tax for e-mail addresses. As a result, users in practically every language community sud-
denly needed to use and refer to this character. Consequently, many colorful names have
been invented for this character. Some of these contain references to animals or even pas-
tries. Table 6-6 gives a sample.

Table 6-6. Names for the @

Language Name and Comments

Chinese = xiao laoshu (means “little mouse” in Mandarin Chinese), laoshu
hao (means “mouse mark” in Mandarin Chinese)

Danish = grishale, snabel-a (common, humorous slang)

Dutch = apenstaartje (common, humorous slang)

Finnish = ät, ät-merkki (Finnish standard)
= kissanhäntä, miukumauku (common, humorous slang)

French = arobase, arrobe, escargot, a crolle (common, humorous slang)

German = Klammeraffe

Hebrew = shtrudl (“Strudel”, modern Hebrew)
= krukhit (more formal Hebrew)

Hungarian = kukac (common, humorous slang)

Italian = chiocciola

Polish = atka, maspa, maspka (common, humorous slang)

Portuguese = arroba

Russian = sobachka (common, humorous slang)

Slovenian = afna (common, humorous slang)

Spanish = arroba

Swedish = snabel-a, kanelbulle (common, humorous slang)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

204 Writing Systems and Punctuation
Archaic Punctuation and Editorial Marks

Archaic Punctuation. Many archaic scripts use punctuation marks consisting of a set of
multiple dots, such as U+2056 three dot punctuation. The semantics of these marks
can vary by script, and some of them are also used for special conventions, such as the use
of U+205E vertical four dots in modern dictionaries. U+205B four dot mark and
U+205C dotted cross were used by scribes in the margin to highlight a piece of text.
More of these multiple-dot archaic punctuation marks are encoded in the range
U+2E2A..U+2E2D.

These kinds of punctuation marks occur in ancient scripts and are also common in medi-
eval manuscripts. Their specific functions may be different in each script or manuscript
tradition. However, encoding only a single set in the Unicode Standard simplifies the task
of deciding which character to use for a given mark.

There are some exceptions to this general rule. Archaic scripts with script-specific punctu-
ation include Runic, Aegean Numbers, and Cuneiform. In particular, the appearance of
punctuation written in the Cuneiform style is sufficiently different that no unification was
attempted.

Editorial Marks. In addition to common-use editorial marks such as U+2041 caret

insertion point encoded in the General Punctuation block, there are a number of edito-
rial marks encoded in the Supplemental Punctuation block (U+2E00..U+2E7F). Editorial
marks differ from ordinary punctuation marks, in that their primary purpose is to allow
editors to mark up a scholarly publication of a text to show the location and contents of
insertions, omissions, variant readings, and other such information about the text.

The half brackets encoded in the range U+2E22..U+2E25 are widely used as editorial
marks in critical editions of ancient and medieval texts. They appear, for example, in edi-
tions of transliterated Cuneiform and ancient Egyptian texts. U+2E26 left sideways u

bracket and U+2E27 right sideways u bracket are a specialized bracket pair used in
some traditions, and should be distinguished from mathematical set symbols of similar
appearance. The double parentheses are employed by Latinists.

New Testament Editorial Marks. The Greek text of the New Testament exists in a large
number of manuscripts with many textual variants. The most widely used critical edition
of the New Testament, the Nestle-Aland edition published by the United Bible Societies
(UBS), introduced a set of editorial characters that are regularly used in a number of jour-
nals and other publications. As a result, these editorial marks have become the recognized
method of annotating the New Testament.

U+2E00 right angle substitution marker is placed at the start of a single word when
that word is replaced by one or more different words in some manuscripts. These alterna-
tive readings are given in the apparatus criticus. If there is a second alternative reading in
one verse, U+2E01 right angle dotted substitution marker is used instead.

U+2E02 left substitution bracket is placed at the start of a sequence of words where an
alternative reading is given in the apparatus criticus. This bracket is used together with the
U+2E03 right substitution bracket. If there is a second alternative reading in one
verse, the dotted forms at U+2E04 and U+2E05 are used instead.

U+2E06 raised interpolation marker is placed at a point in the text where another ver-
sion has additional text. This additional text is given in the apparatus criticus. If there is a
second piece of interpolated text in one verse, the dotted form U+2E07 raised dotted

interpolation marker is used instead.

U+2E08 dotted transposition marker is placed at the start of a word or verse that has
been transposed. The transposition is explained in the apparatus criticus. When the words
are preserved in different order in some manuscripts, U+2E09 left transposition
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 205
bracket is used. The end of such a sequence of words is marked by U+2E0A right trans-

position bracket.

The characters U+2E0B raised square and U+2E0C left raised omission bracket are
conventionally used in pairs to bracket text, with raised square marking the start of a pas-
sage of omitted text and left raised omission bracket marking its end. In other editorial
traditions, U+2E0C left raised omission bracket may be paired with U+2E0D right

raised omission bracket. Depending on the conventions used, either may act as the
starting or ending bracket.

Two other bracket characters, U+2E1C left low paraphrase bracket and U+2E1D
right low paraphrase bracket, have particular usage in the N’Ko script, but also may
be used for general editorial punctuation.

Ancient Greek Editorial Marks. Ancient Greek scribes generally wrote in continuous
uppercase letters without separating letters into words. On occasion, the scribe added
punctuation to indicate the end of a sentence or a change of speaker or to separate words.
Editorial and punctuation characters appear abundantly in surviving papyri and have been
rendered in modern typography when possible, often exhibiting considerable glyphic vari-
ation. A number of these editorial marks are encoded in the range U+2E0E..U+2E16.

The punctuation used in Greek manuscripts can be divided into two categories: marginal
or semi-marginal characters that mark the end of a section of text (for example, coronis,
paragraphos), and characters that are mixed in with the text to mark pauses, end of sense,
or separation between words (for example, stigme, hypodiastole). The hypodiastole is used
in contrast with comma and is not a glyph variant of it.

A number of editorial characters are attributed to and named after Aristarchos of Samo-
thrace (circa 216–144 bce), fifth head of the Library at Alexandria. Aristarchos provided a
major edition of the works of Homer, which forms the basis for modern editions.

A variety of Ancient Greek editorial marks are shown in the text of Figure 6-5, including
the editorial coronis and upwards ancora on the left. On the right are illustrated the dotted
obelos, capital dotted lunate sigma symbol, capital reversed lunate sigma symbol, and a glyph
variant of the downards ancora. The numbers on the left indicate text lines. A paragraphos
appears below the start of line 12. The opening brackets “[” indicate fragments, where text
is illegible or missing in the original. These examples are slightly adapted and embellished
from editions of the Oxyrhynchus Papyri and Homer’s Iliad.

U+2E0F paragraphos is placed at the beginning of the line but may refer to a break in the
text at any point in the line. The paragraphos should be a horizontal line, generally stretch-
ing under the first few letters of the line it refers to, and possibly extending into the margin.
It should be given a no-space line of its own and does not itself constitute a line or para-

Figure 6-5. Examples of Ancient Greek Editorial Marks
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

206 Writing Systems and Punctuation
graph break point for the rest of the text. Examples of the paragraphos, forked paragraphos,
and reversed forked paragraphos are illustrated in Figure 6-6.

Double Oblique Hyphen. U+2E17 “>” double oblique hyphen is used in ancient Near
Eastern linguistics to indicate certain morphological boundaries while continuing to use
the ordinary hyphen to indicate other boundaries. This symbol is also semantically distinct
from U+003D “=” equals sign. Fraktur fonts use an oblique glyph of similar appearance
for the hyphen, but that is merely a font variation of U+002D hyphen-minus or U+2010
hyphen, not the distinctly encoded double oblique hyphen.

Indic Punctuation

Dandas. Dandas are phrase-ending punctuation common to the scripts of South and
South East Asia. The Devanagari danda and double danda characters are intended for
generic use across the scripts of India. They are also occasionally used in Latin translitera-
tion of traditional texts from Indic scripts.

There are minor visual differences in the appearance of the dandas, which may require
script-specific fonts or a font that can provide glyph alternates based on script environ-
ment. For the four Philippine scripts, the analogues to the dandas are encoded once in
Hanunóo and shared across all four scripts. The other Brahmi-derived scripts have sepa-
rately encoded equivalents for the danda and double danda. In some scripts, as for Tibetan,
multiple, differently ornamented versions of dandas may occur. The dandas encoded in the
Unicode Standard are listed in Table 6-7.

Figure 6-6. Use of Greek Paragraphos

Table 6-7. Unicode Danda Characters

Code Name

U+0964 devanagari danda

U+0965 devanagari double danda

U+0E5A thai character angkhankhu

U+0F08 tibetan mark sbrul shad

U+0F0D tibetan mark shad

U+0F0E tibetan mark nyis shad

U+0F0F tibetan mark tsheg shad

U+0F10 tibetan mark nyis tsheg shad

U+0F11 tibetan mark rin chen spungs shad

U+0F12 tibetan mark rgya gram shad

U+104A myanmar sign little section

U+104B myanmar sign section

U+1735 philippine single punctuation

U+1736 philippine double punctuation

U+17D4 khmer sign khan

U+17D5 khmer sign bariyoosan

U+1B5E balinese carik siki

U+1B5F balinese carik pareren

U+1C3B lepcha punctuation ta-rol

U+1C3C lepcha punctuation nyet thyoom ta-rol

 δαιμονα...

δευοντοσου...
�δαιμονα...

δευοντοσου...
�δαιμονα...

δευοντοσου...
�

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 207
The Bidirectional Class of the dandas matches that for the scripts they are intended for.
Kharoshthi, which is written from right to left, has Bidirectional Class R for U+10A56
kharoshthi punctuation danda. For more on bidirectional classes, see Unicode Stan-
dard Annex #9, “Unicode Bidirectional Algorithm.”

Note that the name of the danda in Hindi is viram, while the different Unicode character
named virama is called halant in Hindi. If this distinction is not kept in mind, it can lead to
confusion as to which character is meant.

CJK Punctuation

CJK Punctuation comprises punctuation marks and symbols used by writing systems that
employ Han ideographs. Most of these characters are found in East Asian standards. Typi-
cal for many of these wide punctuation characters is that the actual image occupies only the
left or the right half of the normal square character cell. The extra whitespace is frequently
removed in a kerning step during layout, as shown in Figure 6-7. Unlike ordinary kerning,
which uses tables supplied by the font, the character space adjustment of wide punctuation
characters is based on their character code.

U+3000 ideographic space is provided for compatibility with legacy character sets. It is a
fixed-width wide space appropriate for use with an ideographic font. For more informa-
tion about wide characters, see Unicode Standard Annex #11, “East Asian Width.”

U+301C wave dash and U+3030 wavy dash are special forms of dashes found in East
Asian character standards. (For a list of other space and dash characters in the Unicode
Standard, see Table 6-2 and Table 6-3.)

U+1C7E ol chiki punctuation mucaad

U+1C7F ol chiki punctuation double mucaad

U+A876 phags-pa shad

U+A877 phags-pa mark double shad

U+A8CE saurashtra danda

U+A8CF saurashtra double danda

U+A92F kayah li sign shya

U+AA5D cham punctuation danda

U+AA5E cham punctuation double danda

U+AA5F cham punctuation triple danda

U+AAF0 meetei mayek cheikham

U+ABEB meetei mayek cheikhei

U+10A56 kharoshthi punctuation danda

U+10A57 kharoshthi punctuation double danda

U+11141 chakma danda

U+11142 chakma double danda

U+111C5 sharada danda

U+111C6 sharada double danda

Figure 6-7. CJK Parentheses

Table 6-7. Unicode Danda Characters (Continued)

Code Name

((((+

FF08 FF08 After Kerning

→

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

208 Writing Systems and Punctuation
U+3037 ideographic telegraph line feed separator symbol is a visible indicator of
the line feed separator symbol used in the Chinese telegraphic code. It is comparable to the
pictures of control codes found in the Control Pictures block.

U+3005 ideographic iteration mark is used to stand for the second of a pair of identical
ideographs occurring in adjacent positions within a document.

U+3006 ideographic closing mark is used frequently on signs to indicate that a store or
booth is closed for business. The Japanese pronunciation is shime, most often encountered
in the compound shime-kiri.

The U+3008 and U+3009 angle brackets are unambiguously wide, as are other bracket
characters in this block, such as double angle brackets, tortoise shell brackets, and white
square brackets. Where mathematical and other non-CJK contexts use brackets of similar
shape, the Unicode Standard encodes them separately.

U+3012 postal mark is used in Japanese addresses immediately preceding the numerical
postal code. It is also used on forms and applications to indicate the blank space in which a
postal code is to be entered. U+3020 postal mark face and U+3036 circled postal

mark are properly glyphic variants of U+3012 and are included for compatibility.

U+3031 vertical kana repeat mark and U+3032 vertical kana repeat with voiced

sound mark are used only in vertically written Japanese to repeat pairs of kana characters
occurring immediately prior in a document. The voiced variety U+3032 is used in cases
where the repeated kana are to be voiced. For instance, a repetitive phrase like toki-doki
could be expressed as <U+3068, U+304D, U+3032> in vertical writing. Both of these char-
acters are intended to be represented by “double-height” glyphs requiring two ideographic
“cells” to print; this intention also explains the existence in source standards of the charac-
ters representing the top and bottom halves of these characters (that is, the characters
U+3033, U+3034, and U+3035). In horizontal writing, similar characters are used, and
they are separately encoded. In Hiragana, the equivalent repeat marks are encoded at
U+309D and U+309E; in Katakana, they are U+30FD and U+30FE.

Sesame Dots. U+FE45 sesame dot and U+FE46 white sesame dot are used in vertical
text, where a series of sesame dots may appear beside the main text, as a sidelining to pro-
vide visual emphasis. In this respect, their usage is similar to such characters as U+FE34
presentation form for vertical wavy low line, which are also used for sidelining ver-
tical text for emphasis. Despite being encoded in the block for CJK compatibility forms, the
sesame dots are not compatibility characters. They are in general typographic use and are
found in the Japanese standard, JIS X 0213.

U+FE45 sesame dot is historically related to U+3001 ideographic comma, but is not
simply a vertical form variant of it. The function of an ideographic comma in connected text
is distinct from that of a sesame dot.

Unknown or Unavailable Ideographs

U+3013 geta mark is used to indicate the presence of, or to hold a place for, an ideograph
that is not available when a document is printed. It has no other use. Its name comes from
its resemblance to the mark left by traditional Japanese sandals (geta). A variety of light and
heavy glyphic variants occur.

U+303E ideographic variation indicator is a graphic character that is to be rendered
visibly. It alerts the user that the intended character is similar to, but not equal to, the char-
acter that follows. Its use is similar to the existing character U+3013 geta mark. A geta

mark substitutes for the unknown or unavailable character, but does not identify it. The
ideographic variation indicator is the head of a two-character sequence that gives
some indication about the intended glyph or intended character. Ultimately, the ideo-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

6.2 General Punctuation 209
graphic variation indicator and the character following it are intended to be replaced
by the correct character, once it has been identified or a font resource or input resource has
been provided for it.

U+303F ideographic half fill space is a visible indicator of a display cell filler used
when ideographic characters have been split during display on systems using a double-byte
character encoding. It is included in the Unicode Standard for compatibility.

See also “Ideographic Description Sequences” in Section 12.1, Han.

CJK Compatibility Forms

Vertical Forms. CJK vertical forms are compatibility characters encoded for compatibility
with legacy implementations that encode these characters explicitly when Chinese text is
being set in vertical rather than horizontal lines. The preferred Unicode approach to repre-
sentation of such text is to simply use the nominal characters that correspond to these ver-
tical variants. Then, at display time, the appropriate glyph is selected according to the line
orientation.

The Unicode Standard contains two blocks devoted primarily to these CJK vertical forms.
The CJK Vertical Forms block, U+FE10..U+FE1F, contains compatibility characters
needed for round-trip mapping to the Chinese standard, GB 18030. The CJK Compatibil-
ity Forms block, U+FE30..U+FE4F, contains forms found in the Chinese standard, CNS
11643.

Styled Overscores and Underscores. The CJK Compatibility Forms block also contains a
number of compatibility characters from CNS 11643, which consist of different styles of
overscores or underscores. They were intended, in the Chinese standard, for the represen-
tation of various types of overlining or underlining, for emphasis of text when laid out hor-
izontally. Except for round-trip mapping with legacy character encodings, the use of these
characters is discouraged; use of styles is the preferred way to handle such effects in modern
text rendering.

Small Form Variants. CNS 11643 also contains a number of small variants of ASCII punc-
tuation characters. The Unicode Standard encodes those variants as compatibility charac-
ters in the Small Form Variants block, U+FE50..U+FE6F. Those characters, while
construed as fullwidth characters, are nevertheless depicted using small forms that are set
in a fullwidth display cell. (See the discussion in Section 12.4, Hiragana and Katakana.)
These characters are provided for compatibility with legacy implementations.

Two small form variants from CNS 11643/plane 1 were unified with other characters out-
side the ASCII block: 213116 was unified with U+00B7 middle dot, and 226116 was uni-
fied with U+2215 division slash.

Fullwidth and Halfwidth Variants. For compatibility with East Asian legacy character
sets, the Unicode Standard encodes fullwidth variants of ASCII punctuation and halfwidth
variants of CJK punctuation. See Section 12.5, Halfwidth and Fullwidth Forms, for more
information.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

210 Writing Systems and Punctuation
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 7

European Alphabetic Scripts 7

Modern European alphabetic scripts are derived from or influenced by the Greek script,
which itself was an adaptation of the Phoenician alphabet. A Greek innovation was writing
the letters from left to right, which is the writing direction for all the scripts derived from or
inspired by Greek.

The alphabetic scripts and additional characters described in this chapter are:

Some scripts whose geographic area of primary usage is outside Europe are included in this
chapter because of their relationship with Greek script. Coptic is used primarily by the
Coptic church in Egypt and elsewhere; Armenian and Georgian are primarily associated
with countries in the Caucasus (which is often not included as part of Europe), although
Armenian in particular is used by a large diaspora.

These scripts are all written from left to right. Many have separate lowercase and uppercase
forms of the alphabet. Spaces are used to separate words. Accents and diacritical marks are
used to indicate phonetic features and to extend the use of base scripts to additional lan-
guages. Some of these modification marks have evolved into small free-standing signs that
can be treated as characters in their own right.

The Latin script is used to write or transliterate texts in a wide variety of languages. The
International Phonetic Alphabet (IPA) is an extension of the Latin alphabet, enabling it to
represent the phonetics of all languages. Other Latin phonetic extensions are used for the
Uralic Phonetic Alphabet.

The Latin alphabet is derived from the alphabet used by the Etruscans, who had adopted a
Western variant of the classical Greek alphabet (Section 14.2, Old Italic). Originally it con-
tained only 24 capital letters. The modern Latin alphabet as it is found in the Basic Latin
block owes its appearance to innovations of scribes during the Middle Ages and practices of
the early Renaissance printers.

The Cyrillic script was developed in the ninth century and is also based on Greek. Like
Latin, Cyrillic is used to write or transliterate texts in many languages. The Georgian and
Armenian scripts were devised in the fifth century and are influenced by Greek. Modern
Georgian does not have separate uppercase and lowercase forms.

The Coptic script was the last stage in the development of Egyptian writing. It represented
the adaptation of the Greek alphabet to writing Egyptian, with the retention of forms from
Demotic for sounds not adequately represented by Greek letters. Although primarily used
in Egypt from the fourth to the tenth century, it is described in this chapter because of its
close relationship to the Greek script.

Latin Cyrillic Georgian

Greek Glagolitic Modifier letters

Coptic Armenian Combining marks
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

212 European Alphabetic Scripts
Glagolitic is an early Slavic script related in some ways to both the Greek and the Cyrillic
scripts. It was widely used in the Balkans but gradually died out, surviving the longest in
Croatia. Like Coptic, however, it still has some modern use in liturgical contexts.

This chapter also describes modifier letters and combining marks used with the Latin script
and other scripts.

The block descriptions for other archaic European alphabetic scripts, such as Gothic,
Ogham, Old Italic, and Runic, can be found in Chapter 14, Additional Ancient and Historic
Scripts.

7.1 Latin
The Latin script was derived from the Greek script. Today it is used to write a wide variety
of languages all over the world. In the process of adapting it to other languages, numerous
extensions have been devised. The most common is the addition of diacritical marks. Fur-
thermore, the creation of digraphs, inverse or reverse forms, and outright new characters
have all been used to extend the Latin script.

The Latin script is written in linear sequence from left to right. Spaces are used to separate
words and provide the primary line breaking opportunities. Hyphens are used where lines
are broken in the middle of a word. (For more information, see Unicode Standard Annex
#14, “Unicode Line Breaking Algorithm.”) Latin letters come in uppercase and lowercase
pairs.

Languages. Some indication of language or other usage is given for many characters within
the names lists accompanying the character charts.

Diacritical Marks. Speakers of different languages treat the addition of a diacritical mark
to a base letter differently. In some languages, the combination is treated as a letter in the
alphabet for the language. In others, such as English, the same words can often be spelled
with and without the diacritical mark without implying any difference. Most languages
that use the Latin script treat letters with diacritical marks as variations of the base letter,
but do not accord the combination the full status of an independent letter in the alphabet.
Widely used accented character combinations are provided as single characters to accom-
modate interoperation with pervasive practice in legacy encodings. Combining diacritical
marks can express these and all other accented letters as combining character sequences.

In the Unicode Standard, all diacritical marks are encoded in sequence after the base char-
acters to which they apply. For more details, see the subsection “Combining Diacritical
Marks” in Section 7.9, Combining Marks, and also Section 2.11, Combining Characters.

Alternative Glyphs. Some characters have alternative representations, although they have
a common semantic. In such cases, a preferred glyph is chosen to represent the character in
the code charts, even though it may not be the form used under all circumstances. Some
Latin examples to illustrate this point are provided in Figure 7-1 and discussed in the text
that follows.

Common typographical variations of basic Latin letters include the open- and closed-loop
forms of the lowercase letters “a” and “g”, as shown in the first example in Figure 7-1. In
ordinary Latin text, such distinctions are merely glyphic alternates for the same characters;
however, phonetic transcription systems, such as IPA and Pinyin, often make systematic
distinctions between these forms.

Variations in Diacritical Marks. The shape and placement of diacritical marks can be sub-
ject to considerable variation that might surprise a reader unfamiliar with such distinc-
tions. For example, when Czech is typeset, U+010F latin small letter d with caron
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.1 Latin 213
and U+0165 latin small letter t with caron are often rendered by glyphs with an
apostrophe instead of with a caron, commonly known as a há`ek. See the second example
in Figure 7-1. In Slovak, this use also applies to U+013E latin small letter l with

caron and U+013D latin capital letter l with caron. The use of an apostrophe can
avoid some line crashes over the ascenders of those letters and so result in better typogra-
phy. In typewritten or handwritten documents, or in didactic and pedagogical material,
glyphs with há`eks are preferred.

Characters with cedillas, commas or ogoneks below often are subject to variable typo-
graphical usage, depending on the availability and quality of fonts used, the technology, the
era and the geographic area. Various hooks, cedillas, commas, and squiggles may be substi-
tuted for the nominal forms of these diacritics below, and even the directions of the hooks
may be reversed. There are two notable special cases regarding the use of these diacritic
marks below letters which require further discussion: Latvian cedillas and the use of cedil-
las or comma below in Turkish and Romanian.

Latvian Cedilla. There is specific variation involved in the placement and shapes of cedillas
on Latvian characters. This is illustrated by the Latvian letter U+0123 latin small letter

g with cedilla, as shown in example 3 in Figure 7-1. In good Latvian typography, this
character is always shown with a rotated comma over the g, rather than a cedilla below the
g, because of the typographical design and layout issues resulting from trying to place a
cedilla below the descender loop of the g. Poor Latvian fonts may substitute an acute accent
for the rotated comma, and handwritten or other printed forms may actually show the
cedilla below the g. The uppercase form of the letter is always shown with a cedilla, as the
rounded bottom of the G poses no problems for attachment of the cedilla.

Other Latvian letters with a cedilla below (U+0137 latin small letter k with cedilla,
U+0146 latin small letter n with cedilla, and U+0157 latin small letter r with

cedilla) always prefer a glyph with a floating comma below, as there is no proper attach-
ment point for a cedilla at the bottom of the base form.

Cedilla and Comma Below in Turkish and Romanian. The Latin letters s and t with
comma below or with cedilla diacritics pose particular interpretation issues for Turkish and
Romanian data, both in legacy character sets and in the Unicode Standard. Legacy charac-
ter sets generally include a single form for these characters. While the formal interpretation
of legacy character sets is that they contain only one of the forms, in practice this single
character has been used to represent any of the forms. For example, 0xBA in ISO 8859-2 is
formally defined as a lowercase s with cedilla, but has been used to represent a lowercase s
with comma below for Romanian.

The Unicode Standard provides unambiguous representations for all of the forms, for
example, U+0219 n latin small letter s with comma below versus U+015F m latin

small letter s with cedilla. In modern usage, the preferred representation of Roma-
nian text is with U+0219 n latin small letter s with comma below, while Turkish data
is represented with U+015F m latin small letter s with cedilla.

Figure 7-1. Alternative Glyphs in Latin

@ A U S T W V
a a g g

L RC D ",
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

214 European Alphabetic Scripts
However, due to the prevalence of legacy implementations, a large amount of Romanian
data will contain U+015F m latin small letter s with cedilla or the corresponding
code point 0xBA in ISO 8859-2. When converting data represented using ISO 8859-2,
0xBA should be mapped to the appropriate form. When processing Romanian Unicode
data, implementations should treat U+0219 n latin small letter s with comma below

and U+015F m latin small letter s with cedilla as equivalent.

Exceptional Case Pairs. The characters U+0130 latin capital letter i with dot above

and U+0131 latin small letter dotless i (used primarily in Turkish) are assumed to
take ASCII “i” and “I”, respectively, as their case alternates. This mapping makes the corre-
sponding reverse mapping language-specific; mapping in both directions requires special
attention from the implementer (see Section 5.18, Case Mappings).

Diacritics on i and j. A dotted (normal) i or j followed by a nonspacing mark above loses
the dot in rendering. Thus, in the word naïve, the ï could be spelled with i + diaeresis. A dot-
ted-i is not equivalent to a Turkish dotless-i + overdot, nor are other cases of accented dot-
ted-i equivalent to accented dotless-i (for example, i + ¨ ı + ¨). The same pattern is used
for j. Dotless-j is used in the Landsmålsalfabet, where it does not have a case pair.

To express the forms sometimes used in the Baltic (where the dot is retained under a top
accent in dictionaries), use i + overdot + accent (see Figure 7-2).

All characters that use their dot in this manner have the Soft_Dotted property in Unicode.

Vietnamese. In the modern Vietnamese alphabet, there are 12 vowel letters and 5 tone
marks (see Figure 7-3). Normalization Form C represents the combination of vowel letter
and tone mark as a single unit—for example, U+1EA8]latin capital letter a with

circumflex and hook above. Normalization Form D decomposes this combination into
the combining character sequence, such as <U+0041, U+0302, U+0309>. Some widely
used implementations prefer storing the vowel letter and the tone mark separately.

The Vietnamese vowels and other letters are found in the Basic Latin, Latin-1 Supplement,
and Latin Extended-A blocks. Additional precomposed vowels and tone marks are found in
the Latin Extended Additional block.

The characters U+0300 combining grave accent, U+0309 combining hook above,
U+0303 combining tilde, U+0301 combining acute accent, and U+0323 combining

dot below should be used in representing the Vietnamese tone marks. The characters
U+0340 combining grave tone mark and U+0341 combining acute tone mark have
canonical equivalences to U+0300 combining grave accent and U+0301 combining

acute accent, respectively; they are not recommended for use in representing Vietnamese
tones, despite the presence of tone mark in their character names.

Figure 7-2. Diacritics on i and j

Figure 7-3. Vietnamese Letters and Tone Marks

j

i

j

i¨ ï ´

.
´

í

í
.

$ →

→

→

→$ $

$

$� i

.
$+

+

+

+

+

+�
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.1 Latin 215
Standards. Unicode follows ISO/IEC 8859-1 in the layout of Latin letters up to U+00FF.
ISO/IEC 8859-1, in turn, is based on older standards—among others, ASCII (ANSI X3.4),
which is identical to ISO/IEC 646:1991-IRV. Like ASCII, ISO/IEC 8859-1 contains Latin
letters, punctuation signs, and mathematical symbols. These additional characters are
widely used with scripts other than Latin. The descriptions of these characters are found in
Chapter 6, Writing Systems and Punctuation, and Chapter 15, Symbols.

The Latin Extended-A block includes characters contained in ISO/IEC 8859—Part 2. Latin
alphabet No. 2, Part 3. Latin alphabet No. 3, Part 4. Latin alphabet No. 4, and Part 9. Latin
alphabet No. 5. Many of the other graphic characters contained in these standards, such as
punctuation, signs, symbols, and diacritical marks, are already encoded in the Latin-1 Sup-
plement block. Other characters from these parts of ISO/IEC 8859 are encoded in other
blocks, primarily in the Spacing Modifier Letters block (U+02B0..U+02FF) and in the
character blocks starting at and following the General Punctuation block. The Latin
Extended-A block also covers additional characters from ISO/IEC 6937.

The Latin Extended-B block covers, among others, characters in ISO 6438
Documentation—African coded character set for bibliographic information interchange,
Pinyin Latin transcription characters from the People’s Republic of China national stan-
dard GB 2312 and from the Japanese national standard JIS X 0212, and Sami characters
from ISO/IEC 8859 Part 10. Latin alphabet No. 6.

The characters in the IPA block are taken from the 1989 revision of the International Pho-
netic Alphabet, published by the International Phonetic Association. Extensions from later
IPA sources have also been added.

Related Characters. For other Latin-derived characters, see Letterlike Symbols
(U+2100..U+214F), Currency Symbols (U+20A0..U+20CF), Number Forms
(U+2150..U+218F), Enclosed Alphanumerics (U+2460..U+24FF), CJK Compatibility
(U+3300..U+33FF), Fullwidth Forms (U+FF21..U+FF5A), and Mathematical Alphanu-
meric Symbols (U+1D400..U+1D7FF).

Letters of Basic Latin: U+0041–U+007A

Only a small fraction of the languages written with the Latin script can be written entirely
with the basic set of 26 uppercase and 26 lowercase Latin letters contained in this block.
The 26 basic letter pairs form the core of the alphabets used by all the other languages that
use the Latin script. A stream of text using one of these alphabets would therefore intermix
characters from the Basic Latin block and other Latin blocks.

Occasionally a few of the basic letter pairs are not used to write a language. For example,
Italian does not use “j” or “w”.

Letters of the Latin-1 Supplement: U+00C0–U+00FF

The Latin-1 supplement extends the basic 26 letter pairs of ASCII by providing additional
letters for the major languages of Europe listed in the next paragraph.

Languages. The languages supported by the Latin-1 supplement include Catalan, Danish,
Dutch, Faroese, Finnish, Flemish, German, Icelandic, Irish, Italian, Norwegian, Portu-
guese, Spanish, and Swedish.

Ordinals. U+00AA feminine ordinal indicator and U+00BA masculine ordinal

indicator can be depicted with an underscore, but many modern fonts show them as
superscripted Latin letters with no underscore. In sorting and searching, these characters
should be treated as weakly equivalent to their Latin character equivalents.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

216 European Alphabetic Scripts
Latin Extended-A: U+0100–U+017F

The Latin Extended-A block contains a collection of letters that, when added to the letters
contained in the Basic Latin and Latin-1 Supplement blocks, allow for the representation of
most European languages that employ the Latin script. Many other languages can also be
written with the characters in this block. Most of these characters are equivalent to precom-
posed combinations of base character forms and combining diacritical marks. These com-
binations may also be represented by means of composed character sequences. See
Section 2.11, Combining Characters, and Section 7.9, Combining Marks.

Compatibility Digraphs. The Latin Extended-A block contains five compatibility
digraphs, encoded for compatibility with ISO/IEC 6937:1984. Two of these characters,
U+0140 latin small letter l with middle dot and its uppercase version, were origi-
nally encoded in ISO/IEC 6937 for support of Catalan. In current conventions, the repre-
sentation of this digraphic sequence in Catalan simply uses a sequence of an ordinary “l”
and U+00B7 middle dot.

Another pair of characters, U+0133 latin small ligature ij and its uppercase version,
was provided to support the digraph “ij” in Dutch, often termed a “ligature” in discussions
of Dutch orthography. When adding intercharacter spacing for line justification, the “ij” is
kept as a unit, and the space between the i and j does not increase. In titlecasing, both the i
and the j are uppercased, as in the word “IJsselmeer.” Using a single code point might sim-
plify software support for such features; however, because a vast amount of Dutch data is
encoded without this digraph character, under most circumstances one will encounter an
<i, j> sequence.

Finally, U+0149 latin small letter n preceded by apostrophe was encoded for use in
Afrikaans. The character is deprecated, and its use is strongly discouraged. In nearly all
cases it is better represented by a sequence of an apostrophe followed by “n”.

Languages. Most languages supported by this block also require the concurrent use of
characters contained in the Basic Latin and Latin-1 Supplement blocks. When combined
with these two blocks, the Latin Extended-A block supports Afrikaans, Basque, Breton,
Croatian, Czech, Esperanto, Estonian, French, Frisian, Greenlandic, Hungarian, Latin, Lat-
vian, Lithuanian, Maltese, Polish, Provençal, Rhaeto-Romanic, Romanian, Romany, Sámi,
Slovak, Slovenian, Sorbian, Turkish, Welsh, and many others.

Latin Extended-B: U+0180–U+024F

The Latin Extended-B block contains letterforms used to extend Latin scripts to represent
additional languages. It also contains phonetic symbols not included in the International
Phonetic Alphabet (see the IPA Extensions block, U+0250..U+02AF).

Arrangement. The characters are arranged in a nominal alphabetical order, followed by a
small collection of Latinate forms. Uppercase and lowercase pairs are placed together where
possible, but in many instances the other case form is encoded at some distant location and
so is cross-referenced. Variations on the same base letter are arranged in the following
order: turned, inverted, hook attachment, stroke extension or modification, different style,
small cap, modified basic form, ligature, and Greek derived.

Croatian Digraphs Matching Serbian Cyrillic Letters. Serbo-Croatian is a single language
with paired alphabets: a Latin script (Croatian) and a Cyrillic script (Serbian). A set of
compatibility digraph codes is provided for one-to-one transliteration. There are two
potential uppercase forms for each digraph, depending on whether only the initial letter is
to be capitalized (titlecase) or both (all uppercase). The Unicode Standard offers both
forms so that software can convert one form to the other without changing font sets. The
appropriate cross references are given for the lowercase letters.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.1 Latin 217
Pinyin Diacritic–Vowel Combinations. The Chinese standard GB 2312, the Japanese stan-
dard JIS X 0212, and some other standards include codes for Pinyin, which is used for Latin
transcription of Mandarin Chinese. Most of the letters used in Pinyin romanization are
already covered in the preceding Latin blocks. The group of 16 characters provided here
completes the Pinyin character set specified in GB 2312 and JIS X 0212.

Case Pairs. A number of characters in this block are uppercase forms of characters whose
lowercase forms are part of some other grouping. Many of these characters came from the
International Phonetic Alphabet; they acquired uppercase forms when they were adopted
into Latin script-based writing systems. Occasionally, however, alternative uppercase forms
arose in this process. In some instances, research has shown that alternative uppercase
forms are merely variants of the same character. If so, such variants are assigned a single
Unicode code point, as is the case of U+01B7 latin capital letter ezh. But when
research has shown that two uppercase forms are actually used in different ways, then they
are given different codes; such is the case for U+018E latin capital letter reversed e

and U+018F latin capital letter schwa. In this instance, the shared lowercase form is
copied to enable unique case-pair mappings: U+01DD latin small letter turned e is a
copy of U+0259 latin small letter schwa.

For historical reasons, the names of some case pairs differ. For example, U+018E latin

capital letter reversed e is the uppercase of U+01DD latin small letter

turned e—not of U+0258 latin small letter reversed e. For default case mappings of
Unicode characters, see Section 4.2, Case.

Caseless Letters. A number of letters used with the Latin script are caseless—for example,
the caseless glottal stop at U+0294 and U+01BB latin letter two with stroke, and the
various letters denoting click sounds. Caseless letters retain their shape when uppercased.
When titlecasing words, they may also act transparently; that is, if they occur in the leading
position, the next following cased letter may be uppercased instead.

Over the last several centuries, the trend in typographical development for the Latin script
has tended to favor the eventual introduction of case pairs. See the following discussion of
the glottal stop. The Unicode Standard may encode additional uppercase characters in such
instances. However, for reasons of stability, the standard will never add a new lowercase
form for an existing uppercase character. See also “Caseless Matching” in Section 5.18, Case
Mappings.

Glottal Stop. There are two patterns of usage for the glottal stop in the Unicode Standard.
U+0294 j latin letter glottal stop is a caseless letter used in IPA. It is also widely seen
in language orthographies based on IPA or Americanist phonetic usage, in those instances
where no casing is apparent for glottal stop. Such orthographies may avoid casing for glottal
stop to the extent that when titlecasing strings, a word with an initial glottal stop may have
its second letter uppercased instead of the first letter.

In a small number of orthographies for languages of northwestern Canada, and in particu-
lar, for Chipewyan, Dogrib, and Slavey, case pairs have been introduced for glottal stop. For
these orthographies, the cased glottal stop characters should be used: U+0241 k latin cap-

ital letter glottal stop and U+0242 l latin small letter glottal stop.

The glyphs for the glottal stop are somewhat variable and overlap to a certain extent. The
glyph shown in the code charts for U+0294 j latin letter glottal stop is a cap-height
form as specified in IPA, but the same character is often shown with a glyph that resembles
the top half of a question mark and that may or may not be cap height. U+0241 k latin

capital letter glottal stop, while shown with a larger glyph in the code charts, often
appears identical to U+0294. U+0242 l latin small letter glottal stop is a small form
of U+0241.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

218 European Alphabetic Scripts
Various small, raised hook- or comma-shaped characters are often substituted for a glottal
stop—for instance, U+02BC m modifier letter apostrophe, U+02BB n modifier letter

turned comma, U+02C0 o modifier letter glottal stop, or U+02BE p modifier let-

ter right half ring. U+02BB, in particular, is used in Hawaiian orthography as the
nokina.

IPA Extensions: U+0250–U+02AF

The IPA Extensions block contains primarily the unique symbols of the International Pho-
netic Alphabet, which is a standard system for indicating specific speech sounds. The IPA
was first introduced in 1886 and has undergone occasional revisions of content and usage
since that time. The Unicode Standard covers all single symbols and all diacritics in the last
published IPA revision (1999) as well as a few symbols in former IPA usage that are no lon-
ger currently sanctioned. A few symbols have been added to this block that are part of the
transcriptional practices of Sinologists, Americanists, and other linguists. Some of these
practices have usages independent of the IPA and may use characters from other Latin
blocks rather than IPA forms. Note also that a few nonstandard or obsolete phonetic sym-
bols are encoded in the Latin Extended-B block.

An essential feature of IPA is the use of combining diacritical marks. IPA diacritical mark
characters are coded in the Combining Diacritical Marks block, U+0300..U+036F. In IPA,
diacritical marks can be freely applied to base form letters to indicate the fine degrees of
phonetic differentiation required for precise recording of different languages.

Standards. The International Phonetic Association standard considers IPA to be a separate
alphabet, so it includes the entire Latin lowercase alphabet a–z, a number of extended Latin
letters such as U+0153 œ latin small ligature oe, and a few Greek letters and other sym-
bols as separate and distinct characters. In contrast, the Unicode Standard does not dupli-
cate either the Latin lowercase letters a–z or other Latin or Greek letters in encoding IPA.
Unlike other character standards referenced by the Unicode Standard, IPA constitutes an
extended alphabet and phonetic transcriptional standard, rather than a character encoding
standard.

Unifications. The IPA characters are unified as much as possible with other letters, albeit
not with nonletter symbols such as U+222B integral. The IPA characters have also
been adopted into the Latin-based alphabets of many written languages, such as some used
in Africa. It is futile to attempt to distinguish a transcription from an actual alphabet in
such cases. Therefore, many IPA characters are found outside the IPA Extensions block. IPA
characters that are not found in the IPA Extensions block are listed as cross references at the
beginning of the character names list for this block.

IPA Alternates. In a few cases IPA practice has, over time, produced alternate forms, such
as U+0269 latin small letter iota “ι” versus U+026A latin letter small capital i

“i.” The Unicode Standard provides separate encodings for the two forms because they are
used in a meaningfully distinct fashion.

Case Pairs. IPA does not sanction case distinctions; in effect, its phonetic symbols are all
lowercase. When IPA symbols are adopted into a particular alphabet and used by a given
written language (as has occurred, for example, in Africa), they acquire uppercase forms.
Because these uppercase forms are not themselves IPA symbols, they are generally encoded
in the Latin Extended-B block (or other Latin extension blocks) and are cross-referenced
with the IPA names list.

Typographic Variants. IPA includes typographic variants of certain Latin and Greek letters
that would ordinarily be considered variations of font style rather than of character iden-
tity, such as small capital letterforms. Examples include a typographic variant of the
Greek letter phi φ and the borrowed letter Greek iota ι, which has a unique Latin uppercase
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.1 Latin 219
form. These forms are encoded as separate characters in the Unicode Standard because
they have distinct semantics in plain text.

Affricate Digraph Ligatures. IPA officially sanctions six digraph ligatures used in tran-
scription of coronal affricates. These are encoded at U+02A3..U+02A8. The IPA digraph
ligatures are explicitly defined in IPA and have possible semantic values that make them not
simply rendering forms. For example, while U+02A6 latin small letter ts digraph is a
transcription for the sounds that could also be transcribed in IPA as “ts” <U+0074,
U+0073>, the choice of the digraph ligature may be the result of a deliberate distinction
made by the transcriber regarding the systematic phonetic status of the affricate. The
choice of whether to ligate cannot be left to rendering software based on the font available.
This ligature also differs in typographical design from the “ts” ligature found in some old-
style fonts.

Arrangement. The IPA Extensions block is arranged in approximate alphabetical order
according to the Latin letter that is graphically most similar to each symbol. This order has
nothing to do with a phonetic arrangement of the IPA letters.

Phonetic Extensions: U+1D00–U+1DBF

Most of the characters in the first of the two adjacent blocks comprising the phonetic
extensions are used in the Uralic Phonetic Alphabet (UPA; also called Finno-Ugric Tran-
scription, FUT), a highly specialized system that has been used by Uralicists globally for
more than 100 years. Originally, it was chiefly used in Finland, Hungary, Estonia, Germany,
Norway, Sweden, and Russia, but it is now known and used worldwide, including in North
America and Japan. Uralic linguistic description, which treats the phonetics, phonology,
and etymology of Uralic languages, is also used by other branches of linguistics, such as
Indo-European, Turkic, and Altaic studies, as well as by other sciences, such as archaeology.

A very large body of descriptive texts, grammars, dictionaries, and chrestomathies exists,
and continues to be produced, using this system.

The UPA makes use of approximately 258 characters, some of which are encoded in the
Phonetic Extensions block; others are encoded in the other Latin blocks and in the Greek
and Cyrillic blocks. The UPA takes full advantage of combining characters. It is not uncom-
mon to find a base letter with three diacritics above and two below.

Typographic Features of the UPA. Small capitalization in the UPA means voicelessness of a
normally voiced sound. Small capitalization is also used to indicate certain either voiceless
or half-voiced consonants. Superscripting indicates very short schwa vowels or transition
vowels, or in general very short sounds. Subscripting indicates co-articulation caused by
the preceding or following sound. Rotation (turned letters) indicates reduction; sideways
(that is, 90 degrees counterclockwise) rotation is used where turning (180 degrees) might
result in an ambiguous representation.

UPA phonetic material is generally represented with italic glyphs, so as to separate it from
the surrounding text.

Other Phonetic Extensions. The remaining characters in the phonetics extension range
U+1D6C..U+1DBF are derived from a wide variety of sources, including many technical
orthographies developed by SIL linguists, as well as older historic sources.

All attested phonetic characters showing struckthrough tildes, struckthrough bars, and ret-
roflex or palatal hooks attached to the basic letter have been separately encoded here.
Although separate combining marks exist in the Unicode Standard for overstruck diacritics
and attached retroflex or palatal hooks, earlier encoded IPA letters such as U+0268 latin

small letter i with stroke and U+026D latin small letter l with retroflex hook

have never been given decomposition mappings in the standard. For consistency, all newly
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

220 European Alphabetic Scripts
encoded characters are handled analogously to the existing, more common characters of
this type and are not given decomposition mappings. Because these characters do not have
decompositions, they require special handling in some circumstances. See the discussion of
single-script confusables in Unicode Technical Standard #39, “Unicode Security Mecha-
nisms.”

The Phonetic Extensions Supplement block also contains 37 superscript modifier letters.
These complement the much more commonly used superscript modifier letters found in
the Spacing Modifier Letters block.

U+1D77 latin small letter turned g and U+1D78 modifier letter cyrillic en are
used in Caucasian linguistics. U+1D79 latin small letter insular g is used in older
Irish phonetic notation. It is to be distinguished from a Gaelic style glyph for U+0067
latin small letter g.

Digraph for th. U+1D7A latin small letter th with strikethrough is a digraphic
notation commonly found in some English-language dictionaries, representing the voice-
less (inter)dental fricative, as in thin. While this character is clearly a digraph, the obliga-
tory strikethrough across two letters distinguishes it from a “th” digraph per se, and there is
no mechanism involving combining marks that can easily be used to represent it. A com-
mon alternative glyphic form for U+1D7A uses a horizontal bar to strike through the two
letters, instead of a diagonal stroke.

Latin Extended Additional: U+1E00–U+1EFF

The characters in this block are mostly precomposed combinations of Latin letters with
one or more general diacritical marks. With the exception of U+1E9A latin small letter

a with right half ring, each of the precomposed characters contained in this block is a
canonical decomposable character and may alternatively be represented with a base letter
followed by one or more general diacritical mark characters found in the Combining Dia-
critical Marks block.

The non-decomposable characters in this block, particularly in the range
U+1EFA..U+1EFF, are mostly specialized letters used in Latin medieval manuscript tradi-
tions. These characters complement the larger set of medieval manuscript characters
encoded in the Latin Extended-D block.

Capital Sharp S. U+1E9E latin capital letter sharp s is for use in German. It is limited
to specialized circumstances, such as uppercased strings in shop signage and book titles.
The casing behavior of this character is unusual, as the recommended uppercase form for
most casing operations on U+00DF ß latin small letter sharp s continues to be “SS”.
See the discussion of tailored casing in Section 3.13, Default Case Algorithms, for more
about the casing of this character.

Vietnamese Vowel Plus Tone Mark Combinations. A portion of this block (U+1EA0..
U+1EF9) comprises vowel letters of the modern Vietnamese alphabet (quxc ngy) com-
bined with a diacritic mark that denotes the phonemic tone that applies to the syllable.

Latin Extended-C: U+2C60–U+2C7F

This small block of additional Latin characters contains orthographic Latin additions for
minority languages, a few historic Latin letters, and further extensions for phonetic nota-
tions, particularly UPA.

Uighur. The Latin orthography for the Uighur language was influenced by widespread con-
ventions for extension of the Cyrillic script for representing Central Asian languages. In
particular, a number of Latin characters were extended with a Cyrillic-style descender dia-
critic to create new letters for use with Uighur.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.1 Latin 221
Claudian Letters. The Roman emperor Claudius invented three additional letters for use
with the Latin script. Those letters saw limited usage during his reign, but were abandoned
soon afterward. The half h letter is encoded in this block. The other two letters are encoded
in other blocks: U+2132 turned capital f and U+2183 roman numeral reversed one

hundred (unified with the Claudian letter reversed c). Claudian letters in inscriptions are
uppercase only, but may be transcribed by scholars in lowercase.

Latin Extended-D: U+A720–U+A7FF

This block contains a variety of historic letters for the Latin script and other uncommon
phonetic and orthographic extensions to the script.

Egyptological Transliteration. The letters in the range U+A722..U+A725 are specialized
letters used for the Latin transliteration of alef and ain in ancient Egyptian texts. Their
forms are related to the modifier letter half rings (U+02BE..U+02BF) which are sometimes
used in Latin transliteration of Arabic.

Historic Mayan Letters. The letters in the range U+A726..U+A72F are obsolete historic
letters seen only in a few early Spanish manuscripts of Mayan languages. They are not used
in modern Mayan orthographies.

European Medievalist Letters. The letters in the range U+A730..U+A778 occur in a variety
of European medievalist manuscript traditions. None of these have any modern ortho-
graphic usage. A number of these letter forms constitute abbreviations, often for common
Latin particles or suffixes.

Insular and Celticist Letters. The Insular manuscript tradition was current in Anglo-
Saxon England and Gaelic Ireland throughout the early Middle Ages. The letters d, f, g, r, s,
and t had unique shapes in that tradition, different from the Carolingian letters used in the
modern Latin script. Although these letters can be considered variant forms of ordinary
Latin letters, they are separately encoded because of their use by antiquarian Edward Lhuyd
in his 1707 work Archæologia Britannica, which described the Late Cornish language in a
phonetic alphabet using these Insular characters. Other specialists may make use of these
letters contrastively in Old English or Irish manuscript contexts or in secondary material
discussing such manuscripts.

Orthographic Letter Additions. The letters and modifier letters in the range
U+A788..U+A78C occur in modern orthographies of a few small languages of Africa, Mex-
ico, and New Guinea. Several of these characters were based on punctuation characters
originally, so their shapes are confusingly similar to ordinary ASCII punctuation. Because
of this potential confusion, their use is not generally recommended outside the specific
context of the few orthographies already incorporating them.

Latvian Letters. The letters with strokes in the range U+A7A0..U+A7A9 are for use in the
pre-1921 orthography of Latvian. During the 19th century and early 20th century, Latvian
was usually typeset in a Fraktur typeface. Because Fraktur typefaces do not work well with
detached diacritic marks, the extra letters required for Latvian were formed instead with
overstruck bars. The new orthography introduced in 1921 replaced these letters with the
current Latvian letters with cedilla diacritics. The barred s letters were also used in Fraktur
representation of Lower Sorbian until about 1950.

Ancient Roman Epigraphic Letters. There are a small number of additional Latin epi-
graphic letters known from Ancient Roman inscriptions. These letters only occurred as
monumental capitals in the inscriptions, and were not part of the regular Latin alphabet
which later developed case distinctions.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

222 European Alphabetic Scripts
Latin Ligatures: U+FB00–U+FB06

This range in the Alphabetic Presentation Forms block (U+FB00..U+FB4F) contains sev-
eral common Latin ligatures, which occur in legacy encodings. Whether to use a Latin liga-
ture is a matter of typographical style as well as a result of the orthographical rules of the
language. Some languages prohibit ligatures across word boundaries. In these cases, it is
preferable for the implementations to use unligated characters in the backing store and
provide out-of-band information to the display layer where ligatures may be placed.

Some format controls in the Unicode Standard can affect the formation of ligatures. See
“Controlling Ligatures” in Section 16.2, Layout Controls.

7.2 Greek

Greek: U+0370–U+03FF

The Greek script is used for writing the Greek language. The Greek script had a strong
influence on the development of the Latin, Cyrillic, and Coptic scripts.

The Greek script is written in linear sequence from left to right with the frequent use of
nonspacing marks. There are two styles of such use: monotonic, which uses a single mark
called tonos, and polytonic, which uses multiple marks. Greek letters come in uppercase
and lowercase pairs. Spaces are used to separate words and provide the primary line break-
ing opportunities. Archaic Greek texts do not use spaces.

Standards. The Unicode encoding of Greek is based on ISO/IEC 8859-7, which is equiva-
lent to the Greek national standard ELOT 928, designed for monotonic Greek. A number of
variant and archaic characters are taken from the bibliographic standard ISO 5428.

Polytonic Greek. Polytonic Greek, used for ancient Greek (classical and Byzantine) and
occasionally for modern Greek, may be encoded using either combining character
sequences or precomposed base plus diacritic combinations. For the latter, see the follow-
ing subsection, “Greek Extended: U+1F00–U+1FFF.”

Nonspacing Marks. Several nonspacing marks commonly used with the Greek script are
found in the Combining Diacritical Marks range (see Table 7-1).

Because the characters in the Combining Diacritical Marks block are encoded by shape, not
by meaning, they are appropriate for use in Greek where applicable. The character U+0344
combining greek dialytika tonos should not be used. The combination of dialytika

Table 7-1. Nonspacing Marks Used with Greek

Code Name Alternative Names

U+0300 combining grave accent varia

U+0301 combining acute accent tonos, oxia

U+0304 combining macron

U+0306 combining breve

U+0308 combining diaeresis dialytika

U+0313 combining comma above psili, smooth breathing mark

U+0314 combining reversed comma above dasia, rough breathing mark

U+0342 combining greek perispomeni circumflex, tilde, inverted breve

U+0343 combining greek koronis comma above

U+0345 combining greek ypogegrammeni iota subscript
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.2 Greek 223
plus tonos is instead represented by the sequence <U+0308 combining diaeresis, U+0301
combining acute accent>.

Multiple nonspacing marks applied to the same baseform character are encoded in inside-
out sequence. See the general rules for applying nonspacing marks in Section 2.11, Combin-
ing Characters.

The basic Greek accent written in modern Greek is called tonos. It is represented by an
acute accent (U+0301). The shape that the acute accent takes over Greek letters is generally
steeper than that shown over Latin letters in Western European typographic traditions, and
in earlier editions of this standard was mistakenly shown as a vertical line over the vowel.
Polytonic Greek has several contrastive accents, and the accent, or tonos, written with an
acute accent is referred to as oxia, in contrast to the varia, which is written with a grave
accent.

U+0342 combining greek perispomeni may appear as a circumflex N, an inverted breve
., a tilde O, or occasionally a macron -. Because of this variation in form, the perispomeni
was encoded distinctly from U+0303 combining tilde.

U+0313 combining comma above and U+0343 combining greek koronis both take the
form of a raised comma over a baseform letter. U+0343 combining greek koronis was
included for compatibility reasons; U+0313 combining comma above is the preferred
form for general use. Greek uses guillemets for quotation marks; for Ancient Greek, the
quotations tend to follow local publishing practice. Because of the possibility of confusion
between smooth breathing marks and curly single quotation marks, the latter are best
avoided where possible. When either breathing mark is followed by an acute or grave
accent, the pair is rendered side-by-side rather than vertically stacked.

Accents are typically written above their base letter in an all-lowercase or all-uppercase
word; they may also be omitted from an all-uppercase word. However, in a titlecase word,
accents applied to the first letter are commonly written to the left of that letter. This is a
matter of presentation only—the internal representation is still the base letter followed by
the combining marks. It is not the stand-alone version of the accents, which occur before
the base letter in the text stream.

Iota. The nonspacing mark ypogegrammeni (also known as iota subscript in English) can be
applied to the vowels alpha, eta, and omega to represent historic diphthongs. This mark
appears as a small iota below the vowel. When applied to a single uppercase vowel, the iota
does not appear as a subscript, but is instead normally rendered as a regular lowercase iota
to the right of the uppercase vowel. This form of the iota is called prosgegrammeni (also
known as iota adscript in English). In completely uppercased words, the iota subscript
should be replaced by a capital iota following the vowel. Precomposed characters that con-
tain iota subscript or iota adscript also have special mappings. (See Section 5.18, Case Map-
pings.) Archaic representations of Greek words, which did not have lowercase or accents,
use the Greek capital letter iota following the vowel for these diphthongs. Such archaic rep-
resentations require special case mapping, which may not be automatically derivable.

Variant Letterforms. U+03A5 greek capital letter upsilon has two common forms:
one looks essentially like the Latin capital Y, and the other has two symmetric upper
branches that curl like rams’ horns, “Y”. The Y-form glyph has been chosen consistently for
use in the code charts, both for monotonic and polytonic Greek. For mathematical usage,
the rams’ horn form of the glyph is required to distinguish it from the Latin Y. A third form
is also encoded as U+03D2 greek upsilon with hook symbol (see Figure 7-4). The pre-
composed characters U+03D3 greek upsilon with acute and hook symbol and
U+03D4 greek upsilon with diaeresis and hook symbol should not normally be
needed, except where necessary for backward compatibility for legacy character sets.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

224 European Alphabetic Scripts
Variant forms of several other Greek letters are encoded as separate characters in this block.
Often (but not always), they represent different forms taken on by the character when it
appears in the final position of a word. Examples include U+03C2 greek small letter

final sigma used in a final position and U+03D0 greek beta symbol, which is the form
that U+03B2 greek small letter beta would take on in a medial or final position.

Of these variant letterforms, only final sigma should be used in encoding standard Greek
text to indicate a final sigma. It is also encoded in ISO/IEC 8859-7 and ISO 5428 for this
purpose. Because use of the final sigma is a matter of spelling convention, software should
not automatically substitute a final form for a nominal form at the end of a word. However,
when performing lowercasing, the final form needs to be generated based on the context.
See Section 3.13, Default Case Algorithms.

In contrast, U+03D0 greek beta symbol, U+03D1 greek theta symbol, U+03D2
greek upsilon with hook symbol, U+03D5 greek phi symbol, U+03F0 greek kappa

symbol, U+03F1 greek rho symbol, U+03F4 greek capital theta symbol, U+03F5
greek lunate epsilon symbol, and U+03F6 greek reversed lunate epsilon symbol

should be used only in mathematical formulas—never in Greek text. If positional or other
shape differences are desired for these characters, they should be implemented by a font or
rendering engine.

Representative Glyphs for Greek Phi. Starting with The Unicode Standard, Version 3.0, and
the concurrent second edition of ISO/IEC 10646-1, the representative glyphs for U+03C6
ϕ greek small letter phi and U+03D5 φ greek phi symbol were swapped compared to
earlier versions. In ordinary Greek text, the character U+03C6 is used exclusively, although
this character has considerable glyphic variation, sometimes represented with a glyph more
like the representative glyph shown for U+03C6 ϕ (the “loopy” form) and less often with a
glyph more like the representative glyph shown for U+03D5 φ (the “straight” form).

For mathematical and technical use, the straight form of the small phi is an important sym-
bol and needs to be consistently distinguishable from the loopy form. The straight-form
phi glyph is used as the representative glyph for the symbol phi at U+03D5 to satisfy this
distinction.

The representative glyphs were reversed in versions of the Unicode Standard prior to Uni-
code 3.0. This resulted in the problem that the character explicitly identified as the mathe-
matical symbol did not have the straight form of the character that is the preferred glyph
for that use. Furthermore, it made it unnecessarily difficult for general-purpose fonts sup-
porting ordinary Greek text to add support for Greek letters used as mathematical symbols.
This resulted from the fact that many of those fonts already used the loopy-form glyph for
U+03C6, as preferred for Greek body text; to support the phi symbol as well, they would
have had to disrupt glyph choices already optimized for Greek text.

When mapping symbol sets or SGML entities to the Unicode Standard, it is important to
make sure that codes or entities that require the straight form of the phi symbol be mapped
to U+03D5 and not to U+03C6. Mapping to the latter should be reserved for codes or enti-
ties that represent the small phi as used in ordinary Greek text.

Fonts used primarily for Greek text may use either glyph form for U+03C6, but fonts that
also intend to support technical use of the Greek letters should use the loopy form to
ensure appropriate contrast with the straight form used for U+03D5.

Figure 7-4. Variations in Greek Capital Letter Upsilon

X Y Z
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.2 Greek 225
Greek Letters as Symbols. The use of Greek letters for mathematical variables and opera-
tors is well established. Characters from the Greek block may be used for these symbols.

For compatibility purposes, a few Greek letters are separately encoded as symbols in other
character blocks. Examples include U+00B5 μ micro sign in the Latin-1 Supplement char-
acter block and U+2126 Ω ohm sign in the Letterlike Symbols character block. The ohm
sign is canonically equivalent to the capital omega, and normalization would remove any
distinction. Its use is therefore discouraged in favor of capital omega. The same equivalence
does not exist between micro sign and mu, and use of either character as a micro sign is
common. For Greek text, only the mu should be used.

Symbols Versus Numbers. The characters stigma, koppa, and sampi are used only as
numerals, whereas archaic koppa and digamma are used only as letters.

Compatibility Punctuation. Two specific modern Greek punctuation marks are encoded
in the Greek and Coptic block: U+037E “;” greek question mark and U+0387 “·” greek

ano teleia. The Greek question mark (or erotimatiko) has the shape of a semicolon, but
functions as a question mark in the Greek script. The ano teleia has the shape of a middle
dot, but functions as a semicolon in the Greek script.

These two compatibility punctuation characters have canonical equivalences to U+003B
semicolon and U+00B7 middle dot, respectively; as a result, normalized Greek text will
lose any distinctions between the Greek compatibility punctuation characters and the com-
mon punctuation marks. Furthermore, ISO/IEC 8859-7 and most vendor code pages for
Greek simply make use of semicolon and middle dot for the punctuation in question.
Therefore, use of U+037E and U+0387 is not necessary for interoperating with legacy
Greek data, and their use is not generally encouraged for representation of Greek punctua-
tion.

Historic Letters. Historic Greek letters have been retained from ISO 5428.

Coptic-Unique Letters. In the Unicode Standard prior to Version 4.1, the Coptic script was
regarded primarily as a stylistic variant of the Greek alphabet. The letters unique to Coptic
were encoded in a separate range at the end of the Greek character block. Those characters
were to be used together with the basic Greek characters to represent the complete Coptic
alphabet. Coptic text was supposed to be rendered with a font using the Coptic style of
depicting the characters it shared with the Greek alphabet. Texts that mixed Greek and
Coptic languages using that encoding model could be rendered only by associating an
appropriate font by language.

The Unicode Technical Committee and ISO/IEC JTC1/SC2 determined that Coptic is bet-
ter handled as a separate script. Starting with Unicode 4.1, a new Coptic block added all the
letters formerly unified with Greek characters as separate Coptic characters. (See
Section 7.3, Coptic.) Implementations that supported Coptic under the previous encoding
model may, therefore, need to be modified. Coptic fonts may need to continue to support
the display of both the Coptic and corresponding Greek character with the same shape to
facilitate their use with older documents.

Related Characters. For math symbols, see Section 15.5, Mathematical Symbols. For addi-
tional punctuation to be used with this script, see C0 Controls and ASCII Punctuation
(U+0000..U+007F).

Greek Extended: U+1F00–U+1FFF

The characters in this block constitute a number of precomposed combinations of Greek
letters with one or more general diacritical marks; in addition, a number of spacing forms
of Greek diacritical marks are provided here. In particular, these characters can be used for
the representation of polytonic Greek texts without the use of combining marks. Because
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

226 European Alphabetic Scripts
they do not cover all possible combinations in use, some combining character sequences
may be required for a given text.

Each of the letters contained in this block may be alternatively represented with a base letter
from the Greek block followed by one or more general diacritical mark characters found in
the Combining Diacritical Marks block.

Spacing Diacritics. Sixteen additional spacing diacritic marks are provided in this charac-
ter block for use in the representation of polytonic Greek texts. Each has an alternative rep-
resentation for use with systems that support nonspacing marks. The nonspacing
alternatives appear in Table 7-2. The spacing forms are meant for keyboards and pedagogi-
cal use and are not to be used in the representation of titlecase words. The compatibility
decompositions of these spacing forms consist of the sequence U+0020 space followed by
the nonspacing form equivalents shown in Table 7-2.

Ancient Greek Numbers: U+10140–U+1018F

Ancient Greeks primarily used letters of the Greek alphabet to represent numbers. How-
ever, some extensions to this usage required quite a few nonalphabetic symbols or symbols
derived from letters. Those symbols are encoded in the Ancient Greek Numbers block.

Acrophonic Numerals. Greek acrophonic numerals are found primarily in ancient inscrip-
tions from Attica and other Greek regions. Acrophonic means that the character used to
represent each number is the initial letter of the word by which the number is called—for
instance, H for “hecaton” = 100.

The Attic acrophonic system, named for the greater geographic area that includes the city
of Athens, is the most common and well documented. The characters in the Ancient Greek

Table 7-2. Greek Spacing and Nonspacing Pairs

Spacing Form Nonspacing Form

1FBD greek koronis 0313 combining comma above

037A greek ypogegrammeni 0345 combining greek ypogegrammeni

1FBF greek psili 0313 combining comma above

1FC0 greek perispomeni 0342 combining greek perispomeni

1FC1 greek dialytika and perispomeni
0308 combining diaeresis
+ 0342 combining greek perispomeni

1FCD greek psili and varia
0313 combining comma above
+ 0300 combining grave accent

1FCE greek psili and oxia
0313 combining comma above
+ 0301 combining acute accent

1FCF greek psili and perispomeni
0313 combining comma above
+ 0342 combining greek perispomeni

1FDD greek dasia and varia
0314 combining reversed comma above
+ 0300 combining grave accent

1FDE greek dasia and oxia
0314 combining reversed comma above
+ 0301 combining acute accent

1FDF greek dasia and perispomeni
0314 combining reversed comma above
+ 0342 combining greek perispomeni

1FED greek dialytika and varia
0308 combining diaeresis
+ 0300 combining grave accent

1FEE greek dialytika and oxia
0308 combining diaeresis
+ 0301 combining acute accent

1FEF greek varia 0300 combining grave accent

1FFD greek oxia 0301 combining acute accent

1FFE greek dasia 0314 combining reversed comma above
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.3 Coptic 227
Numbers block cover the Attic acrophonic numeral system as well as non-Attic characters
that cannot be considered glyph variants of the Attic acrophonic repertoire. They are the
standard symbols used to represent weight or cost, and they appear consistently in modern
editions and scholarly studies of Greek inscriptions. Uppercase Greek letters from the
Greek block are also used for acrophonic numerals.

The Greek acrophonic number system is similar to the Roman one in that it does not use
decimal position, does not require a placeholder for zero, and has special symbols for 5, 50,
500, and so on. The system is language specific because of the acrophonic principle. In
some cases the same symbol represents different values in different geographic regions. The
symbols are also differentiated by the unit of measurement—for example, talents versus
staters.

Other Numerical Symbols. Other numerical symbols encoded in the range
U+10175..U+1018A appear in a large number of ancient papyri. The standard symbols
used for the representation of numbers, fractions, weights, and measures, they have consis-
tently been used in modern editions of Greek papyri as well as various publications related
to the study and interpretation of ancient documents. Several of these characters have con-
siderable glyphic variation. Some of these glyph variants are similar in appearance to other
characters.

Symbol for Zero. U+1018A greek zero sign occurs whenever a sexagesimal notation is
used in historical astronomical texts to record degrees, minutes and seconds, or hours,
minutes and seconds. The most common form of zero in the papyri is a small circle with a
horizontal stroke above it, but many variations exist. These are taken to be scribal varia-
tions and are considered glyph variants.

7.3 Coptic

Coptic: U+2C80–U+2CFF

The Coptic script is the final stage in the development of the Egyptian writing system. Cop-
tic was subject to strong Greek influences because Greek was more identified with the
Christian tradition, and the written demotic Egyptian no longer matched the spoken lan-
guage. The Coptic script was based on the Greek uncial alphabets with several Coptic addi-
tional letters unique to Coptic. The Coptic language died out in the fourteenth century, but
it is maintained as a liturgical language by Coptic Christians. Coptic is written from left to
right in linear sequence; in modern use, spaces are used to separate words and provide the
primary line breaking opportunities.

Prior to Version 4.1, the Unicode Standard treated Coptic as a stylistic variant of Greek.
Seven letters unique to Coptic (14 characters with the case pairs) were encoded in the
Greek and Coptic block. In addition to these 14 characters, Version 4.1 added a Coptic
block containing the remaining characters needed for basic Coptic text processing. This
block also includes standard logotypes used in Coptic text as well as characters for Old
Coptic and Nubian.

Development of the Coptic Script. The best-known Coptic dialects are Sahidic and
Bohairic. Coptic scholarship recognizes a number of other dialects that use additional
characters. The repertoires of Sahidic and Bohairic reflect efforts to standardize the writing
of Coptic, but attempts to write the Egyptian language with the Greek script preceded that
standardization by several centuries. During the initial period of writing, a number of dif-
ferent solutions to the problem of representing non-Greek sounds were made, mostly by
borrowing letters from Demotic writing. These early efforts are grouped by Copticists
under the general heading of Old Coptic.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

228 European Alphabetic Scripts
Casing. Coptic is considered a bicameral script. Historically, it was caseless, but it has
acquired case through the typographic developments of the last centuries. Already in Old
Coptic manuscripts, letters could be written larger, particularly at the beginning of para-
graphs, although the capital letters tend to have the most distinctive shapes in the Bohairic
tradition. To facilitate scholarly and other modern casing operations, Coptic has been
encoded as a bicameral script, including uniquely Old Coptic characters.

Font Styles. Bohairic Coptic uses only a subset of the letters in the Coptic repertoire. It also
uses a font style distinct from that for Sahidic. Prior to Version 5.0, the Coptic letters
derived from Demotic, encoded in the range U+03E2..U+03EF in the Greek and Coptic
block, were shown in the code charts in a Bohairic font style. Starting from Version 5.0, all
Coptic letters in the standard, including those in the range U+03E2..U+03EF, are shown in
the code charts in a Sahidic font style, instead.

Characters for Cryptogrammic Use. U+2CB7 coptic small letter cryptogrammic eie

and U+2CBD coptic small letter cryptogrammic ni are characters for cryptogram-
mic use. A common Coptic substitution alphabet that was used to encrypt texts had the
disadvantageous feature whereby three of the letters (eie, ni, and fi) were substituted by
themselves. However, because eie and ni are two of the highest-frequency characters in
Coptic, Copts felt that the encryption was not strong enough, so they replaced those letters
with these cryptogrammic ones. Two additional cryptogrammic letters in less frequent use
are also encoded: U+2CEC coptic small letter cryptogrammic shei and U+2CEE
coptic small letter cryptogrammic gangia. Copticists preserve these letter substitu-
tions in modern editions of these encrypted texts and do not consider them to be glyph
variants of the original letters.

U+2CC0 coptic capital letter sampi has a numeric value of 900 and corresponds to
U+03E0 greek letter sampi. It is not found in abecedaria, but is used in cryptogrammic
contexts as a letter.

Crossed Shei. U+2CC3 < coptic small letter crossed shei is found in Dialect I of Old
Coptic, where it represents a sound /ç/. It is found alongside U+03E3 = coptic small let-

ter shei, which represents /"/. The diacritic is not productive.

Supralineation. In Coptic texts, a line is often drawn across the top of two or more charac-
ters in a row. There are two distinct conventions for this supralineation, each of which is
represented by different sequences of combining marks.

The first of these is a convention for abbreviation, in which words are shortened by removal
of certain letters. A line is then drawn across the tops of all of the remaining letters, extend-
ing from the beginning of the first to the end of the last letter of the abbreviated form. This
convention is represented by following each character of the abbreviated form with
U+0305 combining overline. When rendered together, these combining overlines should
connect into a continuous line.

The other convention is to distinguish the spelling of certain common words or to high-
light proper names of divinities and heroes—a convention related to the use of cartouches
in hieroglyphic Egyptian. In this case the supralineation extends from the middle of the first
character in the sequence to the middle of the last character in the sequence. Instead of
using U+0305 combining overline for the entire sequence, one uses U+FE24 combining

macron left half after the first character, U+FE25 combining macron right half after
the last character, and U+FE26 combining conjoining macron after any intervening
characters. This gives the effect of a line starting and ending in the middle of letters, rather
than at their edges.

Combining Diacritical Marks. Bohairic text uses a mark called jinkim to represent syllabic
consonants, which is indicated by either U+0307 combining dot above or U+0300 com-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.4 Cyrillic 229
bining grave accent. Other dialects, including Sahidic, use U+0305 combining macron

for the same purpose. A number of other generic diacritical marks are used with Coptic.

U+2CEF coptic combining ni above is a script-specific combining mark, typically used at
the end of a line to indicate a final ni after a vowel. In rendering, this mark typically hangs
over the space to the right of its base character.

The characters U+2CF0 coptic combining spiritus asper and U+2CF1 coptic combin-

ing spiritus lenis are analogues of the Greek breathing marks. They are used rarely in
Coptic. When used, they typically occur over the letter U+2C8F coptic small letter

hate, sometimes to indicate that it is the borrowed Greek conjunction “or”, written with
the cognate Greek letter eta.

Punctuation. Coptic texts use common punctuation, including colon, full stop, semicolon
(functioning, as in Greek, as a question mark), and middle dot. Quotation marks are found
in edited texts. In addition, Coptic-specific punctuation occurs: U+2CFE coptic full

stop and U+2CFF coptic morphological divider. Several other historic forms of punc-
tuation are known only from Old Nubian texts.

Numerical Use of Letters. Numerals are indicated with letters of the alphabet, as in Greek.
Sometimes the numerical use is indicated specifically by marking a line above, represented
with U+0305 combining overline. U+0375 greek lower numeral sign or U+033F
combining double overline can be used to indicate multiples of 1,000, as shown in
Figure 7-5.

U+0374 greek numeral sign is used to indicate fractions. For example, r indicates the
fractional value 1/3. There is, however, a special symbol for 1/2: U+2CFD coptic frac-

tion one half.

7.4 Cyrillic
The Cyrillic script is one of several scripts that were ultimately derived from the Greek
script. The details of the history of that development and of the relationship between early
forms of writing systems for Slavic languages has been lost. Cyrillic has traditionally been
used for writing various Slavic languages, among which Russian is predominant. In the
nineteenth and early twentieth centuries, Cyrillic was extended to write the non-Slavic
minority languages of Russia and neighboring countries.

The Cyrillic script is written in linear sequence from left to right with the occasional use of
nonspacing marks. Cyrillic letters have uppercase and lowercase pairs. Spaces are used to
separate words and provide the primary line breaking opportunities.

Historic Letterforms. The historic form of the Cyrillic alphabet—most notably that seen in
Old Church Slavonic manuscripts—is treated as a font style variation of modern Cyrillic.
The historic forms of the letters are relatively close to their modern appearance, and some
of the historic letters are still in modern use in languages other than Russian. For example,
U+0406 “I”cyrillic capital letter byelorussian-ukrainian i is used in modern

Figure 7-5. Coptic Numerals

Coptic Value

f 1

g or h 1,000

i 1,888
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

230 European Alphabetic Scripts
Ukrainian and Byelorussian, and is encoded amidst other modern Cyrillic extensions.
Some of the historic letterforms were used in modern typefaces in Russian and Bulgarian.
Prior to 1917, Russian made use of yat, fita, and izhitsa; prior to 1945, Bulgaria made use of
these three as well as big yus.

Glagolitic. The particular early Slavic writing known as Glagolitic is treated as a distinct
script from Cyrillic, rather than as a font style variation. The letterforms for Glagolitic,
even though historically related, appear unrecognizably different from most modern Cyril-
lic letters. Glagolitic was also limited to a certain historic period; it did not grow to match
the repertoire expansion of the Cyrillic script. See Section 7.5, Glagolitic.

Cyrillic: U+0400–U+04FF

Standards. The Cyrillic block of the Unicode Standard is based on ISO/IEC 8859-5.

Extended Cyrillic. These letters are used in alphabets for Turkic languages such as Azerbai-
jani, Bashkir, Kazakh, and Tatar; for Caucasian languages such as Abkhasian, Avar, and
Chechen; and for Uralic languages such as Mari, Khanty, and Kildin Sami. The orthogra-
phies of some of these languages have often been revised in the past; some of them have
switched from Arabic to Latin to Cyrillic, and back again. Azerbaijani, for instance, is now
officially using a Turkish-based Latin script.

Abkhasian. The Cyrillic orthography for Abkhasian has been updated fairly frequently
over the course of the 20th and early 21st centuries. Some of these revisions involved
changes in letterforms, often for the diacritic descenders used under extended Cyrillic let-
ters for Abkhasian. The most recent such reform has been reflected in glyph changes for
Abkhaz-specific Cyrillic letters in the code charts. In particular, U+04BF cyrillic small

letter abkhasian che with descender, is now shown with a straight descender dia-
critic. In code charts for Version 5.1 and earlier, that character was displayed with a repre-
sentative glyph using an ogonek-type hook descender, more typical of historic
orthographies for Abkhasian. The glyph for U+04A9 cyrillic small letter abkhasian

ha was also updated.

Other changes for Abkhasian orthography represent actual respellings of text. Of particular
note, the character added in Version 5.2, U+0525 cyrillic small letter pe with

descender, is intended as a replacement for U+04A7 cyrillic small letter pe with

middle hook, which was used in older orthographies.

Palochka. U+04C0 “I” cyrillic letter palochka is used in Cyrillic orthographies for a
number of Caucasian languages, such as Adyghe, Avar, Chechen, and Kabardian. The name
palochka itself is based on the Russian word for “stick,” referring to the shape of the letter.
The glyph for palochka is usually indistinguishable from an uppercase Latin “I” or U+0406
“I” cyrillic capital letter byelorussian-ukrainian i; however, in some serifed fonts
it may be displayed without serifs to make it more visually distinct.

In use, palochka typically modifies the reading of a preceding letter, indicating that it is an
ejective. The palochka is generally caseless and should retain its form even in lowercased
Cyrillic text. However, there is some evidence of distinctive lowercase forms; for those
instances, U+04CF cyrillic small letter palochka may be used.

Cyrillic Supplement: U+0500–U+052F

Komi. The characters in the range U+0500..U+050F are found in ISO 10754; they were
used in Komi Cyrillic orthography from 1919 to about 1940. These letters use glyphs that
differ structurally from other characters in the Unicode Standard that represent similar
sounds—namely, Serbian v and w, which are ligatures of the base letters x and y with a pal-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.5 Glagolitic 231
atalizing soft sign z. The Molodtsov orthography made use of a different kind of palataliza-
tion hook for Komi {, |, }, ~, and so on.

Kurdish Letters. Although the Kurdish language is almost always written in either the Ara-
bic script or the Latin script, there also exists a Cyrillic orthography which saw some usage
for Kurdish in the former Soviet Union. The Cyrillic letters qa and we in this block are
encoded to enable the representation of Cyrillic Kurdish entirely in the Cyrillic script, with-
out use of the similar Latin letters q and w, from which these Kurdish letters were ultimately
derived.

Cyrillic Extended-A: U+2DE0–U+2DFF

Titlo Letters. This block contains a set of superscripted (written above), or titlo letters, used
in manuscript Old Church Slavonic texts, usually to indicate abbreviations of words in the
text. These may occur with or without the generic titlo character, U+0483 combining

cyrillic titlo, or with U+A66F combining cyrillic vzmet.

The glyphs in the code charts are based on the modern Cyrillic letters to which these letter
titlos correspond, but in Old Church Slavonic manuscripts, the actual glyphs used are
related to the older forms of Cyrillic letters.

Cyrillic Extended-B: U+A640–U+A69F

This block contains an extended set of historic Cyrillic characters used in Old Cyrillic man-
uscript materials, particularly Old Church Slavonic.

Numeric Enclosing Signs. The combining numeric signs in the range U+A670..U+A672
extend the series of such combining signs from the main Cyrillic block. These enclosing
signs were used around letters to indicate high decimal multiples of the basic numeric val-
ues of the letters.

Old Abkhasian Letters. The letters in the range U+A680..U+A697 are obsolete letters for
an old orthography of the Abkhaz language. These characters are no longer in use, and the
Abkhaz language is currently represented using various Cyrillic extensions in the main
Cyrillic block.

7.5 Glagolitic

Glagolitic: U+2C00–U+2C5F

Glagolitic, from the Slavic root glagol, meaning “word,” is an alphabet considered to have
been devised by Saint Cyril in or around 862 ce for his translation of the Scriptures and
liturgical books into Slavonic. The relatively few Glagolitic inscriptions and manuscripts
that survive from this early period are of great philological importance. Glagolitic was
eventually supplanted by the alphabet now known as Cyrillic.

Like Cyrillic, the Glagolitic script is written in linear sequence from left to right with no
contextual modification of the letterforms. Spaces are used to separate words and provide
the primary line breaking opportunities.

In parts of Croatia where a vernacular liturgy was used, Glagolitic continued in use until
modern times: the last Glagolitic missal was printed in Rome in 1893 with a second edition
in 1905. In these areas Glagolitic is still occasionally used as a decorative alphabet.

Glyph Forms. Glagolitic exists in two styles, known as round and square. Round Glagolitic
is the original style and more geographically widespread, although surviving examples are
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

232 European Alphabetic Scripts
less numerous. Square Glagolitic (and the cursive style derived from it) was used in Croatia
from the thirteenth century. There are a few documents written in a style intermediate
between the two. The letterforms used in the charts are round Glagolitic. Several of the let-
ters have variant glyph forms, which are not encoded separately.

Ordering. The ordering of the Glagolitic alphabet is largely derived from that of the Greek
alphabet, although nearly half the Glagolitic characters have no equivalent in Greek and
not every Greek letter has its equivalent in Glagolitic.

Punctuation and Diacritics. Glagolitic texts use common punctuation, including comma,
full stop, semicolon (functioning, as in Greek, as a question mark), and middle dot. In addi-
tion, several forms of multiple-dot, archaic punctuation occur, including U+2056 three

dot punctuation, U+2058 four dot punctuation, and U+2059 five dot punctua-

tion. Quotation marks are found in edited texts. Glagolitic also used numerous diacritical
marks, many of them shared in common with Cyrillic.

Numerical Use of Letters. Glagolitic letters have inherent numerical values. A letter may be
rendered with a line above or a tilde above to indicate the numeric usage explicitly. Alterna-
tively, U+00B7 middle dot may be used, flanking a letter on both sides, to indicate
numeric usage of the letter.

7.6 Armenian

Armenian: U+0530–U+058F

The Armenian script is used primarily for writing the Armenian language. It is written
from left to right. Armenian letters have uppercase and lowercase pairs. Spaces are used to
separate words and provide the primary line breaking opportunities.

The Armenian script was devised about 406 ce by Mesrop Ma}toc‘ to give Armenians
access to Christian scriptural and liturgical texts, which were otherwise available only in
Greek and Syriac. The script has been used to write Classical or Grabar Armenian, Middle
Armenian, and both of the literary dialects of Modern Armenian: East and West Armenian.

Orthography. Mesrop’s original alphabet contained 30 consonants and 6 vowels in the fol-
lowing ranges:

U+0531..U+0554 !..D Ayb to K‘[

U+0561..U+0584 H..k ayb to k‘[

Armenian spelling was consistent during the Grabar period, from the fifth to the tenth cen-
turies ce; pronunciation began to change in the eleventh century. In the twelfth century,
the letters] and f[were added to the alphabet to represent the diphthong [aw] (previously
written Hi aw) and the foreign sound [f], respectively. The Soviet Armenian government
implemented orthographic reform in 1922 and again in 1940, creating a difference between
the traditional Mesropian orthography and what is known as Reformed orthography. The
1922 reform limited the use of w to the digraph ow (or u) and treated this digraph as a sin-
gle letter of the alphabet.

User Community. The Mesropian orthography is presently used by West Armenian speak-
ers who live in the diaspora and, rarely, by East Armenian speakers whose origins are in
Armenia but who live in the diaspora. The Reformed orthography is used by East Arme-
nian speakers living in the Republic of Armenia and, occasionally, by West Armenian
speakers who live in countries formerly under the influence of the former Soviet Union.
Spell-checkers and other linguistic tools need to take the differences between these orthog-
raphies into account, just as they do for British and American English.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.7 Georgian 233
Punctuation. Armenian makes use of a number of punctuation marks also used in other
European scripts. Armenian words are delimited with spaces and may terminate on either a
space or a punctuation mark. U+0589 w armenian full stop, called veryak[t in Armenian,

is used to end sentences. A shorter stop functioning like the semicolon (like the ano teleia in
Greek, but normally placed on the baseline like U+002E full stop) is called miyak[t; it is
represented by U+2024 . one dot leader. U+055D q armenian comma is actually used
more as a kind of colon than as a comma; it combines the functionality of both elision and
pause. Its Armenian name is bowt’.

In Armenian it is possible to differentiate between word-joining and word-splitting
hyphens. To join words, the miowt‘jan gic - is used; it can be represented by either U+002D
hyphen-minus or U+2010 - hyphen. At the end of the line, to split words across lines, the
ent‘amna U+058A s armenian hyphen may also be used. This character has a curved
shape in some fonts, but a hyphen-like shape in others. Both the word-joiner and the word-
splitter can also break at word boundaries, but the two characters have different semantics.

Several other punctuation marks are unique to Armenian, and these function differently
from other kinds of marks. The tonal punctuation marks (U+055B armenian emphasis

mark, U+055C armenian exclamation mark, and U+055E armenian question mark)
are placed directly above and slightly to the right of the vowel whose sound is modified,
instead of at the end of the sentence, as European punctuation marks are. Because of the
mechanical limitations of some printing technologies, these punctuation marks have often
been typographically rendered as spacing glyphs above and to the right of the modified
vowel, but this practice is not recommended. Depending on the font, the kerning some-
times presents them as half-spacing glyphs, which is somewhat more acceptable. The place-
ment of the Armenian tonal mark can be used to distinguish between different questions.

U+055F armenian abbreviation mark, or patiw, is one of four abbreviation marks
found in manuscripts to abbreviate common words such as God, Jesus, Christos, Lord,
Saint, and so on. It is placed above the abbreviated word and spans all of its letters.

Preferred Characters. The apostrophe at U+055A has the same shape and function as the
Latin apostrophe at U+2019, which is preferred. There is no left half ring in Armenian.
Unicode character U+0559 is not used. It appears that this character is a duplicate charac-
ter, which was encoded to represent U+02BB modifier letter turned comma, used in
Armenian transliteration. U+02BB is preferred for this purpose.

Ligatures. Five Armenian ligatures are encoded in the Alphabetic Presentation Forms
block in the range U+FB13..U+FB17. These shapes (along with others) are typically found
in handwriting and in traditional fonts that mimic the manuscript ligatures. Of these, the
men-now ligature is the one most useful for both traditional and modern fonts.

7.7 Georgian

Georgian: U+10A0–U+10FF, U+2D00–U+2D2F

The Georgian script is used primarily for writing the Georgian language and its dialects. It
is also used for the Svan and Mingrelian languages and in the past was used for Abkhaz and
other languages of the Caucasus. It is written from left to right. Spaces are used to separate
words and provide the primary line breaking opportunities.

Script Forms. The script name “Georgian” in the Unicode Standard is used for what are
really two closely related scripts. The original Georgian writing system was an inscriptional
form called Asomtavruli, from which a manuscript form called Nuskhuri was derived.
Together these forms are categorized as Khutsuri (ecclesiastical), in which Asomtavruli is
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

234 European Alphabetic Scripts
used as the uppercase and Nuskhuri as the lowercase. This development of a bicameral
script parallels the evolution of the Latin alphabet, in which the original linear monumen-
tal style became the uppercase and manuscript styles of the same alphabet became the low-
ercase. The Khutsuri script is still used for liturgical purposes, but was replaced, through a
history now uncertain, by an alphabet called Mkhedruli (military), which is now the form
used for nearly all modern Georgian writing.

Both the Mkhedruli alphabet and the Asomtavruli inscriptional form are encoded in the
Georgian block. The Nuskhuri script form is encoded in the Georgian Supplement block.

Case Forms. The Georgian Mkhedruli alphabet is fundamentally caseless. The scholar
Akaki Shanidze attempted to introduce a casing practice for Georgian in the 1950s, but this
system failed to gain popularity. In his typographic departure, he used the Asomtavruli
forms to represent uppercase letters, alongside “lowercase” Mkhedruli. This practice is
anomalous—the Unicode Standard instead provides case mappings between the two Khut-
suri forms: Asomtavruli and Nuskhuri.

Mtavruli Style. Mtavruli is a particular style of Mkhedruli in which the distinction between
letters with ascenders and descenders is not maintained. All letters appear with an equal
height standing on the baseline; Mtavruli-style letters are never used as capitals. A word is
always entirely presented in Mtavruli or not. Mtavruli is a font style, similar to small caps

in the Latin script.

Figure 7-6 illustrates the various forms of Georgian and its case usage discussed in the text,
using Akaki Shanidze’s name.

Punctuation. Modern Georgian text uses generic European conventions for punctuation.
See the common punctuation marks in the Basic Latin and General Punctuation blocks.

Historic Punctuation. Historic Georgian manuscripts, particularly text in the older, eccle-
siastical styles, use manuscript punctuation marks common to the Byzantine tradition.
These include single, double, and multiple dot punctuation. For a single dot punctuation
mark, U+00B7 middle dot or U+2E31 word separator middle dot may be used. His-
toric double and multiple dot punctuation marks can be found in the U+2056..U+205E
range in the General Punctuation block and in the U+2E2A..U+2E2D range in the Supple-
mental Punctuation block.

U+10FB georgian paragraph separator is a historic punctuation mark commonly used
in Georgian manuscripts to delimit text elements comparable to a paragraph level.
Although this punctuation mark may demarcate a paragraph in exposition, it does not
force an actual paragraph termination in the text flow. To cause a paragraph termination,
U+10FB must be followed by a newline character, as described in Section 5.8, Newline
Guidelines.

Prior to Version 6.0 the Unicode Standard recommended the use of U+0589 armenian

full stop as the two dot version of the full stop for historic Georgian documents. This is

Figure 7-6. Georgian Scripts and Casing

Asomtavruli majuscule !#!#$ %!&$()
Nuskhuri minuscule 56567 8597:;
Casing Khutsuri !6567 %597:;
Mkhedruli *+*+, -*.,/0
Mtavruli style 12123 -1.3/4
Shanidze’s orthography !+*+, %*.,/0
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.8 Modifier Letters 235
no longer recommended because designs for Armenian fonts may be inconsistent with the
display of Georgian text, and because other, generic two dot punctuation characters are
available in the standard, such as U+205A two dot punctuation or U+003A colon.

For additional punctuation to be used with this script, see C0 Controls and ASCII Punctu-
ation (U+0000..U+007F) and General Punctuation (U+2000..U+206F).

7.8 Modifier Letters
Modifier letters, in the sense used in the Unicode Standard, are letters or symbols that are
typically written adjacent to other letters and which modify their usage in some way. They
are not formally combining marks (gc=Mn or gc=Mc) and do not graphically combine
with the base letter that they modify. They are base characters in their own right. The sense
in which they modify other letters is more a matter of their semantics in usage; they often
tend to function as if they were diacritics, indicating a change in pronunciation of a letter,
or otherwise distinguishing a letter’s use. Typically this diacritic modification applies to the
character preceding the modifier letter, but modifier letters may sometimes modify a fol-
lowing character. Occasionally a modifier letter may simply stand alone representing its
own sound.

Modifier letters are commonly used in technical phonetic transcriptional systems, where
they augment the use of combining marks to make phonetic distinctions. Some of them
have been adapted into regular language orthographies as well. For example, U+02BB
modifier letter turned comma is used to represent the nokina (glottal stop) in the
orthography for Hawaiian.

Many modifier letters take the form of superscript or subscript letters. Thus the IPA modi-
fier letter that indicates labialization (U+02B7) is a superscript form of the letter w. As for
all such superscript or subscript form characters in the Unicode Standard, these modifier
letters have compatibility decompositions.

Case and Modifier Letters. Most modifiers letters are derived from letters in the Latin
script, although some modifier letters occur in other scripts. Latin-derived modifier letters
may be based on either minuscule (lowercase) or majuscule (uppercase) forms of the let-
ters, but never have case mappings. Modifier letters which have the shape of capital or small
capital Latin letters, in particular, are used exclusively in technical phonetic transcriptional
systems. Strings of phonetic transcription are notionally lowercase—all letters in them are
considered to be lowercase, whatever their shapes. In terms of formal properties in the Uni-
code Standard, modifier letters based on letter shapes are Lowercase=True; modifier letters
not based on letter shapes are simply caseless. All modifier letters, regardless of their
shapes, are operationally caseless; they need to be unaffected by casing operations, because
changing them by a casing operation would destroy their meaning for the phonetic tran-
scription. Only those superscript or subscript forms that have specific usage in IPA, the
Uralic Phonetic Alphabet (UPA), or other major phonetic transcription systems are
encoded.

General Category. Modifier letters in the Unicode Standard are indicated by either one of
two General_Category values: gc=Lm or gc=Sk. The General_Category Lm is given to
modifier letters derived from regular letters. It is also given to some other characters with
more punctuation-like shapes, such as raised commas, which nevertheless have letterlike
behavior and which occur on occasion as part of the orthography for regular words in one
language or another. The General_Category Sk is given to modifier letters that typically
have more symbol-like origins and which seldom, if ever, are adapted to regular orthogra-
phies outside the context of technical phonetic transcriptional systems. This subset of
modifier letters is also known as “modifier symbols.”
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

236 European Alphabetic Scripts
This distinction between gc=Lm and gc=Sk is reflected in other Unicode specifications rel-
evant to identifiers and word boundary determination. Modifier letters with gc=Lm are
included in the set definitions that result in the derived properties ID_Start and
ID_Continue (and XID_Start and XID_Continue). As such, they are considered part of the
default definition of Unicode identifiers. Modifier symbols (gc=Sk), on the other hand, are
not included in those set definitions, and so are excluded by default from Unicode identifi-
ers.

Modifier letters (gc=Lm) have the derived property Alphabetic, while modifier symbols
(gc=Sk) do not. Modifier letters (gc=Lm) also have the word break property value
(wb=ALetter), while modifier symbols (gc=Sk) do not. This means that for default deter-
mination of word break boundaries, modifier symbols will cause a word break, while mod-
ifier letters proper will not.

Blocks. Most general use modifier letters (and modifier symbols) were collected together in
the Spacing Modifier Letters block (U+02B0..U+02FF), the UPA-related Phonetic Exten-
sions block (U+1D00..U+1D7F), the Phonetic Extensions Supplement block
(U+1D80..U+1DBF), and the Modifier Tone Letters block (U+A700..U+A71F). However,
some script-specific modifier letters are encoded in the blocks appropriate to those scripts.
They can be identified by checking for their General_Category values.

Names. There is no requirement that the Unicode names for modifier letters contain the
label “modifier letter”, although most of them do.

Spacing Modifier Letters: U+02B0–U+02FF

Phonetic Usage . The majority of the modifier letters in this block are phonetic modifiers,
including the characters required for coverage of the International Phonetic Alphabet. In
many cases, modifier letters are used to indicate that the pronunciation of an adjacent letter
is different in some way—hence the name “modifier.” They are also used to mark stress or
tone, or may simply represent their own sound. Many of these modifiers letters correspond
to separate, nonspacing diacritical marks; the specific cross-references can be found in the
code charts.

Encoding Principles. This block includes characters that may have different semantic val-
ues attributed to them in different contexts. It also includes multiple characters that may
represent the same semantic values—there is no necessary one-to-one relationship. The
intention of the Unicode encoding is not to resolve the variations in usage, but merely to
supply implementers with a set of useful forms from which to choose. The list of usages
given for each modifier letter should not be considered exhaustive. For example, the glottal
stop (Arabic hamza) in Latin transliteration has been variously represented by the charac-
ters U+02BC modifier letter apostrophe, U+02BE modifier letter right half

ring, and U+02C0 modifier letter glottal stop. Conversely, an apostrophe can have
several uses; for a list, see the entry for U+02BC modifier letter apostrophe in the
character names list. There are also instances where an IPA modifier letter is explicitly
equated in semantic value to an IPA nonspacing diacritic form.

Superscript Letters. Some of the modifier letters are superscript forms of other letters. The
most commonly occurring of these superscript letters are encoded in this block, but many
others, particularly for use in UPA, can be found in the Phonetic Extensions block
(U+1D00..U+1D7F) and in the Phonetic Extensions Supplement block
(U+1D80..U+1DBF). The superscript forms of the i and n letters can be found in the
Superscripts and Subscripts block (U+2070..U+209F). The fact that the latter two letters
contain the word “superscript” in their names instead of “modifier letter” is an historical
artifact of original sources for the characters, and is not intended to convey a functional
distinction in the use of these characters in the Unicode Standard.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.8 Modifier Letters 237
Superscript modifier letters are intended for cases where the letters carry a specific mean-
ing, as in phonetic transcription systems, and are not a substitute for generic styling mech-
anisms for superscripting of text, as for footnotes, mathematical and chemical expressions,
and the like.

The superscript modifier letters are spacing letters, and should be distinguished from
superscripted combining Latin letters. The superscripted combining Latin letters, as for
example those encoded in the Combining Diacritical Marks block in the range
U+0363..U+036F, are associated with the Latin historic manuscript tradition, often repre-
senting various abbreviatory conventions in text.

Spacing Clones of Diacritics. Some corporate standards explicitly specify spacing and
nonspacing forms of combining diacritical marks, and the Unicode Standard provides
matching codes for these interpretations when practical. A number of the spacing forms
are covered in the Basic Latin and Latin-1 Supplement blocks. The six common European
diacritics that do not have encodings there are encoded as spacing characters. These forms
can have multiple semantics, such as U+02D9 dot above, which is used as an indicator of
the Mandarin Chinese fifth (neutral) tone.

Rhotic Hook. U+02DE modifier letter rhotic hook is defined in IPA as a free-standing
modifier letter. In common usage, it is treated as a ligated hook on a baseform letter. Hence
U+0259 latin small letter schwa + U+02DE modifier letter rhotic hook may be
treated as equivalent to U+025A latin small letter schwa with hook.

Tone Letters. U+02E5..U+02E9 comprises a set of basic tone letters defined in IPA and
commonly used in detailed tone transcriptions of African and other languages. Each tone
letter refers to one of five distinguishable tone levels. To represent contour tones, the tone
letters are used in combinations. The rendering of contour tones follows a regular set of
ligation rules that results in a graphic image of the contour (see Figure 7-7).

For example, the sequence “1 + 5” in the first row of Figure 7-7 indicates the sequence of
the lowest tone letter, U+02E9 modifier letter extra-low tone bar, followed by the
highest tone letter, U+02E5 modifier letter extra-high tone bar. In that sequence, the
tone letter is drawn with a ligation from the iconic position of the low tone to that of the
high tone to indicate the sharp rising contour. A sequence of three tone letters may also be
ligated, as shown in the last row of Figure 7-7, to indicate a low rising-falling contour tone.

Modifier Tone Letters: U+A700–U+A71F

The Modifier Tone Letters block contains modifier letters used in various schemes for
marking tones. These supplement the more commonly used tone marks and tone letters
found in the Spacing Modifier Letters block (U+02B0..U+02FF).

The characters in the range U+A700..U+A707 are corner tone marks used in the transcrip-
tion of Chinese. They were invented by Bridgman and Wells Williams in the 1830s. They
have little current use, but are seen in a number of old Chinese sources.

Figure 7-7. Tone Letters

1 + 5
5 + 1
3 + 5
1 + 3
1 + 3 + 1

 (rising contour)
 (falling contour)
 (high rising contour)
 (low rising contour)
 (rising-falling contour)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

238 European Alphabetic Scripts
The tone letters in the range U+A708..U+A716 complement the basic set of IPA tone letters
(U+02E5..U+02E9) and are used in the representation of Chinese tones for the most part.
The dotted tone letters are used to represent short (“stopped”) tones. The left-stem tone
letters are mirror images of the IPA tone letters; like those tone letters, they can be ligated in
sequences of two or three tone letters to represent contour tones. Left-stem versus right-
stem tone letters are sometimes used contrastively to distinguish between tonemic and
tonetic transcription or to show the effects of tonal sandhi.

The modifier letters in the range U+A717..U+A71A indicate tones in a particular orthog-
raphy for Chinantec, an Oto-Manguean language of Mexico. These tone marks are also
spacing modifier letters and are not meant to be placed over other letters.

7.9 Combining Marks
Combining marks are a special class of characters in the Unicode Standard that are
intended to combine with a preceding character, called their base. They have a formal syn-
tactic relationship—or dependence—on their base, as defined by the standard. This rela-
tionship is relevant to the definition of combining character sequences, canonical
reordering, and the Unicode Normalization Algorithm. For formal definitions, see
Section 3.6, Combination.

Combining marks usually have a visible glyphic form, but some of them are invisible.
When visible, a combining mark may interact graphically with neighboring characters in
various ways. Visible combining marks are divided roughly into two types: nonspacing
marks and spacing marks. In rendering, the nonspacing marks generally have no baseline
advance of their own, but instead are said to apply to their grapheme base. Spacing marks
behave more like separate letters, but in some scripts they may have complex graphical
interactions with other characters. For an extended discussion of the principles for the
application of combining marks, see Section 3.6, Combination.

Nonspacing marks come in two types: diacritic and other. The diacritics are exemplified by
such familiar marks as the acute accent or the macron, which are applied to letters of the
Latin script (or similar scripts). They tend to indicate a change in pronunciation or a par-
ticular tone or stress. They may also be used to derive new letters. However, in some scripts,
such as Arabic and Hebrew, other kinds of nonspacing marks, such as vowel points, repre-
sent separate sounds in their own right and are not considered diacritics.

Sequence of Base Letters and Combining Marks. In the Unicode character encoding, all
combining marks are encoded after their base character. For example, the Unicode charac-
ter sequence U+0061 “a” latin small letter a, U+0308 “!”combining diaeresis,
U+0075 “u” latin small letter u unambiguously encodes “äu”, not “aü”, as shown in
Figure 2-18.

The Unicode Standard convention is consistent with the logical order of other nonspacing
marks in Semitic and Indic scripts, the great majority of which follow the base characters
with respect to which they are positioned. This convention is also in line with the way mod-
ern font technology handles the rendering of nonspacing glyphic forms, so that mapping
from character memory representation to rendered glyphs is simplified. (For more infor-
mation on the formal behavior of combining marks, see Section 2.11, Combining Charac-
ters, and Section 3.6, Combination.)

Multiple Semantics. Because nonspacing combining marks have such a wide variety of
applications, they may have multiple semantic values. For example, U+0308 = diaeresis =
trema = umlaut = double derivative. Such multiple functions for a single combining mark
are not separately encoded in the standard.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.9 Combining Marks 239
Glyphic Variation. When rendered in the context of a language or script, like ordinary let-
ters, combining marks may be subjected to systematic stylistic variation, as discussed in
Section 7.1, Latin. For example, when used in Polish, U+0301 combining acute accent

appears at a steeper angle than when it is used in French. When it is used for Greek (as
oxia), it can appear nearly upright. U+030C combining caron is commonly rendered as
an apostrophe when used with certain letterforms. U+0326 combining comma below is
sometimes rendered as a turned comma above on a lowercase “g” to avoid conflict with the
descender. In many fonts, there is no clear distinction made between U+0326 combining

comma below and U+0327 combining cedilla.

Combining accents above the base glyph are usually adjusted in height for use with upper-
case versus lowercase forms. In the absence of specific font protocols, combining marks are
often designed as if they were applied to typical base characters in the same font. However,
this will result in suboptimal appearance in rendering and may cause security problems.
See Unicode Technical Report #36, “Unicode Security Considerations.”

For more information, see Section 5.13, Rendering Nonspacing Marks.

Overlaid Diacritics. A few combining marks are encoded to represent overlaid diacritics
such as U+0335 combining short stroke overlay (= “bar”) or hooks modifying the
shape of base characters, such as U+0322 combining retroflex hook below. Such over-
laid diacritics are not used in decompositions of characters in the Unicode Standard. Over-
laid combining marks for the indication of negation of mathematical symbols are an
exception to this rule and are discussed later in this section.

One should use the combining marks for overlaid diacritics sparingly and with care, as ren-
dering them on letters may create opportunities for spoofing and other confusion.
Sequences of a letter followed by an overlaid diacritic or hook character are not canonically
equivalent to any preformed encoded character with diacritic even though they may appear
the same. See “Non-decomposition of Overlaid Diacritics” in Section 2.12, Equivalent
Sequences and Normalization for more discussion of the implications of overlaid diacritics
for normalization and for text matching operations.

Marks as Spacing Characters. By convention, combining marks may be exhibited in
(apparent) isolation by applying them to U+00A0 no-break space. This approach might
be taken, for example, when referring to the diacritical mark itself as a mark, rather than
using it in its normal way in text. Prior to Version 4.1 of the Unicode Standard, the standard
also recommended the use of U+0020 space for display of isolated combining marks. This
is no longer recommended, however, because of potential conflicts with the handling of
sequences of U+0020 space characters in such contexts as XML.

In charts and illustrations in this standard, the combining nature of these marks is illustrated
by applying them to a dotted circle, as shown in the examples throughout this standard.

In a bidirectional context, using any character with neutral directionality (that is, with a
Bidirectional Class of ON, CS, and so on) as a base character, including U+00A0 no-break

space, a dotted circle, or any other symbol, can lead to unintended separation of the base
character from certain types of combining marks during bidirectional ordering. The result
is that the combining mark will be graphically applied to something other than the correct
base. This affects spacing combining marks (that is, with a General Category of Mc) but
not nonspacing combining marks. The unintended separation can be prevented by brack-
eting the combining character sequence with RLM or LRM characters as appropriate. For
more details on bidirectional reordering, see Unicode Standard Annex #9, “Unicode Bidi-
rectional Algorithm.”

Spacing Clones of Diacritical Marks. The Unicode Standard separately encodes clones of
many common European diacritical marks, primarily for compatibility with existing char-
acter set standards. These cloned accents and diacritics are spacing characters and can be
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

240 European Alphabetic Scripts
used to display the mark in isolation, without application to a no-break space. They are
cross-referenced to the corresponding combining mark in the names list in the Unicode
code charts. For example, U+02D8 breve is cross-referenced to U+0306 combining

breve. Most of these spacing clones also have compatibility decomposition mappings
involving U+0020 space, but implementers should be cautious in making use of those
decomposition mappings because of the complications that can arise from replacing a
spacing character with a space + combining mark sequence.

Relationship to ISO/IEC 8859-1. ISO/IEC 8859-1 contains eight characters that are ambig-
uous regarding whether they denote combining characters or separate spacing characters.
In the Unicode Standard, the corresponding code points (U+005E ^ circumflex accent,
U+005F _ low line, U+0060 grave accent, U+007E ~ tilde, U+00A8 ¨ diaeresis,
U+00AF ¯ macron, U+00B4 ´ acute accent, and U+00B8 ¸ cedilla) are used only as
spacing characters. The Unicode Standard provides unambiguous combining characters in
the Combining Diacritical Marks block, which can be used to represent accented Latin let-
ters by means of composed character sequences. U+00B0 ° degree sign is also occasion-
ally used ambiguously by implementations of ISO/IEC 8859-1 to denote a spacing form of
a diacritic ring above a letter; in the Unicode Standard, that spacing diacritical mark is
denoted unambiguously by U+02DA ° ring above. U+007E “~” tilde is ambiguous
between usage as a spacing form of a diacritic and as an operator or other punctuation; it is
generally rendered with a center line glyph, rather than as a diacritic raised tilde. The spac-
ing form of the diacritic tilde is denoted unambiguously by U+02DC “” small tilde.

Diacritics Positioned Over Two Base Characters. IPA, pronunciation systems, some trans-
literation systems, and a few languages such as Tagalog use diacritics that are applied to a
sequence of two letters. In rendering, these marks of unusual size appear as wide diacritics
spanning across the top (or bottom) of the two base characters. The Unicode Standard con-
tains a set of double-diacritic combining marks to represent such forms. Like all other
combining nonspacing marks, these marks apply to the previous base character, but they
are intended to hang over the following letter as well. For example, the character U+0360
combining double tilde is intended to be displayed as depicted in Figure 7-8.

These double-diacritic marks have a very high combining class—higher than all other non-
spacing marks except U+0345 iota subscript—and so always are at or near the end of a com-
bining character sequence when canonically reordered. In rendering, the double diacritic
will float above other diacritics above (or below other diacritics below)—excluding sur-
rounding diacritics—as shown in Figure 7-9.

Figure 7-8. Double Diacritics

Figure 7-9. Positioning of Double Diacritics

n + + g ng@
 n

0360006E 0067

~

~ ~
n + @

0360006E

~ →

→

a + + ˆ + c + ¨ âc

a + ˆ + + c + ¨
~

~

~ ¨

 âc~̈
0061 0302 0360 0063 0308

0061 0360 0302 0063 0308

→

→

$ $ $

$ $ $
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.9 Combining Marks 241
In Figure 7-9, the first line shows a combining character sequence in canonical order, with
the double-diacritic tilde following a circumflex accent. The second line shows an alterna-
tive order of the two combining marks that is canonically equivalent to the first line.
Because of this canonical equivalence, the two sequences should display identically, with
the double diacritic floating above the other diacritics applied to single base characters.

Occasionally one runs across orthographic conventions that use a dot, an acute accent, or
other simple diacritic above a ligature tie—that is, U+0361 combining double inverted

breve. Because of the considerations of canonical order just discussed, one cannot repre-
sent such text simply by putting a combining dot above or combining acute directly after
U+0361 in the text. Instead, the recommended way of representing such text is to place
U+034F combining grapheme joiner (CGJ) between the ligature tie and the combining
mark that follows it, as shown in Figure 7-10.

Because CGJ has a combining class of zero, it blocks reordering of the double diacritic to
follow the second combining mark in canonical order. The sequence of <CGJ, acute> is
then rendered with default stacking, placing it centered above the ligature tie. This conven-
tion can be used to create similar effects with combining marks above other double diacrit-
ics (or below double diacritics that render below base characters).

For more information on the combining grapheme joiner, see “Combining Grapheme
Joiner” in Section 16.2, Layout Controls.

Combining Marks with Ligatures. According to Section 3.6, Combination, for a simple
combining character sequence such as <i , u> , the nonspacing mark u both applies to and
depends on the base character i. If the i is preceded by a character that can ligate with it,
additional considerations apply.

Figure 7-11 shows typical examples of the interaction of combining marks with ligatures.
The sequence <f , i, u> is canonically equivalent to <f, î>. This implies that both sequences
should be rendered identically, if possible. The precise way in which the sequence is ren-
dered depends on whether the f and i of the first sequence ligate. If so, the result of applying
u should be the same as ligating an f with an î. The appearance depends on whatever typo-
graphical rules are established for this case, as illustrated in the first example of Figure 7-11.
Note that the two characters f and î may not ligate, even if the sequence <f , i> does.

The second and third examples show that by default the sequence <f , u , i , u> is visually
distinguished from the sequence <f, u, i, u> by the relative placement of the accents. This is

Figure 7-10. Use of CGJ with Double Diacritics

Figure 7-11. Interaction of Combining Marks with Ligatures

u + + + + i

(

´
0075 0361 034F 0301 0069

ui
´ (

$ $ →

ˆfî , fi , fî

f î , fi

f ı , fi

ˆ˜ ˜

ˆ˜ ˜ˆ

→

→

→

f

f

f

f

i

i

i

i

f î++

+

+

+

+

+

+

+

+

+

+

$̃

$̂

$̃

$̂ $̃

$̂

$̂ f i+ + $̃$̂ +
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

242 European Alphabetic Scripts
true whether or not the <f, u> and the <i, u> ligate. Example 4 shows that the two
sequences are not canonically equivalent.

In some writing systems, established typographical rules further define the placement of
combining marks with respect to ligatures. As long as the rendering correctly reflects the
identity of the character sequence containing the marks, the Unicode Standard does not
prescribe such fine typographical details.

Compatibility characters such as the fi-ligature are not canonically equivalent to the
sequence of characters in their compatibility decompositions. Therefore, sequences like
<fi-ligature, %> may legitimately differ in visual representation from <f, i, %>, just as the
visual appearance of other compatibility characters may be different from that of the
sequence of characters in their compatibility decompositions. By default, a compatibility
character such as fi-ligature is treated as a single base glyph.

Combining Diacritical Marks: U+0300–U+036F

The combining diacritical marks in this block are intended for general use with any script.
Diacritical marks specific to a particular script are encoded with that script. Diacritical
marks that are primarily used with symbols are defined in the Combining Diacritical
Marks for Symbols character block (U+20D0..U+20FF).

Standards. The combining diacritical marks are derived from a variety of sources, includ-
ing IPA, ISO 5426, and ISO 6937.

Underlining and Overlining. The characters U+0332 combining low line, U+0333
combining double low line, U+0305 combining overline, and U+033F combining

double overline are intended to connect on the left and right. Thus, when used in com-
bination, they could have the effect of continuous lines above or below a sequence of char-
acters. However, because of their interaction with other combining marks and other layout
considerations such as intercharacter spacing, their use for underlining or overlining of text
is discouraged in favor of using styled text.

Combining Diacritical Marks Supplement: U+1DC0–U+1DFF

This block is the supplement to the Combining Diacritical Marks block in the range
U+0300..U+036F. It contains lesser-used combining diacritical marks.

U+1DC0 combining dotted grave accent and U+1DC1 combining dotted acute

accent are marks occasionally seen in some Greek texts. They are variant representations
of the accent combinations dialytika varia and dialytika oxia, respectively. They are, how-
ever, encoded separately because they cannot be reliably formed by regular stacking rules
involving U+0308 combining diaeresis and U+0300 combining grave accent or
U+0301 combining acute accent.

U+1DC3 combining suspension mark is a combining mark specifically used in
Glagolitic. It is not to be confused with a combining breve.

Combining Marks for Symbols: U+20D0–U+20FF

The combining marks in this block are generally applied to mathematical or technical sym-
bols. They can be used to extend the range of the symbol set. For example, U+20D2 M com-

bining long vertical line overlay can be used to express negation, as shown in
Figure 7-12. Its presentation may change in those circumstances—changing its length or
slant, for example. That is, U+2261 ≡ identical to followed by U+20D2 is equivalent to
U+2262 O not identical to. In this case, there is a precomposed form for the negated
symbol. However, this statement does not always hold true, and U+20D2 can be used with
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

7.9 Combining Marks 243
other symbols to form the negation. For example, U+2258 corresponds to followed by
U+20D2 can be used to express does not correspond to, without requiring that a precom-
posed form be part of the Unicode Standard.

Other nonspacing characters are used in mathematical expressions. For example, a U+0304
combining macron is commonly used in propositional logic to indicate logical negation.

Enclosing Marks. These nonspacing characters are supplied for compatibility with existing
standards, allowing individual base characters to be enclosed in several ways. For example,
U+2460 circled digit one can be expressed as U+0031 digit one “1” + U+20DD %
combining enclosing circle. For additional examples, see Figure 2-17.

The combining enclosing marks surround their grapheme base and any intervening non-
spacing marks. These marks are intended for application to free-standing symbols. See
“Application of Combining Marks” in Section 3.11, Normalization Forms.

Users should be cautious when applying combining enclosing marks to other than free-
standing symbols—for example, when using a combining enclosing circle to apply to a let-
ter or a digit. Most implementations assume that application of any nonspacing mark will
not change the character properties of a base character. This means that even though the
intent might be to create a circled symbol (General_Category=So), most software will con-
tinue to treat the base character as an alphabetic letter or a numeric digit. Note that there is
no canonical equivalence between a symbolic character such as U+24B6 circled latin

capital letter a and the sequence <U+0041 latin capital letter a, U+20DD combin-

ing enclosing circle>, partly because of this difference in treatment of properties.

Combining Half Marks: U+FE20–U+FE2F

This block consists of a number of presentation form (glyph) encodings that may be used
to visually encode certain combining marks that apply to multiple base letterforms. These
characters are intended to facilitate the support of such marks in legacy implementations.

Unlike other compatibility characters, these half marks do not correspond directly to a sin-
gle character or a sequence of characters; rather, a discontiguous sequence of the combin-
ing half marks corresponds to a single combining mark, as depicted in Figure 7-13. The
preferred forms are the double diacritics, such as U+0360 combining double tilde.

This block also contains two half macron marks and a conjoining macron mark. These
combining marks are intended for use to support a particular style of supralineation in
Coptic. See Section 7.3, Coptic.

Combining Marks in Other Blocks

In addition to the blocks of characters in the standard specifically set aside for combining
marks, many combining marks are associated with particular scripts or occasionally with
groups of scripts. Thus the Arabic block contains a large collection of combining marks
used to indicate vowelling of Arabic text as well as another collection of combining marks
used in annotation of Koranic text. Such marks are mostly intended for use with the Arabic
script, but in some instances other scripts, such as Syriac, may use them as well.

Nearly every Indic script has its own collection of combining marks, notably including sets
of combining marks to represent dependent vowels, or matras.

Figure 7-12. Use of Vertical Line Overlay for Negation

@+
2261 20D2

→

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

244 European Alphabetic Scripts
In some instances a combining mark encoded specifically for a given script, and located in
the code chart for that script, may look very similar to a diacritical mark from one of the
blocks dedicated to generic combining marks. In such cases, a variety of reasons, including
rendering behavior in context or patterning considerations, may have led to separate
encoding. The general principle is that if a correctly identified script-specific combining
mark of the appropriate shape is available, that character is intended for use with that
script, in lieu of a generic combining mark that might look similar. If a combining mark of
the appropriate shape is not available in the relevant script block or blocks, then one should
make use of whichever generic combining mark best suits the intended purpose.

For example, in representing Syriac text, to indicate a dot above a letter that was identified
as a qushshaya, one would use U+0741 syriac qushshaya rather than the generic U+0307
combining dot above . When attempting to represent a hamza above a Syriac letter, one
would use U+0654 arabic hamza above, which is intended for both Arabic and Syriac,
because there is no specifically Syriac hamza combining mark. However, if marking up Syr-
iac text with diacritics such as a macron to indicate length or some other feature, one would
then make use of U+0304 combining macron from the generic block of combining dia-
critical marks.

Figure 7-13. Double Diacritics and Half Marks

n + + g ng~@~

n + ng~@~ g + @~

Using Double Diacritics

Using Combining Half Marks

→

→

+

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 8

Middle Eastern Scripts 8

The scripts in this chapter have a common origin in the ancient Phoenician alphabet. They
include:

The Hebrew script is used in Israel and for languages of the Diaspora. The Arabic script is
used to write many languages throughout the Middle East, North Africa, and certain parts
of Asia. The Syriac script is used to write a number of Middle Eastern languages. These
three also function as major liturgical scripts, used worldwide by various religious groups.
The Samaritan script is used in small communities in Israel and the Palestinian Territories
to write the Samaritan Hebrew and Samaritan Aramaic languages. The Thaana script is
used to write Dhivehi, the language of the Republic of Maldives, an island nation in the
middle of the Indian Ocean.

The Middle Eastern scripts are mostly abjads, with small character sets. Words are demar-
cated by spaces. Except for Thaana, these scripts include a number of distinctive punctua-
tion marks. In addition, the Arabic script includes traditional forms for digits, called
“Arabic-Indic digits” in the Unicode Standard.

Text in these scripts is written from right to left. Implementations of these scripts must
conform to the Unicode Bidirectional Algorithm (see Unicode Standard Annex #9, “Uni-
code Bidirectional Algorithm”). For more information about writing direction, see
Section 2.10, Writing Direction. There are also special security considerations that apply to
bidirectional scripts, especially with regard to their use in identifiers. For more information
about these issues, see Unicode Technical Report #36, “Unicode Security Considerations.”

Arabic and Syriac are cursive scripts even when typeset, unlike Hebrew, Samaritan, and
Thaana, where letters are unconnected. Most letters in Arabic and Syriac assume different
forms depending on their position in a word. Shaping rules for the rendering of text are
specified in Section 8.2, Arabic, and Section 8.3, Syriac. Shaping rules are not required for
Hebrew because only five letters have position-dependent final forms, and these forms are
separately encoded.

Historically, Middle Eastern scripts did not write short vowels. Nowadays, short vowels are
represented by marks positioned above or below a consonantal letter. Vowels and other
marks of pronunciation (“vocalization”) are encoded as combining characters, so support
for vocalized text necessitates use of composed character sequences. Yiddish, Syriac, and
Thaana are normally written with vocalization; Hebrew, Samaritan, and Arabic are usually
written unvocalized.

Hebrew Samaritan

Arabic Thaana

Syriac
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

246 Middle Eastern Scripts
8.1 Hebrew

Hebrew: U+0590–U+05FF

The Hebrew script is used for writing the Hebrew language as well as Yiddish, Judezmo
(Ladino), and a number of other languages. Vowels and various other marks are written as
points, which are applied to consonantal base letters; these marks are usually omitted in
Hebrew, except for liturgical texts and other special applications. Five Hebrew letters
assume a different graphic form when they occur last in a word.

Directionality. The Hebrew script is written from right to left. Conformant implementa-
tions of Hebrew script must use the Unicode Bidirectional Algorithm (see Unicode Stan-
dard Annex #9, “Unicode Bidirectional Algorithm”).

Cursive. The Unicode Standard uses the term cursive to refer to writing where the letters of
a word are connected. A handwritten form of Hebrew is known as cursive, but its rounded
letters are generally unconnected, so the Unicode definition does not apply. Fonts based on
cursive Hebrew exist. They are used not only to show examples of Hebrew handwriting, but
also for display purposes.

Standards. ISO/IEC 8859-8—Part 8. Latin/Hebrew Alphabet. The Unicode Standard
encodes the Hebrew alphabetic characters in the same relative positions as in ISO/IEC
8859-8; however, there are no points or Hebrew punctuation characters in that ISO stan-
dard.

Vowels and Other Marks of Pronunciation. These combining marks, generically called
points in the context of Hebrew, indicate vowels or other modifications of consonantal let-
ters. General rules for applying combining marks are given in Section 2.11, Combining
Characters, and Section 3.6, Combination. Additional Hebrew-specific behavior is described
below.

Hebrew points can be separated into four classes: dagesh, shin dot and sin dot, vowels, and
other marks of punctuation.

Dagesh, U+05BC hebrew point dagesh or mapiq, has the form of a dot that appears
inside the letter that it affects. It is not a vowel but rather a diacritic that affects the pronun-
ciation of a consonant. The same base consonant can also have a vowel and/or other dia-
critics. Dagesh is the only element that goes inside a letter.

The dotted Hebrew consonant shin is explicitly encoded as the sequence U+05E9 hebrew

letter shin followed by U+05C1 hebrew point shin dot. The shin dot is positioned on
the upper-right side of the undotted base letter. Similarly, the dotted consonant sin is
explicitly encoded as the sequence U+05E9 hebrew letter shin followed by U+05C2
hebrew point sin dot. The sin dot is positioned on the upper-left side of the base letter.
The two dots are mutually exclusive. The base letter shin can also have a dagesh, a vowel,
and other diacritics. The two dots are not used with any other base character.

Vowels all appear below the base character that they affect, except for holam, U+05B9
hebrew point holam, which appears above left. The following points represent vowels:
U+05B0..U+05BB, and U+05C7.

The remaining three points are marks of pronunciation: U+05BD hebrew point meteg,
U+05BF hebrew point rafe, and U+FB1E hebrew point judeo-spanish varika.
Meteg, also known as siluq, goes below the base character; rafe and varika go above it. The
varika, used in Judezmo, is a glyphic variant of rafe.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.1 Hebrew 247
Shin and Sin. Separate characters for the dotted letters shin and sin are not included in this
block. When it is necessary to distinguish between the two forms, they should be encoded
as U+05E9 hebrew letter shin followed by the appropriate dot, either U+05C1 hebrew

point shin dot or U+05C2 hebrew point sin dot. (See preceding discussion.) This
practice is consistent with Israeli standard encoding.

Final (Contextual Variant) Letterforms. Variant forms of five Hebrew letters are encoded
as separate characters in this block, as in Hebrew standards including ISO/IEC 8859-8.
These variant forms are generally used in place of the nominal letterforms at the end of
words. Certain words, however, are spelled with nominal rather than final forms, particu-
larly names and foreign borrowings in Hebrew and some words in Yiddish. Because final
form usage is a matter of spelling convention, software should not automatically substitute
final forms for nominal forms at the end of words. The positional variants should be coded
directly and rendered one-to-one via their own glyphs—that is, without contextual analy-
sis.

Yiddish Digraphs. The digraphs are considered to be independent characters in Yiddish.
The Unicode Standard has included them as separate characters so as to distinguish certain
letter combinations in Yiddish text—for example, to distinguish the digraph double vav
from an occurrence of a consonantal vav followed by a vocalic vav. The use of digraphs is
consistent with standard Yiddish orthography. Other letters of the Yiddish alphabet, such
as pasekh alef, can be composed from other characters, although alphabetic presentation
forms are also encoded.

Punctuation. Most punctuation marks used with the Hebrew script are not given indepen-
dent codes (that is, they are unified with Latin punctuation) except for the few cases where
the mark has a unique form in Hebrew—namely, U+05BE hebrew punctuation maqaf,
U+05C0 hebrew punctuation paseq (also known as legarmeh), U+05C3 hebrew punc-

tuation sof pasuq, U+05F3 hebrew punctuation geresh, and U+05F4 hebrew punc-

tuation gershayim. For paired punctuation such as parentheses, the glyphs chosen to
represent U+0028 left parenthesis and U+0029 right parenthesis will depend on the
direction of the rendered text. See Section 4.7, Bidi Mirrored, for more information. For
additional punctuation to be used with the Hebrew script, see Section 6.2, General Punctu-
ation.

Cantillation Marks. Cantillation marks are used in publishing liturgical texts, including
the Bible. There are various historical schools of cantillation marking; the set of marks
included in the Unicode Standard follows the Israeli standard SI 1311.2.

Positioning. Marks may combine with vowels and other points, and complex typographic
rules dictate how to position these combinations.

The vertical placement (meaning above, below, or inside) of points and marks is very well
defined. The horizontal placement (meaning left, right, or center) of points is also very well
defined. The horizontal placement of marks, by contrast, is not well defined, and conven-
tion allows for the different placement of marks relative to their base character.

When points and marks are located below the same base letter, the point always comes first
(on the right) and the mark after it (on the left), except for the marks yetiv, U+059A
hebrew accent yetiv, and dehi, U+05AD hebrew accent dehi. These two marks come
first (on the right) and are followed (on the left) by the point.

These rules are followed when points and marks are located above the same base letter:

• If the point is holam, all cantillation marks precede it (on the right) except
pashta, U+0599 hebrew accent pashta.

• Pashta always follows (goes to the left of) points.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

248 Middle Eastern Scripts
• Holam on a sin consonant (shin base + sin dot) follows (goes to the left of) the
sin dot. However, the two combining marks are sometimes rendered as a single
assimilated dot.

• Shin dot and sin dot are generally represented closer vertically to the base letter
than other points and marks that go above it.

Meteg. Meteg, U+05BD hebrew point meteg, frequently co-occurs with vowel points
below the consonant. Typically, meteg is placed to the left of the vowel, although in some
manuscripts and printed texts it is positioned to the right of the vowel. The difference in
positioning is not known to have any semantic significance; nevertheless, some authors
wish to retain the positioning found in source documents.

The alternate vowel-meteg ordering can be represented in terms of alternate ordering of
characters in encoded representation. However, because of the fixed-position canonical
combining classes to which meteg and vowel points are assigned, differences in ordering of
such characters are not preserved under normalization. The combining grapheme joiner can
be used within a vowel-meteg sequence to preserve an ordering distinction under normal-
ization. For more information, see the description of U+034F combining grapheme

joiner in Section 16.2, Layout Controls.

For example, to display meteg to the left of (after, for a right-to-left script) the vowel point
sheva, U+05B0 hebrew point sheva, the sequence of meteg following sheva can be used:

<sheva, meteg>

Because these marks are canonically ordered, this sequence is preserved under normaliza-
tion. Then, to display meteg to the right of the sheva, the sequence with meteg preceding
sheva with an intervening CGJ can be used:

<meteg, CGJ, sheva>

A further complication arises for combinations of meteg with hataf vowels: U+05B1
hebrew point hataf segol, U+05B2 hebrew point hataf patah, and U+05B3 hebrew

point hataf qamats. These vowel points have two side-by-side components. Meteg can be
placed to the left or the right of a hataf vowel, but it also is often placed between the two
components of the hataf vowel. A three-way positioning distinction is needed for such
cases.

The combining grapheme joiner can be used to preserve an ordering that places meteg to the
right of a hataf vowel, as described for combinations of meteg with non-hataf vowels, such
as sheva.

Placement of meteg between the components of a hataf vowel can be conceptualized as a
ligature of the hataf vowel and a nominally positioned meteg. With this in mind, the liga-
tion-control functionality of U+200D zero width joiner and U+200C zero width non-

joiner can be used as a mechanism to control the visual distinction between a nominally
positioned meteg to the left of a hataf vowel versus the medially positioned meteg within the
hataf vowel. That is, zero width joiner can be used to request explicitly a medially positioned
meteg, and zero width non-joiner can be used to request explicitly a left-positioned meteg.
Just as different font implementations may or may not display an “fi” ligature by default,
different font implementations may or may not display meteg in a medial position when
combined with hataf vowels by default. As a result, authors who want to ensure left-posi-
tion versus medial-position display of meteg with hataf vowels across all font implementa-
tions may use joiner characters to distinguish these cases.

Thus the following encoded representations can be used for different positioning of meteg
with a hataf vowel, such as hataf patah:

left-positioned meteg: <hataf patah, ZWNJ, meteg>
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.1 Hebrew 249
medially positioned meteg: <hataf patah, ZWJ, meteg>

right-positioned meteg: <meteg, CGJ, hataf patah>

In no case is use of ZWNJ, ZWJ, or CGJ required for representation of meteg. These recom-
mendations are simply provided for interoperability in those instances where authors wish
to preserve specific positional information regarding the layout of a meteg in text.

Atnah Hafukh and Qamats Qatan. In some older versions of Biblical text, a distinction is
made between the accents U+05A2 hebrew accent atnah hafukh and U+05AA
hebrew accent yerah ben yomo. Many editions from the last few centuries do not retain
this distinction, using only yerah ben yomo, but some users in recent decades have begun to
reintroduce this distinction. Similarly, a number of publishers of Biblical or other religious
texts have introduced a typographic distinction for the vowel point qamats corresponding
to two different readings. The original letterform used for one reading is referred to as
qamats or qamats gadol; the new letterform for the other reading is qamats qatan. Not all
users of Biblical Hebrew use atnah hafukh and qamats qatan. If the distinction between
accents atnah hafukh and yerah ben yomo is not made, then only U+05AA hebrew accent

yerah ben yomo is used. If the distinction between vowels qamats gadol and qamats qatan
is not made, then only U+05B8 hebrew point qamats is used. Implementations that sup-
port Hebrew accents and vowel points may not necessarily support the special-usage char-
acters U+05A2 hebrew accent atnah hafukh and U+05C7 hebrew point qamats

qatan.

Holam Male and Holam Haser. The vowel point holam represents the vowel phoneme /o/.
The consonant letter vav represents the consonant phoneme /w/, but in some words is used
to represent a vowel, /o/. When the point holam is used on vav, the combination usually
represents the vowel /o/, but in a very small number of cases represents the consonant-
vowel combination /wo/. A typographic distinction is made between these two in many
versions of Biblical text. In most cases, in which vav + holam together represents the vowel
/o/, the point holam is centered above the vav and referred to as holam male. In the less fre-
quent cases, in which the vav represents the consonant /w/, some versions show the point
holam positioned above left. This is referred to as holam haser. The character U+05BA
hebrew point holam haser for vav is intended for use as holam haser only in those
cases where a distinction is needed. When the distinction is made, the character U+05B9
hebrew point holam is used to represent the point holam male on vav. U+05BA hebrew

point holam haser for vav is intended for use only on vav; results of combining this
character with other base characters are not defined. Not all users distinguish between the
two forms of holam, and not all implementations can be assumed to support U+05BA
hebrew point holam haser for vav.

Puncta Extraordinaria. In the Hebrew Bible, dots are written in various places above or
below the base letters that are distinct from the vowel points and accents. These dots are
referred to by scholars as puncta extraordinaria, and there are two kinds. The upper punc-
tum, the more common of the two, has been encoded since Unicode 2.0 as U+05C4
hebrew mark upper dot. The lower punctum is used in only one verse of the Bible, Psalm
27:13, and is encoded as U+05C5 hebrew mark lower dot. The puncta generally differ in
appearance from dots that occur above letters used to represent numbers; the number dots
should be represented using U+0307 combining dot above and U+0308 combining

diaeresis.

Nun Hafukha. The nun hafukha is a special symbol that appears to have been used for
scribal annotations, although its exact functions are uncertain. It is used a total of nine
times in the Hebrew Bible, although not all versions include it, and there are variations in
the exact locations in which it is used. There is also variation in the glyph used: it often has
the appearance of a rotated or reversed nun and is very often called inverted nun; it may also
appear similar to a half tet or have some other form.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

250 Middle Eastern Scripts
Currency Symbol. The new sheqel sign (U+20AA) is encoded in the currency block.

Alphabetic Presentation Forms: U+FB1D–U+FB4F

The Hebrew characters in this block are chiefly of two types: variants of letters and marks
encoded in the main Hebrew block, and precomposed combinations of a Hebrew letter or
digraph with one or more vowels or pronunciation marks. This block contains all of the
vocalized letters of the Yiddish alphabet. The alef lamed ligature and a Hebrew variant of
the plus sign are included as well. The Hebrew plus sign variant, U+FB29 hebrew letter

alternative plus sign, is used more often in handwriting than in print, but it does occur
in school textbooks. It is used by those who wish to avoid cross symbols, which can have
religious and historical connotations.

U+FB20 hebrew letter alternative ayin is an alternative form of ayin that may replace
the basic form U+05E2 hebrew letter ayin when there is a diacritical mark below it. The
basic form of ayin is often designed with a descender, which can interfere with a mark
below the letter. U+FB20 is encoded for compatibility with implementations that substi-
tute the alternative form in the character data, as opposed to using a substitute glyph at
rendering time.

Use of Wide Letters. Wide letterforms are used in handwriting and in print to achieve even
margins. The wide-form letters in the Unicode Standard are those that are most commonly
“stretched” in justification. If Hebrew text is to be rendered with even margins, justification
should be left to the text-formatting software.

These alphabetic presentation forms are included for compatibility purposes. For the pre-
ferred encoding, see the Hebrew presentation forms, U+FB1D..U+FB4F.

For letterlike symbols, see U+2135..U+2138.

8.2 Arabic

Arabic: U+0600–U+06FF

The Arabic script is used for writing the Arabic language and has been extended to repre-
sent a number of other languages, such as Persian, Urdu, Pashto, Sindhi, and Kurdish, as
well as many African languages. Urdu is often written with the ornate Nastaliq script vari-
ety. Some languages, such as Indonesian/Malay, Turkish, and Ingush, formerly used the
Arabic script but now employ the Latin or Cyrillic scripts.

The Arabic script is cursive, even in its printed form (see Figure 8-1). As a result, the same
letter may be written in different forms depending on how it joins with its neighbors. Vow-
els and various other marks may be written as combining marks called harakat, which are
applied to consonantal base letters. In normal writing, however, these harakat are omitted.

Figure 8-1. Directionality and Cursive Connection

Memory representation:

After reordering:

After joining:
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.2 Arabic 251
Directionality. The Arabic script is written from right to left. Conformant implementa-
tions of Arabic script must use the Unicode Bidirectional Algorithm to reorder the memory
representation for display (see Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm”).

Standards. ISO/IEC 8859-6—Part 6. Latin/Arabic Alphabet. The Unicode Standard
encodes the basic Arabic characters in the same relative positions as in ISO/IEC 8859-6.
ISO/IEC 8859-6, in turn, is based on ECMA-114, which was based on ASMO 449.

Encoding Principles. The basic set of Arabic letters is well defined. Each letter receives only
one Unicode character value in the basic Arabic block, no matter how many different con-
textual appearances it may exhibit in text. Each Arabic letter in the Unicode Standard may
be said to represent the inherent semantic identity of the letter. A word is spelled as a
sequence of these letters. The representative glyph shown in the Unicode character chart
for an Arabic letter is usually the form of the letter when standing by itself. It is simply used
to distinguish and identify the character in the code charts and does not restrict the glyphs
used to represent it. See “Arabic Cursive Joining,” “Arabic Ligatures,” and “Arabic Joining
Groups” in the following text for an extensive discussion of how cursive joining and posi-
tional variants of Arabic letters are handled by the Unicode Standard.

The following principles guide the encoding of the various types of marks which are
applied to the basic Arabic letter skeletons:

1. Ijam: Diacritic marks applied to basic letter forms to derive new (usually con-
sonant) letters for extended Arabic alphabets are not separately encoded as
combining marks. Instead, each letter plus ijam combination is encoded as a
separate, atomic character. These letter plus ijam characters are never given
decompositions in the standard. Ijam generally take the form of one-, two-,
three- or four-dot markings above or below the basic letter skeleton, although
other diacritic forms occur in extensions of the Arabic script in Central and
South Asia and in Africa. In discussions of Arabic in Unicode, ijam are often
also referred to as nukta, because of their functional similarity to the nukta dia-
critic marks which occur in many Indic scripts.

2. Tashkil: Marks functioning to indicate vocalization of text, as well as other
types of phonetic guides to correct pronunciation, are separately encoded as
combining marks. These include several subtypes: harakat (short vowel marks),
tanwin (postnasalized or long vowel marks), and shaddah (consonant gemina-
tion mark). A basic Arabic letter plus any of these types of marks is never
encoded as a separate, precomposed character, but must always be represented
as a sequence of letter plus combining mark. Additional marks invented to
indicate non-Arabic vowels, used in extensions of the Arabic script, are also
encoded as separate combining marks.

3. Maddah: The maddah is a particular case of a harakat mark which has excep-
tional treatment in the standard. It occurs only above alef, and in that combina-
tion represents the sound /vaa/. For historical reasons, the precomposed
combination U+0622 arabic letter alef with madda above is encoded,
but the combining mark U+0653 arabic maddah above is also encoded.
U+0622 is given a canonical decomposition to the sequence of alef followed by
the combining maddah.

4. Hamza: The hamza may occur above or below other letters. Its treatment in the
Unicode Standard is also exceptional and rather complex. The general principle
is that when such a hamza is used to indicate an actual glottal stop in text, it
should be represented with a separate combining mark, either U+0654 arabic

hamza above or U+0655 arabic hamza below. However, when the hamza
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

252 Middle Eastern Scripts
mark is used as a diacritic to derive a separate letter as an extension of the Ara-
bic script, then the basic letter skeleton plus the hamza mark is represented by a
single, precomposed character. See “Combining Hamza Above” later in this
section for discussion of the complications for particular characters.

5. Annotation Marks: Koranic annotation marks are always encoded as separate
combining marks.

Punctuation. Most punctuation marks used with the Arabic script are not given indepen-
dent codes (that is, they are unified with Latin punctuation), except for the few cases where
the mark has a significantly different appearance in Arabic—namely, U+060C arabic

comma, U+061B arabic semicolon, U+061E arabic triple dot punctuation mark,
U+061F arabic question mark, and U+066A arabic percent sign. For paired punctu-
ation such as parentheses, the glyphs chosen to represent U+0028 left parenthesis and
U+0029 right parenthesis will depend on the direction of the rendered text.

The Non-joiner and the Joiner. The Unicode Standard provides two user-selectable for-
matting codes: U+200C zero width non-joiner and U+200D zero width joiner. The
use of a joiner adjacent to a suitable letter permits that letter to form a cursive connection
without a visible neighbor. This provides a simple way to encode some special cases, such as
exhibiting a connecting form in isolation, as shown in Figure 8-2.

The use of a non-joiner between two letters prevents those letters from forming a cursive
connection with each other when rendered, as shown in Figure 8-3. Examples include the
Persian plural suffix, some Persian proper names, and Ottoman Turkish vowels.

Joiners and non-joiners may also occur in combinations. The effects of such combinations
are shown in Figure 8-4. For further discussion of joiners and non-joiners, see Section 16.2,
Layout Controls.

Figure 8-2. Using a Joiner

Figure 8-3. Using a Non-joiner

Figure 8-4. Combinations of Joiners and Non-joiners

Memory representation:

After reordering:

After joining:

Memory representation:

After reordering:

After joining:

Memory representation:

After reordering:

After joining:
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.2 Arabic 253
Harakat (Vowel) Nonspacing Marks. Harakat are marks that indicate vowels or other
modifications of consonant letters. The code charts depict a character in the harakat range
in relation to a dashed circle, indicating that this character is intended to be applied via
some process to the character that precedes it in the text stream (that is, the base character).
General rules for applying nonspacing marks are given in Section 7.9, Combining Marks.
The few marks that are placed after (to the left of) the base character are treated as ordinary
spacing characters in the Unicode Standard. The Unicode Standard does not specify a
sequence order in case of multiple harakat applied to the same Arabic base character, as
there is no possible ambiguity of interpretation. For more information about the canonical
ordering of nonspacing marks, see Section 2.11, Combining Characters, and Section 3.11,
Normalization Forms.

The placement and rendering of vowel and other marks in Arabic strongly depends on the
typographical environment or even the typographical style. For example, in the Unicode
code charts, the default position of U+0651 L arabic shadda is with the glyph placed
above the base character, whereas for U+064D arabic kasratan the glyph is placed
below the base character, as shown in the first example in Figure 8-5. However, computer
fonts often follow an approach that originated in metal typesetting and combine the kas-
ratan with shadda in a ligature placed above the text, as shown in the second example in
Figure 8-5.

Arabic-Indic Digits. The names for the forms of decimal digits vary widely across different
languages. The decimal numbering system originated in India (Devanagari …) and
was subsequently adopted in the Arabic world with a different appearance (Arabic
٠١٢٣…). The Europeans adopted decimal numbers from the Arabic world, although
once again the forms of the digits changed greatly (European 0123…). The European
forms were later adopted widely around the world and are used even in many Arabic-
speaking countries in North Africa. In each case, the interpretation of decimal numbers
remained the same. However, the forms of the digits changed to such a degree that they are
no longer recognizably the same characters. Because of the origin of these characters, the
European decimal numbers are widely known as “Arabic numerals” or “Hindi-Arabic
numerals,” whereas the decimal numbers in use in the Arabic world are widely known there
as “Hindi numbers.”

The Unicode Standard includes Indic digits (including forms used with different Indic
scripts), Arabic digits (with forms used in most of the Arabic world), and European digits
(now used internationally). Because of this decision, the traditional names could not be
retained without confusion. In addition, there are two main variants of the Arabic digits:
those used in Iran, Pakistan, and Afghanistan (here called Eastern Arabic-Indic) and those
used in other parts of the Arabic world. In summary, the Unicode Standard uses the names
shown in Table 8-1. A different set of digits, called Rumi, was used in historical materials
from Egypt to Spain, and is discussed in the subsection on “Rumi Numeral Forms” in
Section 15.3, Numerals.

There is substantial variation in usage of glyphs for the Eastern Arabic-Indic digits, espe-
cially for the digits four, five, six, and seven. Table 8-2 illustrates this variation with some
example glyphs for digits in languages of Iran, Pakistan, and India. While some usage of the

Figure 8-5. Placement of Harakat
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

254 Middle Eastern Scripts
Persian glyph for U+06F7 extended arabic-indic digit seven can be documented for
Sindhi, the form shown in Table 8-2 is predominant.

The Unicode Standard provides a single, complete sequence of digits for Persian, Sindhi,
and Urdu to account for the differences in appearance and directional treatment when ren-
dering them. (For a complete discussion of directional formatting of numbers in the Uni-
code Standard, see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”)

Extended Arabic Letters. Arabic script is used to write major languages, such as Persian
and Urdu, but it has also been used to transcribe some lesser-used languages, such as Balu-
chi and Lahnda, which have little tradition of printed typography. As a result, the Unicode
Standard encodes multiple forms of some Extended Arabic letters because the character
forms and usages are not well documented for a number of languages. For additional
extended Arabic letters, see the Arabic Supplement block, U+0750..U+077F and the Arabic
Extended-A block, U+08A0 ..U+08FF.

Koranic Annotation Signs. These characters are used in the Koran to mark pronunciation
and other annotation. The enclosing mark U+06DE is used to enclose a digit. When ren-
dered, the digit appears in a smaller size. Several additional Koranic annotation signs are
encoded in the Arabic Extended-A block, U+08A0..U+08FF.

Additional Vowel Marks. When the Arabic script is adopted as the writing system for a
language other than Arabic, it is often necessary to represent vowel sounds or distinctions
not made in Arabic. In some cases, conventions such as the addition of small dots above
and/or below the standard Arabic fatha, damma, and kasra signs have been used.

Classical Arabic has only three canonical vowels (/a/, /i/, /u/), whereas languages such as
Urdu and Persian include other contrasting vowels such as /o/ and /e/. For this reason, it is
imperative that speakers of these languages be able to show the difference between /e/ and
/i/ (U+0656 arabic subscript alef), and between /o/ and /u/ (U+0657 arabic inverted

damma). At the same time, the use of these two diacritics in Arabic is redundant, merely
emphasizing that the underlying vowel is long.

U+065F arabic wavy hamza below is an additional vowel mark used in Kashmiri. It can
appear in combination with many characters. The particular combination of an alef with
this vowel mark should be written with the sequence <U+0627 arabic letter alef,
U+065F arabic wavy hamza below>, rather than with the character U+0673 arabic

letter alef with wavy hamza below, which has been deprecated and which is not

Table 8-1. Arabic Digit Names

Name Code Points Forms

European U+0030..U+0039 0123456789
Arabic-Indic U+0660..U+0669 ٠١٢٣٤٥٦٧٨٩
Eastern Arabic-Indic U+06F0..U+06F9
Indic (Devanagari) U+0966..U+096F

Table 8-2. Glyph Variation in Eastern Arabic-Indic Digits

Code Point Digit Persian Sindhi Urdu

U+06F4 4 D d T

U+06F5 5 E e U

U+06F6 6 F f V

U+06F7 7 G g W
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.2 Arabic 255
canonically equivalent. However, implementations should be aware that there may be
existing legacy Kashmiri data in which U+0673 occurs.

Honorifics. Marks known as honorifics represent phrases expressing the status of a person
and are in widespread use in the Arabic-script world. Most have a specifically religious
meaning. In effect, these marks are combining characters at the word level, rather than
being associated with a single base character. Depending on the letter shapes present in the
name and the calligraphic style in use, the honorific mark may be applied to a letter some-
where in the middle of the name. The normalization algorithm does not move such word-
level combining characters to the end of the word.

Arabic Mathematical Symbols. A few Arabic mathematical symbols are encoded in this
block. The Arabic mathematical radix signs, U+0606 arabic-indic cube root and
U+0607 arabic-indic fourth root, differ from simple mirrored versions of U+221B
cube root and U+221C fourth root, in that the digit portions of the symbols are writ-
ten with Arabic-Indic digits and are not mirrored. U+0608 arabic ray is a letterlike sym-
bol used in Arabic mathematics.

Date Separator. U+060D arabic date separator is used in Pakistan and India between
the numeric date and the month name when writing out a date. This sign is distinct from
U+002F solidus, which is used, for example, as a separator in currency amounts.

Full Stop. U+061E arabic triple dot punctuation mark is encoded for traditional
orthographic practice using the Arabic script to write African languages such as Hausa,
Wolof, Fulani, and Mandinka. These languages use arabic triple dot punctuation

mark as a full stop.

Currency Symbols. U+060B afghani sign is a currency symbol used in Afghanistan. The
symbol is derived from an abbreviation of the name of the currency, which has become a
symbol in its own right. U+FDFC rial sign is a currency symbol used in Iran. Unlike the
afghani sign, U+FDFC rial sign is considered a compatability character, encoded for
compatibility with Iranian standards. Ordinarily in Persian “rial” is simply spelled out as
the sequence of letters, <0631, 06CC, 0627, 0644>.

End of Ayah. U+06DD arabic end of ayah graphically encloses a sequence of zero or
more digits (of General Category Nd) that follow it in the data stream. The enclosure ter-
minates with any non-digit. For behavior of a similar prefixed formatting control, see the
discussion of U+070F syriac abbreviation mark in Section 8.3, Syriac.

Other Signs Spanning Numbers. Several other special signs are written in association with
numbers in the Arabic script. U+0600 arabic number sign signals the beginning of a
number; it is written below the digits of the number.

U+0601 arabic sign sanah indicates a year (that is, as part of a date). This sign is ren-
dered below the digits of the number it precedes. Its appearance is a vestigial form of the
Arabic word for year, /sanatu/ (seen noon teh-marbuta), but it is now a sign in its own right
and is widely used to mark a numeric year even in non-Arabic languages where the Arabic
word would not be known. The use of the year sign is illustrated in Figure 8-6.

U+0602 arabic footnote marker is another of these signs; it is used in the Arabic script
in conjunction with the footnote number itself. It also precedes the digits in logical order
and is written to extend underneath them.

Figure 8-6. Arabic Year Sign

Z

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

256 Middle Eastern Scripts
Finally, U+0603 arabic sign safha functions as a page sign, preceding and extending
under a sequence of digits for a page number.

Like U+06DD arabic end of ayah, all of these signs can span multiple-digit numbers,
rather than just a single digit. They are not formally considered combining marks in the
sense used by the Unicode Standard, although they clearly interact graphically with the
sequence of digits that follows them. They precede the sequence of digits that they span,
rather than following a base character, as would be the case for a combining mark. Their
General Category value is Cf (format control character). Unlike most other format control
characters, however, they should be rendered with a visible glyph, even in circumstances
where no suitable digit or sequence of digits follows them in logical order.

Poetic Verse Sign. U+060E arabic poetic verse sign is a special symbol often used to
mark the beginning of a poetic verse. Although it is similar to U+0602 arabic footnote

marker in appearance, the poetic sign is simply a symbol. In contrast, the footnote marker
is a format control character that has complex rendering in conjunction with following
digits. U+060F arabic sign misra is another symbol used in poetry.

Arabic Cursive Joining

Minimum Rendering Requirements. A rendering or display process must convert between
the logical order in which characters are placed in the backing store and the visual (or phys-
ical) order required by the display device. See Unicode Standard Annex #9, “Unicode Bidi-
rectional Algorithm,” for a description of the conversion between logical and visual orders.

The cursive nature of the Arabic script imposes special requirements on display or render-
ing processes that are not typically found in Latin script-based systems. At a minimum, a
display process must select an appropriate glyph to depict each Arabic letter according to
its immediate joining context; furthermore, it must substitute certain ligature glyphs for
sequences of Arabic characters. The remainder of this section specifies a minimum set of
rules that provide legible Arabic joining and ligature substitution behavior.

Joining Types. Each Arabic letter must be depicted by one of a number of possible contex-
tual glyph forms. The appropriate form is determined on the basis of the cursive joining
behavior of that character as it interacts with the cursive joining behavior of adjacent char-
acters. In the Unicode Standard, such cursive joining behavior is formally described in
terms of values of a character property called Joining_Type. Each Arabic character falls into
one of the types shown in Table 8-3. (See ArabicShaping.txt in the Unicode Character
Database for a complete list.) In this table, right and left refer to visual order. The characters
of the right-joining type are exemplified in more detail in Table 8-9, and those of the dual-
joining type are shown in Table 8-8. When characters do not join or cause joining (such as
dammatan), they are classified as transparent.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.2 Arabic 257
Table 8-4 defines derived superclasses of the primary Arabic joining types; those derived
types are used in the cursive joining rules. In this table, right and left refer to visual order.

Joining Rules. The following rules describe the joining behavior of Arabic letters in terms
of their display (visual) order. In other words, the positions of letterforms in the included
examples are presented as they would appear on the screen after the Bidirectional Algo-
rithm has reordered the characters of a line of text.

An implementation may choose to restate the following rules according to logical order so
as to apply them before the Bidirectional Algorithm’s reordering phase. In this case, the
words right and left as used in this section would become preceding and following.

In the following rules, if X refers to a character, then various glyph types representing that
character are referred to as shown in Table 8-5.

Table 8-3. Primary Arabic Joining Types

Description Joining_Type Examples and Comments

Right-joining R ALEF, DAL, THAL, REH, ZAIN …

Left-joining L None

Dual-joining D BEH, TEH, THEH, JEEM …

Join-causing C U+200D zero width joiner and TATWEEL (0640). These
characters are distinguished from the dual-joining charac-
ters in that they do not change shape themselves.

Non-joining U U+200C zero width non-joiner and all spacing charac-
ters, except those explicitly mentioned as being one of the
other joining types, are non-joining. These include
HAMZA (0621), HIGH HAMZA (0674), spaces, digits,
punctuation, non-Arabic letters, and so on. Also, U+0600
arabic number sign..U+0603 arabic sign safha and
U+06DD arabic end of ayah.

Transparent T All nonspacing marks (General Category Mn or Me) and
most format control characters (General Category Cf) are
transparent to cursive joining. These include FATHATAN
(064B) and other Arabic harakat, HAMZA BELOW (0655),
SUPERSCRIPT ALEF (0670), combining Koranic annota-
tion signs, and nonspacing marks from other scripts. Also
U+070F syriac abbreviation mark.

Table 8-4. Derived Arabic Joining Types

Description Derivation

Right join-causing Superset of dual-joining, left-joining, and join-causing

Left join-causing Superset of dual-joining, right-joining, and join-causing

Table 8-5. Arabic Glyph Types

Glyph Type Description

Xn Nominal glyph form as it appears in the code charts

Xr Right-joining glyph form (both right-joining and dual-joining characters may
employ this form)

Xl Left-joining glyph form (both left-joining and dual-joining characters may
employ this form)

Xm Dual-joining (medial) glyph form that joins on both left and right (only dual-
joining characters employ this form)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

258 Middle Eastern Scripts
R1 Transparent characters do not affect the joining behavior of base (spacing) charac-
ters. For example:

MEEMn + SHADDAn + LAMn → MEEMr + SHADDAn + LAMl

R2 A right-joining character X that has a right join-causing character on the right
will adopt the form Xr . For example:

ALEFn + TATWEELn → ALEFr + TATWEELn

R3 A left-joining character X that has a left join-causing character on the left will
adopt the form Xl.

R4 A dual-joining character X that has a right join-causing character on the right and
a left join-causing character on the left will adopt the form Xm. For example:

TATWEELn + MEEMn + TATWEELn → TATWEELn + MEEMm + TATWEELn

R5 A dual-joining character X that has a right join-causing character on the right and
no left join-causing character on the left will adopt the form Xr . For example:

MEEMn + TATWEELn → MEEMr + TATWEELn

R6 A dual-joining character X that has a left join-causing character on the left and no
right join-causing character on the right will adopt the form Xl. For example:

TATWEELn + MEEMn → TATWEELn + MEEMl

R7 If none of the preceding rules applies to a character X, then it will adopt the nomi-
nal form Xn.

The cursive joining behavior described here for the Arabic script is also generally applicable
to other cursive scripts such as Syriac. Specific circumstances may modify the application
of the rules just described.

As noted earlier in this section, the zero width non-joiner may be used to prevent join-
ing, as in the Persian plural suffix or Ottoman Turkish vowels.

Arabic Ligatures

Ligature Classes. Certain types of ligatures are obligatory in Arabic script regardless of font
design. Many other optional ligatures are possible, depending on font design. Because they
are optional, those ligatures are not covered in this discussion.

For the purpose of describing the obligatory Arabic ligatures, certain characters fall into
two joining groups, as shown in Table 8-6. The complete list is available in ArabicShap-
ing.txt in the Unicode Character Database.

+ + ++ →→$ $

+ → + →

+ + → + + →

+ + →→

+ + →→
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.2 Arabic 259
Ligature Rules. The following rules describe the formation of ligatures. They are applied
after the preceding joining rules. As for the joining rules just discussed, the following rules
describe ligature behavior of Arabic letters in terms of their display (visual) order.

In the ligature rules, if X and Y refer to characters, then various glyph types representing
combinations of these characters are referred to as shown in Table 8-7.

L1 Transparent characters do not affect the ligating behavior of base (nontranspar-
ent) characters. For example:

ALEFr + FATHAn + LAMl → (LAM-ALEF)n + FATHAn

L2 Any sequence with ALEFr on the left and LAMm on the right will form the ligature
(LAM-ALEF)r . For example:

L3 Any sequence with ALEFr on the left and LAMl on the right will form the ligature
(LAM-ALEF)n. For example:

Optional Features. Many other ligatures and contextual forms are optional, depending on
the font and application. Some of these presentation forms are encoded in the ranges
FB50..FDFB and FE70..FEFE. However, these forms should not be used in general inter-
change. Moreover, it is not expected that every Arabic font will contain all of these forms,
nor that these forms will include all presentation forms used by every font.

More sophisticated rendering systems will use additional shaping and placement. For
example, contextual placement of the nonspacing vowels such as fatha will provide better
appearance. The justification of Arabic tends to stretch words instead of adding width to
spaces. Basic stretching can be done by inserting tatweel between characters shaped by rules
R2, R4, R5, R6, L2, and L3; the best places for inserting tatweel will depend on the font and
rendering software. More powerful systems will choose different shapes for characters such
as kaf to fill the space in justification.

Arabic Joining Groups

The Arabic characters with the property values Joining_Type=Dual_Joining and
Joining_Type=Right_Joining can each be subdivided into shaping groups, based on the

Table 8-6. Arabic Obligatory Ligature Joining Groups

Joining Group Examples

alef madda-on-alef, hamza on alef, ...

lam lam, lam with small v, lam with dot above, ...

Table 8-7. Arabic Ligature Notation

Symbol Description

(X-Y)n Nominal ligature glyph form representing a combination of an Xr form and
a Yl form

(X-Y)r Right-joining ligature glyph form representing a combination of an Xr form
and a Ym form

(X-Y)l Left-joining ligature glyph form representing a combination of an Xm form
and a Yl form

(X-Y)m Dual-joining (medial) ligature glyph form representing a combination of an
Xm form and a Ym form

+ → (not)

+ → (not)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

260 Middle Eastern Scripts
behavior of their letter skeletons when shaped in context. The Unicode character property
that specifies these groups is called Joining_Group.

The Joining_Type and Joining_Group values for all Arabic characters are explicitly speci-
fied in ArabicShaping.txt in the Unicode Character Database. For convenience in reference,
the Joining_Type values are extracted and listed in DerivedJoiningType.txt and the
Joining_Group values are extracted and listed in DerivedJoiningGroup.txt.

Dual-Joining. Table 8-8 exemplifies dual-joining Arabic characters and illustrates the
forms taken by the letter skeletons and their diacritical marks in context. Dual-joining
characters have four distinct forms, for isolated, final, medial, and initial contexts, respec-
tively. The name for each joining group is based on the name of a representative letter that
is used to illustrate the shaping behavior. All other Arabic characters are merely variations
on these basic shapes, with diacritics added, removed, moved, or replaced. For instance, the
beh joining group applies not only to U+0628 arabic letter beh, which has a single dot
below the skeleton, but also to U+062A arabic letter teh, which has two dots above the
skeleton, and to U+062B arabic letter theh, which has three dots above the skeleton, as
well as to the Persian and Urdu letter U+067E arabic letter peh, which has three dots
below the skeleton. The joining groups in the table are organized by shape and not by stan-
dard Arabic alphabetical order. Note that characters in some joining groups have dots in
some contextual forms, but not others. These joining groups include nya, farsi yeh, and
burushaski yeh barree.

Table 8-8. Dual-Joining Arabic Characters

Joining Group Xn Xr Xm Xl Notes

beh Includes teh and theh.

noon
nya 6 7 8 9 Jawi nya.

yeh Includes alef maksura.

farsi yeh 2 3
burushaski yeh barree Left-connecting form of yeh barree

hah Includes khah and jeem.

seen Includes sheen.

sad Includes dad.

tah Includes zah.

ain Includes ghain.

feh
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.2 Arabic 261
Right-Joining. Table 8-9 exemplifies right-joining Arabic characters, illustrating the forms
they take in context. Right-joining characters have only two distinct forms, for isolated and
final contexts, respectively.

qaf
meem
heh
knotted heh
heh goal Includes hamza on heh goal.

kaf
swash kaf [\] ^
gaf
lam

Table 8-9. Right-Joining Arabic Characters

Joining Group Xn Xr Notes

alef
waw
dal Includes thal.

reh Includes zain.

teh marbuta Includes hamza on heh.

teh marbuta goal A B
yeh with tail _ `
yeh barree
rohingya yeh z Isolated form does not

occur.

Table 8-8. Dual-Joining Arabic Characters (Continued)

Joining Group Xn Xr Xm Xl Notes
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

262 Middle Eastern Scripts
In some cases, characters occur only at the end of words in correct spelling; they are called
trailing characters. Examples include teh marbuta and dammatan. When trailing charac-
ters are joining (such as teh marbuta), they are classified as right-joining, even when sim-
ilarly shaped characters are dual-joining.

Letter heh. In the case of U+0647 arabic letter heh, the glyph is shown in the code
charts. This form is often used to reduce the chance of misidentifying heh as U+0665 ara-

bic-indic digit five, which has a very similar shape. The isolate forms of U+0647 arabic

letter heh and U+06C1 arabic letter heh goal both look like U+06D5 arabic let-

ter ae.

Letter yeh. There are many complications in the shaping of the Arabic letter yeh. These
complications have led to the encoding of several different characters for yeh in the Uni-
code Standard, as well as the definition of several different joining groups involving yeh.
The relationships between those characters and joining groups for yeh are explained here.

U+06CC arabic letter farsi yeh is used in Persian, Urdu, Pashto, Azerbaijani, Kurdish,
and various minority languages written in the Arabic script, and also Koranic Arabic. It
behaves differently from most Arabic letters, in a way surprising to native Arabic language
speakers. The letter has two horizontal dots below the skeleton in initial and medial forms,
but no dots in final and isolated forms. Compared to the two Arabic language yeh forms,
farsi yeh is exactly like U+0649 arabic letter alef maksura in final and isolated forms,
but exactly like U+064A arabic letter yeh in initial and medial forms, as shown in
Table 8-10.

Other characters of the joining group farsi yeh follow the same pattern. These yeh forms
appear with two dots aligned horizontally below them in initial and medial forms, but with
no dots below them in final and isolated forms. Characters with the joining group yeh

behave in a different manner. Just as U+064A arabic letter yeh retains two dots below in
all contextual forms, other characters in the joining group yeh retain whatever mark
appears below their isolated form in all other contexts. For example, U+0777 arabic let-

ter farsi yeh with extended arabic-indic digit four below carries an Urdu-style

Table 8-10. Forms of the Arabic Letter yeh

Character Joining Group Xn Xr Xm Xl

U+0649 alef maksura yeh 2 3 4 5
U+064A yeh yeh
U+06CC farsi yeh farsi yeh 2 3
U+0777 yeh with digit
four below

yeh a b c d
U+0620 kashmiri yeh yeh e f g h
U+06D2 yeh barree yeh barree
U+077A yeh barree
with digit two above

burushaski yeh barree i j k l
U+08AC rohingya yeh rohingya yeh z
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.2 Arabic 263
digit four as a diacritic below the yeh skeleton, and retains that diacritic in all positions, as
shown in the fourth row of Table 8-10. Note that the joining group cannot always be
derived from the character name alone. The complete list of characters with the joining
group yeh or farsi yeh is available in ArabicShaping.txt in the Unicode Character Data-
base.

In the orthographies of Arabic and Persian, the yeh barree has always been treated as a sty-
listic variant of yeh in final and isolated positions. When the Perso-Arabic writing system
was adapted and extended for use with the Urdu language, yeh barree was adopted as a dis-
tinct letter to accommodate the richer vowel repertoire of Urdu. South Asian languages
such as Urdu and Kashmiri use yeh barree to represent the /e/ vowel. This contrasts with the
/i/ vowel, which is usually represented in those languages by U+06CC arabic letter farsi

yeh. The encoded character U+06D2 arabic letter yeh barree is classified as a right-
joining character, as shown in Table 8-10. On that basis, when the /e/ vowel needs to be rep-
resented in initial or medial positions with a yeh shape in such languages, one should use
U+06CC arabic letter farsi yeh. In the unusual circumstances where one wishes to dis-
tinctly represent the /e/ vowel in word-initial or word-medial positions, a higher level pro-
tocol should be used.

For the Burushaski language, two characters that take the form of yeh barree with a dia-
critic, U+077A arabic letter yeh barree with extended arabic-indic digit two

above and U+077B arabic letter yeh barree with extended arabic-indic digit

three above, are classified as dual-joining. These characters have a separate joining group
called burushaski yeh barree, as shown for U+077A in the last row of Table 8-10.

U+0620 arabic letter kashmiri yeh is used in Kashmiri text to indicate that the preced-
ing consonantal sound is palatalized. The letter has the form of a yeh with a diacritic small
circle below. It has the yeh joining group, with the shapes as shown in the fifth row of
Table 8-10. However, when Kashmiri is written in Nastaliq style, the final and isolated
forms of kashmiri yeh usually appear as truncated yeh shapes (o) without the diacritic ring.

U+08AC arabic letter rohingya yeh is used in the Arabic orthography for the
Rohingya language of Myanmar. It represents a medial ya, corresponding to the use of
U+103B myanmar consonant sign medial ya in the Myanmar script. It is a right-joining
letter, but never occurs in isolated form. It only occurs after certain consonants, forming a
conjunct letter with those consonants.

Combining Hamza Above. U+0654 arabic hamza above is intended both for the repre-
sentation of hamza semantics in combination with certain Arabic letters, and as a diacritic
mark occasionally used in combinations to derive extended Arabic letters. There are a
number of complications regarding its use, which interact with the rules for the rendering
of Arabic letter yeh and which result from the need to keep Unicode normalization stable.

U+0654 arabic hamza above should not be used with U+0649 arabic letter alef

maksura. Instead, the precomposed U+0626 arabic letter yeh with hamza above

should be used to represent a yeh-shaped base with no dots in any positional form, and
with a hamza above. Because U+0626 is canonically equivalent to the sequence <U+064A
arabic letter yeh, U+0654 arabic hamza above>, when U+0654 is applied to U+064A
arabic letter yeh, the yeh should lose its dots in all positional forms, even though yeh
retains its dots when combined with other marks.

A separate, non-decomposable character, U+08A8 arabic letter yeh with two dots

below and hamza above, is used to represent a yeh-shaped base with a hamza above, but
with retention of dots in all positions. This letter is used in the Fulfulde language in Cam-
eroun, to represent a palatal implosive.

In most other cases when a hamza is needed as a mark above for an extended Arabic letter,
U+0654 arabic hamza above can be freely used in combination with basic Arabic letters.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

264 Middle Eastern Scripts
Two exceptions are the extended Arabic letters U+0681 arabic letter hah with hamza

above and U+076C arabic letter reh with hamza above, where the hamza mark is
functioning as an ijam (diacritic), rather than as a normal hamza. In those two cases, the
extended Arabic letters have no canonical decompositions; consequently, the preference is
to use those two precomposed forms, rather than applying U+0654 arabic hamza above

to hah or to reh, respectively.

These interactions between various letters and the hamza are summarized in Table 8-11.

The first five entries in Table 8-11 show the cases where the hamza above can be freely used,
and where there is a canonical equivalence to the precomposed characters. The last three
entries show the exceptions, where use of the hamza above is inappropriate, and where only
the precomposed characters should be used.

Jawi. U+06BD arabic letter noon with three dots above is used for Jawi, which is
Malay written using the Arabic script. Malay users know the character as Jawi Nya. Con-
trary to what is suggested by its Unicode character name, U+06BD displays with the three
dots below the letter pointing downward when it is in the initial or medial position, making
it look exactly like the initial and medial forms of U+067E arabic letter peh. This is
done to avoid confusion with U+062B arabic letter theh, which appears in words of
Arabic origin, and which has the same base letter shapes in initial or medial position, but
with three dots above in all positions.

Kurdish. The Kurdish language is written in several different orthographies, which use
either the Latin, Cyrillic, or Arabic scripts. When written using the Arabic script, Kurdish
uses a number of extended Arabic letters, for an alphabet known as Soraní. Some of those
extensions are shared with Persian, Urdu, or other languages: for example, U+06C6 arabic

letter oe, which represents the Kurdish vowel [o]. Soraní also makes other unusual adap-
tations of the Arabic script, including the use of a digraph waw+waw to represent the long
Kurdish vowel [u:]. That digraph is represented by a sequence of two characters, <U+0648
arabic letter waw, U+0648 arabic letter waw>.

Among the extended Arabic characters used exclusively for Soraní are U+0695 arabic let-

ter reh with small v below (for the Kurdish flap r) and U+06B5 arabic letter lam

with small v (for the Kurdish velarized l).

The Unicode Standard also includes several extended Arabic characters whose origin was to
represent dialectal or other poorly attested alternative forms of the Soraní alphabet exten-
sions. U+0692 arabic letter reh with small v is a dialectal variant of U+0695 which
places the small v diacritic above the letter rather than below it. U+0694 is another variant
of U+0695. U+06B6 and U+06B7 are poorly attested variants of U+06B5, and U+06CA is
a poorly attested variant of U+06C6. None of these alternative forms is required (or
desired) for a regular implementation of the Kurdish Soraní orthography.

Table 8-11. Arabic Letters With Hamza Above

Code Point Name Decomposition

0623 alef with hamza above 0627 0654

0624 waw with hamza above 0648 0654

0626 yeh with hamza above 064A 0654

06C2 heh goal with hamza above 06C1 0654

06D3 yeh barree with hamza above 06D2 0654

0681 hah with hamza above None

076C reh with hamza above None

08A8 yeh with 2 dots below and hamza above None
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.2 Arabic 265
Arabic Supplement: U+0750–U+077F

The Arabic Supplement block contains additional extended Arabic letters for the languages
used in Northern and Western Africa, such as Fulfulde, Hausa, Songhoy, and Wolof. In the
second half of the twentieth century, the use of the Arabic script was actively promoted for
these languages. This block also contains a number of letters used for the Khowar, Torwali,
and Burushaski languages, spoken primarily in Pakistan. Characters used for other lan-
guages are annotated in the character names list. Additional vowel marks used with these
languages are found in the main Arabic block.

Marwari. U+076A arabic letter lam with bar is used to represent a flapped retroflexed
lateral in the Marwari language in southern Pakistan. It has also been suggested for use in
the Gawri language of northern Pakistan but it is unclear how widely it has been adopted
there. Contextual shaping for this character is similar to that of U+0644 arabic letter

lam, including the requirement to form ligatures with alef and related characters.

Arabic Extended-A: U+08A0–U+08FF

The Arabic Extended-A block contains additional Arabic letters and vowel signs for use by
a number of African languages from Chad, Senegal, Guinea, and Cameroon, and for lan-
guages of the Philippines. It also contains extended letters, vowel signs, and tone marks
used by the Rohingya Fonna writing system for the Rohingya language in Myanmar, as well
as several additional Koranic annotation signs.

Arabic Presentation Forms-A: U+FB50–U+FDFF

This block contains a list of presentation forms (glyphs) encoded as characters for compat-
ibility. As with most other compatibility encodings, these characters have a preferred
encoding that makes use of noncompatibility characters.

The presentation forms in this block consist of contextual (positional) variants of Extended
Arabic letters, contextual variants of Arabic letter ligatures, spacing forms of Arabic dia-
critic combinations, contextual variants of certain Arabic letter/diacritic combinations,
and Arabic phrase ligatures. The ligatures include a large set of presentation forms. How-
ever, the set of ligatures appropriate for any given Arabic font will generally not match this
set precisely. Fonts will often include only a subset of these glyphs, and they may also
include glyphs outside of this set. These glyphs are generally not accessible as characters
and are used only by rendering engines.

Ornate Parentheses. The alternative, ornate forms of parentheses (U+FD3E ornate left

parenthesis and U+FD3F ornate right parenthesis) for use with the Arabic script are
considered traditional Arabic punctuation, rather than compatibility characters. These
ornate parentheses are exceptional in rendering in bidirectional text; for legacy reasons,
they do not have the Bidi_Mirrored property. Thus, unlike other parentheses, they do not
automatically mirror when rendered in a bidirectional context.

Nuktas. Various patterns of single or multiple dots or other small marks are used diacriti-
cally to extend the core Arabic set of letters to represent additional sounds in other lan-
guages written with the Arabic script. Such dot patterns are known as nuktas. In the
Unicode Standard, extended Arabic characters with nuktas are simply encoded as fully-
formed base characters. However, there is an occasional need in pedagogical materials
about the Arabic script to exhibit the various nuktas in isolation. The range of characters
U+FBB2..U+FBC1 provides a set of symbols for this purpose. These are ordinary, spacing
symbols with right-to-left directionality. They are not combining marks, and are not
intended for the construction of new Arabic letters by use in combining character
sequences. Any use in juxtaposition with an Arabic letter skeleton is undefined.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

266 Middle Eastern Scripts
The Arabic nukta symbols do not partake of any Arabic shaping behavior. For clarity in dis-
play, those with the names including the word “above” should have glyphs that render high
above the baseline, and those with names including “below” should be at or below the
baseline.

Arabic Presentation Forms-B: U+FE70–U+FEFF

This block contains additional Arabic presentation forms consisting of spacing or tatweel
forms of Arabic diacritics, contextual variants of primary Arabic letters, and the obligatory
lam-alef ligature. They are included here for compatibility with preexisting standards and
legacy implementations that use these forms as characters. They can be replaced by letters
from the Arabic block (U+0600..U+06FF). Implementations can handle contextual glyph
shaping by rendering rules when accessing glyphs from fonts, rather than by encoding con-
textual shapes as characters.

Spacing and Tatweel Forms of Arabic Diacritics. For compatibility with certain imple-
mentations, a set of spacing forms of the Arabic diacritics is provided here. The tatweel
forms are combinations of the joining connector tatweel and a diacritic.

Zero Width No-Break Space. This character (U+FEFF), which is not an Arabic presenta-
tion form, is described in Section 16.8, Specials.

8.3 Syriac

Syriac: U+0700–U+074F

Syriac Language. The Syriac language belongs to the Aramaic branch of the Semitic family
of languages. The earliest datable Syriac writing dates from the year 6 ce. Syriac is the active
liturgical language of many communities in the Middle East (Syrian Orthodox, Assyrian,
Maronite, Syrian Catholic, and Chaldaean) and Southeast India (Syro-Malabar and Syro-
Malankara). It is also the native language of a considerable population in these communi-
ties.

Syriac is divided into two dialects. West Syriac is used by the Syrian Orthodox, Maronites,
and Syrian Catholics. East Syriac is used by the Assyrians (that is, Ancient Church of the
East) and Chaldaeans. The two dialects are very similar and have almost no differences in
grammar and vocabulary. They differ in pronunciation and use different dialectal forms of
the Syriac script.

Languages Using the Syriac Script. A number of modern languages and dialects employ
the Syriac script in one form or another. They include the following:

1. Literary Syriac. The primary usage of Syriac script.

2. Neo-Aramaic dialects. The Syriac script is widely used for modern Aramaic lan-
guages, next to Hebrew, Cyrillic, and Latin. A number of Eastern Modern Ara-
maic dialects known as Swadaya (also called vernacular Syriac, modern Syriac,
modern Assyrian, and so on, and spoken mostly by the Assyrians and Chaldae-
ans of Iraq, Turkey, and Iran) and the Central Aramaic dialect, Turoyo (spoken
mostly by the Syrian Orthodox of the Tur Abdin region in southeast Turkey),
belong to this category of languages.

3. Garshuni (Arabic written in the Syriac script). It is currently used for writing
Arabic liturgical texts by Syriac-speaking Christians. Garshuni employs the
Arabic set of vowels and overstrike marks.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.3 Syriac 267
4. Christian Palestinian Aramaic (also known as Palestinian Syriac). This dialect is
no longer spoken.

5. Other languages. The Syriac script was used in various historical periods for
writing Armenian and some Persian dialects. Syriac speakers employed it for
writing Arabic, Ottoman Turkish, and Malayalam. Six special characters used
for Persian and Sogdian were added in Version 4.0 of the Unicode Standard.

Shaping. The Syriac script is cursive and has shaping rules that are similar to those for Ara-
bic. The Unicode Standard does not include any presentation form characters for Syriac.

Directionality. The Syriac script is written from right to left. Conformant implementations
of Syriac script must use the Unicode Bidirectional Algorithm (see Unicode Standard
Annex #9, “Unicode Bidirectional Algorithm”).

Syriac Type Styles. Syriac texts employ several type styles. Because all type styles use the
same Syriac characters, even though their shapes vary to some extent, the Unicode Stan-
dard encodes only a single Syriac script.

1. Estrangela type style. Estrangela (a word derived from Greek strongulos, mean-
ing “rounded”) is the oldest type style. Ancient manuscripts use this writing
style exclusively. Estrangela is used today in West and East Syriac texts for writ-
ing headers, titles, and subtitles. It is the current standard in writing Syriac texts
in Western scholarship.

2. Serto or West Syriac type style. This type style is the most cursive of all Syriac
type styles. It emerged around the eighth century and is used today in West Syr-
iac texts, Turoyo (Central Neo-Aramaic), and Garshuni.

3. East Syriac type style. Its early features appear as early as the sixth century; it
developed into its own type style by the twelfth or thirteenth century. This type
style is used today for writing East Syriac texts as well as Swadaya (Eastern Neo-
Aramaic). It is also used today in West Syriac texts for headers, titles, and subti-
tles alongside the Estrangela type style.

4. Christian Palestinian Aramaic. Manuscripts of this dialect employ a script that
is akin to Estrangela. It can be considered a subcategory of Estrangela.

The Unicode Standard provides for usage of the type styles mentioned above. It also
accommodates letters and diacritics used in Neo-Aramaic, Christian Palestinian Aramaic,
Garshuni, Persian, and Sogdian languages. Examples are supplied in the Serto type style,
except where otherwise noted.

Character Names. Character names follow the East Syriac convention for naming the let-
ters of the alphabet. Diacritical points use a descriptive naming—for example, syriac dot

above.

Syriac Abbreviation Mark. U+070F syriac abbreviation mark (SAM) is a zero-width
formatting code that has no effect on the shaping process of Syriac characters. The SAM
specifies the beginning point of a Syriac abbreviation, which is a line drawn horizontally
above one or more characters, at the end of a word or of a group of characters followed by
a character other than a Syriac letter or diacritic mark. A Syriac abbreviation may contain
Syriac diacritics.

Ideally, the Syriac abbreviation is rendered by a line that has a dot at each end and the cen-
ter, as shown in the examples. While not preferable, it has become acceptable for computers
to render the Syriac abbreviation as a line without the dots. The line is acceptable for the
presentation of Syriac in plain text, but the presence of dots is recommended in liturgical
texts.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

268 Middle Eastern Scripts
The Syriac abbreviation is used for letter numbers and contractions. A Syriac abbreviation
generally extends from the last tall character in the word until the end of the word. A com-
mon exception to this rule is found with letter numbers that are preceded by a preposition
character, as seen in Figure 8-7.

A SAM is placed before the character where the abbreviation begins. The Syriac abbrevia-
tion begins over the character following the SAM and continues until the end of the word.
Use of the SAM is demonstrated in Figure 8-8.

Note: Modern East Syriac texts employ a punctuation mark for contractions of this sort.

Ligatures and Combining Characters. Only one ligature is included in the Syriac block:
U+071E syriac letter yudh he. This combination is used as a unique character in the
same manner as an “æ” ligature. A number of combining diacritics unique to Syriac are
encoded, but combining characters from other blocks are also used, especially from the
Arabic block.

Diacritic Marks and Vowels. The function of the diacritic marks varies. They indicate
vowels (as in Arabic and Hebrew), mark grammatical attributes (for example, verb versus
noun, interjection), or guide the reader in the pronunciation and/or reading of the given
text.

“The reader of the average Syriac manuscript or book is confronted with
a bewildering profusion of points. They are large, of medium size and
small, arranged singly or in twos and threes, placed above the word,
below it, or upon the line.”

There are two vocalization systems. The first, attributed to Jacob of Edessa (633–708 ce),
utilizes letters derived from Greek that are placed above (or below) the characters they
modify. The second is the more ancient dotted system, which employs dots in various
shapes and locations to indicate vowels. East Syriac texts exclusively employ the dotted sys-
tem, whereas West Syriac texts (especially later ones and in modern times) employ a mix-
ture of the two systems.

Diacritic marks are nonspacing and are normally centered above or below the character.
Exceptions to this rule follow:

Figure 8-7. Syriac Abbreviation

Figure 8-8. Use of SAM

= 15 (number in letters)

= on the 15th (number with prefix)

=

=

3£K%
%K£3

Memory representation:

After reordering:

After joining:
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.3 Syriac 269
1. U+0741 syriac qushshaya and U+0742 syriac rukkakha are used only with
the letters beth, gamal (in its Syriac and Garshuni forms), dalath, kaph, pe, and
taw.

• The qushshaya indicates that the letter is pronounced hard and unaspirated.

• The rukkakha indicates that the letter is pronounced soft and aspirated. When
the rukkakha is used in conjunction with the dalath, it is printed slightly to the
right of the dalath’s dot below.

2. In Modern Syriac usage, when a word contains a rish and a seyame, the dot of
the rish and the seyame are replaced by a rish with two dots above it.

3. The feminine dot is usually placed to the left of a final taw.

Punctuation. Most punctuation marks used with Syriac are found in the Latin-1 and Ara-
bic blocks. The other marks are encoded in this block.

Digits. Modern Syriac employs European numerals, as does Hebrew. The ordering of digits
follows the same scheme as in Hebrew.

Harklean Marks. The Harklean marks are used in the Harklean translation of the New Tes-
tament. U+070B syriac harklean obelus and U+070D syriac harklean asteriscus

mark the beginning of a phrase, word, or morpheme that has a marginal note. U+070C
syriac harklean metobelus marks the end of such sections.

Dalath and Rish. Prior to the development of pointing, early Syriac texts did not distin-
guish between a dalath and a rish, which are distinguished in later periods with a dot below
the former and a dot above the latter. Unicode provides U+0716 syriac letter dotless

dalath rish as an ambiguous character.

Semkath. Unlike other letters, the joining mechanism of semkath varies through the course
of history from right-joining to dual-joining. It is necessary to enter a U+200C zero

width non-joiner character after the semkath to obtain the right-joining form where
required. Two common variants of this character exist: U+0723 syriac letter semkath

and U+0724 syriac letter final semkath. They occur interchangeably in the same doc-
ument, similar to the case of Greek sigma.

Vowel Marks. The so-called Greek vowels may be used above or below letters. As West Syr-
iac texts employ a mixture of the Greek and dotted systems, both versions are accounted for
here.

Miscellaneous Diacritics. Miscellaneous general diacritics are used in Syriac text. Their
usage is explained in Table 8-12.

Use of Characters of the Arabic Block. Syriac makes use of several characters from the Ara-
bic block, including U+0640 arabic tatweel. Modern texts use U+060C arabic comma,
U+061B arabic semicolon, and U+061F arabic question mark. The shadda (U+0651)
is also used in the core part of literary Syriac on top of a waw in the word “O”. Arabic hara-
kat are used in Garshuni to indicate the corresponding Arabic vowels and diacritics.

Syriac Shaping

Minimum Rendering Requirements. Rendering requirements for Syriac are similar to
those for Arabic. The remainder of this section specifies a minimum set of rules that pro-
vides legible Syriac joining and ligature substitution behavior.

Joining Types. Each Syriac letter must be depicted by one of a number of possible contex-
tual glyph forms. The appropriate form is determined on the basis of the cursive joining
behavior of that character as it interacts with the cursive joining behavior of adjacent char-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

270 Middle Eastern Scripts
acters. The basic joining types are identical to those specified for the Arabic script. How-
ever, there are additional contextual rules which govern the shaping of U+0710 syriac

letter alaph in final position. The additional glyph types associated with final alaph are
listed in Table 8-13.

In the following rules, alaph refers to U+0710 syriac letter alaph, which has
Joining_Group=Alaph.

These rules are intended to augment joining rules for Syriac which would otherwise paral-
lel the joining rules specified for Arabic in Section 8.2, Arabic. Characters with
Joining_Type=Transparent are skipped over when applying the Syriac rules for shaping of
alaph. In other words, the Syriac parallel for Arabic joining rule R1 would take precedence
over the alaph joining rules.

S1 An alaph that has a left-joining character to its right and a non-joining character
to its left will take the form of Afj.

S2 An alaph that has a non-left-joining character to its right, except for a character
with Joining_Group=Dalath_Rish, and a non-joining character to its left will take
the form of Afn.

Table 8-12. Miscellaneous Syriac Diacritic Use

Code Points Use

U+0303, U+0330 These are used in Swadaya to indicate letters not found in Syriac.

U+0304, U+0320 These are used for various purposes ranging from phonological to grammatical
to orthographic markers.

U+0307, U+0323 These points are used for various purposes—grammatical, phonological, and
otherwise. They differ typographically and semantically from the qushshaya,
rukkakha points, and the dotted vowel points.

U+0308 This is the plural marker. It is also used in Garshuni for the Arabic teh marbuta.

U+030A, U+0325 These are two other forms for the indication of qushshaya and rukkakha. They
are used interchangeably with U+0741 syriac qushshaya and U+0742 syr-
iac rukkakha, especially in West Syriac grammar books.

U+0324 This diacritic mark is found in ancient manuscripts. It has a grammatical and
phonological function.

U+032D This is one of the digit markers.

U+032E This is a mark used in late and modern East Syriac texts as well as in Swadaya to
indicate a fricative pe.

Table 8-13. Syriac Final Alaph Glyph Types

Glyph Type Description

Afj Final joining (alaph only)

Afn Final non-joining except following dalath and rish (alaph only)

Afx Final non-joining following dalath and rish (alaph only)

+ +→ →

+ +→ →
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.3 Syriac 271
S3 An alaph that has a character with Joining_Group=Dalath_Rish to its right and a
non-joining character to its left will take the form of Afx.

The example in rule S3 is shown in the East Syriac font style.

Syriac Character Joining Groups. Syriac characters can be subdivided into shaping
groups, based on the behavior of their letter skeletons when shaped in context. The Uni-
code character property that specifies these groups is called Joining_Group, and is specified
in ArabicShaping.txt in the Unicode Character Database. It is described in the subsection
on character joining groups in Section 8.2, Arabic.

Table 8-14 exemplifies dual-joining Syriac characters and illustrates the forms taken by the
letter skeletons in context. This table and the subsequent table use the Serto (West Syriac)
font style, whereas the Unicode code charts are in the Estrangela font style.

Table 8-15 exemplifies right-joining Syriac characters, illustrating the forms they take in
context. Right-joining characters have only two distinct forms, for isolated and final con-
texts, respectively.

Table 8-14. Dual-Joining Syriac Characters

Joining Group Xn Xr Xm Xl Notes

Beth 3 4 5 6 Includes persian bheth

Gamal 7 8 9 : Includes gamal garshuni
and persian ghamal

Heth ? @ A B
Teth C D E F Includes teth garshuni

Yudh K L M N
Kaph O P Q R
Khaph – ” “ — Sogdian

Lamadh S T U V
Mim W X Y Z
Nun [\] ^
Semkath _ ` a b
Final_Semkath c d e f
E g h i j
Pe k l m n
Reversed_Pe o p q r
Fe ‘ ◊ ÷ ’ Sogdian

Qaph s t u v
Shin w x y z

+ +→ →
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

272 Middle Eastern Scripts
U+0710 syriac letter alaph has the Joining_Group=Alaph and is a right-joining char-
acter. However, as specified above in rules S1, S2, and S3, its glyph is subject to additional
contextual shaping. Table 8-16 illustrates all of the glyph forms for alaph in each of the
three major Syriac type styles.

Ligature Classes. As in other scripts, ligatures in Syriac vary depending on the font style.
Table 8-17 identifies the principal valid ligatures for each font style. When applicable, these
ligatures are obligatory, unless denoted with an asterisk (*).

Table 8-15. Right-Joining Syriac Characters

Joining Group Xn Xr Notes

Dalath_Rish ! " Includes rish, dotless dalath rish,
and persian dhalath

He % &

Syriac_Waw ' (

Zain) *

Zhain Œ œ Sogdian

Yudh_He + ,

Sadhe - .

Taw 1 2

Table 8-16. Syriac Alaph Glyph Forms

Type Style Xn Xr Afj Afn Afx

Estrangela ¤ ¥ ¥ ¤ ¤
Serto (West Syriac) { | | } }
East Syriac P ~ ¡ Q P

Table 8-17. Syriac Ligatures

Characters Estrangela Serto (West Syriac) East Syriac Sources

alaph lamadh N/A Dual-joining N/A Beth Gazo

gamal lamadh N/A Dual-joining* N/A Armalah

gamal e N/A Dual-joining* N/A Armalah

he yudh N/A N/A Right-joining* Qdom

yudh taw N/A Right-joining* N/A Armalah*

kaph lamadh N/A Dual-joining* N/A Shhimo

kaph taw N/A Right-joining* N/A Armalah

lamadh space alaph N/A Right-joining* N/A Nomocanon

lamadh alaph Right-joining* Right-joining Right-joining* BFBS

lamadh lamadh N/A Dual-joining* N/A Shhimo

nun alaph N/A Right-joining* N/A Shhimo

semakath teth N/A Dual-joining* N/A Qurobo

sadhe nun Right-joining* Right-joining* Right-joining* Mushhotho
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.4 Samaritan 273
8.4 Samaritan

Samaritan: U+0800–U+083F

The Samaritan script is used today by small Samaritan communities in Israel and the Pales-
tinian Territories to write the Samaritan Hebrew and Samaritan Aramaic languages, pri-
marily for religious purposes. The Samaritan religion is related to an early form of Judaism,
but the Samaritans did not leave Palestine during the Babylonian exile, so the script evolved
from the linear Old Hebrew script, most likely directly descended from Phoenician (see
Section 14.10, Phoenician). In contrast, the more recent square Hebrew script associated
with Judaism derives from the Imperial Aramaic script (see Section 14.11, Imperial Ara-
maic) used widely in the region during and after the Babylonian exile, and thus well-known
to educated Hebrew speakers of that time.

Like the Phoenician and Hebrew scripts, Samaritan has 22 consonant letters. The conso-
nant letters do not form ligatures, nor do they have explicit final forms as some Hebrew
consonants do.

Directionality. The Samaritan script is written from right to left. Conformant implemen-
tations of Samaritan script must use the Unicode Bidirectional Algorithm. For more infor-
mation, see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”

Vowel Signs. Vowel signs are optional in Samaritan, just as points are optional in Hebrew.
Combining marks are used for vowels that follow a consonant, and are rendered above and
to the left of the base consonant. With the exception of o and short a, vowels may have up to
three lengths (normal, long, and overlong), which are distinguished by the size of the cor-
responding vowel sign. Sukun is centered above the corresponding base consonant and
indicates that no vowel follows the consonant.

Two vowels, i and short a, may occur in a word-initial position preceding any consonant. In
this case, the separate spacing versions U+0828 samaritan modifier letter i and
U+0824 samaritan modifier letter short a should be used instead of the normal com-
bining marks.

When U+0824 samaritan modifier letter short a follows a letter used numerically, it
indicates thousands, similar to the use of U+05F3 hebrew punctuation geresh for the
same purpose in Hebrew.

Consonant Modifiers. The two marks, U+0816 samaritan mark in and U+0817 samar-

itan mark in-alef, are used to indicate a pharyngeal voiced fricative /f/. These occur
immediately following their base consonant and preceding any vowel signs, and are ren-
dered above and to the right of the base consonant.

U+0818 samaritan mark occlusion “strengthens” the consonant, for example changing
/w/ to /b/. U+0819 samaritan mark dagesh indicates consonant gemination. The occlu-
sion and dagesh marks may both be applied to the same consonant, in which case the occlu-
sion mark should precede the dagesh in logical order, and the dagesh is rendered above the
occlusion mark. The occlusion mark is also used to designate personal names to distinguish
them from homographs.

rish seyame Right-joining Right-joining Right-joining BFBS

taw alaph Right-joining* N/A Right-joining* Qdom

taw yudh N/A N/A Right-joining*

Table 8-17. Syriac Ligatures (Continued)

Characters Estrangela Serto (West Syriac) East Syriac Sources
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

274 Middle Eastern Scripts
Epenthetic yut represents a kind of glide-vowel which interacts with another vowel. It was
originally used only with the consonants alaf, iy, it, and in, in combination with a vowel
sign. The combining U+081B samaritan mark epenthetic yut should be used for this
purpose. When epenthetic yut is not fixed to one of the four consonants listed above, a new
behavior evolved in which the mark for the epenthetic yut behaves as a spacing character,
capable of bearing its own diacritical mark. U+081A samaritan modifier letter epen-

thetic yut should be used instead to represent the epenthetic yut in this context.

Punctuation. Samaritan uses a large number of punctuation characters. U+0830 samari-

tan punctuation nequdaa and U+0831 samaritan punctuation afsaaq (“interrup-
tion”) are similar to the Hebrew sof pasuq and were originally used to separate sentences,
and later to mark lesser breaks within a sentence. They have also been described respec-
tively as “semicolon” and “pause.” Samaritan also uses a smaller dot as a word separator,
which can be represented by U+2E31 word separator middle dot. U+083D samaritan

punctuation sof mashfaat is equivalent to the full stop. U+0832 samaritan punctua-

tion anged (“restraint”) indicates a break somewhat less strong than an afsaaq. U+083E
samaritan punctuation annaau (“rest”) is stronger than the afsaaq and indicates that a
longer time has passed between actions narrated in the sentences it separates.

U+0839 samaritan punctuation qitsa is similar to the annaau but is used more fre-
quently. The qitsa marks the end of a section, and may be followed by a blank line to further
make the point. It has many glyph variants. One important variant, U+0837 samaritan

punctuation melodic qitsa, differs significantly from any of the others, and indicates the
end of a sentence “which one should read melodically.”

Many of the punctuation characters are used in combination with each other, for example:
afsaaq + nequdaa or nequdaa + afsaaq, qitsa + nequdaa, and so on.

U+0836 samaritan abbreviation mark follows an abbreviation. U+082D samaritan

mark nequdaa is an editorial mark which indicates that there is a variant reading of the
word.

Other Samaritan punctuation characters mark some prosodic or performative attributes of
the text preceding them, as summarized in Table 8-18.

8.5 Thaana

Thaana: U+0780–U+07BF

The Thaana script is used to write the modern Dhivehi language of the Republic of Mal-
dives, a group of atolls in the Indian Ocean. Like the Arabic script, Thaana is written from
right to left and uses vowel signs, but it is not cursive. The basic Thaana letters have been
extended by a small set of dotted letters used to transcribe Arabic. The use of modified
Thaana letters to write Arabic began in the middle of the twentieth century. Loan words

Table 8-18. Samaritan Performative Punctuation Marks

Code Point Name Description

0833 bau request, prayer, humble petition

0834 atmaau expression of surprise

0835 shiyyaalaa question

0838 ziqaa shout, cry

083A zaef outburst indicating vehemence or anger

083B turu didactic expression, a “teaching”

083C arkaanu expression of submissiveness
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

8.5 Thaana 275
from Arabic may be written in the Arabic script, although this custom is not very prevalent
today. (See Section 8.2, Arabic.)

While Thaana’s glyphs were borrowed in part from Arabic (letters haa through vaavu were
based on the Arabic-Indic digits, for example), and while vowels and sukun are marked
with combining characters as in Arabic, Thaana is properly considered an alphabet, rather
than an abjad, because writing the vowels is obligatory.

Directionality. The Thaana script is written from right to left. Conformant implementa-
tions of Thaana script must use the Unicode Bidirectional Algorithm (see Unicode Stan-
dard Annex #9, “Unicode Bidirectional Algorithm”).

Vowels. Consonants are always written with either a vowel sign (U+07A6..U+07AF) or the
null vowel sign (U+07B0 thaana sukun). U+0787 thaana letter alifu with the null
vowel sign denotes a glottal stop. The placement of the Thaana vowel signs is shown in
Table 8-19.

Numerals. Both European (U+0030..U+0039) and Arabic digits (U+0660..U+0669) are
used. European numbers are used more commonly and have left-to-right display direc-
tionality in Thaana. Arabic numeric punctuation is used with digits, whether Arabic or
European.

Punctuation. The Thaana script uses spaces between words. It makes use of a mixture of
Arabic and European punctuation, though rules of usage are not clearly defined. Sentence-
final punctuation is now generally shown with a single period (U+002E “.” full stop) but
may also use a sequence of two periods (U+002E followed by U+002E). Phrases may be
separated with a comma (usually U+060C arabic comma) or with a single period
(U+002E). Colons, dashes, and double quotation marks are also used in the Thaana script.
In addition, Thaana makes use of U+061F arabic question mark and U+061B arabic

semicolon.

Character Names and Arrangement. The character names are based on the names used in
the Republic of Maldives. The character name at U+0794, yaa, is found in some sources as
yaviyani, but the former name is more common today. Characters are listed in Thaana
alphabetical order from haa to ttaa for the Thaana letters, followed by the extended charac-
ters in Arabic alphabetical order from hhaa to waavu.

Table 8-19. Thaana Glyph Placement

Syllable Display

tha %0
thaa &0
thi '0
thee (0
thu)0
thoo *0
the +0
they ,0
tho -0
thoa .0
th /0
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

276 Middle Eastern Scripts
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 9

South Asian Scripts-I 9

The following South Asian scripts are described in this chapter:

The scripts of South Asia share so many common features that a side-by-side comparison
of a few will often reveal structural similarities even in the modern letterforms. With minor
historical exceptions, they are written from left to right. They are all abugidas in which
most symbols stand for a consonant plus an inherent vowel (usually the sound /a/). Word-
initial vowels in many of these scripts have distinct symbols, and word-internal vowels are
usually written by juxtaposing a vowel sign in the vicinity of the affected consonant.
Absence of the inherent vowel, when that occurs, is frequently marked with a special sign.
In the Unicode Standard, this sign is denoted by the Sanskrit word virZma. In some lan-
guages, another designation is preferred. In Hindi, for example, the word hal refers to the
character itself, and halant refers to the consonant that has its inherent vowel suppressed; in
Tamil, the word pukki is used. The virama sign nominally serves to suppress the inherent
vowel of the consonant to which it is applied; it is a combining character, with its shape
varying from script to script.

Most of the scripts of South Asia, from north of the Himalayas to Sri Lanka in the south,
from Pakistan in the west to the easternmost islands of Indonesia, are derived from the
ancient Brahmi script. The oldest lengthy inscriptions of India, the edicts of Ashoka from
the third century bce, were written in two scripts, Kharoshthi and Brahmi. These are both
ultimately of Semitic origin, probably deriving from Aramaic, which was an important
administrative language of the Middle East at that time. Kharoshthi, written from right to
left, was supplanted by Brahmi and its derivatives. The descendants of Brahmi spread with
myriad changes throughout the subcontinent and outlying islands. There are said to be
some 200 different scripts deriving from it. By the eleventh century, the modern script
known as Devanagari was in ascendancy in India proper as the major script of Sanskrit lit-
erature.

The North Indian branch of scripts was, like Brahmi itself, chiefly used to write Indo-Euro-
pean languages such as Pali and Sanskrit, and eventually the Hindi, Bengali, and Gujarati
languages, though it was also the source for scripts for non-Indo-European languages such
as Tibetan, Mongolian, and Lepcha.

The South Indian scripts are also derived from Brahmi and, therefore, share many struc-
tural characteristics. These scripts were first used to write Pali and Sanskrit but were later
adapted for use in writing non-Indo-European languages—namely, the languages of the
Dravidian family of southern India and Sri Lanka. Because of their use for Dravidian lan-
guages, the South Indian scripts developed many characteristics that distinguish them from
the North Indian scripts. South Indian scripts were also exported to southeast Asia and
were the source of scripts such as Tai Tham (Lanna) and Myanmar, as well as the insular
scripts of the Philippines and Indonesia.

Devanagari Gujarati Telugu

Bengali Oriya Kannada

Gurmukhi Tamil Malayalam
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

278 South Asian Scripts-I
The shapes of letters in the South Indian scripts took on a quite distinct look from the shapes
of letters in the North Indian scripts. Some scholars suggest that this occurred because writ-
ing materials such as palm leaves encouraged changes in the way letters were written.

The major official scripts of India proper, including Devanagari, are documented in this
chapter. They are all encoded according to a common plan, so that comparable characters
are in the same order and relative location. This structural arrangement, which facilitates
transliteration to some degree, is based on the Indian national standard (ISCII) encoding
for these scripts.

The first six columns in each script are isomorphic with the ISCII-1988 encoding, except
that the last 11 positions (U+0955..U+095F in Devanagari, for example), which are unas-
signed or undefined in ISCII-1988, are used in the Unicode encoding. The seventh column
in each of these scripts, along with the last 11 positions in the sixth column, represent addi-
tional character assignments in the Unicode Standard that are matched across all nine
scripts. For example, positions U+xx66..U+xx6F and U+xxE6.. U+xxEF code the Indic
script digits for each script. The eighth column for each script is reserved for script-specific
additions that do not correspond from one Indic script to the next.

While the arrangement of the encoding for the scripts of India is based on ISCII, this does
not imply that the rendering behavior of South Indian scripts in particular is the same as
that of Devanagari or other North Indian scripts. Implementations should ensure that ade-
quate attention is given to the actual behavior of those scripts; they should not assume that
they work just as Devanagari does. Each block description in this chapter describes the
most important aspects of rendering for a particular script as well as unique behaviors it
may have.

Many of the character names in this group of scripts represent the same sounds, and com-
mon naming conventions are used for the scripts of India.

9.1 Devanagari

Devanagari: U+0900–U+097F

The Devanagari script is used for writing classical Sanskrit and its modern historical deriv-
ative, Hindi. Extensions to the Sanskrit repertoire are used to write other related languages
of India (such as Marathi) and of Nepal (Nepali). In addition, the Devanagari script is used
to write the following languages: Awadhi, Bagheli, Bhatneri, Bhili, Bihari, Braj Bhasha,
Chhattisgarhi, Garhwali, Gondi (Betul, Chhindwara, and Mandla dialects), Harauti, Ho,
Jaipuri, Kachchhi, Kanauji, Konkani, Kului, Kumaoni, Kurku, Kurukh, Marwari, Mundari,
Newari, Palpa, and Santali.

All other Indic scripts, as well as the Sinhala script of Sri Lanka, the Tibetan script, and the
Southeast Asian scripts, are historically connected with the Devanagari script as descen-
dants of the ancient Brahmi script. The entire family of scripts shares a large number of
structural features.

The principles of the Indic scripts are covered in some detail in this introduction to the
Devanagari script. The remaining introductions to the Indic scripts are abbreviated but
highlight any differences from Devanagari where appropriate.

Standards. The Devanagari block of the Unicode Standard is based on ISCII-1988 (Indian
Script Code for Information Interchange). The ISCII standard of 1988 differs from and is
an update of earlier ISCII standards issued in 1983 and 1986.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.1 Devanagari 279
The Unicode Standard encodes Devanagari characters in the same relative positions as
those coded in positions A0–F416 in the ISCII-1988 standard. The same character code lay-
out is followed for eight other Indic scripts in the Unicode Standard: Bengali, Gurmukhi,
Gujarati, Oriya, Tamil, Telugu, Kannada, and Malayalam. This parallel code layout empha-
sizes the structural similarities of the Brahmi scripts and follows the stated intention of the
Indian coding standards to enable one-to-one mappings between analogous coding posi-
tions in different scripts in the family. Sinhala, Tibetan, Thai, Lao, Khmer, Myanmar, and
other scripts depart to a greater extent from the Devanagari structural pattern, so the Uni-
code Standard does not attempt to provide any direct mappings for these scripts to the
Devanagari order.

In November 1991, at the time The Unicode Standard, Version 1.0, was published, the
Bureau of Indian Standards published a new version of ISCII in Indian Standard (IS)
13194:1991. This new version partially modified the layout and repertoire of the ISCII-
1988 standard. Because of these events, the Unicode Standard does not precisely follow the
layout of the current version of ISCII. Nevertheless, the Unicode Standard remains a super-
set of the ISCII-1991 repertoire. Modern, non-Vedic texts encoded with ISCII-1991 may be
automatically converted to Unicode code points and back to their original encoding with-
out loss of information. The Vedic extension characters defined in IS 13194:1991 Annex
G—Extended Character Set for Vedic are are now fully covered by the Unicode Standard, but
the conversions between ISCII and Unicode code points in some cases are more complex
than for modern texts.

Encoding Principles. The writing systems that employ Devanagari and other Indic scripts
constitute abugidas—a cross between syllabic writing systems and alphabetic writing sys-
tems. The effective unit of these writing systems is the orthographic syllable, consisting of a
consonant and vowel (CV) core and, optionally, one or more preceding consonants, with a
canonical structure of (((C)C)C)V. The orthographic syllable need not correspond exactly
with a phonological syllable, especially when a consonant cluster is involved, but the writ-
ing system is built on phonological principles and tends to correspond quite closely to pro-
nunciation.

The orthographic syllable is built up of alphabetic pieces, the actual letters of the Devana-
gari script. These pieces consist of three distinct character types: consonant letters, inde-
pendent vowels, and dependent vowel signs. In a text sequence, these characters are stored
in logical (phonetic) order.

Principles of the Devanagari Script

Rendering Devanagari Characters. Devanagari characters, like characters from many
other scripts, can combine or change shape depending on their context. A character’s
appearance is affected by its ordering with respect to other characters, the font used to ren-
der the character, and the application or system environment. These variables can cause the
appearance of Devanagari characters to differ from their nominal glyphs (used in the code
charts).

Additionally, a few Devanagari characters cause a change in the order of the displayed char-
acters. This reordering is not commonly seen in non-Indic scripts and occurs indepen-
dently of any bidirectional character reordering that might be required.

Consonant Letters. Each consonant letter represents a single consonantal sound but also
has the peculiarity of having an inherent vowel, generally the short vowel /a/ in Devanagari
and the other Indic scripts. Thus U+0915 devanagari letter ka represents not just /k/
but also /ka/. In the presence of a dependent vowel, however, the inherent vowel associated
with a consonant letter is overridden by the dependent vowel.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

280 South Asian Scripts-I
Consonant letters may also be rendered as half-forms, which are presentation forms used to
depict the initial consonant in consonant clusters. These half-forms do not have an inher-
ent vowel. Their rendered forms in Devanagari often resemble the full consonant but are
missing the vertical stem, which marks a syllabic core. (The stem glyph is graphically and
historically related to the sign denoting the inherent /a/ vowel.)

Some Devanagari consonant letters have alternative presentation forms whose choice
depends on neighboring consonants. This variability is especially notable for U+0930
devanagari letter ra, which has numerous different forms, both as the initial element
and as the final element of a consonant cluster. Only the nominal forms, rather than the
contextual alternatives, are depicted in the code charts.

The traditional Sanskrit/Devanagari alphabetic encoding order for consonants follows
articulatory phonetic principles, starting with velar consonants and moving forward to
bilabial consonants, followed by liquids and then fricatives. ISCII and the Unicode Stan-
dard both observe this traditional order.

Independent Vowel Letters. The independent vowels in Devanagari are letters that stand
on their own. The writing system treats independent vowels as orthographic CV syllables in
which the consonant is null. The independent vowel letters are used to write syllables that
start with a vowel.

Dependent Vowel Signs (Matras). The dependent vowels serve as the common manner of
writing noninherent vowels and are generally referred to as vowel signs, or as matras in San-
skrit. The dependent vowels do not stand alone; rather, they are visibly depicted in combi-
nation with a base letterform. A single consonant or a consonant cluster may have a
dependent vowel applied to it to indicate the vowel quality of the syllable, when it is differ-
ent from the inherent vowel. Explicit appearance of a dependent vowel in a syllable over-
rides the inherent vowel of a single consonant letter.

The greatest variation among different Indic scripts is found in the way that the dependent
vowels are applied to base letterforms. Devanagari has a collection of nonspacing depen-
dent vowel signs that may appear above or below a consonant letter, as well as spacing
dependent vowel signs that may occur to the right or to the left of a consonant letter or
consonant cluster. Other Indic scripts generally have one or more of these forms, but what
is a nonspacing mark in one script may be a spacing mark in another. Also, some of the
Indic scripts have single dependent vowels that are indicated by two or more glyph compo-
nents—and those glyph components may surround a consonant letter both to the left and
to the right or may occur both above and below it.

In modern usage the Devanagari script has only one character denoting a left-side depen-
dent vowel sign: U+093F devanagari vowel sign i. In the historic Prishthamatra orthog-
raphy, Devanagari also made use of one additional left-side dependent vowel sign: U+094E
devanagari vowel sign prishthamatra e. Other Indic scripts either have no such vowel
signs (Telugu and Kannada) or include as many as three of these signs (Bengali, Tamil, and
Malayalam).

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 9-1 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Virama (Halant). Devanagari employs a sign known in Sanskrit as the virama or vowel
omission sign. In Hindi, it is called hal or halant, and that term is used in referring to the
virama or to a consonant with its vowel suppressed by the virama. The terms are used
interchangeably in this section.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.1 Devanagari 281
The virama sign, U+094D devanagari sign virama, nominally serves to cancel (or kill)
the inherent vowel of the consonant to which it is applied. When a consonant has lost its
inherent vowel by the application of virama, it is known as a dead consonant; in contrast, a
live consonant is one that retains its inherent vowel or is written with an explicit dependent
vowel sign. In the Unicode Standard, a dead consonant is defined as a sequence consisting
of a consonant letter followed by a virama. The default rendering for a dead consonant is to
position the virama as a combining mark bound to the consonant letterform.

For example, if Cn denotes the nominal form of consonant C, and Cd denotes the dead con-
sonant form, then a dead consonant is encoded as shown in Figure 9-1.

Consonant Conjuncts. The Indic scripts are noted for a large number of consonant con-
junct forms that serve as orthographic abbreviations (ligatures) of two or more adjacent
letterforms. This abbreviation takes place only in the context of a consonant cluster. An
orthographic consonant cluster is defined as a sequence of characters that represents one or

Table 9-1. Devanagari Vowel Letters

For Use Do Not Use

N 0904 <0905, 0946>

O 0906 <0905, 093E>

w 0908 <0930, 094D, 0907>

ä 090A <0909, 0941>

ç 090D <090F, 0945>

R 090E <090F, 0946>

S 0910 <090F, 0947>

ë 0911 <0905, 0949> or <0906, 0945>

U 0912 <0905, 094A> or <0906, 0946>

V 0913 <0905, 094B> or <0906, 0947>

W 0914 <0905, 094C> or <0906, 0948>

' 0972 <0905, 0945>

3 0973 <0905, 093A>

4 0974 <0905, 093B> or <0906, 093A>

5 0975 <0905, 094F>

6 0976 <0905, 0956>

7 0977 <0905, 0957>

Figure 9-1. Dead Consonants in Devanagari

TAn + VIRAMAn → TAd

 + →
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

282 South Asian Scripts-I
more dead consonants (denoted Cd) followed by a normal, live consonant letter (denoted
Cl).

Under normal circumstances, a consonant cluster is depicted with a conjunct glyph if such
a glyph is available in the current font. In the absence of a conjunct glyph, the one or more
dead consonants that form part of the cluster are depicted using half-form glyphs. In the
absence of half-form glyphs, the dead consonants are depicted using the nominal conso-
nant forms combined with visible virama signs (see Figure 9-2).

A number of types of conjunct formations appear in these examples: (1) a half-form of GA
in its combination with the full form of DHA; (2) a vertical conjunct K.KA; and (3) a fully
ligated conjunct K.SSA, in which the components are no longer distinct. In example (4) in
Figure 9-2, the dead consonant RAd is depicted with the nonspacing combining mark RAsup
(repha).

A well-designed Indic script font may contain hundreds of conjunct glyphs, but they are
not encoded as Unicode characters because they are the result of ligation of distinct letters.
Indic script rendering software must be able to map appropriate combinations of charac-
ters in context to the appropriate conjunct glyphs in fonts.

Explicit Virama (Halant). Normally a virama character serves to create dead consonants
that are, in turn, combined with subsequent consonants to form conjuncts. This behavior
usually results in a virama sign not being depicted visually. Occasionally, this default
behavior is not desired when a dead consonant should be excluded from conjunct forma-
tion, in which case the virama sign is visibly rendered. To accomplish this goal, the Unicode
Standard adopts the convention of placing the character U+200C zero width non-joiner

immediately after the encoded dead consonant that is to be excluded from conjunct forma-
tion. In this case, the virama sign is always depicted as appropriate for the consonant to
which it is attached.

For example, in Figure 9-3, the use of zero width non-joiner prevents the default forma-
tion of the conjunct form (K.SSAn).

Explicit Half-Consonants. When a dead consonant participates in forming a conjunct, the
dead consonant form is often absorbed into the conjunct form, such that it is no longer dis-
tinctly visible. In other contexts, the dead consonant may remain visible as a half-consonant
form. In general, a half-consonant form is distinguished from the nominal consonant form

Figure 9-2. Conjunct Formations in Devanagari

Figure 9-3. Preventing Conjunct Forms in Devanagari

 + →

KAd + SSAl → K.SSAn

 + →

GAd + DHAl → GAh + DHAn

 + →
KAd + KAl → K.KAn

 + →

RAd + KAl → KAl + RAsup

₍1₎

₍2₎

₍3₎

₍4₎

KAd + ZWNJ + SSAl → KAd + SSAn

 →+ Ã +
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.1 Devanagari 283
by the loss of its inherent vowel stem, a vertical stem appearing to the right side of the con-
sonant form. In other cases, the vertical stem remains but some part of its right-side geom-
etry is missing.

In certain cases, it is desirable to prevent a dead consonant from assuming full conjunct
formation yet still not appear with an explicit virama. In these cases, the half-form of the
consonant is used. To explicitly encode a half-consonant form, the Unicode Standard
adopts the convention of placing the character U+200D zero width joiner immediately
after the encoded dead consonant. The zero width joiner denotes a nonvisible letter that
presents linking or cursive joining behavior on either side (that is, to the previous or fol-
lowing letter). Therefore, in the present context, the zero width joiner may be consid-
ered to present a context to which a preceding dead consonant may join so as to create the
half-form of the consonant.

For example, if Ch denotes the half-form glyph of consonant C, then a half-consonant form
is represented as shown in Figure 9-4.

In the absence of the zero width joiner, the sequence in Figure 9-4 would normally pro-
duce the full conjunct form (K.SSAn).

This encoding of half-consonant forms also applies in the absence of a base letterform.
That is, this technique may be used to encode independent half-forms, as shown in
Figure 9-5.

Other Indic scripts have similar half-forms for the initial consonants of a conjunct. Some,
such as Oriya, also have similar half-forms for the final consonants; those are represented as
shown in Figure 9-6.

In the absence of the zero width joiner, the sequence in Figure 9-6 would normally pro-
duce the full conjunct form V (K.TAn).

Consonant Forms. In summary, each consonant may be encoded such that it denotes a live
consonant, a dead consonant that may be absorbed into a conjunct, the half-form of a dead
consonant, or a dead consonant with an overt halant that does not get absorbed into a con-
junct (see Figure 9-7).

Figure 9-4. Half-Consonants in Devanagari

Figure 9-5. Independent Half-Forms in Devanagari

Figure 9-6. Half-Consonants in Oriya

KAd + ZWJ + SSAl → KAh + SSAn

 →+ +Ä

GAd + ZWJ → GAh

Ä →+

KAn + ZWJ + VIRAMA + TAl → KAl + TAh

< > + U → <+ +Ä
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

284 South Asian Scripts-I
As the rendering of conjuncts and half-forms depends on the availability of glyphs in the
font, the following fallback strategy should be employed:

• If the coded character sequence would normally render with a full conjunct,
but such a conjunct is not available, the fallback rendering is to use half-forms.
If those are not available, the fallback rendering should use an explicit (visible)
virama.

• If the coded character sequence would normally render with a half-form (it
contains a ZWJ), but half-forms are not available, the fallback rendering should
use an explicit (visible) virama.

Rendering Devanagari

Rules for Rendering. This section provides more formal and detailed rules for minimal
rendering of Devanagari as part of a plain text sequence. It describes the mapping between
Unicode characters and the glyphs in a Devanagari font. It also describes the combining
and ordering of those glyphs.

These rules provide minimal requirements for legibly rendering interchanged Devanagari
text. As with any script, a more complex procedure can add rendering characteristics,
depending on the font and application.

In a font that is capable of rendering Devanagari, the number of glyphs is
greater than the number of Devanagari characters.

Notation. In the next set of rules, the following notation applies:

Cn Nominal glyph form of consonant C as it appears in the code
charts.

Cl A live consonant, depicted identically to Cn.

Cd Glyph depicting the dead consonant form of consonant C.

Ch Glyph depicting the half-consonant form of consonant C.

Ln Nominal glyph form of a conjunct ligature consisting of two or
more component consonants. A conjunct ligature composed of
two consonants X and Y is also denoted X.Yn.

Figure 9-7. Consonant Forms in Devanagari and Oriya
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.1 Devanagari 285
RAsup A nonspacing combining mark glyph form of U+0930 devana-

gari letter ra positioned above or attached to the upper part
of a base glyph form. This form is also known as repha.

RAsub A nonspacing combining mark glyph form of U+0930 devana-

gari letter ra positioned below or attached to the lower part
of a base glyph form.

Vvs Glyph depicting the dependent vowel sign form of a vowel V.

VIRAMAn The nominal glyph form of the nonspacing combining mark
depicting U+094D devanagari sign virama.

A virama character is not always depicted. When it is depicted, it adopts this nonspacing
mark form.

Dead Consonant Rule. The following rule logically precedes the application of any other
rule to form a dead consonant. Once formed, a dead consonant may be subject to other
rules described next.

R1 When a consonant Cn precedes a VIRAMAn, it is considered to be a dead consonant
Cd . A consonant Cn that does not precede VIRAMAn is considered to be a live conso-
nant Cl .

Consonant RA Rules. The character U+0930 devanagari letter ra takes one of a num-
ber of visual forms depending on its context in a consonant cluster. By default, this letter is
depicted with its nominal glyph form (as shown in the code charts). In some contexts, it is
depicted using one of two nonspacing glyph forms that combine with a base letterform.

R2 If the dead consonant RAd precedes a consonant, then it is replaced by the super-
script nonspacing mark RAsup , which is positioned so that it applies to the logi-
cally subsequent element in the memory representation.

R3 If the superscript mark RAsup is to be applied to a dead consonant and that dead
consonant is combined with another consonant to form a conjunct ligature, then
the mark is positioned so that it applies to the conjunct ligature form as a whole.

TAn + VIRAMAn → TAd

 + →

RAd + KAl → KAl + RAsup

+ → +

RAd + RAd → RAd + RAsup

+ → +

1 2 12

→

Displayed
Output

→

RAd + JAd + NYAl → J.NYAn + RAsup

+ → + + →

Displayed
Output
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

286 South Asian Scripts-I
R4 If the superscript mark RAsup is to be applied to a dead consonant that is subse-
quently replaced by its half-consonant form, then the mark is positioned so that it
applies to the form that serves as the base of the consonant cluster.

R5 In conformance with the ISCII standard, the half-consonant form RRAh is repre-
sented as eyelash-RA. This form of RA is commonly used in writing Marathi and
Newari.

R5a For compatibility with The Unicode Standard, Version 2.0, if the dead consonant
RAd precedes zero width joiner, then the half-consonant form RAh , depicted as
eyelash-RA, is used instead of RAsup .

R6 Except for the dead consonant RAd , when a dead consonant Cd precedes the live
consonant RAl , then Cd is replaced with its nominal form Cn , and RA is replaced by
the subscript nonspacing mark RAsub, which is positioned so that it applies to Cn.

R7 For certain consonants, the mark RAsub may graphically combine with the conso-
nant to form a conjunct ligature form. These combinations, such as the one shown
here, are further addressed by the ligature rules described shortly.

RAd + GAd + GHAl → GAh + GHAl + RAsup

+ → + + + →

Displayed
Output

RRAn + VIRAMAn → RRAh

+ →

RAd + ZWJ → RAh

Ä →+

TTHAd + RAl → TTHAn + RAsub

+ → + →

Displayed
Output

PHAd + RAl → PHAn + RAsub

+ → + →

Displayed
Output
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.1 Devanagari 287
R8 If a dead consonant (other than RAd) precedes RAd , then the substitution of RA for
RAsub is performed as described above; however, the VIRAMA that formed RAd
remains so as to form a dead consonant conjunct form.

A dead consonant conjunct form that contains an absorbed RAd may subsequently
combine to form a multipart conjunct form.

Modifier Mark Rules. In addition to vowel signs, three other types of combining marks
may be applied to a component of an orthographic syllable or to the syllable as a whole:
nukta, bindus, and svaras.

R9 The nukta sign, which modifies a consonant form, is placed immediately after the
consonant in the memory representation and is attached to that consonant in ren-
dering. If the consonant represents a dead consonant, then NUKTA should precede
VIRAMA in the memory representation.

R10 Other modifying marks, in particular bindus and svaras, apply to the ortho-
graphic syllable as a whole and should follow (in the memory representation) all
other characters that constitute the syllable. The bindus should follow any vowel
signs, and the svaras should come last. The relative placement of these marks is
horizontal rather than vertical; the horizontal rendering order may vary according
to typographic concerns.

Ligature Rules. Subsequent to the application of the rules just described, a set of rules gov-
erning ligature formation apply. The precise application of these rules depends on the
availability of glyphs in the current font being used to display the text.

R11 If a dead consonant immediately precedes another dead consonant or a live conso-
nant, then the first dead consonant may join the subsequent element to form a
two-part conjunct ligature form.

TAd + RAd → TAn + RAsub + VIRAMAn → T.RAd

+ → + →+

T.RAd + YAl → T.R.YAn

+ →

KAn + NUKTAn + VIRAMAn → QAd

+ →+

KAn + AAvs + CANDRABINDUn

+ → +

JAd + NYAl → J.NYAn

→+

TTAd + TTHAl → TT.TTHAn

→+
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

288 South Asian Scripts-I
R12 A conjunct ligature form can itself behave as a dead consonant and enter into fur-
ther, more complex ligatures.

A conjunct ligature form can also produce a half-form.

R13 If a nominal consonant or conjunct ligature form precedes RAsub as a result of the
application of rule R6, then the consonant or ligature form may join with RAsub to
form a multipart conjunct ligature (see rule R6 for more information).

R14 In some cases, other combining marks will combine with a base consonant, either
attaching at a nonstandard location or changing shape. In minimal rendering,
there are only two cases: RAl with Uvs or UUvs .

Memory Representation and Rendering Order. The storage of plain text in Devanagari
and all other Indic scripts generally follows phonetic order; that is, a CV syllable with a
dependent vowel is always encoded as a consonant letter C followed by a vowel sign V in the
memory representation. This order is employed by the ISCII standard and corresponds to
both the phonetic order and the keying order of textual data (see Figure 9-8).

Because Devanagari and other Indic scripts have some dependent vowels that must be
depicted to the left side of their consonant letter, the software that renders the Indic scripts
must be able to reorder elements in mapping from the logical (character) store to the pre-
sentational (glyph) rendering. For example, if Cn denotes the nominal form of consonant
C, and Vvs denotes a left-side dependent vowel sign form of vowel V, then a reordering of
glyphs with respect to encoded characters occurs as just shown.

Figure 9-8. Rendering Order in Devanagari

 + + → + →
SAd + TAd + RAn → SAd + T.RAn → S.T.RAn

K.SSAd + YAl → K.SSh + YAn

→+

KAn + RAsub → K.RAn

+ →

PHAn + RAsub → PH.RAn

+ →

RAl + Uvs → RUn

+ →

RAl + UUvs → RUUn

+ →

KAn + Ivs → I + KAn

 + →

Character Order Glyph Order
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.1 Devanagari 289
R15 When the dependent vowel Ivs is used to override the inherent vowel of a syllable, it
is always written to the extreme left of the orthographic syllable. If the ortho-
graphic syllable contains a consonant cluster, then this vowel is always depicted to
the left of that cluster.

R16 The presence of an explicit virama (either caused by a ZWNJ or by the absence of a
conjunct in the font) blocks this reordering, and the dependent vowel Ivs is ren-
dered after the rightmost such explicit virama.

Sample Half-Forms. Table 9-2 shows examples of half-consonant forms that are com-
monly used with the Devanagari script. These forms are glyphs, not characters. They may
be encoded explicitly using zero width joiner as shown. In normal conjunct formation,
they may be used spontaneously to depict a dead consonant in combination with subse-
quent consonant forms.

Sample Ligatures. Table 9-3 shows examples of conjunct ligature forms that are commonly
used with the Devanagari script. These forms are glyphs, not characters. Not every writing
system that employs this script uses all of these forms; in particular, many of these forms

TAd + ZWNJ + RAl + Ivs → TAd + Ivs + RAl

§ + Ã + ⁄ + Á →F

Table 9-2. Sample Devanagari Half-Forms

 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →
 + 0 + Ä → + 0 + Ä →

TAd + RAl + Ivs → T.RAn + Ivs → Ivs + T.RAd

+ → + → +
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

290 South Asian Scripts-I
are used only in writing Sanskrit texts. Furthermore, individual fonts may provide fewer or
more ligature forms than are depicted here.

Sample Half-Ligature Forms. In addition to half-form glyphs of individual consonants,
half-forms are used to depict conjunct ligature forms. A sample of such forms is shown in
Table 9-4. These forms are glyphs, not characters. They may be encoded explicitly using
zero width joiner as shown. In normal conjunct formation, they may be used spontane-
ously to depict a conjunct ligature in combination with subsequent consonant forms.

Language-Specific Allographs. In Marathi and some South Indian orthographies, variant
glyphs are preferred for U+0932 devanagari letter la and U+0936 devanagari letter

sha, as shown in Figure 9-9. Marathi also makes use of the “eyelash” form of the letter RA,
as discussed in rule R5.

Combining Marks. Devanagari and other Indic scripts have a number of combining marks
that could be considered diacritic. One class of these marks, known as bindus, is repre-

Table 9-3. Sample Devanagari Ligatures

 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + 0 + →
 + 0 + → + A →
 + 0 + → + B →
 + 0 + → + C →
 + 0 + → + A → D
 + 0 + → + 0 + →
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.1 Devanagari 291
sented by U+0901 devanagari sign candrabindu and U+0902 devanagari sign anus-

vara. These marks indicate nasalization or final nasal closure of a syllable. U+093C
devanagari sign nukta is a true diacritic. It is used to extend the basic set of consonant
letters by modifying them (with a subscript dot in Devanagari) to create new letters.
U+0951..U+0954 are a set of combining marks used in transcription of Sanskrit texts.

Devanagari Digits, Punctuation, and Symbols

Digits. Each Indic script has a distinct set of digits appropriate to that script. These digits
may or may not be used in ordinary text in that script. European digits have displaced the
Indic script forms in modern usage in many of the scripts. Some Indic scripts—notably
Tamil—lacked a distinct digit for zero in their traditional numerical systems, but adopted a
zero based on general Indian practice.

Punctuation. U+0964 1 devanagari danda is similar to a full stop. U+0965 2 devana-

gari double danda marks the end of a verse in traditional texts. The term danda is from
Sanskrit, and the punctuation mark is generally referred to as a viram instead in Hindi.
Although the danda and double danda are encoded in the Devanagari block, the intent is
that they be used as common punctuation for all the major scripts of India covered by this
chapter. Danda and double danda punctuation marks are not separately encoded for Ben-
gali, Gujarati, and so on. However, analogous punctuation marks for other Brahmi-derived
scripts are separately encoded, particularly for scripts used primarily outside of India.

Many modern languages written in the Devanagari script intersperse punctuation derived
from the Latin script. Thus U+002C comma and U+002E full stop are freely used in
writing Hindi, and the danda is usually restricted to more traditional texts. However, the
danda may be preserved when such traditional texts are transliterated into the Latin script.

Other Symbols. U+0970 3 devanagari abbreviation sign appears after letters or combi-
nations of letters and marks the sequence as an abbreviation. It is intended specifically for
Devanagari script-based abbreviations, such as the Devanagari rupee sign. Other symbols
and signs most commonly occurring in Vedic texts are encoded in the Devanagari
Extended and Vedic Extensions blocks and are discussed in the text that follows.

Table 9-4. Sample Devanagari Half-Ligature Forms

 + 0 + + 0 + Ä →
 + 0 + + 0 + Ä →
 + 0 + + 0 + Ä →
 + 0 + + 0 + Ä →
 + 0 + + 0 + Ä →

Figure 9-9. Marathi Allographs

LA SHA

U+0932 U+0936

Normal NormalMarathi Marathi
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

292 South Asian Scripts-I
The svasti (or well-being) signs often associated with the Hindu, Buddhist, and Jain tradi-
tions are encoded in the Tibetan block. See Section 10.2, Tibetan for further information.

Extensions in the Main Devanagari Block

Sindhi Letters. The characters U+097B devanagari letter gga, U+097C devanagari

letter jja, U+097E devanagari letter ddda, and U+097F devanagari letter bba are
used to write Sindhi implosive consonants. Previous versions of the Unicode Standard rec-
ommended representing those characters as a combination of the usual consonants with
nukta and anudZtta, but those combinations are no longer recommended.

Konkani. Konkani makes use of additional sounds that can be represented with combina-
tions such as U+091A devanagari letter ca plus U+093C devanagari sign nukta and
U+091F devanagari letter tta plus U+0949 devanagari vowel sign candra o.

Bodo, Dogri, and Maithili. The orthographies of the Bodo, Dogri, and Maithili languages
of India make use of U+02BC “ ’ ” modifier letter apostrophe, either as a tone mark or
as a length mark. In Bodo and Dogri, this character functions as a tone mark, called gojau
kamaa in Bodo and sur chinha in Dogri. In Dogri, the tone mark occurs after short vowels,
including inherent vowels, and indicates a high-falling tone. After Dogri long vowels, a
high-falling tone is written instead using U+0939 devanagari letter ha.

In Maithili, U+02BC “ ’ ” modifier letter apostrophe is used to indicate the prolonga-
tion of a short a and to indicate the truncation of words. This sign is called bikari kaamaa.

Examples illustrating the use of U+02BC “ ’ ” modifier letter apostrophe in Bodo,
Dogri, and Maithili are shown in Figure 9-10. The Maithili examples show the same sen-
tence, first in full form, and then using U+02BC to show truncation of words.

In both Dogri and Maithili, an avagraha sign, U+093D devanagari sign avagraha, is
used to indicate extra-long vowels. An example of the contrastive use of this avagraha sign
is shown for Dogri in Figure 9-11.

Figure 9-10. Use of Apostrophe in Bodo, Dogri and Maithili

Figure 9-11. Use of Avagraha in Dogri

Language Examples Meaning

Bodo

Dogri

head
type of Bodo dress

down
to slip

Maithili Where did you go away?

खर’
दख’ना
ख’�ल
ित’लकना
कतए पड़ाए गेलह?
कत’ पड़ा’ गेल’? }

Example Meaning

sole
pond
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.1 Devanagari 293
Kashmiri Letters. There are several letters for use with Kashmiri when written in Devana-
gari script. Long and short versions of the independent vowel letters are encoded in the
range U+0973..U+0977. The corresponding dependent vowel signs are U+093A devana-

gari vowel sign oe, U+093B devanagari vowel sign ooe, and U+094F devanagari

vowel sign aw. The forms of the independent vowels for Kashmiri are constructed by
using the glyphs of the matras U+093B devanagari vowel sign ooe, U+094F devana-

gari vowel sign aw, U+0956 devanagari vowel sign ue, and U+0957 devanagari

vowel sign uue as diacritics on U+0905 devanagari letter a. However, for representa-
tion of independent vowels in Kashmiri, use the encoded, composite characters in the
range U+0973..U+0977 and not the visually equivalent sequences of U+0905 devanagari

letter a plus the matras. See Table 9-1. A few of the letters identified as being used for
Kashmiri are also used to write the Bihari languages.

Letters for Bihari Languages. A number of the Devanagari vowel letters have been used to
write the Bihari languages Bhojputi, Magadhi, and Maithili, as listed in Table 9-5.

Prishthamatra Orthography. In the historic Prishthamatra orthography, the vowel signs
for e, ai, o, and au are represented using U+094E devanagari vowel sign prishthama-

tra e (which goes on the left side of the consonant) alone or in combination with one of
U+0947 devanagari vowel sign e, U+093E devanagari vowel sign aa or U+094B
devanagari vowel sign o. Table 9-6 shows those combinations applied to ka. In the
underlying representation of text, U+094E should be first in the sequence of dependent
vowel signs after the consonant, and may be followed by U+0947, U+093E or U+094B.

Devanagari Extended: U+A8E0-U+A8FF

This block of characters is used chiefly for Vedic Sanskrit, although many of the characters
are generic and can be used by other Indic scripts. The block includes a set of combining
digits, letters, and avagraha which is used as a system of cantillation marks in the early
Vedic Sanskrit texts. The Devanagari Extended block also includes marks of nasalization
(candrabindu), and a number of editorial marks.

The Devanagari Extended block, as well as the Vedic Extensions block and the Devanagari
block, include characters that are used to indicate tone in Vedic Sanskrit. Indian linguists

Table 9-5. Devanagari Vowels Used in Bihari Languges

U+090E devanagari letter short e
U+0912 devanagari letter short o
U+0946 devanagari vowel sign short e
U+094A devanagari vowel sign short o
U+0973 devanagari letter oe
U+0974 devanagari letter ooe
U+0975 devanagari letter aw
U+093A devanagari vowel sign oe
U+093B devanagari vowel sign ooe
U+094F devanagari vowel sign aw

Table 9-6. Prishthamatra Orthography

Prishthamatra Orthography Modern Orthography

ke e <0915, 094E> f <0915, 0947>

kai g <0915, 094E, 0947> h <0915, 0948>

ko i <0915, 094E, 093E> j <0915, 094B>

kau k <0915, 094E, 094B> l <0915, 094C>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

294 South Asian Scripts-I
describe tone as a feature of vowels, shared by the consonants in the same syllable, or as a
feature of syllables. In Vedic, vowels are marked for tone, as are certain non-vocalic charac-
ters that are syllabified in Vedic recitation (visarga and anusvZra); the tone marks directly
follow the vowel or other character that they modify. Vowels are categorized according to
tone as either udZtta (high-toned or “acute”), anudZtta (low-toned or “non-acute”), svarita
(“modulated” or dropping from high to low tone) or eka#ruti (monotone). Some of the
symbols used for marking tone indicate different tones in different traditions. Visarga may
be marked for all three tones. The tone marks also can indicate other modifications of vocal
text, such as vibration, lengthening a vowel, or skipping a tone in a descending scale.

Cantillation marks are used to indicate length, tone, and other features in the recited text of
SZmaveda, and in the Kauthuma and RQNQyanSya traditions of SZmagZna. These marks are
encoded as a series of combining digits, alphabetic characters, and avagraha in the range
U+A8E0..U+A8F1.

Cantillation Marks for the SZmaveda. One of the four major Vedic texts is SZmaveda. The
text is both recited (SZmaveda-SaZhitZ) and sung (SZmagZna), and is marked differently
for the purposes of each. Cantillation marks are used to indicate length, tone, and other
features in the recited text of SZmaveda, and in the Kauthuma and RQNQyanSya traditions of
SZmagZna. These marks are encoded as a series of combining digits, alphabetic characters,
and avagraha in the range U+A8E0..U+A8F1. The marks are rendered directly over the
base letter. They are represented in text immediately after the syllable they modify.

In certain cases, two marks may occur over a letter: U+A8E3 combining devanagari

digit three may be followed by U+A8EC combining devanagari letter ka, for exam-
ple. Although no use of U+A8E8 combining devanagari digit eight has been found in
the SZmagZna, it is included to provide a complete set of 0-9 digits. The combining marks
encoded for the SZmaveda do not include characters that may appear as subscripts and
superscripts in the JaiminSya tradition of SZmagZna, which used interlinear annotation.
Interlinear annotation may be rendered using Ruby and may be represented by means of
markup or other higher-level protocols.

Marks of Nasalization. The set of spacing marks in the range U+A8F2..U+A8F7 include
the term candrabindu in their names and indicate nasalization. These marks are all aligned
with the headline. Note that U+A8F2 devanagari sign spacing candrabindu is lower
than the U+0901 devanagari sign candrabindu.

Editorial Marks. A set of editorial marks is encoded in the range U+A8F8..U+A8FB for use
with Devanagari. U+A8F9 devanagari gap filler signifies an intentional gap that would
ordinarily be filled with text. In contrast, U+A8FB devanagari headstroke indicates
illegible gaps in the original text. The glyph for devanagari headstroke should be
designed so that it does not connect to the headstroke of the letters beside it, which will
make it possible to indicate the number of illegible syllables in a given space. U+A8F8
devanagari sign pushpika acts as a filler in text, and is commonly flanked by double dan-
das. U+A8FA devanagari caret, a zero-width spacing character, marks the insertion
point of omitted text, and is placed at the insertion point between two orthographic sylla-
bles. It can also be used to indicate word division.

Vedic Extensions: U+1CD0-U+1CFF

The Vedic Extensions block includes characters that are used in Vedic texts; they may be
used with Devanagari, as well as many other Indic scripts. This block includes a set of char-
acters designating tone, grouped by the various Vedic traditions in which they occur. Char-
acters indicating tone marks directly follow the character they modify. Most of these marks
indicate the tone of vowels, but three of them specifically indicate the tone of visarga. Nasal
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.2 Bengali (Bangla) 295
characters are also included in the block. U+1CD3 vedic sign nihshvasa indicates where
a breath may be taken. Finally, the block includes U+1CF2 vedic sign ardhavisarga.

Tone Marks. The Vedic tone marks are all combining marks. The tone marks are grouped
together in the code charts based upon the tradition in which they appear: They are used in
the four core texts of the Vedas (SZmaveda, Yajurveda, Rigveda, and Atharvaveda) and in
the prose text on Vedic ritual (YatapathabrZhmaDa). The character U+1CD8 vedic tone

candra below is also used to identify the short vowels e and o. In this usage, the pre-
scribed order is the Indic syllable (aksara), followed by U+1CD8 vedic tone candra

below and the tone mark (svara). When a tone mark is placed below, it appears below the
vedic tone candra below.

In addition to the marks encoded in this block, Vedic texts may use other nonspacing
marks from the General Diacritics block and other blocks. For example, U+20F0 combin-

ing asterisk above would be used to represent a mark of that shape above a Vedic letter.

Diacritics for the Visarga. A set of combining marks that serve as diacritics for the visarga
is encoded in the range U+1CE2..U+1CE8. These marks indicate that the visarga has a par-
ticular tone. For example, the combination U+0903 devanagari sign visarga plus
U+1CE2 vedic sign visarga svarita represents a svarita visarga. The upward-shaped
diacritic is used for the udZtta (high-toned), the downward-shaped diacritic for anudZtta
(low-toned), and the midline glyph indicates the svarita (modulated tone).

In Vedic manuscripts the tonal mark (that is, the horizontal bar, upward curve and down-
ward curve) appears in colored ink, while the two dots of the visarga appear in black ink.
The characters for accents can be represented using separate characters, to make it easier
for color information to be maintained by means of markup or other higher-level proto-
cols.

Nasalization Marks. A set of spacing marks and one combining mark, U+1CED vedic

sign tiryak, are encoded in the range U+1CE9..U+1CF1. They describe phonetic distinc-
tions in the articulation of nasals. The gomukha characters from U+1CE9..U+1CEC may
be combined with U+0902 devanagari sign anusvara or U+0901 devanagari sign

candrabindu. U+1CF1 vedic sign anusvara ubhayato mukha may indicate a visarga
with a tonal mark as well as a nasal. The three characters, U+1CEE vedic sign hexiform

long anusvara, U+1CEF vedic sign long anusvara, and U+1CF0 vedic sign rthang

long anusvara, are all synonymous and indicate a long anusvZra after a short vowel.
U+1CED vedic sign tiryak is the only combining character in this set of nasalization
marks. While it appears similar to the U+094D devanagari sign virama, it is used to ren-
der glyph variants of nasal marks that occur in manuscripts and printed texts.

Ardhavisarga. U+1CF2 vedic sign ardhavisarga is a character that marks either the jih-
vZm^l\ya, a velar fricative occurring only before the unvoiced velar stops ka and kha, or the
upadhmZn\ya, a bilabial fricative occurring only before the unvoiced labial stops pa and
pha. Ardhavisarga is a spacing character. It is represented in text in visual order before the
consonant it modifies.

9.2 Bengali (Bangla)

Bengali: U+0980–U+09FF

Scripts encoded in the Unicode Standard often are used to write many languages. The
script termed Bengali in Unicode is no exception. It is used for writing languages such as
Bengali, Assamese, Bishnupriya Manipuri, Daphla, Garo, Hallam, Khasi, Mizo, Munda,
Naga, Rian, and Santali. In the Indian state of West Bengal and the People’s Republic of
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

296 South Asian Scripts-I
Bangladesh, the preferred name for the Bengali script and language is Bangla. In the Indian
state of Assam, the preferred name for the script is Asamiya or Assamese. Although the
Assamese language has been written historically using regional scripts, known generally as
“Kamrupi,” its modern writing system is similar to that presently used for Bengali, with the
addition of extra characters. The Unicode Bengali block fully supports modern Assamese
orthography.

The Bengali script is a North Indian script closely related to Devanagari.

Virama (Hasant). The Bengali script uses the Unicode virama model to form conjunct
consonants. In Bengali, the virama is known as hasant.

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 9-7 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Two-Part Vowel Signs. The Bengali script, along with a number of other Indic scripts,
makes use of two-part vowel signs. In these vowels one-half of the vowel is displayed on
each side of a consonant letter or cluster—for example, U+09CB bengali vowel sign o

and U+09CC bengali vowel sign au. To provide compatibility with existing implemen-
tations of the scripts that use two-part vowel signs, the Unicode Standard explicitly encodes
the right half of these vowel signs. For example, U+09D7 bengali au length mark repre-
sents the right-half glyph component of U+09CC bengali vowel sign au. In Bengali
orthography, the au length mark is always used in conjunction with the left part and does
not have a meaning on its own.

Special Characters. U+09F2..U+09F9 are a series of Bengali additions for writing currency
and fractions.

Historic Characters. The characters vocalic rr, vocalic l and vocalic ll, both in their indepen-
dent and dependent forms (U+098C, U+09C4, U+09E0..U+09E3), are only used to write
Sanskrit words in the Bengali script.

Characters for Assamese. U+09F0 bengali letter ra with middle diagonal and
U+09F1 bengali letter ra with lower diagonal are characters in this block required
to write Assamese.

Rendering Behavior. Like other Brahmic scripts in the Unicode Standard, Bengali uses the
hasant to form conjunct characters. For example, U+09B8 b bengali letter sa +
U+09CD d bengali sign virama + U+0995 a bengali letter ka yields the conjunct c
SKA. For general principles regarding the rendering of the Bengali script, see the rules for
rendering in Section 9.1, Devanagari.

Consonant-Vowel Ligatures. Some Bengali consonant plus vowel combinations have two
distinct visual presentations. The first visual presentation is a traditional ligated form, in
which the vowel combines with the consonant in a novel way. In the second presentation,
the vowel is joined to the consonant but retains its nominal form, and the combination is
not considered a ligature. These consonant-vowel combinations are illustrated in Table 9-8.

Table 9-7. Bengali Vowel Letters

For Use Do Not Use

X 0986 <0985, 09BE>

p 09E0 <098B, 09C3>

q 09E1 <098C, 09E2>
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.2 Bengali (Bangla) 297
The ligature forms of these consonant-vowel combinations are traditional. They are used
in handwriting and some printing. The “non-ligated” forms are more common; they are
used in newspapers and are associated with modern typefaces. However, the traditional lig-
atures are preferred in some contexts.

No semantic distinctions are made in Bengali text on the basis of the two different presen-
tations of these consonant-vowel combinations. However, some users consider it impor-
tant that implementations support both forms and that the distinction be representable in
plain text. This may be accomplished by using U+200D zero width joiner and U+200C
zero width non-joiner to influence ligature glyph selection. (See “Cursive Connection
and Ligatures” in Section 16.2, Layout Controls.) Joiners are rarely needed in this situation.
The rendered appearance will typically be the result of a font choice.

A given font implementation can choose whether to treat the ligature forms of the conso-
nant-vowel combinations as the defaults for rendering. If the non-ligated form is the
default, then ZWJ can be inserted to request a ligature, as shown in Figure 9-12.

If the ligated form is the default for a given font implementation, then ZWNJ can be
inserted to block a ligature, as shown in Figure 9-13.

Khiya. The letter r, known as khiya, is often considered as a distinct letter of the Bengla
alphabet. However, it is not encoded separately. It is represented by the sequence <U+0995
b bengali letter ka, U+09CD d bengali sign virama, U+09B7 q bengali letter

ssa>.

Table 9-8. Bengali Consonant-Vowel Combinations

Figure 9-12. Requesting Bengali Consonant-Vowel Ligature

Figure 9-13. Blocking Bengali Consonant-Vowel Ligature

gu

ru

ru

su

hu

hr

<0997, 09C1>

<09B0, 09C1>

<09B0, 09C2>

<09B6, 09C1>

<09B9, 09C1>

<09B9, 09C3>

Ligated Non-ligated

¯

´

Code Points

0997

0997

09C1

09C1200D

$

$

+

+ +

B Bå

B å |

 å →

→Ä

0997

0997

09C1

09C1200C

$

$

+

+ +

B

BåB å

| å →

→Ã
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

298 South Asian Scripts-I
Khanda Ta. In Bengali, a dead consonant ta makes use of a special form, U+09CE bengali

letter khanda ta. This form is used in all contexts except where it is immediately fol-
lowed by one of the consonants: ta, tha, na, ba, ma, ya, or ra.

Khanda ta cannot bear a vowel matra or combine with a following consonant to form a
conjunct aksara. It can form a conjunct aksara only with a preceding dead consonant ra,
with the latter being displayed with a repha glyph placed on the khanda ta.

Versions of the Unicode Standard prior to Version 4.1 recommended that khanda ta be rep-
resented as the sequence <U+09A4 bengali letter ta, U+09CD bengali sign virama,
U+200D zero width joiner> in all circumstances. U+09CE bengali letter khanda ta

should instead be used explicitly in newly generated text, but users are cautioned that
instances of the older representation may exist.

The Bengali syllable tta illustrates the usage of khanda ta when followed by ta. The syllable
tta is normally represented with the sequence <U+09A4 ta, U+09CD hasant, U+09A4 ta>.
That sequence will normally be displayed using a single glyph tta ligature, as shown in the
first example in Figure 9-14.

It is also possible for the sequence <ta, hasant, ta> to be displayed with a full ta glyph com-
bined with a hasant glyph, followed by another full ta glyph vu. The choice of form actu-
ally displayed depends on the display engine, based on the availability of glyphs in the font.

The Unicode Standard also provides an explicit way to show the hasant glyph. To do so, a
zero width non-joiner is inserted after the hasant. That sequence is always displayed
with the explicit hasant, as shown in the second example in Figure 9-14.

When the syllable tta is written with a khanda ta, however, the character U+09CE bengali

letter khanda ta is used and no hasant is required, as khanda ta is already a dead conso-
nant. The rendering of khanda ta is illustrated in the third example in Figure 9-14.

Ya-phalaa. Ya-phalaa is a presentation form of U+09AF { bengali letter ya. Repre-
sented by the sequence <U+09CD z bengali sign virama, U+09AF { bengali letter

ya>, ya-phalaa has a special form |. When combined with U+09BE } bengali vowel

sign aa, it is used for transcribing [æ] as in the “a” in the English word “bat.” Ya-phalaa can
be applied to initial vowels as well:

x|} = <0985, 09CD, 09AF, 09BE> (a- hasant ya -aa)

y|} = <098F, 09CD, 09AF, 09BE> (e- hasant ya -aa)

If a candrabindu or other combining mark needs to be added in the sequence, it comes at
the end of the sequence. For example:

x|}

H = <0985, 09CD, 09AF, 09BE, 0981> (a- hasant ya -aa candrabindu)

Figure 9-14. Bengali Syllable tta

u + z + + u vu
09A4 09CD 200C 09A4

09CE 09A4

09A4 09CD 09A4

u + z + u t

w + u wu

Ta-Ta Ligature

Ta Halant Ta

Khanda-Ta Ta

$

$ →

→

→

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.2 Bengali (Bangla) 299
Further examples:

x + z + { + } → x|}
y + z + { + } → y|}
u + z + { + } → u|}

Interaction of Repha and Ya-phalaa. The formation of the repha form is defined in
Section 9.1, Devanagari, “Rules for Rendering,” R2. Basically, the repha is formed when a ra
that has the inherent vowel killed by the hasant begins a syllable. This scenario is shown in
the following example:

The ya-phalaa is a post-base form of ya and is formed when the ya is the final consonant of
a syllable cluster. In this case, the previous consonant retains its base shape and the hasant
is combined with the following ya. This scenario is shown in the following example:

An ambiguous situation is encountered when the combination of ra + hasant + ya is
encountered:

To resolve the ambiguity with this combination, the Unicode Standard adopts the conven-
tion of placing the character U+200D zero width joiner immediately after the ra to
obtain the ya-phalaa. The repha form is rendered when no ZWJ is present, as shown in the
following example:

When the first character of the cluster is not a ra, the ya-phalaa is the normal rendering of
a ya, and a ZWJ is not necessary but can be present. Such a convention would make it pos-
sible, for example, for input methods to consistently associate ya-phalaa with the sequence
<ZWJ, hasant, ya>.

Punctuation. Danda and double danda marks as well as some other unified punctuation
used with Bengali are found in the Devanagari block; see Section 9.1, Devanagari.

Truncation. The orthography of the Bangla language makes use of U+02BC “ ’ ” modifier

letter apostrophe to indicate the truncation of words. This sign is called urdha-comma.
Examples illustrating the use of U+02BC “ ’ ” modifier letter apostrophe are shown in
Table 9-9.

Table 9-9. Use of Apostrophe in Bangla

Example Meaning

W after, on doing (something)

X
Y } above

[+ à + X → XÞ as in @ XÞ (karma)$

@ + à + Y → @ ó as in Uá@ ó (bakyô)$

[+ à + Y → YÞ or [ó$

[+ à + Y → YÞ
09B0 09CD 09AF

[+ + à + Y → [ó
09B0 200D 09CD 09AF

$

$Ä
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

300 South Asian Scripts-I
9.3 Gurmukhi

Gurmukhi: U+0A00–U+0A7F

The Gurmukhi script is a North Indian script used to write the Punjabi (or Panjabi) lan-
guage of the Punjab state of India. Gurmukhi, which literally means “proceeding from the
mouth of the Guru,” is attributed to Angad, the second Sikh Guru (1504–1552 ce). It is
derived from an older script called Landa and is closely related to Devanagari structurally.
The script is closely associated with Sikhs and Sikhism, but it is used on an everyday basis in
East Punjab. (West Punjab, now in Pakistan, uses the Arabic script.)

Encoding Principles. The Gurmukhi block is based on ISCII-1988, which makes it parallel
to Devanagari. Gurmukhi, however, has a number of peculiarities described here.

The additional consonants (called pairin bindi; literally, “with a dot in the foot,” in Punjabi)
are primarily used to differentiate Urdu or Persian loan words. They include U+0A36 gur-

mukhi letter sha and U+0A33 gurmukhi letter lla, but do not include U+0A5C
gurmukhi letter rra, which is genuinely Punjabi. For unification with the other scripts,
ISCII-1991 considers rra to be equivalent to dda+nukta, but this decomposition is not con-
sidered in Unicode. At the same time, ISCII-1991 does not consider U+0A36 to be equiva-
lent to <0A38, 0A3C>, or U+0A33 to be equivalent to <0A32, 0A3C>.

Two different marks can be associated with U+0902 devanagari sign anusvara: U+0A02
gurmukhi sign bindi and U+0A70 gurmukhi tippi. Present practice is to use bindi only
with the dependent and independent forms of the vowels aa, ii, ee, ai, oo, and au, and with
the independent vowels u and uu; tippi is used in the other contexts. Older texts may depart
from this requirement. ISCII-1991 uses only one encoding point for both marks.

U+0A71 gurmukhi addak is a special sign to indicate that the following consonant is
geminate. ISCII-1991 does not have a specific code point for addak and encodes it as a clus-
ter. For example, the word () pagg, “turban,” can be represented with the sequence
<0A2A, 0A71, 0A17> (or <pa, addak, ga>) in Unicode, while in ISCII-1991 it would be
<pa, ga, virama, ga>.

U+0A75 l gurmukhi sign yakash probably originated as a subjoined form of U+0A2F J
gurmukhi letter ya. However, because its usage is relatively rare and not entirely predict-
able, it is encoded as a separate character. This character should occur after the consonant
to which it attaches and before any vowel sign.

U+0A51 m gurmukhi sign udaat occurs in older texts and indicates a high tone. This
character should occur after the consonant to which is attaches and before any vowel sign.

Punjabi does not have complex combinations of consonant sounds. Furthermore, the
orthography is not strictly phonetic, and sometimes the inherent /a/ sound is not pro-
nounced. For example, the word *+,-. gurmukh\ is represented with the sequence
<0A17, 0A41, 0A30, 0A2E, 0A41, 0A16, 0A40>, which could be transliterated as gur-
amukh\; this lack of pronunciation is systematic at the end of a word. As a result, the virama
sign is seldom used with the Gurmukhi script.

In older texts, such as the Sri Guru Granth Sahib (the Sikh holy book), one can find typo-
graphic clusters with a vowel sign attached to a vowel letter, or with two vowel signs
attached to a consonant. The most common cases are nu attached to K, as in S and
both the vowel signs o and n attached to a consonant, as in T goubida; this is used to
indicate the metrical shortening of /o/ or the lengthening of /u/ depending on the context.
Other combinations are attested as well, such as U ghiana.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.3 Gurmukhi 301
Because of the combining classes of the characters U+0A4B gurmukhi vowel sign oo

and U+0A41 gurmukhi vowel sign u, the sequences <consonant, U+0A4B, U+0A41>
and <consonant, U+0A41, U+0A4B> are not canonically equivalent. To avoid ambiguity
in representation, the first sequence, with U+0A4B before U+0A41, should be used in such
cases. More generally, when a consonant or independent vowel is modified by multiple
vowel signs, the sequence of the vowel signs in the underlying representation of the text
should be: left, top, bottom, right.

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 9-10 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Tones. The Punjabi language is tonal, but the Gurmukhi script does not contain any spe-
cific signs to indicate tones. Instead, the voiced aspirates (gha, jha, ddha, dha) and the letter
ha combine consonantal and tonal functions.

Ordering. U+0A73 gurmukhi ura and U+0A72 gurmukhi iri are the first and third “let-
ters” of the Gurmukhi syllabary, respectively. They are used as bases or bearers for some of
the independent vowels, while U+0A05 gurmukhi letter a is both the second “letter”
and the base for the remaining independent vowels. As a result, the collation order for Gur-
mukhi is based on a seven-by-five grid:

• The first row is U+0A73 ura, U+0A05 a, U+0A72 iri, U+0A38 sa, U+0A39 ha.

• This row is followed by five main rows of consonants, grouped according to the
point of articulation, as is traditional in all South and Southeast Asian scripts.

• The semiconsonants follow in the seventh row: U+0A2F ya, U+0A30 ra,
U+0A32 la, U+0A35 va, U+0A5C rra.

• The letters with nukta, added later, are presented in a subsequent eighth row if
needed.

Rendering Behavior. For general principles regarding the rendering of the Gurmukhi
script, see the rules for rendering in Section 9.1, Devanagari. In many aspects, Gurmukhi is
simpler than Devanagari. In modern Punjabi, there are no half-consonants, no half-forms,
no repha (upper form of U+0930 devanagari letter ra), and no real ligatures. Rules R2–

Table 9-10. Gurmukhi Vowel Letters

For Use Do Not Use

E 0A06 <0A05, 0A3E>

F 0A07 <0A72, 0A3F>

G 0A08 <0A72, 0A40>

H 0A09 <0A73, 0A41>

I 0A0A <0A73, 0A42>

J 0A0F <0A72, 0A47>

K 0A10 <0A05, 0A48>

L 0A13 <0A73, 0A4B>

M 0A14 <0A05, 0A4C>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

302 South Asian Scripts-I
R5, R11, and R14 do not apply. Conversely, the behavior for subscript RA (rules R6–R8 and
R13) applies to U+0A39 gurmukhi letter ha and U+0A35 gurmukhi letter va, which
also have subjoined forms, called pairin in Punjabi. The subjoined form for RA is like a
knot, while the subjoined HA and VA are written the same as the base form, without the
top bar, but are reduced in size. As described in rule R13, they attach at the bottom of the
base consonant, and will “push” down any attached vowel sign for U or UU. When
U+0A2F gurmukhi letter ya follows a dead consonant, it assumes a different form called
addha in Punjabi, without the leftmost part, and the dead consonant returns to the nomi-
nal form, as shown in Table 9-11.

Other letters behaved similarly in old inscriptions, as shown in Table 9-12.

Older texts also exhibit another feature that is not found in modern Gurmukhi—namely,
the use of a half- or reduced form for the first consonant of a cluster, whereas the modern
practice is to represent the second consonant in a half- or reduced form. Joiners can be
used to request this older rendering, as shown in Table 9-13. The reduced form of an initial
U+0A30 gurmukhi letter ra is similar to the Devanagari superscript RA (repha), but
this usage is rare, even in older texts.

A rendering engine for Gurmukhi should make accommodations for the correct position-
ing of the combining marks (see Section 5.13, Rendering Nonspacing Marks, and particu-
larly Figure 5-11). This is important, for example, in the correct centering of the marks
above and below U+0A28 gurmukhi letter na and U+0A20 gurmukhi letter ttha,
which are laterally symmetrical. It is also important to avoid collisions between the various
upper marks, vowel signs, bindi, and/or addak.

Table 9-11. Gurmukhi Conjuncts

/ + 0 + 1 → 2 (mha) pairin ha

3 + 0 + + → 4 (pra) pairin ra

5 + 0 + 6 → 7 (dva) pairin va

5 + 0 + 8 → 59 (dya) addha ya

Table 9-12. Additional Pairin and Addha Forms in Gurmukhi

0 + 0 + A → a (sga) pairin ga

0 + 0 + B → b (sca) pairin ca

0 + 0 + C → c (stta) pairin tta

0 + 0 + D → d (sttha) pairin ttha

0 + 0 + E → e (sta) pairin ta

0 + 0 + F → f (sda) pairin da

0 + 0 + G → g (sna) pairin na

0 + 0 + H → h (stha) pairin tha

0 + 0 + J → k (sya) pairin ya

0 + 0 + H → i (stha) addha tha

0 + 0 + / → j (sma) addha ma
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.4 Gujarati 303
Other Symbols. The religious symbol khanda sometimes used in Gurmukhi texts is
encoded at U+262C adi shakti in the Miscellaneous Symbols block. U+0A74 gurmukhi

ek onkar, which is also a religious symbol, can have different presentation forms, which
do not change its meaning. The font used in the code charts shows a highly stylized form;
simpler forms look like the digit one, followed by a sign based on ura, along with a long
upper tail.

Punctuation. Danda and double danda marks as well as some other unified punctuation
used with Gurmukhi are found in the Devanagari block. See Section 9.1, Devanagari, for
more information. Punjabi also uses Latin punctuation.

9.4 Gujarati

Gujarati: U+0A80–U+0AFF

The Gujarati script is a North Indian script closely related to Devanagari. It is most obvi-
ously distinguished from Devanagari by not having a horizontal bar for its letterforms, a
characteristic of the older Kaithi script to which Gujarati is related. The Gujarati script is
used to write the Gujarati language of the Gujarat state in India.

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 9-14 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Table 9-13. Use of Joiners in Gurmukhi

0 + 0 + 6 → L (sva)

+ + 0 + 6 → M (rva)

0 + 0 + Ä + 6 → N (sva)

+ + 0 + Ä + 6 → O (rva)

0 + 0 + Ã + 6 → PQ (sva)

+ + 0 + Ã + 6 → RQ (rva)

Table 9-14. Gujarati Vowel Letters

For Use Do Not Use

Ü 0A86 <0A85, 0ABE>

h 0A8D <0A85, 0AC5>

è 0A8F <0A85, 0AC7>

ê 0A90 <0A85, 0AC8>

k 0A91 <0A85, 0AC9>

ì 0A93 <0A85, 0ACB> or <0A85, 0ABE, 0AC5>

î 0A94 <0A85, 0ACC> or <0A85, 0ABE, 0AC8>

0 0AC9 <0AC5, 0ABE>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

304 South Asian Scripts-I
Rendering Behavior. For rendering of the Gujarati script, see the rules for rendering in
Section 9.1, Devanagari. Like other Brahmic scripts in the Unicode Standard, Gujarati uses
the virama to form conjunct characters. The virama is informally called kho}o, which
means “lame” in Gujarati. Many conjunct characters, as in Devanagari, lose the vertical
stroke; there are also vertical conjuncts. U+0AB0 gujarati letter ra takes special forms
when it combines with other consonants, as shown in Table 9-15.

Punctuation. Words in Gujarati are separated by spaces. Danda and double danda marks
as well as some other unified punctuation used with Gujarati are found in the Devanagari
block; see Section 9.1, Devanagari.

9.5 Oriya

Oriya: U+0B00–U+0B7F

The Oriya script is a North Indian script that is structurally similar to Devanagari, but with
semicircular lines at the top of most letters instead of the straight horizontal bars of Deva-
nagari. The actual shapes of the letters, particularly for vowel signs, show similarities to
Tamil. The Oriya script is used to write the Oriya language of the Orissa state in India as
well as minority languages such as Khondi and Santali.

Special Characters. U+0B57 oriya au length mark is provided as an encoding for the
right side of the surroundrant vowel U+0B4C oriya vowel sign au.

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 9-16 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Rendering Behavior. For rendering of the Oriya script, see the rules for rendering in
Section 9.1, Devanagari. Like other Brahmic scripts in the Unicode Standard, Oriya uses the

Table 9-15. Gujarati Conjuncts

: + ; + < → = (kXa)

> + ; + ? → @ (jña)

A + ; + B → CB (tya)

D + ; + D → E (YYa)

F + ; + : → G (rka)

: + ; + F → ' (kra)

Table 9-16. Oriya Vowel Letters

For Use Do Not Use

Y 0B06 <0B05, 0B3E>

Z 0B10 <0B0F, 0B57>

[0B14 <0B13, 0B57>
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.5 Oriya 305
virama to suppress the inherent vowel. Oriya has a visible virama, often being a lengthen-
ing of a part of the base consonant:

< + > → = (k)

The virama is also used to form conjunct consonants, as shown in Table 9-17.

Consonant Forms. In the initial position in a cluster, RA is reduced and placed above the
following consonant, while it is also reduced in the second position:

_ + > + ` → a (rpa)

` + > + _ → b (pra)

Nasal and stop clusters may be written with conjuncts, or the anusvara may be used:

Z + [+ > + < → Z\ (avka)

Z + Y + < → ZW< (auka)

Vowels. As with other scripts, some dependent vowels are rendered in front of their conso-
nant, some appear after it, and some are placed above or below it. Some are rendered with
parts both in front of and after their consonant. A few of the dependent vowels fuse with
their consonants. See Table 9-18.

U+0B01 oriya sign candrabindu is used for nasal vowels:

< +]→ <^ (kau)

Table 9-17. Oriya Conjuncts

< + > + ? → @ (kXa)

< + > + U → V (kta)

U + > + < → X (tka)

U + > + c → Ud (tya)

Table 9-18. Oriya Vowel Placement

< + A → B (kZ)

< + C → D (ki)

< + E → F (k\)

< + G → H (ku)

< + I → J (k^)

< + K → L (kW)

< + M → N (ke)

< + O → P (kai)

< + Q→ R (ko)

< + S→ T (kau)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

306 South Asian Scripts-I
Oriya VA and WA. These two letters are extensions to the basic Oriya alphabet. Because
Sanskrit yx vana becomes Oriya qz bana in orthography and pronunciation, an
extended letter U+0B35 r oriya letter va was devised by dotting U+0B2C p oriya let-

ter ba for use in academic and technical text. For example, basic Oriya script cannot dis-
tinguish Sanskrit wy bava from ww baba or yy vava, but this distinction can be made
with the modified version of ba. In some older sources, the glyph N is sometimes found for
va; in others, P and Q have been shown, which in a more modern type style would be R.
The letter va is not in common use today.

In a consonant conjunct, subjoined U+0B2C p oriya letter ba is usually—but not
always—pronounced [wa]:

U+0B15 1 ka + U+0B4D B virama + U+0B2C C ba '→ 1A [kwa]

U+0B2E M ma + U+0B4D B virama + U+0B2C C ba '→ MA [mba]

The extended Oriya letter U+0B71 T oriya letter wa is sometimes used in Perso-Arabic
or English loan words for [w]. It appears to have originally been devised as a ligature of V o
and p ba, but because ligatures of independent vowels and consonants are not normally
used in Oriya, this letter has been encoded as a single character that does not have a decom-
position. It is used initially in words or orthographic syllables to represent the foreign con-
sonant; as a native semivowel, virama + ba is used because that is historically accurate.
Glyph variants of wa are S, U, and VW.
Punctuation and Symbols. Danda and double danda marks as well as some other unified
punctuation used with Oriya are found in the Devanagari block; see Section 9.1, Devana-
gari. The mark U+0B70 oriya isshar is placed before names of persons who are deceased.

Fraction Characters. As for many other scripts of India, Oriya has characters used to
denote factional values. These were more commonly used before the advent of decimal
weights, measures, and currencies. Oriya uses six signs: three for quarter values (1/4, 1/2,
3/4) and three for sixteenth values (1/16, 1/8, and 3/16). These are used additively, with
quarter values appearing before sixteenths. Thus U+0B73 oriya fraction one half fol-
lowed by U+0B75 oriya fraction one sixteenth represents the value 5/16.

9.6 Tamil

Tamil: U+0B80–U+0BFF

The Tamil script is descended from the South Indian branch of Brahmi. It is used to write
the Tamil language of the Tamil Nadu state in India as well as minority languages such as
the Dravidian language Badaga and the Indo-European language Saurashtra. Tamil is also
used in Sri Lanka, Singapore, and parts of Malaysia.

The Tamil script has fewer consonants than the other Indic scripts. When representing the
“missing” consonants in transcriptions of languages such as Sanskrit or Saurashtra, super-
script European digits are often used, so 2 = pha, 3 = ba, and 4 = bha. The characters
U+00B2, U+00B3, and U+2074 can be used to preserve this distinction in plain text. The
Tamil script also avoids the use conjunct consonant forms, although a few conventional
conjuncts are used.

Virama (Pu!!i). Because the Tamil encoding in the Unicode Standard is based on ISCII-
1988 (Indian Script Code for Information Interchange), it makes use of the abugida model.
An abugida treats the basic consonants as containing an inherent vowel, which can be can-
celed by the use of a visible mark, called a virama in Sanskrit. In most Brahmi-derived
scripts, the placement of a virama between two consonants implies the deletion of the
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.6 Tamil 307
inherent vowel of the first consonant and causes a conjoined or subjoined consonant clus-
ter. In those scripts, zero width non-joiner is used to display a visible virama, as shown
previously in the Devangari example in Figure 9-3.

The situation is quite different for Tamil because the script uses very few consonant con-
juncts. An orthographic cluster consisting of multiple consonants (represented by <C1,
U+0BCD tamil sign virama, C2, ...>) is normally displayed with explicit viramas, which
are called pukki in Tamil. The pukki is typically rendered as a dot centered above the charac-
ter. It occasionally appears as small circle instead of a dot, but this glyph variant should be
handled by the font, and not be represented by the similar-appearing U+0B82 tamil sign

anusvara.

The conjuncts kssa and shrii are traditionally displayed by conjunct ligatures, as illustrated
for kssa in Figure 9-15, but nowadays tend to be displayed using an explicit pukki as well.

Figure 9-15. Kssa Ligature in Tamil

To explicitly display a pukki for such sequences, zero width non-joiner can be inserted
after the pukki in the sequence of characters.

Rendering of the Tamil Script. The Tamil script is complex and requires special rules for
rendering. The following discussion describes the most important features of Tamil ren-
dering behavior. As with any script, a more complex procedure can add rendering charac-
teristics, depending on the font and application.

In a font that is capable of rendering Tamil, the number of glyphs is greater
than the number of Tamil characters.

Tamil Vowels

Independent Versus Dependent Vowels. In the Tamil script, the dependent vowel signs are
not equivalent to a sequence of of virama + independent vowel. For example:

Left-Side Vowels. The Tamil vowels U+0BC6 , U+0BC7 , and U+0BC8 are
reordered in front of the consonant to which they are applied. When occurring in a syllable,
these vowels are rendered to the left side of their consonant, as shown in Table 9-19.

Two-Part Vowels. Tamil also has several vowels that consist of elements which flank the
consonant to which they are applied. A sequence of two Unicode code points can be used to
express equivalent spellings for these vowels, as shown in Figure 9-16.

Table 9-19. Tamil Vowel Reordering

Memory Representation Display

 + + → kXa

 + ≠ + +
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

308 South Asian Scripts-I
Figure 9-16. Tamil Two-Part Vowels

In these examples, the representation on the left, which is a single code point, is the pre-
ferred form and the form in common use for Tamil. Note that the in the third example
is not U+0BB3 tamil letter lla; it is U+0BD7 tamil au length mark.

In the process of rendering, these two-part vowels are transformed into the two separate
glyphs equivalent to those on the right, which are then subject to vowel reordering, as
shown in Table 9-20.

Even in the case where a two-part vowel occurs with a conjunct consonant or consonant
cluster, the left part of the vowel is reordered around the conjunct or cluster, as shown in
Figure 9-17.

Figure 9-17. Vowel Reordering Around a Tamil Conjunct

For either left-side vowels or two-part vowels, the ordering of the elements is unambigu-
ous: the consonant or consonant cluster occurs first in the memory representation, fol-
lowed by the vowel.

Tamil Ligatures

A number of ligatures are conventionally used in Tamil. Most ligatures involve the shape
taken by a consonant plus vowel sequence. A wide variety of modern Tamil words are writ-
ten without a conjunct form, with a fully visible pukki.

Ligatures with Vowel i. The vowel signs i and ii form ligatures with the consonant
tta as shown in examples 1 and 2 of Figure 9-18. These vowels often change shape or
position slightly so as to join cursively with other consonants, as shown in examples 3 and
4 of Figure 9-18.

 0BCA ≡ + 0BC6 + 0BBE

 0BCB ≡ + 0BC7 + 0BBE

 0BCC ≡ + 0BC6 + 0BD7

Table 9-20. Tamil Vowel Splitting and Reordering

Memory Representation Display

 + + + + → kXo
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.6 Tamil 309
Figure 9-18. Tamil Ligatures with i

Ligatures with Vowel u. The vowel signs u and uu normally ligate with their conso-
nant, as shown in Table 9-21. In the first column, the basic consonant is shown; the second
column illustrates the ligation of that consonant with the u vowel sign; and the third col-
umn illustrates the ligation with the uu vowel sign.

With certain consonants, , , , , and the conjunct , the vowel signs u and
uu take a distinct spacing form, as shown in Figure 9-19.

Ligatures with ra. Based on typographical preferences, the consonant ra may change

shape to , when it ligates. Such change, if it occurs, will happen only when the form of

U+0BB0 tamil letter ra would not be confused with the nominal form of U+0BBE

tamil vowel sign aa (namely, when is combined with , , or). This change in

shape is illustrated in Figure 9-20.

1 + → Yi

2 + → Y\

3 + → li

4 + → l\

Table 9-21. Tamil Ligatures with u

x x + x + x x + x +

Figure 9-19. Spacing Forms of Tamil u

+ →ju

 + → j^
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

310 South Asian Scripts-I
Figure 9-20. Tamil Ligatures with ra

However, various governmental bodies mandate that the basic shape of the consonant ra
should be used for these ligatures as well, especially in school textbooks. Media and literary
publications in Malaysia and Singapore mostly use the unchanged form of ra . Sri Lanka,
on the other hand, specifies the use of the changed forms shown in Figure 9-20.

Ligatures with aa in Traditional Tamil Orthography. In traditional Tamil orthography,
the vowel sign aa optionally ligates with ,, or , as illustrated in Figure 9-21.

Figure 9-21. Traditional Tamil Ligatures with aa

These ligations also affect the right-hand part of two-part vowels, as shown in Figure 9-22.

Figure 9-22. Traditional Tamil Ligatures with o

Ligatures with ai in Traditional Tamil Orthography. In traditional Tamil orthography,
the left-side vowel sign ai is also subject to a change in form. It is rendered as
when it occurs on the left side of , , , or , as illustrated in Figure 9-23.

 + → l r

 + → m ri

 + → n r\

 + → DZ

 + → hZ

 + → 9Z

 + → Do

 + → D]

 + → ho

 + → h]

 + → 9o

 + → 9]
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.6 Tamil 311
Figure 9-23. Traditional Tamil Ligatures with ai

By contrast, in modern Tamil orthography, this vowel does not change its shape, as shown
in Figure 9-24.

Figure 9-24. Vowel ai in Modern Tamil

Tamil aytham. The character U+0B83 tamil sign visarga is normally called aytham in
Tamil. It is historically related to the visarga in other Indic scripts, but has become an ordi-
nary spacing letter in Tamil. The aytham occurs in native Tamil words, but is frequently
used as a modifying prefix before consonants used to represent foreign sounds. In particu-
lar, it is used in the spelling of words borrowed into Tamil from English or other languages.

Punctuation. Danda and double danda marks as well as some other unified punctuation
used with Tamil are found in the Devanagari block; see Section 9.1, Devanagari.

Tamil Named Character Sequences

Tamil is less complex than some of the other Indic scripts, and both conceptually and in
processing can be treated as an atomic set of elements: consonants, stand-alone vowels, and
syllables. Table 9-22 shows these atomic elements, with the corresponding Unicode charac-
ters or sequences. In cases where the atomic elements for Tamil correspond to sequences of
Unicode characters, those sequences have been added to the approved list of Unicode
named character sequences. See NamedSequences.txt in the Unicode Character Database
for details.

In implementations such as natural language processing, where it may be useful to treat
such Tamil text elements as single code points for ease of processing. Tamil named charac-
ter sequences could be mapped to code points in a contiguous segment of the Private Use
Area.

In Table 9-22, the first row shows the transliterated representation of the Tamil vowels in
abbreviated form, while the first column shows the transliterated representation of the
Tamil consonants. Those row and column labels, together with identifying strings such as
“tamil syllable” or “tamil consonant” are concatenated to form formal names for
these sequences. For example, the sequence shown in the table in the K row and the AA col-
umn, with the sequence <0B95, 0BBE>, gets the associated name tamil syllable kaa.
The sequence shown in the table in the K row in the first column, with the sequence <0B95,
0BCD>, gets the associated name tamil consonant k.

Details on the complete names for each element can be found in NamedSequences.txt.

 + → Dai

 + → hai

 + → lai

 + → kai

 + → Dai
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

312 South Asian Scripts-I
Table 9-22. Tamil Vowels, Consonants, and Syllables
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.7 Telugu 313

9.7 Telugu

Telugu: U+0C00–U+0C7F

The Telugu script is a South Indian script used to write the Telugu language of the Andhra
Pradesh state in India as well as minority languages such as Gondi (Adilabad and Koi dia-
lects) and Lambadi. The script is also used in Maharashtra, Orissa, Madhya Pradesh, and
West Bengal. The Telugu script became distinct by the thirteenth century ce and shares
ancestors with the Kannada script.

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 9-23 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Rendering Behavior. Telugu script rendering is similar to that of other Brahmic scripts in
the Unicode Standard—in particular, the Tamil script. Unlike Tamil, however, the Telugu

Table 9-23. Telugu Vowel Letters

For Use Do Not Use

I 0C13 <0C12, 0C55>

J 0C14 <0C12, 0C4C>

H 0C40 <0C3F, 0C55>

K 0C47 <0C46, 0C55>

L 0C4B <0C4A, 0C55>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

314 South Asian Scripts-I
script writes conjunct characters with subscript letters. Many Telugu letters have a v-shaped
headstroke, which is a structural mark corresponding to the horizontal bar in Devanagari
and the arch in Oriya script. When a virama (called virZmamu in Telugu) or certain vowel
signs are added to a letter with this headstroke, it is replaced:

U+0C15 2 ka + U+0C4D 3 virama + U+200C Ã zero width non-

joiner → 4 (k)

U+0C15 2 ka + U+0C3F 5 vowel sign i → 6 (ki)

Telugu consonant clusters are most commonly represented by a subscripted, and often
transformed, consonant glyph for the second element of the cluster:

U+0C17 < ga + U+0C4D 3 virama + U+0C17 < ga → <= (gga)

U+0C15 2 ka + U+0C4D 3 virama + U+0C15 2 ka → 29 (kka)

U+0C15 2 ka + U+0C4D 3 virama + U+0C2F : ya → 2; (kya)

U+0C15 2 ka + U+0C4D 3 virama + U+0C37 > ssa → 2? (kXa)

NakZra-Pollu. The sequence <U+0C28 telugu letter na, U+0C4D telugu sign

virama> can have two representations in Telugu text. The first is the “regular” or “new
style” form D, which takes its shape from the glyphs in the sequence <U+0C28 C telugu

letter na , U+0C4D y telugu sign virama>. Older texts display the other vowel-less
form F, called nakZra-pollu. The two forms are semantically identical. Fonts should render
the sequence <U+0C28 telugu letter na, U+0C4D telugu sign virama> with either
the old-style glyph For the new style glyph D. The character U+200C zero width non-

joiner can be used to prevent interaction of this sequence with following consonants, as
shown in Table 9-24.

Reph. In modern Telugu, U+0C30 telugu letter ra behaves in the same manner as most
other initial consonants in a consonant cluster. That is, the ra appears in its nominal form,
and the second consonant takes the C2-conjoining or subscripted form:

U+0C30 x ra + U+0C4D 3 virama + U+0C2E z ma → xB (rma)

However, in older texts, U+0C30 telugu letter ra takes the reduced (or reph) form A
when it appears first in a consonant cluster, and the following consonant maintains its
nominal form:

U+0C30 x ra + U+0C4D 3 virama + U+0C2E z ma → zA (rma)

U+200D zero width joiner is placed immediately after the virama to render the reph
explicitly in modern texts:

U+0C30 x ra + U+0C4D 3 virama + U+200D Ä ZWJ + U+0C2E z
ma → zA

Table 9-24. Rendering of Telugu na + virama

Font Sequence Rendering

Old Style
na + virama
na + virama + Ã + da

F
FE

New Style
na + virama
na + virama + Ã + da

D
DE

All Fonts na + virama + da G
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.8 Kannada 315
To prevent display of a reph, U+200D zero width joiner is placed after the ra, but preced-
ing the virama:

U+0C30 x ra + U+200D Ä ZWJ + U+0C4D 3 virama + U+0C2E z
ma → xB

Special Characters. U+0C55 telugu length mark is provided as an encoding for the sec-
ond element of the vowel U+0C47 telugu vowel sign ee. U+0C56 telugu ai length

mark is provided as an encoding for the second element of the surroundrant vowel
U+0C48 telugu vowel sign ai. The length marks are both nonspacing characters. For a
detailed discussion of the use of two-part vowels, see “Two-Part Vowels” in Section 9.6,
Tamil.

Fractions. Prior to the adoption of the metric system, Telugu fractions were used as part of
the system of measurement. Telugu fractions are quaternary (base-4), and use eight marks,
which are conceptually divided into two sets. The first set represents odd-numbered nega-
tive powers of four in fractions. The second set represents even-numbered negative powers
of four in fractions. Different zeros are used with each set. The zero from the first set is
known as hakki, U+0C78 telugu fraction digit zero for odd powers of four. The
zero for the second set is U+0C66 telugu digit zero.

Punctuation. Danda and double danda are used primarily in the domain of religious texts
to indicate the equivalent of a comma and full stop, respectively. The danda and double
danda marks as well as some other unified punctuation used with Telugu are found in the
Devanagari block; see Section 9.1, Devanagari.

9.8 Kannada

Kannada: U+0C80–U+0CFF

The Kannada script is a South Indian script. It is used to write the Kannada (or Kanarese)
language of the Karnataka state in India and to write minority languages such as Tulu. The
Kannada language is also used in many parts of Tamil Nadu, Kerala, Andhra Pradesh, and
Maharashtra. This script is very closely related to the Telugu script both in the shapes of the
letters and in the behavior of conjunct consonants. The Kannada script also shares many fea-
tures common to other Indic scripts. See Section 9.1, Devanagari, for further information.

The Unicode Standard follows the ISCII layout for encoding, which also reflects the tradi-
tional Kannada alphabetic order.

Principles of the Kannada Script

Like Devanagari and related scripts, the Kannada script employs a halant, which is also
known as a virama or vowel omission sign, U+0CCD @ kannada sign virama. The
halant nominally serves to suppress the inherent vowel of the consonant to which it is
applied. The halant functions as a combining character. When a consonant loses its inher-
ent vowel by the application of halant, it is known as a dead consonant. The dead conso-
nants are the presentation forms used to depict the consonants without an inherent vowel.
Their rendered forms in Kannada resemble the full consonant with the vertical stem
replaced by the halant sign, which marks a character core. The stem glyph is graphically
and historically related to the sign denoting the inherent /a/ vowel, U+0C85 A kannada

letter a. In contrast, a live consonant is a consonant that retains its inherent vowel or is
written with an explicit dependent vowel sign. The dead consonant is defined as a sequence
consisting of a consonant letter followed by a halant. The default rendering for a dead con-
sonant is to position the halant as a combining mark bound to the consonant letterform.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

316 South Asian Scripts-I
Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 9-25 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Consonant Conjuncts. Kannada is also noted for a large number of consonant conjunct
forms that serve as ligatures of two or more adjacent forms. This use of ligatures takes place
in the context of a consonant cluster. A written consonant cluster is defined as a sequence
of characters that represent one or more dead consonants followed by a normal live conso-
nant. A separate and unique glyph corresponds to each part of a Kannada consonant con-
junct. Most of these glyphs resemble their original consonant forms—many without the
implicit vowel sign, wherever applicable.

In Kannada, conjunct formation tends to be graphically regular, using the following pattern:

• The first consonant of the cluster is rendered with the implicit vowel or a differ-
ent dependent vowel appearing as the terminal element of the cluster.

• The remaining consonants (consonants between the first consonant and the
terminal vowel element) appear in conjunct consonant glyph forms in phonetic
order. They are generally depicted directly below or to the lower right of the
first consonant.

A Kannada script font contains the conjunct glyph components, but they are not encoded
as separate Unicode characters because they are simply ligatures. Kannada script rendering
software must be able to map appropriate combinations of characters in context to the
appropriate conjunct glyphs in fonts.

In a font that is capable of rendering Kannada, the number of glyphs is
greater than the number of encoded Kannada characters.

Special Characters. U+0CD5 m kannada length mark is provided as an encoding for
the right side of the two-part vowel U+0CC7 n kannada vowel sign ee should it be nec-
essary for processing. Likewise, U+0CD6 o kannada ai length mark is provided as an
encoding for the right side of the two-part vowel U+0CC8 p kannada vowel sign ai.
The Kannada two-part vowels actually consist of a nonspacing element above the conso-
nant letter and one or more spacing elements to the right of the consonant letter. These two
length marks have no independent existence in the Kannada writing system and do not
play any part as independent codes in the traditional collation order.

Kannada Letter LLLA. U+0CDE G kannada letter fa is actually an obsolete Kannada
letter that is transliterated in Dravidian scholarship as 5, r, or W. This form should have been
named “llla”, rather than “fa”, so the name in this standard is simply a mistake. This letter
has not been actively used in Kannada since the end of the tenth century. Collations should
treat U+0CDE as following U+0CB3 kannada letter lla.

Table 9-25. Kannada Vowel Letters

For Use Do Not Use

r 0C8A <0C89, 0CBE>

p 0C94 <0C92, 0CCC>

s 0CE0 <0C8B, 0CBE>
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.9 Malayalam 317
Rendering Kannada

Plain text in Kannada is generally stored in phonetic order; that is, a CV syllable with a
dependent vowel is always encoded as a consonant letter C followed by a vowel sign V in the
memory representation. This order is employed by the ISCII standard and corresponds to
the phonetic and keying order of textual data. Unlike in Devanagari and some other Indian
scripts, all of the dependent vowels in Kannada are depicted to the right of their consonant
letters. Hence there is no need to reorder the elements in mapping from the logical (char-
acter) store to the presentation (glyph) rendering, and vice versa.

Explicit Virama (Halant). Normally, a halant character creates dead consonants, which in
turn combine with subsequent consonants to form conjuncts. This behavior usually results
in a halant sign not being depicted visually. Occasionally, this default behavior is not
desired when a dead consonant should be excluded from conjunct formation, in which case
the halant sign is visibly rendered. To accomplish this, U+200C zero width non-joiner is
introduced immediately after the encoded dead consonant that is to be excluded from con-
junct formation. See Section 9.1, Devanagari, for examples.

Consonant Clusters Involving RA. Whenever a consonant cluster is formed with the
U+0CB0 D kannada letter ra as the first component of the consonant cluster, the letter
ra is depicted with two different presentation forms: one as the initial element and the
other as the final display element of the consonant cluster.

U+0CB0 D ra + U+0CCD @ halant + U+0C95 I ka → IK rka

U+0CB0 D ra + Ä + U+0CCD @ halant + U+0C95 I ka → DL rka

U+0C95 I ka + U+0CCD @ halant + U+0CB0 D ra → IJ kra

Modifier Mark Rules. In addition to the vowel signs, one more types of combining marks
may be applied to a component of a written syllable or the syllable as a whole. If the conso-
nant represents a dead consonant, then the nukta should precede the halant in the memory
representation. The nukta is represented by a double-dot mark, U+0CBC E kannada sign

nukta. Two such modified consonants are used in the Kannada language: one representing
the syllable za and one representing the syllable fa.

Avagraha Sign. A spacing mark called U+0CBD F kannada sign avagraha is used when
rendering Sanskrit texts.

Punctuation. Danda and double danda marks as well as some other unified punctuation
used with this script are found in the Devanagari block; see Section 9.1, Devanagari.

9.9 Malayalam

Malayalam: U+0D00–U+0D7F

The Malayalam script is a South Indian script used to write the Malayalam language of the
Kerala state. Malayalam is a Dravidian language like Kannada, Tamil, and Telugu.
Throughout its history, it has absorbed words from Tamil, Sanskrit, Arabic, and English.

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 9-26 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Rendering Behavior. The shapes of Malayalam letters closely resemble those of Tamil.
Malayalam, however, has a very full and complex set of conjunct consonant forms. In the
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

318 South Asian Scripts-I
1970s and 1980s, Malayalam underwent orthographic reform due to printing difficulties.
The treatment of the combining vowel signs u and uu was simplified at this time. These
vowel signs had previously been represented using special cluster graphemes where the
vowel signs were fused beneath their consonants, but in the reformed orthography they are
represented by spacing characters following their consonants. Table 9-27 lists a variety of
consonants plus the u or uu vowel sign, yielding a syllable. Each syllable is shown as it
would be displayed in the older orthography, contrasted with its display in the reformed
orthography.

As is the case for many other Brahmi-derived scripts in the Unicode Standard, Malayalam
uses a virama character to form consonant conjuncts. The virama sign itself is known as

Table 9-26. Malayalam Vowel Letters

For Use Do Not Use

· 0D08 <0D07, 0D57>

à 0D0A <0D09, 0D57>

s 0D10 <0D0E, 0D46>

t 0D13 <0D12, 0D3E>

u 0D14 <0D12, 0D57>

Table 9-27. Malayalam Orthographic Reform

Syllable
Older

Orthography
Reformed

Orthography

ku \ + } g \!
gu] + } h]!
chu ^ + } i ^!
ju _ + } j _!

Vu ` + } k `!
tu a + } l a!
nu b + } m b!
bhu c + } n c!
ru d + } o d!

#u e + } p e!
hu f + } q f!
k| \ + ~ r \"
g|] + ~ s]"
ch| ^ + ~ t ^"
j| _ + ~ u _"
V| ` + ~ v `"
t| a + ~ w a"
n| b + ~ x b"
bh| c + ~ y c"
r| d + ~ z d"
#| e + ~ { e"
h| f + ~ | f"
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.9 Malayalam 319
candrakala in Malayalam. Table 9-28 provides a variety of examples of consonant con-
juncts. There are both horizontal and vertical conjuncts, some of which ligate, and some of
which are merely juxtaposed.

When the candrakala sign is visibly shown in Malayalam, it usually indicates the suppres-
sion of the inherent vowel, but it sometimes indicates instead a reduced schwa sound ['],
often called “half-u” or samvruthokaram. In the later case, there can also be a -u vowel sign,
and the base character can be a vowel letter. In all cases, the candrakala sign is represented
by the character U+0D4D malayalam sign virama, which follows any vowel sign that
may be present and precedes any anusvara that may be present. Examples are shown in
Table 9-29.

The anusvara can be seen after after vowel letters, as in vxxxx <0D08, 0D02, 0D02,
0D02, 0D02>. Vowel signs can also be seen after digits, as in 355wx <0033, 0035, 0035,
0D3E, 0D02>. More generally, rendering engines should be prepared to handle Malayalam
letters (including vowel letters), digits (both European and Malayalam), dashes, U+00A0
no-break space and U+25CC dotted circle as base characters for the Malayalam vowel
signs, U+0D4D malayalam sign virama, U+0D02 malayalam sign anusvara, and
U+0D03 malayalam sign visarga. They should also be prepared to handle multiple
combining marks on those bases.

Chillu Characters. The six chillu or cillakXaram characters, U+0D7A..U+0D7F, encode
dead consonants (those without an inherent vowel). To simplify the discussion here, the
formal names of the characters are shortened to use the terms that are typically used in spo-
ken discussion of the chillu characters: chillu-n for malayalam letter chillu n, and so
forth.

In Malayalam-language text, chillu characters never start a word. The chillu letters -nn, -n,
-rr, -l, and -ll are quite common; chillu-k is not very common.

Table 9-28. Malayalam Conjuncts

\ + $ + % → & (kXa)

\ + $ + \ → ((kka)

_ + $ +) → * (jña)

+ + $ + + → , (YYa)

- + $ + - → . (ppa)

/ + $ + 0 → 1 (ccha)

2 + $ + 2 → 3 (bba)

b + $ + = → b> (nya)

- + $ + d → B (pra)

d + $ + - → A (rpa)

e + $ + o → e@ (#va)

Table 9-29. Candrakala Examples

s /paal'/ milk 0D2A, 0D3E, 0D32, 0D41, 0D4D

t /'nnaa/ on which day? 0D0E, 0D4D, 0D28, 0D4D, 0D28, 0D3E

u /aishiil'm/ than ice 0D10, 0D36, 0D40, 0D32, 0D4D, 0D02
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

320 South Asian Scripts-I
Prior to Unicode Version 5.1, the representation of text with chillus was problematic, and
not clearly described in the text of the standard. Because older data will use different repre-
sentation for chillus, implementations must be prepared to handle both kinds of data. For
the chillu letters considered in isolation, Table 9-30 shows the relation between their repre-
sentation in Unicode Version 5.0 and earlier, and the recommended representation starting
with Unicode Version 5.1.

Special Cases Involving ra. There are a number of textual representation and reading
issues involving the letter ra. These issues are discussed here and tables of explicit examples
are presented.

The letter x ra is normally read /r/. Repetition of that sound is written by two occurrences
of the letter: xx. Each occurrence can bear a vowel sign.

Repetition of the letter, written either y or xx, is also used for the sound /tt/. The sequence
of two x letters fundamentally behaves as a digraph in this instance. The digraph can bear
a vowel sign in which case the digraph as a whole acts graphically as an atom: a left vowel
part goes to the left of the digraph and a right vowel part goes to the right of the digraph.
Historically, the side-by-side form was used until around 1960 when the stacked form
began appearing and supplanted the side-by-side form.

As a consequence the graphical sequence xx in text is ambiguous in reading. The reader
must generally use the context to understand if this is read /rr/ or /tt/. It is only when a
vowel part appears between the two x that the reading is unambiguously /rr/. Note that
similar situations are common in many other orthographies. For example, th in English
can be a digraph (cathode) or two separate letters (cathouse); gn in French can be a digraph
(oignon) or two separate letters (gnome).

The sequence <0D31, 0D31> is rendered as xx, regardless of the reading of that text. The
sequence <0D31, 0D4D, 0D31> is rendered as y. In both cases, vowels signs can be used as
appropriate, as shown in Table 9-31.

Table 9-30. Atomic Encoding of Malayalam Chillus

Visual Representation in 5.0 and Prior Preferred 5.1 Representation

: NNA, VIRAMA, ZWJ
(0D23, 0D4D, 200D)

0D7A malayalam letter chillu nn

; NA, VIRAMA, ZWJ
(0D28, 0D4D, 200D)

0D7B malayalam letter chillu n

< RA, VIRAMA, ZWJ
(0D30, 0D4D, 200D)

0D7C malayalam letter chillu rr

= LA, VIRAMA, ZWJ
(0D32, 0D4D, 200D)

0D7D malayalam letter chillu l

> LLA, VIRAMA, ZWJ
(0D33, 0D4D, 200D)

0D7E malayalam letter chillu ll

? undefined 0D7F malayalam letter chillu k

Table 9-31. Malayalam /rr/ and /tt/

#$xx 0D2A 0D3E 0D31 0D31 /paatta/ cockroach

#$y 0D2A 0D3E 0D31 0D4D
0D31

%$vxx&(0D2E 0D3E 0D31 0D46
0D31 0D3E 0D32 0D3F

/maattoli/ echo

%$vy&(
0D2E 0D3E 0D31 0D4D
0D31 0D46 0D3E 0D32
0D3F
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

9.9 Malayalam 321
A very similar situation exists for the combination of ; chillu-n and x ra. When used side
by side, ;x can be read either /nr/ or /nt/, while z is always read /nt/.

The sequence <0D7B, 0D31> is rendered as ;x, regardless of the reading of that text. The
sequence <0D7B, 0D4D, 0D31> is rendered as z. In both cases, vowels signs can be used as
appropriate, as shown in Table 9-32.

Dot Reph. U+0D4E malayalam letter dot reph is used to represent the dead consonant
form of U+0D30 malayalam letter ra, when it is displayed as a dot over the consonant
following it. Conceptually, the dot reph is analogous to the sequence <ra, virama>, but
when followed by another consonant, the Malayalam cluster <ra, virama, C2> normally
assumes the C2 conjoining form. U+0D4E malayalam letter dot reph occurs first, in
logical order, even though it displays as a dot above the succeeding consonant. It has the
character properties of a letter, and is not considered a combining mark.

The sequence <ra, virama, ZWJ> is not used to represent the dot reph, because that
sequence has considerable preexisting usage to represent the chillu form of ra, prior to the
encoding of the chillu form as a distinct character, U+0D7C malayalam chillu rr.

The Malayalam dot reph was in common print usage until 1970, but has fallen into disuse.
Words that formerly used dot reph are now spelled using U+0D7C malayalam chillu rr

or the respective C2-conjoining forms. The dot reph form is predominantly used by those
who completed elementary education in Malayalam prior to 1970.

Historic Characters. The four characters, avagraha, vocalic rr sign, vocalic l sign, and vocalic
ll sign, are only used to write Sanskrit words in the Malayalam script. The avagraha is the
most common of the four, followed by the vocalic l sign. There are six characters used for
the archaic number system, including characters for numbers 10, 100, 1000 and fractions.
The date mark is used only for the day of the month in dates; it is roughly the equivalent of
“th” in “June 5th.” While it has been used in modern times it is not seen as much in con-
temporary use.

Special Characters. In modern times, the dominant practice is to write the dependent
form of the au vowel using only “w”, which is placed on the right side of the consonant it

)$xxx(0D2C 0D3E 0D31 0D31
0D31 0D3F

/baattari/ battery

)$yx(0D2C 0D3E 0D31 0D4D
0D31 0D31 0D3F

*+xxx, 0D38 0D42 0D31 0D31
0D31 0D4D

/suuratt/ (name of a place)

*+xy, 0D38 0D42 0D31 0D31
0D4D 0D31 0D4D

v-.#xx(0D1F 0D46 0D02 0D2A
0D31 0D31 0D3F

/temparari/ temporary (Eng-
lish loan word)

v&/,0x@x$-,
0D32 0D46 0D15 0D4D
0D1A 0D31 0D31 0D4B
0D1F 0D4D

/lekcararoot/ to the lecturer

Table 9-32. Malayalam /nr/ and /nt/

\@;x$ 0D06 0D7B 0D47 0D31
0D3E

/aantoo/ (proper name)

\@z$ 0D06 0D7B 0D4D 0D31
0D47 0D3E

];@x$> 0D0E 0D7B 0D31 0D47
0D3E 0D7A

/enrool/ enroll (English
word)

Table 9-31. Malayalam /rr/ and /tt/ (Continued)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

322 South Asian Scripts-I
modifies; such texts are represented in Unicode using U+0D57 malayalam au length

mark. In the past, this dependent form was written using both “v” on the left side and “w”
on the right side; U+0D4C malayalam vowel sign au can be used for documents follow-
ing this earlier tradition. This historical simplification started much earlier than the ortho-
graphic reforms mentioned above.

For a detailed discussion of the use of two-part vowels, see “Two-Part Vowels” in
Section 9.6, Tamil.

Punctuation. Danda and double danda marks as well as some other unified punctuation
used with Malayalam are found in the Devanagari block; see Section 9.1, Devanagari.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 10

South Asian Scripts-II 10

This chapter documents scripts of South Asia aside from the major official scripts of India,
which are described in Chapter 9, South Asian Scripts-I.

The following South Asian scripts are described in this chapter:

Most of these scripts are historically related to the other scripts of India, and most are ulti-
mately derived from the Brahmi script. None of them were standardized in ISCII. The
encoding for each script is done on its own terms, and the blocks do not make use of a
common pattern for the layout of code points.

This introduction briefly identifies each script, occasionally highlighting the most salient
distinctive attributes of the script. Details are provided in the individual block descriptions
that follow.

Sinhala is an official script of Sri Lanka, where it is used to write the majority language, also
known as Sinhala.

The Tibetan script is used for writing the Tibetan language in several countries and regions
throughout the Himalayas. The approach to the encoding of Tibetan in the Unicode Stan-
dard differs from that for most Brahmi-derived scripts. Instead of using a virama-based
model for consonant conjuncts, it uses a subjoined consonant model.

Lepcha is the writing system for the Lepcha language, spoken in Sikkim and in the Darjeel-
ing district of the West Bengal state of India. Lepcha is directly derived from the Tibetan
script, but all of the letters were rotated by ninety degrees.

Phags-pa is a historical script related to Tibetan that was created as the national script of
the Mongol empire. Even though Phags-pa was used mostly in Eastern and Central Asia for
writing text in the Mongolian and Chinese languages, it is discussed in this chapter because
of its close historical connection to the Tibetan script.

Limbu is a Brahmi-derived script primarily used to write the Limbu language, spoken
mainly in eastern Nepal, Sikkim, and in the Darjeeling district of West Bengal. Its encoding
follows a variant of the Tibetan model, making use of subjoined medial consonants, but
also explicitly encoded syllable-final consonants.

Syloti Nagri is used to write the modern Sylheti language of northeast Bangladesh and
southeast Assam in India.

Sinhala Kaithi Meetei Mayek

Tibetan Saurashtra Ol Chiki

Lepcha Sharada Sora Sompeng

Phags-pa Takri Kharoshthi

Limbu Chakma Brahmi

Syloti Nagri
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

324 South Asian Scripts-II
Kaithi is a historic North Indian script, closedly related to the Devanagari and Gujarati
scripts. It was used in the area of the present-day states of Bihar and Uttar Pradesh in
northern India, from the 16th century until the early 20th century.

Saurashtra is used to write the Saurashtra language, related to Gujarati, but spoken in
southern India. The Saurashtra language is most often written using the Tamil script,
instead.

Sharada is a historical script that was used to write Sanskrit, Kashmiri, and other languages
of northern South Asia; it was the principal inscriptional and literary script of Kashmir
from the 8th century ce until the 20th century. It has limited and specialized modern use.

Takri, descended from Sharada, is used in northern India and surrounding countries. It is
the traditional writing system for the Chambeali and Dogri languages, as well as several
“Pahari” languages. In addition to popular usage for commercial and informal purposes,
Takri served as the official script of several princely states of northern and northwestern
India from the 17th century until the middle of the 20th century. There are efforts to revive
its use for Dogri and other languages.

Chakma is used to write the language of the Chakma people of southeastern Bangladesh
and surrounding areas. The language, spoken by about half a million people, is related to
other eastern Indo-European languages such as Bengali.

Meetei Mayek is used to write Meetei, a Tibeto-Burman language spoken primarily in
Manipur, India. Like Limbu, it makes use of explicitly encoded syllable-final consonants.

Ol Chiki is an alphabetic script invented in the 20th century to write Santali, a Munda lan-
guage of India. It is used primarily for the southern dialect of Santali spoken in the state of
Orissa.

Sora Sompeng is used to write the Sora language spoken by the Sora people, who live in
eastern India between the Oriya- and Telugu-speaking populations. The script was created
in 1936 and is used in religious contexts.

The oldest lengthy inscriptions of India, the edicts of Ashoka from the third century bce,
were written in two scripts, Kharoshthi and Brahmi. These are both ultimately of Semitic
origin, probably deriving from Aramaic, which was an important administrative language
of the Middle East at that time. Kharoshthi, which was written from right to left, was sup-
planted by Brahmi and its derivatives.

10.1 Sinhala

Sinhala: U+0D80–U+0DFF

The Sinhala script, also known as Sinhalese, is used to write the Sinhala language, the
majority language of Sri Lanka. It is also used to write the Pali and Sanskrit languages. The
script is a descendant of Brahmi and resembles the scripts of South India in form and
structure.

Sinhala differs from other languages of the region in that it has a series of prenasalized stops
that are distinguished from the combination of a nasal followed by a stop. In other words,
both forms occur and are written differently—for example, AB <U+0D85, U+0DAC>
a8}a [a:;a] “sound” versus ACDE <U+0D85, U+0DAB, U+0DCA, U+0DA9> aV}a
[a9;a] “egg.” In addition, Sinhala has separate distinct signs for both a short and a long low
front vowel sounding similar to the initial vowel of the English word “apple,” usually repre-
sented in IPA as U+00E6 æ latin small letter ae (ash). The independent forms of these
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.2 Tibetan 325
vowels are encoded at U+0D87 and U+0D88; the corresponding dependent forms are
U+0DD0 and U+0DD1.

Because of these extra letters, the encoding for Sinhala does not precisely follow the pattern
established for the other Indic scripts (for example, Devanagari). It does use the same gen-
eral structure, making use of phonetic order, matra reordering, and use of the virama
(U+0DCA sinhala sign al-lakuna) to indicate conjunct consonant clusters. Sinhala
does not use half-forms in the Devanagari manner, but does use many ligatures.

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 10-1 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Other Letters for Tamil. The Sinhala script may also be used to write Tamil. In this case,
some additional combinations may be required. Some letters, such as U+0DBB sinhala

letter rayanna and U+0DB1 sinhala letter dantaja nayanna, may be modified by
adding the equivalent of a nukta. There is, however, no nukta presently encoded in the Sin-
hala block.

Historical Symbols. Neither U+0DF4 w sinhala punctuation kunddaliya nor the
Sinhala numerals are in general use today, having been replaced by Western-style punctua-
tion and Western digits. The kunddaliya was formerly used as a full stop or period. It is
included for scholarly use. The Sinhala numerals are not presently encoded.

10.2 Tibetan

Tibetan: U+0F00–U+0FFF

The Tibetan script is used for writing Tibetan in several countries and regions throughout
the Himalayas. Aside from Tibet itself, the script is used in Ladakh, Nepal, and northern
areas of India bordering Tibet where large Tibetan-speaking populations now reside. The
Tibetan script is also used in Bhutan to write Dzongkha, the official language of that coun-
try. In Bhutan, as well as in some scholarly traditions, the Tibetan script is called the Bodhi
script, and the particular version written in Bhutan is known as Joyi (mgyogs yig). In addi-
tion, Tibetan is used as the language of philosophy and liturgy by Buddhist traditions

Table 10-1. Sinhala Vowel Letters

To Represent Use Do Not Use

1 0D86 <0D85, 0DCF>

á 0D87 <0D85, 0DD0>

3 0D88 <0D85, 0DD1>

å 0D8C <0D8B, 0DDF>

é 0D8E <0D8D, 0DD8>

6 0D90 <0D8F, 0DDF>

í 0D92 <0D91, 0DCA>

8 0D93 <0D91, 0DD9>

ñ 0D96 <0D94, 0DDF>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

326 South Asian Scripts-II
spread from Tibet into the Mongolian cultural area that encompasses Mongolia, Buriatia,
Kalmykia, and Tuva.

The Tibetan scripting and grammatical systems were originally defined together in the
sixth century by royal decree when the Tibetan King Songtsen Gampo sent 16 men to India
to study Indian languages. One of those men, Thumi Sambhota, is credited with creating
the Tibetan writing system upon his return, having studied various Indic scripts and gram-
mars. The king’s primary purpose was to bring Buddhism from India to Tibet. The new
script system was therefore designed with compatibility extensions for Indic (principally
Sanskrit) transliteration so that Buddhist texts could be represented properly. Because of
this origin, over the last 1,500 years the Tibetan script has been widely used to represent
Indic words, a number of which have been adopted into the Tibetan language retaining
their original spelling.

A note on Latin transliteration: Tibetan spelling is traditional and does not generally reflect
modern pronunciation. Throughout this section, Tibetan words are represented in italics
when transcribed as spoken, followed at first occurrence by a parenthetical transliteration;
in these transliterations, the presence of the tsek (tsheg) character is expressed with a
hyphen.

Thumi Sambhota’s original grammar treatise defined two script styles. The first, called
uchen (dbu-can, “with head”), is a formal “inscriptional capitals” style said to be based on
an old form of Devanagari. It is the script used in Tibetan xylograph books and the one
used in the coding tables. The second style, called u-mey (dbu-med, or “headless”), is more
cursive and said to be based on the Wartu script. Numerous styles of u-mey have evolved
since then, including both formal calligraphic styles used in manuscripts and running
handwriting styles. All Tibetan scripts follow the same lettering rules, though there is a
slight difference in the way that certain compound stacks are formed in uchen and u-mey.

General Principles of the Tibetan Script. Tibetan grammar divides letters into consonants
and vowels. There are 30 consonants, and each consonant is represented by a discrete writ-
ten character. There are five vowel sounds, only four of which are represented by written
marks. The four vowels that are explicitly represented in writing are each represented with
a single mark that is applied above or below a consonant to indicate the application of that
vowel to that consonant. The absence of one of the four marks implies that the first vowel
sound (like a short “ah” in English) is present and is not modified to one of the four other
possibilities. Three of the four marks are written above the consonants; one is written
below.

Each word in Tibetan has a base or root consonant. The base consonant can be written sin-
gly or it can have other consonants added above or below it to make a vertically “stacked”
letter. Tibetan grammar contains a very complete set of rules regarding letter gender, and
these rules dictate which letters can be written in adjacent positions. The rules therefore
dictate which combinations of consonants can be joined to make stacks. Any combination
not allowed by the gender rules does not occur in native Tibetan words. However, when
transcribing other languages (for example, Sanskrit, Chinese) into Tibetan, these rules do
not operate. In certain instances other than transliteration, any consonant may be com-
bined with any other subjoined consonant. Implementations should therefore be prepared
to accept and display any combinations.

For example, the syllable spyir “general,” pronounced [t"í#], is a typical example of a
Tibetan syllable that includes a stack comprising a head letter, two subscript letters, and a
vowel sign. Figure 10-1 shows the characters in the order in which they appear in the back-
ing store.

The model adopted to encode the Tibetan lettering set described above contains the follow-
ing groups of items: Tibetan consonants, vowels, numerals, punctuation, ornamental signs
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.2 Tibetan 327
and marks, and Tibetan-transliterated Sanskrit consonants and vowels. Each of these will
be described in this section.

Both in this description and in Tibetan, the terms “subjoined” (-btags) and “head” (-mgo)
are used in different senses. In the structural sense, they indicate specific slots defined in
native Tibetan orthography. In spatial terms, they refer to the position in the stack; any-
thing in the topmost position is “head,” anything not in the topmost position is “sub-
joined.” Unless explicitly qualified, the terms “subjoined” and “head” are used here in their
spatial sense. For example, in a conjunct like “rka,” the letter in the root slot is “KA.”
Because it is not the topmost letter of the stack, however, it is expressed with a subjoined
character code, while “RA”, which is structurally in the head slot, is expressed with a nomi-
nal character code. In a conjunct “kra,” in which the root slot is also occupied with “KA”,
the “KA” is encoded with a nominal character code because it is in the topmost position in
the stack.

The Tibetan script has its own system of formatting, and details of that system relevant to
the characters encoded in this standard are explained herein. However, an increasing num-
ber of publications in Tibetan do not strictly adhere to this original formatting system. This
change is due to the partial move from publishing on long, horizontal, loose-leaf folios, to
publishing in vertically oriented, bound books. The Tibetan script also has a punctuation
set designed to meet needs quite different from the punctuation that has evolved for West-
ern scripts. With the appearance of Tibetan newspapers, magazines, school textbooks, and
Western-style reference books in the last 20 or 30 years, Tibetans have begun using things
like columns, indented blocks of text, Western-style headings, and footnotes. Some West-
ern punctuation marks, including brackets, parentheses, and quotation marks, are becom-
ing commonplace in these kinds of publication. With the introduction of more
sophisticated electronic publishing systems, there is also a renaissance in the publication of
voluminous religious and philosophical works in the traditional horizontal, loose-leaf for-
mat—many set in digital typefaces closely conforming to the proportions of traditional
hand-lettered text.

Consonants. The system described here has been devised to encode the Tibetan system of
writing consonants in both single and stacked forms.

All of the consonants are encoded a first time from U+0F40 through U+0F69. There are the
basic Tibetan consonants and, in addition, six compound consonants used to represent the
Indic consonants gha, jha, d.ha, dha, bha, and ksh.a. These codes are used to represent
occurrences of either a stand-alone consonant or a consonant in the head position of a ver-
tical stack. Glyphs generated from these codes will always sit in the normal position starting
at and dropping down from the design baseline. All of the consonants are then encoded a
second time. These second encodings from U+0F90 through U+0FB9 represent conso-
nants in subjoined stack position.

To represent a single consonant in a text stream, one of the first “nominal” set of codes is
placed. To represent a stack of consonants in the text stream, a “nominal” consonant code

Figure 10-1. Tibetan Syllable Structure

U+0F66 TIBETAN LETTER SA
U+0FA4 TIBETAN SUBJOINED LETTER PA
U+0FB1 TIBETAN SUBJOINED LETTER YA
U+0F72 TIBETAN VOWEL SIGN I
U+0F62 TIBETAN LETTER RA
U+0F0B TIBETAN MARK INTERSYLLABIC TSHEG
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

328 South Asian Scripts-II
is followed directly by one or more of the subjoined consonant codes. The stack so formed
continues for as long as subjoined consonant codes are contiguously placed.

This encoding method was chosen over an alternative method that would have involved a
virama-based encoding, such as Devanagari. There were two main reasons for this choice.
First, the virama is not normally used in the Tibetan writing system to create letter combi-
nations. There is a virama in the Tibetan script, but only because of the need to represent
Devanagari; called “srog-med”, it is encoded at U+0F84 tibetan mark halanta. The
virama is never used in writing Tibetan words and can be—but almost never is—used as a
substitute for stacking in writing Sanskrit mantras in the Tibetan script. Second, there is a
prevalence of stacking in native Tibetan, and the model chosen specifically results in
decreased data storage requirements. Furthermore, in languages other than Tibetan, there
are many cases where stacks occur that do not appear in Tibetan-language texts; it is thus
imperative to have a model that allows for any consonant to be stacked with any subjoined
consonant(s). Thus a model for stack building was chosen that follows the Tibetan
approach to creating letter combinations, but is not limited to a specific set of the possible
combinations.

Vowels. Each of the four basic Tibetan vowel marks is coded as a separate entity. These code
points are U+0F72, U+0F74, U+0F7A, and U+0F7C. For compatibility, a set of several
compound vowels for Sanskrit transcription is also provided in the other code points
between U+0F71 and U+0F7D. Most Tibetan users do not view these compound vowels as
single characters, and their use is limited to Sanskrit words. It is acceptable for users to
enter these compounds as a series of simpler elements and have software render them
appropriately. Canonical equivalences are specified for all of these compound vowels, with
the exception of U+0F77 tibetan vowel sign vocalic rr and U+0F79 tibetan vowel

sign vocalic ll, which for historic reasons have only compatibility equivalences specified.
These last two characters are deprecated, and their use is strongly discouraged.

A vowel sign may be applied either to a stand-alone consonant or to a stack of consonants.
The vowel sign occurs in logical order after the consonant (or stack of consonants). Each of
the vowel signs is a nonspacing combining mark. The four basic vowel marks are rendered
either above or below the consonant. The compound vowel marks also appear either above
or below the consonant, but in some cases have one part displayed above and one part dis-
played below the consonant.

All of the symbols and punctuation marks have straightforward encodings. Further infor-
mation about many of them appears later in this section.

Coding Order. In general, the correct coding order for a stream of text will be the same as
the order in which Tibetans spell and in which the characters of the text would be written
by hand. For example, the correct coding order for the most complex Tibetan stack would
be

head position consonant

first subjoined consonant

... (intermediate subjoined consonants, if any)

last subjoined consonant

subjoined vowel a-chung (U+0F71)

standard or compound vowel sign, or virama

Where used, the character U+0F39 tibetan mark tsa -phru occurs immediately after the
consonant it modifies.

Allographical Considerations. When consonants are combined to form a stack, one of
them retains the status of being the principal consonant in the stack. The principal conso-
nant always retains its stand-alone form. However, consonants placed in the “head” and
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.2 Tibetan 329
“subjoined” positions to the main consonant sometimes retain their stand-alone forms and
sometimes are given new, special forms. Because of this fact, certain consonants are given a
further, special encoding treatment—namely, “wa” (U+0F5D), “ya” (U+0F61), and “ra”
(U+0F62).

Head Position “ra”. When the consonant “ra” is written in the “head” position (ra-mgo,
pronounced ra-go) at the top of a stack in the normal Tibetan-defined lettering set, the
shape of the consonant can change. This is called ra-go (ra-mgo). It can either be a full-
form shape or the full-form shape but with the bottom stroke removed (looking like a
short-stemmed letter “T”). This requirement of “ra” in the head position where the glyph
representing it can change shape is correctly coded by using the stand-alone “ra” consonant
(U+0F62) followed by the appropriate subjoined consonant(s). For example, in the normal
Tibetan ra-mgo combinations, the “ra” in the head position is mostly written as the half-ra
but in the case of “ra + subjoined nya” must be written as the full-form “ra”. Thus the nor-
mal Tibetan ra-mgo combinations are correctly encoded with the normal “ra” consonant
(U+0F62) because it can change shape as required. It is the responsibility of the font devel-
oper to provide the correct glyphs for representing the characters where the “ra” in the
head position will change shape—for example, as in “ra + subjoined nya”.

Full-Form “ra” in Head Position. Some instances of “ra” in the head position require that
the consonant be represented as a full-form “ra” that never changes. This is not standard
usage for the Tibetan language itself, but rather occurs in transliteration and transcription.
Only in these cases should the character U+0F6A tibetan letter fixed-form ra be used
instead of U+0F62 tibetan letter ra. This “ra” will always be represented as a full-form
“ra consonant” and will never change shape to the form where the lower stroke has been
cut off. For example, the letter combination “ra + ya”, when appearing in transliterated
Sanskrit works, is correctly written with a full-form “ra” followed by either a modified sub-
joined “ya” form or a full-form subjoined “ya” form. Note that the fixed-form “ra” should
be used only in combinations where “ra” would normally transform into a short form but
the user specifically wants to prevent that change. For example, the combination “ra + sub-
joined nya” never requires the use of fixed-form “ra”, because “ra” normally retains its full
glyph form over “nya”. It is the responsibility of the font developer to provide the appropri-
ate glyphs to represent the encodings.

Subjoined Position “wa”, “ya”, and “ra”. All three of these consonants can be written in
subjoined position to the main consonant according to normal Tibetan grammar. In this
position, all of them change to a new shape. The “wa” consonant when written in sub-
joined position is not a full “wa” letter any longer but is literally the bottom-right corner of
the “wa” letter cut off and appended below it. For that reason, it is called a wazur (wa-zur,
or “corner of a wa”) or, less frequently but just as validly, wa-ta (wa-btags) to indicate that
it is a subjoined “wa”. The consonants “ya” and “ra” when in the subjoined position are
called ya-ta (ya-btags) and ra-ta (ra-btags), respectively. To encode these subjoined conso-
nants that follow the rules of normal Tibetan grammar, the shape-changed, subjoined
forms U+0FAD tibetan subjoined letter wa, U+0FB1 tibetan subjoined letter ya,
and U+0FB2 tibetan subjoined letter ra should be used.

All three of these subjoined consonants also have full-form non-shape-changing counter-
parts for the needs of transliterated and transcribed text. For this purpose, the full sub-
joined consonants that do not change shape (encoded at U+0FBA, U+0FBB, and U+0FBC,
respectively) are used where necessary. The combinations of “ra + ya” are a good example
because they include instances of “ra” taking a short (ya-btags) form and “ra” taking a full-
form subjoined “ya”.

U+0FB0 tibetan subjoined letter -a (a-chung) should be used only in the very rare
cases where a full-sized subjoined a-chung letter is required. The small vowel lengthening
a-chung encoded as U+0F71 tibetan vowel sign aa is far more frequently used in
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

330 South Asian Scripts-II
Tibetan text, and it is therefore recommended that implementations treat this character
(rather than U+0FB0) as the normal subjoined a-chung.

Halanta (Srog-Med). Because two sets of consonants are encoded for Tibetan, with the
second set providing explicit ligature formation, there is no need for a “dead character” in
Tibetan. When a halanta (srog-med) is used in Tibetan, its purpose is to suppress the
inherent vowel “a”. If anything, the halanta should prevent any vowel or consonant from
forming a ligature with the consonant preceding the halanta. In Tibetan text, this character
should be displayed beneath the base character as a combining glyph and not used as a
(purposeless) dead character.

Line Breaking Considerations. Tibetan text separates units called natively tsek-bar (“tsheg-
bar”), an inexact translation of which is “syllable.” Tsek-bar is literally the unit of text
between tseks and is generally a consonant cluster with all of its prefixes, suffixes, and vowel
signs. It is not a “syllable” in the English sense.

Tibetan script has only two break characters. The primary break character is the standard
interword tsek (tsheg), which is encoded at U+0F0B. The second break character is the
space. Space or tsek characters in a stream of Tibetan text are not always break characters
and so need proper contextual handling.

The primary delimiter character in Tibetan text is the tsek (U+0F0B tibetan mark inter-

syllabic tsheg). In general, automatic line breaking processes may break after any occur-
rence of this tsek, except where it follows a U+0F44 tibetan letter nga (with or without
a vowel sign) and precedes a shay (U+0F0D), or where Tibetan grammatical rules do not
permit a break. (Normally, tsek is not written before shay except after “nga”. This type of
tsek-after-nga is called “nga-phye-tsheg” and may be expressed by U+0F0B or by the spe-
cial character U+0F0C, a nonbreaking form of tsek.) The Unicode names for these two
types of tsek are misnomers, retained for compatibility. The standard tsek U+0F0B tibetan

mark intersyllabic tsheg is always required to be a potentially breaking character,
whereas the “nga-phye-tsheg” is always required to be a nonbreaking tsek. U+0F0C
tibetan mark delimiter tsheg bstar is specifically not a “delimiter” and is not for gen-
eral use.

There are no other break characters in Tibetan text. Unlike English, Tibetan has no system
for hyphenating or otherwise breaking a word within the group of letters making up the
word. Tibetan text formatting does not allow text to be broken within a word.

Whitespace appears in Tibetan text, although it should be represented by U+00A0 no-

break space instead of U+0020 space. Tibetan text breaks lines after tsek instead of at
whitespace.

Complete Tibetan text formatting is best handled by a formatter in the application and not
just by the code stream. If the interword and nonbreaking tseks are properly employed as
breaking and nonbreaking characters, respectively, and if all spaces are nonbreaking spaces,
then any application will still wrap lines correctly on that basis, even though the breaks
might be sometimes inelegant.

Tibetan Punctuation. The punctuation apparatus of Tibetan is relatively limited. The
principal punctuation characters are the tsek; the shay (transliterated “shad”), which is a
vertical stroke used to mark the end of a section of text; the space used sparingly as a space;
and two of several variant forms of the shay that are used in specialized situations requiring
a shay. There are also several other marks and signs but they are sparingly used.

The shay at U+0F0D marks the end of a piece of text called “tshig-grub”. The mode of
marking bears no commonality with English phrases or sentences and should not be
described as a delimiter of phrases. In Tibetan grammatical terms, a shay is used to mark
the end of an expression (“brjod-pa”) and a complete expression. Two shays are used at the
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.2 Tibetan 331
end of whole topics (“don-tshan”). Because some writers use the double shay with a differ-
ent spacing than would be obtained by coding two adjacent occurrences of U+0F0D, the
double shay has been coded at U+0F0E with the intent that it would have a larger spacing
between component shays than if two shays were simply written together. However, most
writers do not use an unusual spacing between the double shay, so the application should
allow the user to write two U+0F0D codes one after the other. Additionally, font designers
will have to decide whether to implement these shays with a larger than normal gap.

The U+0F11 rin-chen-pung-shay (rin-chen-spungs-shad) is a variant shay used in a specific
“new-line” situation. Its use was not defined in the original grammars but Tibetan tradi-
tion gives it a highly defined use. The drul-shay (“sbrul-shad”) is likewise not defined by
the original grammars but has a highly defined use; it is used for separating sections of
meaning that are equivalent to topics (“don-tshan”) and subtopics. A drul-shay is usually
surrounded on both sides by the equivalent of about three spaces (though no rule is speci-
fied). Hard spaces will be needed for these instances because the drul-shay should not
appear at the beginning of a new line and the whole structure of spacing-plus-shay should
not be broken up, if possible.

Tibetan texts use a yig-go (“head mark,” yig-mgo) to indicate the beginning of the front of
a folio, there being no other certain way, in the loose-leaf style of traditional Tibetan books,
to tell which is the front of a page. The head mark can and does vary from text to text; there
are many different ways to write it. The common type of head mark has been provided for
with U+0F04 tibetan mark initial yig mgo mdun ma and its extension U+0F05
tibetan mark closing yig mgo sgab ma. An initial mark yig-mgo can be written alone or
combined with as many as three closing marks following it. When the initial mark is writ-
ten in combination with one or more closing marks, the individual parts of the whole must
stay in proper registration with each other to appear authentic. Therefore, it is strongly rec-
ommended that font developers create precomposed ligature glyphs to represent the vari-
ous combinations of these two characters. The less common head marks mainly appear in
Nyingmapa and Bonpo literature. Three of these head marks have been provided for with
U+0F01, U+0F02, and U+0F03; however, many others have not been encoded. Font devel-
opers will have to deal with the fact that many types of head marks in use in this literature
have not been encoded, cannot be represented by a replacement that has been encoded, and
will be required by some users.

Two characters, U+0F3C tibetan mark ang khang gyon and U+0F3D tibetan mark

ang khang gyas, are paired punctuation; they are typically used together to form a roof
over one or more digits or words. In this case, kerning or special ligatures may be required
for proper rendering. The right ang khang may also be used much as a single closing paren-
thesis is used in forming lists; again, special kerning may be required for proper rendering.
The marks U+0F3E tibetan sign yar tshes and U+0F3F tibetan sign mar tshes are
paired signs used to combine with digits; special glyphs or compositional metrics are
required for their use.

A set of frequently occurring astrological and religious signs specific to Tibetan is encoded
between U+0FBE and U+0FCF.

U+0F34, which means “et cetera” or “and so on,” is used after the first few tsek-bar of a
recurring phrase. U+0FBE (often three times) indicates a refrain.

U+0F36 and U+0FBF are used to indicate where text should be inserted within other text
or as references to footnotes or marginal notes.

Svasti Signs. The svasti signs encoded in the range U+0FD5..U+0FD8 are widely used
sacred symbols associated with Hinduism, Buddhism, and Jainism. They are often printed
in religious texts, marriage invitations, and decorations, and are considered symbols of
good luck and well-being. In the Hindu tradition in India, the dotted forms are often used.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

332 South Asian Scripts-II
The svasti signs are used to mark religious flags in Jainism and also appear on Buddhist
temples, or as map symbols to indicate the location of Buddhist temples throughout Asia.
These signs are encoded in the Tibetan block, but are intended for general use; they occur
with many other scripts in Asia.

In the Tibetan language, the right-facing svasti sign is referred to as gyung drung nang -khor
and the left-facing svasti sign as gyung drung phyi -khor. U+0FCC tibetan symbol nor bu

bzhi -khyil, or quadruple body symbol, is a Tibetan-specific version of the left-facing
svasti sign.

The svasti signs have also been borrowed into the Han script and adapted as CJK ideo-
graphs. The CJK unified ideographs U+534D and U+5350 correspond to the left-facing
and right-facing svasti signs, respectively. These CJK unified ideographs have adopted Han
script-specific features and properties: they share metrics and type style characteristics
with other ideographs, and are given radicals and stroke counts like those for other ideo-
graphs.

Other Characters. The Wheel of Dharma, which occurs sometimes in Tibetan texts, is
encoded in the Miscellaneous Symbols block at U+2638.

The marks U+0F35 tibetan mark ngas bzung nyi zla and U+0F37 tibetan mark ngas

bzung sgor rtags conceptually attach to a tsek-bar rather than to an individual character
and function more like attributes than characters—for example, as underlining to mark or
emphasize text. In Tibetan interspersed commentaries, they may be used to tag the tsek-bar
belonging to the root text that is being commented on. The same thing is often accom-
plished by setting the tsek-bar belonging to the root text in large type and the commentary
in small type. Correct placement of these glyphs may be problematic. If they are treated as
normal combining marks, they can be entered into the text following the vowel signs in a
stack; if used, their presence will need to be accounted for by searching algorithms, among
other things.

Tibetan Half-Numbers. The half-number forms (U+0F2A..U+0F33) are peculiar to
Tibetan, though other scripts (for example, Bengali) have similar fractional concepts. The
value of each half-number is 0.5 less than the number within which it appears. These forms
are used only in some traditional contexts and appear as the last digit of a multidigit num-
ber. For example, the sequence of digits “U+0F24 U+0F2C” represents the number 42.5 or
forty-two and one-half.

Tibetan Transliteration and Transcription of Other Languages. Tibetan traditions are in
place for transliterating other languages. Most commonly, Sanskrit has been the language
being transliterated, although Chinese has become more common in modern times. Addi-
tionally, Mongolian has a transliterated form. There are even some conventions for translit-
erating English. One feature of Tibetan script/grammar is that it allows for totally accurate
transliteration of Sanskrit. The basic Tibetan letterforms and punctuation marks contain
most of what is needed, although a few extra things are required. With these additions,
Sanskrit can be transliterated perfectly into Tibetan, and the Tibetan transliteration can be
rendered backward perfectly into Sanskrit with no ambiguities or difficulties.

The six Sanskrit retroflex letters are interleaved among the other consonants.

The compound Sanskrit consonants are not included in normal Tibetan. They could be
made using the method described earlier for Tibetan stacked consonants, generally by sub-
joining “ha”. However, to maintain consistency in transliterated texts and for ease in trans-
mission and searching, it is recommended that implementations of Sanskrit in the Tibetan
script use the precomposed forms of aspirated letters (and U+0F69, “ka + reversed sha”)
whenever possible, rather than implementing these consonants as completely decomposed
stacks. Implementations must ensure that decomposed stacks and precomposed forms are
interpreted equivalently (see Section 3.7, Decomposition). The compound consonants are
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.2 Tibetan 333
explicitly coded as follows: U+0F93 tibetan subjoined letter gha, U+0F9D tibetan

subjoined letter ddha, U+0FA2 tibetan subjoined letter dha, U+0FA7 tibetan

subjoined letter bha, U+0FAC tibetan subjoined letter dzha, and U+0FB9
tibetan subjoined letter kssa.

The vowel signs of Sanskrit not included in Tibetan are encoded with other vowel signs
between U+0F70 and U+0F7D. U+0F7F tibetan sign rnam bcad (nam chay) is the
visarga, and U+0F7E tibetan sign rjes su nga ro (ngaro) is the anusvara. See Section 9.1,
Devanagari, for more information on these two characters.

The characters encoded in the range U+0F88..U+0F8B are used in transliterated text and
are most commonly found in Kalachakra literature.

When the Tibetan script is used to transliterate Sanskrit, consonants are sometimes stacked
in ways that are not allowed in native Tibetan stacks. Even complex forms of this stacking
behavior are catered for properly by the method described earlier for coding Tibetan stacks.

Other Signs. U+0F09 tibetan mark bskur yig mgo is a list enumerator used at the begin-
ning of administrative letters in Bhutan, as is the petition honorific U+0F0A tibetan

mark bka- shog yig mgo.

U+0F3A tibetan mark gug rtags gyon and U+0F3B tibetan mark gug rtags gyas are
paired punctuation marks (brackets).

The sign U+0F39 tibetan mark tsa -phru (tsa-’phru, which is a lenition mark) is the
ornamental flaglike mark that is an integral part of the three consonants U+0F59 tibetan

letter tsa, U+0F5A tibetan letter tsha, and U+0F5B tibetan letter dza. Although
those consonants are not decomposable, this mark has been abstracted and may by itself be
applied to “pha” and other consonants to make new letters for use in transliteration and
transcription of other languages. For example, in modern literary Tibetan, it is one of the
ways used to transcribe the Chinese “fa” and “va” sounds not represented by the normal
Tibetan consonants. Tsa-’phru is also used to represent tsa, tsha, and dza in abbreviations.

Traditional Text Formatting and Line Justification. Native Tibetan texts (“pecha”) are
written and printed using a justification system that is, strictly speaking, right-ragged but
with an attempt to right-justify. Each page has a margin. That margin is usually demarcated
with visible border lines required of a pecha. In modern times, when Tibetan text is pro-
duced in Western-style books, the margin lines may be dropped and an invisible margin
used. When writing the text within the margins, an attempt is made to have the lines of text
justified up to the right margin. To do so, writers keep an eye on the overall line length as
they fill lines with text and try manually to justify to the right margin. Even then, a gap at
the right margin often cannot be filled. If the gap is short, it will be left as is and the line will
be said to be justified enough, even though by machine-justification standards the line is
not truly flush on the right. If the gap is large, the intervening space will be filled with as
many tseks as are required to justify the line. Again, the justification is not done perfectly in
the way that English text might be perfectly right-justified; as long as the last tsek is more or
less at the right margin, that will do. The net result is that of a right-justified, blocklike look
to the text, but the actual lines are always a little right-ragged.

Justifying tseks are nearly always used to pad the end of a line when the preceding character
is a tsek—in other words, when the end of a line arrives in the middle of tshig-grub (see the
previous definition under “Tibetan Punctuation”). However, it is unusual for a line that
ends at the end of a tshig-grub to have justifying tseks added to the shay at the end of the
tshig-grub. That is, a sequence like that shown in the first line of Figure 10-2 is not usually
padded as in the second line of Figure 10-2, though it is allowable. In this case, instead of
justifying the line with tseks, the space between shays is enlarged and/or the whitespace fol-
lowing the final shay is usually left as is. Padding is never applied following an actual space
character. For example, given the existence of a space after a shay, a line such as the third
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

334 South Asian Scripts-II
line of Figure 10-2 may not be written with the padding as shown because the final shay
should have a space after it, and padding is never applied after spaces. The same rule applies
where the final consonant of a tshig-grub that ends a line is a “ka” or “ga”. In that case, the
ending shay is dropped but a space is still required after the consonant and that space must
not be padded. For example, the appearance shown in the fourth line of Figure 10-2 is not
acceptable.

Tibetan text has two rules regarding the formatting of text at the beginning of a new line.
There are severe constraints on which characters can start a new line, and the first rule is
traditionally stated as follows: A shay of any description may never start a new line. Noth-
ing except actual words of text can start a new line, with the only exception being a go-yig
(yig-mgo) at the head of a front page or a da-tshe (zla-tshe, meaning “crescent moon”—for
example, U+0F05) or one of its variations, which is effectively an “in-line” go-yig (yig-
mgo), on any other line. One of two or three ornamental shays is also commonly used in
short pieces of prose in place of the more formal da-tshe. This also means that a space may
not start a new line in the flow of text. If there is a major break in a text, a new line might be
indented.

A syllable (tsheg-bar) that comes at the end of a tshig-grub and that starts a new line must
have the shay that would normally follow it replaced by a rin-chen-spungs-shad (U+0F11).
The reason for this second rule is that the presence of the rin-chen-spungs-shad makes the
end of tshig-grub more visible and hence makes the text easier to read.

In verse, the second shay following the first rin-chen-spungs-shad is sometimes replaced
with a rin-chen-spungs-shad, though the practice is formally incorrect. It is a writer’s trick
done to make a particular scribing of a text more elegant. Although a moderately popular
device, it does breaks the rule. Not only is rin-chen-spungs-shad used as the replacement
for the shay but a whole class of “ornamental shays” are used for the same purpose. All are
scribal variants on a rin-chen-spungs-shad, which is correctly written with three dots above
it.

Tibetan Shorthand Abbreviations (bskungs-yig) and Limitations of the Encoding. A con-
sonant functioning as the word base (ming-gzhi) is allowed to take only one vowel sign
according to Tibetan grammar. The Tibetan shorthand writing technique called bskungs-
yig does allow one or more words to be contracted into a single, very unusual combination
of consonants and vowels. This construction frequently entails the application of more
than one vowel sign to a single consonant or stack, and the composition of the stacks them-
selves can break the rules of normal Tibetan grammar. For this reason, vowel signs some-
times interact typographically, which accounts for their particular combining classes (see
Section 4.3, Combining Classes).

The Unicode Standard accounts for plain text compounds of Tibetan that contain at most
one base consonant, any number of subjoined consonants, followed by any number of
vowel signs. This coverage constitutes the vast majority of Tibetan text. Rarely, stacks are
seen that contain more than one such consonant-vowel combination in a vertical arrange-
ment. These stacks are highly unusual and are considered beyond the scope of plain text
rendering. They may be handled by higher-level mechanisms.

Figure 10-2. Justifying Tibetan Tseks

1 ����

2 ������������

3 ���� ������

4 ��� ��������
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.3 Lepcha 335
10.3 Lepcha

Lepcha: U+1C00–U+1C4F

Lepcha is a Sino-Tibetan language spoken by people in Sikkim and in the West Bengal state
of India, especially in the Darjeeling district, which borders Sikkim. The Lepcha script is a
writing system thought to have been invented around 1720 ce by the Sikkim king Phyag-
rdor rNam-rgyal (“Chakdor Namgyal,” born 1686). Both the language and the script are
also commonly known by the term Rong.

Structure. The Lepcha script was based directly on the Tibetan script. The letter forms are
obviously related to corresponding Tibetan letters. However, the dbu-med Tibetan precur-
sors to Lepcha were originally written in vertical columns, possibly influenced by Chinese
conventions. When Lepcha was invented it changed the dbu-med text to a left-to-right, hor-
izontal orientation. In the process, the entire script was effectively rotated ninety degrees
counter-clockwise, so that the letters resemble Tibetan letters turned on their sides. This
reorientation resulted in some letters which are nonspacing marks in Tibetan becoming
spacing letters in Lepcha. Lepcha also introduced its own innovations, such as the use of
diacritical marks to represent final consonants.

The Lepcha script is an abugida: the consonant letters have an inherent vowel, and depen-
dent vowels (matras) are used to modify the inherent vowel of the consonant. No virama
(or vowel killer) is used to remove the inherent vowel. Instead, the script has a separate set
of explicit final consonants which are used to represent a consonant with no inherent vowel.

Vowels. Initial vowels are represented by the neutral letter U+1C23 lepcha letter a, fol-
lowed by the appropriate dependent vowel. U+1C23 lepcha letter a thus functions as a
vowel carrier.

The dependent vowel signs in Lepcha always follow the base consonant in logical order.
However, in rendering, three of these dependent vowel signs, -i, -o, and -oo, reorder to the
left side of their base consonant. One of the dependent vowel signs, -e, is a nonspacing
mark which renders below its base consonant.

Medials. There are three medial consonants, or glides: -ya, -ra, and -la. The first two are
represented by separate characters, U+1C24 lepcha subjoined letter ya and U+1C25
lepcha subjoined letter ra. These are called “subjoined”, by analogy with the corre-
sponding letters in Tibetan, which actually do join below a Tibetan consonant, but in Lep-
cha these are spacing forms which occur to the right of a consonant letter and then ligate
with it. These two medials can also occur in sequence to form a composite medial, -rya. In
that case both medials ligate with the preceding consonant.

On the other hand, Lepcha does not have a separate character to represent the medial -la.
Phonological consonant clusters of the form kla, gla, pla, and so on simply have separate,
atomic characters encoded for them. With few exceptions, these letters for phonological
clusters with the medial -la are independent letter forms, not clearly related to the corre-
sponding consonants without -la.

Retroflex Consonants. The Lepcha language contains three retroflex consonants: [P], [th],
and [K]. Traditionally, these retroflex consonants have been written in the Lepcha script
with the syllables kra, hra, and gra, respectively. In other words, the retroflex t would be rep-
resented as <U+1C00 lepcha letter ka, U+1C25 lepcha subjoined letter ra>. To
distinguish such a sequence representing a retroflex t from a sequence representing the
actual syllable [kra], it is common to use the nukta diacritic sign, U+1C37 lepcha sign

nukta. In that case, the retroflex t would be visually distinct, and would be represented by
the sequence <U+1C00 lepcha letter ka, U+1C37 lepcha sign nukta, U+1C25 lep-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

336 South Asian Scripts-II
cha subjoined letter ra>. Recently, three newly invented letters have been added to the
script to unambiguously represent the retroflex consonants: U+1C4D lepcha letter tta,
U+1C4E lepcha letter ttha, and U+1C4F lepcha letter dda.

Ordering of Syllable Components. Dependent vowels and other signs are encoded after the
consonant to which they apply. The ordering of elements is shown in more detail in
Table 10-2.

Rendering. Most final consonants consist of nonspacing marks rendered above the base
consonant of a syllable.

The combining mark U+1C36 lepcha sign ran occurs only after the inherent vowel -a or
the dependent vowels -aa and -i. When it occurs together with a final consonant sign, the
ran sign renders above the sign for that final consonant.

The two final consonants representing the velar nasal occur in complementary contexts.
U+1C34 lepcha consonant sign nyin-do is only used when there is no dependent vowel
in the syllable. U+1C35 lepcha consonant sign kang is used instead when there is a
dependent vowel. These two consonant signs are rendered to the left of the base consonant.
If used with a left-side dependent vowel, the glyph for the kang is rendered to the left of the
dependent vowel. This behavior is understandable because these two marks are derived
from the Tibetan analogues of the Brahmic bindu and candrabindu, which normally stand
above a Brahmic aksara.

Digits. The Lepcha script has its own, distinctive set of digits.

Punctuation. Currently the Lepchas use traditional punctuation marks only when copying
the old books. In everyday writing they use common Western punctuation marks such as
comma, full stop, and question mark.

The traditional punctuation marks include a script-specific danda mark, U+1C3B lepcha

punctuation ta-rol, and a double danda, U+1C3C lepcha nyet thyoom ta-rol.
Depending on style and hand, the Lepcha ta-rol may have a glyph appearance more like its
Tibetan analogue, U+0F0D tibetan mark shad.

10.4 Phags-pa

Phags-pa: U+A840–U+A87F

The Phags-pa script is an historic script with some limited modern use. It bears some sim-
ilarity to Tibetan and has no case distinctions. It is written vertically in columns running

Table 10-2. Lepcha Syllabic Structure

Class Example Encoding

consonant, letter a A [U+1C00..U+1C23, U+1C4D..U+1C4F]

nukta B U+1C37

medial -ra D U+1C25

medial -ya C U+1C24

dependent vowel E [U+1C26..U+1C2C]

final consonant sign F [U+1C2D..U+1C35]

syllabic modifier G U+1C36
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.4 Phags-pa 337
from left to right, like Mongolian. Units are often composed of several syllables and may be
separated by whitespace.

The term Phags-pa is often written with an initial apostrophe: ’Phags-pa. The Unicode
Standard makes use of the alternative spelling without an initial apostrophe because apos-
trophes are not allowed in the normative character and block names.

History. The Phags-pa script was devised by the Tibetan lama Blo-gros rGyal-mtshan
[lodoi jaltsan] (1235–1280 ce), commonly known by the title Phags-pa Lama (“exalted
monk”), at the behest of Khubilai Khan (reigned 1260–1294) when he assumed leadership
of the Mongol tribes in 1260. In 1269, the “new Mongolian script,” as it was called, was pro-
mulgated by imperial edict for use as the national script of the Mongol empire, which from
1279 to 1368, as the Yuan dynasty, encompassed all of China.

The new script was not only intended to replace the Uighur-derived script that had been
used to write Mongolian since the time of Genghis Khan (reigned 1206–1227), but was also
intended to be used to write all the diverse languages spoken throughout the empire.
Although the Phags-pa script never succeeded in replacing the earlier Mongolian script and
had only very limited usage in writing languages other than Mongolian and Chinese, it was
used quite extensively during the Yuan dynasty for a variety of purposes. There are many
monumental inscriptions and manuscript copies of imperial edicts written in Mongolian
or Chinese using the Phags-pa script. The script can also be found on a wide range of arti-
facts, including seals, official passes, coins, and banknotes. It was even used for engraving
the inscriptions on Christian tombstones. A number of books are known to have been
printed in the Phags-pa script, but all that has survived are some fragments from a printed
edition of the Mongolian translation of a religious treatise by the Phags-pa Lama’s uncle,
Sakya Pandita. Of particular interest to scholars of Chinese historical linguistics is a rhym-
ing dictionary of Chinese with phonetic readings for Chinese ideographs given in the
Phags-pa script.

An ornate, pseudo-archaic “seal script” version of the Phags-pa script was developed spe-
cifically for engraving inscriptions on seals. The letters of the seal script form of Phags-pa
mimic the labyrinthine strokes of Chinese seal script characters. A great many official seals
and seal impressions from the Yuan dynasty are known. The seal script was also sometimes
used for carving the title inscription on stone stelae, but never for writing ordinary running
text.

Although the vast majority of extant Phags-pa texts and inscriptions from the thirteenth
and fourteenth centuries are written in the Mongolian or Chinese languages, there are also
examples of the script being used for writing Uighur, Tibetan, and Sanskrit, including two
long Buddhist inscriptions in Sanskrit carved in 1345.

After the fall of the Yuan dynasty in 1368, the Phags-pa script was no longer used for writ-
ing Chinese or Mongolian. However, the script continued to be used on a limited scale in
Tibet for special purposes such as engraving seals. By the late sixteenth century, a distinc-
tive, stylized variety of Phags-pa script had developed in Tibet, and this Tibetan-style
Phags-pa script, known as hor-yig, “Mongolian writing” in Tibetan, is still used today as a
decorative script. In addition to being used for engraving seals, the Tibetan-style Phags-pa
script is used for writing book titles on the covers of traditional style books, for architec-
tural inscriptions such as those found on temple columns and doorways, and for calli-
graphic samplers.

Basic Structure. The Phags-pa script is based on Tibetan, but unlike any other Brahmic
script Phags-pa is written vertically from top to bottom in columns advancing from left to
right across the writing surface. This unusual directionality is borrowed from Mongolian,
as is the way in which Phags-pa letters are ligated together along a vertical stem axis. In
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

338 South Asian Scripts-II
modern contexts, when embedded in horizontally oriented scripts, short sections of Phags-
pa text may be laid out horizontally from left to right.

Despite the difference in directionality, the Phags-pa script fundamentally follows the
Tibetan model of writing, and consonant letters have an inherent /a/ vowel sound. How-
ever, Phags-pa vowels are independent letters, not vowel signs as is the case with Tibetan, so
they may start a syllable without being attached to a null consonant. Nevertheless, a null
consonant (U+A85D phags-pa letter a) is still needed to write an initial /a/ and is ortho-
graphically required before a diphthong or the semivowel U+A867 phags-pa subjoined

letter wa. Only when writing Tibetan in the Phags-pa script is the null consonant
required before an initial pure vowel sound.

Except for the candrabindu (which is discussed later in this section), Phags-pa letters read
from top to bottom in logical order, so the vowel letters i, e, and o are placed below the pre-
ceding consonant—unlike in Tibetan, where they are placed above the consonant they
modify.

Syllable Division. Text written in the Phags-pa script is broken into discrete syllabic units
separated by whitespace. When used for writing Chinese, each Phags-pa syllabic unit corre-
sponds to a single Han ideograph. For Mongolian and other polysyllabic languages, a single
word is typically written as several syllabic units, each separated from each other by
whitespace.

For example, the Mongolian word tengri, “heaven,” which is written as a single ligated unit
in the Mongolian script, is written as two separate syllabic units, deng ri, in the Phags-pa
script. Syllable division does not necessarily correspond directly to grammatical structure.
For instance, the Mongolian word usun, “water,” is written u sun in the Phags-pa script, but
its genitive form usunu is written u su nu.

Within a single syllabic unit, the Phags-pa letters are normally ligated together. Most letters
ligate along a righthand stem axis, although reversed-form letters may instead ligate along
a lefthand stem axis. The letter U+A861 phags-pa letter o ligates along a central stem
axis.

In traditional Phags-pa texts, normally no distinction is made between the whitespace used
in between syllables belonging to the same word and the whitespace used in between sylla-
bles belonging to different words. Line breaks may occur between any syllable, regardless of
word status. In contrast, in modern contexts, influenced by practices used in the processing
of Mongolian text, U+202F narrow no-break space (NNBSP) may be used to separate
syllables within a word, whereas U+0020 space is used between words—and line breaking
would be affected accordingly.

Candrabindu. U+A873 phags-pa letter candrabindu is used in writing Sanskrit man-
tras, where it represents a final nasal sound. However, although it represents the final sound
in a syllable unit, it is always written as the first glyph in the sequence of letters, above the
initial consonant or vowel of the syllable, but not ligated to the following letter. For exam-
ple, om is written as a candrabindu followed by the letter o. To simplify cursor placement,
text selection, and so on, the candrabindu is encoded in visual order rather than logical
order. Thus om would be represented by the sequence <U+A873, U+A861>, rendered as
shown in Figure 10-3.

Figure 10-3. Phags-pa Syllable Om
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.4 Phags-pa 339
As the candrabindu is separated from the following letter, it does not take part in the shap-
ing behavior of the syllable unit. Thus, in the syllable om, the letter o (U+A861) takes the
isolate positional form.

Alternate Letters. Four alternate forms of the letters ya, sha, ha, and fa are encoded for use
in writing Chinese under certain circumstances:

U+A86D phags-pa letter alternate ya

U+A86E phags-pa letter voiceless sha

U+A86F phags-pa letter voiced ha

U+A870 phags-pa letter aspirated fa

These letters are used in the early-fourteenth-century Phags-pa rhyming dictionary of Chi-
nese, Menggu ziyun, to represent historical phonetic differences between Chinese syllables
that were no longer reflected in the contemporary Chinese language. This dictionary fol-
lows the standard phonetic classification of Chinese syllables into 36 initials, but as these
had been defined many centuries previously, by the fourteenth century some of the initials
had merged together or diverged into separate sounds. To distinguish historical phonetic
characteristics, the dictionary uses two slightly different forms of the letters ya, sha, ha, and
fa.

The historical phonetic values that U+A86E, U+A86F, and U+A870 represent are indicated
by their character names, but this is not the case for U+A86D, so there may be some confu-
sion as to when to use U+A857 phags-pa letter ya and when to use U+A86D phags-pa

letter alternate ya. U+A857 is used to represent historic null initials, whereas U+A86D
is used to represent historic palatal initials.

Numbers. There are no special characters for numbers in the Phags-pa script, so numbers
are spelled out in full in the appropriate language.

Punctuation. The vast majority of traditional Phags-pa texts do not make use of any punc-
tuation marks. However, some Mongolian inscriptions borrow the Mongolian punctuation
marks U+1802 mongolian comma, U+1803 mongolian full stop, and U+1805 mon-

golian four dots.

Additionally, a small circle punctuation mark is used in some printed Phags-pa texts. This
mark can be represented by U+3002 ideographic full stop, but for Phags-pa the ideo-
graphic full stop should be centered, not positioned to one side of the column. This follows
traditional, historic practice for rendering the ideographic full stop in Chinese text, rather
than more modern typography.

Tibetan Phags-pa texts also use head marks, U+A874 phags-pa single head mark

U+A875 phags-pa double head mark, to mark the start of an inscription, and shad
marks, U+A876 phags-pa mark shad and U+A877 phags-pa mark double shad, to
mark the end of a section of text.

Positional Variants. The four vowel letters U+A85E phags-pa letter i, U+A85F phags-

pa letter u, U+A860 phags-pa letter e, and U+A861 phags-pa letter o have different
isolate, initial, medial, and final glyph forms depending on whether they are immediately
preceded or followed by another Phags-pa letter (other than U+A873 phags-pa letter

candrabindu, which does not affect the shaping of adjacent letters). The code charts show
these four characters in their isolate form. The various positional forms of these letters are
shown in Table 10-3.

Consonant letters and the vowel letter U+A866 phags-pa letter ee do not have distinct
positional forms, although initial, medial, final, and isolate forms of these letters may be
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

340 South Asian Scripts-II
distinguished by the presence or absence of a stem extender that is used to ligate to the fol-
lowing letter.

The invisible format characters U+200D zero width joiner (ZWJ) and U+200C zero

width non-joiner (ZWNJ) may be used to override the expected shaping behavior, in the
same way that they do for Mongolian and other scripts (see Chapter 16, Special Areas and
Format Characters). For example, ZWJ may be used to select the initial, medial, or final
form of a letter in isolation:

<U+200D, U+A861, U+200D> selects the medial form of the letter o

<U+200D, U+A861> selects the final form of the letter o

<U+A861, U+200D> selects the initial form of the letter o

Conversely, ZWNJ may be used to inhibit expected shaping. For example, the sequence
<U+A85E, U+200C, U+A85F, U+200C, U+A860, U+200C, U+A861> selects the isolate
forms of the letters i, u, e, and o.

Mirrored Variants. The four characters U+A869 phags-pa letter tta, U+A86A phags-

pa letter ttha, U+A86B phags-pa letter dda, and U+A86C phags-pa letter nna are
mirrored forms of the letters U+A848 phags-pa letter ta, U+A849 phags-pa letter

tha, U+A84A phags-pa letter da, and U+A84B phags-pa letter na, respectively, and
are used to represent the Sanskrit retroflex dental series of letters. Because these letters are
mirrored, their stem axis is on the lefthand side rather than the righthand side, as is the case
for all other consonant letters. This means that when the letters tta, ttha, dda, and nna
occur at the start of a syllable unit, to correctly ligate with them any following letters nor-
mally take a mirrored glyph form. Because only a limited number of words use these let-
ters, only the letters U+A856 phags-pa letter small a, U+A85C phags-pa letter ha,
U+A85E phags-pa letter i, U+A85F phags-pa letter u, U+A860 phags-pa letter e,
and U+A868 phags-pa subjoined letter ya are affected by this glyph mirroring behav-
ior. The Sanskrit syllables that exhibit glyph mirroring after tta, ttha, dda, and nna are
shown in Table 10-4.

Glyph mirroring is not consistently applied to the letters U+A856 phags-pa letter small

a and U+A85E phags-pa letter i in the extant Sanskrit Phags-pa inscriptions. The letter
i may occur both mirrored and unmirrored after the letter ttha, although it always occurs

Table 10-3. Phags-pa Positional Forms of I, U, E, and O

Letter Isolate Initial Medial Final

U+A85E phags-pa letter i K \] ^

U+A85F phags-pa letter u L c d e

U+A860 phags-pa letter e M j k l

U+A861 phags-pa letter o N q r s

Table 10-4. Contextual Glyph Mirroring in Phags-pa

Character
Syllables with
Glyph Mirroring

Syllables without
Glyph Mirroring

U+A856 phags-pa letter small a tthZ ttZ, tthZ
U+A85E phags-pa letter i tthi, nni tthi

U+A85F phags-pa letter u nnu

U+A860 phags-pa letter e tthe, dde, nne

U+A85C phags-pa letter ha ddha

U+A868 phags-pa subjoined letter ya nnya
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.4 Phags-pa 341
mirrored after the letter nna. Small a is not normally mirrored after the letters tta and ttha
as its mirrored glyph is identical in shape to U+A85A phags-pa letter sha. Nevertheless,
small a does sometimes occur in a mirrored form after the letter ttha, in which case context
indicates that this is a mirrored letter small a and not the letter sha.

When any of the letters small a, i, u, e, ha, or subjoined ya immediately follow either tta,
ttha, dda, or nna directly or another mirrored letter, then a mirrored glyph form of the let-
ter should be selected automatically by the rendering system. Although small a is not nor-
mally mirrored in extant inscriptions, for consistency it is mirrored by default after tta,
ttha, dda, and nna in the rendering model for Phags-pa.

To override the default mirroring behavior of the letters small a, ha, i, u, e, and subjoined ya,
U+FE00 variation selector-1 (VS1) may be applied to the appropriate character, as
shown in Table 10-5. Note that only the variation sequences shown in Table 10-5 are valid;
any other sequence of a Phags-pa letter and VS1 is unspecified.

In Table 10-5, “reversed shaping” means that the appearance of the character is reversed
with respect to its expected appearance. Thus, if no mirroring would be expected for the
character in the given context, applying VS1 would cause the rendering engine to select a
mirrored glyph form. Similarly, if context would dictate glyph mirroring, application of
VS1 would inhibit the expected glyph mirroring. This mechanism will typically be used to
select a mirrored glyph for the letters small a, ha, i, u, e, or subjoined ya in isolation (for
example, in discussion of the Phags-pa script) or to inhibit mirroring of the letters small a
and i when they are not mirrored after the letters tta and ttha, as shown in Figure 10-4.

The first example illustrates the normal shaping for the syllable thi. The second example
shows the reversed shaping for i in that syllable and would be represented by a standardized
variation sequence: <U+A849, U+A85E, U+FE00>. Example 3 illustrates the normal shap-
ing for the Sanskrit syllable tthi, where the reversal of the glyph for the letter i is automati-
cally conditioned by the lefthand stem placement of the Sanskrit letter ttha. Example 4
shows reversed shaping for i in the syllable tthi and would be represented by a standardized
variation sequence: <U+A86A, U+A85E, U+FE00>.

Table 10-5. Phags-pa Standardized Variants

Character Sequence Description of Variant Appearance

<U+A856, U+FE00> phags-pa letter reversed shaping small a

<U+A85C, U+FE00> phags-pa letter reversed shaping ha

<U+A85E, U+FE00> phags-pa letter reversed shaping i

<U+A85F, U+FE00> phags-pa letter reversed shaping u

<U+A860, U+FE00> phags-pa letter reversed shaping e

<U+A868, U+FE00> phags-pa letter reversed shaping ya

Figure 10-4. Phags-pa Reversed Shaping
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

342 South Asian Scripts-II
10.5 Limbu

Limbu: U+1900–U+194F

The Limbu script is a Brahmic script primarily used to write the Limbu language. Limbu is
a Tibeto-Burman language of the East Himalayish group and is spoken by about 200,000
persons mainly in eastern Nepal, but also in the neighboring Indian states of Sikkim and
West Bengal (Darjeeling district). Its close relatives are the languages of the East Himalayish
or “Kiranti” group in Eastern Nepal. Limbu is distantly related to the Lepcha (Róng) lan-
guage of Sikkim and to Tibetan. Limbu was recognized as an official language in Sikkim in
1981.

The Nepali name Limbu is of uncertain origin. In Limbu, the Limbu call themselves yak-
thuz. Individual Limbus often take the surname “Subba,” a Nepali term of Arabic origin
meaning “headman.” The Limbu script is often called “Sirijanga” after the Limbu culture-
hero Sirijanga, who is credited with its invention. It is also sometimes called Kirat, kirZta
being a Sanskrit term probably referring to some variety of non-Aryan hill-dwellers.

The oldest known writings in the Limbu script, most of which are held in the India Office
Library, London, were collected in Darjeeling district in the 1850s. The modern script was
developed beginning in 1925 in Kalimpong (Darjeeling district) in an effort to revive writ-
ing in Limbu, which had fallen into disuse. The encoding in the Unicode Standard supports
the three versions of the Limbu script: the nineteenth-century script, found in manuscript
documents; the early modern script, used in a few, mainly mimeographed, publications
between 1928 and the 1970s; and the current script, used in Nepal and India (especially
Sikkim) since the 1970s. There are significant differences, particularly between some of the
glyphs required for the nineteenth-century and modern scripts.

Virtually all Limbu speakers are bilingual in Nepali, and far more Limbus are literate in
Nepali than in Limbu. For this reason, many Limbu publications contain material both in
Nepali and in Limbu, and in some cases Limbu appears in both the Limbu script and the
Devanagari script. In some publications, literary coinages are glossed in Nepali or in Eng-
lish.

Consonants. Consonant letters and clusters represent syllable initial consonants and clus-
ters followed by the inherent vowel, short open o ([t]). Subjoined consonant letters are
joined to the bottom of the consonant letters, extending to the right to indicate “medials”
in syllable-initial consonant clusters. There are very few of these clusters in native Limbu
words. The script provides for subjoined | -ya, } -ra, and ~ -wa. Small letters are used to
indicate syllable-final consonants. (See the following information on vowel length for fur-
ther details.) The small letter consonants are found in the range U+1930..U+1938, corre-
sponding to the syllable finals of native Limbu words. These letters are independent forms
that, unlike the conjoined or half-letter forms of Indian scripts, may appear alone as word-
final consonants (where Indian scripts use full consonant letters and a virama). The syllable
finals are pronounced without a following vowel.

Limbu is a language with a well-defined syllable structure, in which syllable-initial stops are
pronounced differently from finals. Syllable initials may be voiced following a vowel,
whereas finals are never voiced but are pronounced unreleased with a simultaneous glottal
closure, and geminated before a vowel. Therefore, the Limbu block encodes an explicit set
of ten syllable-final consonants. These are called limbu small letter ka, and so on.

Vowels. The Limbu vowel system has seven phonologically distinct timbres: [i, e, u, a, t, o,
u]. The vowel [t] functions as the inherent vowel in the modern Limbu script. To indicate
a syllable with a vowel other than the inherent vowel, a vowel sign is added over, under, or to
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.5 Limbu 343
the right of the initial consonant letter or cluster. Although the vowel [t] is the inherent
vowel, the Limbu script has a combining vowel sign 1 that may optionally be used to repre-
sent it. Many writers avoid using this sign because they consider it redundant.

Syllable-initial vowels are represented by a vowel-carrier character, U+1900 2 limbu

vowel-carrier letter, together with the appropriate vowel sign. Used without a follow-
ing vowel sound, the vowel-carrier letter represents syllable-initial [t], the inherent vowel.
The initial consonant letters have been named ka, kha, and so on, in this encoding,
although they are in fact pronounced % [kt], 3 [k4t], and so on, and do not represent the
Limbu syllables %' [ka], 3' [k4a], and so on. This is in keeping with the practice of educated
Limbus in writing the letter-names in Devanagari. It would have been confusing to call the
vowel-carrier letter A, however, so an artificial name is used in the Unicode Standard. The
native name is 25 [tm].

Vowel Length. Vowel length is phonologically distinctive in many contexts. Length in open
syllables is indicated by writing U+193A 6 limbu sign kemphreng, which looks like the
diaeresis sign, over the initial consonant or cluster: 7'. tZ.

In closed syllables, two different methods are used to indicate vowel length. In the first
method, vowel length is not indicated by kemphreng. The syllable-final consonant is writ-
ten as a full form (that is, like a syllable-initial consonant), marked by U+193B 9 limbu

sign sa-i: 8':= pZn “speech.” This sign marks vowel length in addition to functioning as a
virama by suppressing the inherent vowel of the syllable-final consonant. This method is
widely used in Sikkim.

In the second method, which is in use in Nepal, vowel length is indicated by kemphreng, as
for open syllables, and the syllable-final consonant appears in “small” form without sa-i:
8'./ pZn “speech.” Writers who consistently follow this practice reserve the use of sa-i for syl-
lable-final consonants that do not have small forms, regardless of the length of the syllable
vowel: :;<=<; nesse “it lay,” >'.?= lZb “moon.” Because almost all of the syllable finals that nor-
mally occur in native Limbu words have small forms, sa-i is used only for consonant com-
binations in loan words and for some indications of rapid speech.

U+193B 9 limbu sign sa-i is based on the Indic virama, but for a majority of current writ-
ers it has a different semantics because it indicates the length of the preceding vowel in
addition to “killing” the inherent vowel of consonants functioning as syllable finals. It is
therefore not suitable for use as a general virama as used in other Brahmic scripts in the
Unicode Standard.

Glottalization. U+1939 limbu sign mukphreng represents glottalization. Mukphreng
never appears as a syllable initial. Although some linguists consider that word-final nasal
consonants may be glottalized, this is never indicated in the script; mukphreng is not cur-
rently written after final consonants. No other syllable-final consonant clusters occur in
Limbu.

Collating Order. There is no universally accepted alphabetical order for Limbu script. One
ordering is based on the Limbu dictionary edited by Bairagi Kainla, with the addition of the
obsolete letters, whose positions are not problematic. In Sikkim, a somewhat different
order is used: the letter : na is placed before 7 ta, and the letter @ gha is placed at the end
of the alphabet.

Glyph Placement. The glyph positions for Limbu combining characters are summarized in
Table 10-6.

Punctuation. The main punctuation mark used is the double vertical line, U+0965 deva-

nagari double danda. U+1945 A limbu question mark and U+1944 B limbu exclama-

tion mark have shapes peculiar to Limbu, especially in Sikkimese typography. They are
encoded in the Unicode Standard to facilitate the use of both Limbu and Devanagari scripts
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

344 South Asian Scripts-II
in the same documents. U+1940 C limbu sign loo is used for the exclamatory particle lo.
This particle is also often simply spelled out >D.

Digits. Limbu digits have distinctive forms and are assigned code points because Limbu
and Devanagari (or Limbu and Arabic-Indic) numbers are often used in the same docu-
ment.

10.6 Syloti Nagri

Syloti Nagri: U+A800–U+A82F

Syloti Nagri is a lesser-known Brahmi-derived script used for writing the Sylheti language.
Sylheti is an Indo-European language spoken by some 5 million speakers in the Barak Val-
ley region of northeast Bangladesh and southeast Assam in India. Worldwide there may be
as many as 10 million speakers. Sylheti has commonly been regarded as a dialect of Bengali,
with which it shares a high proportion of vocabulary.

The Syloti Nagri script has 27 consonant letters with an inherent vowel of /o/ and 5 inde-
pendent vowel letters. There are 5 dependent vowel signs that are attached to a consonant
letter. Unlike Devanagari, there are no vowel signs that appear to the left of their associated
consonant.

Table 10-6. Positions of Limbu Combining Characters

Syllable Glyphs Code Point Sequence

ta 7' 190B 1920

ti 7E 190B 1921

tu 7F 190B 1922

tee 7G 190B 1923

tai 7H 190B 1924

too 7D 190B 1925

tau 7I 190B 1926

te 7; 190B 1927

to 7J 190B 1928

tya 7K 190B 1929

tra 7L 190B 192A

twa 7M 190B 192B

tak 7, U+190B U+1930

taz 7N U+190B U+1931

taZ 7O U+190B U+1932

tat 7P U+190B U+1933

tan 7/ U+190B U+1934

tap 7Q U+190B U+1935

tam 75 U+190B U+1936

tar 7R U+190B U+1937

tal 7S U+190B U+1938

tZ 7'. U+190B U+1920 U+193A

t\ 7[U+190B U+1921 U+193A
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.7 Kaithi 345
Only two proper diacritics are encoded to support Syloti Nagri: anusvara and hasanta.
Aside from its traditional Indic designation, anusvara can also be considered a final form
for the sequence /-ng/, which does not have a base glyph in Syloti Nagri because it does not
occur in other positions. Anusvara can also occur with the vowels U+A824 d syloti nagri

vowel sign i and U+A826 e syloti nagri vowel sign e, creating a potential problem
with the display of both items. It is recommended that anusvara always occur in sequence
after any vowel signs, as a final character.

Virama and Conjuncts. Syloti Nagri is atypical of Indic scripts in use of the virama (has-
anta) and conjuncts. Conjuncts are not strictly correlated with the phonology being repre-
sented. They are neither necessary in contexts involving a dead consonant, nor are they
limited to such contexts. Hasanta was only recently introduced into the script and is used
only in limited contexts. Conjuncts are not limited to sequences involving dead consonants
but can be formed from pairs of characters of almost any type (consonant, independent
vowel, dependent vowel) and can represent a wide variety of syllables. It is generally unnec-
essary to overtly indicate dead consonants with a conjunct or explicit hasanta. The only
restriction is that an overtly rendered hasanta cannot occur in connection with the first ele-
ment of a conjunct. The absence of hasanta does not imply a live consonant and has no
bearing on the occurrence of conjuncts. Similarly, the absence of a conjunct does not imply
a live consonant and has no bearing on the occurrence of hasanta.

Digits. There are no unique Syloti Nagri digits. When digits do appear in Syloti Nagri texts,
they are generally Bengali forms. Any font designed to support Syloti Nagri should include
the Bengali digits because there is no guarantee that they would otherwise exist in a user’s
computing environment. They should use the corresponding Bengali block code points,
U+09E6..U+09EF.

Punctuation. With the advent of digital type and the modernization of the Syloti Nagri
script, one can expect to find all of the traditional punctuation marks borrowed from the
Latin typography: period, comma, colon, semicolon, question mark, and so on. In addition,
the Devanagari single danda and double danda are used with great frequency.

Poetry Marks. Four native poetry marks are included in the Syloti Nagri block. The script
also makes use of U+2055 X flower punctuation mark (in the General Punctuation
block) as a poetry mark.

10.7 Kaithi

Kaithi: U+11080–U+110CF

Kaithi, properly transliterated KaithS, is a North Indian script, related to the Devanagari
and Gujarati scripts. It was used in the area of the present-day states of Bihar and Uttar
Pradesh in northern India.

Kaithi was employed for administrative purposes, commercial transactions, correspon-
dence, and personal records, as well as to write religious and literary materials. As a means
of administrative communication, the script was in use at least from the 16th century until
the early 20th century, when it was eventually eclipsed by Devanagari. Kaithi was used to
write Bhojpuri, Magahi, Awadhi, Maithili, Urdu, and other languages related to Hindi.

Standards. There is no preexisting character encoding standard for the Kaithi script. The
repertoire encoded in this block is based on the standard form of Kaithi developed by the
British government of Bihar and the British provinces of northwest India in the nineteenth
century. A few additional Kaithi characters found in manuscripts, printed books, alphabet
charts, and other inventories of the script are also included.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

346 South Asian Scripts-II
Styles. There are three presentation styles of the Kaithi script, each generally associated
with a different language: Bhojpuri, Magahi, or Maithili. The Magahi style was adopted for
official purposes in the state of Bihar, and is the basis for the representative glyphs in the
code charts.

Rendering Behavior. Kaithi is a Brahmi-derived script closely related to Devanagari. In
general, the rules for Devanagari rendering apply to Kaithi as well. For more information,
see Section 9.1, Devanagari.

Vowel Letters. An independent Kaithi letter for vocalic r is represented by the consonant-
vowel combination: U+110A9 kaithi letter ra and U+110B2 kaithi vowel sign ii.

In print, the distinction between short and long forms of i and u is maintained. However, in
handwritten text, there is a tendency to use the long vowels for both lengths.

Consonant Conjuncts. Consonant clusters were handled in various ways in Kaithi. Some
spoken languages that used the Kaithi script simplified clusters by inserting a vowel
between the consonants, or through metathesis. When no such simplification occurred,
conjuncts were represented in different ways: by ligatures, as the combination of the half-
form of the first consonant and the following consonant, with an explicit virama
(U+110B9 kaithi sign virama) between two consonants, or as two consonants without a
virama.

Consonant conjuncts in Kaithi are represented with a virama between the two consonants
in the conjunct. For example, the ordinary representation of the conjunct mba would be by
the sequence:

U+110A7 kaithi letter ma + U+110B9 kaithi sign virama +
U+110A5 kaithi letter ba

Consonant conjuncts may be rendered in distinct ways. Where there is a need to render
conjuncts in the exact form as they appear in a particular source document, U+200C zero

width non-joiner and U+200D zero width joiner can be used to request the appropri-
ate presentation by the rendering system. For example, to display the explicitly ligated
glyph V for the conjunct mba, U+200D zero width joiner is inserted after the virama:

U+110A7 kaithi letter ma + U+110B9 kaithi sign virama +
U+200D zero width joiner + U+110A5 kaithi letter ba

To block use of a ligated glyph for the conjunct, and instead to display the conjunct with an
explicit virama, U+200C zero width non-joiner is inserted after the virama:

U+110A7 kaithi letter ma + U+110B9 kaithi sign virama +
U+200C zero width non-joiner + U+110A5 kaithi letter ba

Conjuncts composed of a nasal and a consonant may be written either as a ligature with the
half-form of the appropriate class nasal letter, or the full form of the nasal letter with an
explicit virama (U+110B9 kaithi sign virama) and consonant. In Grierson’s Linguistic
Survey of India, however, U+110A2 kaithi letter na is used for all articulation classes,
both in ligatures and when the full form of the nasal appears with the virama.

Ruled Lines. Kaithi, unlike Devanagari, does not employ a headstroke. While several man-
uscripts and books show a headstroke similar to that of Devanagari, the line is actually a
ruled line used for emphasis, titling or sectioning, and is not broken between individual let-
ters. Some Kaithi fonts, however, were designed with a headstroke, but the line is not bro-
ken between individual letters, as would occur in Devanagari.

Nukta. Kaithi includes a nukta sign, U+110BA kaithi sign nukta, a dot which is used as
a diacritic below various consonants to form new letters. For example, the nukta is used to
distinguish the sound va from ba. The precomposed character U+110AB kaithi letter
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.8 Saurashtra 347
va is separately encoded, and has a canonical decomposition into the sequence of
U+110A5 kaithi letter ba plus U+110BA kaithi sign nukta. Precomposed characters
are also encoded for two other Kaithi letters, rha and dddha.

The glyph for U+110A8 kaithi letter ya may appear with or without a nukta. Because
the form without the nukta is considered a glyph variant, it is not separately encoded as a
character. The representative glyph used in the chart contains the dot. The nukta diacritic
also marks letters representing some sounds in Urdu or sounds not native to Hindi. No
precomposed characters are encoded in those cases, and such letters must be represented
by a base character followed by the nukta.

Punctuation. A number of Kaithi-specific punctuation marks are encoded. Two marks
designate the ends of text sections: U+110BE kaithi section mark, which generally indi-
cates the end of a sentence, and U+110BF kaithi double section mark, which delimits
larger blocks of text, such as paragraphs. Both section marks are generally drawn so that
their glyphs extend to the edge of the text margins, particularly in manuscripts.

The character U+110BD kaithi number sign is a format control character that interacts
with digits, occurring either above or below a digit. The position of the kaithi number

sign indicates its usage: when the mark occurs above a digit, it indicates a number in an
itemized list, similar to U+2116 numero sign. If it occurs below a digit, it indicates a
numerical reference. Like U+0600 arabic number sign and the other Arabic signs that
span numbers (see Section 8.2, Arabic), the kaithi number sign precedes the numbers
they graphically interact with, rather than following them, as would combining characters.
The U+110BC kaithi enumeration sign is the spacing version of the kaithi number

sign, and is used for inline usage.

U+110BB kaithi abbreviation sign, shaped like a small circle, is used in Kaithi to indi-
cate abbreviations. This mark is placed at the point of elision or after a ligature to indicate
common words or phrases that are abbreviated, in a similar way to U+0970 devanagari

abbreviation sign.

Kaithi makes use of two script-specific dandas: U+110C0 kaithi danda and U+110C1
kaithi double danda.

For other marks of punctuation occurring in Kaithi texts, available Unicode characters may
be used. A cross-shaped character, used to mark phrase boundaries, can be represented by
U+002B plus sign. For hyphenation, users should follow whatever is the recommended
practice found in similar Indic script traditions, which might be U+2010 hyphen or
U+002D hyphen-minus. For dot-like marks that appear as word-separators, U+2E31
word separator middle dot, or, if the word boundary is more like a dash, U+2010
hyphen can be used.

Digits. The digits in Kaithi are considered to be stylistic variants of those used in Devana-
gari. Hence the Devanagari digits located at U+0966..096F should be employed. To indicate
fractions and unit marks, Kaithi makes use of the numbers encoded in the Common Indic
Number Forms block, U+A830..A839.

10.8 Saurashtra

Saurashtra: U+A880–U+A8DF

Saurashtra is an Indo-European language, related to Gujarati and spoken by about 310,000
people in southern India. The Telugu, Tamil, Devanagari, and Saurashtra scripts have been
used to publish books in Saurashtra since the end of the 19th century. At present, Saurash-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

348 South Asian Scripts-II
tra is most often written in the Tamil script, augmented with the use of superscript digits
and a colon to indicate sounds not available in the Tamil script.

The Saurashtra script is of the Brahmic type. Early Saurashtra text made use of conjuncts,
which can be handled with the usual Brahmic shaping rules. The modernized script, devel-
oped in the 1880s, has undergone some simplification. Modern Saurashtra does not use
complex consonant clusters, but instead marks a killed vowel with a visible virama,
U+A8CF saurashtra sign virama. An exception to the non-occurrence of complex xon-
sonant clusters is the conjunct ksa, formed by the sequence <U+A892, U+A8C4, U+200D,
U+A8B0>. This conjunct is sorted as a unique letter in older dictionaries. Apart from its
use to form ksa, the virama is always visible by default in modern Saurashtra. If necessary,
U+200D zero width joiner may be used to force conjunct behavior.

The Unicode encoding of the Saurashtra script supports both older and newer conventions
for writing Saurashtra text.

Glyph Placement. The vowel signs (matras) in Saurashtra follow the consonant to which
they are applied. The long and short -i vowels, however, are typographically joined to the
top right corner of their consonant. Vowel signs are also applied to U+A8B4 saurashtra

consonant sign haaru.

Digits. The Saurashtra script has its own set of digits. These are separately encoded in the
Saurashtra block.

Punctuation. Western-style punctuation, such as comma, full stop, and the question mark
are used in modern Saurashtra text. U+A8CE saurashtra danda is used as a text delim-
iter in traditional prose. U+A8CE saurashtra danda and U+A8CF saurashtra double

danda are used in poetic text.

Saurashtra Consonant Sign Haaru. The character U+A8B4 saurashtra consonant

sign haaru, transliterated as “H”, is unique to Saurashtra, and does not have an equivalent
in the Devanagari, Tamil, or Telugu scripts. It functions in some regards like the Tamil
aytam, modifying other letters to represent sounds not found in the basic Brahmic alpha-
bet. It is a dependent consonant and is thus classified as a consonant sign in the encoding.

10.9 Sharada
Sharada is a historical script that was used to write Sanskrit, Kashmiri, and other languages
of northern South Asia. It served as the principal inscriptional and literary script of Kash-
mir from the 8th century ce until the 20th century. In the 19th century, expanded use of
the Arabic script to write Kashmiri and the growth of Devanagari contributed to the mar-
ginalization of Sharada. Today the script is employed in a limited capacity by Kashmiri
pandits for horoscopes and ritual purposes.

Rendering Behavior. Sharada is a Brahmi-based script, closely related to Devanagari. In
general, the rules for Devanagari rendering apply to Sharada as well. For more information,
see Section 9.1, Devanagari.

Ruled Lines. While the headstroke is an important structural feature of a character’s glyph
in Sharada, there is no rule governing the joining of headstrokes of characters to other
characters. The variation was probably due to scribal preference, and should be handled at
the font level.

Virama. The U+111C0 a sharada sign virama is a spacing mark, written to the right of
the consonant letter it modifies. Semantically, it is identical to the Devanagari virama and
other similar Indic scripts.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.10 Takri 349
Candrabindu and Avagraha. U+11180 b sharada sign candrabindu indicates nasaliza-
tion of a vowel. It may appear in manuscripts in an inverted form but with no semantic dif-
ference. Such glyph variants should be handled in the font. U+111C1 c sharada

avagraha represents the elision of a word-initial a. Unlike the usual practice in Devanagari
in which the avagraha is written at the normal letter height and attaches to the top stroke of
the following character, the avagraha in Sharada is written at or below the baseline and
does not connect to the neighboring letter.

Jihvamuliya and Upadhmaniya. The velar and labial allophones of /h/, followed by voice-
less velar and labial stops respectively, are written in Sharada with separate signs, U+111C2
d sharada sign jihvamuliya and U+111C3 e sharada sign upadhmaniya. These two
signs have the properties of a letter and appear only in stacked conjuncts without the use of
virama. Jihvamuliya is used to represent the velar fricative [x] in the context of following
voiceless velar stops:

U+111C2 d jihvamuliya + U+11191 f ka → x

U+111C2 d jihvamuliya + U+11192 g kha → y

Upadhmaniya is used to represent the bilabial fricative [s] in the context of following
voiceless labial stops:

U+111C3 e upadhmaniya + U+111A5 h pa → o

U+111C3 e upadhmaniya + U+111A6 i pha → p

Punctuation. U+111C7 k sharada abbreviation sign appears after letters or combina-
tions of letters. It marks the sequence as an abbreviation. A word separator, U+111C8 l
sharada separator, indicates word and other boundaries. Sharada also makes use of two
script-specific dandas: U+111C5 m sharada danda and U+111C6 n sharada double

danda.

Digits. Sharada has a distinctive set of digits encoded in the range U+111D0..U+111D9.

10.10 Takri
Takri is a script used in northern India and surrounding countries in South Asia, including
the areas that comprise present-day Jammu and Kashmir, Himachal Pradesh, Punjab, and
Uttarakhand. It is the traditional writing system for the Chambeali and Dogri languages, as
well as several “Pahari” languages, such as Jaunsari, Kulvi, and Mandeali. It is related to the
Gurmukhi, Landa, and Sharada scripts. Like other Brahmi-derived scripts, Takri is an abu-
gida, with consonants taking an inherent vowel unless accompanied by a vowel marker or
the virama (vowel killer).

Takri is descended from Sharada through an intermediate form known as DevQ0e1a, which
emerged in the 14th century. DevQ0e1a was a script used for religious and official purposes,
while its popular form, known as Takri, was used for commercial and informal purposes.
Takri became differentiated from DevQ0e1a during the 16th century. In its various regional
manifestations, Takri served as the official script of several princely states of northern and
northwestern India from the 17th century until the middle of the 20th century. Until the
late 19th century, Takri was used concurrently with Devanagari, but it was gradually
replaced by the latter.

Owing to its use as both an official and a popular script, Takri appears in numerous
records, from manuscripts to inscriptions to postage stamps. There are efforts to revive the
use of Takri for languages such as Dogri, Kishtwari, and Kulvi as a means of preserving
access to these language’s literatures.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

350 South Asian Scripts-II
There is no universal, standard form of Takri. Where Takri was standardized, the reformed
script was limited to a particular polity, such as a kingdom or a princely state. The repre-
sentative glyphs shown in the code charts are taken mainly from the forms used in a variant
established as the official script for writing the Chambeali language in the former Chamba
State, now in Himachal Pradesh, India. There are a number of other regional varieties of
Takri that have varying letter forms, sometimes quite different from the representative
forms shown in the code charts. Such regional forms are considered glyphic variants and
should be handled at the font level.

Vowel Letters. Vowel letters are encoded atomically in Unicode, even if they can be ana-
lyzed visually as consisting of multiple parts. Table 10-7 shows the letters that can be ana-
lyzed, the single code point that should be used to represent them in text, and the sequence
of code points resulting from analysis that should not be used.

Consonant Conjuncts. Conjuncts in Takri are infrequent and, when written, consist of two
consonants, the second of which is always ya, ra, or ha. Takri ya is written as a subjoining
form; Takri ra can be written as a ligature or a subjoining form; and Takri ha is written as a
half-form.

Nukta. A combining nukta character is encoded as U+116B7 takri sign nukta. Charac-
ters that use this sound, mainly loan words and words from other languages, may be repre-
sented using the base character plus nukta.

Headlines. Unlike Devanagari, headlines are not generally used in Takri. However, head-
lines do appear in the glyph shapes of certain Takri letters. The headline is an intrinsic fea-
ture of glyph shapes in some regional varieties such as Dogra Akkhar, where it appears to
be inspired by the design of Devanagari characters. There are no fixed rules for the joining
of headlines. For example, the headlines of two sequential characters possessing headlines
are left unjoined in Chambeali, while the headlines of a letter and a vowel sign are joined in
printed Dogra Akkhar.

Punctuation. Takri uses U+0964 devanagari danda and U+0965 devanagari double

danda from Devanagari.

Fractions. Fraction signs and currency marks found in Takri documents use the characters
in the Common Indic Number Forms block (U+A830..U+A83F).

10.11 Chakma
The Chakma people, who live in southeast Bangladesh near Chittagong City, as well as in
parts of India such as Mizoram, Assam, Tripura, and Arunachal Pradesh, speak an Indo-
European language also called Chakma. The language, spoken by about 500,000 people, is
related to the Assamese, Bengali, Chittagonian, and Sylheti languages.

Table 10-7. Takri Vowel Letters

For Use Do Not Use

0 11681 <11680, 116AD>

1 11687 <11686, 116B2>

2 11688 <11680, 116B4>

3 11689 <11680, 116B5>
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.12 Meetei Mayek 351
The Chakma script is Brahmi-derived, and is sometimes also called AjhZ pZYh or Ojhopath.
There are some efforts to adapt the Chakma script to write the closely related Tanchangya
language.

One of the interesting features of Chakma writing is that candrabindu (cZnaphupudZ) can
be used together with anusvara (ekaphudZ) and visarga (dviphudZ).

Independent Vowels. Like other Brahmi-derived scripts, Chakma uses consonant letters
that contain an inherent vowel. Consonant clusters are written with conjunct characters,
while a visible “vowel killer” (called the maayyaa) shows the deletion of the inherent vowel
when there is no conjunct. There are four independent vowels in the script: U+11103
chakma letter aa /#/, U+11104 chakma letter i /i/, U+11105 chakma letter u /u/,
and U+11106 chakma letter e /e/. Other vowels in the initial position are formed by
adding a dependent vowel sign to the independent vowel /#/, to form vowels such as /S/, /T/,
/ai/, and /oi/.

Vowel Killer and Virama. Like the Myanmar script and the characters used to write his-
toric Meetei Mayek, Chakma is encoded with two vowel-killing characters to conform to
modern user expectations. Chakma uses the maayyaa (killer) to invoke conjoined conso-
nants. Most letters have their vowels killed with the use of the explicit maayyaa character.
In addition to the visible killer, there is an explicit conjunct-forming character (virama),
permitting the user to choose between the subjoining style and the ligating style. Whether
a conjunct is required or not is part of the spelling of a word.

In principle, nothing prevents the visible killer from appearing together with a subjoining
sequence formed with virama. However, in practice, combinations of virama and maayyaa
following a consonant are not meaningful, as both kill the inherent vowel.

In 2001, an orthographic reform was recommended in the book CZumZ pattham pZt, lim-
iting the standard repertoire of conjuncts to those composed with the five letters U+11121
chakma letter yaa /y#/, U+11122 chakma letter raa /r#/, U+11123 chakma letter

laa /l#/, U+11124 chakma letter waa /w#/, and U+1111A chakma letter naa /n#/.

Chakma Fonts. Chakma fonts by default should display the subjoined form of letters that
follow virama to ensure legibility.

Punctuation. Chakma has a single and double danda. There is also a unique question mark
and a section mark, phulacihna.

Digits. A distinct set of digits is encoded for Chakma. Bengali digits are also used with
Chakma. Myanmar digits are used with the Chakma script when writing Tanchangya.

10.12 Meetei Mayek

Meetei Mayek: U+ABC0–U+ABFF

Meetei Mayek is a script used for Meetei, a Tibeto-Burman language spoken primarily in
Manipur, India. The script originates from the Tibetan group of scripts, which in turn
derive from Gupta Brahmi. The script has experienced a recent resurgence in use. The
modern-day Meetei Mayek script is made up of a core repertoire of 27 letters, alongside let-
ters and symbols for final consonants, dependent vowel signs, punctuation, and digits.

The name “Meetei Mayek” is used in official documentation in Manipur. The script may
also appear with other spellings and names, such as “Meitei Mayek,” “Methei,” “Meetei,” or
the older “Manipuri.”
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

352 South Asian Scripts-II
Structure. Meetei Mayek is a Brahmic script with consonants bearing the inherent vowel
and vowel matras modifying it. However, unlike most other Brahmi-derived scripts, Meetei
Mayek employs explicit final consonants which contain no final vowels.

Meetei Mayek has a killer character, U+ABED meetei mayek apun iyek, which may be
used to indicate the lack of an inherent vowel when no explicit consonant letter exists. In
modern orthography, the killer does not cause conjunct formation and is always visible.
The use of the killer is optional in spelling; for example, while VW may be read kara or kra,
X must be read kra. In the medial position, the glyph of the killer usually extends below
the killed letter and the following letter.

Vowel Letters. In modern use, only three vowel characters, U+ABD1 meetei mayek let-

ter atiya, U+ABCF meetei mayek letter i, and U+ABCE meetei mayek letter un

(= u), may appear initially or word-internally. Other vowels without independent forms
are represented by vowel matras applied to U+ABD1 meetei mayek letter atiya. In
modern orthography, the seven dependent vowel signs and the anusvara, U+ABEA meetei

mayek vowel sign nung, located from U+ABE3..U+ABEA, are used with consonants.

Syllable initial combinations for vowels can occur in modern usage to represent diph-
thongs.

Final Consonants. There are three ways to indicate final consonants in Meetei Mayek: by
the eight explicit final consonant letters, by U+ABEA meetei mayek vowel sign nung,
which acts as an anusvara, or by U+ABCE meetei mayek letter un, which may act as a
final consonant without modification.

Abbreviations. Unusual abbreviations composed of a single consonant and more than one
matra may occur in a manner similar that found in Tibetan. In such cases, the vowel matra
may occur at the end of a word.

Order. The order of the first 18 Meetei letters is based upon the parts of the body. This sys-
tem is discussed in a religious manuscript, the Wakoklon hilel thilel salai amailon pukok
puya (commonly referred to as the Wakoklon puya), which describes the letters, and relates
them to the corresponding body part. The Meetei Mayek letter kok, for example, means
“head,” sam designates “hair-parting,” and lai is “forehead.” The last 9 letters, gok, jham, rai,
and so forth, derive from a subset of the original 18. The ordering system employed today
differs from the Brahmi-based order, which relies on the point of articulation.

Punctuation. The modern Meetei Mayek script uses two punctuation marks in addition to
the killer. U+ABEB meetei mayek cheikhei functions as a double danda mark. U+ABEC
meetei mayek lum iyek is a heavy tone mark, used to orthographically distinguish words
which would otherwise not be differentiated.

Digits. Meetei Mayek has a unique set of ten digits for zero to nine encoded in the range at
U+ABF0..U+ABF9.

Meetei Mayak Extensions: U+AAE0–U+AAF6

The Meetei Mayak Extensions block contains additional characters needed to represent the
historical orthographies of Meetei. The block includes nine consonants, encoded in the
range U+AAE2..U+AAEA, two independent vowel signs (U+AAE0 meetei mayek letter

e and U+AAE1 meetei mayek letter o), and five dependent vowels signs in the range
U+AAEB..U+AAEF.

U+AAF5 meetei mayek virama should be used to represent conjuncts that may occur in
historical texts. The virama is not visibly rendered, but it behaves as in other Brahmic-
derived scripts. For example, the conjunct /tha/ is represented by the sequence <ABC9,
AAF5, ABCD>.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.13 Ol Chiki 353
This block also includes two punctuation marks, U+AAF0 meetei mayek cheikhan and
U+AAF1 meetei mayek ahang khudam. The cheikhan is a single danda, and ahang khu-
dam is a question mark. U+AAF2 meetei mayek anji is a philosophical sign indicating
auspiciousness. Finally, two repetition marks are included in the block: U+AAF3 meetei

mayek syllable repetition mark and U+AAF4 meetei mayek word representation

mark.

10.13 Ol Chiki

Ol Chiki: U+1C50–U+1C7F

The Ol Chiki script was invented by Pandit Raghunath Murmu in the first half of the 20th
century ce to write Santali, a Munda language of India. The script is also called Ol Cemet’,
Ol Ciki, or simply Ol. Santali has also been written with the Devanagari, Bengali, and Oriya
scripts, as well as the Latin alphabet.

Various dialects of Santali are spoken by 5.8 million people, with 25% to 50% literacy rates,
mostly in India, with a few in Nepal or Bangladesh. The Ol Chiki script is used primarily
for the southern dialect of Santali as spoken in the Orissan Mayurbhañj district. The script
has received some official recognition by the Orissan government.

Ol Chiki has recently been promoted by some Santal organizations, with uncertain success,
for use in writing certain other Munda languages in the Chota Nagpur area, as well as for
the Dravidian Dhangar-Kudux language.

Structure. Ol Chiki is alphabetic and has none of the structural properties of the abugidas
typical for other Indic scripts. There are separate letters representing consonants and vow-
els. A number of modifier letters are used to indicate tone, nasalization, vowel length, and
deglottalization. There are no combining characters in the script.

Ol Chiki is written from left to right.

Digits. The Ol Chiki script has its own set of digits. These are separately encoded in the Ol
Chiki block.

Punctuation. Western-style punctuation, such as the comma, exclamation mark, question
mark, and quotation marks are used in Ol Chiki text. U+002E “.” full stop is not used,
because it is visually confusable with the modifier letter U+1C79 ol chiki gaahlaa ttud-

daag.

The danda, U+1C7E ol chiki punctuation mucaad, is used as a text delimiter in prose.
The danda and the double danda, U+1C7F ol chiki punctuation double mucaad, are
both used in poetic text.

Modifier Letters. The southern dialect of Santali has only six vowels, each represented by a
single vowel letter. The Santal Parganas dialect, on the other hand, has eight or nine vowels.
The extra vowels for Santal Parganas are represented by a sequence of one of the vowel let-
ters U+1C5A, U+1C5F, or U+1C6E followed by the diacritic modifier letter, U+1C79 ol

chiki gaahlaa ttuddaag, displayed as a baseline dot.

Nasalization is indicated by the modifier letter, U+1C78 ol chiki mu ttuddag, displayed
as a raised dot. This mark can follow any vowel, long or short.

When the vowel diacritic and nasalization occur together, the combination is represented
by a separate modifier letter, U+1C7A ol chiki mu-gahlaa ttuddaag, displayed as both
a baseline and a raised dot. The combination is treated as a separate character and is
entered using a separate key on Ol Chiki keyboards.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

354 South Asian Scripts-II
U+1C7B ol chiki relaa is a length mark, which can be used with any oral or nasalized
vowel.

Glottalization. U+1C7D ol chiki ahad is a special letter indicating the deglottalization of
an Ol Chiki consonant in final position. This unique feature of the writing system preserves
the morphophonemic relationship between the glottalized (ejective) and voiced equiva-
lents of consonants. For example, U+1C5C ol chiki letter ag represents an ejective [k’]
when written in word-final position, but voiced [g] when written word-initially. A voiced
[g] in word-final position is written with the deglottalization mark as a sequence:
<U+1C5C ol chiki letter ag, U+1C7D ol chiki ahad>.

U+1C7C ol chiki phaarkaa serves the opposite function. It is a “glottal protector.” When
it follows one of the four ejective consonants, it preserves the ejective sound, even in word-
initial position followed by a vowel.

Aspiration. Aspirated consonants are written as digraphs, with U+1C77 ol chiki letter

oh as the second element, indicating the aspiration.

Ligatures. Ligatures are not a normal feature of printed Ol Chiki. However, in handwriting
and script fonts, letters form cursive ligatures with the deglottalization mark, U+1C7D ol

chiki ahad.

10.14 Sora Sompeng

Sora Sompeng: U+110D0–U+110FF

The Sora Sompeng script is used to write the Sora language. Sora is a member of the
Munda family of languages, which, together with the Mon-Khmer languages, makes up
Austro-Asiatic.

The Sora people live between the Oriya- and Telugu-speaking populations in what is now
the Orissa-Andhra border area.

Sora Sompeng was devised in 1936 by Mangei Gomango, who was inspired by the vision he
had of the 24 letters. The script was promulgated as part of a comprehensive cultural pro-
gram, and was offered as an improvement over IPA-based scripts used by linguists and mis-
sionaries, and the Telugu and Oriya scripts used by Hindus. Sora Sompeng is used in
religious contexts, and is published in a variety of printed materials.

Encoding Structure. The Sora Sompeng script is structured as an abugida. The consonant
letters contain an inherent vowel. There are no conjunct characters for consonant clusters,
and there is no visible vowel killer to show the deletion of the inherent vowel. The reader
must determine the presence or absence of the inherent schwa based on recognition of each
word. The character repertoire does not match the phonemic repertoire of Sora very well.

U+110E4 sora sompeng letter ih is used for both [i] and [j], and U+110E6 sora som-

peng letter oh is used for both [o] and [q], for instance. The glottal stop is written with
U+110DE sora sompeng letter hah, and the sequence of U+110DD sora sompeng

letter rah and U+110D4 sora sompeng letter dah is used to write retroflex [r]. There
is also an additional “auxiliary” U+110E8 sora sompeng letter mae used to transcribe
foreign sounds.

Character Names. Consonant letter names for Sora Sompeng are derived by adding [ava]
(written ah) to the consonant.

Punctuation. Sora Sompeng uses Western-style punctuation.

Linebreaking. Letters and digits behave as in Latin and other alphabetic scripts.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.15 Kharoshthi 355
10.15 Kharoshthi

Kharoshthi: U+10A00–U+10A5F

The Kharoshthi script, properly spelled as KharoDEhG, was used historically to write GFndh-
FrG and Sanskrit as well as various mixed dialects. Kharoshthi is an Indic script of the abu-
gida type. However, unlike other Indic scripts, it is written from right to left. The
Kharoshthi script was initially deciphered around the middle of the nineteenth century by
James Prinsep and others who worked from short Greek and Kharoshthi inscriptions on
the coins of the Indo-Greek and Indo-Scythian kings. The decipherment has been refined
over the last 150 years as more material has come to light.

The Kharoshthi script is one of the two ancient writing systems of India. Unlike the pan-
Indian BrFhmG script, Kharoshthi was confined to the northwest of India centered on the
region of GandhZra (modern northern Pakistan and eastern Afghanistan, as shown in
Figure 10-5). Gandhara proper is shown on the map as the dark gray area near Peshawar.
The lighter gray areas represent places where the Kharoshthi script was used and where
manuscripts and inscriptions have been found.

The exact details of the origin of the Kharoshthi script remain obscure, but it is almost cer-
tainly related to Aramaic. The Kharoshthi script first appears in a fully developed form in
the AAokan inscriptions at Shahbazgarhi and Mansehra which have been dated to around
250 bce. The script continued to be used in Gandhara and neighboring regions, sometimes
alongside Brahmi, until around the third century ce, when it disappeared from its home-
land. Kharoshthi was also used for official documents and epigraphs in the Central Asian cit-
ies of Khotan and Niya in the third and fourth centuries ce, and it appears to have survived in
Kucha and neighboring areas along the Northern Silk Road until the seventh century. The
Central Asian form of the script used during these later centuries is termed Formal Kha-
roshthi and was used to write both Gandhari and Tocharian B. Representation of Kharoshthi
in the Unicode code charts uses forms based on manuscripts of the first century ce.

Directionality. Kharoshthi can be implemented using the rules of the Unicode Bidirec-
tional Algorithm. Both letters and digits are written from right to left. Kharoshthi letters do
not have positional variants.

Figure 10-5. Geographical Extent of the Kharoshthi Script
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

356 South Asian Scripts-II
Diacritic Marks and Vowels. All vowels other than a are written with diacritic marks in
Kharoshthi. In addition, there are six vowel modifiers and three consonant modifiers that
are written with combining diacritics. In general, only one combining vowel sign is applied
to each syllable (aksara). However, there are some examples of two vowel signs on aksaras
in the Kharoshthi of Central Asia.

Numerals. Kharoshthi employs a set of eight numeral signs unique to the script. Like the
letters, the numerals are written from right to left. Numbers in Kharoshthi are based on an
additive system. There is no zero, nor separate signs for the numbers five through nine. The
number 1996, for example, would logically be represented as 1000 4 4 1 100 20 20 20 20 10
4 2 and would appear as shown in Figure 10-6. The numerals are encoded in the range
U+10A40..U+10A47.

Punctuation. Nine different punctuation marks are used in manuscripts and inscriptions.
The punctuation marks are encoded in the range U+10A50..U+10A58.

Word Breaks, Line Breaks, and Hyphenation. Most Kharoshthi manuscripts are written as
continuous text with no indication of word boundaries. Only a few examples are known
where spaces have been used to separate words or verse quarters. Most scribes tried to fin-
ish a word before starting a new line. There are no examples of anything akin to hyphen-
ation in Kharoshthi manuscripts. In cases where a word would not completely fit into a
line, its continuation appears at the start of the next line. Modern scholarly practice uses
spaces and hyphenation. When necessary, hyphenation should follow Sanskrit practice.

Sorting. There is an ancient ordering connected with Kharoshthi called Arapacana, named
after the first five aksaras. However, there is no evidence that words were sorted in this
order, and there is no record of the complete Arapacana sequence. In modern scholarly
practice, Gandhari is sorted in much the same order as Sanskrit. Vowel length, even when
marked, is ignored when sorting Kharoshthi.

Rendering Kharoshthi

Rendering requirements for Kharoshthi are similar to those for Devanagari. This section
specifies a minimum set of combining rules that provide legible Kharoshthi diacritic and
ligature substitution behavior.

All unmarked consonants include the inherent vowel a. Other vowels are indicated by one
of the combining vowel diacritics. Some letters may take more than one diacritical mark. In
these cases the preferred sequence is Letter + {Consonant Modifier} + {Vowel Sign} +
{Vowel Modifier}. For example the Sanskrit word parZrdhyaiu might be rendered in Kha-
roshthi script as *parZrvaiu, written from right to left, as shown in Figure 10-7.

Figure 10-6. Kharoshthi Number 1996

Figure 10-7. Kharoshthi Rendering Example

� � � �+ + + + + + + + +� � � � �� 𐨿 	 	
��} }

����� ��
	� pa

rā

˙
rjaih¯
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.15 Kharoshthi 357
Combining Vowels. The various combining vowels attach to characters in different ways. A
number of groupings have been determined on the basis of their visual types, such as hori-
zontal or vertical, as shown in Table 10-8.

Combining Vowel Modifiers. U+10A0C = kharoshthi vowel length mark indicates
equivalent long vowels and, when used in combination with -e and -o, indicates the dip-
thongs –ai and –au. U+10A0D @ kharoshthi sign double ring below appears in some
Central Asian documents, but its precise phonetic value has not yet been established. These
two modifiers have been found only in manuscripts and inscriptions from the first century
ce onward. U+10A0E B kharoshthi sign anusvara indicates nasalization, and

Table 10-8. Kharoshthi Vowel Signs

Type Example Group Members

Vowel sign i
Horizontal a + -i → i

! + # → $
A, NA, HA

Vertical tha + -i → thi

% + # → &
THA, PA, PHA, MA,
LA, SHA

Diagonal ka + -i → ki

(+ # →)
All other letters

Vowel sign u
Independent ha + -u→ hu

, + * → Z
TTA, HA

Ligated ma + -u → mu

. + * → /
MA

Attached a + -u → u

! + * → +
All other letters

Vowel sign vocalic r
Attached a + -I → I

! + 0 → 1
A, KA, KKA, KHA,
GA, GHA, CA, CHA,
JA, TA, DA, DHA,
NA, PA, PHA, BA,
BHA, VA, SHA, SA

Independent ma +-I → mI

. + 0 → 2
MA, HA

Vowel sign e
Horizontal a + -e → e

! + 3 → 4
A, NA, HA

Vertical tha + -e → the

% + 3 → 5
THA, PA, PHA, LA,
SSA

Ligated da + -e→ de

6 + 3 → 7
DA, MA

Diagonal ka + -e→ ke

(+ 3 → 8
All other letters

Vowel sign o
Vertical pa + -o → po

; + 3 → <
PA, PHA, YA, SHA

Diagonal a + -o→ o

! + 9 → :
All other letters
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

358 South Asian Scripts-II
U+10A0F D kharoshthi sign visarga is generally used to indicate unvoiced syllable-
final [h], but has a secondary use as a vowel length marker. Visarga is found only in San-
skritized forms of the language and is not known to occur in a single aksara with anusvara.
The modifiers and the vowels they modify are given in Table 10-9.

Combining Consonant Modifiers. U+10A38 G kharoshthi sign bar above indicates
various modified pronunciations depending on the consonants involved, such as nasaliza-
tion or aspiration. U+10A39 J kharoshthi sign cauda indicates various modified pro-
nunciations of consonants, particularly fricativization. The precise value of U+10A3A L
kharoshthi sign dot below has not yet been determined. Usually only one consonant
modifier can be applied to a single consonant. The resulting combined form may also com-
bine with vowel diacritics, one of the vowel modifiers, or anusvara or visarga. The modifi-
ers and the consonants they modify are given in Table 10-10.

Virama. The virama is used to indicate the suppression of the inherent vowel. The glyph
for U+10A3F V kharoshthi virama shown in the code charts is arbitrary and is not
actually rendered directly; the dotted box around the glyph indicates that special rendering
is required. When not followed by a consonant, the virama causes the preceding consonant
to be written as subscript to the left of the letter preceding it. If followed by another conso-
nant, the virama will trigger a combined form consisting of two or more consonants. The
resulting form may also be subject to combinations with the previously noted combining
diacritics.

The virama can follow only a consonant or a consonant modifier. It cannot follow a space,
a vowel, a vowel modifier, a number, a punctuation sign, or another virama. Examples of
the use of the Kharoshthi virama are given in Table 10-11.

Table 10-9. Kharoshthi Vowel Modifiers

Type Example Group Members

Vowel length mark ma + W → mF

. + = → >
A, I, U, R, E, O

Double ring below sa +X → sY

? + @ → A
A, U

Anusvara a + -C → aC

! + B → C
A, I, U, R, E, O

Visarga ka + -B →kaB

(+ D → E
A, I, U, R, E, O

Table 10-10. Kharoshthi Consonant Modifiers

Type Example Group Members

Bar above ja + W → Ha

F + G → H
GA, CA, JA, NA, MA,
SHA, SSA, SA, HA

Cauda ga + [→]a

I + J → K
GA, JA, DDA, TA, DA,
PA, YA, VA, SHA, SA

Dot below ma + \ → Ca

. + L → M
MA, HA
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.16 Brahmi 359
10.16 Brahmi

Brahmi: U+11000–U+1106F

The Brahmi script is an historical script of India attested from the third century bce until
the late first millennium ce. Over the centuries Brahmi developed many regional varieties,
which ultimately became the modern Indian writing systems, including Devanagari, Tamil
and so on. The encoding of the Brahmi script in the Unicode Standard supports the repre-
sentation of texts in Indian languages from this historical period. For texts written in his-
torically transitional scripts—that is, between Brahmi and its modern derivatives—there
may be alternative choices to represent the text. In some cases, there may be a separate
encoding for a regional medieval script, whose use would be appropriate. In other cases,
users should consider whether the use of Brahmi or a particular modern script best suits
their needs.

Encoding Model. The Brahmi script is an abugida and is encoded using the Unicode
virama model. Consonants have an inherent vowel /a/. A separate character is encoded for
the virama: U+11046 brahmi virama. The virama is used between consonants to form
conjunct consonants. It is also used as an explicit killer to indicate a vowelless consonant.

Vowel Letters. Vowel letters are encoded atomically in Brahmi, even if they can be analyzed
visually as consisting of multiple parts. Table 10-12 shows the letters that can be analyzed,
the single code point that should be used to represent them in text, and the sequence of
code points resulting from analysis that should not be used.

Rendering Behavior. Consonant conjuncts are represented by a sequence including
virama: <C, virama, C>. In Brahmi these consonant conjuncts are rendered as consonant
ligatures. Up to a very late date, Brahmi used vertical conjuncts exclusively, in which the
ligation involves stacking of the consonant glyphs vertically. The Brahmi script does not
have a parallel series of half-consonants, as developed in Devanagari and some other mod-
ern Indic scripts.

Table 10-11. Examples of Kharoshthi Virama

Type Example

Pure virama dha + i + k + VIRAMA → dhik

N + # + (+ V → O
Ligatures ka + VIRAMA + Da → kDa

(+ V + P → Q
Consonants with special combining forms sa + VIRAMA + ya → sya

? + V + R → S
Consonants with full combined form ka + VIRAMA + ta → kta

(+ V + T → U

Table 10-12. Brahmi Vowel Letters

To Represent Use Do Not Use

t 11006 <11005, 11038>

u 1100C <1100B, 1103E>

v 11010 <1100F, 11042>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

360 South Asian Scripts-II
The elements of consonant ligatures are laid out from top left to bottom right, as shown for
sva in Figure 10-8. Preconsonantal r, postconsonantal r and postconsonantal y assume spe-
cial reduced shapes in all except the earliest varieties of Brahmi. The kXa and jña ligatures,
however, are often transparent, as also shown in Figure 10-8.

A vowelless consonant is represented in text by following the consonant with a virama:
<C, virama>. The presence of the virama “kills” the vowel. Such vowelless consonants have
visible distinctions from regular consonants, and are rendered in one of two major styles.
In the first style, the vowelless consonant is written smaller and lower than regular conso-
nants, and often has a connecting line drawn from the vowelless consonant to the preced-
ing aksara. In the second style, a horizontal line is drawn above the vowelless consonant.
The second style is the basis for the representative glyph for U+10146 brahmi virama in
the code charts. These differences in presentation are purely stylistic; it is up to the font
developers and rendering systems to render Brahmi vowelless consonants in the appropri-
ate style.

Vowel Modifiers. U+11000 brahmi sign candrabindu indicates nasalization of a vowel.
U+11001 brahmi sign anusvara is used to indicate that a vowel is nasalized (when the
next syllable starts with a fricative), or that it is followed by a nasal segment (when the next
syllable starts with a stop). U+11002 brahmi sign visarga is used to write syllable-final
voiceless /h/; that is, [x] and [f]. The velar and labial allophones of /h/, followed by voiceless
velar and labial stops respectively, are sometimes written with separate signs U+11003
brahmi sign jihvamuliya and U+11004 brahmi sign upadhmaniya. Unlike visarga,
these two signs have the properties of a letter, and are not considered combining marks.
They enter into ligatures with the following homorganic voiceless stop consonant, without
the use of a virama.

Old Tamil Brahmi. Brahmi was used to write the Tamil language starting from the second
century bce. The different orthographies used to write Tamil Brahmi are covered by the
Unicode encoding of Brahmi. For example, in one Tamil Brahmi system the inherent vowel
of Brahmi consonant signs is dropped, and U+11038 brahmi vowel sign aa is used to
represent both short and long [a] / [a:]. In this orthography consonant signs without a
vowel sign always represent the bare consonant without an inherent vowel. Three conso-
nant letters are encoded to represent sounds particular to Dravidian. These are U+11035
brahmi letter old tamil llla, U+11036 brahmi letter old tamil rra, and U+11037
brahmi letter old tamil nnna.

Tamil Brahmi pukki (virama) had two functions: to cancel the inherent vowel of consonants;
and to indicate the short vowels [e] and [o] in contrast to the long vowels [e:] and [o:] in
Prakrit and Sanskrit. As a consequence, in Tamil Brahmi text, the virama is used not only
after consonants, but also after the vowels e (U+1100F, U+11042) and o (U+11011,
U+11044). This pukki is represented using U+11046 brahmi sign virama.

Figure 10-8. Consonant Ligatures in Brahmi

 →

+

11032

11013

1101A

11046

11046

11046

1102F

11031

1101C

sva

jña

 →

 +

+ +

+ +

→

ksa
˙

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

10.16 Brahmi 361
Bhattiprolu Brahmi. Ten short Middle Indo-Aryan inscriptions from the second century
bce found at Bhattiprolu in Andhra Pradesh show an orthography that seems to be derived
from the Tamil Brahmi system. To avoid the phonetic ambiguity of the Tamil Brahmi
U+11038 brahmi vowel sign aa (standing for either [a] or [a:]), the Bhattiprolu inscrip-
tions introduced a separate vowel sign for long [a:] by adding a vertical stroke to the end of
the earlier sign. This is encoded as U+11039 brahmi vowel sign bhattiprolu aa.

Punctuation. There are seven punctuation marks in the encoded repertoire for Brahmi.
The single and double dandas, U+11047 brahmi danda and U+11048 brahmi double

danda, delimit clauses and verses. U+11049 brahmi punctuation dot, U+1104A
brahmi punctuation double dot, and U+1104B brahmi punctuation line delimit
smaller textual units, while U+1104C brahmi punctuation crescent bar and U+1104D
brahmi punctuation lotus separate larger textual units.

Numerals. Two sets of numbers, used for different numbering systems, are attested in
Brahmi documents. The first set is the old additive-multiplicative system that goes back to
the beginning of the Brahmi script. The second is a set of decimal numbers that occurs side
by side with the earlier numbering system in manuscripts and inscriptions during the late
Brahmi period.

The set of additive-multiplicative numbers of the Brahmi script contains separate number
signs for the digits from 1 to 9, the decades from 10 to 90, as well as signs for 100 and 1000.
Numbers are written additively, with higher number signs preceding lower ones. Multiples
of 100 and of 1000 are expressed multiplicatively, with the multiplier following and form-
ing a ligature with 100 or 1000. There are examples from the middle and late Brahmi peri-
ods in which the signs for 200, 300, and 2000 appear in special forms and are not obviously
connected with a ligature of the component parts. Such forms may be enabled in fonts
using a ligature substitution.

A special sign for zero was invented later, and the positional system came into use. This sys-
tem is the ancestor of the modern decimal number system. Due to the different systemic
features and shapes, the signs in this set have been encoding separately. These signs have the
same properties as the modern Indian digits. Examples are shown in Table 10-13.

Table 10-13. Brahmi Positional Digits

Display Value Code Points

0 0 11066

1 1 11067

2 2 11068

3 3 11069

4 4 1106A

10 10 <11067, 11066>

234 234 <11066, 11069, 1106A>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

362 South Asian Scripts-II
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 11

Southeast Asian Scripts 11

This chapter documents the following scripts of Southeast Asia, Indonesia, and the Philip-
pines:

The scripts of Southeast Asia are written from left to right; many use no interword spacing
but use spaces or marks between phrases. They are mostly abugidas, but with various idio-
syncrasies that distinguish them from the scripts of South Asia.

Thai and Lao are the official scripts of Thailand and Laos, respectively, and are closely
related. These scripts are unusual for Brahmi-derived scripts in the Unicode Standard,
because for various implementation reasons they depart from logical order in the represen-
tation of consonant-vowel sequences. Vowels that occur to the left side of their consonant
are represented in visual order before the consonant in a string, even though they are pro-
nounced afterward.

Myanmar is the official script of Myanmar, and is used to write the Burmese language, as
well as many minority languages of Myanmar and Northern Thailand. It has a mixed
encoding model, making use of both a virama and a killer character, and having explicitly
encoded medial consonants.

The Khmer script is used for the Khmer and related languages in the Kingdom of Cambo-
dia.

Kayah Li is a relatively recently invented script, used to write the Kayah Li languages of
Myanmar and Thailand. Although influenced by the Myanmar script, Kayah Li is basically
an alphabet in structure.

Cham is a Brahmi-derived script used by the Austronesian language Cham, spoken in the
southern part of Vietnam and in Cambodia. It does not use a virama. Instead, the encoding
makes use of medial consonant signs and explicitly encoded final consonants.

The term “Tai” refers to a family of languages spoken in Southeast Asia, including Thai,
Lao, and Shan. This term is also part of the name of a number of scripts encoded in the
Unicode Standard. The Tai Le script is used to write the language of the same name, which
is spoken in south central Yunnan (China). The New Tai Lue script, also known as Xish-
uang Banna Dai, is unrelated to the Tai Le script, but is also used in south Yunnan. New Tai
Lue is a simplified form of the more traditional Tai Tham script, which is also known as
Lanna. The Tai Tham script is used for the Northern Thai, Tai Lue, and Khün languages.
The Tai Viet script is used for the Tai Dam, Tai Dón, and Thai Song languages of northwest-

Thai Tai Tham Balinese

Lao Tai Viet Javanese

Myanmar Kayah Li Rejang

Khmer Cham Batak

Tai Le Philippine scripts Sundanese

New Tai Lue Buginese
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

364 Southeast Asian Scripts
ern Vietnam, northern Laos, and central Thailand. Unlike the other Tai scripts, the Tai Viet
script makes use of a visual order model, similar to that for the Thai and Lao scripts.

There are four traditional Philippine scripts: Tagalog, Hanunóo, Buhid, and Tagbanwa.
They have limited current use. They are discussed together, because each is structured quite
similarly. Each is a very simplified abugida which makes use of two nonspacing vowel signs.

Although the official language of Indonesia, Bahasa Indonesia, is written in the Latin script,
Indonesia has many local, traditional scripts, most of which are ultimately derived from
Brahmi. Five of these scripts are documented in this chapter. Buginese is used for several
different languages on the island of Sulawesi. Balinese and Javanese are closely related,
highly ornate scripts; Balinese is used for the Balinese language on the island of Bali, and
Javanese for the Javanese language on the island of Java. Sundanese is used to write the Sun-
danese language on the island of Java. The Rejang script is used to write the Rejang lan-
guage in southwest Sumatra, and the Batak script is used to write several Batak dialects,
also on the island of Sumatra.

11.1 Thai

Thai: U+0E00–U+0E7F

The Thai script is used to write Thai and other Southeast Asian languages, such as Kuy,
Lanna Tai, and Pali. It is a member of the Indic family of scripts descended from Brahmi.
Thai modifies the original Brahmi letter shapes and extends the number of letters to
accommodate features of the Thai language, including tone marks derived from super-
script digits. At the same time, the Thai script lacks the conjunct consonant mechanism
and independent vowel letters found in most other Brahmi-derived scripts. As in all scripts
of this family, the predominant writing direction is from left to right.

Standards. Thai layout in the Unicode Standard is based on the Thai Industrial Standard
620-2529, and its updated version 620-2533.

Encoding Principles. In common with most Brahmi-derived scripts, each Thai consonant
letter represents a syllable possessing an inherent vowel sound. For Thai, that inherent
vowel is /o/ in the medial position and /a/ in the final position.

The consonants are divided into classes that historically represented distinct sounds, but in
modern Thai indicate tonal differences. The inherent vowel and tone of a syllable are then
modified by addition of vowel signs and tone marks attached to the base consonant letter.
Some of the vowel signs and all of the tone marks are rendered in the script as diacritics
attached above or below the base consonant. These combining signs and marks are
encoded after the modified consonant in the memory representation.

Most of the Thai vowel signs are rendered by full letter-sized inline glyphs placed either
before (that is, to the left of) , after (to the right of) , or around (on both sides of) the
glyph for the base consonant letter. In the Thai encoding, the letter-sized glyphs that are
placed before (left of) the base consonant letter, in full or partial representation of a vowel
sign, are, in fact, encoded as separate characters that are typed and stored before the base
consonant character. This encoding for left-side Thai vowel sign glyphs (and similarly in Lao
and in Tai Viet) differs from the conventions for all other Indic scripts, which uniformly
encode all vowels after the base consonant. The difference is necessitated by the encoding
practice commonly employed with Thai character data as represented by the Thai Industrial
Standard.

The glyph positions for Thai syllables are summarized in Table 11-1.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.1 Thai 365
Rendering of Thai Combining Marks. The canonical combining classes assigned to tone
marks (ccc=107) and to other combining characters displayed above (ccc=0) do not fully
account for their typographic interaction.

For the purpose of rendering, the Thai combining marks above (U+0E31,
U+0E34..U+0E37, U+0E47..U+0E4E) should be displayed outward from the base charac-
ter they modify, in the order in which they appear in the text. In particular, a sequence con-
taining <U+0E48 thai character mai ek, U+0E4D thai character nikhahit> should
be displayed with the nikhahit above the mai ek, and a sequence containing <U+0E4D thai

character nikhahit, U+0E48 thai character mai ek> should be displayed with the
mai ek above the nikhahit.

This does not preclude input processors from helping the user by pointing out or correct-
ing typing mistakes, perhaps taking into account the language. For example, because the

Table 11-1. Glyph Positions in Thai Syllables

Syllable Glyphs Code Point Sequence

ka CD 0E01 0E30

ka: CE 0E01 0E32

ki CF 0E01 0E34

ki: CG 0E01 0E35

ku CH 0E01 0E38

ku: CI 0E01 0E39

ku’ CJ 0E01 0E36

ku’: CK 0E01 0E37

ke LCD 0E40 0E01 0E30

ke: LC 0E40 0E01

kae MCD 0E41 0E01 0E30

kae: MC 0E41 0E01

ko NCD 0E42 0E01 0E30

ko: NC 0E42 0E01

ko’ LCED 0E40 0E01 0E32 0E30

ko’: CO 0E01 0E2D

koe LCOD 0E40 0E01 0E2D 0E30

koe: LCO 0E40 0E01 0E2D

kia LCGP 0E40 0E01 0E35 0E22

ku’a LCKO 0E40 0E01 0E37 0E2D

kua CQR 0E01 0E31 0E27

kaw LCE 0E40 0E01 0E32

koe:y LCP 0E40 0E01 0E22

kay SC 0E44 0E01

kay TC 0E43 0E01

kam CU 0E01 0E33

kri CV 0E01 0E24
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

366 Southeast Asian Scripts
string <mai ek, nikhahit> is not useful for the Thai language and is likely a typing mistake,
an input processor could reject it or correct it to <nikhahit, mai ek>.

When the character U+0E33 thai character sara am follows one or more tone marks
(U+0E48..U+0E4B), the nikhahit that is part of the sara am should be displayed below those
tone marks. In particular, a sequence containing <U+0E48 thai character mai ek,
U+0E33 thai character sara am> should be displayed with the mai ek above the nikhahit.

Thai Punctuation. Thai uses a variety of punctuation marks particular to this script.
U+0E4F thai character fongman is the Thai bullet, which is used to mark items in lists
or appears at the beginning of a verse, sentence, paragraph, or other textual segment.
U+0E46 thai character maiyamok is used to mark repetition of preceding letters.
U+0E2F thai character paiyannoi is used to indicate elision or abbreviation of letters; it
is itself viewed as a kind of letter, however, and is used with considerable frequency because
of its appearance in such words as the Thai name for Bangkok. Paiyannoi is also used in
combination (U+0E2F U+0E25 U+0E2F) to create a construct called paiyanyai, which
means “et cetera, and so forth.” The Thai paiyanyai is comparable to its analogue in the
Khmer script: U+17D8 khmer sign beyyal.

U+0E5A thai character angkhankhu is used to mark the end of a long segment of text.
It can be combined with a following U+0E30 thai character sara a to mark a larger seg-
ment of text; typically this usage can be seen at the end of a verse in poetry. U+0E5B thai

character khomut marks the end of a chapter or document, where it always follows the
angkhankhu + sara a combination. The Thai angkhankhu and its combination with sara a
to mark breaks in text have analogues in many other Brahmi-derived scripts. For example,
they are closely related to U+17D4 khmer sign khan and U+17D5 khmer sign

bariyoosan, which are themselves ultimately related to the danda and double danda of
Devanagari.

Spacing. Thai words are not separated by spaces. Instead, text is laid out with spaces intro-
duced at text segments where Western typography would typically make use of commas or
periods. However, Latin-based punctuation such as comma, period, and colon are also
used in text, particularly in conjunction with Latin letters or in formatting numbers,
addresses, and so forth. If explicit word break or line break opportunities are desired—for
example, for the use of automatic line layout algorithms—the character U+200B zero

width space should be used to place invisible marks for such breaks. The zero width

space can grow to have a visible width when justified. See Table 16-2.

Thai Transcription of Pali and Sanskrit. The Thai script is frequently used to write Pali
and Sanskrit. When so used, consonant clusters are represented by the explicit use of
U+0E3A thai character phinthu (virama) to mark the removal of the inherent vowel.
There is no conjoining behavior, unlike in other Indic scripts. U+0E4D thai character

nikhahit is the Pali nigghahita and Sanskrit anusvara. U+0E30 thai character sara a is
the Sanskrit visarga. U+0E24 thai character ru and U+0E26 thai character lu are
vocalic /r/ and /l/, with U+0E45 thai character lakkhangyao used to indicate their
lengthening.

11.2 Lao

Lao: U+0E80–U+0EFF

The Lao language and script are closely related to Thai. The Unicode Standard encodes the
characters of the Lao script in the same relative order as the Thai characters.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.2 Lao 367
Encoding Principles. Lao contains fewer letters than Thai because by 1960 it was simplified
to be fairly phonemic, whereas Thai maintains many etymological spellings that are hom-
onyms. Unlike in Thai, Lao consonant letters are conceived of as simply representing the
consonant sound, rather than a syllable with an inherent vowel. The vowel [a] is always
represented explicitly with U+0EB0 lao vowel sign a.

Punctuation. Regular word spacing is not used in Lao; spaces separate phrases or sentences
instead.

Glyph Placement. The glyph placements for Lao syllables are summarized in Table 11-2.

Table 11-2. Glyph Positions in Lao Syllables

Syllable Glyphs Code Point Sequence

ka WX 0E81 0EB0

ka: WY 0E81 0EB2

ki WZ 0E81 0EB4

ki: W[0E81 0EB5

ku W\ 0E81 0EB8

ku: W] 0E81 0EB9

ku’ W^ 0E81 0EB6

ku’: W_ 0E81 0EB7

ke `WX 0EC0 0E81 0EB0

ke: `W 0EC0 0E81

kae aWX 0EC1 0E81 0EB0

kae: aW 0EC1 0E81

ko bWX 0EC2 0E81 0EB0

ko: bW 0EC2 0E81

ko’ `WYX 0EC0 0E81 0EB2 0EB0

ko’: Wc 0E81 0ECD

koe `WZ 0EC0 0E81 0EB4

koe: `W[0EC0 0E81 0EB5

kia
`Wkd
`Wl

0EC0 0E81 0EB1 0EBD
0EC0 0E81 0EA2

ku’a `W_f 0EC0 0E81 0EB7 0EAD

kua Wej 0E81 0EBB 0EA7

kaw `WeY 0EC0 0E81 0EBB 0EB2

koe:y
`W[d
`W[l

0EC0 0E81 0EB5 0EBD
0EC0 0E81 0EB5 0EA2

kay gW 0EC4 0E81

kay hW 0EC3 0E81

kam Wi 0E81 0EB3
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

368 Southeast Asian Scripts
Additional Letters. A few additional letters in Lao have no match in Thai:

U+0EBB lao vowel sign mai kon

U+0EBC lao semivowel sign lo

U+0EBD lao semivowel sign nyo

The preceding two semivowel signs are the last remnants of the system of subscript medials,
which in Myanmar retains additional distinctions. Myanmar and Khmer include a full set
of subscript consonant forms used for conjuncts. Thai no longer uses any of these forms;
Lao has just the two.

Rendering of Lao Combining Marks. The canonical combining classes assigned to tone
marks (ccc=122) and to other combining characters displayed above (ccc=0) do not fully
account for their typographic interaction.

For the purpose of rendering, the Lao combining marks above (U+0EB1,
U+0EB4..U+0EB7, U+0EBB, U+0EC8..U+0ECD) should be displayed outward from the
base character they modify, in the order in which they appear in the text. In particular, a
sequence containing <U+0EC8 lao tone mai ek, U+0ECD lao niggahita> should be
displayed with the niggahita above the mai ek, and a sequence containing <U+0ECD lao

niggahita, U+0EC8 lao tone mai ek> should be displayed with the mai ek above the nig-
gahita.

This does not preclude input processors from helping the user by pointing out or correct-
ing typing mistakes, perhaps taking into account the language. For example, because the
string <mai ek, niggahita> is not useful for the Lao language and is likely a typing mistake,
an input processor could reject it or correct it to <niggahita, mai ek>.

When the character U+0EB3 lao vowel sign am follows one or more tone marks
(U+0EC8..U+0ECB), the niggahita that is part of the sara am should be displayed below
those tone marks. In particular, a sequence containing <U+0EC8 lao tone mai ek,
U+0EB3 lao vowel sign am> should be displayed with the mai ek above the niggahita.

Lao Aspirated Nasals. The Unicode character encoding includes two ligatures for Lao:
U+0EDC lao ho no and U+0EDD lao ho mo. They correspond to sequences of [h] plus
[n] or [h] plus [m] without ligating. Their function in Lao is to provide versions of the [n]
and [m] consonants with a different inherent tonal implication.

11.3 Myanmar

Myanmar: U+1000–U+109F

The Myanmar script is used to write Burmese, the majority language of Myanmar (for-
merly called Burma). Variations and extensions of the script are used to write other lan-
guages of the region, such as Mon, Karen, Kayah, Shan, and Palaung, as well as Pali and
Sanskrit. The Myanmar script was formerly known as the Burmese script, but the term
“Myanmar” is now preferred.

The Myanmar writing system derives from a Brahmi-related script borrowed from South
India in about the eighth century to write the Mon language. The first inscription in the
Myanmar script dates from the eleventh century and uses an alphabet almost identical to
that of the Mon inscriptions. Aside from rounding of the originally square characters, this
script has remained largely unchanged to the present. It is said that the rounder forms were
developed to permit writing on palm leaves without tearing the writing surface of the leaf.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.3 Myanmar 369
The Myanmar script shares structural features with other Brahmi-based scripts such as
Khmer: consonant symbols include an inherent “a” vowel; various signs are attached to a
consonant to indicate a different vowel; medial consonants are attached to the consonant;
and the overall writing direction is from left to right.

Standards. There is not yet an official national standard for the encoding of Myanmar/Bur-
mese. The current encoding was prepared with the consultation of experts from the Myan-
mar Information Technology Standardization Committee (MITSC) in Yangon (Rangoon).
The MITSC, formed by the government in 1997, consists of experts from the Myanmar
Computer Scientists’ Association, Myanmar Language Commission, and Myanmar Histor-
ical Commission.

Encoding Principles. As with Indic scripts, the Myanmar encoding represents only the
basic underlying characters; multiple glyphs and rendering transformations are required to
assemble the final visual form for each syllable. Characters and combinations that may
appear visually identical in some fonts, such as U+101D ! myanmar letter wa and
U+1040 ! myanmar digit zero, are distinguished by their underlying encoding.

Composite Characters. As is the case in many other scripts, some Myanmar letters or signs
may be analyzed as composites of two or more other characters and are not encoded sepa-
rately. The following are three examples of Myanmar letters represented by combining
character sequences:

U+1000 . ka + U+1031 & vowel sign e + U+102C " vowel sign aa →
) /kàw/

U+1000 . ka + U+1031 & vowel sign e + U+102C " vowel sign aa +
U+103A ' asat → * /kaw/

U+1000 . ka + U+102D $ vowel sign i + U+102F % vowel sign u → (
/ko/

Encoding Subranges. The basic consonants, medials, independent vowels, and dependent
vowel signs required for writing the Myanmar language are encoded at the beginning of the
Myanmar block. Those are followed by script-specific digits, punctuation, and various
signs. The last part of the block contains extensions for consonants, medials, vowels, and
tone marks needed to represent historic text and various other languages. These extensions
support Pali and Sanskrit, as well as letters and tone marks for Mon, Karen, Kayah, and
Shan. The extensions include two tone marks for Khamti Shan and two vowel signs for
Aiton and Phake, but the majority of the additional characters needed to support those lan-
guages are found in the Myanmar Extended-A block.

Conjuncts. As in other Indic-derived scripts, conjunction of two consonant letters is indi-
cated by the insertion of a virama U+1039 A myanmar sign virama between them. It
causes the second consonant to be displayed in a smaller form below the first; the virama is
not visibly rendered.

Kinzi. The conjunct form of U+1004 + myanmar letter nga is rendered as a superscript
sign called kinzi. That superscript sign is not encoded as a separate mark, but instead is
simply the rendering form of the nga in a conjunct context. The nga is represented in logi-
cal order first in the sequence, before the consonant which actually bears the visible kinzi
superscript sign in final rendered form. For example, kinzi applied to U+1000 . myan-

mar letter ka would be written via the following sequence:

U+1004 + nga + U+103A ' asat + U+1039 A virama + U+1000 . ka
→ - ka

Note that this sequence includes both U+103A asat and U+1039 virama between the nga
and the ka. Use of the virama alone would ordinarily indicate stacking of the consonants,
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

370 Southeast Asian Scripts
with a small ka appearing under the nga. Use of the asat killer in addition to the virama
gives a sequence that can be distinguished from normal stacking: the sequence <U+1004,
U+103A, U+1039> always maps unambiguously to a visible kinzi superscript sign on the
following consonant.

Medial Consonants. The Myanmar script traditionally distinguishes a set of “medial” con-
sonants: forms of ya, ra, wa, and ha that are considered to be modifiers of the syllable’s
vowel. Graphically, these medial consonants are sometimes written as subscripts, but
sometimes, as in the case of ra, they surround the base consonant instead. In the Myanmar
encoding, the medial consonants are encoded separately. For example, the word ,
[kjwei] (“to drop off ”) would be written via the following sequence:

U+1000 . ka + U+103C & medial ra + U+103D (medial wa +

U+1031 & vowel sign e → , /kjwei/

In Pali and Sanskrit texts written in the Myanmar script, as well as in older orthographies of
Burmese, the consonants ya, ra, wa, and ha are sometimes rendered in subjoined form. In
those cases, U+1039 A myanmar sign virama and the regular form of the consonant are
used.

Asat. The asat, or killer, is a visibly displayed sign. In some cases it indicates that the inher-
ent vowel sound of a consonant letter is suppressed. In other cases it combines with other
characters to form a vowel letter. Regardless of its function, this visible sign is always repre-
sented by the character U+103A ' myanmar sign asat.

Contractions. In a few Myanmar words, the repetition of a consonant sound is written
with a single occurrence of the letter for the consonant sound together with an asat sign.
This asat sign occurs immediately after the double-acting consonant in the coded represen-
tation:

U+101A Z ya + U+1031 & vowel sign e + U+102C " vowel sign aa +

U+1000 . ka + U+103A ' asat + U+103B % medial ya + U+102C "
vowel sign aa + U+1038 5 visarga → ? man, husband

U+1000 . ka + U+103B % medial ya + U+103D (medial wa +

U+1014 [na + U+103A ' asat + U+102F , vowel sign u + U+1015 U pa

+ U+103A ' asat → @ I (first person singular)

Great sa. The great sa is encoded as U+103F \ myanmar letter great sa. This letter
should be represented with <U+103F>, while the sequence <U+101E, U+1039, U+101E>
should be used for the regular conjunct form of two sa, ., and the sequence <U+101E,
U+103A, U+101E> should be used for the form with an asat sign, -.

Tall aa. The two shapes # and " are both used to write the sound /a/. In Burmese
orthography, both shapes are used, depending on the visual context. In S’gaw Karen
orthography, only the tall form is used. For this reason, two characters are encoded:
U+102B # myanmar vowel sign tall aa and U+102C " myanmar vowel sign aa. In
Burmese texts, the coded character appropriate to the visual context should be used.

Ordering of Syllable Components. Dependent vowels and other signs are encoded after the
consonant to which they apply, except for kinzi, which precedes the consonant. Characters
occur in the relative order shown in Table 11-3.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.3 Myanmar 371
U+1031 & myanmar vowel sign e is encoded after its consonant (as in the earlier exam-
ple), although in visual presentation its glyph appears before (to the left of) the consonant
form.

Table 11-3 nominally refers to the character sequences used in representing the syllabic
structure of the Burmese language proper. It would require further extensions and modifi-
cations to cover the various other languages, such as Karen, Mon, and Shan, which also use
the Myanmar script.

Spacing. Myanmar does not use any whitespace between words. If explicit word break or
line break opportunities are desired—for example, for the use of automatic line layout
algorithms—the character U+200B zero width space should be used to place invisible
marks for such breaks. The zero width space can grow to have a visible width when justi-
fied. Spaces are used to mark phrases. Some phrases are relatively short (two or three sylla-
bles).

Myanmar Extended-A: U+AA60–U+AA7F

This block provides additional characters to support Khamti Shan, Aiton and Phake.
Khamti Shan is spoken by approximately 14,000 people in Myanmar and India. Aiton and
Phake are smaller language communities of around 2,000 each. Many of the characters
needed for these languages are provided by the main Myanmar block. Khamti Shan, Aiton,
and Phake writing conventions are based on Shan, and as such follow the general Myanmar
model of encoding.

Table 11-3. Myanmar Syllabic Structure

Class Example Encoding

kinzi B <U+1004, U+103A, U+1039>

consonant and vowel letters C [U+1000..U+102A, U+103F, U+104E]

asat sign (for contractions) Q U+103A

subscript consonant D
<U+1039, [U+1000..U+1019, U+101C,
U+101E, U+1020, U+1021]>

medial ya E U+103B

medial ra F U+103C

medial wa H U+103D

medial ha G U+103E

vowel sign e I U+1031

vowel sign i, ii, ai L, M, N [U+102D, U+102E, U+1032]

vowel sign u, uu J, K [U+102F, U+1030]

vowel sign tall aa, aa T, O [U+102B, U+102C]

anusvara P U+1036

asat sign Q U+103A

dot below R U+1037

visarga S U+1038
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

372 Southeast Asian Scripts
Khamti Shan

The Khamti Shan language has a long literary tradition which has largely been lost, for a
variety of reasons. The old script did not mark tones, and it had a scribal tradition that
encouraged restriction to a reading elite whose traditions have not been passed on. The
script has recently undergone a revival, with plans for it to be taught throughout the
Khamti-Shan-speaking regions in Myanmar. A new version of the script has been adopted
by the Khamti in Myanmar. The Khamti Shan characters in the Myanmar Extended-A
block supplement those in the Myanmar block and provide complete support for the mod-
ern Khamti Shan writing system as written in Myanmar. Another revision of the old script
was made in India under the leadership of Chau Khouk Manpoong in the 1990s. That revi-
sion has not gained significant popularity, although it enjoys some currency today.

Consonants. Approximately half of the consonants used in Khamti Shan are encoded in the
Myanmar block. Following the conventions used for Shan, Mon, and other extensions to
the Myanmar script, separate consonants are encoded specifically for Khamti Shan in this
block when they differ significantly in shape from corresponding letters conveying the
same consonant sounds in Myanmar proper. Khamti Shan also uses the three Myanmar
medial consonants encoded in the range U+101B..U+101D.

The consonants in this block are displayed in the code charts using a Burmese style, so that
glyphs for the entire Myanmar script are harmonized in a single typeface. However, the
local style preferred for Khamti Shan is slightly different, typically adding a small dot to
each character.

Vowels. The vowels and dependent vowel signs used in Khamti Shan are located in the
Myanmar block.

Tones. Khamti Shan has eight tones. Seven of these are written with explicit tone marks;
one is unmarked. All of the explicit tone marks are encoded in the Myanmar block. Khamti
Shan makes use of four of the Shan tone marks and the visarga. In addition, two Khamti
Shan-specific tone marks are separately encoded. These tone marks for Khamti Shan are
listed in Table 11-4.

The vertical positioning of the small circle in some of these tone marks is considered dis-
tinctive. U+109A myanmar sign khamti tone-1 (with a high position) is not the same as
U+108B myanmar sign shan council tone-2 (with a mid-level position). Neither of
those should be confused with U+1089 myanmar sign shan tone-5 (with a low position).

The tone mark characters in Shan fonts are typically displayed with open circles. However,
in Khamti Shan, the circles in the tone marks normally are filled in (black).

Digits. Khamti Shan uses the Shan digits from the range U+1090..U+109A.

Other Symbols. Khamti Shan uses the punctuation marks U+104A myanmar sign little

section and U+104B myanmar sign section. The repetition mark U+AA70 myanmar

Table 11-4. Khamti Shan Tone Marks

Tone Character

1 U+109A myanmar sign khamti tone-1

2 U+1089 myanmar sign shan tone-5

3 U+109B myanmar sign khamti tone-3

4 U+1087 myanmar sign shan tone-2

5 U+1088 myanmar sign shan tone-3

6 U+1038 myanmar sign visarga

7 unmarked

8 U+108A myanmar sign shan tone-6
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.3 Myanmar 373
modifier letter khamti reduplication is functionally equivalent to U+0E46 thai

character maimayok.

Three logogram characters are also used. These logograms can take tone marks, and their
meaning varies according to the tone they take. They are used when transcribing speech
rather than in formal writing. For example, U+AA75 myanmar logogram khamti qn

takes three tones and means “negative,” “giving” or “yes,” according to which tone is
applied. The other two logograms are U+AA74 myanmar logogram khamti oay and
U+AA76 myanmar logogram khamti hm.

Subjoined Characters. Khamti Shan does not use subjoined characters.

Historical Khamti Shan. The characters of historical Khamti Shan are for the most part
identical to those used in the New Khamti Shan orthography. Most variation is merely sty-
listic. There were no Pali characters. The only significant character difference lies with ra—
which follows Aiton and Phake in using a la with medial ra (U+AA7A myanmar letter

aiton ra).

During the development of the New Khamti Shan orthography a few new character shapes
were introduced that were subsequently revised. Because materials have been published
using these shapes, and these shapes cannot be considered stylistic variants of other charac-
ters, these characters are separately encoded in the range U+AA71..U+AA73.

Aiton and Phake

The Aiton and Phake writing systems are very closely related. There are a small number of
differences in shape between Aiton and Phake characters, but these are considered only
glyphic differences. As for Khamti Shan, most of the characters needed for Aiton and Phake
are found in the Myanmar block.

Consonants. U+107A myanmar letter shan nya is used rather than following the
Khamti U+AA65 myanmar letter khamti nya because the character shape follows Shan
rather than Khamti.

Subjoined Consonants. Aiton and Phake have a system of subjoining consonants to chain
syllables in a polysyllabic word. This system follows that of Burmese and is encoded in the
same way: with U+1039 myanmar sign virama followed by the code of the consonant
being subjoined. The following characters may take a subjoined form, which takes the same
shape as the base character but smaller: U+1000, U+AA61, U+1010, U+1011, U+1015,
U+101A, U+101C. No other subjoined characters are known in Aiton and Phake.

Vowels. The vowels follow Shan for the most part, and are therefore based on the characters
in the Myanmar block. In addition to the simple vowels there are a number of diphthongs
in Aiton and Phake. One vowel and one diphthong required for these languages were added
as extensions at the end of the Myanmar block. A number of the vowel letters and diph-
thongs in the Aiton and Phake alphabets are composed of a sequence of code points. For
example, the vowel -ue is represented by the sequence <U+102D, U+102F, U+101D,
U+103A>.

Ligatures. The characters in the range U+AA77..U+AA79 are a set of ligature symbols that
follow the same principles used for U+109E myanmar symbol shan one and U+109F
myanmar symbol shan exclamation. They are symbols that constitute a word in their
own right and do not take diacritics.

Tones. Traditionally tones are not marked in Aiton and Phake, although U+109C myan-

mar vowel sign aiton a (short -a) can be used as a type of tone marker. All proposed pat-
terns for adding tone marking to Aiton and Phake can be represented with the tone marks
used for Shan or Khamti Shan.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

374 Southeast Asian Scripts
11.4 Khmer

Khmer: U+1780–U+17FF

Khmer, also known as Cambodian, is the official language of the Kingdom of Cambodia.
Mutually intelligible dialects are also spoken in northeastern Thailand and in the Mekong
Delta region of Vietnam. Although Khmer is not an Indo-European language, it has bor-
rowed much vocabulary from Sanskrit and Pali, and religious texts in those languages have
been both transliterated and translated into Khmer. The Khmer script is also used to render
a number of regional minority languages, such as Tampuan, Krung, and Cham.

The Khmer script, called aksaa khmae (“Khmer letters”), is also the official script of Cam-
bodia. It is descended from the Brahmi script of South India, as are Thai, Lao, Myanmar,
Old Mon, and others. The exact sources have not been determined, but there is a great sim-
ilarity between the earliest inscriptions in the region and the Pallawa script of the Coro-
mandel coast of India. Khmer has been a unique and independent script for more than
1,400 years. Modern Khmer has two basic styles of script: the aksaa crieng (“slanted script”)
and the aksaa muul (“round script”). There is no fundamental structural difference
between the two. The slanted script (in its “standing” variant) is chosen as representative in
the code charts.

Principles of the Khmer Script

Structurally, the Khmer script has many features in common with other Brahmi-derived
scripts, such as Devanagari and Myanmar. Consonant characters bear an inherent vowel
sound, with additional signs placed before, above, below, and/or after the consonants to
indicate a vowel other than the inherent one. The overall writing direction is left to right.

In comparison with the Devanagari script, explained in detail in Section 9.1, Devanagari,
the Khmer script has developed several distinctive features during its evolution.

Glottal Consonant. The Khmer script has a consonant character for a glottal stop (qa) that
bears an inherent vowel sound and can have an optional vowel sign. While Khmer also has
independent vowel characters like Devanagari, as shown in Table 11-5, in principle many of
its sounds can be represented by using qa and a vowel sign. This does not mean these rep-
resentations are always interchangeable in real words. Some words are written with one
variant to the exclusion of others.

Table 11-5. Independent Khmer Vowel Characters

Name
Independent
Vowel

Qa with
Vowel Sign

i G DY, DY], DZ
ii H DZ, DY]
u I D], Dl]
uk J D]"
uu K D^, Dl^
uuv L D>̂
ry M <[
ryy N <\
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.4 Khmer 375
Subscript Consonants. Subscript consonant signs differ from independent consonant
characters and are called coeng (literally, “foot, leg”) after their subscript position. While a
consonant character can constitute an orthographic syllable by itself, a subscript consonant
sign cannot. Note that U+17A1 C khmer letter la does not have a corresponding sub-
script consonant sign in standard Khmer, but does have a subscript in the Khmer script
used in Thailand.

Subscript consonant signs are used to represent any consonant following the first conso-
nant in an orthographic syllable. They also have an inherent vowel sound, which may be
suppressed if the syllable bears a vowel sign or another subscript consonant.

The subscript consonant signs are often used to represent a consonant cluster. Two consec-
utive consonant characters cannot represent a consonant cluster because the inherent
vowel sound in between is retained. To suppress the vowel, a subscript consonant sign (or
rarely a subscript independent vowel) replaces the second consonant character. Theoreti-
cally, any consonant cluster composed of any number of consonant sounds without inher-
ent vowel sounds in between can be represented systematically by a consonant character
and as many subscript consonant signs as necessary.

Examples of subscript consonant signs for a consonant cluster follow:

= t lo + coeng + ngo [l}mq] “sesame” (compare =& lo + ngo [lmq}] “to
haunt”)

="2 %Z lo + ka + coeng + sa + coeng + mo + ii [lr'ksmei] “beauty, luck”

McB / ka + aa + ha + coeng + vo + e [kaqfeq] “coffee”

The subscript consonant signs in the Khmer script can be used to denote a final consonant,
although this practice is uncommon.

Examples of subscript consonant signs for a closing consonant follow:

ĥ t to + aa + nikahit + coeng + ngo [tr'}] “both” (= ĥ&) (≠ *^hh [t}m'm])

cBZ, ha + oe + coeng + yo [ha'i] “already” (= cBZ;) (≠ *cB,Z [hya'])

While these subscript consonant signs are usually attached to a consonant character, they
can also be attached to an independent vowel character. Although this practice is relatively
rare, it is used in one very common word, meaning “to give.”

Examples of subscript consonant signs attached to an independent vowel character follow:

S, qoo-1 + coeng + yo [paoi] “to give” (= S; and also T,)
S+ qoo-1 + coeng + mo [paom] “exclamation of solemn affirmation” (=

S:)

ly O =[
lyy P =\
e Q cD, dD
ai R eD
oo S, T co
au U ci

Table 11-5. Independent Khmer Vowel Characters (Continued)

Name
Independent
Vowel

Qa with
Vowel Sign
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

376 Southeast Asian Scripts
Subscript Independent Vowel Signs. Some independent vowel characters also have corre-
sponding subscript independent vowel signs, although these are rarely used today.

Examples of subscript independent vowel signs follow:

7B: pha + coeng + qe + mo [pspaem] “sweet” (= d75: pha + coeng + qa +

ae + mo)

B >3r; ha + coeng + ry + to + samyok sannya + yo [harotey] “heart”

(royal) (= BM3r; ha + ry + to + samyok sannya + yo)

Consonant Registers. The Khmer language has a richer set of vowels than the languages for
which the ancestral script was used, although it has a smaller set of consonant sounds. The
Khmer script takes advantage of this situation by assigning different characters to represent
the same consonant using different inherent vowels. Khmer consonant characters and signs
are organized into two series or registers, whose inherent vowels are nominally -a in the
first register and -o in the second register, as shown in Table 11-6. The register of a conso-
nant character is generally reflected on the last letter of its transliterated name. Some con-
sonant characters and signs have a counterpart whose consonant sound is the same but
whose register is different, as ka and ko in the first row of the table. For the other consonant
characters and signs, two “shifter” signs are available. U+17C9 khmer sign muusikatoan

converts a consonant character and sign from the second to the first register, while
U+17CA khmer sign triisap converts a consonant from the first register to the second
(rows 2–4). To represent pa, however, muusikatoan is attached not to po but to ba, in an
exceptional use (row 5). The phonetic value of a dependent vowel sign may also change
depending on the context of the consonant(s) to which it is attached (row 6).

Encoding Principles. Like other related scripts, the Khmer encoding represents only the
basic underlying characters; multiple glyphs and rendering transformations are required to
assemble the final visual form for each orthographic syllable. Individual characters, such as
U+1789 khmer letter nyo, may assume variant forms depending on the other characters
with which they combine.

Subscript Consonant Signs. In the way that many Cambodians analyze Khmer today, sub-
script consonant signs are considered to be different entities from consonant characters.
The Unicode Standard does not assign independent code points for the subscript conso-
nant signs. Instead, each of these signs is represented by the sequence of two characters: a
special control character (U+17D2 khmer sign coeng) and a corresponding consonant
character. This is analogous to the virama model employed for representing conjuncts in
other related scripts. Subscripted independent vowels are encoded in the same manner.
Because the coeng sign character does not exist as a letter or sign in the Khmer script, the

Table 11-6. Two Registers of Khmer Consonants

Row First Register Second Register

1 " ka [ktq] “neck” $ ko [kmq] “mute”

2 <k ro + muusikatoan [rtq] “small saw” < ro [rmq] “fence (in the water)”

3
A" sa + ka [stqk] “to peel, to shed
one’s skin”

Al" sa + triisap + ka [smqk] “to insert”

4 6" ba + ka [btqk] “to return” *6l" ba + triisap + ka [bmqk]

5
6k: ba + muusikatoan + mo [ptqm]
“blockhouse”

8: po + mo [pmqm] “to put into the
mouth”

6 "^< ka + u + ro [koq] “to stir” $^< ko + u + ro [kuq] “to sketch”
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.4 Khmer 377
Unicode model departs from the ordinary way that Khmer is conceived of and taught to
native Khmer speakers. Consequently, the encoding may not be intuitive to a native user of
the Khmer writing system, although it is able to represent Khmer correctly.

U+17D2 A khmer sign coeng is not actually a coeng but a coeng generator, because coeng
in Khmer refers to the subscript consonant sign. The glyph for U+17D2 A khmer sign

coeng shown in the code charts is arbitrary and is not actually rendered directly; the dot-
ted box around the glyph indicates that special rendering is required. To aid Khmer script
users, a listing of typical Khmer subscript consonant letters has been provided in Table 11-7
together with their descriptive names following preferred Khmer practice. While the Uni-
code encoding represents both the subscripts and the combined vowel letters with a pair of
code points, they should be treated as a unit for most processing purposes. In other words,
the sequence functions as if it had been encoded as a single character. A number of inde-
pendent vowels also have subscript forms, as shown in Table 11-9.

Table 11-7. Khmer Subscript Consonant Signs

Glyph Code Name

!p 17D2 1780 khmer consonant sign coeng ka

!q 17D2 1781 khmer consonant sign coeng kha

!r 17D2 1782 khmer consonant sign coeng ko

!s 17D2 1783 khmer consonant sign coeng kho

!t 17D2 1784 khmer consonant sign coeng ngo

!u 17D2 1785 khmer consonant sign coeng ca

!v 17D2 1786 khmer consonant sign coeng cha

!w 17D2 1787 khmer consonant sign coeng co

!x 17D2 1788 khmer consonant sign coeng cho

!y 17D2 1789 khmer consonant sign coeng nyo

!z 17D2 178A khmer consonant sign coeng da

!{ 17D2 178B khmer consonant sign coeng ttha

!| 17D2 178C khmer consonant sign coeng do

!} 17D2 178D khmer consonant sign coeng ttho

!~ 17D2 178E khmer consonant sign coeng na

!" 17D2 178F khmer consonant sign coeng ta

!# 17D2 1790 khmer consonant sign coeng tha

!$ 17D2 1791 khmer consonant sign coeng to

!% 17D2 1792 khmer consonant sign coeng tho

!& 17D2 1793 khmer consonant sign coeng no

!' 17D2 1794 khmer consonant sign coeng ba

!(17D2 1795 khmer consonant sign coeng pha

!) 17D2 1796 khmer consonant sign coeng po

!* 17D2 1797 khmer consonant sign coeng pho
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

378 Southeast Asian Scripts
As noted earlier, <U+17D2, U+17A1> represents a subscript form of la that is not used in
Cambodia, although it is employed in Thailand.

Dependent Vowel Signs. Most of the Khmer dependent vowel signs are represented with a
single character that is applied after the base consonant character and optional subscript
consonant signs. Three of these Khmer vowel signs are not encoded as single characters in
in the Unicode Standard. The vowel sign am is encoded as a nasalization sign, U+17C6
khmer sign nikahit. Two vowel signs, om and aam, have not been assigned independent
code points. They are represented by the sequence of a vowel (U+17BB khmer vowel sign

u and U+17B6 khmer vowel sign aa, respectively) and U+17C6 khmer sign nikahit.

The nikahit is superficially similar to anusvara, the nasalization sign in the Devanagari
script, although in Khmer it is usually regarded as a vowel sign am. Anusvara not only rep-
resents a special nasal sound, but also can be used in place of one of the five nasal conso-
nants homorganic to the subsequent consonant (velar, palatal, retroflex, dental, or labial,
respectively). Anusvara can be used concurrently with any vowel sign in the same ortho-
graphic syllable. Nikahit, in contrast, functions differently. Its final sound is [m], irrespec-
tive of the type of the subsequent consonant. It is not used concurrently with the vowels ii,
e, ua, oe, oo, and so on, although it is used with the vowel signs aa and u. In these cases the
combination is sometimes regarded as a unit—aam and om, respectively. The sound that
aam represents is [m'm], not [aqm]. The sequences used for these combinations are shown
in Table 11-8.

!+ 17D2 1798 khmer consonant sign coeng mo

!, 17D2 1799 khmer consonant sign coeng yo

-! 17D2 179A khmer consonant sign coeng ro

!. 17D2 179B khmer consonant sign coeng lo

!/ 17D2 179C khmer consonant sign coeng vo

!0 17D2 179D khmer consonant sign coeng sha

!1 17D2 179E khmer consonant sign coeng ssa

!2 17D2 179F khmer consonant sign coeng sa

!3 17D2 17A0 khmer consonant sign coeng ha

!4 17D2 17A1 khmer consonant sign coeng la

!5 17D2 17A2 khmer vowel sign coeng qa

Table 11-8. Khmer Composite Dependent Vowel Signs with Nikahit

Glyph Code Name

!h] 17BB 17C6 khmer vowel sign om

!hX 17B6 17C6 khmer vowel sign aam

Table 11-7. Khmer Subscript Consonant Signs (Continued)

Glyph Code Name
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.4 Khmer 379
Examples of dependent vowel signs ending with [m] follow:

,h da + nikahit [dtm] “to pound” (compare ,: da + mo [dtqm] “nec-
tar”)

ch po + aa + nikahit [pm'm] “to carry in the beak” (compare c: po +
aa + mo [pè'm] “mouth of a river”)

Independent Vowel Characters. In Khmer, as in other Brahmic scripts, some independent
vowels have their own letterforms, although the sounds they represent may more often be
represented with the consonant character for the glottal stop (U+17A2 khmer letter qa)
modified by vowel signs (and optionally a consonant character). These independent vowels
are encoded as separate characters in the Unicode Standard.

Subscript Independent Vowel Signs. Some independent vowels have corresponding sub-
script independent vowel signs, although these are rarely used. Each is represented by the
sequence of U+17D2 khmer sign coeng and an independent vowel, as shown in
Table 11-9.

Other Signs as Syllabic Components. The Khmer sign robat historically corresponds to the
Devanagari repha, a representation of syllable-initial r-. However, the Khmer script can
treat the initial r- in the same way as the other initial consonants—namely, a consonant
character ro and as many subscript consonant signs as necessary. Some old loan words
from Sanskrit and Pali include robat, but in some of them the robat is not pronounced and
is preserved in a fossilized spelling. Because robat is a distinct sign from the consonant
character ro, the Unicode Standard encodes U+17CC khmer sign robat, but it treats the
Devanagari repha as a part of a ligature without encoding it. The authoritative Chuon Nath
dictionary sorts robat as if it were a base consonant character, just as the repha is sorted in
scripts that use it. The consonant over which robat resides is then sorted as if it were a sub-
script.

Examples of consonant clusters beginning with ro and robat follow:

g)<2 Z ro + aa + co + ro + coeng + sa + ii [rè'crsei] “king hermit”

o;n qa + aa + yo + robat [paqrya] “civilized” (= o<, qa + aa + ro +
coeng + yo)

81ne5 po + ta + robat + mo + aa + no [pmqdtmè'n] “news” (compare
Sanskrit rstuvw vartamZna “the present time”)

U+17DD khmer sign atthacan is a rarely used sign that denotes that the base consonant
character keeps its inherent vowel sound. This use contrasts with U+17D1 khmer sign

viriam, which indicates the removal of the inherent vowel sound of a base consonant.
U+17CB khmer sign bantoc shortens the vowel sound of the previous orthographic sylla-
ble. U+17C7 khmer sign reahmuk, U+17C8 khmer sign yuukaleapintu, U+17CD
khmer sign toandakhiat, U+17CE khmer sign kakabat, U+17CF khmer sign ahsda,

Table 11-9. Khmer Subscript Independent Vowel Signs

Glyph Code Name

!: 17D2 17A7 khmer independent vowel sign coeng qu

!> 17D2 17AB khmer independent vowel sign coeng ry

!? 17D2 17AC khmer independent vowel sign coeng ryy

!B 17D2 17AF khmer independent vowel sign coeng qe
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

380 Southeast Asian Scripts
and U+17D0 khmer sign samyok sannya are also explicitly encoded signs used to com-
pose an orthographic syllable.

Ligatures. Some vowel signs form ligatures with consonant characters and signs. These lig-
atures are not encoded separately, but should be presented graphically by the rendering
software. Some common ligatures are shown in Figure 11-1.

Multiple Glyphs. A single character may assume different forms according to context. For
example, a part of the glyph for nyo is omitted when a subscript consonant sign is attached.
The implementation must render the correct glyph according to context. Coeng nyo also
changes its shape when it is attached to nyo. The correct glyph for the sequence <U+17D2
khmer sign coeng, U+1789 khmer letter nyo> is rendered according to context, as
shown in Figure 11-2. This kind of glyph alternation is very common in Khmer. Some spac-
ing subscript consonant signs change their height depending on the orthographic context.
Similarly, the vertical position of many signs varies according to context. Their presenta-
tion is left to the rendering software.

U+17B2 T khmer independent vowel qoo type two is thought to be a variant of
U+17B1 S khmer independent vowel qoo type one, but it is explicitly encoded in the
Unicode Standard. The variant is used in very few words, but these include the very com-
mon word aoi “to give,” as noted in Figure 11-2.

Characters Whose Use Is Discouraged. Some of the Khmer characters encoded in the Uni-
code Standard are not recommended for use for various reasons.

U+17A3 khmer independent vowel qaq and U+17A4 khmer independent vowel

qaa are deprecated, and their use is strongly discouraged. One feature of the Khmer script
is the introduction of the consonant character for a glottal stop (U+17A2 khmer letter

qa). This made it unnecessary for each initial vowel sound to have its own independent
vowel character, although some independent vowels exist. Neither U+17A3 nor U+17A4
actually exists in the Khmer script. Other related scripts, including the Devanagari script,
have independent vowel characters corresponding to them (a and aa), but they can be
transliterated by khmer letter qa and khmer letter qa + khmer vowel aa, respectively, without
ambiguity because these scripts have no consonant character corresponding to the khmer
qa.

Figure 11-1. Common Ligatures in Khmer

" ka + !X aa + < ro = M< [kaq] “job”

6 ba + !X aa = a [baq] “father, male of an animal”; used to prevent confusion with B ha

6 ba + g au = c[[baw] “to suck”

: mo + !2 coeng sa + g au = c:a [msaw] “powder”

A sa + & ngo + !q coeng kha + !, coeng yo + !X aa = A& qZ [st}ksyaq] “counting”

Figure 11-2. Common Multiple Forms in Khmer

++[: nyo + nyo + y + mo [tmtom] “to smile”

'YccZu: ca + i + nyo + coeng + ca + oe + mo [cetca'm] “eyebrow”

Ay6 i sa + coeng nyo + ba + bantoc [sttp] “to respect”

"KH ka + nyo + coeng + nyo + aa [kattaq] “girl, Miss, September”

T, qoo-2 + coeng + yo (= S, qoo-1 + coeng + yo) [paoi] “to give”
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.4 Khmer 381
The use of U+17B4 khmer vowel inherent aq and U+17B5 khmer vowel inherent aa

is discouraged. These newly invented characters do not exist in the Khmer script. They
were intended to be used to represent a phonetic difference not expressed by the spelling, so
as to assist in phonetic sorting. However, they are insufficient for that purpose and should
be considered errors in the encoding. These two characters are ignored by default for colla-
tion.

The use of U+17D8 khmer sign beyyal is discouraged. It was supposed to represent “et
cetera” in Khmer. However, it is a word rather than a symbol. Moreover, it has several dif-
ferent spellings. It should be spelled out fully using normal letters. Beyyal can be written as
follows:

N khan + ba + e + khan

O en dash + ba + e + en dash

v=v khan + lo + khan

M en dash + lo + en dash

Ordering of Syllable Components. The standard order of components in an orthographic
syllable as expressed in BNF is

B {R | C} {S {R}}* {{Z} V} {O} {S}

where

B is a base character (consonant character, independent vowel character,
and so on)

R is a robat

C is a consonant shifter

S is a subscript consonant or independent vowel sign

V is a dependent vowel sign

Z is a zero width non-joiner or a zero width joiner

O is any other sign

For example, the common word #yhj khnyom “I” is composed of the following three ele-
ments: (1) consonant character kha as B; (2) subscript consonant sign coeng nyo as S; and
(3) dependent vowel sign om as V. In the Unicode Standard, coeng nyo and om are further
decomposed, and the whole word is represented by five coded characters.

#y hj kha + coeng + nyo + u + nikahit [kstom] “I”

The order of coded characters does not always match the visual order. For example, some of
the dependent vowel signs and their fragments may seem to precede a consonant character,
but they are always put after it in the sequence of coded characters. This is also the case with
coeng ro. Examples of visual reordering and other aspects of syllabic order are shown in
Figure 11-3.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

382 Southeast Asian Scripts
Consonant Shifters. U+17C9 khmer sign muusikatoan and U+17CA khmer sign tri-

isap are consonant shifters, also known as register shifters. In the presence of other super-
script glyphs, both of these signs are usually rendered with the same glyph shape as that of
U+17BB khmer vowel sign u, as shown in the last two examples of Figure 11-3.

Although the consonant shifter in handwriting may be written after the subscript, the con-
sonant shifter should always be encoded immediately following the base consonant, except
when it is preceded by U+200C zero width non-joiner. This provides Khmer with a
fixed order of character placement, making it easier to search for words in a document.

e:kt mo + muusikatoan + coeng + ngo + ai [m}ai] “one day”

d:l31y mo + triisap + coeng + ha + ae + ta + lek too [mhrqtmhrqt]
“bland”

If either muusikatoan or triisap needs to keep its superscript shape (as an exception to the
general rule that states other superscripts typically force the alternative subscript glyph for
either character), U+200C zero width non-joiner should be inserted before the conso-
nant shifter to show the normal glyph for a consonant shifter when the general rule
requires the alternative glyph. In such cases, U+200C zero width non-joiner is inserted
before the vowel sign, as shown in the following examples:

6lkd;< ba + Ã + triisap + ii + yo + ae + ro [biyrq] “beer”

-61\&Dl li ba + coeng + ro + ta + yy + ngo + qa + Ã + triisap + y +
reahmuk [prtt'q}poh] “urgent, too busy”

-61\&D][i ba + coeng + ro + ta + yy + ngo + qa + triisap + y + reahmuk

Ligature Control. In the askaa muul font style, some vowel signs ligate with the consonant
characters to which they are applied. The font tables should determine whether they form a
ligature; ligature use in muul fonts does not affect the meaning. However, U+200C zero

width non-joiner may be inserted before the vowel sign to explicitly suppress such a lig-
ature, as shown in Figure 11-4 for the word “savant,” pronounced [vitu:].

Figure 11-3. Examples of Syllabic Order in Khmer

c3 to + e [tèq] “much”

c-'Z5 ca + coeng + ro + oe + no [cra'n] “much”

A'Q m: sa + ngo + coeng + ko + coeng + ro + aa + mo [st}krè'm] “war”

cBZ, ha + oe + coeng + yo [ha'i] “already”

AKH sa + nyo + coeng + nyo + aa [sattaq] “sign”

AZ] sa + triisap + ii [siq] “eat”

6Z] ba + muusikatoan + ii [pei] “a kind of flute”

Figure 11-4. Ligation in Muul Style in Khmer

>Y3^ vo + i + to + uu (aksaa crieng font)

opq, nxpq vo + i + to + uu (ligature dependent on the muul font)

nxpq vo + Ã + i + to + uu (Ã to prevent the ligature in a muul font)

opq vo + Ä + i + to + uu (Ä to request the ligature in a muul font)
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.5 Tai Le 383
Spacing. Khmer does not use whitespace between words, although it does use whitespace
between clauses and between parts of a name. If word boundary indications are desired—
for example, as part of automatic line layout algorithms—the character U+200B zero

width space should be used to place invisible marks for such breaks. The zero width

space can grow to have a visible width when justified. See Table 16-2.

Khmer Symbols: U+19E0–U+19FF

Symbols. Many symbols for punctuation, digits, and numerals for divination lore are
encoded as independent entities. Symbols for the lunar calendar are encoded as single char-
acters that cannot be decomposed even if their appearance might seem to be decompos-
able. U+19E0 khmer symbol pathamasat represents the first ashadha (eighth month) of
the lunar calendar. During the type of leap year in the lunar calendar known as adhikameas,
there is also a second ashadha. U+19F0 khmer symbol tuteyasat represents that second
ashadha. The 15 characters from U+19E1 khmer symbol muoy koet to U+19EF khmer

symbol dap-pram koet represent the first through the fifteenth lunar waxing days, respec-
tively. The 15 characters from U+19F1 khmer symbol muoy roc through U+19FF khmer

symbol dap-pram roc represent the first through the fifteenth waning days, respectively.
The typographical form of these lunar dates is a top and bottom section of the same size
text. The dividing line between the upper and lower halves of the symbol is the vertical cen-
ter of the line height.

11.5 Tai Le

Tai Le: U+1950–U+197F

The Tai Le script has a history of 700–800 years, during which time several orthographic
conventions were used. The modern form of the script was developed in the years following
1954; it rationalized the older system and added a systematic representation of tones with
the use of combining diacritics. The new system was revised again in 1988, when spacing
tone marks were introduced to replace the combining diacritics. The Unicode encoding of
Tai Le handles both the modern form of the script and its more recent revision.

The Tai Le language is also known as Tai Nüa, Dehong Dai, Tai Mau, Tai Kong, and Chinese
Shan. Tai Le is a transliteration of the indigenous designation, HIJ KLM [tai2 l'6] (in older
orthography HN KLO). The modern Tai Le orthographies are straightforward: initial conso-
nants precede vowels, vowels precede final consonants, and tone marks, if any, follow the
entire syllable. There is a one-to-one correspondence between the tone mark letters now
used and existing nonspacing marks in the Unicode Standard. The tone mark is the last
character in a syllable string in both orthographies. When one of the combining diacritics
follows a tall letter P, Q, R, S, T or L, it is displayed to the right of the letter, as shown in
Table 11-10.

Table 11-10. Tai Le Tone Marks

Syllable
New
Orthography

Old
Orthography

ta < H
ta2 <C =
ta3 <D >
ta4 <E ?
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

384 Southeast Asian Scripts
Digits. In China, European digits (U+0030..U+0039) are mainly used, although Myanmar
digits (U+1040..U+1049) are also used with slight glyph variants, as shown in Table 11-11.

Punctuation. Both CJK punctuation and Western punctuation are used. Typographically,
European digits are about the same height and depth as the tall characters L and S. In some
fonts, the baseline for punctuation is the depth of those characters.

11.6 New Tai Lue

New Tai Lue: U+1980–U+19DF

The New Tai Lue script, also known as Xishuang Banna Dai, is used mainly in southern
China. The script was developed in the twentieth century as an orthographic simplification
of the historic Lanna script used to write the Tai Lue language. “Lanna” refers to a region in
present-day northern Thailand as well as to a Tai principality that existed in that region
from approximately the late thirteenth century to the early twenieth century. The Lanna
script grew out of the Mon script and was adapted in various forms in the Lanna kingdom
and by Tai-speaking communities in surrounding areas that had close contact with the
kingdom, including southern China. The Lanna script, also known as the Tai Tham script
(see Section 11.7, Tai Tham), is still used to write various languages of the Tai family today,
including Tai Lue. The approved orthography for this language uses the New Tai Lue script;
however, usage of the older orthography based on a variant of Lanna script can still be
found.

New Tai Lue differs from Tai Tham in that it regularizes the consonant repertoire, simpli-
fies the writing of consonant clusters and syllable-final consonants, and uses only spacing
vowel signs, which appear before or after the consonants they modify. By contrast, Lanna
uses both spacing vowel signs and nonspacing vowel signs, which appear above or below
the consonants they modify.

ta5 <F @
ta6 <G A
ti <B <B
ti2 <BC <BH
ti3 <BD <BI
ti4 <BE <BJ
ti5 <BF <BK
ti6 <BG <BL

Table 11-11. Myanmar Digits

Myanmar-Style Glyphs Tai Le-Style Glyphs

U V W X Y Z [\] ^ U V _ X Y Z ` \ a b
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Table 11-10. Tai Le Tone Marks (Continued)

Syllable
New
Orthography

Old
Orthography
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.7 Tai Tham 385
Syllabic Structure. All vowel signs in New Tai Lue are considered combining characters
and follow their base consonants in the text stream. Where a syllable is composed of a
vowel sign to the left and a vowel or tone mark on the right of the consonant, a sequence of
characters is used, in the order consonant + vowel + tone mark, as shown in Table 11-12.

Final Consonants. A virama or killer character is not used to create conjunct consonants in
New Tai Lue, because clusters of consonants do not regularly occur. New Tai Lue has a lim-
ited set of final consonants, which are modified with a hook showing that the inherent
vowel is killed.

Tones. Similar to the Thai and Lao scripts, New Tai Lue consonant letters come in pairs that
denote two tonal registers. The tone of a syllable is indicated by the combination of the
tonal register of the consonant letter plus a tone mark written at the end of the syllable, as
shown in Table 11-13.

Digits. The New Tai Lue script adapted its digits from the Tai Tham (or Lanna) script. Tai
Tham used two separate sets of digits, one known as the hora set, and one known as the
tham set. The New Tai Lue digits are adapted from the hora set.

The one exception is the additional New Tai Lue digit for one: U+19DA m new tai lue

tham digit one. The regular hora form for the digit, U+19D1 n new tai lue digit one,
has the exact same glyph shape as a common New Tai Lue vowel, U+19B3 o new tai lue

vowel sign aa. For this reason, U+19DA is often substituted for U+19D1 in contexts
which are not obviously numeric, to avoid visual ambiguity. Implementations of New Tai
Lue digits need to be aware of this usage, as U+19DA may occur frequently in text.

11.7 Tai Tham

Tai Tham: U+1A20–U+1AAF

The Tai Tham (or Lanna) script is used for three living languages: Northern Thai (that is,
Kam Mu’ang), Tai Lue, and Khün. In addition, the script is also used for Lao Tham (or Old

Table 11-12. New Tai Lue Vowel Placement

F ka + E~ e + ~G t1 → EFG [ke:2]

F ka + E~ e + ~H i → EFH [k':1]

F ka + E~ e + ~I iy → EFI [k'i1]

F ka + E~ e + ~I iy + ~G t1 → EFIG [k'i2]

F ka + E~ e + ~I iy + ~J t2 → EFIJ [k'i3]

Table 11-13. New Tai Lue Registers and Tones

Display Sequence Register Tone Mark Tone Transcription

F kah high 1 [ka1]

FG kah + t1 high t1 2 [ka2]

FJ kah + t2 high t2 3 [ka3]

L kal low 4 [ka4]

LG kal + t1 low t1 5 [ka5]

LJ ka1 + t2 low t2 6 [ka6]
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

386 Southeast Asian Scripts
Lao) and other dialect variants in Buddhist palm leaves and notebooks. The script is also
known as the Tham or Yuan script. Few of the six million speakers of Northern Thai are lit-
erate in the Tai Tham script, although there is some rising interest in the script among the
young. There are about 670,000 speakers of Tai Lue. Of those, people born before 1950 may
be literate in the Tai Tham script. Younger speakers are taught the New Tai Lue script,
instead. (See Section 11.6, New Tai Lue.) The Tai Tham script continues to be taught in the
Tai Lue monasteries. There are 120,000 speakers of Khün for which Tai Tham is the only
script.

Consonants. Consonants have an inherent -a vowel sound. Most consonants have a com-
bining subjoined form, but unlike most other Brahmi-derived scripts, the subjoining of a
consonant does not mean that the vowel of the previous consonant is killed. A subjoined
consonant may be the first consonant of the following syllable. The encoding model for Tai
Tham is more similar to the Khmer coeng model than to the usual virama model: the char-
acter U+1A60 tai tham sign sakot is entered before a consonant which is to take the sub-
joined form. A subjoined consonant may be attached to a dependent vowel sign.

U+1A4B tai tham letter a represents a glottal consonant. Its rendering in Northern Thai
differs from that typical for Tai Lue and Khün.

A number of Tai Tham characters did not traditionally take subjoined forms, but modern
innovations in borrowed vocabulary suggest that fonts should make provision for subjoin-
ing behavior for all of the consonants except the historical vocalic r and l.

Independent Vowels. Independent vowels are used as in other Brahmi-derived scripts.
U+1A52 tai tham letter oo is not used in Northern Thai.

Dependent Consonant Signs. Seven dependent consonant signs occur. Two of these are
used as medials: U+1A55 tai tham consonant sign medial ra and U+1A56 tai tham

consonant sign medial la form clusters and immediately follow a consonant.

U+1A58 tai tham sign mai kang lai is used as a final -ng in Northern Thai and Tai Lue.
Its shape is distinct in Khün. U+1A59 tai tham consonant sign final nga is also used as
a final -ng in Northern Thai.

U+1A5B tai tham consonant sign high ratha or low pa represents high ratha in san-
thZn “shape” and low pa in sappa “omniscience”.

Dependent Vowel Signs. Dependent vowel signs are used in a manner similar to that
employed by other Brahmi-derived scripts, although Tai Tham uses many of them in com-
bination.

U+1A63 tai tham vowel sign aa and U+1A64 tai tham vowel sign tall aa are sepa-
rately encoded because the choice of which form to use cannot be reliably predicted from
context.

The Khün character U+1A6D tai tham vowel sign oy is not used in Northern Thai.
Khün vowel order is quite different from that of Northern Thai.

Tone Marks. Tai Tham has two combining tone marks, U+1A75 tai tham sign tone-1

and U+1A76 tai tham sign tone-2, which are used in Tai Lue and in Northern Thai.
These are rendered above the vowel over the base consonant. Three additional tone marks
are used in Khün: U+1A77 tai tham sign khuen tone-3, U+1A78 tai tham sign khuen

tone-4, and U+1A79 tai tham sign khuen tone-5, which are rendered above and to the
right of the vowel over the base consonant. Tone marks are represented in logical order fol-
lowing the vowel over the base consonant or consonant stack. If there is no vowel over a
base consonant, then the tone is rendered directly over the consonant; this is the same way
tones are treated in the Thai script.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.8 Tai Viet 387
Other Combining Marks. U+1A7A tai tham sign ra ham is used in Northern Thai to
indicate that the character or characters it follows are not sounded. The precise range of
characters not to be sounded is indeterminant; it is defined instead by reading rules. In Tai
Lue, ra haam is used as a final -n.

The mark U+1A7B tai tham sign mai sam has a range of uses in Northern Thai:

• It is used as a repetition mark, stored as the last character in the word to be
repeated: tang “be different”, tangtang “be different in my view”.

• It is used to disambiguate the use of a subjoined letters. A subjoined letter may
be a medial or final, or it may be the start of a new syllable.

• It is used to mark “double-acting” consonants. It is stored where the consonant
would be stored if there were a separate consonant used.

U+1A7F tai tham combining cryptogrammic dot is used singly or multiply beneath
letters to give each letter a different value according to some hidden agreement between
reader and writer.

Digits. Two sets of digits are in common use: a secular set (Hora) and an ecclesiastical set
(Tham). European digits are also found in books.

Punctuation. The four signs U+1AA8 tai tham sign kaan, U+1AA9 tai tham sign

kaankuu, U+1AAA tai tham sign satkaan, and U+1AAB tai tham sign satkaankuu,
are used in a variety of ways, with progressive values of finality. U+1AAB tai tham sign

satkaankuu is similar to U+0E5A thai character angkhankhu.

At the end of a section, U+1AA9 tai tham sign kaankuu and U+1AAC tai tham sign

hang may be combined with U+1AA6 tai tham sign reversed rotated rana in a num-
ber of ways. The symbols U+1AA1 tai tham sign wiangwaak, U+1AA0 tai tham sign

wiang, and U+1AA2 tai tham sign sawan are logographs for “village,” “city,” and
“heaven,” respectively.

The three signs U+1AA3 tai tham sign keow, “courtyard,” U+1AA4 tai tham sign hoy,
“oyster,” and U+1AA5 tai tham sign dokmai, “flower” are used as dingbats and as section
starters. The mark U+1AA7 tai tham sign mai yamok is used in the same way as its Thai
counterpart, U+0E46 thai character maiyamok.

European punctuation like question mark, exclamation mark, parentheses, and quotation
marks is also used.

Collating Order. There is no firmly established sorting order for the Tai Tham script. The
order in the code charts is based on Northern Thai and Thai. U+1A60 tai tham sign

sakot is ignored for sorting purposes.

Linebreaking. Opportunities for linebreaking are lexical, but a linebreak may not be
inserted between a base letter and a combining diacritic. There is no line-breaking hyphen-
ation.

11.8 Tai Viet

Tai Viet: U+AA80–U+AADF

The Tai Viet script is used by three Tai languages spoken primarily in northwestern Viet-
nam, northern Laos, and central Thailand: Tai Dam (also Black Tai or Tai Noir), Tai Dón
(White Tai or Tai Blanc), and Thai Song (Lao Song or Lao Song Dam). The Thai Song of
Thailand are geographically removed from, but linguistically related to the Tai people of
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

388 Southeast Asian Scripts
Vietnam and Laos. There are also populations in Australia, China, France, and the United
States. The script is related to other Tai scripts used throughout Southeast Asia. The total
population using the three languages, across all countries, is estimated to be 1.3 million
(Tai Dam 764,000, Tai Dón 490,000, Thai Song 32,000). The script is still used by the Tai
people in Vietnam, and there is a desire to introduce it into formal education there. It is
unknown whether it is in current use in Laos, Thailand, or China.

Several different spellings have been employed for the name of the script, including Tay
Viet. Linguists commonly use “Thai” to indicate the language of central Thailand, and
“Tai” to indicate the language family; however, even that usage is inconsistent.

Structure. The Tai Viet script shares many features with other Tai alphabets. It is written
left to right and has a double set of initial consonants, one for the low tone class and one for
the high tone class. Vowels marks are positioned before, after, above, or below the syllable’s
initial consonant, depending on the vowel. Some vowels are written with digraphs. The
consonants do not carry an implicit vowel. The vowel must always be written explicitly.

The Tai languages are almost exclusively monosyllabic. A very small number of words have
an unstressed initial syllable, and loan words may be polysyllabic.

Visual Order. The Tai Viet script uses visual ordering—a characteristic it shares with the
Thai and Lao scripts. This means that the five Tai Viet vowels that occur visually on the left
side of their associated consonant are stored ahead of those consonants in text. This prac-
tice differs from the usual pattern for Brahmi-derived scripts, in which all dependent vow-
els are stored in logical order after their associated consonants, even when they are
displayed to the left of those consonants.

Visual order for Tai Viet vowels results in simpler rendering for the script and follows
accepted practice for data entry. However, it complicates syllable identification and the
processes for searching and sorting. Implementers can take advantage of techniques devel-
oped for processing Thai script data to address the issues associated with visual order
encoding.

The five Tai Viet vowels that occur in visual order ahead of their associated consonants are
given the property value Logical_Order_Exception=True in the Unicode Character Data-
base.

Tone Classes and Tone Marks. In the Tai Viet script each consonant has two forms. The
low form of the initial consonant indicates that the syllable uses tone 1, 2, or 3. The high
form of the initial consonant indicates that the syllable uses tone 4, 5, or 6. This is sufficient
to define the tone of closed syllables (those ending /p/, /t/, /k/, or /p/), in that these syllables
are restricted to tones 2 and 5.

Traditionally, the Tai Viet script did not use any further marking for tone. The reader had
to determine the tone of unchecked syllables from the context. Recently, several groups
have introduced tone marks into Tai Viet writing. Tai Dam speakers in the United States
began using Lao tone marks with their script about thirty years ago, and those marks are
included in SIL’s Tai Heritage font. These symbols are written as combining marks above
the initial consonant, or above a combining vowel, and are identified by their Laotian
names, mai ek and mai tho. These marks are also used by the Song Petburi font (developed
for the Thai Song language), although they were probably borrowed from the Thai alpha-
bet rather than the Lao.

The Tai community in Vietnam invented their own tone marks written on the base line at
the end of the syllable, which they call mai nueng and mai song.

When combined with the consonant class, two tone marks are sufficient to unambiguously
mark the tone. No tone is written on loan words or on the unstressed initial syllable of a
native word.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.9 Kayah Li 389
Final Consonants. U+AA9A tai viet letter low bo and U+AA92 tai viet letter low

do are used to write syllable-final /p/ and /t/, respectively, as is the practice in many Tai
scripts. U+AA80 tai viet letter low ko is used for both final /k/ and final /p/. The high-
tone class symbols are used for writing final /j/ and the final nasals, /m/, /n/, and /}/.
U+AAAB tai viet letter high vo is used for final /w/.

There are a number of exceptions to the above rules in the form of vowels which carry an
inherent final consonant. These vary from region to region. The ones included in the Tai
Viet block are the ones with the broadest usage: /-aj/, /-am/, /-an/, and /-'w/.

Symbols and Punctuation. There are five special symbols in Tai Viet. The meaning and use
of these symbols is summarized in Table 11-14.

U+AADB tai viet symbol kon and U+AADC tai viet symbol nueng may be regarded
as word ligatures. They are, however, encoded as atomic symbols, without decompositions.
In the case of kon, the word ligature symbol is used to distinguish the common word “per-
son” from otherwise homophonous words.

Word Spacing. Traditionally, the Tai Viet script was written without spaces between words.
In the last thirty years, users in both Vietnam and the United States have started writing
spaces between words, in both handwritten and machine produced texts. Most users now
use interword spacing. Polysyllabic words may be written without space between the sylla-
bles.

Collating Order. The Tai Viet script does not have an established standard for sorting.
Sequences have sometimes been borrowed from neighboring languages. Some sources use
the Lao order, adjusted for differences between the Tai Dam and Lao character repertoires.
Other sources prefer an order based on the Vietnamese alphabet. It is possible that commu-
nities in different countries will want to use different orders.

11.9 Kayah Li

Kayah Li: U+A900–U+A92F

The Kayah Li script was invented in 1962 by Htae Bu Phae (also written Hteh Bu Phe), and
is used to write the Eastern and Western Kayah Li languages of Myanmar and Thailand.
The Kayah Li languages are members of the Karenic branch of the Sino-Tibetan family, and
are tonal and mostly monosyllabic. There is no mutual intelligibility with other Karenic
languages.

The term Kayah Li is an ethnonym referring to a particular Karen people who speak these
languages. Kayah means “person” and li means “red,” so Kayah Li literally means “red
Karen.” This use of color terms in ethnonyms and names for languages is a common pat-
tern in this part of Southeast Asia.

Table 11-14. Tai Viet Symbols and Punctuation

Code Glyph Name Meaning

AADB p kon person

AADC q nueng one

AADD r sam signals repetition of the previous word

AADE s ho hoi beginning of text (used in songs and poems)

AADF t koi koi end of text (used in songs and poems)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

390 Southeast Asian Scripts
Structure. Although Kayah Li is a relatively recently invented script, its structure was
clearly influenced by Brahmi-derived scripts, and in particular the Myanmar script, which
is used to write other Karenic languages. The order of letters is a variant of the general
Brahmic pattern, and the shapes and names of some letters are Brahmi-derived. Other let-
ters are innovations or relate more specifically to Myanmar-based orthographies.

The Kayah Li script resembles an abugida such as the Myanmar script, in terms of the der-
ivation of some vowel forms, but otherwise Kayah Li is closer to a true alphabet. Its conso-
nants have no inherent vowel, and thus no virama is needed to remove an inherent vowel.

Vowels. Four of the Kayah Li vowels (a, o’, i, ô) are written as independent spacing letters.
Five others (u’, e, u, ê, o) are written by means of diacritics applied above the base letter
U+A922 kayah li letter a, which thus serves as a vowel-carrier. The same vowel diacritics
are also written above the base letter U+A923 kayah li letter oe to represent sounds
found in loanwords.

Tones. Tone marks are indicated by combining marks which subjoin to the four indepen-
dent vowel letters. The vowel diacritic U+A92A kayah li vowel o and the mid-tone mark,
U+A92D kayah li tone calya plophu, are each analyzable as composite signs, but encod-
ing of each as a single character in the standard reflects usage in didactic materials pro-
duced by the Kayah Li user community.

Digits. The Kayah Li script has its own set of distinctive digits.

Punctuation. Kayah Li text makes use of modern Western punctuation conventions, but
the script also has two unique punctuation marks: U+A92E kayah li sign cwi and
U+A92F kayah li sign shya. The shya is a script-specific form of a danda mark.

11.10 Cham

Cham: U+AA00–U+AA5F

Cham is a Austronesian language of the Malayo-Polynesian family. The Cham language has
two major dialects: Eastern Cham and Western Cham. Eastern Cham speakers live primar-
ily in the southern part of Vietnam and number about 73,000. Western Cham is spoken
mostly in Cambodia, with about 220,000 speakers there and about 25,000 in Vietnam. The
Cham script is used more by the Eastern Cham community.

Structure. Cham is a Brahmi-derived script. Consonants have an inherent vowel. The
inherent vowel is -a in the case of most consonants, but is -L in the case of nasal conso-
nants. There is no virama and hence no killing of the inherent vowel. Dependent vowels
(matras) are used to modify the inherent vowel and separately encoded, explicit final con-
sonants are used where there is no inherent vowel. The script does not have productive for-
mation of consonant conjuncts.

Independent Vowel Letters. Six of the initial vowels in Cham are represented with unique,
independent vowels. These separately-encoded characters always indicate a syllable-initial
vowel, but they may occur word-internally at a syllable break. Other Cham vowels which
do not have independent forms are instead represented by dependent vowels (matras)
applied to U+AA00 cham letter a. Four of the other independent vowel letters are also
attested bearing matras.

Consonants. Cham consonants can be followed by consonant signs to represent the glides:
-ya, -ra, -la, or -wa. U+AA33 cham consonant sign ya, in particular, normally ligates
with the base consonant it modifies. When it does so, any dependent vowel is graphically
applied to it, rather than to the base consonant.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.10 Cham 391
The independent vowel U+AA00 cham letter a can cooccur with two of the medial con-
sonant signs: -ya or -wa. The writing system distinguishes these sequences from single let-
ters which are pronounced the same. Thus, <a, -ya> [ja] contrasts with U+AA22 cham

letter ya, also pronounced [ja], and <a, -wa> [wa] contrasts with U+AA25 cham letter

va, also pronounced [wa].

Three medial clusters of two consonant signs in a row occur: <-ra, -wa> [-rwa], <-la, -ya>
[-lja], and <-la, -wa> [-lwa].

There are three types of final consonants. The majority are simply encoded as separate base
characters. Graphically, those final forms appear similar to the corresponding non-final
consonants, but typically have a lengthened stroke at the right side of their glyphs. The sec-
ond type consist of combining marks to represent final -ng, -m, and -h. Finally, U+AA25
cham letter va occurs unchanged either in initial or final positions. Final consonants
may occur word-internally, in which case they indicate the presence of a syllable boundary.

Ordering of Syllable Components. Dependent vowels and other signs are encoded after the
consonant to which they apply. The ordering of elements is shown in more detail in
Table 11-15.

The left-side dependent vowels U+AA2F cham vowel sign o and U+AA30 cham vowel

sign ai occur in logical order after the consonant (and any medial consonant signs), but in
visual presentation their glyphs appear before (to the left of) the consonant. U+AA2F
cham vowel sign o, in particular, may occur together in a sequence with another depen-
dent vowel, the vowel lengthener, or both. In such cases, the glyph for U+AA2F appears to
the left of the consonant, but the glyphs for the second dependent vowel and the vowel
lengthener are rendered above or to the right of the consonant.

Digits. The Cham script has its own set of digits, which are encoded in this block. However,
European digits are also known and occur in Cham texts because of the influence of Viet-
namese.

Punctuation. Cham uses danda marks to indicate text units. Three levels are recognized,
marked respectively with danda, double danda, and triple danda.

U+AA5C cham punctuation spiral often begins a section of text. It can be compared to
the usage of Tibetan head marks. The spiral may also occur in combination with a danda.

Modern Cham text also makes use of European punctuation marks, such as the question
mark, hyphen and colon.

Line Breaking. Opportunities for line breaks occur after any full orthographic syllable in
Cham. Modern Cham text makes use of spaces between words, and those are also line break
opportunities. Line breaks occur after dandas.

Table 11-15. Cham Syllabic Structure

Class Examples Encoding

consonant or independent vowel a [U+AA00..U+AA28]

consonant sign -ra, -la b,c [U+AA34, U+AA35]

consonant sign -ya, -wa d,e [U+AA33, U+AA36]

left-side dependent vowel f,g [U+AA2F, U+AA30]

other dependent vowel h [U+AA2A..U+AA2E, U+AA31..U+AA32]

vowel lengthener -aa i U+AA29

final consonant or va j,k [U+AA40..U+AA4D, U+AA25]
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

392 Southeast Asian Scripts
11.11 Philippine Scripts

Tagalog: U+1700–U+171F
Hanunóo: U+1720–U+173F
Buhid: U+1740–U+175F
Tagbanwa: U+1760–U+177F

The first of these four scripts—Tagalog—is no longer used, whereas the other three—
Hanunóo, Buhid, and Tagbanwa—are living scripts of the Philippines. South Indian scripts
of the Pallava dynasty made their way to the Philippines, although the exact route is uncer-
tain. They may have been transported by way of the Kavi scripts of Western Java between
the tenth and fourteenth centuries ce.

Written accounts of the Tagalog script by Spanish missionaries and documents in Tagalog
date from the mid-1500s. The first book in this script was printed in Manila in 1593. While
the Tagalog script was used to write Tagalog, Bisaya, Ilocano, and other languages, it fell out
of normal use by the mid-1700s. The modern Tagalog language—also known as Filipino—
is now written in the Latin script.

The three living scripts—Hanunóo, Buhid, and Tagbanwa—are related to Tagalog but may
not be directly descended from it. The Hanunóo and the Buhid peoples live in Mindoro,
while the Tagbanwa live in Palawan. Hanunóo enjoys the most use; it is widely used to write
love poetry, a popular pastime among the Hanunóo. Tagbanwa is used less often.

Principles of the Philippine Scripts

The Philippine scripts share features with the other Brahmi-derived scripts to which they
are related.

Consonant Letters. Philippine scripts have consonants containing an inherent -a vowel,
which may be modified by the addition of vowel signs or canceled (killed) by the use of a
virama-type mark.

Independent Vowel Letters. Philippine scripts have null consonants, which are used to
write syllables that start with a vowel.

Dependent Vowel Signs. The vowel -i is written with a mark above the associated conso-
nant, and the vowel -u with an identical mark below. The mark is known as kudlit “dia-
critic,” tuldik “accent,” or tuldok “dot” in Tagalog, and as ulitan “diacritic” in Tagbanwa.
The Philippine scripts employ only the two vowel signs i and u, which are also used to stand
for the vowels e and o, respectively.

Virama. Although all languages normally written with the Philippine scripts have syllables
ending in consonants, not all of the scripts have a mechanism for expressing the canceled
-a. As a result, in those orthographies, the final consonants are unexpressed. Francisco
Lopez introduced a cross-shaped virama in his 1620 catechism in the Ilocano language, but
this innovation did not seem to find favor with native users, who seem to have considered
the script adequate without it (they preferred !!" kakapi to !!#" kakampi). A sim-
ilar reform for the Hanunóo script seems to have been better received. The Hanunóo
pamudpod was devised by Antoon Postma, who went to the Philippines from the Nether-
lands in the mid-1950s. In traditional orthography, $ %& ' ()* si apu ba upada is,
with the pamudpod, rendered more accurately as $ %+&, '+ ()*- si aypud bay
upadan; the Hanunóo pronunciation is si aypod bay upadan. The Tagalog virama and
Hanunóo pamudpod cancel only the inherent -a. No conjunct consonants are employed in
the Philippine scripts.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.12 Buginese 393
Directionality. The Philippine scripts are read from left to right in horizontal lines running
from top to bottom. They may be written or carved either in that manner or in vertical
lines running from bottom to top, moving from left to right. In the latter case, the letters
are written sideways so they may be read horizontally. This method of writing is probably
due to the medium and writing implements used. Text is often scratched with a sharp
instrument onto beaten strips of bamboo, which are held pointing away from the body and
worked from the proximal to distal ends, in columns from left to right.

Rendering. In Tagalog and Tagbanwa, the vowel signs simply rest over or under the conso-
nants. In Hanunóo and Buhid, ligatures are often formed, as shown in Table 11-16.

Punctuation. Punctuation has been unified for the Philippine scripts. In the Hanunóo
block, U+1735 philippine single punctuation and U+1736 philippine double punc-

tuation are encoded. Tagalog makes use of only the latter; Hanunóo, Buhid, and Tag-
banwa make use of both marks.

11.12 Buginese

Buginese: U+1A00–U+1A1F

The Buginese script is used on the island of Sulawesi, mainly in the southwest. A variety of
traditional literature has been printed in it. As of 1971, as many as 2.3 million speakers of
Buginese were reported in the southern part of Sulawesi. The Buginese script is one of the
easternmost of the Brahmi scripts and is perhaps related to Javanese. It is attested as early as
the fourteenth century ce. Buginese bears some affinity to Tagalog and, like Tagalog, does
not traditionally record final consonants. The Buginese language, an Austronesian lan-

Table 11-16. Hanunóo and Buhid Vowel Sign Combinations

Hanunóo Buhid

x x + ! x + " x x + P x + Q

$ % R S T

& ' (U V W

) * + X Y Z

, - . [\]

/ 0 1 ^ _ `

2 3 4 a b c

5 6 7 d e f

8 9 : g h i

; < = j k l

> ? @ m n o

A B C p q r

D E F s t u

G H I v w x

J K L y z {

M N O | } ~
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

394 Southeast Asian Scripts
guage with a rich traditional literature, is one of the foremost languages of Indonesia. The
script was previously also used to write the Makassar, Bimanese, and Madurese languages.

Structure. Buginese vowel signs are used in a manner similar to that seen in other Brahmi-
derived scripts. Consonants have an inherent /a/ vowel sound. Consonant conjuncts are
not formed. Traditionally, a virama does not exist, but is included for modern usage in
transcribing many non-Buginese words. This innovation is paralleled by a similar innova-
tion in Hanunóo and Tagalog. The virama is always a visible sign. Because conjuncts are
not formed in Buginese, U+200C zero width non-joiner is not necessary to force the
display of the virama.

Ligature. One ligature is found in the Buginese script. It is formed by the ligation of <a, -i>
+ ya to represent îya, as shown in the first line of Figure 11-5. The ligature takes the shape of
the Buginese letter ya, but with a dot applied at the far left side. Contrast that with the nor-
mal representation of the syllable yi, in which the dot indicating the vowel sign occurs in a
centered position, as shown in the second line of Figure 11-5. The ligature for îya is not
obligatory; it would be requested by inserting a zero width joiner.

Order. Several orderings are possible for Buginese. The Unicode Standard encodes the
Buginese characters in the Matthes order.

Punctuation. Buginese uses spaces between certain units. One punctuation symbol,
U+1A1E buginese pallawa, is functionally similar to the full stop and comma of the Latin
script. There is also another separation mark, U+1A1F buginese end of section.

U+0662 arabic-indic digit two or a doubling of the vowel sign (especially U+1A19
buginese vowel sign e and U+1A1A buginese vowel sign o) is used sometimes to
denote word reduplication.

Numerals. There are no known digits specific to the Buginese script.

11.13 Balinese

Balinese: U+1B00–U+1B7F

The Balinese script, or aksara Bali, is used for writing the Balinese language, the native lan-
guage of the people of Bali, known locally as basa Bali. It is a descendant of the ancient
Brahmi script of India, and therefore it has many similarities with modern scripts of South
Asia and Southeast Asia, which are also members of that family. The Balinese script is used
to write Kawi, or Old Javanese, which strongly influenced the Balinese language in the elev-
enth century ce. A slightly modified version of the script is used to write the Sasak lan-
guage, which is spoken on the island of Lombok to the east of Bali. Some Balinese words
have been borrowed from Sanskrit, which may also be written in the Balinese script.

Structure. Balinese consonants have an inherent -a vowel sound. Consonants combine
with following consonants in the usual Brahmic fashion: the inherent vowel is “killed” by

Figure 11-5. Buginese Ligature

R

T

1A15

1A10

200D 1A101A17

U

+ $ + Ä + →

1A17

$
→

+

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.13 Balinese 395
U+1B44 balinese adeg adeg (virama), and the following consonant is subjoined or post-
fixed, often with a change in shape. Table 11-17 shows the base consonants and their con-
junct forms.

Table 11-17. Balinese Base Consonants and Conjunct Forms

Consonant Base Form Conjunct Form

ka ! é#
kha $ é%
ga & é(
gha) é*
nga + é,
ca a é.
cha / é0
ja 1 é2
jha 3 é4
nya 5 é6
tta 7 é8
ttha 9 é:
dda ; é<
ddha = é>
nna ? é@
ta A éB
tha C éD
da E éF
dha G éH
na I éJ
pa K éL
pha M éN
ba O éP
bha Q éR
ma S éT
ya U éV
ra W éX
la Y éZ
wa [é\
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

396 Southeast Asian Scripts
The seven letters U+1B45 balinese letter kaf sasak through U+1B4B balinese letter

asyura sasak are base consonant extensions for the Sasak language. Their base forms and
conjunct forms are shown in Table 11-18.

Balinese dependent vowel signs are used in a manner similar to that employed by other
Brahmic scripts.

Independent vowels are used in a manner similar to that seen in other Brahmic scripts,
with a few differences. For example, U+1B05 balinese letter akara and U+1B0B bali-

nese letter ra repa can be treated as consonants; that is, they can be followed by adeg

adeg. In Sasak, the vowel letter akara can be followed by an explicit adeg adeg uv in word-

or syllable-final position, where it indicates the glottal stop; other consonants can also be
subjoined to it.

Behavior of ra. Unlike most Brahmi-derived scripts, a Balinese ra that starts a sequence of
consonants without intervening vowels is represented by U+1B03 balinese sign surang

over the preceding syllable, as shown in the fourth example in Figure 11-6. The inherited
Kawi form of the script used a repha glyph in the same way as many Brahmic scripts do.
This is seen in the first example in Figure 11-6, where the sequence <ra, virama, ma> is ren-
dered with the repha glyph. However, because many syllables end in -r in the Balinese lan-
guage, this written form was historically reanalyzed, and is now pronounced damar in
Balinese, as shown in the third example. In Balinese, the character sequence used in Kawi to
spell dharma would render as shown in the second example, where the base letter ra with a
subjoined ma is not well formed for the writing system.

Because of its relationship to ra, surang should be treated as equivalent to ra for searching
and sorting purposes. Two other combining signs are also equivalent to base letters for

ssa] é^
sha _ é`
sa a éb
ha c éd
L e éf

Table 11-18. Sasak Extensions for Balinese

Consonant Base Form Conjunct Form

kaf g éh
khot i éj
tzir k él
ef m én
ve o ép
zal q ér
asyura s ét

Table 11-17. Balinese Base Consonants and Conjunct Forms (Continued)

Consonant Base Form Conjunct Form
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.13 Balinese 397
searching and sorting: U+1B02 balinese sign cecek (anusvara) is equivalent to nga, and
U+1B04 balinese sign bisah (visarga) is equivalent to ha.

Behavior of ra repa. The unique behavior of balinese letter ra repa (vocalic L) results
from a reanalysis of the independent vowel letter as a consonant. In a compound word in
which the first element ends in a consonant and the second element begins with an original

ra + pepet, such as Pak Rërëh K!fex “Mr Rërëh”, the postfixed form of e ra repa is used;

this particular sequence is encoded ka + adeg adeg + ra repa. However, in other contexts
where the ra repa represents the original Sanskrit vowel, U+1B3A balinese vowel sign ra

repa is used, as in Krësna !y_ @ .
Rendering. The vowel signs /u/ and /u:/ take different forms when combined with sub-
scripted consonant clusters, as shown in Table 11-19. The upper limit of consonant clusters
is three, the last of which can be -ya, -wa, or -ra.

Figure 11-6. Writing dharma in Balinese

Table 11-19. Balinese Consonant Clusters with u and u:

Syllable Glyph

kyu OP
kyú OQ
kwu ORS
kwú ORT
kru OUS

 +
;

;

;

;

W

W

S

v

v

S

S

 w

 w

1B25

 + +

 + + +

 +

 +

 +

1B25

1B25

1B25

1B2D

1B2D

1B2B

1B03

1B44

1B44

1B2B

1B2B

1B03

;Sw (Kawi)

;WT (Balinese)

;Sw

*

S
 +

1B2B

;wS

dha-mar

dhar-ma

dha-rma

dha-rmadha

dha

dha

dha

ra

ra

ma

ma

ma

ma

adeg adeg

adeg adeg

surang

surang

$

$

$

$

→

→

→

→

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

398 Southeast Asian Scripts
Nukta. The combining mark U+1B34 balinese sign rerekan (nukta) and a similar sign
in Javanese are used to extend the character repertoire for foreign sounds. In recent times,
Sasak users have abandoned the Javanese-influenced rerekan in favor of the series of modi-
fied letters shown in Table 11-18, also making use of some unused Kawi letters for these
Arabic sounds.

Ordering. The traditional order ha na ca ra ka | da ta sa wa la | ma ga ba nga | pa ja ya nya
is taught in schools, although van der Tuuk followed the Javanese order pa ja ya nya | ma ga
ba nga for the second half. The arrangement of characters in the code charts follows the
Brahmic ordering.

Punctuation. Both U+1B5A balinese panti and U+1B5B balinese pamada are used to
begin a section in text. U+1B5D balinese carik pamungkah is used as a colon. U+1B5E
balinese carik siki and U+1B5F balinese carik pareren are used as comma and full
stop, respectively. At the end of a section, |{| pasalinan and z{z carik agung may be
used (depending on which sign began the section). They are encoded using the punctua-
tion ring U+1B5C balinese windu together with carik pareren and pamada.

Hyphenation. Traditional Balinese texts are written on palm leaves; books of these bound
leaves together are called lontar. U+1B60 balinese pameneng is inserted in lontar texts
where a word must be broken at the end of a line (always after a full syllable). This sign is
not used as a word-joining hyphen—it is used only in line breaking.

Musical Symbols. Bali is well known for its rich musical heritage. A number of related
notation systems are used to write music. To represent degrees of a scale, the syllables ding
dong dang deng dung are used (encoded at U+1B61..U+1B64, U+1B66), in the same way
that do re mi fa so la ti is used in Western tradition. The symbols representing these syllables
are based on the vowel matras, together with some other symbols. However, unlike the reg-
ular vowel matras, these stand-alone spacing characters take diacritical marks. They also
have different positions and sizes relative to the baseline. These matra-like symbols are
encoded in the range U+1B61..U+1B6A, along with a modified aikara. Some notation sys-
tems use other spacing letters, such as U+1B09 balinese letter ukara and U+1B27 bali-

nese letter pa, which are not separately encoded for musical use. The U+1B01 balinese

sign ulu candra (candrabindu) can also be used with U+1B62 balinese musical sym-

bol deng and U+1B68 balinese musical symbol deung, and possibly others. balinese

sign ulu candra can be used to indicate modre symbols as well.

A range of diacritical marks is used with these musical notation base characters to indicate
metrical information. Some additional combining marks indicate the instruments used;
this set is encoded at U+1B6B..U+1B73. A set of symbols describing certain features of per-
formance are encoded at U+1B74..U+1B7C. These symbols describe the use of the right or
left hand, the open or closed hand position, the “male” or “female” drum (of the pair)
which is struck, and the quality of the striking.

krú OUT
kryu OVS
kryú OVT
skru WXYS
skrú WXYT

Table 11-19. Balinese Consonant Clusters with u and u: (Continued)

Syllable Glyph
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.14 Javanese 399
Modre Symbols. The Balinese script also includes a range of “holy letters” called modre
symbols. Most of these letters can be composed from the constituent parts currently
encoded, including U+1B01 balinese sign ulu candra.

11.14 Javanese

Javanese: U+A980–U+A9DF

The Javanese script, or aksara Jawa, is used for writing the Javanese language, known locally
as basa Jawa. The script is a descendent of the ancient Brahmi script of India, and so has
many similarities with the modern scripts of South Asia and Southeast Asia which are also
members of that family. The Javanese script is also used for writing Sanskrit, Jawa Kuna (a
kind of Sanskritized Javanese), and transcriptions of Kawi, as well as the Sundanese lan-
guage, also spoken on the island of Java, and the Sasak language, spoken on the island of
Lombok.

The Javanese script was in current use in Java until about 1945; in 1928 Bahasa Indonesia
was made the national language of Indonesia and its influence eclipsed that of other lan-
guages and their scripts. Traditional Javanese texts are written on palm leaves; books of
these bound together are called lontar, a word which derives from ron “leaf” and tal “palm”.

Consonants. Consonants have an inherent -a vowel sound. Consonants combine with fol-
lowing consonants in the usual Brahmic fashion: the inherent vowel is “killed” by U+A9C0
javanese pangkon, and the following consonant is subjoined or postfixed, often with a
change in shape.

Vocalic liquids (W and k) are treated as consonant letters in Javanese; they are not indepen-
dent vowels with dependent vowel equivalents, as is the case in Balinese or Devanagari.
Short and long versions of the vocalic-k are separately encoded, as U+A98A javanese let-

ter nga lelet and U+A98B javanese letter nga lelelt raswadi. In contrast, the long
version of the vocalic-W is represented by a sequence of the short vowel U+A989 javanese

letter pa cerek followed by the dependent vowel sign -aa, U+A9B4 javanese sign

tarung, serving as a length mark in this case.

U+A983 javanaese sign cecak telu is a diacritic used with various consonantal base let-
ters to represent foreign sounds. Typically these diacritic-marked consonants are used for
sounds borrowed from Arabic.

Independent Vowels. Independent vowel letters are used essentially as in other Brahmic
scripts. Modern Javanese uses U+A986 javanese letter i and U+A987 javanese letter ii

for short and long i, but the Kawi orthography instead uses U+A985 javanese letter i

kawi and U+A986 javanese letter i for short and long i, respectively.

The long versions of the u and o vowels are written as sequences, using U+A9B4 javanese

sign tarung as a length mark.

Dependent Vowels. Javanese—unlike Balinese—represents multi-part dependent vowels
with sequences of characters, in a manner similar to the Myanmar script. The Balinese
community considers it important to be able to directly transliterate Sanskrit into Balinese,
so multi-part dependent vowels are encoded as single, composite forms in Balinese, as is
done in Devanagari. In contrast, for the Javanese script, the correspondence with Sanskrit
letters is not so critical, and a different approach to the encoding has been taken. Similar to
the treatment of long versions of Javanese independent vowels, the two-part dependent
vowels are explicitly represented with a sequence of two characters, using U+A9B4 java-

nese vowel sign tarung, as shown in Figure 11-7.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

400 Southeast Asian Scripts
Consonant Signs. The characters U+A980 javanese sign panyangga, U+A981 javanese

sign cecak, and U+A983 javanese sign wignyan are analoguous to U+0901 devanagari

sign candrabindu, U+0902 devanagari sign anusvara, and U+0903 devanagari sign

visarga and behave in much the same way.

There are two medial consonant signs, U+A9BE javanese consonant sign pengkal and
U+A9BF javanese consonant sign cakra, which represent -y- and -r- respectively. These
medial consonant signs contrast with the subjoined forms of the letters ya and ra. The sub-
joined forms may indicate a syllabic boundary, whereas pengkal and cakra are used in ordi-
nary consonant clusters.

Rendering. There are many conjunct forms in Javanese, though most are fairly regular and
easy to identify. Subjoined consonants and vowel signs rendered below them usually inter-
act typographically. For example, the vowel signs [u] and [u:] take different forms when
combined with subscripted consonant clusters. Consonant clusters may have up to three
elements. In three-element clusters, the last element is always one of the medial glides: -ya,
-wa, or -ra.

Digits. The Javanese script has its own set of digits, seven of which (1, 2, 3, 6, 7, 8, 9) look
just like letters of the alphabet. Implementations with concerns about security issues need
to take this into account. The punctuation mark U+A9C8 javanese pada lingsa is often
used with digits in order to help to distinguish numbers from sequences of letters. When
Javanese personal names are abbreviated, the letters are followed, not preceded, by pada

lingsa.

Punctuation. A large number of punctuation marks are used in Javanese. Titles may be
flanked by the the pair of ornamental characters, U+A9C1 javanese left rerenggan and
U+A9C2 javanese right rerenggan; glyphs used for these may vary widely.

U+A9C8 javanese pada lingsa is a danda mark that corresponds functionally to the use
of a comma. The doubled form, U+A9C9 javanese pada lungsi, corresponds functionally
to the use of a full stop. It is also used as a “ditto” mark in vertical lists. U+A9C7 javanese

pada pangkat is used much like the European colon.

The doubled U+A9CB javanese pada adeg adeg typically begins a paragraph or section,
while the simple U+A9CA javanese pada adeg is used as a common divider though it can
be used in pairs marking text for attention. The two characters, U+A9CC javanese pada

piseleh and U+A9CD javanese turned pada piseleh, are used similarly, either both
together or with U+A9CC javanese pada piseleh simply repeated.

Figure 11-7. Representation of Javanese Two-Part Vowels

+ꦏ
pepet

A9BC
tarung

A9B4
ka

A98F

ꦴ$ $ꦼ +

ꦏ ꦺ$+ + ꦴ$
taling

A9BA
tarung

A9B4
ka

A98F

dirga mure
A9BB

tarung
A9B4

keu

ko

kauka
A98F

ꦏ

ꦏ

 ꦻ$+ + ꦴ$

 ꦼ ꦴ

ꦏꦴ

ꦏꦴꦻ

ꦺ

→

→

→

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.15 Rejang 401
The punctuation ring, U+A9C6 javanese pada windu, is not used alone, a situation simi-
lar to the pattern of use for its Balinese counterpart U+1B5C balinese windu. When used
with U+A9CB javanese pada adeg adeg this windu sign is called pada guru, pada bab, or
uger-uger, and is used to begin correspondence where the writer does not desire to indicate
a rank distinction as compared to his audience. More formal letters may begin with one of
the three signs: U+A9C3 javanese pada andap (for addressing a higher-ranked person),
U+A9C4 javanese pada madya (for addressing an equally-ranked person), or U+A9C5
javanese pada luhur (for addressing a lower-ranked person).

Reduplication. U+A9CF javanese pada pangrangkep is used to show the reduplication
of a syllable. The character derives from U+0662 arabic-indic digit two but in Javanese
it does not have a numeric use. The Javanese reduplication mark is encoded as a separate
character from the Arabic digit, because it differs in its Bidi_Class property value.

Ordering of Syllable Components. The order of components in an orthographic syllable as
expressed in BNF is:

{C F} C {{R}Y} {V{A}} {Z}

where

C is a letter (consonant or independent vowel), or a consonant followed
by the diacritic U+A9B3 javanese sign cecak telu

F is the virama, U+A9C0 javanese pangkon

R is the medial -ra, U+A9BF javanese consonant sign cakra

Y is the medial -ya, U+A9BE javanese consonant sign pengkal

V is a dependent vowel sign

A is the dependent vowel sign -aa, U+A9B4 javanese vowel sign

tarung

Z is a consonant sign: U+A980, U+A981, U+A982, or U+A983

Linebreaking. Opportunities for linebreaking occur after any full orthographic syllable.
Hyphens are not used.

In some printed texts, an epenthetic spacing U+A9BA javanese vowel sign taling is
placed at the end of a line when the next line begins with the glyph for U+A9BA javanese

vowel sign taling, which is reminiscent of a specialized hyphenation (or of quire mark-
ing). This practice is nearly impossible to implement in a free-flowing text environment.
Typographers wishing to duplicate a printed page may manually insert U+00A0 no-break

space before U+A9BA javanese vowel sign taling at the end of a line, but this would not
be orthographically correct.

11.15 Rejang

Rejang: U+A930–U+A95F

The Rejang language is spoken by about 200,000 people living on the Indonesian island of
Sumatra, mainly in the southwest. There are five major dialects: Lebong, Musi, Kebanagun,
Pesisir (all in Bengkulu Province), and Rawas (in South Sumatra Province). Most Rejang
speakers live in fairly remote rural areas, and slightly less than half of them are literate.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

402 Southeast Asian Scripts
The Rejang script was in use prior to the introduction of Islam to the Rejang area. The ear-
liest attested document appears to date from the mid-18th century ce. The traditional
Rejang corpus consists chiefly of ritual texts, medical incantations, and poetry.

Structure. Rejang is a Brahmi-derived script. It is related to other scripts of the Indonesian
region, such as Batak and Buginese.

Consonants in Rejang have an inherent /a/ vowel sound. Vowel signs are used in a manner
similar to that employed by other Brahmi-derived scripts. There are no consonant con-
juncts. The basic syllabic structure is C(V)(F): a consonant, followed by an optional vowel
sign and an optional final consonant sign or virama.

Rendering. Rejang texts tend to have a slanted appearance typified by the appearance of
U+A937 rejang letter ba. This sense that the script is tilted to the right affects the place-
ment of the combining marks for vowel signs. Vowel signs above a letter are offset to the
right, and vowel signs below a letter are offset to the left, as the “above” and “below” posi-
tions for letters are perceived in terms of the overall slant of the letters.

Ordering. The ordering of the consonants and vowel signs for Rejang in the code charts
follows a generic Brahmic script pattern. The Brahmic ordering of Rejang consonants is
attested in numerous sources. There is little evidence one way or the other for preferences
in the relative order of Rejang vowel signs and consonant signs.

Digits. There are no known script-specific digits for the Rejang script.

Punctuation. European punctuation marks such as comma, full stop, and colon, are used
in modern writing. U+A95F rejang section mark may be used at the beginning and end
of paragraphs.

Traditional Rejang texts tend not to use spaces between words, but their use does occur in
more recent texts. There is no known use of hyphenation.

11.16 Batak

Batak: U+1BC0–U+1BFF

The Batak script is used on the island of Sumatra to write the five Batak dialects: Karo,
Mandailing, Pakpak, Simalungun, and Toba. The script is called si-sia-sia or surat na sam-
pulu sia, which means “the nineteen letters.” The script is taught in schools mainly for cul-
tural purposes, and is used on some signs for shops and government offices.

Structure. Batak is a Brahmi-derived script. It is written left to right. Batak uses a vowel
killer which is called pangolat in Mandailing, Pakpak, and Toba. In Karo the killer is called
penengen, and in Simalungen it is known as panongonan. The appearance of the killer dif-
fers between some of the dialects. Consonant conjuncts are not formed. Batak has three
independent vowels and makes use of a number of vowel signs and two consonant signs.
Some vowel signs are only used by certain language communities.

Rendering. Most vowel signs and the two killers, U+1BF2 batak pangolat and U+1BF3
batak panongonan, are spacing marks. U+1BEE batak vowel sign u can ligate with its
base consonant.

The two consonant signs, U+1BF0 batak consonant sign ng and U+1BF1 batak conso-

nant sign h, are nonspacing marks, usually rendered above the spacing vowel signs. When
U+1BF0 batak consonant sign ng occurs together with the nonspacing mark, U+1BE9
batak vowel sign ee, both are rendered above the base consonant, with the glyph for the
ee at the top left and the glyph for the ng at the top right.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

11.17 Sundanese 403
The main peculiarity of Batak rendering concerns the reordering of the glyphs for vowel
signs when one of the two killers, pangolat or panongonan, is used to close the syllable by
killing the inherent vowel of a final consonant. This reordering for display is entirely regu-
lar. So, while the representation of the syllable /tip/ is done in logical order: <ta, vowel sign
i, pa, pangolat>, when rendered for display the glyph for the vowel sign is visually applied
to the final consonant, pa, rather than to the ta. The glyph for the pangolat always stays at
the end of the syllable.

Punctuation. Punctuation is not normally used; instead all letters simply run together.
However, a number of bindu characters are occasionally used to disambiguate similar
words or phrases. U+1BFF batak symbol bindu pangolat is trailing punctuation, follow-
ing a word, surrounding the previous character somewhat.

The minor mark used to begin paragraphs and stanzas is U+1BFC batak symbol bindu

na metek, which means “small bindu.” It has a shape-based variant, U+1BFD batak sym-

bol bindu pinarboras (“rice-shaped bindu”), which is likewise used to separate sections
of text. U+1BFE batak symbol bindu judul (“title bindu”) is sometimes used to separate
a title from the main text, which normally begins on the same line.

Linebreaking. Opportunities for a linebreak occur after any full orthographic syllable,
defined as C(V(Cs|Cd)) where a consonant C may be followed by a vowel sign V which may
be followed either by a consonant sign Cs (-ng or -h) or a killed final consonant Cd.

11.17 Sundanese

Sundanese: U+1B80–U+1BBF

The Sundanese script, or aksara Sunda, is used for writing the Sundanese language, one of
the languages of the island of Java in Indonesia. It is a descendent of the ancient Brahmi
script of India, and so has similarities with the modern scripts of South Asia and Southeast
Asia which are also members of that family. The script has official support. It is taught in
schools and used on road signs.

The Sundanese language has been written using a number of different scripts over the
years. Pallawa or Pra-Nagari was first used in West Java to write Sanskrit from the fifth to
the eighth centuries ce. Sunda Kuna or Old Sundanese was derived from Pallawa and was
used in the Sunda Kingdom from the 14th to the 18th centuries. The earliest example of
Old Sundanese is the Prasasti Kawali stone. The Javanese script was used to write Sunda-
nese from the 17th to the 19th centuries, and the Arabic script was used from the 17th to
the 20th centuries. The Latin script has been in wide use since the 20th century. The mod-
ern Sundanese script, called Sunda Baku or Official Sundanese, became official in 1996.
This modern script was derived from Old Sundanese.

Structure. Sundanese consonants have an inherent vowel /a/. This inherent vowel can be
modified by the addition of dependent vowel signs (matras). An explicit virama, U+1BAA
sundanese sign pamaaeh, is used to indicate the absence, or “killing,” of the inherent
vowel. Sundanese does not use the virama to cluster consonants or build consonant con-
juncts.

Initial Sundanese consonants can be followed by one of the three consonant signs for
medial consonants: -ya, -ra, or -la. These medial consonants are graphically displayed as
subjoined elements to their base consonants. The script also has independent vowel letters.

Three final consonants are separately encoded as combining marks: -ng, -r, and -h. These
are analogues of Brahmic anusvara, repha, and visarga, respectively.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

404 Southeast Asian Scripts
Consonant Additions. Two supplemental consonant letters have been added to the script
recently: U+1BAE sundanese letter kha and U+1BAF sundanese letter sya. These
are used to represent the borrowed sounds denoted by the Arabic letters kha and sheen,
respectively.

Digits. Sundanese has its own script-specific digits, which are separately encoded in this
block.

Punctuation. Sundanese uses European punctuation marks, such as comma, full stop,
question mark, and quotation marks. Spaces are used in text. Opportunities for hyphen-
ation occur after any full orthographic syllable.

Ordering. The order of characters in the code charts follows the Brahmic ordering. The ha-
na-ca-ra-ka order found in Javanese and Balinese does not seem to be used in Sundanese.

Ordering of Syllable Components. Dependent vowels and other signs are encoded after the
consonant to which they apply. The ordering of elements is shown in more detail in
Table 11-20.

The virama occupies the same logical position as a dependent vowel, but indicates the
absence, rather than the presence of a vowel. It cannot be followed by a combining mark for
a final consonant, nor can it be preceded by a consonant sign.

The left-side dependent vowel U+1BA6 sundanese vowel sign panaelaeng occurs in
logical order after the consonant (and any medial consonant sign), but in visual presenta-
tion its glyph appears before (to the left of) the consonant.

Rendering. When more than one sign appears above or below a consonant, the two are
rendered side-by-side, rather than being stacked vertically.

Table 11-20. Sundanese Syllabic Structure

Class Examples Encoding

consonant or independent vowel T [U+1B83..U+1BA0, U+1BAE, U+1BAF]

consonant sign -ya, -ra, -la U,V,W [U+1BA1..U+1BA3]

dependent vowel, virama X,Y [U+1BA4..U+1BA9, U+1BAA]

final consonant Z [U+1B80..U+1B82]
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 12

East Asian Scripts 12

This chapter presents the following scripts:

The characters that are now called East Asian ideographs, and known as Han ideographs in
the Unicode Standard, were developed in China in the second millennium bce. The basic
system of writing Chinese using ideographs has not changed since that time, although the
set of ideographs used, their specific shapes, and the technologies involved have developed
over the centuries. The encoding of Chinese ideographs in the Unicode Standard is
described in Section 12.1, Han. For more on usage of the term ideograph, see “Logosylla-
baries” in Section 6.1, Writing Systems.

As civilizations developed surrounding China, they frequently adapted China’s ideographs
for writing their own languages. Japan, Korea, and Vietnam all borrowed and modified
Chinese ideographs for their own languages. Chinese is an isolating language, monosyl-
labic and noninflecting, and ideographic writing suits it well. As Han ideographs were
adopted for unrelated languages, however, extensive modifications were required.

Chinese ideographs were originally used to write Japanese, for which they are, in fact, ill
suited. As an adaptation, the Japanese developed two syllabaries, Hiragana and Katakana,
whose shapes are simplified or stylized versions of certain ideographs. (See Section 12.4,
Hiragana and Katakana.) Chinese ideographs are called kanji in Japanese and are still used,
in combination with Hiragana and Katakana, in modern Japanese.

In Korea, Chinese ideographs were originally used to write Korean, for which they are also
ill suited. The Koreans developed an alphabetic system, Hangul, discussed in Section 12.6,
Hangul. The shapes of Hangul syllables or the letter-like jamos from which they are com-
posed are not directly influenced by Chinese ideographs. However, the individual jamos are
grouped into syllabic blocks that resemble ideographs both visually and in the relationship
they have to the spoken language (one syllable per block). Chinese ideographs are called
hanja in Korean and are still used together with Hangul in South Korea for modern Korean.
The Unicode Standard includes a complete set of Korean Hangul syllables as well as the
individual jamos, which can also be used to write Korean. Section 3.12, Conjoining Jamo
Behavior, describes how to use the conjoining jamos and how to convert between the two
methods for representing Korean.

In Vietnam, a set of native ideographs was created for Vietnamese based on the same prin-
ciples used to create new ideographs for Chinese. These Vietnamese ideographs were used
through the beginning of the twentieth century and are occasionally used in more recent
signage and other limited contexts.

Yi was originally written using a set of ideographs invented in imitation of the Chinese.
Modern Yi as encoded in the Unicode Standard is a syllabary derived from these ideo-
graphs and is discussed in Section 12.7, Yi.

Han Hiragana Hangul

Bopomofo Katakana Yi
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

406 East Asian Scripts
Bopomofo, discussed in Section 12.3, Bopomofo, is another recently invented syllabic system,
used to represent Chinese phonetics.

In all these East Asian scripts, the characters (Chinese ideographs, Japanese kana, Korean
Hangul syllables, and Yi syllables) are written within uniformly sized rectangles, usually
squares. Traditionally, the basic writing direction followed the conventions of Chinese
handwriting, in top-down vertical lines arranged from right to left across the page. Under
the influence of Western printing technologies, a horizontal, left-to-right directionality has
become common, and proportional fonts are seeing increased use, particularly in Japan.
Horizontal, right-to-left text is also found on occasion, usually for shorter texts such as
inscriptions or store signs. Diacritical marks are rarely used, although phonetic annota-
tions are not uncommon. Older editions of the Chinese classics sometimes use the ideo-
graphic tone marks (U+302A..U+302D) to indicate unusual pronunciations of characters.

Many older character sets include characters intended to simplify the implementation of
East Asian scripts, such as variant punctuation forms for text written vertically, halfwidth
forms (which occupy only half a rectangle), and fullwidth forms (which allow Latin letters
to occupy a full rectangle). These characters are included in the Unicode Standard for com-
patibility with older standards.

Appendix E, Han Unification History, describes how the diverse typographic traditions of
mainland China, Taiwan, Japan, Korea, and Vietnam have been reconciled to provide a
common set of ideographs in the Unicode Standard for all these languages and regions.

12.1 Han

CJK Unified Ideographs

The Unicode Standard contains a set of unified Han ideographic characters used in the
written Chinese, Japanese, and Korean languages. The term Han, derived from the Chinese
Han Dynasty, refers generally to Chinese traditional culture. The Han ideographic charac-
ters make up a coherent script, which was traditionally written vertically, with the vertical
lines ordered from right to left. In modern usage, especially in technical works and in com-
puter-rendered text, the Han script is written horizontally from left to right and is freely
mixed with Latin or other scripts. When used in writing Japanese or Korean, the Han char-
acters are interspersed with other scripts unique to those languages (Hiragana and
Katakana for Japanese; Hangul syllables for Korean).

Athough the term “CJK”—Chinese, Japanese, and Korean—is used throughout this text to
describe the languages that currently use Han ideographic characters, it should be noted
that earlier Vietnamese writing systems were based on Han ideographs. Consequently, the
term “CJKV” would be more accurate in a historical sense. Han ideographs are still used
for historical, religious, and pedagogical purposes in Vietnam. For more on usage of the
term ideograph, see “Logosyllabaries” in Section 6.1, Writing Systems.

The term “Han ideographic characters” is used within the Unicode Standard as a common
term traditionally used in Western texts, although “sinogram” is preferred by professional
linguists. Taken literally, the word “ideograph” applies only to some of the ancient original
character forms, which indeed arose as ideographic depictions. The vast majority of Han
characters were developed later via composition, borrowing, and other non-ideographic
principles, but the term “Han ideographs” remains in English usage as a conventional cover
term for the script as a whole.

The Han ideographic characters constitute a very large set, numbering in the tens of thou-
sands. They have a long history of use in East Asia. Enormous compendia of Han ideo-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.1 Han 407
graphic characters exist because of a continuous, millennia-long scholarly tradition of
collecting all Han character citations, including variant, mistaken, and nonce forms, into
annotated character dictionaries.

Because of the large size of the Han ideographic character repertoire, and because of the
particular problems that the characters pose for standardizing their encoding, this charac-
ter block description is more extended than that for other scripts and is divided into several
subsections. The first two subsections, “CJK Standards” and “Blocks Containing Han Ideo-
graphs,” describe the character set standards used as sources and the way in which the Uni-
code Standard divides Han ideographs into blocks. These subsections are followed by an
extended discussion of the characteristics of Han characters, with particular attention
being paid to the problem of unification of encoding for characters used for different lan-
guages. There is a formal statement of the principles behind the Unified Han character
encoding adopted in the Unicode Standard and the order of its arrangement. For a detailed
account of the background and history of development of the Unified Han character
encoding, see Appendix E, Han Unification History.

CJK Standards

The Unicode Standard draws its unified Han character repertoire of 75,215 characters from
a number of different character set standards. These standards are grouped into nine
sources, as indicated in Table 12-1. The primary work of unifying and ordering the charac-
ters from these sources was done by the Ideographic Rapporteur Group (IRG), a subgroup
of ISO/IEC JTC1/SC2/WG2.

Table 12-1. Sources for Unified Han

G source: G0 GB 2312-80
G1 GB 12345-90 with 58 Hong Kong and 92 Korean “Idu” characters
G3 GB 7589-87 unsimplified forms
G5 GB 7590-87 unsimplified forms
G7 General Purpose Hanzi List for Modern Chinese Language, and General

List of Simplified Hanzi
GS Singapore Characters
G8 GB 8565-88
G9 GB18030-2000
GE GB 16500-95
G_4K Siku Quanshu
G_BK Chinese Encyclopedia
G_CH Ci Hai
G_CY Ci Yuan
G_CYY Chinese Academy of Surveying and Mapping Ideographs
G_FZ Founder Press System
G_GH Gudai Hanyu Cidian
G_GJZ Commercial Press Ideographs
G_HC Hanyu Dacidian
G_HZ Hanyu Dazidian ideographs
G_IDC ID system of the Ministry of Public Security of China, 2009
G_JZ Commercial Press Ideographs
G_KX Kangxi Dictionary ideographs 9th edition (1958) including the addendum
G_XC Xiandai Hanyu Cidian
G_ZFY Hanyu Fangyan Dacidian
G_ZH ZhongHua ZiHai
G_ZJW Yinzhou Jinwen Jicheng Yinde

H source: H Hong Kong Supplementary Character Set – 2008
M source: MAC Macao Information System Character Set
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

408 East Asian Scripts
The G, T, H, M, J, K, KP, and V sources represent the characters submitted to the IRG by its
member bodies. The G source consists of submissions from the People’s Republic of China
and Singapore. The other seven sources are the submissions from Taiwan, the Hong Kong
SAR, the Macao SAR, Japan, South and North Korea, and Vietnam, respectively.

The U source represents character repertoires of three different types. First, it includes
character submissions from the Unicode Technical Committee to the IRG. These were used

T source: T1 TCA-CNS 11643-1992 1st plane
T2 TCA-CNS 11643-1992 2nd plane
T3 TCA-CNS 11643-1992 3rd plane with some additional characters
T4 TCA-CNS 11643-1992 4th plane
T5 TCA-CNS 11643-1992 5th plane
T6 TCA-CNS 11643-1992 6th plane
T7 TCA-CNS 11643-1992 7th plane
TB TB TCA-CNS Ministry of Education, Hakka dialect, May 2007
TC TCA-CNS 11643-1992 12th plane
TD TCA-CNS 11643-1992 13th plane
TE TCA-CNS 11643-1992 14th plane
TF TCA-CNS 11643-1992 15th plane

J source: J0 JIS X 0208-1990
J1 JIS X 0212-1990
J3 JIS X 0213:2000 level-3
J3A JIS X 0213:2004 level-3
J4 JIS X 0213:2000 level-4
JA Unified Japanese IT Vendors Contemporary Ideographs, 1993
JH Hanyo-Denshi Program, 2002–2009
JK Japanese KOKUJI Collection
J_ARIB Association of Radio Industries and Businesses (ARIB) ARIB STD-B24 Ver-

sion 5.1, March 14, 2007
K source: K0 KS X 1001:2004 (formerly KS C 5601-1987)

K1 KS X 1002:2001 (formerly KS C 5657-1991)
K2 PKS C 5700-1 1994
K3 PKS C 5700-2 1994
K4 PKS 5700-3:1998
K5 Korean IRG Hanja Character Set 5th Edition: 2001

KP source: KP0 KPS 9566-97
KP1 KPS 10721-2000 and KPS 10721:2003

V source: V0 TCVN 5773:1993
V1 TCVN 6056:1995
V2 VHN 01:1998
V3 VHN 02: 1998
V4 Dictionary on Nom 2006, Dictionary on Nom of Tay ethnic 2006, Lookup

Table for Nom in the South 1994
U source: UTC The Unicode Technical Report #45, U-source Ideographs, September 2010

UCI The Unicode Technical Report #45, U-source Ideographs, September 2010
KS C 5601-1987 (duplicate ideographs)
ANSI Z39.64-1989 (EACC)
Big-5 (Taiwan)
CCCII, level 1
GB 12052-89 (Korean)
JEF (Fujitsu)
PRC Telegraph Code
Taiwan Telegraph Code (CCDC)
Xerox Chinese
Han Character Shapes Permitted for Personal Names (Japan)
IBM Selected Japanese and Korean Ideographs

Table 12-1. Sources for Unified Han (Continued)
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.1 Han 409
by the IRG in the preparation of Extensions C and D and have U source references prefixed
with “UTC-”. Second, corrections to IRG data sometimes leave unified ideographs without
any official IRG source. Such ideographs are included in the U source and given U-source
references with the prefix “UCI-”. U source indices for references with a “UTC-” or a
“UCI-” prefix are documented in Unicode Technical Report #45, “U-Source Ideographs.”
Finally, the U source includes ideographs from character set standards that were not sub-
mitted to the IRG by any member body, but which were used by the Unicode Technical
Committee during the preparation of the initial set of Unified CJK Ideographs included in
the Unicode Standard, Version 1.0.1—the set known as the URO. These characters do not
have any formal U source indices.

For each of the IRG sources, the second column in the table lists an abbreviated source
name and the third column lists a descriptive source name. The only characters without
abbreviated source names are U source characters added prior to Extension C. The abbre-
viated names are used in various data files published by the Unicode Consortium and ISO/
IEC to identify the specific IRG sources.

Omission of Repertoire for Some Sources. In some cases, the entire ideographic repertoire
of the original character set standards was not included in the corresponding source. Three
reasons explain this decision:

1. Where the repertoires of two of the character set standards within a single
source have considerable overlap, the characters in the overlap might be
included only once in the source. This approach is used, for example, with GB
2312-80 and GB 12345-90, which have many ideographs in common. Charac-
ters in GB 12345-90 that are duplicates of characters in GB 2312-80 are not
included in the G source.

2. Where a character set standard is based on unification rules that differ substan-
tially from those used by the IRG, many variant characters found in the charac-
ter set standard will not be included in the source. This situation is the case
with CNS 11643-1992, EACC, and CCCII. It is the only case where full round-
trip compatibility with the Han ideograph repertoire of the relevant character
set standards is not guaranteed.

3. KS C 5601-1987 contains numerous duplicate ideographs included because
they have multiple pronunciations in Korean. These multiply encoded ideo-
graphs are not included in the K source but are included in the U source. They
are encoded in the CJK Compatibility Ideographs block to provide full round-
trip compatibility with KS C 5601-1987 (now known as KS X 1001:1998).

Blocks Containing Han Ideographs

Han ideographic characters are found in seven main blocks of the Unicode Standard, as
shown in Table 12-2.

Table 12-2. Blocks Containing Han Ideographs

Block Range Comment

CJK Unified Ideographs 4E00–9FFF Common

CJK Unified Ideographs Extension A 3400–4DBF Rare

CJK Unified Ideographs Extension B 20000–2A6DF Rare, historic

CJK Unified Ideographs Extension C 2A700–2B73F Rare, historic

CJK Unified Ideographs Extension D 2B740–2B81F Uncommon, some in current use

CJK Compatibility Ideographs F900–FAFF
Duplicates, unifiable variants, corpo-
rate characters

CJK Compatibility Ideographs Supplement 2F800–2FA1F Unifiable variants
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

410 East Asian Scripts
Characters in the four unified ideograph blocks are defined by the IRG, based on Han uni-
fication principles explained later in this section.

The two compatibility ideographs blocks contain various duplicate or unifiable variant
characters encoded for round-trip compatibility with various legacy standards. For historic
reasons, the CJK Compatibility Ideographs block also contains twelve CJK unified ideo-
graphs. Those twelve ideographs are clearly labeled in the code charts for that block.

The initial repertoire of the CJK Unified Ideographs block included characters submitted to
the IRG prior to 1992, consisting of commonly used characters. That initial repertoire, also
known as the Unified Repertoire and Ordering, or URO, was derived entirely from the G, T,
J, and K sources. It has subsequently been extended with small sets of unified ideographs or
ideographic components needed for interoperability with various standards, or for other
reasons, as shown in Table 12-3.

Characters in the CJK Unified Ideographs Extension A block are rare and are not unifiable
with characters in the CJK Unified Ideographs block. They were submitted to the IRG dur-
ing 1992–1998 and are derived entirely from the G, T, J, K, and V sources.

The CJK Unified Ideographs Extension B block contains rare and historic characters that
are also not unifiable with characters in the CJK Unified Ideographs block. They were sub-
mitted to the IRG during 1998–2002.

The CJK Unified Ideographs Extension C and D blocks contain rare, historic, or uncom-
mon characters that are not unifiable with characters in any previously encoded CJK Uni-
fied Ideographs block. Some Extension D characters are in current use, particularly for
Cantonese special use characters in Hong Kong. Extension C ideographs were submitted to
the IRG during 2002–2006. Extension D ideographs were submitted to the IRG during
2006–2009.

The only principled difference in the unification work done by the IRG on the unified ideo-
graph blocks is that the Source Separation Rule (rule R1) was applied only to the original
CJK Unified Ideographs block and not to the extension blocks. The Source Separation Rule
states that ideographs that are distinctly encoded in a source must not be unified. (For fur-
ther discussion, see “Principles of Han Unification” later in this section.)

The four unified ideograph blocks are not closed repertoires. Each contains a small range
of reserved code points at the end of the block. Additional unified ideographs may eventu-
ally be encoded in those ranges—as has already occurred in the CJK Unified Ideographs
block itself. There is no guarantee that any such Han ideographic additions would be of the
same types or from the same sources as preexisting characters in the block, and implemen-
tations should be careful not to make hard-coded assumptions regarding the range of
assignments within the Han ideographic blocks in general.

Several Han characters unique to the U source and which are not unifiable with other char-
acters in the CJK Unified Ideographs block are found in the CJK Compatibility Ideographs
block. There are 12 of these characters: U+FA0E, U+FA0F, U+FA11, U+FA13, U+FA14,

Table 12-3. Small Extensions to the URO

Range Version Comment

9FA6–9FB3 4.1 Interoperability with HKSCS standard

9FB4–9FBB 4.1 Interoperability with GB 18030 standard

9FBC–9FC2 5.1 Interoperability with commercial implementations

9FC3 5.1 Correction of mistaken unification

9FC4–9FC6 5.2 Interoperability with ARIB standard

9FC7–9FCB 5.2 Interoperability with HKSCS standard
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.1 Han 411
U+FA1F, U+FA21, U+FA23, U+FA24, U+FA27, U+FA28, and U+FA29. The remaining
characters in the CJK Compatibility Ideographs block and the CJK Compatiblity Ideo-
graphs Supplement block are either duplicates or unifiable variants of a character in one of
the blocks of unified ideographs.

IICore. IICore (International Ideograph Core) is a set of important Han ideographs, incor-
porating characters from all the defined blocks. This set of nearly 10,000 characters has
been developed by the IRG and represents the set of characters in everyday use throughout
East Asia. By covering the characters in IICore, developers guarantee that they can handle
all the needs of almost all of their customers. This coverage is of particular use on devices
such as cell phones or PDAs, which have relatively stringent resource limitations. Charac-
ters in IICore are explicitly tagged as such in the Unihan Database (see Unicode Standard
Annex #38, “Unicode Han Database (Unihan)”).

General Characteristics of Han Ideographs

The authoritative Japanese dictionary Koujien (1983) defines Han characters to be:

...characters that originated among the Chinese to write the Chinese lan-
guage. They are now used in China, Japan, and Korea. They are logo-
graphic (each character represents a word, not just a sound) characters
that developed from pictographic and ideographic principles. They are
also used phonetically. In Japan they are generally called kanji (Han, that
is, Chinese, characters) including the “national characters” (kokuji) such
as touge (mountain pass), which have been created using the same prin-
ciples. They are also called mana (true names, as opposed to kana, false
or borrowed names).

For many centuries, written Chinese was the accepted written standard throughout East
Asia. The influence of the Chinese language and its written form on the modern East Asian
languages is similar to the influence of Latin on the vocabulary and written forms of lan-
guages in the West. This influence is immediately visible in the mixture of Han characters
and native phonetic scripts (kana in Japan, hangul in Korea) as now used in the orthogra-
phies of Japan and Korea (see Table 12-4).

The evolution of character shapes and semantic drift over the centuries has resulted in
changes to the original forms and meanings. For example, the Chinese character 8 tZng
(Japanese tou or yu, Korean thang), which originally meant “hot water,” has come to mean
“soup” in Chinese. “Hot water” remains the primary meaning in Japanese and Korean,

Table 12-4. Common Han Characters

Han
Character

Chinese Japanese Korean
English
Translation

1 ti#n ten, ame chen heaven, sky

2 dì chi, tsuchi ci earth, ground

3 rén jin, hito in man, person

4 sh#n san, yama san mountain

5 shu$ sui, mizu swu water

6 shàng jou, ue sang above

7 xià ka, shita ha below
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

412 East Asian Scripts
whereas “soup” appears in more recent borrowings from Chinese, such as “soup noodles”
(Japanese tanmen; Korean thangmyen). Still, the identical appearance and similarities in
meaning are dramatic and more than justify the concept of a unified Han script that tran-
scends language.

The “nationality” of the Han characters became an issue only when each country began to
create coded character sets (for example, China’s GB 2312-80, Japan’s JIS X 0208-1978, and
Korea’s KS C 5601-87) based on purely local needs. This problem appears to have arisen
more from the priority placed on local requirements and lack of coordination with other
countries, rather than out of conscious design. Nevertheless, the identity of the Han char-
acters is fundamentally independent of language, as shown by dictionary definitions,
vocabulary lists, and encoding standards.

Terminology. Several standard romanizations of the term used to refer to East Asian ideo-
graphic characters are commonly used. They include hànzì (Chinese), kanzi (Japanese),
kanji (colloquial Japanese), hanja (Korean), and Ch hán (Vietnamese). The standard
English translations for these terms are interchangeable: Han character, Han ideographic
character, East Asian ideographic character, or CJK ideographic character. For clarity, the
Unicode Standard uses some subset of the English terms when referring to these characters.
The term Kanzi is used in reference to a specific Japanese government publication. The
unrelated term KangXi (which is a Chinese reign name, rather than another romanization
of “Han character”) is used only when referring to the primary dictionary used for deter-
mining Han character arrangement in the Unicode Standard. (See Table 12-8.)

Distinguishing Han Character Usage Between Languages. There is some concern that
unifying the Han characters may lead to confusion because they are sometimes used differ-
ently by the various East Asian languages. Computationally, Han character unification
presents no more difficulty than employing a single Latin character set that is used to write
languages as different as English and French. Programmers do not expect the characters “c”,
“h”, “a”, and “t” alone to tell us whether chat is a French word for cat or an English word
meaning “informal talk.” Likewise, we depend on context to identify the American hood
(of a car) with the British bonnet. Few computer users are confused by the fact that ASCII
can also be used to represent such words as the Welsh word ynghyd, which are strange look-
ing to English eyes. Although it would be convenient to identify words by language for pro-
grams such as spell-checkers, it is neither practical nor productive to encode a separate
Latin character set for every language that uses it.

Similarly, the Han characters are often combined to “spell” words whose meaning may not
be evident from the constituent characters. For example, the two characters “to cut” and
“hand” mean “postage stamp” in Japanese, but the compound may appear to be nonsense
to a speaker of Chinese or Korean (see Figure 12-1).

Even within one language, a computer requires context to distinguish the meanings of
words represented by coded characters. The word chuugoku in Japanese, for example, may
refer to China or to a district in central west Honshuu (see Figure 12-2).

Coding these two characters as four so as to capture this distinction would probably cause
more confusion and still not provide a general solution. The Unicode Standard leaves the
issues of language tagging and word recognition up to a higher level of software and does
not attempt to encode the language of the Han characters.

Figure 12-1. Han Spelling

1. Japanese “stamp”
2. Chinese “cut hand”to cut hand

+
=

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.1 Han 413
Simplified and Traditional Chinese. There are currently two main varieties of written
Chinese: “simplified Chinese” (jiântîzì), used in most parts of the People’s Republic of
China (PRC) and Singapore, and “traditional Chinese” (fántîzì), used predominantly in
the Hong Kong and Macao SARs, Taiwan, and overseas Chinese communities. The process
of interconverting between the two is a complex one. This complexity arises largely because
a single simplified form may correspond to multiple traditional forms, such as U+53F0 3,
which is a traditional character in its own right and the simplified form for U+6AAF 4,
U+81FA 5, and U+98B1 6. Moreover, vocabulary differences have arisen between Man-
darin as spoken in Taiwan and Mandarin as spoken in the PRC, the most notable of which
is the usual name of the language itself: guóy& (the National Language) in Taiwan and
p&t]nghuà (the Common Speech) in the PRC. Merely converting the character content of a
text from simplified Chinese to the appropriate traditional counterpart is insufficient to
change a simplified Chinese document to traditional Chinese, or vice versa. (The vast
majority of Chinese characters are the same in both simplified and traditional Chinese.)

There are two PRC national standards, GB 2312-80 and GB 12345-90, which are intended
to represent simplified and traditional Chinese, respectively. The character repertoires of
the two are the same, but the simplified forms occur in GB 2312-80 and the traditional
ones in GB 12345-90. These are both part of the IRG G source, with traditional forms and
simplified forms separated where they differ. As a result, the Unicode Standard contains a
number of distinct simplifications for characters, such as U+8AAC i and U+8BF4 j.

While there are lists of official simplifications published by the PRC, most of these are
obtained by applying a few general principles to specific areas. In particular, there is a set of
radicals (such as U+2F94 / kangxi radical speech, U+2F99 0 kangxi radical shell,
U+2FA8 1 kangxi radical gate, and U+2FC3 2 kangxi radical bird) for which sim-
plifications exist (U+2EC8 + cjk radical c-simplified speech, U+2EC9 , cjk radi-

cal c-simplified shell, U+2ED4 - cjk radical c-simplified gate, and U+2EE6 .
cjk radical c-simplified bird). The basic technique for simplifying a character contain-
ing one of these radicals is to substitute the simplified radical, as in the previous example.

The Unicode Standard does not explicitly encode all simplified forms for traditional Chi-
nese characters. Where the simplified and traditional forms exist as different encoded char-
acters, each should be used as appropriate. The Unicode Standard does not specify how to
represent a new simplified form (or, more rarely, a new traditional form) that can be
derived algorithmically from an encoded traditional form (simplified form).

Dialects and Early Forms of Chinese. Chinese is not a single language, but a complex of
spoken forms that share a single written form. Although these spoken forms are referred to
as dialects, they are actually mutually unintelligible and distinct languages. Virtually all
modern written Chinese is Mandarin, the dominant language in both the PRC and Taiwan.
Speakers of other Chinese languages learn to read and write Mandarin, although they pro-
nounce it using the rules of their own language. (This would be like having Spanish chil-
dren read and write only French, but pronouncing it as if it were Spanish.) The major non-
Mandarin Chinese languages are Cantonese (spoken in the Hong Kong and Macao SARs,
in many overseas Chinese communities, and in much of Guangdong province), Wu, Min,
Hakka, Gan, and Xiang.

Prior to the twentieth century, the standard form of written Chinese was literary Chinese, a
form derived from the classical Chinese written, but probably not spoken by Confucius in
the sixth century bce.

Figure 12-2. Semantic Context for Han Characters

middle country

1. China
2. Chuugoku district of Honshuu

+
=

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

414 East Asian Scripts
The ideographic repertoire of the Unicode Standard is sufficient for all but the most spe-
cialized texts of modern Chinese, literary Chinese, and classical Chinese. Preclassical Chi-
nese, written using seal forms or oracle bone forms, has not been systematically incorporated
into the Unicode Standard, because those very early, historic forms differed substantially
from the classic and modern forms of Han characters. They require investigation and
encoding as distinct historic scripts.

Among modern Chinese languages, Cantonese is occasionally found in printed materials;
the others are almost never seen in printed form. There is less standardization for the ideo-
graphic repertoires of these languages, and no fully systematic effort has been undertaken
to catalog the nonstandard ideographs they use. Because of efforts on the part of the gov-
ernment of the Hong Kong SAR, however, the current ideographic repertoire of the Uni-
code Standard should be adequate for many—but not all—written Cantonese texts.

Sorting Han Ideographs. The Unicode Standard does not define a method by which ideo-
graphic characters are sorted; the requirements for sorting differ by locale and application.
Possible collating sequences include phonetic, radical-stroke (KangXi, Xinhua Zidian, and
so on), four-corner, and total stroke count. Raw character codes alone are seldom sufficient
to achieve a usable ordering in any of these schemes; ancillary data are usually required.
(See Table 12-8 for a summary of the authoritative sources used to determine the order of
Han ideographs in the code charts.)

Character Glyphs. In form, Han characters are monospaced. Every character takes the
same vertical and horizontal space, regardless of how simple or complex its particular form
is. This practice follows from the long history of printing and typographical practice in
China, which traditionally placed each character in a square cell. When written vertically,
there are also a number of named cursive styles for Han characters, but the cursive forms of
the characters tend to be quite idiosyncratic and are not implemented in general-purpose
Han character fonts for computers.

There may be a wide variation in the glyphs used in different countries and for different
applications. The most commonly used typefaces in one country may not be used in
others.

The types of glyphs used to depict characters in the Han ideographic repertoire of the Uni-
code Standard have been constrained by available fonts. Users are advised to consult
authoritative sources for the appropriate glyphs for individual markets and applications. It
is assumed that most Unicode implementations will provide users with the ability to select
the font (or mixture of fonts) that is most appropriate for a given locale.

Principles of Han Unification

Three-Dimensional Conceptual Model. To develop the explicit rules for unification, a
conceptual framework was developed to model the nature of Han ideographic characters.
This model expresses written elements in terms of three primary attributes: semantic
(meaning, function), abstract shape (general form), and actual shape (instantiated, type-
face form). These attributes are graphically represented in three dimensions according to
the X, Y, and Z axes (see Figure 12-3).

The semantic attribute (represented along the X axis) distinguishes characters by meaning
and usage. Distinctions are made between entirely unrelated characters such as > (marsh)
and : (machine) as well as extensions or borrowings beyond the original semantic cluster
such as ;1 (a phonetic borrowing used as a simplified form of :) and ;2 (table, the orig-
inal meaning).

The abstract shape attribute (the Y axis) distinguishes the variant forms of a single charac-
ter with a single semantic attribute (that is, a character with a single position on the X axis).
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.1 Han 415
The actual shape (typeface) attribute (the Z axis) is for differences of type design (the
actual shape used in imaging) of each variant form.

Z-axis typeface and stylistic differences are generally ignored for the purpose of encoding
Han ideographs, but can be represented in text by the use of variation sequences; see
Section 16.4, Variation Selectors.

Unification Rules

The following rules were applied during the process of merging Han characters from the
different source character sets.

R1 Source Separation Rule. If two ideographs are distinct in a primary source stan-
dard, then they are not unified.

• This rule is sometimes called the round-trip rule because its goal is to facilitate a
round-trip conversion of character data between an IRG source standard and
the Unicode Standard without loss of information.

• This rule was applied only for the work on the original CJK Unified Ideographs
block [also known as the Unified Repertoire and Ordering (URO)]. The IRG
dropped this rule in 1992 and will not use it in future work.

Figure 12-4 illustrates six variants of the CJK ideograph meaning “sword.”

Each of the six variants in Figure 12-4 is separately encoded in one of the primary source
standards—in this case, J0 (JIS X 0208-1990), as shown in Table 12-5.

Because the six sword characters are historically related, they are not subject to disunifica-
tion by the Noncognate Rule (R2) and thus would ordinarily have been considered for pos-

Figure 12-3. Three-Dimensional Conceptual Model

Figure 12-4. CJK Source Separation

Z
(ty

pe
fac

e)

X (semantic)
Y (

ab
str

ac
t s

ha
pe

)

1 2

“sword”
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

416 East Asian Scripts
sible abstract shape-based unification by R3. Under that rule, the fourth and fifth variants
would probably have been unified for encoding. However, the Source Separation Rule
required that all six variants be separately encoded, precluding them from any consider-
ation of shape-based unification. Further variants of the “sword” ideograph, U+5251 and
U+528E, are also separately encoded because of application of the Source Separation
Rule—in that case applied to one or more Chinese primary source standards, rather than
to the J0 Japanese primary source standard.

R2 Noncognate Rule. In general, if two ideographs are unrelated in historical deriva-
tion (noncognate characters), then they are not unified.

For example, the ideographs in Figure 12-5, although visually quite similar, are nevertheless
not unified because they are historically unrelated and have distinct meanings.

R3 By means of a two-level classification (described next), the abstract shape of each
ideograph is determined. Any two ideographs that possess the same abstract shape
are then unified provided that their unification is not disallowed by either the
Source Separation Rule or the Noncognate Rule.

Abstract Shape

Two-Level Classification. Using the three-dimensional model, characters are analyzed in a
two-level classification. The two-level classification distinguishes characters by abstract
shape (Y axis) and actual shape of a particular typeface (Z axis). Variant forms are identi-
fied based on the difference of abstract shapes.

To determine differences in abstract shape and actual shape, the structure and features of
each component of an ideograph are analyzed as follows.

Ideographic Component Structure. The component structure of each ideograph is exam-
ined. A component is a geometrical combination of primitive elements. Various ideo-
graphs can be configured with these components used in conjunction with other
components. Some components can be combined to make a component more complicated
in its structure. Therefore, an ideograph can be defined as a component tree with the entire
ideograph as the root node and with the bottom nodes consisting of primitive elements
(see Figure 12-6 and Figure 12-7).

Ideograph Features. The following features of each ideograph to be compared are exam-
ined:

• Number of components

• Relative positions of components in each complete ideograph

Table 12-5. Source Encoding for Sword Variants

Unicode JIS
U+5263 J0-3775
U+528D J0-5178
U+5271 J0-517B
U+5294 J0-5179
U+5292 J0-517A
U+91FC J0-6E5F

Figure 12-5. Not Cognates, Not Unified

warrior, scholarearth

≠

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.1 Han 417
• Structure of a corresponding component

• Treatment in a source character set

• Radical contained in a component

Uniqueness or Unification. If one or more of these features are different between the ideo-
graphs compared, the ideographs are considered to have different abstract shapes and,
therefore, are considered unique characters and are not unified. If all of these features are
identical between the ideographs, the ideographs are considered to have the same abstract
shape and are unified.

Spatial Positioning. Ideographs may exist as a unit or may be a component of more com-
plex ideographs. A source standard may describe a requirement for a component with a
specific spatial positioning that would be otherwise unified on the principle of having the
same abstract shape as an existing full ideograph. Examples of spatial positioning for ideo-
graphic components are left half, top half, and so on.

Examples. The examples in Table 12-6 illustrate the reasons for not unifying characters,
including typical differences in abstract character shape.

Differences in the actual shapes of ideographs that have been unified are illustrated in
Table 12-7.

Figure 12-6. Ideographic Component Structure

Figure 12-7. The Most Superior Node of an Ideographic Component

Table 12-6. Ideographs Not Unified

Characters Reason

5 6 Non-cognate characters

3 4 Characters treated as distinct in a source character set

a b Different number of components

c d Same number of components placed in different relative positions

e f Same number and same relative position of components, corresponding com-
ponents structured differently

i j Characters with different radical in a component

vs.

vs.

vs.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

418 East Asian Scripts
Han Ideograph Arrangement

The arrangement of the Unicode Han characters is based on the positions of characters as
they are listed in four major dictionaries. The KangXi Zidian was chosen as primary
because it contains most of the source characters and because the dictionary itself and the
principles of character ordering it employs are commonly used throughout East Asia.

The Han ideograph arrangement follows the index (page and position) of the dictionaries
listed in Table 12-8 with their priorities.

When a character is found in the KangXi Zidian, it follows the KangXi Zidian order. When
it is not found in the KangXi Zidian and it is found in Dai Kan-Wa Jiten, it is given a posi-
tion extrapolated from the KangXi position of the preceding character in Dai Kan-Wa Jiten.
When it is not found in either KangXi or Dai Kan-Wa, then the Hanyu Da Zidian and Dae
Jaweon dictionaries are consulted in a similar manner.

Ideographs with simplified KangXi radicals are placed in a group following the traditional
KangXi radical from which the simplified radical is derived. For example, characters with
the simplified radical + corresponding to KangXi radical / follow the last nonsimplified
character having / as a radical. The arrangement for these simplified characters is that of
the Hanyu Da Zidian.

The few characters that are not found in any of the four dictionaries are placed following
characters with the same KangXi radical and stroke count. The radical-stroke order that
results is a culturally neutral order. It does not exactly match the order found in common
dictionaries.

Information for sorting all CJK ideographs by the radical-stroke method is found in the
Unihan Database (see Unicode Standard Annex #38, “Unicode Han Database (Unihan)”).

Table 12-7. Ideographs Unified

Characters Reason

m n Different writing sequence

q r Differences in overshoot at the stroke termination

s t Differences in contact of strokes

u v Differences in protrusion at the folded corner of strokes

w x Differences in bent strokes

y z Differences in stroke termination

P Q Differences in accent at the stroke initiation

~ T Difference in rooftop modification

o p Difference in rotated strokes/dotsa

a. These ideographs (having the same abstract shape) would have been unified
except for the Source Separation Rule.

Table 12-8. Han Ideograph Arrangement

Priority Dictionary City Publisher Version

1 KangXi Zidian Beijing Zhonghua Bookstore, 1989 Seventh edition

2 Dai Kan-Wa Jiten Tokyo Taishuukan Shoten, 1986 Revised edition

3 Hanyu Da Zidian Chengdu Sichuan Cishu Publishing, 1986 First edition

4 Dae Jaweon Seoul Samseong Publishing Co. Ltd, 1988 First edition
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.1 Han 419
It should be used if characters from the various blocks containing ideographs (see
Table 12-2) are to be properly interleaved. Note, however, that there is no standard way of
ordering characters with the same radical-stroke count; for most purposes, Unicode code
point order would be as acceptable as any other way.

Details regarding the form of the online charts for the CJK unified ideographs are discussed
in Section 17.2, CJK Unified and Compatibility Ideographs.

Radical-Stroke Indices

To expedite locating specific Han ideographic characters in the code charts, radical-stroke
indices are provided on the Unicode web site. An interactive radical-stroke index page
enables queries by specific radical numbers and stroke counts. Two fully formatted tradi-
tional radical-stroke indices are also posted in PDF format. The larger of those provides a
radical-stroke index for all of the Han ideographic characters in the Unicode Standard,
including CJK compatibility ideographs. There is also a more compact radical-stroke index
limited to the IICore set of 9,810 CJK unified ideographs in common usage. The following
text describes how radical-stroke indices work for Han ideographic characters and explains
the particular adaptations which have been made for the Unicode radical-stroke indices.

Under the traditional radical-stroke system, each Han ideograph is considered to be writ-
ten with one of a number of different character elements or radicals and a number of addi-
tional strokes. For example, the character @ has the radical $ and seven additional strokes.
To find the character @ within a dictionary, one would first locate the section for its radi-
cal, $, and then find the subsection for characters with seven additional strokes.

This method is complicated by the fact that there are occasional ambiguities in the count-
ing of strokes. Even worse, some characters are considered by different authorities to be
written with different radicals; there is not, in fact, universal agreement about which set of
radicals to use for certain characters, particularly with the increased use of simplified
characters.

The most influential authority for radical-stroke information is the eighteenth-century
KangXi dictionary, which contains 214 radicals. The main problem in using KangXi radi-
cals today is that many simplified characters are difficult to classify under any of the 214
KangXi radicals. As a result, various modern radical sets have been introduced. None, how-
ever, is in general use, and the 214 KangXi radicals remain the best known. See “CJK and
KangXi Radicals” in the following text.

The Unicode radical-stroke charts are based on the KangXi radicals. The Unicode Standard
follows a number of different sources for radical-stroke classification. Where two sources
are at odds as to radical or stroke count for a given character, the character is shown in both
positions in the radical-stroke charts.

Simplified characters are, as a rule, considered to have the same radical as their traditional
forms and are found under the appropriate radical. For example, the character & is found
under the same radical, +, as its traditional form (%).

Mappings for Han Ideographs

The mappings defined by the IRG between the ideographs in the Unicode Standard and the
IRG sources are specified in the Unihan Database. These mappings are considered to be
normative parts of ISO/IEC 10646 and of the Unicode Standard; that is, the characters are
defined to be the targets for conversion of these characters in these character set standards.

These mappings have been derived from editions of the source standards provided directly
to the IRG by its member bodies, and they may not match mappings derived from the pub-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

420 East Asian Scripts
lished editions of these standards. For this reason, developers may choose to use alternative
mappings more directly correlated with published editions.

Specialized conversion systems may also choose more sophisticated mapping mecha-
nisms—for example, semantic conversion, variant normalization, or conversion between
simplified and traditional Chinese.

The Unicode Consortium also provides mapping information that extends beyond the
normative mappings defined by the IRG. These additional mappings include mappings to
character set standards included in the U source, including duplicate characters from KS C
5601-1987, mappings to portions of character set standards omitted from IRG sources, ref-
erences to standard dictionaries, and suggested character/stroke counts.

CJK Unified Ideographs Extension B: U+20000–U+2A6D6

The ideographs in the CJK Unified Ideographs Extension B block represent an additional
set of 42,711 ideographs beyond the 27,496 included in The Unicode Standard, Version 3.0.
The same principles underlying the selection, organization, and unification of Han ideo-
graphs apply to these ideographs.

As with other Han ideograph blocks, the ideographs in the CJK Unified Ideographs Exten-
sion B block are derived from versions of national standards submitted to the IRG by its
members. They may in some instances differ slightly from published versions of these stan-
dards.

CJK Unified Ideographs Extension C: U+2A700–U+2B734

The ideographs in the CJK Unified Ideographs Extension C block represent an additional
4,908 ideographs beyond the 70,229 included in The Unicode Standard, Version 5.0. The
same principles underlying the selection, organization, and unification of Han ideographs
apply to these ideographs.

CJK Unified Ideographs Extension D: U+2B740–U+2B81D

The ideographs in the CJK Unified Ideographs Extension D block represent an additional
222 ideographs beyond the 74,394 included in The Unicode Standard, Version 5.2. The same
principles underlying the selection, organization, and unification of Han ideographs apply
to these ideographs.

CJK Compatibility Ideographs: U+F900–U+FAFF

The Korean national standard KS C 5601-1987 (now known as KS X 1001:1998), which
served as one of the primary source sets for the Unified CJK Ideograph Repertoire and
Ordering, Version 2.0, contains 268 duplicate encodings of identical ideograph forms to
denote alternative pronunciations. That is, in certain cases, the standard encodes a single
character multiple times to denote different linguistic uses. This approach is like encoding
the letter “a” five times to denote the different pronunciations it has in the words hat, able,
art, father, and adrift. Because they are in all ways identical in shape to their nominal coun-
terparts, they were excluded by the IRG from its sources. For round-trip conversion with
KS C 5601-1987, they are encoded separately from the primary CJK Unified Ideographs
block.

Another 34 ideographs from various regional and industry standards were encoded in this
block, primarily to achieve round-trip conversion compatibility. Twelve of these ideo-
graphs (U+FA0E, U+FA0F, U+FA11, U+FA13, U+FA14, U+FA1F, U+FA21, U+FA23,
U+FA24, U+FA27, U+FA28, and U+FA29) are not encoded in the CJK Unified Ideographs
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.1 Han 421
Areas. These 12 characters are not duplicates and should be treated as a small extension to
the set of unified ideographs.

Except for the 12 unified ideographs just enumerated, CJK compatibility ideographs from
this block are not used in Ideographic Description Sequences.

An additional 59 compatibility ideographs are found from U+FA30 to U+FA6A. They are
included in the Unicode Standard to provide full round-trip compatibility with the ideo-
graphic repertoire of JIS X 0213:2000 and should not be used for any other purpose.

An additional three compatibility ideographs are encoded at the range U+FA6B to
U+FA6D. They are included in the Unicode Standard to provide full round-trip compati-
bility with the ideographic repertoire of the Japanese television standard, ARIB STD-B24,
and should not be used for any other purpose.

An additional 106 compatibility ideographs are encoded at the range U+FA70 to U+FAD9.
They are included in the Unicode Standard to provide full round-trip compatibility with
the ideographic repertoire of KPS 10721-2000. They should not be used for any other pur-
pose.

The names for the compatibility ideographs are also algorithmically derived. Thus the
name for the compatibility ideograph U+F900 is cjk compatibility ideograph-f900.

CJK Compatibility Supplement: U+2F800–U+2FA1D

The CJK Compatibility Ideographs Supplement block consists of additional compatibility
ideographs required for round-trip compatibility with CNS 11643-1992, planes 3, 4, 5, 6, 7,
and 15. They should not be used for any other purpose and, in particular, may not be used
in Ideographic Description Sequences.

Kanbun: U+3190–U+319F

This block contains a set of Kanbun marks used in Japanese texts to indicate the Japanese
reading order of classical Chinese texts. These marks are not encoded in any other current
character encoding standards but are widely used in literature. They are typically written in
an annotation style to the left of each line of vertically rendered Chinese text. For more
details, see JIS X 4051.

Symbols Derived from Han Ideographs

A number of symbols derived from Han ideographs can be found in other blocks. See
“Enclosed CJK Letters and Months: U+3200..U+32FF,” “CJK Compatibility: U+3300..
U+33FF,” and “Enclosed Ideographic Supplement” in Section 15.10, Enclosed and Square.

CJK and KangXi Radicals: U+2E80–U+2FD5

East Asian ideographic radicals are ideographs or fragments of ideographs used to index
dictionaries and word lists, and as the basis for creating new ideographs. The term radical
comes from the Latin radix, meaning “root,” and refers to the part of the character under
which the character is classified in dictionaries. See “Radical-Stroke Indices” earlier in this
section for a more detailed discussion of how ideographic radicals are used in indices.

There is no single radical set in general use throughout East Asia. However, the set of 214
radicals used in the eighteenth-century KangXi dictionary is universally recognized.

The visual appearance of radicals is often very different when they are used as radicals than
their appearance when they are stand-alone ideographs. Indeed, many radicals have multi-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

422 East Asian Scripts
ple graphic forms when used as parts of characters. A standard example is the water radical,
which is written A when an ideograph and generally B when part of an ideograph.

The Unicode Standard includes two blocks of encoded radicals: the KangXi Radicals block
(U+2F00..U+2FD5), which contains the base forms for the 214 radicals, and the CJK Rad-
icals Supplement block (U+2E80..U+2EF3), which contains a set of variant shapes taken by
the radicals either when they occur as parts of characters or when they are used for simpli-
fied Chinese. These variant shapes are commonly found as independent and distinct char-
acters in dictionary indices—such as for the radical-stroke charts in the Unicode Standard.
As such, they have not been subject to the usual unification rules used for other characters
in the standard.

Most of the characters in the CJK and KangXi Radicals blocks are equivalents of characters
in the CJK Unified Ideographs block of the Unicode Standard. Radicals that have one
graphic form as an ideograph and another as part of an ideograph are generally encoded in
both forms in the CJK Unified Ideographs block (such as U+6C34 and U+6C35 for the
water radical).

Standards. CNS 11643-1992 includes a block of radicals separate from its ideograph block.
This block includes 212 of the 214 KangXi radicals. These characters are included in the
KangXi Radicals block.

Those radicals that are ideographs in their own right have a definite meaning and are usu-
ally referred to by that meaning. Accordingly, most of the characters in the KangXi Radicals
block have been assigned names reflecting their meaning. The other radicals have been
given names based on their shape.

Semantics. Characters in the CJK and KangXi Radicals blocks should never be used as
ideographs. They have different properties and meanings. U+2F00 kangxi radical one is
not equivalent to U+4E00 cjk unified ideograph-4e00, for example. The former is to be
treated as a symbol, the latter as a word or part of a word.

The characters in the CJK and KangXi Radicals blocks are compatibility characters. Except
in cases where it is necessary to make a semantic distinction between a Chinese character in
its role as a radical and the same Chinese character in its role as an ideograph, the charac-
ters from the Unified Ideographs blocks should be used instead of the compatibility radi-
cals. To emphasize this difference, radicals may be given a distinct font style from their
ideographic counterparts.

CJK Additions from HKSCS and GB 18030

Several characters have been encoded because of developments in HKSCS-2001 (the Hong
Kong Supplementary Character Set) and GB 18030-2000 (the PRC National Standard).
Both of these encoding standards were published with mappings to Unicode Private Use
Area code points. PUA ideographic characters that could not be remapped to non-PUA
CJK ideographs were added to the existing block of CJK Unified Ideographs. Fourteen new
ideographs (U+9FA6..U+9FB3) were added from HKSCS, and eight multistroke ideo-
graphic components (U+9FB4..U+9FBB) were added from GB 18030.

To complete the mapping to these two Chinese standards, a number of non-ideographic
characters were encoded elsewhere in the standard. In particular, two symbol characters
from HKSCS were added to the existing Miscellaneous Technical block: U+23DA earth

ground and U+23DB fuse. A new block, CJK Strokes (U+31C0..U+31EF), was created
and populated with a number of stroke symbols from HKSCS. Another block, Vertical
Forms (U+FE10..U+FE1F), was created for vertical punctuation compatibility characters
from GB 18030.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.2 Ideographic Description Characters 423
CJK Strokes: U+31C0–U+31EF

Characters in the CJK Strokes block are single-stroke components of CJK ideographs. The
first characters assigned to this block were 16 HKSCS–2001 PUA characters that had been
excluded from CJK Unified Ideograph Extension B on the grounds that they were not true
ideographs. Further additions consist of traditionally defined stroke types attested in the
representative forms appearing in the Unicode CJK ideograph code charts or occurring in
pre-unification source glyphs.

CJK strokes are used with highly specific semantics (primarily to index ideographs), but
they may lack the monosyllabic pronunciations and logographic functions typically associ-
ated with independent ideographs. The strokes in this block are single strokes of well-
defined types. For more information about these strokes, see Appendix F, Documentation of
CJK Strokes.

12.2 Ideographic Description Characters

Ideographic Description: U+2FF0–U+2FFB

Although the Unicode Standard includes more than 75,000 CJK unified ideographs, thou-
sands of extremely rare CJK ideographs have nevertheless been left unencoded. Research
into cataloging additional ideographs for encoding continues, but it is anticipated that at
no point will the entire set of potential, encodable ideographs be completely exhausted. In
particular, ideographs continue to be coined and such new coinages will invariably be
unencoded.

The 12 characters in the Ideographic Description block provide a mechanism for the stan-
dard interchange of text that must reference unencoded ideographs. Unencoded ideo-
graphs can be described using these characters and encoded ideographs; the reader can
then create a mental picture of the ideographs from the description.

This process is different from a formal encoding of an ideograph. There is no canonical
description of unencoded ideographs; there is no semantic assigned to described ideo-
graphs; there is no equivalence defined for described ideographs. Conceptually, ideo-
graphic descriptions are more akin to the English phrase “an ‘e’ with an acute accent on it”
than to the character sequence <U+0065, U+0301>.

In particular, support for the characters in the Ideographic Description block does not
require the rendering engine to recreate the graphic appearance of the described character.

Note also that many of the ideographs that users might represent using the Ideographic
Description characters will be formally encoded in future versions of the Unicode Stan-
dard.

The Ideographic Description Algorithm depends on the fact that virtually all CJK ideo-
graphs can be broken down into smaller pieces that are themselves ideographs. The broad
coverage of the ideographs already encoded in the Unicode Standard implies that the vast
majority of unencoded ideographs can be represented using the Ideographic Description
characters.

Although Ideographic Description Sequences are intended primarily to represent unen-
coded ideographs and should not be used in data interchange to represent encoded ideo-
graphs, they also have pedagogical and analytic uses. A researcher, for example, may choose
to represent the character U+86D9 y as “vxw” in a database to provide a link between
it and other characters sharing its phonetic, such as U+5A03 z. The IRG is using Ideo-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

424 East Asian Scripts
graphic Description Sequences in this fashion to help provide a first-approximation,
machine-generated set of unifications for its current work.

Applicability to Other Scripts. The characters in the Ideographic Description block are
derived from a Chinese standard and were encoded for use specifically in describing CJK
ideographs. As a result, the following detailed description of Ideographic Description
Sequences is specified entirely in terms of CJK unified ideographs and CJK radicals. How-
ever, there are several large, historic East Asian scripts whose writing systems were heavily
influenced by the Han script. Like the Han script, those siniform historic scripts, which
include Tangut, Jurchen, and Khitan, are logographic in nature. Furthermore, they built up
characters using radicals and components, and with side-by-side and top-to-bottom stack-
ing very similar in structure to the way CJK ideographs are composed. These historic
scripts are not yet encoded in Version 6.2 of the Unicode Standard, but it is quite likely that
one or more of them will be encoded eventually.

The general usefulness of Ideographic Description Sequences for describing unencoded
characters and the applicability of the characters in the Ideographic Description block to
description of siniform logographs mean that the syntax for Ideographic Description
Sequences can be generalized to extend to additional East Asian logographic scripts.

Ideographic Description Sequences. Ideographic Description Sequences are defined by the
following grammar. The list of characters associated with the Ideographic and Radical prop-
erties can be found in the Unicode Character Database.

IDS := Ideographic | Radical | Private Use
| IDS_BinaryOperator IDS IDS
| IDS_TrinaryOperator IDS IDS IDS

IDS_BinaryOperator := U+2FF0 | U+2FF1 | U+2FF4 | U+2FF5 | U+2FF6 | U+2FF7 |
U+2FF8 | U+2FF9 | U+2FFA | U+2FFB

IDS_TrinaryOperator:= U+2FF2 | U+2FF3

Previous versions of the Unicode standard imposed various limits on the length of a
sequence or parts of it. Those limits are no longer imposed by the standard.

The operators indicate the relative graphic positions of the operands running from left to
right and from top to bottom. A user wishing to represent an unencoded ideograph will
need to analyze its structure to determine how to describe it using an Ideographic Descrip-
tion Sequence. As a rule, it is best to use the natural radical-phonetic division for an ideo-
graph if it has one and to use as short a description sequence as possible; however, there is
no requirement that these rules be followed. Beyond that, the shortest possible Ideographic
Description Sequence is preferred.

Figure 12-8 illustrates the use of this grammar to provide descriptions of unencoded ideo-
graphs. Examples 9–13 illustrate more complex Ideographic Description Sequences show-
ing the use of some of the less common operators.

Equivalence. Many unencoded ideographs can be described in more than one way using
this algorithm, either because the pieces of a description can themselves be broken down
further (examples 1–3 in Figure 12-8) or because duplications appear within the Unicode
Standard (examples 5 and 6 in Figure 12-8).

The Unicode Standard does not define equivalence for two Ideographic Description
Sequences that are not identical. Figure 12-8 contains numerous examples illustrating how
different Ideographic Description Sequences might be used to describe the same ideo-
graph.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.2 Ideographic Description Characters 425
In particular, Ideographic Description Sequences should not be used to provide alternative
graphic representations of encoded ideographs in data interchange. Searching, collation,
and other content-based text operations would then fail.

Interaction with the Ideographic Variation Mark. As with ideographs proper, the Ideo-
graphic Variation Mark (U+303E) may be placed before an Ideographic Description
Sequence to indicate that the description is merely an approximation of the original ideo-
graph desired. A sequence of characters that includes an Ideographic Variation Mark is not
an Ideographic Description Sequence.

Rendering. Ideographic Description characters are visible characters and are not to be
treated as control characters. Thus the sequence U+2FF1 U+4E95 U+86D9 must have a
distinct appearance from U+4E95 U+86D9.

An implementation may render a valid Ideographic Description Sequence either by render-
ing the individual characters separately or by parsing the Ideographic Description
Sequence and drawing the ideograph so described. In the latter case, the Ideographic
Description Sequence should be treated as a ligature of the individual characters for pur-
poses of hit testing, cursor movement, and other user interface operations. (See
Section 5.11, Editing and Selection.)

Character Boundaries. Ideographic Description characters are not combining characters,
and there is no requirement that they affect character or word boundaries. Thus U+2FF1
U+4E95 U+86D9 may be treated as a sequence of three characters or even three words.

Implementations of the Unicode Standard may choose to parse Ideographic Description
Sequences when calculating word and character boundaries. Note that such a decision will
make the algorithms involved significantly more complicated and slower.

Standards. The Ideographic Description characters are found in GBK—an extension to
GB 2312-80 that adds all Unicode ideographs not already in GB 2312-80. GBK is defined as
a normative annex of GB 13000.1-93.

Figure 12-8. Using the Ideographic Description Characters

C

D

E

F

]

872IJ

:9KLKMN

7:B7OOPQKR

;S78TUV

7_87Z^\

#TU S

#T"VW

#T"V#XX

*Z#[\ Y

7W8ef

7_8ef

7g8ef

7h8ef

2FF1 4E95 86D9

2FF1 4E95 2FF0 866B 572D

2FF1 4E95 2FF0 866B 2FF1 571F 571F

2FF8 5382 2FF1 4ECA 6B62

2FF0 6C34 2FF1 53E3 5DDB

2FF0 6C35 2FF1 53E3 5DDB

2FF0 2F54 2FF1 53E3 5DDB

2FF0 2EA1 2FF1 53E3 5DDB

2FF1 2FF0 9CE5 9F9C 706B

2FF3 2FF2 4E02 5F61 4E02 5F50 76BF

2FF0 2FF3 2FFB 2FF0 65E5 65E5 5DE5 7F51 4E02 4E5E

2FF4 56D7 2FF0 2FF1 9E75 51FC 9091

2FF0 6C35 2FF1 2FF0 4FDD 53BD 571F

d→

→

→

→

→

→

→

→

→

→

→

→

→

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

426 East Asian Scripts
12.3 Bopomofo

Bopomofo: U+3100–U+312F

Bopomofo constitute a set of characters used to annotate or teach the phonetics of Chinese,
primarily the standard Mandarin language. These characters are used in dictionaries and
teaching materials, but not in the actual writing of Chinese text. The formal Chinese names
for this alphabet are Zhuyin-Zimu (“phonetic alphabet”) and Zhuyin-Fuhao (“phonetic
symbols”), but the informal term “Bopomofo” (analogous to “ABCs”) provides a more ser-
viceable English name and is also used in China. The Bopomofo were developed as part of
a populist literacy campaign following the 1911 revolution; thus they are acceptable to all
branches of modern Chinese culture, although in the People’s Republic of China their
function has been largely taken over by the Pinyin romanization system.

Bopomofo is a hybrid writing system—part alphabet and part syllabary. The letters of
Bopomofo are used to represent either the initial parts or the final parts of a Chinese sylla-
ble. The initials are just consonants, as for an alphabet. The finals constitute either simple
vowels, vocalic diphthongs, or vowels plus nasal consonant combinations. Because a num-
ber of Chinese syllables have no initial consonant, the Bopomofo letters for finals may con-
stitute an entire syllable by themselves. More typically, a Chinese syllable is represented by
one initial consonant letter, followed by one final letter. In some instances, a third letter is
used to indicate a complex vowel nucleus for the syllable. For example, the syllable that
would be written luan in Pinyin is segmented l-u-an in Bopomofo—that is, <U+310C,
U+3128, U+3122>.

Standards. The standard Mandarin set of Bopomofo is included in the People’s Republic of
China standards GB 2312 and GB 18030, and in the Republic of China (Taiwan) standard
CNS 11643.

Mandarin Tone Marks. Small modifier letters used to indicate the five Mandarin tones are
part of the Bopomofo system. In the Unicode Standard they have been unified into the
Modifier Letter range, as shown in Table 12-9.

Standard Mandarin Bopomofo. The order of the Mandarin Bopomofo letters U+3105..
U+3129 is standard worldwide. The code offset of the first letter U+3105 bopomofo let-

ter b from a multiple of 16 is included to match the offset in the ISO-registered standard
GB 2312. The character U+3127 bopomofo letter i may be rendered as either a horizon-
tal stroke or a vertical stroke. Often the glyph is chosen to stand perpendicular to the text
baseline (for example, a horizontal stroke in vertically set text), but other usage is also com-
mon. In the Unicode Standard, the form shown in the charts is a vertical stroke; the hori-
zontal stroke form is considered to be a rendering variant. The variant glyph is not assigned
a separate character code.

Extended Bopomofo. To represent the sounds of Chinese dialects other than Mandarin, the
basic Bopomofo set U+3105..U+3129 has been augmented by additional phonetic charac-
ters. These extensions are much less broadly recognized than the basic Mandarin set. The
three extended Bopomofo characters U+312A..U+312C are cited in some standard refer-

Table 12-9. Mandarin Tone Marks

first tone U+02C9 modifier letter macron

second tone U+02CA modifier letter acute accent

third tone U+02C7 caron

fourth tone U+02CB modifier letter grave accent

light tone U+02D9 dot above
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.3 Bopomofo 427
ence works, such as the encyclopedia Xin Ci Hai. Another set of 24 extended Bopomofo,
encoded at U+31A0..U+31B7, was designed in 1948 to cover additional sounds of the Min-
nan and Hakka dialects. The extensions are used together with the main set of Bopomofo
characters to provide a complete phonetic orthography for those dialects. There are no
standard Bopomofo letters for the phonetics of Cantonese or several other Southern Chi-
nese dialects.

The small characters encoded at U+31B4..U+31B7 represent syllable-final consonants not
present in standard Mandarin or in Mandarin dialects. They have the same shapes as Bopo-
mofo “b”, “d”, “k”, and “h”, respectively, but are rendered in a smaller form than the initial
consonants; they are also generally shown close to the syllable medial vowel character.
These final letters are encoded separately so that the Minnan and Hakka dialects can be
represented unambiguously in plain text without having to resort to subscripting or other
fancy text mechanisms to represent the final consonants.

Three Bopomofo letters for sounds found in non-Chinese languages are encoded in the
range U+31B8..U+31BA. These characters are used in the Hmu and Ge languages, mem-
bers of the Hmong-Mien (or Miao-Yao) language family, spoken primarily in southeastern
Guizhou. The characters are part of an obsolete orthography for Hmu and Ge devised by
the missionary Maurice Hutton in the 1920s and 1930s. A small group of Hmu Christians
are still using a hymnal text written by Hutton that contains these characters.

Extended Bopomofo Tone Marks. In addition to the Mandarin tone marks enumerated in
Table 12-9, other tone marks appropriate for use with the extended Bopomofo transcrip-
tions of Minnan and Hakka can be found in the Modifier Letter range, as shown in
Table 12-10. The “departing tone” refers to the qusheng in traditional Chinese tonal analy-
sis, with the yin variant historically derived from voiceless initials and the yang variant
from voiced initials. Southern Chinese dialects in general maintain more tonal distinctions
than Mandarin does.

Rendering of Bopomofo. Bopomofo is rendered from left to right in horizontal text, but
also commonly appears in vertical text. It may be used by itself in either orientation, but
typically appears in interlinear annotation of Chinese (Han character) text. Children’s
books are often completely annotated with Bopomofo pronunciations for every character.
This interlinear annotation is structurally quite similar to the system of Japanese ruby
annotation, but it has additional complications that result from the explicit usage of tone
marks with the Bopomofo letters.

In horizontal interlineation, the Bopomofo is generally placed above the corresponding
Han character(s); tone marks, if present, appear at the end of each syllabic group of Bopo-
mofo letters. In vertical interlineation, the Bopomofo is generally placed on the right side
of the corresponding Han character(s); tone marks, if present, appear in a separate interlin-
ear row to the right side of the vowel letter. When using extended Bopomofo for Minnan
and Hakka, the tone marks may also be mixed with Latin digits 0–9 to express changes in
actual tonetic values resulting from juxtaposition of basic tones.

Table 12-10. Minnan and Hakka Tone Marks

yin departing tone U+02EA modifier letter yin departing tone mark

yang departing tone U+02EB modifier letter yang departing tone mark
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

428 East Asian Scripts
12.4 Hiragana and Katakana

Hiragana: U+3040–U+309F

Hiragana is the cursive syllabary used to write Japanese words phonetically and to write
sentence particles and inflectional endings. It is also commonly used to indicate the pro-
nunciation of Japanese words. Hiragana syllables are phonetically equivalent to the corre-
sponding Katakana syllables.

Standards. The Hiragana block is based on the JIS X 0208-1990 standard, extended by the
nonstandard syllable U+3094 hiragana letter vu, which is included in some Japanese
corporate standards. Some additions are based on the JIS X 0213:2000 standard.

Combining Marks. Hiragana and the related script Katakana use U+3099 combining

katakana-hiragana voiced sound mark and U+309A combining katakana-hira-

gana semi-voiced sound mark to generate voiced and semivoiced syllables from the base
syllables, respectively. All common precomposed combinations of base syllable forms using
these marks are already encoded as characters, and use of these precomposed forms is the
predominant JIS usage. These combining marks must follow the base character to which
they apply. Because most implementations and JIS standards treat these marks as spacing
characters, the Unicode Standard contains two corresponding noncombining (spacing)
marks at U+309B and U+309C.

Iteration Marks. The two characters U+309D hiragana iteration mark and U+309E
hiragana voiced iteration mark are punctuation-like characters that denote the itera-
tion (repetition) of a previous syllable according to whether the repeated syllable has an
unvoiced or voiced consonant, respectively.

Vertical Text Digraph. U+309F hiragana digraph yori is a digraph form which was his-
torically used in vertical display contexts, but which is now also found in horizontal layout.

Katakana: U+30A0–U+30FF

Katakana is the noncursive syllabary used to write non-Japanese (usually Western) words
phonetically in Japanese. It is also used to write Japanese words with visual emphasis.
Katakana syllables are phonetically equivalent to corresponding Hiragana syllables.
Katakana contains two characters, U+30F5 katakana letter small ka and U+30F6
katakana letter small ke, that are used in special Japanese spelling conventions (for
example, the spelling of place names that include archaic Japanese connective particles).

Standards. The Katakana block is based on the JIS X 0208-1990 standard. Some additions
are based on the JIS X 0213:2000 standard.

Punctuation-like Characters. U+30FB katakana middle dot is used to separate words
when writing non-Japanese phrases. U+30A0 katakana-hiragana double hyphen is a
delimiter occasionally used in analyzed Katakana or Hiragana textual material.

U+30FC katakana-hiragana prolonged sound mark is used predominantly with
Katakana and occasionally with Hiragana to denote a lengthened vowel of the previously
written syllable. The two iteration marks, U+30FD katakana iteration mark and
U+30FE katakana voiced iteration mark, serve the same function in Katakana writing
that the two Hiragana iteration marks serve in Hiragana writing.

Vertical Text Digraph. U+30FF katakana digraph koto is a digraph form which was
historically used in vertical display contexts, but which is now also found in horizontal lay-
out.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.5 Halfwidth and Fullwidth Forms 429
Katakana Phonetic Extensions: U+31F0–U+31FF

These extensions to the Katakana syllabary are all “small” variants. They are used in Japan
for phonetic transcription of Ainu and other languages. They may be used in combination
with U+3099 combining katakana-hiragana voiced sound mark and U+309A com-

bining katakana-hiragana semi-voiced sound mark to indicate modification of the
sounds represented.

Standards. The Katakana Phonetic Extensions block is based on the JIS X 0213:2000 stan-
dard.

Kana Supplement U+1B000–U+1B0FF

The Kana Supplement block is intended for the encoding of historic and variant forms of
Japanese kana characters, including those variants collectively known as hentaigana in Jap-
anese.

Currently this block contains two kana which are of historical use only. These have not
been used in Japanese orthography for about one thousand years. The character U+1B000
katakana letter archaic e is an obsolete form of the letter U+30A8 katakana letter e.
In its pre-10th century use, this letter represented the sound “e”, and U+30A8 katakana

letter e represented the sound “ye”. The character U+1B001 hiragana letter archaic

ye represents a long-obsolete syllable that would have come between U+3086 hiragana

letter yu and U+3088 hiragana letter yo. This sound merged with “e”, which is now
represented by U+3048 hiragana letter e. These relationships are illustrated in
Figure 12-9.

12.5 Halfwidth and Fullwidth Forms

Halfwidth and Fullwidth Forms: U+FF00–U+FFEF

In the context of East Asian coding systems, a double-byte character set (DBCS), such as JIS
X 0208-1990 or KS X 1001:1998, is generally used together with a single-byte character set
(SBCS), such as ASCII or a variant of ASCII. Text that is encoded with both a DBCS and
SBCS is typically displayed such that the glyphs representing DBCS characters occupy two
display cells—where a display cell is defined in terms of the glyphs used to display the SBCS
(ASCII) characters. In these systems, the two-display-cell width is known as the fullwidth
or zenkaku form, and the one-display-cell width is known as the halfwidth or hankaku
form. While zenkaku and hankaku are Japanese terms, the display-width concepts apply
equally to Korean and Chinese implementations.

Because of this mixture of display widths, certain characters often appear twice—once in
fullwidth form in the DBCS repertoire and once in halfwidth form in the SBCS repertoire.
To achieve round-trip conversion compatibility with such mixed-width encoding systems,
it is necessary to encode both fullwidth and halfwidth forms of certain characters. This

Figure 12-9. Japanese Historic Kana for e and ye

Pronunciation: e ye
Kanji Source:

Hiragana:

Katakana:
U+1B000

U+1B001
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

430 East Asian Scripts
block consists of the additional forms needed to support conversion for existing texts that
employ both forms.

In the context of conversion to and from such mixed-width encodings, all characters in the
General Scripts Area should be construed as halfwidth (hankaku) characters if they have a
fullwidth equivalent elsewhere in the standard or if they do not occur in the mixed-width
encoding; otherwise, they should be construed as fullwidth (zenkaku). Specifically, most
characters in the CJK Miscellaneous Area and the CJKV Ideograph Area, along with the
characters in the CJK Compatibility Ideographs, CJK Compatibility Forms, and Small
Form Variants blocks, should be construed as fullwidth (zenkaku) characters. For a com-
plete description of the East Asian Width property, see Unicode Standard Annex #11, “East
Asian Width.”

The characters in this block consist of fullwidth forms of the ASCII block (except space),
certain characters of the Latin-1 Supplement, and some currency symbols. In addition, this
block contains halfwidth forms of the Katakana and Hangul Compatibility Jamo charac-
ters. Finally, a number of symbol characters are replicated here (U+FFE8..U+FFEE) with
explicit halfwidth semantics.

Unifications. The fullwidth form of U+0020 space is unified with U+3000 ideographic

space.

12.6 Hangul
Korean Hangul may be considered a featural syllabic script. As opposed to many other syl-
labic scripts, the syllables are formed from a set of alphabetic components in a regular fash-
ion. These alphabetic components are called jamo.

The name Hangul itself is just one of several terms that may be used to refer to the script. In
some contexts, the preferred term is simply the generic Korean characters. Hangul is used
more frequently in South Korea, whereas a basically synonymous term Choseongul is pre-
ferred in North Korea. A politically neutral term, Jeongum, may also be used.

The Unicode Standard contains both the complete set of precomposed modern Hangul syl-
lable blocks and a set of conjoining Hangul jamo. The conjoining Hangul jamo can be used
to to represent all of the modern Hangul syllable blocks, as well as the ancient syllable
blocks used in Old Korean. For a description of conjoining jamo behavior and precom-
posed Hangul syllables, see Section 3.12, Conjoining Jamo Behavior. For a discussion of the
interaction of combining marks with jamo and Hangul syllables, see “Combining Marks
and Korean Syllables” in Section 3.6, Combination.

For other blocks containing characters related to Hangul, see “Enclosed CJK Letters and
Months: U+3200–U+32FF” and “CJK Compatibility: U+3300–U+33FF” in Section 15.10,
Enclosed and Square, as well as Section 12.5, Halfwidth and Fullwidth Forms.

Hangul Jamo: U+1100–U+11FF

The Hangul Jamo block contains the most frequently used conjoining jamo. These include
all of the jamo used in modern Hangul syllable blocks, as well as many of the jamo for Old
Korean.

The Hangul jamo are divided into three classes: choseong (leading consonants, or syllable-
initial characters), jungseong (vowels, or syllable-peak characters), and jongseong (trailing
consonants, or syllable-final characters). Each class may, in turn, consist of one to three
subunits. For example, a choseong syllable-initial character may either represent a single
consonant sound, or a consonant cluster consisting of two or three consonant sounds.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.6 Hangul 431
Likewise, a jungseong syllable-peak character may represent a simple vowel sound, or a
complex dipthong or tripthong with onglide or offglide sounds. Each of these complex
sequences of two or three sounds is encoded as a single conjoining jamo character. There-
fore, a complete Hangul syllable can always be conceived of as a single choseong followed by
a single jungseong and (optionally) a single jongseong.

This block also contains two invisible filler characters which act as placeholders for a miss-
ing choseong or jungseong in an incomplete syllable. These filler characters are U+115F
hangul choseong filler and U+1160 hangul jungseong filler.

Hangul Jamo Extended-A: U+A960–U+A97F

This block is an extension of the conjoining jamo. It contains additional complex leading
consonants (choseong) needed to complete the set of conjoining jamo for the representa-
tion of Old Korean.

Hangul Jamo Extended-B: U+D7B0–U+D7FF

This block is an extension of the conjoining jamo. It contains additional complex vowels
(jungseong) and trailing consonants (jongseong) needed to complete the set of conjoining
jamo for the representation of Old Korean.

Hangul Compatibility Jamo: U+3130–U+318F

This block consists of spacing, nonconjoining Hangul consonant and vowel (jamo) ele-
ments. These characters are provided solely for compatibility with the KS X 1001:1998
standard. Unlike the characters found in the Hangul Jamo block (U+1100..U+11FF), the
jamo characters in this block have no conjoining semantics.

The characters of this block are considered to be fullwidth forms in contrast with the half-
width Hangul compatibility jamo found at U+FFA0..U+FFDF.

Standards. The Unicode Standard follows KS X 1001:1998 for Hangul Jamo elements.

Normalization. When Hangul compatibility jamo are transformed with a compatibility
normalization form, NFKD or NFKC, the characters are converted to the corresponding
conjoining jamo characters. Where the characters are intended to remain in separate sylla-
bles after such transformation, they may require separation from adjacent characters. This
separation can be achieved by inserting any non-Korean character.

• U+200B zero width space is recommended where the characters are to allow
a line break.

• U+2060 word joiner can be used where the characters are not to break across
lines.

Table 12-11 illustrates how two Hangul compatibility jamo can be separated in display,
even after transforming them with NFKD or NFKC.

Table 12-11. Separating Jamo Characters

Original NFKD NFKC Display
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

432 East Asian Scripts
Hangul Syllables: U+AC00–U+D7A3

The Hangul script used in the Korean writing system consists of individual consonant and
vowel letters (jamo) that are visually combined into square display cells to form entire syl-
lable blocks. Hangul syllables may be encoded directly as precomposed combinations of
individual jamo or as decomposed sequences of conjoining jamo.

Modern Hangul syllable blocks can be expressed with either two or three jamo, either in the
form consonant + vowel or in the form consonant + vowel + consonant. There are 19 possi-
ble leading (initial) consonants (choseong), 21 vowels (jungseong), and 27 trailing (final)
consonants (jongseong). Thus there are 399 possible two-jamo syllable blocks and 10,773
possible three-jamo syllable blocks, giving a total of 11,172 modern Hangul syllable blocks.
This collection of 11,172 modern Hangul syllables encoded in this block is known as the
Johab set.

Standards. The Hangul syllables are taken from KS C 5601-1992, representing the full
Johab set. This group represents a superset of the Hangul syllables encoded in earlier ver-
sions of Korean standards (KS C 5601-1987 and KS C 5657-1991).

Equivalence. Each of the Hangul syllables encoded in this block may be represented by an
equivalent sequence of conjoining jamo. The converse is not true because thousands of
archaic Hangul syllables may be represented only as a sequence of conjoining jamo.

Hangul Syllable Composition. The Hangul syllables can be derived from conjoining jamo
by a regular process of composition. The algorithm that maps a sequence of conjoining
jamo to the encoding point for a Hangul syllable in the Johab set is detailed in Section 3.12,
Conjoining Jamo Behavior.

Hangul Syllable Decomposition. Any Hangul syllable from the Johab set can be decom-
posed into a sequence of conjoining jamo characters. The algorithm that details the for-
mula for decomposition is also provided in Section 3.12, Conjoining Jamo Behavior.

Hangul Syllable Name. The character names for Hangul syllables are derived algorithmi-
cally from the decomposition. (For full details, see Section 3.12, Conjoining Jamo Behavior.)

Hangul Syllable Representative Glyph. The representative glyph for a Hangul syllable can
be formed from its decomposition based on the categorization of vowels shown in
Table 12-12.

If the vowel of the syllable is based on a vertical line, place the preceding consonant to its
left. If the vowel is based on a horizontal line, place the preceding consonant above it. If the
vowel is based on a combination of vertical and horizontal lines, place the preceding conso-
nant above the horizontal line and to the left of the vertical line. In either case, place a fol-
lowing consonant, if any, below the middle of the resulting group.

Table 12-12. Line-Based Placement of Jungseong

Vertical Horizontal Both

1161 a 1169 o 116A wa

1162 ae 116D yo 116B wae

1163 ya 116E u 116C oe

1164 yae 1172 yu 116F weo

1165 eo 1173 eu 1170 we

1166 e 1171 wi

1167 yeo 1174 yi

1168 ye

1175 i
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.7 Yi 433
In any particular font, the exact placement, shape, and size of the components will vary
according to the shapes of the other characters and the overall design of the font.

Collation. The unit of collation in Korean text is normally the Hangul syllable block.
Because the order of the syllables in the Hangul Syllables block reflects the preferred order-
ing, sequences of Hangul syllables for modern Korean may be collated with a simple binary
comparison.

When Korean text includes sequences of conjoining jamo, as for Old Korean, or mixtures of
precomposed syllable blocks and conjoining jamo, the easiest approach for collation is to
decompose the precomposed syllable blocks into conjoining jamo before comparing. Addi-
tional steps must be taken to ensure that comparison is then done for sequences of conjoin-
ing jamo that comprise complete syllables. See Unicode Technical Report #10, “Unicode
Collation Algorithm,” for more discussion about the collation of Korean.

12.7 Yi

Yi: U+A000–U+A4CF

The Yi syllabary encoded in Unicode is used to write the Liangshan dialect of the Yi lan-
guage, a member of the Sino-Tibetan language family.

Yi is the Chinese name for one of the largest ethnic minorities in the People’s Republic of
China. The Yi, also known historically and in English as the Lolo, do not have a single eth-
nonym, but refer to themselves variously as Nuosu, Sani, Axi or Misapo. According to the
1990 census, more than 6.5 million Yi live in southwestern China in the provinces of Sich-
uan, Guizhou, Yunnan, and Guangxi. Smaller populations of Yi are also to be found in
Myanmar, Laos, and Vietnam. Yi is one of the official languages of the PRC, with between
4 and 5 million speakers.

The Yi language is divided into six major dialects. The Northern dialect, which is also
known as the Liangshan dialect because it is spoken throughout the region of the Greater
and Lesser Liangshan Mountains, is the largest and linguistically most coherent of these
dialects. In 1991, there were about 1.6 million speakers of the Liangshan Yi dialect. The eth-
nonym of speakers of the Liangshan dialect is Nuosu.

Traditional Yi Script. The traditional Yi script, historically known as Cuan or Wei, is an
ideographic script. Unlike in other Chinese-influenced siniform scripts, however, the ideo-
graphs of Yi appear not to be derived from Han ideographs. One of the more widespread
traditions relates that the script, comprising about 1,840 ideographs, was devised by some-
one named Aki during the Tang dynasty (618–907 ce). The earliest surviving examples of
the Yi script are monumental inscriptions dating from about 500 years ago; the earliest
example is an inscription on a bronze bell dated 1485.

There is no single unified Yi script, but rather many local script traditions that vary consid-
erably with regard to the repertoire, shapes, and orientations of individual glyphs and the
overall writing direction. The profusion of local script variants occurred largely because
until modern times the Yi script was mainly used for writing religious, magical, medical, or
genealogical texts that were handed down from generation to generation by the priests of
individual villages, and not as a means of communication between different communities
or for the general dissemination of knowledge. Although a vast number of manuscripts
written in the traditional Yi script have survived to the present day, the Yi script was not
widely used in printing before the twentieth century.

Because the traditional Yi script is not standardized, a considerable number of glyphs are
used in the various script traditions. According to one authority, there are more than
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

434 East Asian Scripts
14,200 glyphs used in Yunnan, more than 8,000 in Sichuan, more than 7,000 in Guizhou,
and more than 600 in Guangxi. However, these figures are misleading—most of the glyphs
are simple variants of the same abstract character. For example, a 1989 dictionary of the
Guizhou Yi script contains about 8,000 individual glyphs, but excluding glyph variants
reduces this count to about 1,700 basic characters, which is quite close to the figure of 1,840
characters that Aki is reputed to have devised.

Standardized Yi Script. There has never been a high level of literacy in the traditional Yi
script. Usage of the traditional script has remained limited even in modern times because
the traditional script does not accurately reflect the phonetic characteristics of the modern
Yi language, and because it has numerous variant glyphs and differences from locality to
locality.

To improve literacy in Yi, a scheme for representing the Liangshan dialect using the Latin
alphabet was introduced in 1956. A standardized form of the traditional script used for
writing the Liangshan Yi dialect was devised in 1974 and officially promulgated in 1980.
The standardized Liangshan Yi script encoded in Unicode is suitable for writing only the
Liangshan Yi dialect; it is not intended as a unified script for writing all Yi dialects. Stan-
dardized versions of other local variants of traditional Yi scripts do not yet exist.

The standardized Yi syllabary comprises 1,164 signs representing each of the allowable syl-
lables in the Liangshan Yi dialect. There are 819 unique signs representing syllables pro-
nounced in the high level, low falling, and midlevel tones, and 345 composite signs
representing syllables pronounced in the secondary high tone. The signs for syllables in the
secondary high tone consist of the sign for the corresponding syllable in the midlevel tone
(or in three cases the low falling tone), plus a diacritic mark shaped like an inverted breve.
For example, U+A001 yi syllable ix is the same as U+A002 yi syllable i plus a diacritic
mark. In addition to the 1,164 signs representing specific syllables, a syllable iteration mark
is used to indicate reduplication of the preceding syllable, which is frequently used in inter-
rogative constructs.

Standards. In 1991, a national standard for Yi was adopted by China as GB 13134-91. This
encoding includes all 1,164 Yi syllables as well as the syllable iteration mark, and is the basis
for the encoding in the Unicode Standard. The syllables in the secondary high tone, which
are differentiated from the corresponding syllable in the midlevel tone or the low falling
tone by a diacritic mark, are not decomposable.

Naming Conventions and Order. The Yi syllables are named on the basis of the spelling of
the syllable in the standard Liangshan Yi romanization introduced in 1956. The tone of the
syllable is indicated by the final letter: “t” indicates the high level tone, “p” indicates the low
falling tone, “x” indicates the secondary high tone, and an absence of final “t”, “p”, or “x”
indicates the midlevel tone.

With the exception of U+A015, the Yi syllables are ordered according to their phonetic
order in the Liangshan Yi romanization—that is, by initial consonant, then by vowel, and
finally by tone (t, x, unmarked, and p). This is the order used in dictionaries of Liangshan
Yi that are ordered phonetically.

Yi Syllable Iteration Mark. U+A015 yi syllable wu does not represent a specific syllable
in the Yi language, but rather is used as a syllable iteration mark. Its character properties
therefore differ from those for the rest of the Yi syllable characters. The misnomer of
U+A015 as yi syllable wu derives from the fact that it is represented by the letter w in the
romanized Yi alphabet, and from some confusion about the meaning of the gap in tradi-
tional Yi syllable charts for the hypothetical syllable “wu”.

The Yi syllable iteration mark is used to replace the second occurrence of a reduplicated syl-
lable under all circumstances. It is very common in both formal and informal Yi texts.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

12.7 Yi 435
Punctuation. The standardized Yi script does not have any special punctuation marks, but
relies on the same set of punctuation marks used for writing modern Chinese in the PRC,
including U+3001 ideographic comma and U+3002 ideographic full stop.

Rendering. The traditional Yi script used a variety of writing directions—for example,
right to left in the Liangshan region of Sichuan, and top to bottom in columns running
from left to right in Guizhou and Yunnan. The standardized Yi script follows the writing
rules for Han ideographs, so characters are generally written from left to right or occasion-
ally from top to bottom. There is no typographic interaction between individual characters
of the Yi script.

Yi Radicals. To facilitate the lookup of Yi characters in dictionaries, sets of radicals mod-
eled on Han radicals have been devised for the various Yi scripts. (For information on Han
radicals, see “CJK and KangXi Radicals” in Section 12.1, Han). The traditional Guizhou Yi
script has 119 radicals; the traditional Liangshan Yi script has 170 radicals; and the tradi-
tional Yunnan Sani Yi script has 25 radicals. The standardized Liangshan Yi script encoded
in Unicode has a set of 55 radical characters, which are encoded in the Yi Radicals block
(U+A490..U+A4C5). Each radical represents a distinctive stroke element that is common
to a subset of the characters encoded in the Yi Syllables block. The name used for each rad-
ical character is that of the corresponding Yi syllable closest to it in shape.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

436 East Asian Scripts
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 13

Additional Modern Scripts 13

This chapter contains a collection of additional scripts in modern use that do not fit well
into the script categories featured in other chapters:

Ethiopic, Mongolian, and Tifinagh are scripts with long histories. Although their roots can
be traced back to the original Semitic and North African writing systems, they would not
be classified as Middle Eastern scripts today.

The remaining scripts in this chapter have been developed relatively recently. Some of them
show roots in Latin and other letterforms, including shorthand. They are all original cre-
ative contributions intended specifically to serve the linguistic communities that use them.

Osmanya is an alphabetic script developed in the early 20th century to write the Somali
language. N’Ko is a right-to-left alphabetic script devised in 1949 as a writing system for
Manden languages in West Africa. Vai is a syllabic script used for the Vai language in Libe-
ria and Sierra Leone; it was developed in the 1830s, but the standard syllabary was pub-
lished in 1962. Bamum is a syllabary developed between 1896 and 1910, used for writing
the Bamum language in western Cameroon.

The Cherokee script is a syllabary developed between 1815 and 1821, to write the Cherokee
language, still spoken by small communities in Oklahoma and North Carolina. Canadian
Aboriginal Syllabics were invented in the 1830s for Algonquian languages in Canada. The
system has been extended many times, and is now actively used by other communities,
including speakers of Inuktitut and Athapascan languages.

Deseret is a phonemic alphabet devised in the 1850s to write English. It saw limited use for
a few decades by members of The Church of Jesus Christ of Latter-day Saints. Shavian is
another phonemic alphabet, invented in the 1950s to write English. It was used to publish
one book in 1962, but remains of some current interest.

The Lisu script was developed in the early 20th century by using a combination of Latin let-
ters, rotated Latin letters, and Latin punctuation repurposed as tone letters, to create a writ-
ing system for the Lisu language, spoken by large communities, mostly in Yunnan province
in China. It sees considerable use in China, where it has been an official script since 1992.

The Miao script was created in 1904 by adapting Latin letter variants, English shorthand
characters, Miao pictographs, and Cree syllable forms. The script was originally developed
to write the Northeast Yunnan Miao language of southern China. Today it is also used to
write other Miao dialects and the languages of the Yi and Lisu nationalities of southern
China.

Ethiopic Vai Deseret

Mongolian Bamum Shavian

Osmanya Cherokee Lisu

Tifinagh Canadian Aboriginal Syllabics Miao

N’Ko
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

438 Additional Modern Scripts
13.1 Ethiopic

Ethiopic: U+1200–U+137F

The Ethiopic syllabary originally evolved for writing the Semitic language Ge’ez. Indeed,
the English noun “Ethiopic” simply means “the Ge’ez language.” Ge’ez itself is now limited
to liturgical usage, but its script has been adopted for modern use in writing several lan-
guages of central east Africa, including Amharic, Tigre, and Oromo.

Basic and Extended Ethiopic. The Ethiopic characters encoded here include the basic set
that has become established in common usage for writing major languages. As with other
productive scripts, the basic Ethiopic forms are sometimes modified to produce an
extended range of characters for writing additional languages.

Encoding Principles. The syllables of the Ethiopic script are traditionally presented as a
two-dimensional matrix of consonant-vowel combinations. The encoding follows this
structure; in particular, the codespace range U+1200..U+1357 is interpreted as a matrix of
43 consonants crossed with 8 vowels, making 344 conceptual syllables. Most of these con-
sonant-vowel syllables are represented by characters in the script, but some of them happen
to be unused, accounting for the blank cells in the matrix.

Variant Glyph Forms. A given Ethiopic syllable may be represented by different glyph
forms, analogous to the glyph variants of Latin lowercase “a” or “g”, which do not coexist in
the same font. Thus the particular glyph shown in the code chart for each position in the
matrix is merely one representation of that conceptual syllable, and the glyph itself is not
the object that is encoded.

Labialized Subseries. A few Ethiopic consonants have labialized (“W”) forms that are tra-
ditionally allotted their own consonant series in the syllable matrix, although only a subset
of the possible vowel forms are realized. Each of these derivative series is encoded immedi-
ately after the corresponding main consonant series. Because the standard vowel series
includes both “AA” and “WAA”, two different cells of the syllable matrix might represent the
“consonant + W + AA” syllable. For example:

 U+1257 = QH + WAA: potential but unused version of qhwaa

 U+125B = QHW + AA: ethiopic syllable qhwaa

In these cases, where the two conceptual syllables are equivalent, the entry in the labialized
subseries is encoded and not the “consonant + WAA” entry in the main syllable series. The
six specific cases are enumerated in Table 13-1. In three of these cases, the -WAA position in
the syllable matrix has been reanalyzed and used for encoding a syllable in -OA for
extended Ethiopic.

Table 13-1. Labialized Forms in Ethiopic -WAA

-WAA Form Encoded as Not Used Contrast
QWAA U+124B d 1247 U+1247 { QOA
QHWAA U+125B e 1257
XWAA U+128B f 1287 U+1287 | XOA
KWAA U+12B3 g 12AF U+12AF } KOA
KXWAA U+12C3 h 12BF
GWAA U+1313 i 130F
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.1 Ethiopic 439
Also, within the labialized subseries, the sixth vowel (“-E”) forms are sometimes considered
to be second vowel (“-U”) forms. For example:

 U+1249 = QW + U: unused version of qwe

 U+124D = QW + E: ethiopic syllable qwe

In these cases, where the two syllables are nearly equivalent, the “-E” entry is encoded and
not the “-U” entry. The six specific cases are enumerated in Table 13-2.

Keyboard Input. Because the Ethiopic script includes more than 300 characters, the units
of keyboard input must constitute some smaller set of entities, typically 43+8 codes inter-
preted as the coordinates of the syllable matrix. Because these keyboard input codes are
expected to be transient entities that are resolved into syllabic characters before they enter
stored text, keyboard input codes are not specified in this standard.

Syllable Names. The Ethiopic script often has multiple syllables corresponding to the
same Latin letter, making it difficult to assign unique Latin names. Therefore the names list
makes use of certain devices (such as doubling a Latin letter in the name) merely to create
uniqueness; this device has no relation to the phonetics of these syllables in any particular
language.

Encoding Order and Sorting. The order of the consonants in the encoding is based on the
traditional alphabetical order. It may differ from the sort order used for one or another lan-
guage, if only because in many languages various pairs or triplets of syllables are treated as
equivalent in the first sorting pass. For example, an Amharic dictionary may start out with
a section headed by three H-like syllables:

 U+1200 ethiopic syllable ha

 U+1210 ethiopic syllable hha

 U+1280 ethiopic syllable xa

Thus the encoding order cannot and does not implement a collation procedure for any
particular language using this script.

Word Separators. The traditional word separator is U+1361 ethiopic wordspace (:). In
modern usage, a plain white wordspace (U+0020 space) is becoming common.

Section Mark. One or more section marks are typically used on a separate line to mark the
separation of sections. Commonly, an odd number is used and they are separated by
spaces.

Diacritical Marks. The Ethiopic script generally makes no use of diacritical marks, but
they are sometimes employed for scholarly or didactic purposes. In particular, U+135F
ethiopic combining gemination mark and U+030E combining double vertical line

above are sometimes used to indicate emphasis or gemination (consonant doubling).

Numbers. Ethiopic digit glyphs are derived from the Greek alphabet, possibly borrowed
from Coptic letterforms. In modern use, European digits are often used. The Ethiopic

Table 13-2. Labialized Forms in Ethiopic -WE

“-WE” Form Encoded as Not Used
QWE U+124D j 1249
QHWE U+125D k 1259
XWE U+128D l 1289
KWE U+12B5 m 12B1
KXWE U+12C5 n 12C1
GWE U+1315 o 1311
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

440 Additional Modern Scripts
number system does not use a zero, nor is it based on digital-positional notation. A num-
ber is denoted as a sequence of powers of 100, each preceded by a coefficient (2 through
99). In each term of the series, the power 100^n is indicated by n HUNDRED characters
(merged to a digraph when n = 2). The coefficient is indicated by a tens digit and a ones
digit, either of which is absent if its value is zero.

For example, the number 2345 is represented by

 2345 = (20 + 3)*100^1 + (40 + 5)*100^0

 = 20 3 100 40 5

 = TWENTY THREE HUNDRED FORTY FIVE

 = 1373 136B 137B 1375 136D MNOPQ

A language using the Ethiopic script may have a word for “thousand,” such as Amharic
“SHI” (U+123A), and a quantity such as 2,345 may also be written as it is spoken in that
language, which in the case of Amharic happens to parallel English:

 2,345 = TWO thousand THREE HUNDRED FORTY FIVE

 = 136A 123A 136B 137B 1375 136D RSNOPQ

Ethiopic Extensions

The Ethiopic script is used for a large number of languages and dialects in Ethiopia and in
some instances has been extended significantly beyond the set of characters used for major
languages such as Amharic and Tigre. There are three blocks of extensions to the Ethiopic
script: Ethiopic Supplement U+1380..U+139F, Ethiopic Extended U+2D80..U+2DDF, and
Ethiopic Extended-A U+AB00..U+AB2F. Those extensions cover such languages as Me’en,
Blin, and Sebatbeit, which use many additional characters. The Ethiopic Extended-A block,
in particular, includes characters for the Gamo-Gofa-Dawro, Basketo, and Gumuz lan-
guages. Several other characters for Ethiopic script extensions can be found in the main
Ethiopic script block in the range U+1200..U+137F, including combining diacritic marks
used for Basketo.

The Ethiopic Supplement block also contains a set of tonal marks. They are used in multi-
line scored layout. Like other musical (an)notational systems of this type, these tonal marks
require a higher-level protocol to enable proper rendering.

13.2 Mongolian

Mongolian: U+1800–U+18AF

The Mongolians are key representatives of a cultural-linguistic group known as Altaic, after
the Altai mountains of central Asia. In the past, these peoples have dominated the vast
expanses of Asia and beyond, from the Baltic to the Sea of Japan. Echoes of Altaic languages
remain from Finland, Hungary, and Turkey, across central Asia, to Korea and Japan. Today
the Mongolians are represented politically in Mongolia proper (formally the Mongolian
People’s Republic, also known as Outer Mongolia) and Inner Mongolia (formally the Inner
Mongolia Autonomous Region, China), with Mongolian populations also living in other
areas of China.

The Mongolian block unifies Mongolian and the three derivative scripts Todo, Manchu,
and Sibe. Each of the three derivative scripts shares some common letters with Mongolian,
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.2 Mongolian 441
and these letters are encoded only once. Each derivative script also has a number of modi-
fied letter forms or new letters, which are encoded separately.

Mongolian, Todo, and Manchu also have a number of special “Ali Gali” letters that are used
for transcribing Tibetan and Sanskrit in Buddhist texts.

History. The Mongolian script was derived from the Uighur script around the beginning of
the thirteenth century, during the reign of Genghis Khan. The Uighur script, which was in
use from about the eighth to the fifteenth centuries, was derived from Sogdian Aramaic, a
Semitic script written horizontally from right to left. Probably under the influence of the
Chinese script, the Uighur script became rotated 90 degrees counterclockwise so that the
lines of text read vertically in columns running from left to right. The Mongolian script
inherited this directionality from the Uighur script.

The Mongolian script has remained in continuous use for writing Mongolian within the
Inner Mongolia Autonomous Region of the People’s Republic of China and elsewhere in
China. However, in the Mongolian People's Republic (present-day Mongolia), the tradi-
tional script was replaced by a Cyrillic orthography in the early 1940s. The traditional
script was revived in the early 1990s, so that now both the Cyrillic and the Mongolian
scripts are used. The spelling used with the traditional Mongolian script represents the lit-
erary language of the seventeenth and early eighteenth centuries, whereas the Cyrillic script
is used to represent the modern, colloquial pronunciation of words. As a consequence,
there is no one-to-one relationship between the traditional Mongolian orthography and
Cyrillic orthography. Approximate correspondence mappings are indicated in the code
charts, but are not necessarily unique in either direction. All of the Cyrillic characters
needed to write Mongolian are included in the Cyrillic block of the Unicode Standard.

In addition to the traditional Mongolian script of Mongolia, several historical modifica-
tions and adaptations of the Mongolian script have emerged elsewhere. These adaptations
are often referred to as scripts in their own right, although for the purposes of character
encoding in the Unicode Standard they are treated as styles of the Mongolian script and
share encoding of their basic letters.

The Todo script is a modified and improved version of the Mongolian script, devised in
1648 by Zaya Pandita for use by the Kalmyk Mongolians, who had migrated to Russia in the
sixteenth century, and who now inhabit the Republic of Kalmykia in the Russian Federa-
tion. The name Todo means “clear” in Mongolian; it refers to the fact that the new script
eliminates the ambiguities inherent in the original Mongolian script. The orthography of
the Todo script also reflects the Oirat-Kalmyk dialects of Mongolian rather than literary
Mongolian. In Kalmykia, the Todo script was replaced by a succession of Cyrillic and Latin
orthographies from the mid-1920s and is no longer in active use. Until very recently the
Todo script was still used by speakers of the Oirat and Kalmyk dialects within Xinjiang and
Qinghai in China.

The Manchu script is an adaptation of the Mongolian script used to write Manchu, a Tun-
gusic language that is not closely related to Mongolian. The Mongolian script was first
adapted for writing Manchu in 1599 under the orders of the Manchu leader Nurhachi, but
few examples of this early form of the Manchu script survive. In 1632, the Manchu scholar
Dahai reformed the script by adding circles and dots to certain letters in an effort to distin-
guish their different sounds and by devising new letters to represent the sounds of the Chi-
nese language. When the Manchu people conquered China to rule as the Qing dynasty
(1644–1911), Manchu become the language of state. The ensuing systematic program of
translation from Chinese created a large and important corpus of books written in Man-
chu. Over time the Manchu people became completely sinified, and as a spoken language
Manchu is now almost extinct.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

442 Additional Modern Scripts
The Sibe (also spelled Sibo, Xibe, or Xibo) people are closely related to the Manchus, and
their language is often classified as a dialect of Manchu. The Sibe people are widely dis-
persed across northwest and northeast China due to deliberate programs of ethnic disper-
sal during the Qing dynasty. The majority have become assimilated into the local
population and no longer speak the Sibe language. However, there is a substantial Sibe
population in the Sibe Autonomous County in the Ili River valley in Western Xinjiang, the
descendants of border guards posted to Xinjiang in 1764, who still speak and write the Sibe
language. The Sibe script is based on the Manchu script, with a few modified letters.

Directionality. The Mongolian script is written vertically from top to bottom in columns
running from left to right. In modern contexts, words or phrases may be embedded in hor-
izontal scripts. In such a case, the Mongolian text will be rotated 90 degrees counterclock-
wise so that it reads from left to right.

When rendering Mongolian text in a system that does not support vertical layout, the text
should be laid out in horizontal lines running left to right, with the glyphs rotated 90
degrees counterclockwise with respect to their orientation in the code charts. If such text is
viewed sideways, the usual Mongolian column order appears reversed, but this orientation
can be workable for short stretches of text. There are no bidirectional effects in such a lay-
out because all text is horizontal left to right.

Encoding Principles. The encoding model for Mongolian is somewhat different from that
for any other script within Unicode, and in many respects it is the most complicated. For
this reason, only the essential features of Mongolian shaping behavior are presented here.

The Semitic alphabet from which the Mongolian script was ultimately derived is funda-
mentally inadequate for representing the sounds of the Mongolian language. As a result,
many of the Mongolian letters are used to represent two different sounds, and the correct
pronunciation of a letter may be known only from the context. In this respect, Mongolian
orthography is similar to English spelling, in which the pronunciation of a letter such as c
may be known only from the context.

Unlike in the Latin script, in which c /k/ and c /s/ are treated as the same letter and encoded
as a single character, in the Mongolian script different phonetic values of the same glyph
may be encoded as distinct characters. Modern Mongolian grammars consider the pho-
netic value of a letter to be its distinguishing feature, rather than its glyph shape. For exam-
ple, the four Mongolian vowels o, u, ö, and ü are considered four distinct letters and are
encoded as four characters (U+1823, U+1824, U+1825, and U+1826, respectively), even
though o is written identically to u in all positional forms, ö is written identically to ü in all
positional forms, o and u are normally distinguished from ö and ü only in the first syllable
of a word. Likewise, the letters t (U+1832) and d (U+1833) are often indistinguishable. For
example, pairs of Mongolian words such as urtu “long” and ordu “palace, camp, horde” or
ende “here” and ada “devil” are written identically, but are represented using different
sequences of Unicode characters, as shown in Figure 13-1. There are many such examples
in Mongolian, but not in Todo, Manchu, or Sibe, which have largely eliminated ambiguous
letters.

Cursive Joining. The Mongolian script is cursive, and the letters constituting a word are
normally joined together. In most cases the letters join together naturally along a vertical
stem, but in the case of certain “bowed” consonants (for example, U+182A mongolian

letter ba and the feminine form of U+182C mongolian letter qa), which lack a trail-
ing vertical stem, they may form ligatures with a following vowel. This is illustrated in
Figure 13-2, where the letter ba combines with the letter u to form a ligature in the Mongo-
lian word abu “father.”

Many letters also have distinct glyph forms depending on their position within a word.
These positional forms are classified as initial, medial, final, or isolate. The medial form is
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.2 Mongolian 443
often the same as the initial form, but the final form is always distinct from the initial or
medial form. Figure 13-3 shows the Mongolian letters U+1823 o and U+1821 e, rendered
with distinct positional forms initially and finally in the Mongolian words odo “now” and
ene “this.”

U+200C zero width non-joiner (ZWNJ) and U+200D zero width joiner (ZWJ) may
be used to select a particular positional form of a letter in isolation or to override the
expected positional form within a word. Basically, they evoke the same contextual selection
effects in neighboring letters as do non-joining or joining regular letters, but are themselves
invisible (see Chapter 16, Special Areas and Format Characters). For example, the various
positional forms of U+1820 mongolian letter a may be selected by means of the follow-
ing character sequences:

<1820> selects the isolate form.

<1820 200D> selects the initial form.

<200D 1820> selects the final form.

<200D 1820 200D> selects the medial form.

Figure 13-1. Mongolian Glyph Convergence

Figure 13-2. Mongolian Consonant Ligation

Figure 13-3. Mongolian Positional Forms

1824

1837

1832

1824

1823

1837

1833

1824

urtu ordu

1821

1828

1833

1821

1820

1833

1820

ende ada

→

→

→

→

1820

182A

1824

abu

→

1823

1833

1823

1821
1828
1821

odo ene

→ →
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

444 Additional Modern Scripts
Some letters have additional variant forms that do not depend on their position within a
word, but instead reflect differences between modern versus traditional orthographic prac-
tice or lexical considerations—for example, special forms used for writing foreign words.
On occasion, other contextual rules may condition a variant form selection. For example, a
certain variant of a letter may be required when it occurs in the first syllable of a word or
when it occurs immediately after a particular letter.

The various positional and variant glyph forms of a letter are considered presentation
forms and are not encoded separately. It is the responsibility of the rendering system to
select the correct glyph form for a letter according to its context.

Free Variation Selectors. When a glyph form that cannot be predicted algorithmically is
required (for example, when writing a foreign word), the user needs to append an appro-
priate variation selector to the letter to indicate to the rendering system which glyph form
is required. The following free variation selectors are provided for use specifically with the
Mongolian block:

U+180B mongolian free variation selector one (FVS1)

U+180C mongolian free variation selector two (FVS2)

U+180D mongolian free variation selector three (FVS3)

These format characters normally have no visual appearance. When required, a free varia-
tion selector immediately follows the base character it modifies. This combination of base
character and variation selector is known as a standardized variant. The table of standard-
ized variants, StandardizedVariants.txt, in the Unicode Character Database exhaustively
lists all currently defined standardized variants. All combinations not listed in the table are
unspecified and are reserved for future standardization; no conformant process may inter-
pret them as standardized variants. Therefore, any free variation selector not immediately
preceded by one of their defined base characters will be ignored.

Figure 13-4 gives an example of how a free variation selector may be used to select a partic-
ular glyph variant. In modern orthography, the initial letter ga in the Mongolian word gal
“fire” is written with two dots; in traditional orthography, the letter ga is written without
any dots. By default, the dotted form of the letter ga is selected, but this behavior may be
overridden by means of FVS1, so that ga plus FVS1 selects the undotted form of the letter
ga.

It is important to appreciate that even though a particular standardized variant may be
defined for a letter, the user needs to apply the appropriate free variation selector only if the
correct glyph form cannot be predicted automatically by the rendering system. In most
cases, in running text, there will be few occasions when a free variation selector is required
to disambiguate the glyph form.

Older documentation, external to the Unicode Standard, listed the action of the free varia-
tion selectors by using ZWJ to explicitly indicate the shaping environment affected by the

Figure 13-4. Mongolian Free Variation Selector

182D

1820

182F

182D

180B

1820

182F

gal gal

→ →
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.2 Mongolian 445
variation selector. The relative order of the ZWJ and the free variation selector in these doc-
uments was different from the one required by Section 16.4, Variation Selectors. Older
implementations of Mongolian free variation selectors may therefore interpret a sequence
such as a base character followed by first by ZWJ and then by FVS1 as if it were a base char-
acter followed first by FVS1 and then by ZWJ.

Representative Glyphs. The representative glyph in the code charts is generally the isolate
form for the vowels and the initial form for the consonants. Letters that share the same
glyph forms are distinguished by using different positional forms for the representative
glyph. For example, the representative glyph for U+1823 mongolian letter o is the iso-
late form, whereas the representative glyph for U+1824 mongolian letter u is the initial
form. However, this distinction is only nominal, as the glyphs for the two characters are
identical for the same positional form. Likewise, the representative glyphs for U+1863
mongolian letter sibe ka and U+1874 mongolian letter manchu ka both take the
final form, as their initial forms are identical to the representative glyph for U+182C mon-

golian letter qa (the initial form).

Vowel Harmony. Mongolian has a system of vowel harmony, whereby the vowels in a word
are either all “masculine” and “neuter” vowels (that is, back vowels plus /i/) or all “femi-
nine” and “neuter” vowels (that is, front vowels plus /i/). Words that are written with mas-
culine/neuter vowels are considered to be masculine, and words that are written with
feminine/neuter vowels are considered to be feminine. Words with only neuter vowels
behave as feminine words (for example, take feminine suffixes). Manchu and Sibe have a
similar system of vowel harmony, although it is not so strict. Some words in these two
scripts may include both masculine and feminine vowels, and separated suffixes with mas-
culine or feminine vowels may be applied to a stem irrespective of its gender.

Vowel harmony is an important element of the encoding model, as the gender of a word
determines the glyph form of the velar series of consonant letters for Mongolian, Todo,
Sibe, and Manchu. In each script, the velar letters have both masculine and feminine forms.
For Mongolian and Todo, the masculine and feminine forms of these letters have different
pronunciations.

When one of the velar consonants precedes a vowel, it takes the masculine form before
masculine vowels, and the feminine form before feminine or neuter vowels. In the latter
case, a ligature of the consonant and vowel is required.

When one of these consonants precedes another consonant or is the final letter in a word, it
may take either a masculine or feminine glyph form, depending on its context. The render-
ing system should automatically select the correct gender form for these letters based on
the gender of the word (in Mongolian and Todo) or the gender of the preceding vowel (in
Manchu and Sibe). This is illustrated by Figure 13-5, where U+182D mongolian letter

ga takes a masculine glyph form when it occurs finally in the masculine word jarlig “order,”
but takes a feminine glyph form when it occurs finally in the feminine word chirig “soldier.”
In this example, the gender form of the final letter ga depends on whether the first vowel in
the word is a back (masculine) vowel or a front (feminine or neuter) vowel. Where the gen-
der is ambiguous or a form not derivable from the context is required, the user needs to
specify which form is required by means of the appropriate free variation selector.

Narrow No-Break Space. In Mongolian, Todo, Manchu, and Sibe, certain grammatical
suffixes are separated from the stem of a word or from other suffixes by a narrow gap. There
are many such suffixes in Mongolian, usually occurring in masculine and feminine pairs
(for example, the dative suffixes -dur and -dür), and a stem may take multiple suffixes. In
contrast, there are only six separated suffixes for Manchu and Sibe, and stems do not take
more than one suffix at a time.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

446 Additional Modern Scripts
As any suffixes are considered to be an integral part of the word as a whole, a line break
opportunity does not occur before a suffix, and the whitespace is represented using
U+202F narrow no-break space (NNBSP). For a Mongolian font it is recommended
that the width of NNBSP should be one-third the width of an ordinary space (U+0020
space).

NNBSP affects the form of the preceding and following letters. The final letter of the stem
or suffix preceding the NNBSP takes the final positional form, whereas the first letter of the
suffix following NNBSP may take the normal initial form, a variant initial form, a medial
form, or a final form, depending on the particular suffix.

Mongolian Vowel Separator. In Mongolian, the letters a (U+1820) and e (U+1821) in a
word-final position may take a “forward tail” form or a “backward tail” form depending on
the preceding consonant that they are attached to. In some words, a final letter a or e is sep-
arated from the preceding consonant by a narrow gap, in which case the vowel always takes
the “forward tail” form. U+180E mongolian vowel separator (MVS) is used to repre-
sent the whitespace that separates a final letter a or e from the rest of the word. MVS is very
similar in function to NNBSP, as it divides a word with a narrow non-breaking whitespace.
Whereas NNBSP marks off a grammatical suffix, however, the a or e following MVS is not
a suffix but an integral part of the word stem. Whether a final letter a or e is joined or sep-
arated is purely lexical and is not a question of varying orthography. For example, the word
qana <182C, 1820, 1828, 1820> without a gap before the final letter a means “the outer cas-
ing of a vein,” whereas the word qana <182C, 1820, 1828, 180E, 1820> with a gap before
the final letter a means “the wall of a tent,” as shown in Figure 13-6.

The MVS has a twofold effect on shaping. On the one hand, it always selects the forward
tail form of a following letter a or e. On the other hand, it may affect the form of the pre-
ceding letter. The particular form that is taken by a letter preceding an MVS depends on the
particular letter and in some cases on whether traditional or modern orthography is being
used. The MVS is not needed for writing Todo, Manchu, or Sibe.

Numbers. The Mongolian and Todo scripts use a set of ten digits derived from the Tibetan
digits. In vertical text, numbers are traditionally written from left to right across the width
of the column. In modern contexts, they are frequently rotated so that they follow the ver-
tical flow of the text.

Figure 13-5. Mongolian Gender Forms

Figure 13-6. Mongolian Vowel Separator

jarlig chirig

1835
1820
1837
182F
1822
182D

1834
1822
1837
1822
182D

→ →

Qana with Connected Final Qana with Separated Final
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.3 Osmanya 447
The Manchu and Sibe scripts do not use any special digits, although Chinese number ideo-
graphs may be employed—for example, for page numbering in traditional books.

Punctuation. Traditional punctuation marks used for Mongolian and Todo include the
U+1800 mongolian birga (marks the start of a passage or the recto side of a folio),
U+1802 mongolian comma, U+1803 mongolian full stop, and U+1805 mongolian

four dots (marks the end of a passage). The birga occurs in several different glyph forms.

In writing Todo, U+1806 mongolian todo soft hyphen is used at the beginning of the
second line to indicate resumption of a broken word. It functions like U+2010 hyphen,
except that U+1806 appears at the beginning of a line rather than at the end.

The Manchu script normally uses only two punctuation marks: U+1808 mongolian man-

chu comma and U+1809 mongolian manchu full stop.

In modern contexts, Mongolian, Todo, and Sibe may use a variety of Western punctuation
marks, such as parentheses, quotation marks, question marks, and exclamation marks.
U+2048 question exclamation mark and U+2049 exclamation question mark are
used for side-by-side display of a question mark and an exclamation mark together in ver-
tical text. Todo and Sibe may additionally use punctuation marks borrowed from Chinese,
such as U+3001 ideographic comma, U+3002 ideographic full stop, U+300A left

double angle bracket, and U+300B right double angle bracket.

Nirugu. U+180A mongolian nirugu acts as a stem extender. In traditional Mongolian
typography, it is used to physically extend the stem joining letters, so as to increase the sep-
aration between all letters in a word. This stretching behavior should preferably be carried
out in the font rather than by the user manually inserting U+180A.

The nirugu may also be used to separate two parts of a compound word. For example,
altan-agula “The Golden Mountains” may be written with the words altan, “golden,” and
agula, “mountains,” joined together using the nirugu. In this usage the nirugu is similar to
the use of hyphen in Latin scripts, but it is nonbreaking.

Syllable Boundary Marker. U+1807 mongolian sibe syllable boundary marker,
which is derived from the medial form of the letter a (U+1820), is used to disambiguate
syllable boundaries within a word. It is mainly used for writing Sibe, but may also occur in
Manchu texts. In native Manchu or Sibe words, syllable boundaries are never ambiguous;
when transcribing Chinese proper names in the Manchu or Sibe script, however, the sylla-
ble boundary may be ambiguous. In such cases, U+1807 may be inserted into the character
sequence at the syllable boundary.

13.3 Osmanya

Osmanya: U+10480–U+104AF

The Osmanya script, which in Somali is called abc defghi far Soomaali “Somali writing”
or jidfgklb Cismaanya, was devised in 1920–1922 by jidfgk lmdna opkbqlq (Cismaan
Yuusuf Keenadiid) to represent the Somali language. It replaced an attempt by Sheikh
Uweys of the Confraternity Qadiriyyah (died 1909) to devise an Arabic-based orthography
for Somali. It has, in turn, been replaced by the Latin orthography of Muuse Xaaji Ismaaciil
Galaal (1914–1980). In 1961, both the Latin and the Osmanya scripts were adopted for use
in Somalia, but in 1969 there was a coup, with one of its stated aims being the resolution of
the debate over the country’s writing system. A Latin orthography was finally adopted in
1973. Gregersen (1977) states that some 20,000 or more people use Osmanya in private
correspondence and bookkeeping, and that several books and a biweekly journal Horseed
(“Vanguard”) were published in cyclostyled format.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

448 Additional Modern Scripts
Structure. Osmanya is an alphabetic script, read from left to right in horizontal lines run-
ning from top to bottom. It has 22 consonants and 8 vowels. Unique long vowels are writ-
ten for U+1049B g osmanya letter aa, U+1049C p osmanya letter ee, and U+1049D
e osmanya letter oo; long uu and ii are written with the consonants U+10493 m
osmanya letter waw and U+10495 l osmanya letter ya, respectively.

Ordering. Alphabetical ordering is based on the order of the Arabic alphabet, as specified
by Osman Abdihalim Yuusuf Osman Keenadiid. This ordering is similar to the ordering
given in Diringer (1996).

Names and Glyphs. The character names used in the Unicode Standard are as given by
Osman. The glyphs shown in the code charts are taken from Afkeenna iyo fartysa (“Our
language and its handwriting”) 1971.

13.4 Tifinagh

Tifinagh: U+2D30–U+2D7F

The Tifinagh script is used by approximately 20 million people who speak varieties of lan-
guages commonly called Berber or Amazigh. The three main varieties in Morocco are
known as Tarifite, Tamazighe, and Tachelhite. In Morocco, more than 40% of the popula-
tion speaks Berber. The Berber language, written in the Tifinagh script, is currently taught
to approximately 300,000 pupils in 10,000 schools—mostly primary schools—in Morocco.
Three Moroccan universities offer Berber courses in the Tifinagh script leading to a Mas-
ter’s degree.

Tifinagh is an alphabetic writing system. It uses spaces to separate words and makes use of
Western punctuation.

History. The earliest variety of the Berber alphabet is Libyan. Two forms exist: a Western
form and an Eastern form. The Western variety was used along the Mediterranean coast
from Kabylia to Morocco and most probably to the Canary Islands. The Eastern variety,
Old Tifinagh, is also called Libyan-Berber or Old Tuareg. It contains signs not found in the
Libyan variety and was used to transcribe Old Tuareg. The word tifinagh is a feminine plu-
ral noun whose singular would be tafniqt; it means “the Phoenician (letters).”

Neo-Tifinagh refers to the writing systems that were developed to represent the Maghreb
Berber dialects. A number of variants of Neo-Tifinagh exist, the first of which was pro-
posed in the 1960s by the Académie Berbère. That variant has spread in Morocco and Alge-
ria, especially in Kabylia. Other Neo-Tifinagh systems are nearly identical to the Académie
Berbère system. The encoding in the Tifinagh block is based on the Neo-Tifinagh systems.

Source Standards. The encoding consists of four Tifinagh character subsets: the basic set of
the Institut Royal de la Culture Amazighe (IRCAM), the extended IRCAM set, other Neo-
Tifinagh letters in use, and modern Tuareg letters. The first subset represents the set of
characters chosen by IRCAM to unify the orthography of the different Moroccan modern-
day Berber dialects while using the historical Tifinagh script.

Ordering. The letters are arranged according to the order specified by IRCAM. Other Neo-
Tifinagh and Tuareg letters are interspersed according to their pronunciation.

Directionality. Historically, Berber texts did not have a fixed direction. Early inscriptions
were written horizontally from left to right, from right to left, vertically (bottom to top, top
to bottom); boustrophedon directionality was also known. Modern-day Berber script is
most frequently written in horizontal lines from left to right; therefore the bidirectional
class for Tifinagh letters is specified as strong left to right. Displaying Berber texts in other
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.4 Tifinagh 449
directions can be accomplished by the use of directional overrides or by the use of higher-
level protocols.

Diacritical Marks. Modern Tifinagh variants tend to use combining diacritical marks to
complement the Tifinagh block. The Hawad notation, for example, uses diacritical marks
from the Combining Diacritical Marks block (U+0300–U+036F). These marks are used to
represent vowels and foreign consonants. In this notation, <U+2D35, U+0307> represents
“a”, <U+2D49, U+0309> represents a long “i” /i:/, and <U+2D31, U+0302> represents a
“p”. Some long vowels are represented using two diacritical marks above. A long “e” /e:/ is
thus written <U+2D49, U+0307, U+0304>. These marks are displayed side by side above
their base letter in the order in which they are encoded, instead of being stacked.

Contextual Shaping. Contextual shaping of some consonants occurs when U+2D4D tifi-

nagh letter yal or U+2D4F tifinagh letter yan are doubled or when both characters
appear together in various sequences. The shaping distinguishes the characters when they
appear next to each other. In contextual shaping, the second character is shifted vertically,
or it can be slanted. Figure 13-7 illustrates the use of contextual shaping.

Bi-Consonants. Bi-consonants are additional letterforms used in the Tifinagh script, par-
ticularly for Tuareg, to represent a consonant cluster—a sequence of two consonants with-
out an intervening vowel. These bi-consonants, sometimes also referred to as bigraphs, are
not directly encoded as single characters in the Unicode Standard. Instead, they are repre-
sented as a sequence of the two consonant letters, separated either by U+200D zero width

joiner or by U+2D7F tifinagh consonant joiner.

When a bi-consonant is considered obligatory in text, it is represented by the two conso-
nant letters, with U+2D7F tifinagh consonant joiner inserted between them. This use
of U+2D7F is comparable in function to the use of U+0652 arabic sukun to indicate the
absence of a vowel after a consonant, when Tuareg is written in the Arabic script. However,
instead of appearing as a visible mark in the text, U+2D7F tifinagh consonant joiner

indicates the presence of a bi-consonant, which should then be rendered with a preformed
glyph for the sequence. Examples of common Tifinagh bi-consonants and their representa-
tion are shown in Figure 13-8.

If a rendering system cannot display obligatory bi-consonants with the correct, fully-
formed bi-consonant glyphs, a fallback rendering should be used which displays the tifi-

nagh consonant joiner visibly, so that the correct textual distinctions are maintained,
even if they cannot be properly displayed.

When a bi-consonant is considered merely an optional, ligated form of two consonant let-
ters, the bi-consonant can be represented by the two consonant letters, with U+200D zero

width joiner inserted between them, as a hint that the ligated form is preferred. If a ren-

Figure 13-7. Tifinagh Contextual Shaping

2D4F 2D4F

2D4F 2D4D

2D4D 2D4F

2D4D 2D4D

+

+

+

+

→

→

→

→

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

450 Additional Modern Scripts
dering system cannot display the optional, ligated form, the fallback display should simply
be the sequence of consonants, with no visible display of the ZWJ.

Bi-consonants often have regional glyph variants, so fonts may need to be designed differ-
ently for different regional uses of the Tifinagh script.

13.5 N’Ko

N’Ko: U+07C0–U+07FF

N’Ko is a literary dialect used by the Manden (or Manding) people, who live primarily in
West Africa. The script was devised by Solomana Kante in 1949 as a writing system for the
Manden languages. The Manden language group is known as Mandenkan, where the suffix
-kan means “language of.” In addition to the substantial number of Mandens, some non-
Mandens speak Mandenkan as a second language. There are an estimated 20 million Man-
denkan speakers.

The major dialects of the Manden language are Bamanan, Jula, Maninka, and Mandinka.
There are a number of other related dialects. When Mandens from different subgroups talk
to each other, it is common practice for them to switch—consciously or subconsciously—
from their own dialect to the conventional, literary dialect commonly known as Kangbe,
“the clear language,” also known as N’Ko. This dialect switching can occur in conversations
between the Bamanan of Mali, the Maninka of Guinea, the Jula of the Ivory Coast, and the
Mandinka of Gambia or Senegal, for example. Although there are great similarities
between their dialects, speakers sometimes find it necessary to switch to Kangbe (N’Ko) by
using a common word or phrase, similar to the accommodations Danes, Swedes, and Nor-
wegians sometimes make when speaking to one another. For example, the word for
“name” in Bamanan is togo, while it is tooh in Maninka. Speakers of both dialects will write
it as PQR , although each may pronounce it differently.

Structure. The N’Ko script is written from right to left. It is phonetic in nature (one sym-
bol, one sound). N’Ko has seven vowels, each of which can bear one of seven diacritical
marks that modify the tone of the vowel as well as an optional diacritical mark that indi-
cates nasalization. N’Ko has 19 consonants and two “abstract” consonants, U+07E0 nko

letter na woloso and U+07E7 nko letter nya woloso, which indicate original conso-
nants mutated by a preceding nasal, either word-internally or across word boundaries.

Figure 13-8. Tifinagh Consonant Joiner and Bi-consonants

2D4E 2D7F 2D5C

2D59 2D7F 2D5C

2D54 2D7F 2D5C

2D4F 2D7F 2D5C

2D4F 2D7F 2D3E

+

+

+

+

+

+

+

+

+

+

→

→

→

→

→

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.5 N’Ko 451
Some consonants can bear one of three diacritical marks to transcribe foreign sounds or to
transliterate foreign letters.

U+07D2 nko letter n is considered neither a vowel nor a consonant; it indicates a syllabic
alveolar or velar nasal. It can bear a diacritical mark, but cannot bear the nasal diacritic.
The letter U+07D1 nko letter dagbasinna has a special function in N’Ko orthography.
The standard spelling rule is that when two successive syllables have the same vowel, the
vowel is written only after the second of the two syllables. For example, STU <ba, la, oo> is
pronounced [bolo], but in a foreign syllable to be pronounced [blo], the dagbasinna is
inserted for STVU <ba, dagbasinna, la, oo> to show that a consonant cluster is intended.

Digits. N’Ko uses decimal digits specific to the script. These digits have strong right-to-left
directionality. Numbers are stored in text in logical order with most significant digit first;
when displayed, numerals are then laid out in right-to-left order, with the most significant
digit at the rightmost side, as illustrated for the numeral 144 in Figure 13-9. This situation
differs from how numerals are handled in Hebrew and Arabic, where numerals are laid out
in left-to-right order, even though the overall text direction is right to left.

Diacritical Marks. N’Ko diacritical marks are script-specific, despite superficial resem-
blances to other diacritical marks encoded for more general use. Some N’Ko diacritics have
a wider range of glyph representation than the generic marks do, and are typically drawn
rather higher and bolder than the generic marks.

Table 13-3 shows the use of the tone diacritics when applied to vowels.

When applied to a vowel, U+07F2 nko combining nasalization mark indicates the
nasalization of that vowel. In the text stream, this mark is applied before any of the tone
marks because combining marks below precede combining marks above in canonical
order.

Two of the tone diacritics, when applied to consonants, indicate specific sounds from other
languages—in particular, Arabic or French language sounds. U+07F3 nko combining

double dot above is also used as a diacritic to represent sounds from other languages.
The combinations used are as shown in Table 13-4.

Ordinal Numbers. Diacritical marks are also used to mark ordinal numbers. The first ordi-
nal is indicated by applying U+07ED nko combining short rising tone (a dot above) to
U+07C1 nko digit one. All other ordinal numbers are indicated by applying U+07F2 nko

combining nasalization mark (an oval dot below) to the last digit in any sequence of
digits composing the number. Thus the nasalization mark under the digit two would indi-
cate the ordinal value 2nd, while the nasalization mark under the final digit four in the
numeral 144 would indicate the ordinal value 144th, as shown in Figure 13-9.

Punctuation. N’Ko uses a number of punctuation marks in common with other scripts.
U+061F arabic question mark, U+060C arabic comma, U+061B arabic semicolon,
and the paired U+FD3E ornate left parenthesis and U+FD3F ornate right paren-

thesis are used, often with different shapes than are used in Arabic. A script-specific

Table 13-3. N’Ko Tone Diacritics on Vowels

Character Tone Applied To
U+07EB nko combining short high tone high short vowel
U+07EC nko combining short low tone low short vowel
U+07ED nko combining short rising tone rising-falling short vowel
U+07EE nko combining long descending tone descending long vowel
U+07EF nko combining long high tone high long vowel
U+07F0 nko combining long low tone long low long vowel
U+07F1 nko combining long rising tone rising long vowel
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

452 Additional Modern Scripts
U+07F8 nko comma and U+07F9 nko exclamation mark are encoded. The nko comma

differs in shape from the arabic comma, and the two are sometimes used distinctively in
the same N’Ko text.

The character U+07F6 nko symbol oo dennen is used as an addition to phrases to indi-
cate remote future placement of the topic under discussion. The decorative U+07F7 \ nko

symbol gbakurunen represents the three stones that hold a cooking pot over the fire and
is used to end major sections of text.

The two tonal apostrophes, U+07F4 nko high tone apostrophe and U+07F5 nko low

tone apostrophe, are used to show the elision of a vowel while preserving the tonal infor-
mation of the syllable. Their glyph representations can vary in height relative to the base-
line. N’Ko also uses a set of paired punctuation, U+2E1C left low paraphrase bracket

and U+2E1D right low paraphrase bracket, to indicate indirect quotations.

Character Names and Block Name. Although the traditional name of the N’Ko language
and script includes an apostrophe, apostrophes are disallowed in Unicode character and
block names. Because of this, the formal block name is “NKo” and the script portion of the
Unicode character names is “nko”.

Table 13-4. Other N’Ko Diacritic Usage

Character Applied To Represents
U+07EB nko combining short high tone SA []] or Arabic ^ SAD

GBA [_] or Arabic ` GHAIN
KA [q] or Arabic a QAF

U+07ED nko combining short rising tone BA [bb]
TA [c] or Arabic d TAH
JA [z] or Arabic e ZAIN
CA [f] or Arabic g THAL and

also French [h]
DA [i] or Arabic j ZAD
RA French [k]
SA [l] or Arabic m SHEEN
GBA [g]
FA [v]
KA [n] or Arabic o KHAH
LA [lb]
MA [mb]
NYA [nb]
HA [p] or Arabic q HAH
YA [yb]

U+07F3 nko combining double dot above A [ra] or Arabic t AIN + A
EE French [u]
U French [y]
JA [v] or Arabic w ZAH
DA [db]
SA [x] or Arabic y THEH
GBA [kp]

Figure 13-9. Examples of N’Ko Ordinals

{ 1st

W 2nd

X 3rd

YZ[144th
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.5 N’Ko 453
Ordering. The order of N’Ko characters in the code charts reflects the traditional ordering
of N’Ko. However, in collation, the three archaic letters U+07E8 nko letter jona ja,
U+07E9 nko letter jona cha, and U+07EA nko letter jona ra should be weighted as
variants of U+07D6 nko letter ja, U+07D7 nko letter cha, and U+07D9 nko letter

ra, respectively.

Rendering. N’Ko letters have shaping behavior similar to that of Arabic. Each letter can
take one of four possible forms, as shown in Table 13-5.

Table 13-5. N’Ko Letter Shaping

Character Xn Xr Xm Xl

a # $ % &

ee () * +

i , | . /

e 0 1 2 3

u 4 5 6 7

oo 8 9 : ;

o < = > ?

dagbasinna @ A B C

n D E F G

ba H I J K

pa L M N O

ta P Q R S

ja T U V W

cha X Y Z [

da \] ^ _

ra ` a b c

rra d e f g

sa h i j k

gba l m n o

fa p q r s

ka t u v w

la x y z {

na woloso # $ % &
ma () * +
nya , z . /
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

454 Additional Modern Scripts
A noncursive style of N’Ko writing exists where no joining line is used between the letters
in a word. This is a font convention, not a dynamic style like bold or italic, both of which
are also valid dynamic styles for N’Ko. Noncursive fonts are mostly used as display fonts for
the titles of books and articles. U+07FA nko lajanyalan is sometimes used like U+0640
arabic tatweel to justify lines, although Latin-style justification where space is increased
tends to be more common.

13.6 Vai

Vai: U+A500–U+A63F

The Vai script is used for the Vai language, spoken in coastal areas of western Liberia and
eastern Sierra Leone. It was developed in the early 1830s primarily by MMmMlu Duwalu
BukNlN of Jondu, Liberia, who later stated that the inspiration had come to him in a dream.
He may have also been aware of, and influenced by, other scripts including Latin, Arabic,
and possibly Cherokee, or he may have phoneticized and regularized an earlier picto-
graphic script. In the years afterward, the Vai built an educational infrastructure that
enabled the script to flourish; by the late 1800s European traders reported that most Vai
were literate in the script. Although there were standardization efforts in 1899 and again at
a 1962 conference at the University of Liberia, nowadays the script is learned informally
and there is no means to ensure adherence to a standardized version; most Vai literates
know only a subset of the standardized characters. The script is primarily used for corre-
spondence and record-keeping, mainly among merchants and traders. Literacy in Vai coex-
ists with literacy in English and Arabic.

Sources. The primary sources for the Vai characters in Unicode are the 1962 Vai Standard
Syllabary, modern primers and texts which use the Standard Syllabary (including a few
glyph modifications reflecting modern preferences), the 1911 additions of Momolu Massa-
quoi, and the characters found in The Book of Ndole, the longest surviving text from the
early period of Vai script usage.

Basic Structure. Vai is a syllabic script written left to right. The Vai language has seven oral
vowels [e i a o u t u], five of which also occur in nasal form [p q r v t]. The standard sylla-
bary includes standalone vowel characters for the oral vowels and three of the nasal ones,
characters for most of the consonant-vowel combinations formed from each of thirty con-
sonants or consonant clusters, and a character for the final velar nasal consonant [}].

na 0 1 2 3
ha 4 5 6 7
wa 8 9 : ;
ya < = > ?
nya woloso @ A B C
jona ja H I J K
jona cha D E F G
jona ra L M N O

Table 13-5. N’Ko Letter Shaping (Continued)

Character Xn Xr Xm Xl
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.7 Bamum 455
The writing system has a moraic structure: the weight (or duration) of a syllable determines
the number of characters used to write it (as with Japanese kana). A short syllable is written
with any single character in the range U+A500..U+A60B. Long syllables are written with
two characters, and involve a long vowel, a diphthong, or a syllable ending with U+A60B
vai syllable ng. Note that the only closed syllables in Vai—that is, those that end with a
consonant—are those ending with vai syllable ng. The long vowel is generally written
using either an additional standalone vowel to double the vowel sound of the preceding
character, or using U+A60C vai syllable lengthener, while the diphthong is generally
written using an additional standalone vowel. In some cases, the second character for a
long vowel or diphthong may be written using characters such as U+A54C vai syllable

ha or U+A54E vai syllable wa instead of standalone vowels.

Historic Syllables. In The Book of Ndole more than one character may be used to represent
a pronounced syllable; they have been separately encoded.

Logograms. The oldest Vai texts used an additional set of symbols called “logograms,” rep-
resenting complete syllables with an associated meaning or range of meanings; these sym-
bols may be remnants from a precursor pictographic script. At least two of these symbols
are still used: U+A618 vai symbol faa represents the word meaning “die, kill” and is used
alongside a person’s date of death (the glyph is said to represent a wilting tree); U+A613 vai

symbol feeng represents the word meaning “thing.”

Digits. In the 1920s ten decimal digits were devised for Vai; these digits were “Vai-style”
glyph variants of European digits. They never became popular with Vai people, but are
encoded in the standard for historical purposes. Modern literature uses European digits.

Punctuation. Vai makes use of European punctuation, although a small number of script-
specific punctuation marks commonly occur. U+A60D vai comma rests on or slightly
below the baseline; U+A60E vai full stop rests on the baseline and can be doubled for use
as an exclamation mark. U+A60F vai question mark also rests on the baseline; it is rarely
used. Some modern primers prefer these Vai punctuation marks; some prefer the European
equivalents. Some Vai writers mark the end of a sentence by using U+A502 vai syllable

hee instead of punctuation.

Segmentation. Vai is written without spaces between words. Line breaking opportunities
can occur between most characters except that line breaks should not occur before
U+A60B vai syllable ng used as a syllable final, or before U+A60C vai syllable

lengthener (which is always a syllable final). Line breaks also should not occur before one
of the “h-” characters (U+A502, U+A526, U+A54C, U+A573, U+A597, U+A5BD,
U+A5E4) when it is used to extend the vowel of the preceding character (that is, when it is
a syllable final), and line breaks should not occur before the punctuation characters
U+A60D vai comma, U+A60E vai full stop, and U+A60F vai question mark.

Ordering. There is no evidence of traditional conventions on ordering apart from the order
of listings found in syllabary charts. The syllables in the Vai block are arranged in the order
recommended by a panel of Vai script experts. Logograms should be sorted by their pho-
netic values.

13.7 Bamum

Bamum: U+A6A0–U+A6FF

The Bamum script is used for the Bamum language, spoken primarily in western Camer-
oon. It was developed between 1896 and 1910, mostly by King Ibrahim Njoya of the
Bamum Kingdom. Apparently inspired by a dream and by awareness of other writing, his
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

456 Additional Modern Scripts
original idea for the script was to collect and provide approximately 500 logographic sym-
bols (denoting objects and actions) to serve more as a memory aid than as a representation
of language.

Using the rebus principle, the script was rapidly simplified through six stages, known as
Stage A, Stage B, and so on, into a syllabary known as A-ka-u-ku, consisting of 80 syllable
characters or letters. These letters are used with two combining diacritics and six punctua-
tion marks. The repertoire in this block covers the A-ka-u-ku syllabary, or Phase G form,
which remains in modern use.

Structure. Modern Bamum is written left-to-right. One interesting feature is that some-
times more letters than necessary are used to write a given syllable. For example, the word
lam “wedding” is written using the sequence of syllabic characters, la + a + m. This feature
is known as pleonastic syllable representation.

Diacritical Marks. U+A6F0 bamum combining mark koqndon may be applied to any of
the 80 letters. It usually functions to glottalize the final vowel of a syllable. U+A6F1 bamum

combining mark tukwentis is only known to be used with 13 letters—usually to trun-
cate a full syllable to its final consonant.

Punctuation. U+A6F2 bamum njaemli was a character used in the original set of logo-
graphic symbols to introduce proper names or to change the meaning of a word. The shape
of the glyph for njaemli has changed, but the character is still in use. The other punctuation
marks correspond in function to the similarly-named punctuation marks used in Euro-
pean typography.

Digits. The last ten letters in the syllabary are also used to represent digits. Historically, the
last of these was used for 10, but its meaning was changed to represent zero when decimal-
based mathematics was introduced.

Bamum Supplement: U+16800–U+16A3F

The Bamum Supplement block contains archaic characters no longer used in the modern
Bamum orthography. These historical characters are analogous in some ways to the medi-
evalist characters encoded for the Latin script. Most Bamum writers do not use them, but
they are used by specialist linguists and historians.

The main source for the repertoire of Bamum extensions is an analysis in Dugast and Jef-
freys 1950. The Bamum script was developed in six phases, labeled with letters. Phase A is
the earliest form of the script. Phase G is the modern script encoded in the main Bamum
block. The Bamum Supplement block covers distinct characters from the earlier phases
which are no longer part of the modern Bamum script.

The character names in this block include a reference to the last phase in which they appear.
So, for example, U+16867 bamum letter phase-b pit was last used during Phase B, while
U+168EE bamum letter phase-c pin continued in use and is attested through Phase C.

Traditional Bamum texts using these historical characters do not use punctuation or digits.
Numerical values for digits are written out as words instead.

13.8 Cherokee

Cherokee: U+13A0–U+13FF

The Cherokee script is used to write the Cherokee language. Cherokee is a member of the
Iroquioan language family. It is related to Cayuga, Seneca, Onondaga, Wyandot-Huron,
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.9 Canadian Aboriginal Syllabics 457
Tuscarora, Oneida, and Mohawk. The relationship is not close because roughly 3,000 years
ago the Cherokees migrated southeastward from the Great Lakes region of North America
to what is now North Carolina, Tennessee, and Georgia. Cherokee is the native tongue of
approximately 20,000 people, although most speakers today use it as a second language.
The Cherokee word for both the language and the people is TUV Tsalagi.

The Cherokee syllabary, as invented by Sequoyah between 1815 and 1821, contained 6 vow-
els and 17 consonants. Sequoyah avoided copying from other alphabets, but his original
letters were modified to make them easier to print. The first font for Cherokee was
designed by Dr. Samuel A. Worcester. Using fonts available to him, he assigned a number of
Latin letters to the Cherokee syllables. At this time the Cherokee letter “HV” was dropped,
and the Cherokee syllabary reached its current size of 85 letters. Dr. Worcester’s press
printed 13,980,000 pages of Native American-language text, most of it in Cherokee.

Tones. Each Cherokee syllable can be spoken on one of four pitch or tone levels, or can
slide from one pitch to one or two others within the same syllable. However, only in certain
words does the tone of a syllable change the meaning. Tones are unmarked.

Case and Spelling. The Cherokee script is caseless, although for purposes of emphasis
occasionally one letter will be made larger than the others. Cherokee spelling is not stan-
dardized: each person spells as the word sounds to him or her.

Numbers. Although Sequoyah invented a Cherokee number system, it was not adopted and
is not encoded here. The Cherokee Nation uses European numbers. Cherokee speakers pay
careful attention to the use of ordinal and cardinal numbers. When speaking of a num-
bered series, they will use ordinals. For example, when numbering chapters in a book,
Cherokee headings would use First Chapter, Second Chapter, and so on, instead of Chapter
One, Chapter Two, and so on.

Rendering and Input. Cherokee is a left-to-right script, which requires no combining
characters. Several keyboarding conventions exist for inputting Cherokee. Some involve
dead-key input based on Latin transliterations; some are based on sound-mnemonics
related to Latin letters on keyboards; and some are ergonomic systems based on frequency
of the syllables in the Cherokee language.

Punctuation. Cherokee uses standard Latin punctuation.

Standards. There are no other encoding standards for Cherokee.

13.9 Canadian Aboriginal Syllabics

Canadian Aboriginal Syllabics: U+1400–U+167F

The characters in this block are a unification of various local syllabaries of Canada into a
single repertoire based on character appearance. The syllabics were invented in the late
1830s by James Evans for Algonquian languages. As other communities and linguistic
groups adopted the script, the main structural principles described in this section were
adopted. The primary user community for this script consists of several aboriginal groups
throughout Canada, including Algonquian, Inuktitut, and Athapascan language families.
The script is also used by governmental agencies and in business, education, and media.

Organization. The repertoire is organized primarily on structural principles found in the
CASEC [1994] report, and is essentially a glyphic encoding. The canonical structure of
each character series consists of a consonant shape with five variants. Typically the shape
points down when the consonant is combined with the vowel /e/, up when combined with
the vowel /i/, right when combined with the vowel /o/, and left when combined with the
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

458 Additional Modern Scripts
vowel /a/. It is reduced and superscripted when in syllable-final position, not followed by a
vowel. For example:

Some variations in vowels also occur. For example, in Inuktitut usage, the syllable U+1450
 canadian syllabics to is transcribed into Latin letters as “TU” rather than “TO”, but
the structure of the syllabary is generally the same regardless of language.

Arrangement. The arrangement of signs follows the Algonquian ordering (down-pointing,
up-pointing, right-pointing, left-pointing), as in the previous example.

Sorted within each series are the variant forms for that series. Algonquian variants appear
first, then Inuktitut variants, then Athapascan variants. This arrangement is convenient and
consistent with the historical diffusion of Syllabics writing; it does not imply any hierarchy.

Some glyphs do not show the same down/up/right/left directions in the typical fashion—
for example, beginning with U+146B canadian syllabics ke. These glyphs are varia-
tions of the rule because of the shape of the basic glyph; they do not affect the convention.

Vowel length and labialization modify the character series through the addition of various
marks (for example, U+143E canadian syllabics pwii). Such modified characters are
considered unique syllables. They are not decomposed into base characters and one or
more diacritics. Some language families have different conventions for placement of the
modifying mark. For the sake of consistency and simplicity, and to support multiple North
American languages in the same document, each of these variants is assigned a unique code
point.

Extensions. A few additional syllables in the range U+166F..U+167F at the end of this
block have been added for Inuktitut, Woods Cree, and Blackfoot. Because these extensions
were encoded well after the main repertoire in the block, their arrangement in the code
charts is outside the framework for the rest of the characters in the block.

Punctuation and Symbols. Languages written using the Canadian Aboriginal Syllabics
make use of the common punctuation marks of Western typography. However, a few punc-
tuation marks are specific in form and are separately encoded as script-specific marks for
syllabics. These include: U+166E canadian syllabics full stop and U+1400 canadian

syllabics hyphen.

There is also a special symbol, U+166D canadian syllabics chi sign, used in religious
texts as a symbol to denote Christ.

Canadian Aboriginal Syllabics Extended: U+18B0–U+18FF

This block contains many additional syllables attested in various local traditions of syllabics
usage in Canada. These additional characters include extensions for several Algonquian
communities (Cree, Moose Cree, and Ojibway), and for several Dene communities (Beaver
Dene, Hare Dene, Chipewyan, and Carrier).

PE PI PO PA P
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.10 Deseret 459
13.10 Deseret

Deseret: U+10400–U+1044F

Deseret is a phonemic alphabet devised to write the English language. It was originally
developed in the 1850s by the regents of the University of Deseret, now the University of
Utah. It was promoted by The Church of Jesus Christ of Latter-day Saints, also known as
the “Mormon” or LDS Church, under Church President Brigham Young (1801–1877). The
name Deseret is taken from a word in the Book of Mormon defined to mean “honeybee”
and reflects the LDS use of the beehive as a symbol of cooperative industry. Most literature
about the script treats the term Deseret Alphabet as a proper noun and capitalizes it as such.

Among the designers of the Deseret Alphabet was George D. Watt, who had been trained in
shorthand and served as Brigham Young’s secretary. It is possible that, under Watt’s influ-
ence, Sir Isaac Pitman’s 1847 English Phonotypic Alphabet was used as the model for the
Deseret Alphabet.

The Deseret Alphabet was a work in progress through most of the 1850s, with the set of let-
ters and their shapes changing from time to time. The final version was used for the printed
material of the late 1860s, but earlier versions are found in handwritten manuscripts.

The Church commissioned two typefaces and published four books using the Deseret
Alphabet. The Church-owned Deseret News also published passages of scripture using the
alphabet on occasion. In addition, some historical records, diaries, and other materials
were handwritten using this script, and it had limited use on coins and signs. There is also
one tombstone in Cedar City, Utah, written in the Deseret Alphabet. However, the script
failed to gain wide acceptance and was not actively promoted after 1869. Today, the Deseret
Alphabet remains of interest primarily to historians and hobbyists.

Letter Names and Shapes. Pedagogical materials produced by the LDS Church gave names
to all of the non-vowel letters and indicated the vowel sounds with English examples. In the
Unicode Standard, the spelling of the non-vowel letter names has been modified to clarify
their pronunciations, and the vowels have been given names that emphasize the parallel
structure of the two vowel runs.

The glyphs used in the Unicode Standard are derived from the second typeface commis-
sioned by the LDS Church and represent the shapes most commonly encountered. Alter-
nate glyphs are found in the first typeface and in some instructional material.

Structure. The final version of the script consists of 38 letters, long i through eng. Two
additional letters, oi and ew, found only in handwritten materials, are encoded after the
first 38. The alphabet is bicameral; capital and small letters differ only in size and not in
shape. The order of the letters is phonetic: letters for similar classes of sound are grouped
together. In particular, most consonants come in unvoiced/voiced pairs. Forty-letter ver-
sions of the alphabet inserted oi after ay and ew after ow.

Sorting. The order of the letters in the Unicode Standard is the one used in all but one of
the nineteenth-century descriptions of the alphabet. The exception is one in which the let-
ters wu and yee are inverted. The order yee-wu follows the order of the “coalescents” in
Pitman’s work; the order wu-yee appears in a greater number of Deseret materials, how-
ever, and has been followed here.

Alphabetized material followed the standard order of the Deseret Alphabet in the code
charts, except that the short and long vowel pairs are grouped together, in the order long
vowel first, and then short vowel.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

460 Additional Modern Scripts
Typographic Conventions. The Deseret Alphabet is written from left to right. Punctuation,
capitalization, and digits are the same as in English. All words are written phonemically
with the exception of short words that have pronunciations equivalent to letter names, as
shown in Figure 13-10.

Phonetics. An approximate IPA transcription of the sounds represented by the Deseret
Alphabet is shown in Table 13-6.

Figure 13-10. Short Words Equivalent to Deseret Letter Names

n ay is written for eye or I

o yee is written for ye

p bee is written for be or bee

q gay is written for gay

r thee is written for the or thee

Table 13-6. IPA Transcription of Deseret

!"
#$
%&
'(
)*
+,
-.
/0
12
34
56
78
9:
=>
;<
?@
AB
CD
EF
GH

LONG I

LONG E

LONG A

LONG AH

LONG O

LONG OO

SHORT I

SHORT E

SHORT A

SHORT AH

SHORT O

SHORT OO

AY

OI

OW

EW

WU

YEE

H

PEE

i
e
s
ɒ
o
u
r
u
æ
t
v
w
sr
tr
sw
ju
w
j
h
p

IJ
KL
MN
OP
QR
ST
UV
WX
YZ
[\
]&
_`
ab
cd
ef
gh
ij
kl
mn
op

BEE

TEE

DEE

CHEE

JEE

KAY

GAY

EF

VEE

ETH

THEE

ES

ZEE

ESH

ZHEE

ER

EL

EM

EN

ENG

b
t
d
tx
dy
k
z
f
v
{
|
s
z
x
y
r
l
m
n
}

Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.11 Shavian 461
13.11 Shavian

Shavian: U+10450–U+1047F

The playwright George Bernard Shaw (1856–1950) was an outspoken critic of the idiosyn-
crasies of English orthography. In his will, he directed that Britain’s Public Trustee seek out
and publish an alphabet of no fewer than 40 letters to provide for the phonetic spelling of
English. The alphabet finally selected was designed by Kingsley Read and is variously
known as Shavian, Shaw’s alphabet, and the Proposed British Alphabet. Also in accordance
with Shaw’s will, an edition of his play, Androcles and the Lion, was published and distrib-
uted to libraries, containing the text both in the standard Latin alphabet and in Shavian.

As with other attempts at spelling reform in English, the alphabet has met with little suc-
cess. Nonetheless, it has its advocates and users. The normative version of Shavian is taken
to be the version in Androcles and the Lion.

Structure. The alphabet consists of 48 letters and 1 punctuation mark. The letters have no
case. The digits and other punctuation marks are the same as for the Latin script. The one
additional punctuation mark is a “name mark,” used to indicate proper nouns. U+00B7
middle dot should be used to represent the “name mark.” The letter names are intended
to be indicative of their sounds; thus the sound /p/ is represented by U+10450 m shavian

letter peep.

The first 40 letters are divided into four groups of 10. The first 10 and second 10 are 180-
degree rotations of one another; the letters of the third and fourth groups often show a sim-
ilar relationship of shape.

The first 10 letters are tall letters, which ascend above the x-height and generally represent
unvoiced consonants. The next 10 letters are “deep” letters, which descend below the base-
line and generally represent voiced consonants. The next 20 are the vowels and liquids.
Again, each of these letters usually has a close phonetic relationship to the letter in its
matching set of 10.

The remaining 8 letters are technically ligatures, the first 6 involving vowels plus /r/.
Because ligation is not optional, these 8 letters are included in the encoding.

Collation. The problem of collation is not addressed by the alphabet’s designers.

13.12 Lisu

Lisu: U+A4D0–U+A4FF

Somewhere between 1908 and 1914 a Karen evangelist from Myanmar by the name of Ba
Thaw modified the shapes of Latin characters and created the Lisu script. Afterwards, Brit-
ish missionary James Outram Fraser and some Lisu pastors revised and improved the
script. The script is commonly known in the West as the Fraser script. It is also sometimes
called the Old Lisu script, to distinguish it from newer, Latin-based orthographies for the
Lisu language.

There are 630,000 Lisu people in China, mainly in the regions of Nujiang, Diqing, Lijiang,
Dehong, Baoshan, Kunming and Chuxiong in the Yunnan Province. Another 350,000 Lisu
live in Myanmar, Thailand and India. Other user communities are mostly Christians from
the Dulong, the Nu and the Bai nationalities in China.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

462 Additional Modern Scripts
At present, about 200,000 Lisu in China use the Lisu script and about 160,000 in the other
countries are literate in it. The Lisu script is widely used in China in education, publishing,
the media and religion. Various schools and universities at the national, provincial and pre-
fectural levels have been offering Lisu courses for many years. Globally, the script is also
widely used in a variety of Lisu literature.

Structure. There are 40 letters in the Lisu alphabet. These consist of 30 consonants and 10
vowels. Each letter was originally derived from the capital letters of the Latin alphabet.
Twenty-five of them look like sans-serif Latin capital letters (all but “Q”) in upright posi-
tions; the other 15 are derived from sans-serif Latin capital letters rotated 180 degrees.

Although the letters of the Lisu script clearly derived originally from the Latin alphabet, the
Lisu script is distinguished from the Latin script. The Latin script is bicameral, with case
mappings between uppercase and lowercase letters. The Lisu script is unicameral; it has no
casing, and the letters do not change form. Furthermore, typography for the Lisu script is
rather sharply distinguished from typography for the Latin script. There is not the same
range of font faces as for the Latin script, and Lisu typography is typically monospaced and
heavily influenced by the conventions of Chinese typography.

Consonant letters have an inherent [O] vowel unless followed by an explicit vowel letter.
Three letters sometimes represent a vowel and sometimes a consonant: U+A4EA lisu let-

ter wa, U+A4EC lisu letter ya, and U+A4ED lisu letter gha.

Tone Letters. The Lisu script has six tone letters which are placed after the syllable to mark
tones. These tone letters are listed in Table 13-7, with the tones identified in terms of their
pitch contours.

Each of the six tone letters represents one simple tone. Although the tone letters clearly
derive from Western punctuation marks (full stop, comma, semicolon, and colon), they do
not function as punctuation at all. Rather, they are word-forming modifier letters. Further-
more, each tone letter is typeset on an em-square, including those whose visual appearance
consists of two marks.

The first four tone letters can be used in combination with the last two to represent certain
combination tones. Of the various possibilities, only “,;” is still in use; the rest are now
rarely seen in China.

Other Modifier Letters. Nasalised vowels are denoted by a nasalization mark following the
vowel. This word-forming character is not encoded separately in the Lisu script, but is rep-
resented by U+02BC modifier letter apostrophe, which has the requisite shape and
properties (General_Category=Lm) and is used in similar contexts.

A glide based on the vowel A, pronounced as [O] without an initial glottal stop (and nor-
mally bearing a 31 low falling pitch), is written after a verbal form to mark various aspects.
This word-forming modifier letters is represented by U+02CD modifier letter low

macron. In a Lisu font, this modifier letter should be rendered on the baseline, to harmo-
nize with the position of the tone letters.

Table 13-7. Lisu Tone Letters

Code Glyph Name Tone

A4F8 . mya ti 55

A4F9 , na po 35

A4FA .. mya cya 44

A4FB ., mya bo 33

A4FC ; mya na 42

A4FD : mya jeu 31
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

13.13 Miao 463
Digits and Separators. There are no unique Lisu digits. The Lisu use European digits for
counting. The thousands separator and the decimal point are represented with U+002C
comma and U+002E full stop, respectively. To separate chapter and verse numbers,
U+003A colon and U+003B semi-colon are used. These can be readily distinguished
from the similar-appearing tone letters by their numerical context.

Punctuation. U+A4FE “-.” lisu punctuation comma and U+A4FF “=” lisu punctua-

tion full stop are punctuation marks used respectively to denote a lesser and a greater
degree of finality. These characters are similar in appearance to sequences of Latin punctu-
ation marks, but are not unified with them.

Over time various other punctuation marks from European or Chinese traditions have
been adopted into Lisu orthography. Table 13-8 lists all known adopted punctuation, along
with the respective contexts of use.

U+2010 hyphen may be preferred to U+002D hyphen-minus for the dash used to sepa-
rate syllables in names, as its semantics are less ambiguous than U+002D.

The use of the U+003F “?” question mark replaced the older Lisu tradition of using a tone
letter combination to represent the question prosody, followed by a Lisu full stop: “..:=”

Linebreaking. A line break is not allowed within an orthographic syllable in Lisu. A line
break is also prohibited before a punctuation mark, even if it is preceded by a space. There
is no line-breaking hyphenation of words, except in proper nouns, where a break is allowed
after the hyphen used as a syllable separator

Word Separation. The Lisu script separates syllables using a space or, for proper names, a
hyphen. In the case of polysyllabic words, it can be ambiguous as to which syllables join
together to form a word. Thus for most text processing at the character level, a syllable
(starting after a space or punctuation and ending before another space or punctuation) is
treated as a word except for proper names—where the occurrence of a hyphen holds the
word together.

13.13 Miao

Miao: U+16F00–U+16F9F

The Miao script, also called Lao Miaowen (“Old Miao Script”) in Chinese, was created in
1904 by Samuel Pollard and others, to write the Northeast Yunnan Miao language of south-
ern China. The script has also been referred to as the Pollard script, but that usage is no
longer preferred. The Miao script was created by an adaptation of Latin letter variants,
English shorthand characters, Miao pictographs, and Cree syllable forms. (See Section 13.9,

Table 13-8. Punctuation Adopted in Lisu Orthography

Code Glyph Name Context

002D - hyphen-minus syllable separation in names

003F ? question mark questions

0021 ! exclamation mark exclamations

0022 " quotation mark quotations

0028/0029 () parentheses parenthetical notes

300A/300B k l double angle brackets book titles

2026 ... ellipsis omission of words (always doubled in
Chinese usage)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

464 Additional Modern Scripts
Canadian Aboriginal Syllabics.) Today, the script is used to write various Miao dialects, as
well as languages of the Yi and Lisu nationalities in southern China.

The script was reformed in the 1950s by Yang Rongxin and others, and was later adopted as
the “Normalized” writing system of Kunming City and Chuxiong Prefecture. The main dif-
ference between the pre-reformed and the reformed orthographies is in how they mark
tones. Both orthographies can be correctly represented using the Miao characters encoded
in the Unicode Standard.

Encoding Principles. The script is written left to right. The basic syllabic structure contains
an initial consonant or consonant cluster and a final. The final consists of either a vowel or
vowel cluster, an optional final nasal, plus a tone mark. The initial consonant may be pre-
ceded by U+16F50 miao letter nasalization, and can be followed by combining marks
for voicing (U+16F52 miao sign reformed voicing) or aspiration (U+16F51 miao sign

aspiration and U+16F53 miao sign reformed aspiration).

Tone Marks. In the Chuxiong reformed orthography, vowels and final nasals appear on the
baseline. If no explicit tone mark is present, this indicates the default tone 3. An additional
tone mark, encoded in the range U+16F93..U+16F99, may follow the vowel to indicate
other tones. A set of archaic tone marks used in the reformed orthography is encoded in the
range U+16F9A..U+16F9F.

In the pre-reformed orthography, such as that used for the language Ahmao (Northern
Hmong), the tone marks are represented in a different manner, using one of five shifter
characters. These are represented in sequence following the vowel or vowel sequence and
indicate where the vowel letter is to be rendered in relation to the consonant. If more than
one vowel letter appears before the shifter, all of the vowel glyphs are moved together to the
appropriate position.

Rendering of “wart”. Several Miao consonants appear in the code charts with a “wart”
attached to the glyph, usually on the left-hand side. In the Chuxiong orthography, a dot
appears instead of the wart on these consonants. Because the user communities consider
the appearance of the wart or dot to be a different way to write the same characters and not
a difference of the character’s identity, the differences in appearance are a matter of font
style.

Ordering. The order of Miao characters in the code charts derives from a reference order-
ing widely employed in China, based in part on the order of Bopomofo phonetic charac-
ters. The expected collation order for Miao strings varies by language and user
communities, and requires tailoring. See Unicode Technical Standard #10, “Unicode Colla-
tion Algorithm.”

Digits. Miao uses European digits.

Punctuation. The Miao script employs a variety of punctuation marks, both from the East
Asian typographical tradition and from the Western typographical tradition. There are no
script-specific punctuation marks.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 14

Additional Ancient and
Historic Scripts 14

Unicode encodes a number of ancient scripts, which have not been in normal use for a mil-
lennium or more, as well as historic scripts, whose usage ended in recent centuries.
Although they are no longer used to write living languages, documents and inscriptions
using these scripts exist, both for extinct languages and for precursors of modern lan-
guages. The primary user communities for these scripts are scholars interested in studying
the scripts and the languages written in them. A few, such as Coptic, also have contempo-
rary use for liturgical or other special purposes. Some of the historic scripts are related to
each other as well as to modern alphabets.

The following ancient and historic scripts are encoded in this version of the Unicode Stan-
dard and described in this chapter:

The following ancient and historic scripts are also encoded in this version of the Unicode
Standard, but are described in other chapters for consistency with earlier versions of the
Unicode Standard, and due to their close relationship with other scripts described in those
chapters:

The Ogham script is indigenous to Ireland. While its originators may have been aware of
the Latin or Greek scripts, it seems clear that the sound values of Ogham letters were suited
to the phonology of a form of Primitive Irish.

Old Italic was derived from Greek and was used to write Etruscan and other languages in
Italy. It was borrowed by the Romans and is the immediate ancestor of the Latin script now
used worldwide. Old Italic had other descendants, too: The Alpine alphabets seem to have
been influential in devising the Runic script, which has a distinct angular appearance
owing to its use in carving inscriptions in stone and wood. Gothic, like Cyrillic, was devel-
oped on the basis of Greek at a much later date than Old Italic.

The two historic scripts of northwestern Europe, Runic and Ogham, have a distinct appear-
ance owing to their primary use in carving inscriptions in stone and wood. They are con-

Ogham Ancient Anatolian Alphabets Avestan

Old Italic Old South Arabian Ugaritic

Runic Phoenician Old Persian

Gothic Imperial Aramaic Sumero-Akkadian

Old Turkic Mandaic Egyptian Hieroglyphs

Linear B Inscriptional Parthian Meroitic

Cypriot Syllabary Inscriptional Pahlavi

Coptic Glagolitic Phags-pa Kaithi Kharoshthi Brahmi
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

466 Additional Ancient and Historic Scripts
ventionally rendered from left to right in scholarly literature, but on the original stone
carvings often proceeded in an arch tracing the outline of the stone.

The Old Turkic script is known from eighth-century Siberian stone inscriptions, and is the
oldest known form of writing for a Turkic language. Also referred to as Turkic Runes due to
its superficial resemblance to Germanic Runes, it appears to have evolved from the Sogdian
script, which is in turn derived from Aramaic.

Both Linear B and Cypriot are syllabaries that were used to write Greek. Linear B is the
older of the two scripts, and there are some similarities between a few of the characters that
may not be accidental. Cypriot may descend from Cypro-Minoan, which in turn may
descend from Linear B.

The ancient Anatolian alphabets Lycian, Carian, and Lydian all date from the first millen-
nium bce, and were used to write various ancient Indo-European languages of western and
southwestern Anatolia. All are closely related to the Greek script.

The elegant Old South Arabian script was used around the southwestern part of the Ara-
bian peninsula for 1,200 years beginning around the 8th century bce. Carried westward, it
was adapted for writing the Ge’ez language, and evolved into the root of the modern Ethi-
opic script.

The Phoenician alphabet was used in various forms around the Mediterranean. It is ances-
tral to Latin, Greek, Hebrew, and many other scripts—both modern and historical.

The Imperial Aramaic script evolved from Phoenician. Used over a wide region beginning
in the eighth century bce as Aramaic became the principal administrative language of the
Assyrian empire and then the official language of the Achaemenid Persian empire, it was
the source of many other scripts, such as the square Hebrew script and the Arabic script.
The Mandaic script was probably derived from a cursive form of Aramaic, and was used in
southern Mesopotamia for liturgical texts by adherents of the Mandaean gnostic religion.
Inscriptional Parthian, Inscriptional Pahlavi, and Avestan are also derived from Imperial
Aramaic, and were used to write various Middle Persian languages.

Three ancient cuneiform scripts are described in this chapter: Ugaritic, Old Persian, and
Sumero-Akkadian. The largest and oldest of these is Sumero-Akkadian. The other two
scripts are not derived directly from the Sumero-Akkadian tradition but had common
writing technology, consisting of wedges indented into clay tablets with reed styluses. Uga-
ritic texts are about as old as the earliest extant Biblical texts. Old Persian texts are newer,
dating from the fifth century bce.

Egyptian Hieroglyphs were used for more than 3,000 years from the end of the fourth mil-
lennium bce.

Meroitic hieroglyphs and Meroitic cursive were used from around the second century bce

to the fourth century ce to write the Meroitic language of the Nile valley kingdom known
as Kush or Meroë. Meroitic cursive was for general use, and its appearance was based on
Egyptian demotic. Meroitic hieroglyphs were used for inscriptions, and their appearance
was based on Egyptian hieroglyphs.

14.1 Ogham

Ogham: U+1680–U+169F

Ogham is an alphabetic script devised to write a very early form of Irish. Monumental
Ogham inscriptions are found in Ireland, Wales, Scotland, England, and on the Isle of Man.
Many of the Scottish inscriptions are undeciphered and may be in Pictish. It is probable
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.2 Old Italic 467
that Ogham (Old Irish “Ogam”) was widely written in wood in early times. The main flow-
ering of “classical” Ogham, rendered in monumental stone, was in the fifth and sixth cen-
turies ce. Such inscriptions were mainly employed as territorial markers and memorials;
the more ancient examples are standing stones.

The script was originally written along the edges of stone where two faces meet; when writ-
ten on paper, the central “stemlines” of the script can be said to represent the edge of the
stone. Inscriptions written on stemlines cut into the face of the stone, instead of along its
edge, are known as “scholastic” and are of a later date (post-seventh century). Notes were
also commonly written in Ogham in manuscripts as recently as the sixteenth century.

Structure. The Ogham alphabet consists of 26 distinct characters (feda), the first 20 of
which are considered to be primary and the last 6 (forfeda) supplementary. The four pri-
mary series are called aicmí (plural of aicme, meaning “family”). Each aicme was named
after its first character, (Aicme Beithe, Aicme Uatha, meaning “the B Family,” “the H Fam-
ily,” and so forth). The character names used in this standard reflect the spelling of the
names in modern Irish Gaelic, except that the acute accent is stripped from Úr, Éabhadh,
Ór, and Ifín, and the mutation of nGéadal is not reflected.

Rendering. Ogham text is read beginning from the bottom left side of a stone, continuing
upward, across the top, and down the right side (in the case of long inscriptions). Monu-
mental Ogham was incised chiefly in a bottom-to-top direction, though there are examples
of left-to-right bilingual inscriptions in Irish and Latin. Manuscript Ogham accommo-
dated the horizontal left-to-right direction of the Latin script, and the vowels were written
as vertical strokes as opposed to the incised notches of the inscriptions. Ogham should
therefore be rendered on computers from left to right or from bottom to top (never starting
from top to bottom).

Forfeda (Supplementary Characters). In printed and in manuscript Ogham, the fonts are
conventionally designed with a central stemline, but this convention is not necessary. In
implementations without the stemline, the character U+1680 ogham space mark should
be given its conventional width and simply left blank like U+0020 space. U+169B ogham

feather mark and U+169C ogham reversed feather mark are used at the beginning
and the end of Ogham text, particularly in manuscript Ogham. In some cases, only the
Ogham feather mark is used, which can indicate the direction of the text.

The word latheirt MNOPQRSTPU shows the use of the feather marks. This word was writ-
ten in the margin of a ninth-century Latin grammar and means “massive hangover,” which
may be the scribe’s apology for any errors in his text.

14.2 Old Italic

Old Italic: U+10300–U+1032F

The Old Italic script unifies a number of related historical alphabets located on the Italian
peninsula. Some of these were used for non-Indo-European languages (Etruscan and prob-
ably North Picene), and some for various Indo-European languages belonging to the Italic
branch (Faliscan and members of the Sabellian group, including Oscan, Umbrian, and
South Picene). The ultimate source for the alphabets in ancient Italy is Euboean Greek used
at Ischia and Cumae in the bay of Naples in the eighth century bce. Unfortunately, no
Greek abecedaries from southern Italy have survived. Faliscan, Oscan, Umbrian, North
Picene, and South Picene all derive from an Etruscan form of the alphabet.

There are some 10,000 inscriptions in Etruscan. By the time of the earliest Etruscan
inscriptions, circa 700 bce, local distinctions are already found in the use of the alphabet.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

468 Additional Ancient and Historic Scripts
Three major stylistic divisions are identified: the Northern, Southern, and Caere/Veii. Use
of Etruscan can be divided into two stages, owing largely to the phonological changes that
occurred: the “archaic Etruscan alphabet,” used from the seventh to the fifth centuries bce,
and the “neo-Etruscan alphabet,” used from the fourth to the first centuries bce. Glyphs for
eight of the letters differ between the two periods; additionally, neo-Etruscan abandoned
the letters ka, ku, and eks.

The unification of these alphabets into a single Old Italic script requires language-specific
fonts because the glyphs most commonly used may differ somewhat depending on the lan-
guage being represented.

Most of the languages have added characters to the common repertoire: Etruscan and Falis-
can add letter ef; Oscan adds letter ef, letter ii, and letter uu; Umbrian adds let-

ter ef, letter ers, and letter che; North Picene adds letter uu; and South Picene
adds letter ii and letter uu.

The Latin script itself derives from a south Etruscan model, probably from Caere or Veii,
around the mid-seventh century bce or a bit earlier. However, because there are significant
differences between Latin and Faliscan of the seventh and sixth centuries bce in terms of
formal differences (glyph shapes, directionality) and differences in the repertoire of letters
used, this warrants a distinctive character block. Fonts for early Latin should use the upper-
case code positions U+0041..U+005A. The unified Alpine script, which includes the
Venetic, Rhaetic, Lepontic, and Gallic alphabets, has not yet been proposed for addition to
the Unicode Standard but is considered to differ enough from both Old Italic and Latin to
warrant independent encoding. The Alpine script is thought to be the source for Runic,
which is encoded at U+16A0..U+16FF. (See Section 14.3, Runic.)

Character names assigned to the Old Italic block are unattested but have been recon-
structed according to the analysis made by Sampson (1985). While the Greek character
names (alpha, beta, gamma, and so on) were borrowed directly from the Phoenician
names (modified to Greek phonology), the Etruscans are thought to have abandoned the
Greek names in favor of a phonetically based nomenclature, where stops were pronounced
with a following -e sound, and liquids and sibilants (which can be pronounced more or less
on their own) were pronounced with a leading e- sound (so [k], [d] became [ke:], [de:]
became [l:], [m:] became [el], [em]). It is these names, according to Sampson, which were
borrowed by the Romans when they took their script from the Etruscans.

Directionality. Most early Etruscan texts have right-to-left directionality. From the third
century bce, left-to-right texts appear, showing the influence of Latin. Oscan, Umbrian,
and Faliscan also generally have right-to-left directionality. Boustrophedon appears rarely,
and not especially early (for instance, the Forum inscription dates to 550–500 bce). Despite
this, for reasons of implementation simplicity, many scholars prefer left-to-right presenta-
tion of texts, as this is also their practice when transcribing the texts into Latin script.
Accordingly, the Old Italic script has a default directionality of strong left-to-right in this
standard. If the default directionality of the script is overridden to produce a right-to-left
presentation, the glyphs in Old Italic fonts should also be mirrored from the representative
glyphs shown in the code charts. This kind of behavior is not uncommon in archaic scripts;
for example, archaic Greek letters may be mirrored when written from right to left in bous-
trophedon.

Punctuation. The earliest inscriptions are written with no space between words in what is
called scriptio continua. There are numerous Etruscan inscriptions with dots separating
word forms, attested as early as the second quarter of the seventh century bce. This punc-
tuation is sometimes, but only rarely, used to separate syllables rather than words. From the
sixth century bce, words were often separated by one, two, or three dots spaced vertically
above each other.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.3 Runic 469
Numerals. Etruscan numerals are not well attested in the available materials, but are
employed in the same fashion as Roman numerals. Several additional numerals are
attested, but as their use is at present uncertain, they are not yet encoded in the Unicode
Standard.

Glyphs. The default glyphs in the code charts are based on the most common shapes
found for each letter. Most of these are similar to the Marsiliana abecedary (mid-seventh
century bce). Note that the phonetic values for U+10317 old italic letter eks [ks] and
U+10319 old italic letter khe [kh] show the influence of western, Euboean Greek; east-
ern Greek has U+03A7 greek capital letter chi [x] and U+03A8 greek capital let-

ter psi [ps] instead.

The geographic distribution of the Old Italic script is shown in Figure 14-1. In the figure,
the approximate distribution of the ancient languages that used Old Italic alphabets is
shown in white. Areas for the ancient languages that used other scripts are shown in gray,
and the labels for those languages are shown in oblique type. In particular, note that the
ancient Greek colonies of the southern Italian and Sicilian coasts used the Greek script
proper. Also, languages such as Ligurian, Venetic, and so on, of the far north of Italy made
use of alphabets of the Alpine script. Rome, of course, is shown in gray, because Latin was
written with the Latin alphabet, now encoded in the Latin script.

14.3 Runic

Runic: U+16A0–U+16F0

The Runic script was historically used to write the languages of the early and medieval soci-
eties in the German, Scandinavian, and Anglo-Saxon areas. Use of the Runic script in vari-
ous forms covers a period from the first century to the nineteenth century. Some 6,000
Runic inscriptions are known. They form an indispensable source of information about the
development of the Germanic languages.

Historical Script. The Runic script is an historical script, whose most important use today
is in scholarly and popular works about the old Runic inscriptions and their interpretation.
The Runic script illustrates many technical problems that are typical for this kind of script.
Unlike many other scripts in the Unicode Standard, which predominantly serve the needs
of the modern user community—with occasional extensions for historic forms—the

Figure 14-1. Distribution of Old Italic

Lepontic

Gallic

Rhaetic

Venetic

Etruscan
Central

Sabellian
languages

Oscan

Messapic

Greek

Siculan

Elimian

Sicanian

Faliscan

Latin (Rome)

Volscian

Ligurian

Etruscan

Umbrian
S. Picene

N. Picene
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

470 Additional Ancient and Historic Scripts
encoding of the Runic script attempts to suit the needs of texts from different periods of
time and from distinct societies that had little contact with one another.

Direction. Like other early writing systems, runes could be written either from left to right
or from right to left, or moving first in one direction and then the other (boustrophedon),
or following the outlines of the inscribed object. At times, characters appear in mirror
image, or upside down, or both. In modern scholarly literature, Runic is written from left
to right. Therefore, the letters of the Runic script have a default directionality of strong left-
to-right in this standard.

The Runic Alphabet. Present-day knowledge about runes is incomplete. The set of graphe-
mically distinct units shows greater variation in its graphical shapes than most modern
scripts. The Runic alphabet changed several times during its history, both in the number
and the shapes of the letters contained in it. The shapes of most runes can be related to some
Latin capital letter, but not necessarily to a letter representing the same sound. The most
conspicuous difference between the Latin and the Runic alphabets is the order of the letters.

The Runic alphabet is known as the futhark from the name of its first six letters. The origi-
nal old futhark contained 24 runes:

In England and Friesland, seven more runes were added from the fifth to the ninth century.

In the Scandinavian countries, the futhark changed in a different way; in the eighth century,
the simplified younger futhark appeared. It consists of only 16 runes, some of which are
used in two different forms. The long-branch form is shown here:

The use of runes continued in Scandinavia during the Middle Ages. During that time, the
futhark was influenced by the Latin alphabet and new runes were invented so that there was
full correspondence with the Latin letters.

Representative Glyphs. The known inscriptions can include considerable variations of
shape for a given rune, sometimes to the point where the nonspecialist will mistake the
shape for a different rune. There is no dominant main form for some runes, particularly for
many runes added in the Anglo-Friesian and medieval Nordic systems. When transcribing
a Runic inscription into its Unicode-encoded form, one cannot rely on the idealized repre-
sentative glyph shape in the character charts alone. One must take into account to which of
the four Runic systems an inscription belongs and be knowledgeable about the permitted
form variations within each system. The representative glyphs were chosen to provide an
image that distinguishes each rune visually from all other runes in the same system. For
actual use, it might be advisable to use a separate font for each Runic system. Of particular
note is the fact that the glyph for U+16C4 runic letter ger is actually a rare form, as
the more common form is already used for U+16E1 runic letter ior.

Unifications. When a rune in an earlier writing system evolved into several different runes
in a later system, the unification of the earlier rune with one of the later runes was based on
similarity in graphic form rather than similarity in sound value. In cases where a substan-
tial change in the typical graphical form has occurred, though the historical continuity is
undisputed, unification has not been attempted. When runes from different writing sys-

They are usually transliterated in this way:

f u a r k g w h n i j p z s t b e m l } d o

f u o r k h n i a s t b m l
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.4 Gothic 471
tems have the same graphic form but different origins and denote different sounds, they
have been coded as separate characters.

Long-Branch and Short-Twig. Two sharply different graphic forms, the long-branch and
the short-twig form, were used for 9 of the 16 Viking Age Nordic runes. Although only one
form is used in a given inscription, there are runologically important exceptions. In some
cases, the two forms were used to convey different meanings in later use in the medieval
system. Therefore the two forms have been separated in the Unicode Standard.

Staveless Runes. Staveless runes are a third form of the Viking Age Nordic runes, a kind of
Runic shorthand. The number of known inscriptions is small and the graphic forms of
many of the runes show great variability between inscriptions. For this reason, staveless
runes have been unified with the corresponding Viking Age Nordic runes. The correspond-
ing Viking Age Nordic runes must be used to encode these characters—specifically the
short-twig characters, where both short-twig and long-branch characters exist.

Punctuation Marks. The wide variety of Runic punctuation marks has been reduced to
three distinct characters based on simple aspects of their graphical form, as very little is
known about any difference in intended meaning between marks that look different. Any
other punctuation marks have been unified with shared punctuation marks elsewhere in
the Unicode Standard.

Golden Numbers. Runes were used as symbols for Sunday letters and golden numbers on
calendar staves used in Scandinavia during the Middle Ages. To complete the number series
1–19, three more calendar runes were added. They are included after the punctuation marks.

Encoding. A total of 81 characters of the Runic script are included in the Unicode Standard.
Of these, 75 are Runic letters, 3 are punctuation marks, and 3 are Runic symbols. The order
of the Runic characters follows the traditional futhark order, with variants and derived
runes being inserted directly after the corresponding ancestor.

Runic character names are based as much as possible on the sometimes several traditional
names for each rune, often with the Latin transliteration at the end of the name.

14.4 Gothic

Gothic: U+10330–U+1034F

The Gothic script was devised in the fourth century by the Gothic bishop, Wulfila (311–383
ce), to provide his people with a written language and a means of reading his translation of
the Bible. Written Gothic materials are largely restricted to fragments of Wulfila’s transla-
tion of the Bible; these fragments are of considerable importance in New Testament textual
studies. The chief manuscript, kept at Uppsala, is the Codex Argenteus or “the Silver Book,”
which is partly written in gold on purple parchment. Gothic is an East Germanic language;
this branch of Germanic has died out and thus the Gothic texts are of great importance in
historical and comparative linguistics. Wulfila appears to have used the Greek script as a
source for the Gothic, as can be seen from the basic alphabetical order. Some of the charac-
ter shapes suggest Runic or Latin influence, but this is apparently coincidental.

Diacritics. The tenth letter U+10339 gothic letter eis is used with U+0308 combining

diaeresis when word-initial, when syllable-initial after a vowel, and in compounds with a
verb as second member as shown below:

\]^ _`a^bcd e\f eg ^\`eeg hi`jk^f`j
swe gameliþ ïst ïn esaïïn praufetau

“as is written in Isaiah the prophet”
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

472 Additional Ancient and Historic Scripts
To indicate contractions or omitted letters, U+0305 combining overline is used.

Numerals. Gothic letters, like those of other early Western alphabets, can be used as num-
bers; two of the characters have only a numeric value and are not used alphabetically. To
indicate numeric use of a letter, it is either flanked on one side by U+00B7 middle dot or
followed by both U+0304 combining macron and U+0331 combining macron below,
as shown in the following example:

l or m means “5”

Punctuation. Gothic manuscripts are written with no space between words in what is
called scriptio continua. Sentences and major phrases are often separated by U+0020 space,
U+00B7 middle dot, or U+003A colon.

14.5 Old Turkic

Old Turkic: U+10C00–U+10C4F

The origins of the Old Turkic script are unclear, but it seems to have evolved from a non-
cursive form of the Sogdian script, one of the Aramaic-derived scripts used to write Iranian
languages, in order to write the Old Turkish language. Old Turkic is attested in stone
inscriptions from the early eighth century ce found around the Orkhon River in Mongolia,
and in a slightly different version in stone inscriptions of the later eighth century found in
Siberia near the Yenisei River and elsewhere. These inscriptions are the earliest written
examples of a Turkic language. By the ninth century the Old Turkic script had been sup-
planted by the Uighur script.

Because Old Turkic characters superficially resemble Germanic runes, the script is also
known as Turkic Runes and Turkic Runiform, in addition to the names Orkhon script,
Yenisei script, and Siberian script.

Where the Orkhon and Yenisei versions of a given Old Turkic letter differ significantly, each
is separately encoded.

Structure. Old Turkish vowels can be classified into two groups based on their front or
back articulation. A given word uses vowels from only one of these groups; the group is
indicated by the form of the consonants in the word, because most consonants have sepa-
rate forms to match the two vowel types. Other phonetic rules permit prediction of
rounded and unrounded vowels, and high, medium or low vowels within a word. Some
consonants also indicate that the preceding vowel is a high vowel. Thus, most initial and
medial vowels are not explicitly written; only vowels that end a word are always written,
and there is sometimes ambiguity about whether a vowel precedes a given consonant.

Directionality. For horizontal writing, the Old Turkic script is written from right to left
within a row, with rows running from bottom to top. Conformant implementations of Old
Turkic script must use the Unicode Bidirectional Algorithm (see Unicode Standard Annex
#9, “Unicode Bidirectional Algorithm”).

In some cases, under Chinese influence, the layout was rotated 90° counterclockwise to
produce vertical columns of text in which the characters are read top to bottom within a
column, and the columns are read right to left.

Punctuation. Word division and some other punctuation functions are usually indicated
by a two-dot mark similar to a colon; U+205A two dot punctuation may be used to rep-
resent this punctuation mark. In some cases a mark such as U+2E30 ring point is used
instead.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.6 Linear B 473
14.6 Linear B

Linear B Syllabary: U+10000–U+1007F

The Linear B script is a syllabic writing system that was used on the island of Crete and
parts of the nearby mainland to write the oldest recorded variety of the Greek language.
Linear B clay tablets predate Homeric Greek by some 700 years; the latest tablets date from
the mid- to late thirteenth century bce. Major archaeological sites include Knossos, first
uncovered about 1900 by Sir Arthur Evans, and a major site near Pylos. The majority of
currently known inscriptions are inventories of commodities and accounting records.

Early attempts to decipher the script failed until Michael Ventris, an architect and amateur
decipherer, came to the realization that the language might be Greek and not, as previously
thought, a completely unknown language. Ventris worked together with John Chadwick,
and decipherment proceeded quickly. The two published a joint paper in 1953.

Linear B was written from left to right with no nonspacing marks. The script mainly con-
sists of phonetic signs representing the combination of a consonant and a vowel. There are
about 60 known phonetic signs, in addition to a few signs that seem to be mainly free vari-
ants (also known as Chadwick’s optional signs), a few unidentified signs, numerals, and a
number of ideographic signs, which were used mainly as counters for commodities. Some
ligatures formed from combinations of syllables were apparently used as well. Chadwick
gives several examples of these ligatures, the most common of which are included in the
Unicode Standard. Other ligatures are the responsibility of the rendering system.

Standards. The catalog numbers used in the Unicode character names for Linear B sylla-
bles are based on the Wingspread Convention, as documented in Bennett (1964). The letter
“B” is prepended arbitrarily, so that name parts will not start with a digit, thus conforming
to ISO/IEC 10646 naming rules. The same naming conventions, using catalog numbers
based on the Wingspread Convention, are used for Linear B ideograms.

Linear B Ideograms: U+10080–U+100FF

The Linear B Ideograms block contains the list of Linear B signs known to constitute ideo-
grams (logographs), rather than syllables. When generally agreed upon, the names include
the meaning associated with them—for example, U+10080 W linear b ideogram b100

man. In other instances, the names of the ideograms simply carry their catalog number.

Aegean Numbers: U+10100–U+1013F

The signs used to denote Aegean whole numbers (U+10107..U+10133) derive from the
non-Greek Linear A script. The signs are used in Linear B. The Cypriot syllabary appears to
use the same system, as evidenced by the fact that the lower digits appear in extant texts.
For measurements of agricultural and industrial products, Linear B uses three series of
signs: liquid measures, dry measures, and weights. No set of signs for linear measurement
has been found yet. Liquid and dry measures share the same symbols for the two smaller
subunits; the system of weights retains its own unique subunits. Though several of the signs
originate in Linear A, the measuring system of Linear B differs from that of Linear A. Lin-
ear B relies on units and subunits, much like the imperial “quart,” “pint,” and “cup,”
whereas Linear A uses whole numbers and fractions. The absolute values of the measure-
ments have not yet been completely agreed upon.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

474 Additional Ancient and Historic Scripts
14.7 Cypriot Syllabary

Cypriot Syllabary: U+10800–U+1083F

The Cypriot syllabary was used to write the Cypriot dialect of Greek from about 800 to 200
bce. It is related to both Linear B and Cypro-Minoan, a script used for a language that has
not yet been identified. Interpretation has been aided by the fact that, as use of the Cypriot
syllabary died out, inscriptions were carved using both the Greek alphabet and the Cypriot
syllabary. Unlike Linear B and Cypro-Minoan, the Cypriot syllabary was usually written
from right to left, and accordingly the characters in this script have strong right-to-left
directionality.

Word breaks can be indicated by spaces or by separating punctuation, although separating
punctuation is also used between larger word groups.

Although both Linear B and the Cypriot syllabary were used to write Greek dialects, Linear
B has a more highly abbreviated spelling. Structurally, the Cypriot syllabary consists of
combinations of up to 12 initial consonants and 5 different vowels. Long and short vowels
are not distinguished. The Cypriot syllabary distinguishes among a different set of initial
consonants than Linear B; for example, unlike Linear B, Cypriot maintained a distinction
between [l] and [r], though not between [d] and [t], as shown in Table 14-1. Not all of the
60 possible consonant-vowel combinations are represented. As is the case for Linear B, the
Cypriot syllabary is well understood and documented.

For Aegean numbers, see the subsection “Aegean Numbers: U+10100–U+1013F” in
Section 14.6, Linear B.

14.8 Ancient Anatolian Alphabets

Lycian: U+10280–U+1029F
Carian: U+102A0–U+102DF
Lydian: U+10920–U+1093F

The Anatolian scripts described in this section all date from the first millennium bce, and
were used to write various ancient Indo-European languages of western and southwestern

Table 14-1. Similar Characters in Linear B and Cypriot

Linear B Cypriot

da p ta q
na r na s
pa t pa u
ro x lo y
se v se w
ti z ti {
to | to }
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.9 Old South Arabian 475
Anatolia (now Turkey). All are closely related to the Greek script and are probably adapta-
tions of it. Additional letters for some sounds not found in Greek were probably either
invented or drawn from other sources. However, development parallel to, but independent
of, the Greek script cannot be ruled out, particularly in the case of Carian.

Lycian. Lycian was used from around 500 bce to about 200 bce. The term “Lycian” is now
used in place of “Lycian A” (a dialect of Lycian, attested in two texts in Anatolia, is called
“Lycian B”, or “Milyan”, and dates to the first millennium bce). The Lycian script appears
on some 150 stone inscriptions, more than 200 coins, and a few other objects.

Lycian is a simple alphabetic script of 29 letters, written left-to-right, with frequent use of
word dividers. The recommended word divider is U+205A two dot punctuation. Scrip-
tio continua (a writing style without spaces or punctuation) also occurs. In modern edi-
tions U+0020 space is sometimes used to separate words.

Carian. The Carian script is used to write the Carian language, and dates from the first
millennium bce. While a few texts have been found in Caria, most of the written evidence
comes from Carian communities in Egypt, where they served as mercenaries. The reper-
toire of the Carian texts is well established. Unlike Lycian and Lydian, Carian does not use a
single standardized script, but rather shows regional variation in the repertoire of signs
used and their form. Although some of the values of the Carian letters remain unknown or
in dispute, their distinction from other letters is not. The Unicode encoding is based on the
standard “Masson set” catalog of 45 characters, plus 4 recently-identified additions. Some
of the characters are considered to be variants of others—and this is reflected in their
names—but are separately encoded for scholarly use in discussions of decipherment.

The primary direction of writing is left-to-right in texts from Caria, but right-to-left in
Egyptian Carian texts. However, both directions occur in the latter, and left-to-right is
favored for modern scholarly usage. Carian is encoded in Unicode with left-to-right direc-
tionality. Word dividers are not regularly employed; scriptio continua is common. Word
dividers which are attested are U+00B7 middle dot (or U+2E31 word separator middle

dot), U+205A two dot punctuation, and U+205D tricolon. In modern editions
U+0020 space may be found.

Lydian. While Lydian is attested from inscriptions and coins dating from the end of the
eighth century (or beginning of the seventh) until the third century bce, the longer well-
preserved inscriptions date to the fifth and fourth centuries bce.

Lydian is a simple alphabetic script of 26 letters. The vast majority of Lydian texts have
right-to-left directionality (the default direction); a very few texts are left-to-right and one
is boustrophedon. Most Lydian texts use U+0020 space as a word divider. Rare examples
have been found which use scriptio continua or which use dots to separate the words. In the
latter case, U+003A colon and U+00B7 middle dot (or U+2E31 word separator mid-

dle dot) can be used to represent the dots. U+1093F lydian triangular mark is
thought to indicate quotations, and is mirrored according to text directionality.

14.9 Old South Arabian

Old South Arabian: U+10A60–U+10A7F

The Old South Arabian script was used on the Arabian peninsula (especially in what is now
Yemen) from the 8th century bce to the 6th century ce, after which it was supplanted by
the Arabic script. It is a consonant-only script of 29 letters, and was used to write the south-
west Semitic languages of various cultures: Minean, Sabaean, Qatabanian, Hadramite, and
Himyaritic. Old South Arabian is thus known by several other names including Mino-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

476 Additional Ancient and Historic Scripts
Sabaean, Sabaean and Sabaic. It is attested primarily in an angular form (“Musnad”) in
monumental inscriptions on stone, ceramic material, and metallic surfaces; however, since
the mid 1970s examples of a more cursive form (“Zabur”) have been found on softer mate-
rials, such as wood and leather.

Around the end of the first millennium bce, the westward migration of the Sabaean people
into the Horn of Africa introduced the South Arabic script into the region, where it was
adapted for writing the Ge’ez language. By the 4th century ce the script for Ge’ez had
begun to change, and eventually evolved into a left-to-right syllabary with full vowel repre-
sentation, the root of the modern Ethiopic script (see Section 13.1, Ethiopic).

Directionality. The Old South Arabian script is typically written from right to left. Confor-
mant implementations of Old South Arabian script must use the Unicode Bidirectional
Algorithm (see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”). How-
ever, some older examples of the script are written in boustrophedon style, with glyphs
mirrored in lines with left-to-right directionality.

Structure. The character repertoire of Old South Arabian corresponds to the repertoire of
Classical Arabic, plus an additional letter presumed analogous to the letter samekh in West
Semitic alphabets. This results in four letters for different kinds of “s’”sounds. While there
is no general system for representing vowels, the letters U+10A65 old south arabian

letter waw and U+10A7A old south arabian letter yodh can also be used to repre-
sent the long vowels u and i. There is no evidence of any kind of diacritic marks; geminate
consonants are indicated simply by writing the corresponding letter twice, for example.

Segmentation. Letters are written separately, there are no connected forms. Words are not
separated with space; word boundaries are instead marked with a vertical bar. The vertical
bar is indistinguishable from U+10A7D “1” old south arabian number one—only one
character is encoded to serve both functions. Words are broken arbitrarily at line boundar-
ies in attested materials.

Monograms. Several letters are sometimes combined into a single group, in which the
glyphs for the constituent characters are overlaid and sometimes rotated to create what
appears to be a single unit. These combined units are traditionally called monograms by
scholars of this script.

Numbers. Numeric quantities are differentiated from surrounding text by writing
U+10A7F 0 old south arabian numeric indicator before and after the number. Six
characters have numeric values as shown in Table 14-2—four of these are letters that dou-
ble as numeric values, and two are characters not used as letters.

Numbers are built up through juxtaposition of these characters in a manner similar to that
of Roman numerals, as shown in Table 14-3. When 10, 50, or 100 occur preceding 1000

Table 14-2. Old South Arabian Numeric Characters

Code Point Glyph Numeric function Other function

10A7F 0 numeric separator

10A7D 1 1 word separator

10A6D 2 5 kheth

10A72 3 10 ayn

10A7E 4 50

10A63 5 100 mem

10A71 6 1000 alef
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.10 Phoenician 477
they serve to indicate multiples of 1000. The example numbers shown in Table 14-3 are
rendered in a right-to-left direction in the last column.

Names. Character names are based on those of corresponding letters in northwest Semitic.

14.10 Phoenician

Phoenician: U+10900–U+1091F

The Phoenician alphabet and its successors were widely used over a broad area surround-
ing the Mediterranean Sea. Phoenician evolved over the period from about the twelfth cen-
tury bce until the second century bce, with the last neo-Punic inscriptions dating from
about the third century ce. Phoenician came into its own from the ninth century bce. An
older form of the Phoenician alphabet is a forerunner of the Greek, Old Italic (Etruscan),
Latin, Hebrew, Arabic, and Syriac scripts among others, many of which are still in modern
use. It has also been suggested that Phoenician is the ultimate source of Kharoshthi and of
the Indic scripts descending from Brahmi.

Phoenician is an historic script, and as for many other historic scripts, which often saw
continuous change in use over periods of hundreds or thousands of years, its delineation as
a script is somewhat problematic. This issue is particularly acute for historic Semitic
scripts, which share basically identical repertoires of letters, which are historically related to
each other, and which were used to write closely related Semitic languages.

In the Unicode Standard, the Phoenician script is intended for the representation of text in
Palaeo-Hebrew, Archaic Phoenician, Phoenician, Early Aramaic, Late Phoenician cursive,
Phoenician papyri, Siloam Hebrew, Hebrew seals, Ammonite, Moabite, and Punic. The line
from Phoenician to Punic is taken to constitute a single continuous branch of script evolu-
tion, distinct from that of other related but separately encoded Semitic scripts.

The earliest Hebrew language texts were written in the Palaeo-Hebrew alphabet, one of the
forms of writing considered to be encompassed within the Phoenician script as encoded in
the Unicode Standard. The Samaritans who did not go into exile continued to use Palaeo-
Hebrew forms, eventually developing them into the distinct Samaritan script. (See
Section 8.4, Samaritan.) The Jews in exile gave up the Palaeo-Hebrew alphabet and instead
adopted Imperial Aramaic writing, which was a descendant of the Early Aramaic form of
the Phoenician script. (See Section 14.11, Imperial Aramaic.) Later, they transformed Impe-

Table 14-3. Number Formation in Old South Arabian

Value Schematic Character Sequence Display

1 1 10A7D 1
2 1 + 1 10A7D 10A7D 11
3 1 + 1 + 1 10A7D 10A7D 10A7D 111
5 5 10A6D 2
7 5 + 1 + 1 10A6D 10A7D 10A7D 112
16 10 + 5 + 1 10A72 10A6D 10A7D 123
1000 1000 10A71 6
3000 1000 + 1000 + 1000 10A71 10A71 10A71 666
10000 10 × 1000 10A72 10A71 63
11000 10 × 1000 + 1000 10A72 10A71 10A71 663
30000 (10 + 10 + 10) × 1000 10A72 10A72 10A72 10A71 6333
30001 (10 + 10 + 10) × 1000 + 1 10A72 10A72 10A72 10A71 10A7D 16333
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

478 Additional Ancient and Historic Scripts
rial Aramaic into the “Jewish Aramaic” script now called (Square) Hebrew, separately
encoded in the Hebrew block in the Unicode Standard. (See Section 8.1, Hebrew.)

Some scholars conceive of the language written in the Palaeo-Hebrew form of the Phoeni-
cian script as being quintessentially Hebrew and consistently transliterate it into Square
Hebrew. In such contexts, Palaeo-Hebrew texts are often considered to simply be Hebrew,
and because the relationship between the Palaeo-Hebrew letters and Square Hebrew letters
is one-to-one and quite regular, the transliteration is conceived of as simply a font change.
Other scholars of Phoenician transliterate texts into Latin. The encoding of the Phoenician
script in the Unicode Standard does not invalidate such scholarly practice; it is simply
intended to make it possible to represent Phoenician, Punic, and similar textual materials
directly in the historic script, rather than as specialized font displays of transliterations in
modern Square Hebrew.

Directionality. Phoenician is written horizontally from right to left. The characters of the
Phoenician script are all given strong right-to-left directionality.

Punctuation. Inscriptions and other texts in the various forms of the Phoenician script
generally have no space between words. Dots are sometimes found between words in later
exemplars—for example, in Moabite inscriptions—and U+1091F phoenician word sep-

arator should be used to represent this punctuation. The appearance for this word sepa-
rator is somewhat variable; in some instances it may appear as a short vertical bar, instead
of a rounded dot.

Stylistic Variation. The letters for Phoenician proper and especially for Punic have very
exaggerated descenders. These descenders help distinguish the main line of Phoenician
script evolution toward Punic, as contrasted with the Hebrew forms, where the descenders
instead grew shorter over time.

Numerals. Phoenician numerals are built up from six elements used in combination. These
include elements for one, two, and three, and then separate elements for ten, twenty, and
one hundred. Numerals are constructed essentially as tallies, by repetition of the various
elements. The numbers for two and three are graphically composed of multiples of the tally
mark for one, but because in practice the values for two or three are clumped together in
display as entities separate from one another they are encoded as individual characters.
This same structure for numerals can be seen in some other historic scripts ultimately
descendant from Phoenician, such as Imperial Aramaic and Inscriptional Parthian.

Like the letters, Phoenician numbers are written from right to left: OOOPPQ means 143 (100 +
20 + 20 + 3). This practice differs from modern Semitic scripts like Hebrew and Arabic,
which use decimal numbers written from left to right.

Names. The names used for the characters here are those reconstructed by Theodor
Nöldeke in 1904, as given in Powell (1996).

14.11 Imperial Aramaic

Imperial Aramaic: U+10840–U+1085F

The Aramaic language and script are descended from the Phoenician language and script.
Aramaic developed as a distinct script by the middle of the eighth century bce and soon
became politically important, because Aramaic became first the principal administrative
language of the Assyrian empire, and then the official language of the Achaemenid Persian
empire beginning in 549 bce. The Imperial Aramaic script was the source of many other
scripts, including the square Hebrew script, the Arabic script, and scripts used for Middle
Persian languages, including Inscriptional Parthian, Inscriptional Pahlavi, and Avestan.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.12 Mandaic 479
Imperial Aramaic is an alphabetic script of 22 consonant letters but no vowel marks. It is
written either in scriptio continua or with spaces between words.

Directionality. The Imperial Aramaic script is written from right to left. Conformant
implementations of the script must use the Unicode Bidirectional Algorithm. For more
information, see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”.

Punctuation. U+10857 imperial aramaic section sign is thought to be used to mark
topic divisions in text.

Numbers. Imperial Aramaic has its own script-specific numeric characters with right-to-
left directionality. Numbers are built up using sequences of characters for 1, 2, 3, 10, 20,
100, 1000, and 10000 as shown in Table 14-4. The example numbers shown in the last col-
umn are rendered in a right-to-left direction.

Values in the range 1-99 are represented by a string of characters whose values are in the
range 1-20; the numeric value of the string is the sum of the numeric values of the charac-
ters. The string is written using the minimum number of characters, with the most signifi-
cant values first. For example, 55 is represented as 20 + 20 + 10 + 3 + 2. Characters for 100,
1000, and 10000 are prefixed with a multiplier represented by a string whose value is in the
range 1-9. The Inscriptional Parthian and Inscriptional Pahlavi scripts use a similar system
for forming numeric values.

14.12 Mandaic

Mandaic: U+0840—U+085F

The origins of the Mandaic script are unclear, but it is thought to have evolved between the
2nd and 7th century ce from a cursivized form of the Aramaic script (as did the Syriac
script) or from the Parthian chancery script. It was developed by adherents of the Man-

Table 14-4. Number Formation in Aramaic

Value Schematic Character Sequence Display

1 1 10858 1
2 2 10859 2
3 3 1085A 3
4 3 + 1 1085A 10858 13
5 3 + 2 1085A 10859 23
9 3 + 3 + 3 1085A 1085A 1085A 333
10 10 1085B A
11 10 + 1 1085B 10858 1A
12 10 + 2 1085B 10859 2A
20 20 1085C B
30 20 + 10 1085C 1085B AB
55 20 + 20 + 10 + 3 + 2 1085C 1085C 1085B 1085A 10859 23ABB
70 20 + 20 + 20 + 10 1085C 1085C 1085C 1085B ABBB
100 1 × 100 10858 1085D C1
200 2 × 100 10859 1085D C2
500 (3 + 2) × 100 1085A 10859 1085D C23
3000 3 × 1000 1085A 1085E D3
30000 3 × 10000 1085A 1085F E3
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

480 Additional Ancient and Historic Scripts
daean gnostic religion of southern Mesopotamia to write the dialect of Eastern Aramaic
they used for liturgical purposes, which is referred to as Classical Mandaic.

The religion has survived into modern times, with more than 50,000 Mandaeans in several
communities worldwide (most having left what is now Iraq). In addition to the Classical
Mandaic still used within some of these communities, a variety known as Neo-Mandaic or
Modern Mandaic has developed and is spoken by a small number of people. Mandaeans
consider their script sacred, with each letter having specific mystic properties, and the
script has changed very little over time.

Structure. Mandaic is unusual among Semitic scripts in being a true alphabet; the letters
halqa, ushenna, aksa, and in are used to write both long and short forms of vowels, instead
of functioning as consonants also used to write long vowels (matres lectionis), in the man-
ner characteristic of other Semitic scripts. This is possible because some consonant sounds
represented by the corresponding letters in other Semitic scripts are not used in the Man-
daic language.

Two letters have morphemic function. U+0847 mandaic letter it is used only for the
third person singular suffix. U+0856 mandaic letter dushenna, also called adu, is used
to write the relative pronoun and the genitive exponent di, and is a digraph derived from an
old ligature for ad + aksa. It is thus an addition to the usual Semitic set of 22 characters.

The Mandaic alphabet is traditionally represented as the 23 letters halqa through dushenna,
with halqa appended again at the end to form a symbolically-important cycle of 24 letters.
Two additional Mandaic characters are encoded in the Unicode Standard: U+0857 man-

daic letter kad is derived from an old ligature of ak + dushenna; it is a digraph used to
write the word kd, which means “when, as, like”. The second additional character, U+0858
mandaic letter ain, is a borrowing from U+0639 arabic letter ain.

Three diacritical marks are used in teaching materials to differentiate vowel quality; they
may be omitted from ordinary text. U+0859 mandaic affrication mark is used to extend
the character set for foreign sounds (whether affrication, lenition, or another sound).
U+085A mandaic vocalization mark is used to distinguish vowel quality of halqa, ush-
enna, and aksa. U+085B mandaic gemination mark is used to indicate what native writ-
ers call a “hard” pronunciation.

Punctuation. Sentence punctuation is used sparsely. A single script-specific punctuation
mark is encoded: U+085E mandaic punctuation. It is used to start and end text sections,
and is also used in colophons—the historical lay text added to the religious text—where it
is typically displayed in a smaller size.

Directionality. The Mandaic script is written from right to left. Conformant implementa-
tions of Mandaic script must use the Unicode Bidirectional Algorithm (see Unicode Stan-
dard Annex #9, “Unicode Bidirectional Algorithm”).

Shaping and Layout Behavior. Mandaic has fully-developed joining behavior, with forms
as shown in Table 14-5 and Table 14-6. In these tables, Xn, Xr, Xm, and Xl designate the

Table 14-5. Dual-Joining Mandaic Characters

Character Xn Xr Xm Xl

ab A B C D

ag E F G H

ad I J K L

ah M N O P

ushenna Q R S T
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.13 Inscriptional Parthian and Inscriptional Pahlavi 481
nominal, right-joining, dual-joining (medial), and left-joining forms respectively, just as in
Table 8-7, Table 8-8, and Table 8-9.

Linebreaking. Spaces provide the primary line break opportunity. When text is fully justi-
fied, words may be stretched as in Arabic. U+0640 arabic tatweel may be inserted for
this purpose.

14.13 Inscriptional Parthian and Inscriptional Pahlavi

Inscriptional Parthian: U+10B40–U+10B5F
Inscriptional Pahlavi: U+10B60–U+10B7F

The Inscriptional Parthian script was used to write Parthian and other languages. It had
evolved from the Imperial Aramaic script by the second century ce, and was used as an
official script during the first part of the Sassanid Persian empire. It is attested primarily in
surviving inscriptions, the last of which dates from 292 ce. Inscriptional Pahlavi also
evolved from the Aramaic script during the second century ce during the late period of the
Parthian Persian empire in what is now southern Iran. It was used as a monumental script
to write Middle Persian until the fifth century ce. Other varieties of Pahlavi script include
Psalter Pahlavi and the later Book Pahlavi.

it U V W X

att Y Z a b

ak c d e f

al g h i j

am k l m n

an o p q r

as s t u v

ap w x y z

asz A B C D

aq E F G H

ar I J K L

at M N O P

Table 14-6. Right-Joining Mandaic Characters

Character Xn Xr

halqa Q R

az S T

aksa U V

in W X

ash Y Z

Table 14-5. Dual-Joining Mandaic Characters (Continued)

Character Xn Xr Xm Xl
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

482 Additional Ancient and Historic Scripts
Inscriptional Parthian and Inscriptional Pahlavi are both alphabetic scripts and are usually
written with spaces between words. Inscriptional Parthian has 22 consonant letters but no
vowel marks, while Inscriptional Pahlavi consists of 19 consonant letters; two of which are
used for writing multiple consonants, so that it can be used for writing the usual Phoeni-
cian-derived 22 consonants.

Directionality. Both the Inscriptional Parthian script and the Inscriptional Pahlavi script
are written from right to left. Conformant implementations must use the Unicode Bidirec-
tional Algorithm. For more information, see Unicode Standard Annex #9, “Unicode Bidi-
rectional Algorithm.”

Shaping and Layout Behavior. Inscriptional Parthian makes use of seven standard liga-
tures. Ligation is common, but not obligatory; U+200C zero width non-joiner can be
used to prevent ligature formation. The same glyph is used for both the yodh-waw and
nun-waw ligatures. The letters sadhe and nun have swash tails which typically trail under
the following letter; thus two nuns will nest, and the tail of a nun that precedes a daleth may
be displayed between the two parts of the daleth glyph. Table 14-7 shows these behaviors.

In Inscriptional Pahlavi, U+10B61 inscriptional pahlavi letter beth has a swash tail
which typically trails under the following letter, similar to the behavior of U+10B4D
inscriptional parthian letter nun.

Numbers. Inscriptional Parthian and Inscriptional Pahlavi each have script-specific
numeric characters with right-to-left directionality. Numbers in both are built up using
sequences of characters for 1, 2, 3, 4, 10, 20, 100, and 1000 in a manner similar to they way
numbers are built up for Imperial Aramaic; see Table 14-4. In Inscriptional Parthian the
units are sometimes written with strokes of the same height, or sometimes written with a
longer ascending or descending final stroke to show the end of the number.

Heterograms. As scripts derived from Aramaic (such as Inscriptional Parthian and Pahlavi)
were adapted for writing Iranian languages, certain words continued to be written in the
Aramaic language but read using the corresponding Iranian-language word. These are
known as heterograms or xenograms, and were formerly called “ideograms”.

14.14 Avestan

Avestan: U+10B00–U+10B3F

The Avestan script was created around the fifth century ce to record the canon of the
Avesta, the principal collection of Zoroastrian religious texts. The Avesta had been trans-
mitted orally in the Avestan language, which was by then extinct except for liturgical pur-

Table 14-7. Inscriptional Parthian Shaping Behavior

Character Sequence Glyph Sequence Resulting Display Transcription

gimel-waw I H J gw

heth-waw IK L xw

yodh-waw I M N yw

nun-waw I O N nw

ayin-lamedh Q P R ‘l

resh-waw I S o rw

taw-waw I l m tw

nun-nun O O p nn

nun-daleth n O q nd
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.15 Ugaritic 483
poses. The Avestan script was also used to write the Middle Persian language, which is
called Pazand when written in Avestan script. The Avestan script was derived from Book
Pahlavi, but provided improved phonetic representation by adding consonants and a com-
plete set of vowels—the latter probably due to the influence of the Greek script. It is an
alphabetic script of 54 letters, including one that is used only for Pazand.

Directionality. The Avestan script is written from right to left. Conformant implementa-
tions of Avestan script must use the Unicode Bidirectional Algorithm. For more informa-
tion, see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”.

Shaping Behavior. Four ligatures are commonly used in manuscripts of the Avesta, as
shown in Table 14-8. U+200C zero width non-joiner can be used to prevent ligature for-
mation.

Punctuation. Archaic Avestan texts use a dot to separate words. The texts generally use a
more complex grouping of dots or other marks to indicate boundaries between larger units
such as clauses and sentences, but this is not systematic. In contemporary critical editions
of Avestan texts, some scholars have systematized and differentiated the usage of various
Avestan punctuation marks. The most notable example is Karl F. Geldner’s 1880 edition of
the Avesta.

The Unicode Standard encodes a set of Avestan punctuation marks based on the system
established by Geldner. U+10B3A tiny two dots over one dot punctuation functions
as an Avestan colon, U+10B3B small two dots over one dot punctuation as an Aves-
tan semicolon, and U+10B3C large two dots over one dot punctuation as an Avestan
end of sentence mark; these indicate breaks of increasing finality. U+10B3E large two

rings over one ring punctuation functions as an Avestan end of section, and may be
doubled (sometimes with a space between) for extra finality. U+10B39 avestan abbrevi-

ation mark is used to mark abbreviation and repetition. U+10B3D large one dot over

two dots punctuation and U+10B3F large one ring over two rings punctuation

are found in Avestan texts, but are not used by Geldner.

Minimal representation of Avestan requires two separators: one to separate words and a
second mark used to delimit larger units, such as clauses or sentences. Contemporary edi-
tions of Avestan texts show the word separator dot in a variety of vertical positions: it may
appear in a midline position or on the baseline. Dots such as U+2E31 word separator

middle dot, U+00B7 middle dot, or U+002E full stop can be used to represent this.

14.15 Ugaritic

Ugaritic: U+10380–U+1039F

The city state of Ugarit was an important seaport on the Phoenician coast (directly east of
Cyprus, north of the modern town of Minet el-Beida) from about 1400 bce until it was
completely destroyed in the twelfth century bce. The site of Ugarit, now called Ras Shamra
(south of Latakia on the Syrian coast), was apparently continuously occupied from Neo-

Table 14-8. Avestan Shaping Behavior

Character Sequence Display Transcription

<10B31 z she, 10B00 y a> x ša

<10B31 z she, 10B17 w ce> v šc

<10B31 z she, 10B19 u te> t št

<10B00 y a, 10B35 s he> r ah
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

484 Additional Ancient and Historic Scripts
lithic times (circa 5000 bce). It was first uncovered by a local inhabitant while plowing a
field in 1928 and subsequently excavated by Claude Schaeffer and Georges Chenet begin-
ning in 1929, in which year the first of many tablets written in the Ugaritic script were dis-
covered. They later proved to contain extensive portions of an important Canaanite
mythological and religious literature that had long been sought and that revolutionized
Biblical studies. The script was first deciphered in a remarkably short time jointly by Hans
Bauer, Edouard Dhorme, and Charles Virolleaud.

The Ugaritic language is Semitic, variously regarded by scholars as being a distinct language
related to Akkadian and Canaanite, or a Canaanite dialect. Ugaritic is generally written
from left to right horizontally, sometimes using U+1039F s ugaritic word divider. In the
city of Ugarit, this script was also used to write the Hurrian language. The letters U+1039B
p ugaritic letter i, U+1039C q ugaritic letter u, and U+1039D r ugaritic letter

ssu are used for Hurrian.

Variant Glyphs. There is substantial variation in glyph representation for Ugaritic. Glyphs
for U+10398 s ugaritic letter thanna, U+10399 t ugaritic letter ghain, and
U+1038F r ugaritic letter dhal differ somewhat between modern reference sources, as
do some transliterations. U+10398 s ugaritic letter thanna is most often displayed
with a glyph that looks like an occurrence of U+10393 v ugaritic letter ain overlaid
with U+10382 u ugaritic letter gamla.

Ordering. The ancient Ugaritic alphabetical order, which differs somewhat from the mod-
ern Hebrew order for similar characters, has been used to encode Ugaritic in the Unicode
Standard.

Character Names. Some of the Ugaritic character names have been reconstructed; others
appear in an early fragmentary document.

14.16 Old Persian

Old Persian: U+103A0–U+103DF

The Old Persian script is found in a number of inscriptions in the Old Persian language
dating from the Achaemenid Empire. Scholars today agree that the character inventory of
Old Persian was invented for use in monumental inscriptions of the Achaemenid king,
Darius I, by about 525 bce. Old Persian is an alphabetic writing system with some syllabic
aspects. While the shapes of some Old Persian letters look similar to signs in Sumero-Akka-
dian Cuneiform, it is clear that only one of them, U+103BE @ old persian sign la, was
actually borrowed. It was derived from the New Assyrian historic variant A of Sumero-
Akkadian U+121B7 ? cuneiform sign la, because la is a foreign sound not used in the
Old Persian language.

Directionality. Old Persian is written from left to right.

Repertoire. The repertoire contains 36 signs. These represent consonants, vowels, or con-
sonant plus vowel syllables. There are also five numbers, one word divider, and eight ideo-
grams. It is considered unlikely that any additional characters will be discovered.

Numerals. The attested numbers are built up by stringing the base numbers (1, 2, 10, 20,
and 100) in sequences.

Variants. The signs U+103C8 old persian sign auramazdaa and U+103C9 old persian

sign auramazdaa-2, and the signs U+103CC old persian sign dahyaaush and
U+103CD old persian sign dahyaaush-2, have been encoded separately because their
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.17 Sumero-Akkadian 485
conventional attestation in the corpus of Old Persian texts is quite limited and scholars
consider it advantageous to distinguish the forms in plain text representation.

14.17 Sumero-Akkadian

Cuneiform: U+12000–U+123FF

Sumero-Akkadian Cuneiform is a logographic writing system with a strong syllabic com-
ponent. It was written from left to right on clay tablets.

Early History of Cuneiform. The earliest stage of Mesopotamian Cuneiform as a complete
system of writing is first attested in Uruk during the so-called Uruk IV period (circa 3500–
3200 bce) with an initial repertoire of about 700 characters or “signs” as Cuneiform schol-
ars customarily call them.

Late fourth millennium ideographic tablets were also found at Susa and several other sites
in western Iran, in Assyria at Nineveh (northern Iraq), at Tell Brak (northwestern Syria),
and at Habuba Kabira in Syria. The writing system developed in Sumer (southeastern Iraq)
was repeatedly exported to peripheral regions in the third, second, and first millennia bce.
Local variations in usage are attested, but the core of the system is the Sumero-Akkadian
writing system.

Writing emerged in Sumer simultaneously with a sudden growth in urbanization and an
attendant increase in the scope and scale of administrative needs. A large proportion of the
elements of the early writing system repertoire was devised to represent quantities and
commodities for bureaucratic purposes.

At this earliest stage, signs were mainly pictographic, in that a relatively faithful facsimile of
the thing signified was traced, although some items were strictly ideographic and repre-
sented by completely arbitrary abstractions, such as the symbol for sheep D. Some scholars
believe that the abstract symbols were derived from an earlier “token” system of account-
ing, but there is no general agreement on this point. Where the pictographs are concerned,
interpretation was relatively straightforward. The head of a bull was used to denote “cattle”;
an ear of barley was used to denote “barley.” In some cases, pictographs were also inter-
preted logographically, so that meaning was derived from the symbol by close conceptual
association. For example, the representation of a bowl might mean “bowl,” but it could
indicate concepts associated with bowls, such as “food.” Renditions of a leg might variously
suggest “leg,” “stand,” or “walk.”

By the next chronological period of south Mesopotamian history (the Uruk III period,
3200–2900 bce), logographic usage seems to have become much more widespread. In
addition, individual signs were combined into more complex designs to express other con-
cepts. For example, a head with a bowl next to it was used to denote “eat” or “drink.” This
is the point during script development at which one can truly speak of the first Sumerian
texts. In due course, the early graphs underwent change, conditioned by factors such as the
most widely available writing medium and writing tools, and the need to record informa-
tion more quickly and efficiently from the standpoint of the bureaucracy that spawned the
system.

Clay was the obvious writing medium in Sumer because it was widely available and easily
molded into cushion- or pillow-shaped tablets. Writing utensils were easily made for it by
sharpening pieces of reed. Because it was awkward and slow to inscribe curvilinear lines in
a piece of clay with a sharpened reed (called a stylus), scribes tended to approximate the
pictographs by means of short, wedge-shaped impressions made with the edge of the sty-
lus. These short, mainly straight shapes gave rise to the modern word “cuneiform” from the
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

486 Additional Ancient and Historic Scripts
Latin cuneus, meaning “wedge.” Cuneiform proper was common from about 2700 bce,
although experts use the term “cuneiform” to include the earlier forms as well.

Geographic Range. The Sumerians did not live in complete isolation, and there is very
early evidence of another significant linguistic group in the area immediately north of
Sumer known as Agade or Akkad. Those peoples spoke a Semitic language whose dialects
are subsumed by scholars under the heading “Akkadian.” In the long run, the Akkadian
speakers became the primary users and promulgators of Cuneiform script. Because of their
trade involvement with their neighbors, Cuneiform spread through Babylonia (the
umbrella term for Sumer and Akkad) to Elam, Assyria, eastern Syria, southern Anatolia,
and even Egypt. Ultimately, many languages came to be written in Cuneiform script, the
most notable being Sumerian, Akkadian (including Babylonian, Assyrian, Eblaite),
Elamite, Hittite, and Hurrian.

Periods of script usage are defined according to geography and primary linguistic represen-
tation, as shown in Table 14-9.

Sources and Coverage. The base character repertoire for the Cuneiform block was distilled
from the list of Ur III signs compiled by the Cuneiform Digital Library Initiative (UCLA) in
union with the list constructed independently by Miguel Civil. This repertoire is compre-
hensive from the Ur III period onward. Old Akkadian, Early Dynastic, and Archiac Cunei-
form are not covered by this repertoire.

Simple Signs. Most Cuneiform signs are simple units; each sign of this type is represented
by a single character in the standard.

Complex and Compound Signs. Some Cuneiform signs are categorized as either complex
or compound signs. Complex signs are made up of a primary sign with one of more sec-
ondary signs written within it or conjoined to it, such that the whole is generally treated by
scholars as a unit; this includes linear sequences of two or more signs or wedge-clusters
where one or more of those clusters have not been clearly identified as characters in their
own right. Complex signs, which present a relative visual unity, are assigned single individ-
ual code points irrespective of their components.

Compound signs are linear sequences of two or more signs or wedge-clusters generally
treated by scholars as a single unit, when each and every such wedge-cluster exists as a
clearly identified character in its own right. Compound signs are encoded as sequences of

Table 14-9. Cuneiform Script Usage

Archaic Period
(to 2901 bce)

Early Dynastic
(2900–2335 bce)

Old Akkadian
(2334–2154 bce)

Ur III (NeoSumerian)
(2112–2095 bce)

Elamite
(2100–360 bce)

Old Assyrian
(1900–1750 bce)

Old Babylonian
(2004–1595 bce)

Middle Assyrian
(1500-1000 bce) Middle Babylonian

(1595–627 bce)Neo-Assyrian
(1000-609 bce)

Neo-Babylonian
(626–539 bce)

Hittite
(1570-1220 bce)
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.18 Egyptian Hieroglyphs 487
their component characters. Signs that shift from compound to complex, or vice versa,
generally have been treated according to their Ur III manifestation.

Mergers and Splits. Over the long history of Cuneiform, an number of signs have simpli-
fied and merged; in other cases, a single sign has diverged and developed into more than
one distinct sign. The choice of signs for encoding as characters was made at the point of
maximum differentiation in the case of either mergers or splits to enable the most compre-
hensive set for the representation of text in any period.

Fonts for the representation of Cuneiform text may need to be designed distinctly for opti-
mal use for different historic periods. Fonts for some periods will contain duplicate glyphs
depending on the status of merged or split signs at that point of the development of the
writing system.

Glyph Variants Acquiring Independent Semantic Status. Glyph variants such as U+122EC
M cuneiform sign ta asterisk, a Middle Assyrian form of the sign U+122EB N cune-

iform sign ta, which in Neo-Assyrian usage has its own logographic interpretation, have
been assigned separate code positions. They are to be used only when the new interpreta-
tion applies.

Formatting. Cuneiform was often written between incised lines or in blocks surrounded by
drawn boxes known as case rules. These boxes and lines are considered formatting and are
not part of the script. Case ruling and the like are not to be treated as punctuation.

Ordering. The characters are encoded in the Unicode Standard in Latin alphabetical order
by primary sign name. Complex signs based on the primary sign are organized according
to graphic principles; in some cases, these correspond to the native analyses.

Other Standards. There is no standard legacy encoding of Cuneiform primarily because it
was not possible to encode the huge number of characters in the pre-Unicode world of 8-
bit fonts.

Cuneiform Numbers and Punctuation: U+12400–U+1247F

Cuneiform Punctuation. A small number of signs are occasionally used in Cuneiform to
indicate word division, repetition, or phrase separation.

Cuneiform Numerals. In general, numerals have been encoded separately from signs that
are visually identical but semantically different (for example, U+1244F B cuneiform

numeric sign one ban2, U+12450 C cuneiform numeric sign two ban2, and so on,
versus U+12226 B cuneiform sign mash, U+1227A C cuneiform sign pa, and so on).

14.18 Egyptian Hieroglyphs

Egyptian Hieroglyphs: U+13000–U+1342F

Hieroglyphic writing appeared in Egypt at the end of the fourth millennium bce. The writ-
ing system is pictographic: the glyphs represent tangible objects, most of which modern
scholars have been able to identify. A great many of the pictographs are easily recognizable
even by nonspecialists. Egyptian hieroglyphs represent people and animals, parts of the
bodies of people and animals, clothing, tools, vessels, and so on.

Hieroglyphs were used to write Egyptian for more than 3,000 years, retaining characteristic
features such as use of color and detail in the more elaborated expositions. Throughout the
Old Kingdom, the Middle Kingdom, and the New Kingdom, between 700 and 1,000 hiero-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

488 Additional Ancient and Historic Scripts
glyphs were in regular use. During the Greco-Roman period, the number of variants, as
distinguished by some modern scholars, grew to somewhere between 6,000 and 8,000.

Hieroglyphs were carved in stone, painted on frescos, and could also be written with a reed
stylus, though this cursive writing eventually became standardized in what is called hieratic
writing. The hieratic forms are not separately encoded; they are simply considered cursive
forms of the hieroglyphs encoded in this block.

The Demotic script and then later the Coptic script replaced the earlier hieroglyphic and
hieratic forms for much practical writing of Egyptian, but hieroglyphs and hieratic contin-
ued in use until the fourth century ce. An inscription dated August 24, 394 ce has been
found on the Gateway of Hadrian in the temple complex at Philae; this is thought to be
among the latest examples of Ancient Egyptian writing in hieroglyphs.

Structure. Egyptian hieroglyphs made use of 24 letters comprising a true alphabet. In addi-
tion to these phonetic characters, Egyptian hieroglyphs made use of a very large number of
logographic characters (called “logograms” or “ideograms” by Egyptologists), some of
which could be read as a word, and some of which had only a semantic determinative func-
tion, to enable the reader to distinguish between words which were otherwise written the
same. Within a word, characters were arranged together to form an aesthetically-pleasing
arrangement within a notional square.

Directionality. Characters may be written left-to-right or right-to-left, generally in hori-
zontal lines, but often—especially in monumental texts—in vertical columns. Directional-
ity of a text is usually easy to determine because one reads a line facing into the glyphs
depicting the faces of people or animals.

Egyptian hieroglyphs are given strong left-to-right directionality in the Unicode Standard,
because most Egyptian editions are published in English, French, or German, and left-to-
right directionality is the conventional presentation mode. When left-to-right directional-
ity is overridden to display Egyptian hieroglyphic text right to left, the glyphs should be
mirrored from those shown in the code charts.

Rendering. The encoded characters for Egyptian hieroglyphs in the Unicode Standard sim-
ply represent basic text elements, or signs, of the writing system. A higher-level protocol is
required to represent the arrangement of signs into notional squares and for effects involv-
ing mirroring or rotation of signs within text. This approach to encoding the hieroglyphs
works well in the context of pre-existing conventions for the representation of Egyptian
text, which use simple markup schemes to indicate such formatting.

The most prominent example of such conventions in use since computers were introduced
into Egyptology in the late 1970s and the early 1980s is called the Manuel de Codage (MdC),
published in 1988. The MdC conventions make use of ASCII characters to separate hiero-
glyphic signs and to indicate the organization of the elements in space—that is, the posi-
tion of each sign, as arranged in a block. For example, the hyphen-minus “-” is used to
separate adjacent hieroglyphic blocks. The colon “:” indicates the superposition of one
hieroglyphic sign over another. The asterisk “*” indicates the left-right juxtaposition of two
hieroglyphic signs within a visual block.

For example, using the MdC conventions, the hieroglyphic representation of the name
Amenhotep would be transliterated as <i-mn:n-R4:t*p>. The lowercase letters represent
transliterations of alphabetic or other phonetic signs, whereas “R4” is the catalog label for
one of the logograms in the standard Gardiner list. The “-”, “:”, and “*” characters provide
the markup showing how the individual signs are visually arranged. The “<” and “>”
bracket characters indicate a cartouche, often used for a king’s name. The Unicode repre-
sentation of the same hieroglyphic name, using MdC conventions, but substituting Uni-
code characters for the transliterations and catalog numbers is shown in Table 14-10.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.18 Egyptian Hieroglyphs 489
The interpretation of these MdC markup conventions in text is not part of plain text. Ordi-
nary word processors and plain text display would not be expected to be able to interpret
those conventions to render sequences of Egyptian hieroglyphic signs stacked correctly into
blocks. Instead, such display would require a specialized rendering process familiar with
the layout of Egyptian hieroglyphs. This distinction is illustrated in Figure 14-2. The first
line shows the marked-up MdC sequence for the name of the king, Amenhotep. The sec-
ond line shows the Unicode hieroglyphic version of that sequence, as interpreted by an
ordinary Unicode plain text rendering process. The third line shows a rendering by a spe-
cialized hieroglyphic rendering process, which can interpret the markup and render a car-
touche.

Other markup schemes have been proposed, which attempt to provide greater flexibility
than MdC by use of more elaborate encodings. XML has also been used to represent Egyp-
tian texts. Such representations also require specialized rendering systems to lay out hiero-
glyphic text.

Hieratic Fonts. In the years since Champollion published his decipherment of Egyptian in
1824, Egyptologists have shown little interest in typesetting hieratic text. Consequently,
there is no tradition of hieratic fonts in either lead or digital formats. Because hieratic is a
cursive form of the underlying hieroglyphic characters, hieratic text is normally rendered
using the more easily legible hieroglyphs. In principle a hieratic font could be devised for
specialist applications, but as for fonts for other cursive writing systems, it would require
very large ligature tables—even larger than usual, because of the great many hieroglyphic
signs involved.

Repertoire. The set of hieroglyphic characters encoded in this block is loosely referred to as
“the Gardiner set.” However, the Gardiner set was not actually exhaustively described and
enumerated by Gardiner, himself. The chief source of the repertoire is Gardiner’s Middle
Egyptian sign list as given in his Egyptian Grammar (Gardiner 1957). That list is supple-
mented by additional characters found in his font catalogues (Gardiner 1928, Gardiner

Table 14-10. Hieroglyphic Character Sequence

U+003C less-than sign
U+131CB egyptian hieroglyph m017 (= y, i)
U+002D hyphen-minus
U+133E0 egyptian hieroglyph y005 (= mn)
U+003A colon
U+13216 egyptian hieroglyph n035 (= n)
U+002D hyphen-minus
U+132B5 egyptian hieroglyph r004 (= R4)
U+003A colon
U+133CF egyptian hieroglyph x001 (= t)
U+002A asterisk
U+132AA egyptian hieroglyph q003 (= p)
U+003E greater-than sign

Figure 14-2. Interpretion of Hieroglyphic Markup

Unicode Plain Text:

Interpreted Markup :

Manuel de Codage: <i-mn:n-R4:t*p>
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

490 Additional Ancient and Historic Scripts
1929, Gardiner 1931, and Gardiner 1953), and by a collection of signs found in the Griffith
Institute’s Topographical Bibliography, which also used the Gardiner fonts.

A few other characters have been added to this set, such as entities to which Gardiner gave
specific catalog numbers. They are retained in the encoding for completeness in represen-
tation of Gardiner’s own materials. A number of positional variants without catalog num-
bers were listed in Gardiner 1957 and Gardiner 1928.

Character Names. Egyptian hieroglyphic characters have traditionally been designated in
several ways:

• By complex description of the pictographs: GOD WITH HEAD OF IBIS, and
so forth.

• By standardized sign number: C3, E34, G16, G17, G24.

• For a minority of characters, by transliterated sound.

The characters in the Unicode Standard make use of the standard Egyptological catalog
numbers for the signs. Thus, the name for U+13049 egyptian hieroglyph e034 refers
uniquely and unambiguously to the Gardiner list sign E34, described as a “DESERT
HARE” and used for the sound “wn”. The catalog values are padded to three places with
zeros.

Names for hieroglyphic characters identified explicitly in Gardiner 1953 or other sources as
variants for other hieroglyphic characters are given names by appending “A”, “B”, ... to the
sign number. In the sources these are often identified using asterisks. Thus Gardiner’s G7,
G7*, and G7** correspond to U+13146 egyptian sign g007, U+13147 egyptian sign

g007a, and U+13148 egyptian sign g007b, respectively.

Sign Classification. In Gardiner’s identification scheme, Egyptian hieroglyphs are classi-
fied according to letters of the alphabet, so A000 refers to “Man and his occupations,” B000
to “Woman and her occupations,” C000 to “Anthropomorphic deities,” and so forth. The
order of signs in the code charts reflects this classification. The Gardiner categories are
shown in headers in the names list accompanying the code charts.

Some individual characters may have been identified as belonging to other classes since
their original category was assigned, but the ordering in the Unicode Standard simply fol-
lows the original category and catalog values.

Enclosures. The two principal names of the king, the nomen and prenomen, were normally
written inside a cartouche: a pictographic representation of a coil of rope, as shown in
Figure 14-2.

In the Unicode representation of hieroglyphic text, the beginning and end of the cartouche
are represented by separate paired characters, somewhat like parentheses. Rendering of a
full cartouche surrounding a name requires specialized layout software.

There are a several characters for these start and end cartouche characters, reflecting vari-
ous styles for the enclosures.

Numerals. Egyptian numbers are encoded following the same principles used for the
encoding of Aegean and Cuneiform numbers. Gardiner does not supply a full set of
numerals with catalog numbers in his Egyptian Grammar, but does describe the system of
numerals in detail, so that it is possible to deduce the required set of numeric characters.

Two conventions of representing Egyptian numerals are supported in the Unicode Stan-
dard. The first relates to the way in which hieratic numerals are represented. Individual
signs for each of the 1s, the 10s, the 100s, the 1000s, and the 10,000s are encoded, because in
hieratic these are written as units, often quite distinct from the hieroglyphic shapes into
which they are transliterated. The other convention is based on the practice of the Manual
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

14.19 Meroitic Hieroglyphs and Meroitic Cursive 491
de Codage, and is comprised of five basic text elements used to build up Egyptian numerals.
There is some overlap between these two systems.

14.19 Meroitic Hieroglyphs and Meroitic Cursive

Meroitic Hieroglyphs: U+10980–U+1099F
Meroitic Cursive: U+109A0–U+109FF

Meroitic hieroglyphs and Meroitic cursive were used from around the second century bce

to the fourth century ce to write the Meroitic language of the Nile valley kingdom known
as Kush or Meroë. The kingdom originated south of Egypt around 850 bce, with its capital
at Napata, located in modern-day northern Sudan. At that time official inscriptions used
the Egyptian language and script. Around 560 bce the capital was relocated to Meroë,
about 600 kilometers upriver. As the use of Egyptian language and script declined with the
greater distance from Egypt, two native scripts developed for writing Meroitic:

• Meroitic cursive was for general use, and its appearance was based on Egyptian
demotic.

• Meroitic hieroglyphs were used for inscriptions on royal monuments and tem-
ples, and their appearance was based on Egyptian hieroglyphs. (See
Section 14.18, Egyptian Hieroglyphs for more information.)

After the fourth century ce, the Meroitic language was gradually replaced by Nubian, and
by the sixth century the Meroitic scripts had been superseded by the Coptic script, which
picked up three additional symbols from Meroitic cursive to represent Nubian.

Although the values of the script characters were deciphered around 1911 by the English
Egyptologist F. L. Griffith, the Meroitic language is still not understood except for names
and a few other words. It is not known to be related to any other language. It may be related
to Nubian.

Structure. Unlike the Egyptian scripts, the Meroitic scripts are almost purely alphabetic.
There are 15 basic consonants; if not followed by an explicit vowel letter, they are read with
an inherent a. There are four vowels: e, i, o, and a. The a vowel is only used for initial a. In
addition, for unknown reasons, there are explicit letters for the syllables ne, te, se, and to.
This may have been due to dialect differences, or to the possible use of n, t, and s as final
consonants in some cases.

Meroitic cursive also uses two logograms for rmt and imn, derived from Egyptian demotic.

Directionality. Horizontal writing is almost exclusively right-to-left, matching the direc-
tion in which the hieroglyphs depicting people and animals are looking. This is unlike
Egyptian hieroglyphs, which are read into the faces of the glyphs for people and animals.
Meroitic hieroglyphs are also written vertically in columns.

Shaping. In Meroitic cursive, the letter for i usually connects to a preceding consonant.
There is no other connecting behavior.

Punctuation. The Meroitic scripts were among the earliest to use word division—not
always consistently—to separate basic sentence elements, such as noun phrases, verb
forms, and so on. For this purpose Meroitic hieroglyphs use three vertical dots, represented
by U+205D tricolon. When Meroitic hieroglyphs are presented in vertical columns, the
orientation of the three dots shifts to become three horizontal dots. This can be represented
either with U+2026 U+2026 horizontal ellipsis, or in more sophisticated rendering, by
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

492 Additional Ancient and Historic Scripts
glyphic rotation of U+205D tricolon. Meroitic cursive uses two vertical dots, represented
by U+003A colon.

Symbols. Two ankh-like symbols are used with Meroitic hieroglyphs.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 15

Symbols 15

The universe of symbols is rich and open-ended. The collection of encoded symbols in the
Unicode Standard encompasses the following:

There are other notational systems not covered by the Unicode Standard. Some symbols
mark the transition between pictorial items and text elements; because they do not have a
well-defined place in plain text, they are not encoded here.

Combining marks may be used with symbols, particularly the set encoded at U+20D0..
U+20FF (see Section 7.9, Combining Marks).

Letterlike and currency symbols, as well as numerals, superscripts, and subscripts, are typ-
ically subject to the same font and style changes as the surrounding text. Where square and
enclosed symbols occur in East Asian contexts, they generally follow the prevailing type
styles.

Other symbols have an appearance that is independent of type style, or a more limited or
altogether different range of type style variation than the regular text surrounding them.
For example, mathematical alphanumeric symbols are typically used for mathematical
variables; those letterlike symbols that are part of this set carry semantic information in
their type style. This fact restricts—but does not completely eliminate—possible style vari-
ations. However, symbols such as mathematical operators can be used with any script or
independent of any script.

Special invisible operator characters can be used to explicitly encode some mathematical
operations, such as multiplication, which are normally implied by juxtaposition. This aids
in automatic interpretation of mathematical notation.

In a bidirectional context (see Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm”), most symbol characters have no inherent directionality but resolve their direc-
tionality for display according to the Unicode Bidirectional Algorithm. For some symbols,
such as brackets and mathematical operators whose image is not bilaterally symmetric, the
mirror image is used when the character is part of the right-to-left text stream (see
Section 4.7, Bidi Mirrored).

Dingbats and optical character recognition characters are different from all other charac-
ters in the standard, in that they are encoded based primarily on their precise appearance.

Currency symbols Geometrical symbols

Letterlike symbols Miscellaneous symbols and dingbats

Mathematical alphabets Emoticons

Numerals Enclosed and square symbols

Superscript and subscript symbols Braille patterns

Mathematical symbols Western and Byzantine musical symbols

Invisible mathematical operators Ancient Greek musical notation

Technical symbols
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

494 Symbols
Braille patterns are a special case, because they can be used to write text. They are included
as symbols, as the Unicode Standard encodes only their shapes; the association of letters to
patterns is left to other standards. When a character stream is intended primarily to convey
text information, it should be coded using one of the scripts. Only when it is intended to
convey a particular binding of text to Braille pattern sequence should it be coded using the
Braille patterns.

Musical notation—particularly Western musical notation—is different from ordinary text
in the way it is laid out, especially the representation of pitch and duration in Western
musical notation. However, ordinary text commonly refers to the basic graphical elements
that are used in musical notation, and it is primarily those symbols that are encoded in the
Unicode Standard. Additional sets of symbols are encoded to support historical systems of
musical notation.

Many symbols encoded in the Unicode Standard are intended to support legacy implemen-
tations and obsolescent practices, such as terminal emulation or other character mode user
interfaces. Examples include box drawing components and control pictures.

A number of symbols are also encoded for compatibility with the core emoji (“picture char-
acter,” or pictograph) sets encoded by several Japanese cell phone carriers as extensions of
the JIS X 0208 character set. Those symbols are interchanged as plain text, and are encoded
in the Unicode Standard to support interoperability with data originating from the Japa-
nese cell phone carriers. Newer emoji-like symbols are still being developed for mobile
phones in Japan, China, and elsewhere, but those pictographs are represented and inter-
changed using other technologies such as embedded graphics, rather than as plain text.
Hence there is no requirement to encode them as characters.

Many of the symbols encoded in Unicode can be used as operators or given some other
syntactical function in a formal language syntax. For more information, see Unicode Stan-
dard Annex #31, “Unicode Identifier and Pattern Syntax.”

15.1 Currency Symbols
Currency symbols are intended to encode the customary symbolic signs used to indicate
certain currencies in general text. These signs vary in shape and are often used for more
than one currency. Not all currencies are represented by a special currency symbol; some
use multiple-letter strings instead, such as “Sfr” for Swiss franc. Moreover, the abbrevia-
tions for currencies can vary by language. The Unicode Common Locale Data Repository
(CLDR) provides further information; see Section B.6, Other Unicode Online Resources.
Therefore, implementations that are concerned with the exact identity of a currency should
not depend on an encoded currency sign character. Instead, they should follow standards
such as the ISO 4217 three-letter currency codes, which are specific to currencies—for
example, USD for U.S. dollar, CAD for Canadian dollar.

Unification. The Unicode Standard does not duplicate encodings where more than one
currency is expressed with the same symbol. Many currency symbols are overstruck letters.
There are therefore many minor variants, such as the U+0024 dollar sign $, with one or
two vertical bars, or other graphical variation, as shown in Figure 15-1.

Figure 15-1. Alternative Glyphs for Dollar Sign

$ $
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.1 Currency Symbols 495
Claims that glyph variants of a certain currency symbol are used consistently to indicate a
particular currency could not be substantiated upon further research. Therefore, the Uni-
code Standard considers these variants to be typographical and provides a single encoding
for them. See ISO/IEC 10367, Annex B (informative), for an example of multiple render-
ings for U+00A3 pound sign.

Fonts. Currency symbols are commonly designed to display at the same width as a digit
(most often a European digit, U+0030..U+0039) to assist in alignment of monetary values
in tabular displays. Like letters, they tend to follow the stylistic design features of particular
fonts because they are used often and need to harmonize with body text. In particular, even
though there may be more or less normative designs for the currency sign per se, as for the
euro sign, type designers freely adapt such designs to make them fit the logic of the rest of
their fonts. This partly explains why currency signs show more glyph variation than other
types of symbols.

Currency Symbols: U+20A0–U+20CF

This block contains currency symbols that are not encoded in other blocks. Contemporary
and historic currency symbols encoded in other blocks are listed in Table 15-1.

Lira Sign. A separate currency sign U+20A4 lira sign is encoded for compatibility with
the HP Roman-8 character set, which is still widely implemented in printers. In general,
U+00A3 pound sign should be used for both the various currencies known as pound (or
punt) and the various currencies known as lira—for example, the former currency of Italy
and the lira still in use in Turkey. Widespread implementation practice in Italian and Turk-
ish systems has long made use of U+00A3 as the currency sign for the lira. As in the case of
the dollar sign, the glyphic distinction between single- and double-bar versions of the sign
is not indicative of a systematic difference in the currency.

Yen and Yuan. Like the dollar sign and the pound sign, U+00A5 yen sign has been used as
the currency sign for more than one currency. While there may be some preferences to use
a double-bar glyph for the yen currency of Japan (JPY) and a single-bar glyph for the yuan
(renminbi) currency of China (CNY), this distinction is not systematic in all font designs,

Table 15-1. Currency Symbols Encoded in Other Blocks

Currency Unicode Code Point

Dollar, milreis, escudo, peso U+0024 dollar sign
Cent U+00A2 cent sign
Pound and lira U+00A3 pound sign
General currency U+00A4 currency sign
Yen or yuan U+00A5 yen sign
Dutch florin U+0192 latin small letter f with hook
Afghani U+060B afghani sign
Rupee U+09F2 bengali rupee mark
Rupee U+09F3 bengali rupee sign
Ana (historic) U+09F9 bengali currency denominator sixteen
Ganda (historic) U+09FB bengali ganda mark
Rupee U+0AF1 gujarati rupee sign
Rupee U+0BF9 tamil rupee sign
Baht U+0E3F thai currency symbol baht
Riel U+17DB khmer currency symbol riel
German mark (historic) U+2133 script capital m
Yuan, yen, won, HKD U+5143 cjk unified ideograph-5143
Yen U+5186 cjk unified ideograph-5186
Yuan U+5706 cjk unified ideograph-5706
Yuan, yen, won, HKD, NTD U+5713 cjk unified ideograph-5713
Rupee U+A838 north indic rupee mark
Rial U+FDFC rial sign
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

496 Symbols
and there is considerable overlap in usage. As listed in Table 15-1, there are also a number of
CJK ideographs to represent the words yen (or en) and yuan, as well as the Korean word
won, and these also tend to overlap in use as currency symbols. In the Unicode Standard,
U+00A5 yen sign is intended to be the character for the currency sign for both the yen and
the yuan, with details of glyphic presentation left to font choice and local preferences.

Euro Sign. The single currency for member countries of the European Economic and
Monetary Union is the euro (EUR). The euro character is encoded in the Unicode Standard
as U+20AC euro sign.

Indian Rupee Sign. U+20B9 indian rupee sign is the character encoded to represent the
Indian rupee currency symbol introduced by the Government of India in 2010 as the offi-
cial currency symbol for the Indian rupee (INR). It is distinguished from U+20A8 rupee

sign, which is an older symbol not formally tied to any particular currency. There are also
a number of script-specific rupee symbols encoded for historic usage by various scripts of
India. See Table 15-1 for a listing.

Rupee is also the common name for a number of currencies for other countries of South
Asia and of Indonesia, as well as several historic currencies. It is often abbreviated using
Latin letters, or may be spelled out or abbreviated in the Arabic script, depending on local
conventions.

Turkish Lira Symbol. The Turkish lira symbol, encoded as U+20BA A turkish lira sign,
is a symbol representing the lira currency of Turkey. Prior to the introduction of the new
symbol in 2012, the currency was typically abbreviated with the letters “TL”. The new sym-
bol was selected by the Central Bank of Turkey from entries in a public contest and is
quickly gaining common use, but the old abbreviation is also still in use.

For additional forms of currency symbols, see Fullwidth Forms (U+FFE0..U+FFE6).
Ancient Roman coin symbols, for such coins and values as the denarius and as, are encoded
in the Ancient Symbols block (U+10190..U+101CF).

15.2 Letterlike Symbols

Letterlike Symbols: U+2100–U+214F

Letterlike symbols are symbols derived in some way from ordinary letters of an alphabetic
script. This block includes symbols based on Latin, Greek, and Hebrew letters. Stylistic
variations of single letters are used for semantics in mathematical notation. See “Mathe-
matical Alphanumeric Symbols” in this section for the use of letterlike symbols in mathe-
matical formulas. Some letterforms have given rise to specialized symbols, such as U+211E
prescription take.

Numero Sign. U+2116 numero sign is provided both for Cyrillic use, where it looks like
M, and for compatibility with Asian standards, where it looks like .. Figure 15-2 illus-
trates a number of alternative glyphs for this sign. Instead of using a special symbol, French
practice is to use an “N” or an “n”, according to context, followed by a superscript small let-
ter “o” (No or no; plural Nos or nos). Legacy data encoded in ISO/IEC 8859-1 (Latin-1) or
other 8-bit character sets may also have represented the numero sign by a sequence of “N”
followed by the degree sign (U+00B0 degree sign). Implementations interworking with
legacy data should be aware of such alternative representations for the numero sign when
converting data.

Unit Symbols. Several letterlike symbols are used to indicate units. In most cases, however,
such as for SI units (Système International), the use of regular letters or other symbols is
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.2 Letterlike Symbols 497
preferred. U+2113 script small l is commonly used as a non-SI symbol for the liter. Offi-
cial SI usage prefers the regular lowercase letter l.

Three letterlike symbols have been given canonical equivalence to regular letters: U+2126
ohm sign, U+212A kelvin sign, and U+212B angstrom sign. In all three instances, the
regular letter should be used. If text is normalized according to Unicode Standard Annex
#15, “Unicode Normalization Forms,” these three characters will be replaced by their regu-
lar equivalents.

In normal use, it is better to represent degrees Celsius “°C” with a sequence of U+00B0
degree sign + U+0043 latin capital letter c, rather than U+2103 degree celsius. For
searching, treat these two sequences as identical. Similarly, the sequence U+00B0 degree

sign + U+0046 latin capital letter f is preferred over U+2109 degree fahrenheit,
and those two sequences should be treated as identical for searching.

Compatibility. Some symbols are composites of several letters. Many of these composite
symbols are encoded for compatibility with Asian and other legacy encodings. (See also
“CJK Compatibility Ideographs” in Section 12.1, Han.) The use of these composite symbols
is discouraged where their presence is not required by compatibility. For example, in nor-
mal use, the symbols U+2121 TEL telephone sign and U+213B FAX facsimile sign are
simply spelled out.

In the context of East Asian typography, many letterlike symbols, and in particular com-
posites, form part of a collection of compatibility symbols, the larger part of which is
located in the CJK Compatibility block (see Section 15.10, Enclosed and Square). When used
in this way, these symbols are rendered as “wide” characters occupying a full cell. They
remain upright in vertical layout, contrary to the rotated rendering of their regular letter
equivalents. See Unicode Standard Annex #11, “East Asian Width,” for more information.

Where the letterlike symbols have alphabetic equivalents, they collate in alphabetic
sequence; otherwise, they should be treated as symbols. The letterlike symbols may have
different directional properties than normal letters. For example, the four transfinite cardi-
nal symbols (U+2135..U+2138) are used in ordinary mathematical text and do not share
the strong right-to-left directionality of the Hebrew letters from which they are derived.

Styles. The letterlike symbols include some of the few instances in which the Unicode Stan-
dard encodes stylistic variants of letters as distinct characters. For example, there are
instances of blackletter (Fraktur), double-struck, italic, and script styles for certain Latin
letters used as mathematical symbols. The choice of these stylistic variants for encoding
reflects their common use as distinct symbols. They form part of the larger set of mathe-
matical alphanumeric symbols. For the complete set and more information on its use, see
“Mathematical Alphanumeric Symbols” in this section. These symbols should not be used
in ordinary, nonscientific texts.

Despite its name, U+2118 script capital p is neither script nor capital—it is uniquely the
Weierstrass elliptic function symbol derived from a calligraphic lowercase p. U+2113
script small l is derived from a special italic form of the lowercase letter l and, when it
occurs in mathematical notation, is known as the symbol ell. Use U+1D4C1 mathemati-

cal script small l as the lowercase script l for mathematical notation.

Standards. The Unicode Standard encodes letterlike symbols from many different national
standards and corporate collections.

Figure 15-2. Alternative Glyphs for Numero Sign
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

498 Symbols
Mathematical Alphanumeric Symbols: U+1D400–U+1D7FF

The Mathematical Alphanumeric Symbols block contains a large extension of letterlike
symbols used in mathematical notation, typically for variables. The characters in this block
are intended for use only in mathematical or technical notation, and not in nontechnical
text. When used with markup languages—for example, with Mathematical Markup Lan-
guage (MathML)—the characters are expected to be used directly, instead of indirectly via
entity references or by composing them from base letters and style markup.

Words Used as Variables. In some specialties, whole words are used as variables, not just
single letters. For these cases, style markup is preferred because in ordinary mathematical
notation the juxtaposition of variables generally implies multiplication, not word forma-
tion as in ordinary text. Markup not only provides the necessary scoping in these cases, but
also allows the use of a more extended alphabet.

Mathematical Alphabets

Basic Set of Alphanumeric Characters. Mathematical notation uses a basic set of mathe-
matical alphanumeric characters, which consists of the following:

• The set of basic Latin digits (0–9) (U+0030..U+0039)

• The set of basic uppercase and lowercase Latin letters (a– z, A–Z)

• The uppercase Greek letters – (U+0391..U+03A9), plus the nabla
(U+2207) and the variant of theta p given by U+03F4

• The lowercase Greek letters – (U+03B1..U+03C9), plus the partial differen-
tial sign (U+2202), and the six glyph variants q, r, s, t, u, and v, given by
U+03F5, U+03D1, U+03F0, U+03D5, U+03F1, and U+03D6, respectively

Only unaccented forms of the letters are used for mathematical notation, because general
accents such as the acute accent would interfere with common mathematical diacritics.
Examples of common mathematical diacritics that can interfere with general accents are
the circumflex, macron, or the single or double dot above, the latter two of which are used
in physics to denote derivatives with respect to the time variable. Mathematical symbols
with diacritics are always represented by combining character sequences.

For some characters in the basic set of Greek characters, two variants of the same character
are included. This is because they can appear in the same mathematical document with dif-
ferent meanings, even though they would have the same meaning in Greek text. (See “Vari-
ant Letterforms” in Section 7.2, Greek.)

Additional Characters. In addition to this basic set, mathematical notation uses the upper-
case and lowercase digamma, in regular (U+03DC and U+03DD) and bold (U+1D7CA
and U+1D7CB), and the four Hebrew-derived characters (U+2135..U+2138). Occasional
uses of other alphabetic and numeric characters are known. Examples include U+0428
cyrillic capital letter sha, U+306E hiragana letter no, and Eastern Arabic-Indic
digits (U+06F0..U+06F9). However, these characters are used only in their basic forms,
rather than in multiple mathematical styles.

Dotless Characters. In the Unicode Standard, the characters “i” and “j”, including their
variations in the mathematical alphabets, have the Soft_Dotted property. Any conformant
renderer will remove the dot when the character is followed by a nonspacing combining
mark above. Therefore, using an individual mathematical italic i or j with math accents
would result in the intended display. However, in mathematical equations an entire sub-
expression can be placed underneath a math accent—for example, when a “wide hat” is
placed on top of i+j, as shown in Figure 15-3.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.2 Letterlike Symbols 499
In such a situation, a renderer can no longer rely simply on the presence of an adjacent
combining character to substitute for the un-dotted glyph, and whether the dots should be
removed in such a situation is no longer predictable. Authors differ in whether they expect
the dotted or dotless forms in that case.

In some documents mathematical italic dotless i or j is used explicitly without any combin-
ing marks, or even in contrast to the dotted versions. Therefore, the Unicode Standard pro-
vides the explicitly dotless characters U+1D6A4 mathematical italic small dotless i

and U+1D6A5 mathematical italic small dotless j. These two characters map to the
ISOAMSO entities imath and jmath or the TEX macros \imath and \jmath. These entities
are, by default, always italic. The appearance of these two characters in the code charts is
similar to the shapes of the entities documented in the ISO 9573-13 entity sets and used by
TEX. The mathematical dotless characters do not have case mappings.

Semantic Distinctions. Mathematical notation requires a number of Latin and Greek
alphabets that initially appear to be mere font variations of one another. The letter H can
appear as plain or upright (H), bold (H), italic (H), as well as script, Fraktur, and other
styles. However, in any given document, these characters have distinct, and usually unre-
lated, mathematical semantics. For example, a normal H represents a different variable
from a bold H, and so on. If these attributes are dropped in plain text, the distinctions are
lost and the meaning of the text is altered. Without the distinctions, the well-known Ham-
iltonian formula turns into the integral equation in the variable H as shown in Figure 15-4.

Mathematicians will object that a properly formatted integral equation requires all the let-
ters in this example (except for the “d”) to be in italics. However, because the distinction
between s and H has been lost, they would recognize it as a fallback representation of an
integral equation, and not as a fallback representation of the Hamiltonian. By encoding a
separate set of alphabets, it is possible to preserve such distinctions in plain text.

Mathematical Alphabets. The alphanumeric symbols are listed in Table 15-2.

Figure 15-3. Wide Mathematical Accents

Figure 15-4. Style Variants and Semantic Distinctions in Mathematics

Table 15-2. Mathematical Alphanumeric Symbols

Math Style Characters from Basic Set Location

plain (upright, serifed) Latin, Greek, and digits BMP

bold Latin, Greek, and digits Plane 1

italic Latin and Greek Plane 1

bold italic Latin and Greek Plane 1

script (calligraphic) Latin Plane 1

bold script (calligraphic) Latin Plane 1

Fraktur Latin Plane 1

bold Fraktur Latin Plane 1

double-struck Latin and digits Plane 1

i+j = i + jˆ ˆˆ

Hamiltonian formula:

Integral equation:

 = d (E + H)

H = dτ(εE + μH)∫
∫

2

2

2

2
, μqτ
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

500 Symbols
The math styles in Table 15-2 represent those encountered in mathematical use. The plain
letters have been unified with the existing characters in the Basic Latin and Greek blocks.
There are 24 double-struck, italic, Fraktur, and script characters that already exist in the
Letterlike Symbols block (U+2100..U+214F). These are explicitly unified with the charac-
ters in this block, and corresponding holes have been left in the mathematical alphabets.

The alphabets in this block encode only semantic distinction, but not which specific font
will be used to supply the actual plain, script, Fraktur, double-struck, sans-serif, or mono-
space glyphs. Especially the script and double-struck styles can show considerable variation
across fonts. Characters from the Mathematical Alphanumeric Symbols block are not to be
used for nonmathematical styled text.

Compatibility Decompositions. All mathematical alphanumeric symbols have compatibil-
ity decompositions to the base Latin and Greek letters. This does not imply that the use of
these characters is discouraged for mathematical use. Folding away such distinctions by
applying the compatibility mappings is usually not desirable, as it loses the semantic dis-
tinctions for which these characters were encoded. See Unicode Standard Annex #15, “Uni-
code Normalization Forms.”

Fonts Used for Mathematical Alphabets

Mathematicians place strict requirements on the specific fonts used to represent mathemat-
ical variables. Readers of a mathematical text need to be able to distinguish single-letter
variables from each other, even when they do not appear in close proximity. They must be
able to recognize the letter itself, whether it is part of the text or is a mathematical variable,
and lastly which mathematical alphabet it is from.

Fraktur. The blackletter style is often referred to as Fraktur or Gothic in various sources.
Technically, Fraktur and Gothic typefaces are distinct designs from blackletter, but any of
several font styles similar in appearance to the forms shown in the charts can be used. In
East Asian typography, the term Gothic is commonly used to indicate a sans-serif type style.

Math Italics. Mathematical variables are most commonly set in a form of italics, but not all
italic fonts can be used successfully. For example, a math italic font should avoid a “tail” on
the lowercase italic letter z because it clashes with subscripts. In common text fonts, the
italic letter v and Greek letter nu are not very distinct. A rounded italic letter v is therefore
preferred in a mathematical font. There are other characters that sometimes have similar
shapes and require special attention to avoid ambiguity. Examples are shown in
Figure 15-5.

Hard-to-Distinguish Letters. Not all sans-serif fonts allow an easy distinction between
lowercase l and uppercase I, and not all monospaced (monowidth) fonts allow a distinction
between the letter l and the digit one. Such fonts are not usable for mathematics. In Fraktur,
the letters ' and (, in particular, must be made distinguishable. Overburdened blackletter
forms are inappropriate for mathematical notation. Similarly, the digit zero must be dis-
tinct from the uppercase letter O for all mathematical alphanumeric sets. Some characters
are so similar that even mathematical fonts do not attempt to provide distinct glyphs for

sans-serif Latin and digits Plane 1

sans-serif bold Latin, Greek, and digits Plane 1

sans-serif italic Latin Plane 1

sans-serif bold italic Latin and Greek Plane 1

monospace Latin and digits Plane 1

Table 15-2. Mathematical Alphanumeric Symbols (Continued)

Math Style Characters from Basic Set Location
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.2 Letterlike Symbols 501
them. Their use is normally avoided in mathematical notation unless no confusion is pos-
sible in a given context—for example, uppercase A and uppercase Alpha.

Font Support for Combining Diacritics. Mathematical equations require that characters
be combined with diacritics (dots, tilde, circumflex, or arrows above are common), as well
as followed or preceded by superscripted or subscripted letters or numbers. This require-
ment leads to designs for italic styles that are less inclined and script styles that have smaller
overhangs and less slant than equivalent styles commonly used for text such as wedding
invitations.

Type Style for Script Characters. In some instances, a deliberate unification with a non-
mathematical symbol has been undertaken; for example, U+2133 is unified with the pre-
1949 symbol for the German currency unit Mark. This unification restricts the range of
glyphs that can be used for this character in the charts. Therefore the font used for the rep-
resentative glyphs in the code charts is based on a simplified “English Script” style, as per
recommendation by the American Mathematical Society. For consistency, other script
characters in the Letterlike Symbols block are now shown in the same type style.

Double-Struck Characters. The double-struck glyphs shown in earlier editions of the stan-
dard attempted to match the design used for all the other Latin characters in the standard,
which is based on Times. The current set of fonts was prepared in consultation with the
American Mathematical Society and leading mathematical publishers; it shows much sim-
pler forms that are derived from the forms written on a blackboard. However, both serifed
and non-serifed forms can be used in mathematical texts, and inline fonts are found in
works published by certain publishers.

Arabic Mathematical Alphabetic Symbols: U+1EE00–U+1EEFF

The Arabic Mathematical Alphabetic Symbols block contains a set of characters used to
write Arabic mathematical expressions. These symbols derive from a version of the Arabic
alphabet which was widely used for many centuries and in a variety of contexts, such as in
manuscripts and traditional print editions. The characters in this block follow the older,
generic Semitic order (a, b, j, d…), differing from the order typically found in dictionaries
(a, b, t, th…). These symbols are used by Arabic alphabet-based scripts, such as Arabic and
Persian, and appear in the majority of mathematical handbooks published in the Middle
East, Libya, and Algeria today.

In Arabic mathematical notation, much as in Latin-based mathematical text, style varia-
tion plays an important semantic role and must be retained in plain text. Hence Arabic
styles for these mathematical symbols, which include tailed, stretched, looped, or double-
struck forms, are encoded separately, and should not be handled at the font level. These
mathematically styled symbols, which also include some isolated and initial-form Arabic
letters, are to be distinguished from the Arabic compatibility characters encoded in the
Arabic Presentation Forms-B block.

Figure 15-5. Easily Confused Shapes for Mathematical Glyphs

italic a

italic v (pointed)

italic v (rounded)

script X

plain Y

alpha

nu

upsilon

chi

Upsilon
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

502 Symbols
Shaping. The Arabic Mathematical Symbols are not subject to shaping, unlike the Arabic
letters in the Arabic block (U+0600..U+06FF).

Large Operators. Two operators are separately encoded: U+1EEF0 arabic mathematical

operator meem with hah with tatweel, which denotes summation in Arabic mathe-
matics, and U+1EEF1 arabic mathematical operator hah with dal, which denotes
limits in Persian mathematics. The glyphs for both of these characters stretch, based on the
width of the text above or below them.

Properties. The characters in this block, although used as mathematical symbols, have the
General_Category value Lo. This property assignment for these letterlike symbols reflects
the similar treatment for the alphanumeric mathematical symbols based on Latin and
Greek letter forms.

15.3 Numerals
Many characters in the Unicode Standard are used to represent numbers or numeric
expressions. Some characters are used exclusively in a numeric context; other characters
can be used both as letters and numerically, depending on context. The notational systems
for numbers are equally varied. They range from the familiar decimal notation to non-dec-
imal systems, such as Roman numerals.

Encoding Principles. The Unicode Standard encodes sets of digit characters (or non-digit
characters, as appropriate) for each script which has significantly distinct forms for numer-
als. As in the case of encoding of letters (and other units) for writing systems, the emphasis
is on encoding the units of the written forms for numeric systems.

Sets of digits which differ by mathematical style are separately encoded, for use in mathe-
matics. Such mathematically styled digits may carry distinct semantics which is maintained
as a plain text distinction in the representation of mathematical expressions. This treat-
ment of styled digits for mathematics parallels the treatment of styled alphabets for mathe-
matics. See “Mathematical Alphabets” in Section 15.2, Letterlike Symbols.

Other font face distinctions for digits which do not have mathematical significance, such as
the use of old style digits in running text, are not separately encoded. Other glyphic varia-
tions in digits and numeric characters are likewise not separately encoded. There are a few
documented exceptions to this general rule.

Decimal Digits

A decimal digit is a digit that is used in decimal (radix 10) place value notation. The most
widely used decimal digits are the European digits, encoded in the range from U+0030
digit zero to U+0039 digit nine. Because of their early encoding history, these digits are
also commonly known as ASCII digits. They are also known as Western digits or Latin digits.
The European digits are used with a large variety of writing systems, including those whose
own number systems are not decimal radix systems.

Many scripts also have their own decimal digits, which are separately encoded. Examples
are the digits used with the Arabic script or those of the Indic scripts. Table 15-3 lists scripts
for which separate decimal digits are encoded, together with the section in the Unicode
Standard which describes that script. The scripts marked with an asterisk (Arabic, Myan-
mar, and Tai Tham) have two sets of digits.

In the Unicode Standard, a character is formally classified as a decimal digit if it meets the
conditions set out in “Decimal Digits” in Section 4.6, Numeric Value and has been assigned
the property Numeric_Type=Decimal_Digit. The Numeric_Type property can be used to
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.3 Numerals 503
get the complete list of all decimal digits for any version of the Unicode Standard. (See
DerivedNumericType.txt in the Unicode Character Database.)

The Unicode Standard does not specify which sets of decimal digits can or should be used
with any particular writing system, language, or locale. However, the information provided
in the Unicode Common Locale Data Repository (CLDR) contains information about
which set or sets of digits are used with particular locales defined in CLDR. Numeral sys-
tems for a given locale require additional information, such as the appropriate decimal and
grouping separators, the type of digit grouping used, and so on; that information is also
supplied in CLDR.

Exceptions. There are several scripts with exceptional encodings for characters that are
used as decimal digits. For the Arabic script, there are two sets of decimal digits encoded
which have somewhat different glyphs and different directional properties. See “Arabic-
Indic Digits” in Section 8.2, Arabic for a discussion of these two sets and their use in Arabic
text. For the Myanmar script a second set of digits is encoded for the Shan language. The
Tai Tham script also has two sets of digits, which are used in different contexts.

CJK Ideographs Used as Decimal Digits. The CJK ideographs listed in Table 4-10, with
numeric values in the range one through nine, can be used in decimal notations (with 0
represented by U+3007 ideographic number zero). These ideographic digits are not
coded in a contiguous sequence, nor do they occur in numeric order. Unlike other script-
specific digits, they are not uniquely used as decimal digits. The same characters may be
used in the traditional Chinese system for writing numbers, which is not a decimal radix
system, but which instead uses numeric symbols for tens, hundreds, thousands, ten thou-
sands, and so forth. See Figure 15-6, which illustrates two different ways the number 1,234
can be written with CJK ideographs.

CJK numeric ideographs are also used in word compounds which are not interpreted as
numbers. Parsing CJK ideographs as decimal numbers therefore requires information
about the context of their use.

Table 15-3. Script-Specific Decimal Digits

Script Section Script Section

Arabic* Section 8.2 Ol Chiki Section 10.13

Devanagari Section 9.1 Sora Sompeng Section 10.14

Bengali (Bangla) Section 9.2 Brahmi Section 10.16

Gurmukhi Section 9.3 Thai Section 11.1

Gujarati Section 9.4 Lao Section 11.2

Oriya Section 9.5 Myanmar* Section 11.3

Tamil Section 9.6 Khmer Section 11.4

Telugu Section 9.7 New Tai Lue Section 11.6

Kannada Section 9.8 Tai Tham* Section 11.7

Malayalam Section 9.9 Kayah Li Section 11.9

Tibetan Section 10.2 Cham Section 11.10

Lepcha Section 10.3 Balinese Section 11.13

Limbu Section 10.5 Javanese Section 11.14

Saurashtra Section 10.8 Sundanese Section 11.17

Sharada Section 10.9 Mongolian Section 13.2

Takri Section 10.10 Osmanya Section 13.3

Chakma Section 10.11 N’Ko Section 13.5

Meetei Mayek Section 10.12 Vai Section 13.6
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

504 Symbols
Other Digits

Hexadecimal Digits. Conventionally, the letters “A” through “F”, or their lowercase equiva-
lents are used with the ASCII decimal digits to form a set of hexadecimal digits. These char-
acters have been assigned the Hex_Digit property. Although overlapping the letters and
digits this way is not ideal from the point of view of numerical parsing, the practice is long
standing; nothing would be gained by encoding a new, parallel, separate set of hexadecimal
digits.

Compatibility Digits. There are a several sets of compatibility digits in the Unicode Stan-
dard. Table 15-4 provides a full list of compatibility digits.

The fullwidth digits are simply wide presentation forms of ASCII digits, occuring in East
Asian typographical contexts. They have compatibility decompositions to ASCII digits,
have Numeric_Type=Decimal_Digit, and should be processed as regular decimal digits.

The various mathematically styled digits in the range U+1D7CE..U+1D7F5 are specifically
intended for mathematical use. They also have compatibility decompositions to ASCII dig-
its and meet the criteria for Numeric_Type=Decimal_Digit. Although they may have par-
ticular mathematical meanings attached to them, in most cases it would be safe for generic
parsers to simply treat them as additional sets of decimal digits.

Parsing of Superscript and Subscript Digits. In the Unicode Character Database, super-
script and subscript digits have not been given the General_Category property value
Decimal_Number (gc=Nd); correspondingly, they have the Numeric_Type Digit, rather
than Decimal_Digit. This is to prevent superscripted expressions like 23 from being inter-

Figure 15-6. CJK Ideographic Numbers

Table 15-4. Compatibility Digits

Description Code Range(s)
Numeric
Type

Decomp
Type

Section

Fullwidth digits FF10..FF19 Decimal_Digit Wide Section 12.5

Bold digits 1D7CE..1D7D7 Decimal_Digit Font Section 15.2

Double struck 1D7D8..1D7E1 Decimal_Digit Font Section 15.2

Monospace digits 1D7F6..1D7FF Decimal_Digit Font Section 15.2

Sans-serif digits 1D7E2..1D7EB Decimal_Digit Font Section 15.2

Sans-serif bold digits 1D7EC..1D7F5 Decimal_Digit Font Section 15.2

Superscript digits
2070, 00B9, 00B2,
00B3, 2074..2079

Digit Super Section 15.4

Subscript digits 2080..2089 Digit Sub Section 15.4

Circled digits 24EA, 2080..2089 Digit Circle

Parenthesized digits 2474..247C Digit Compat

Digits plus full stop 1F100, 2488..2490 Digit Compat

Digits plus comma 1F101..1F10A Digit Compat

Double circled digits 24F5..24FD Digit None

Dingbat negative circled digits 2776..277E Digit None

Dingbat circled sans-serif digits 2780..2788 Digit None

Dingbat negative circled sans-
serif digits

278A..2792 Digit None

or
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.3 Numerals 505
preted as 23 by simplistic parsers. More sophisticated numeric parsers, such as general
mathematical expression parsers, should correctly identify these compatibility superscript
and subscript characters as digits and interpret them appropriately. Note that the compati-
bility superscript digits are not encoded in a single, contiguous range.

For mathematical notation, the use of superscript or subscript styling of ASCII digits is
preferred over the use of compatibility superscript or subscript digits. See Unicode Techni-
cal Report #25, “Unicode Support for Mathematics,” for more discussion of this topic.

Numeric Bullets. The other sets of compatibility digits listed in Table 15-4 are typically
derived from East Asian legacy character sets, where their most common use is as num-
bered text bullets. Most occur as part of sets which extend beyond the value 9 up to 10, 12,
or even 50. Most are also defective as sets of digits because they lack a value for 0. None is
given the Numeric_Type of Decimal_Digit. Only the basic set of simple circled digits is
given compatibility decompositions to ASCII digits. The rest either have compatibility
decompositions to digits plus punctuation marks or have no decompositions at all. Effec-
tively, all of these numeric bullets should be treated as dingbat symbols with numbers
printed on them; they should not be parsed as representations of numerals.

Glyph Variants of Decimal Digits. Some variations of decimal digits are considered glyph
variants and are not separately encoded. These include the old style variants of digits, as
shown in Figure 15-7. Glyph variants of the digit zero with a centered dot or a diagonal
slash to distinguish it from the uppercase letter “O”, or of the digit seven with a horizontal
bar to distinguish it from handwritten forms for the digit one, are likewise not separately
encoded.

Significant regional glyph variants for the Eastern-Arabic Digits U+06F0..U+06F9 also
occur, but are not separately encoded. See Table 8-2 for illustrations of those variants.

Accounting Numbers. Accounting numbers are variant forms of digits or other numbers
designed to deter fraud. They are used in accounting systems or on various financial instru-
ments such as checks. These numbers often take shapes which cannot be confused with
other digits or letters, and which are difficult to convert into another digit or number by
adding on to the written form. When such numbers are clearly distinct characters, as
opposed to merely glyph variants, they are separately encoded in the standard. The use of
accounting numbers is particularly widespread in Chinese and Japanese, because the Han
ideographs for one, two, and three have simple shapes that are easy to convert into other
numbers by forgery. See Table 4-11, for a list of the most common alternate ideographs
used as accounting numbers for the traditional Chinese numbering system.

Characters for accounting numbers are occasionally encoded separately for other scripts as
well. For example, U+19DA new tai lue tham digit one is an accounting form for the
digit one which cannot be confused with the vowel sign -aa and which cannot easily be
converted into the digit for three.

Non-Decimal Radix Systems

A number of scripts have number systems that are not decimal place-value notations. The
following provides descriptions or references to descriptions of these elsewhere in the Stan-
dard.

Figure 15-7. Regular and Old Style Digits

Regular Digits: 0 1 2 3 4 5 6 7 8 9

Old Style Digits: 0 1 2 3 4 5 6 7 8 9
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

506 Symbols
Ethiopic Numerals. The Ethiopic script contains digits and other numbers for a traditional
number system which is not a decimal place-value notation. This traditional system does
not use a zero. It is further described in Section 13.1, Ethiopic.

Cuneiform Numerals. Sumero-Akkadian numerals were used for sexagesimal systems.
There was no symbol for zero, but by Babylonian times, a place value system was in use.
Thus the exact value of a digit depended on its position in a number. There was also ambi-
guity in numerical representation, because a symbol such as U+12079 cuneiform sign

dish could represent either 1 or 1 × 60 or 1 × (60 × 60), depending on the context. A
numerical expression might also be interpreted as a sexigesimal fraction. So the sequence
<1, 10, 5> might be evaluated as 1 × 60 + 10 + 5 = 75 or 1 × 60 × 60 + 10 + 5 = 3615 or 1
+ (10 + 5)/60 = 1.25. Many other complications arise in Cuneiform numeral systems, and
they clearly require special processing distinct from that used for modern decimal radix
systems. For more information, see Section 14.17, Sumero-Akkadian.

Other Ancient Numeral Systems. A number of other ancient numeral systems have char-
acters encoded for them. Many of these ancient systems are variations on tallying systems.
In numerous cases, the data regarding ancient systems and their use is incomplete, because
of the fragmentary nature of the ancient text corpuses. Characters for numbers are
encoded, however, to enable complete representation of the text which does exist.

Ancient Aegean numbers were used with the Linear A and Linear B scripts, as well as the
Cypriot syllabary. They are described in Section 14.6, Linear B.

Many of the ancient Semitic scripts had very similar numeral systems which used tally-
shaped numbers for one, two, and three, and which then grouped those, along with some
signs for tens and hundreds, to form larger numbers. See the discussion of these systems in
Section 14.10, Phoenician and, in particular, the discussion with examples of number for-
mation in Section 14.11, Imperial Aramaic.

Acrophonic Systems and Other Letter-based Numbers

There are many instances of numeral systems, particularly historic ones, which use letters
to stand for numbers. In some cases these systems may coexist with numeral systems using
separate digits or other numbers. Two important sub-types are acrophonic systems, which
assign numeric values based on the letters used for the initial sounds of number words, and
alphabetic numerals, which assign numeric values based roughly on alphabetic order. A
well-known example of a partially acrophonic system is the Roman numerals, which
include c(entum) and m(ille) for 100 and 1000, respectively. The Greek Milesian numerals
are an example of an alphabetic system, with alpha=1, beta=2, gamma=3, and so forth.

In the Unicode Standard, although many letters in common scripts are known to be used
for such letter-based numbers, they are not given numeric properties unless their only use
is as an extension of an alphabet specifically for numbering. In most cases, the interpreta-
tion of letters or strings of letters as having numeric values is outside the scope of the stan-
dard.

Roman Numerals. For most purposes, it is preferable to compose the Roman numerals
from sequences of the appropriate Latin letters. However, the uppercase and lowercase
variants of the Roman numerals through 12, plus L, C, D, and M, have been encoded in the
Number Forms block (U+2150..U+218F) for compatibility with East Asian standards.
Unlike sequences of Latin letters, these symbols remain upright in vertical layout. Addi-
tionally, in certain locales, compact date formats use Roman numerals for the month, but
may expect the use of a single character.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.3 Numerals 507
In identifiers, the use of Roman numeral symbols—particularly those based on a single let-
ter of the Latin alphabet—can lead to spoofing. For more information, see Unicode Tech-
nical Report #36, “Unicode Security Considerations.”

U+2180 roman numeral one thousand c d and U+216F roman numeral one thou-

sand can be considered to be glyphic variants of the same Roman numeral, but are distin-
guished because they are not generally interchangeable and because U+2180 cannot be
considered to be a compatibility equivalent to the Latin letter M. U+2181 roman numeral

five thousand and U+2182 roman numeral ten thousand are distinct characters used
in Roman numerals; they do not have compatibility decompositions in the Unicode Stan-
dard. U+2183 roman numeral reversed one hundred is a form used in combinations
with C and/or I to form large numbers—some of which vary with single character number
forms such as D, M, U+2181, or others. U+2183 is also used for the Claudian letter anti-
sigma.

Greek Numerals. The ancient Greeks used a set of acrophonic numerals, also known as
Attic numerals. These are represented in the Unicode Standard using capital Greek letters.
A number of extensions for the Greek acrophonic numerals, which combine letter forms in
odd ways, or which represent local regional variants, are separately encoded in the Ancient
Greek Numbers block, U+10140..U+1018A.

Greek also has an alphabetic numeral system, called Milesian or Alexandrian numerals.
These use the first third of the Greek alphabet to represent 1 through 9, the middle third for
10 through 90, and the last third for 100 through 900. U+0374 greek numeral sign (the
dexia keraia) marks letters as having numeric values in modern typography. U+0375
greek lower numeral sign (the aristeri keraia) is placed on the left side of a letter to indi-
cate a value in the thousands.

In Byzantine and other Greek manuscript traditions, numbers were often indicated by a
horizontal line drawn above the letters being used as numbers. The Coptic script uses sim-
ilar conventions. See Section 7.3, Coptic.

Rumi Numeral Forms: U+10E60–U+10E7E

Rumi, also known today as Fasi, is an numeric system used from the 10th to 17th centuries
ce in a wide area, spanning from Egypt, across the Maghreb, to al-Andalus on the Iberian
Peninsula. The Rumi numerals originate from the Coptic or Greek-Coptic tradition, but
are not a positionally-based numbering system.

The numbers appear in foliation, chapter, and quire notations in manuscripts of religious,
scientific, accounting and mathematical works. They also were used on astronomical
instruments.

There is considerable variety in the Rumi glyph shapes over time: the digit “nine,” for
example, appears in a theta shape in the early period. The glyphs in the code charts derive
from a copy of a manuscript by Ibn Al-Banna (1256-1321), with glyphs that are similar to
those found in 16th century manuscripts from the Maghreb.

CJK Numerals

CJK Ideographic Traditional Numerals. The traditional Chinese system for writing
numerals is not a decimal radix system. It is decimal-based, but uses a series of decimal
counter symbols that function somewhat like tallies. So for example, the representation of
the number 12,346 in the traditional system would be by a sequence of CJK ideographs
with numeric values as follows: <one, ten-thousand, two, thousand, three, hundred, four,
ten, six>. See Table 4-10 for a list of all the CJK ideographs for digits and decimal counters
used in this system. The traditional system is still in widespread use, not only in China and
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

508 Symbols
other countries where Chinese is used, but also in countries whose writing adopted Chi-
nese characters—most notably, in Japan. In both China and Japan the traditional system
now coexists with very common use of the European digits.

Chinese Counting-Rod Numerals. Counting-rod numerals were used in pre-modern East
Asian mathematical texts in conjunction with counting rods used to represent and manip-
ulate numbers. The counting rods were a set of small sticks, several centimeters long that
were arranged in patterns on a gridded counting board. Counting rods and the counting
board provided a flexible system for mathematicians to manipulate numbers, allowing for
considerable sophistication in mathematics.

The specifics of the patterns used to represent various numbers using counting rods varied,
but there are two main constants: Two sets of numbers were used for alternate columns;
one set was used for the ones, hundreds, and ten-thousands columns in the grid, while the
other set was used for the tens and thousands. The shapes used for the counting-rod
numerals in the Unicode Standard follow conventions from the Song dynasty in China,
when traditional Chinese mathematics had reached its peak. Fragmentary material from
many early Han dynasty texts shows different orientation conventions for the numerals,
with horizontal and vertical marks swapped for the digits and tens places.

Zero was indicated by a blank square on the counting board and was either avoided in writ-
ten texts or was represented with U+3007 ideographic number zero. (Historically,
U+3007 ideographic number zero originated as a dot; as time passed, it increased in size
until it became the same size as an ideograph. The actual size of U+3007 ideographic

number zero in mathematical texts varies, but this variation should be considered a font
difference.) Written texts could also take advantage of the alternating shapes for the numer-
als to avoid having to explicitly represent zero. Thus 6,708 can be distinguished from 678,
because the former would be /'(, whereas the latter would be &0(.

Negative numbers were originally indicated on the counting board by using rods of a dif-
ferent color. In written texts, a diagonal slash from lower right to upper left is overlaid upon
the rightmost digit. On occasion, the slash might not be actually overlaid. U+20E5 com-

bining reverse solidus overlay should be used for this negative sign.

The predominant use of counting-rod numerals in texts was as part of diagrams of count-
ing boards. They are, however, occasionally used in other contexts, and they may even
occur within the body of modern texts.

Suzhou-Style Numerals. The Suzhou-style numerals are CJK ideographic number forms
encoded in the CJK Symbols and Punctuation block in the ranges U+3021..U+3029 and
U+3038..U+303A.

The Suzhou-style numerals are modified forms of CJK ideographic numerals that are used
by shopkeepers in China to mark prices. They are also known as “commercial forms,”
“shop units,” or “grass numbers.” They are encoded for compatibility with the CNS 11643-
1992 and Big Five standards. The forms for ten, twenty, and thirty, encoded at
U+3038..U+303A, are also encoded as CJK unified ideographs: U+5341, U+5344, and
U+5345, respectively. (For twenty, see also U+5EFE and U+5EFF.)

These commercial forms of Chinese numerals should be distinguished from the use of
other CJK unified ideographs as accounting numbers to deter fraud. See Table 4-11 in
Section 4.6, Numeric Value, for a list of ideographs used as accounting numbers.

Why are the Suzhou numbers called Hangzhou numerals in the Unicode names? No one
has been able to trace this back. Hangzhou is a district in China that is near the Suzhou dis-
trict, but the name “Hangzhou” does not occur in other sources that discuss these number
forms.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.3 Numerals 509
Fractions

The Number Forms block (U+2150..U+218F) contains a series of vulgar fraction charac-
ters, encoded for compatibility with legacy character encoding standards. These characters
are intended to represent both of the common forms of vulgar fractions: forms with a
right-slanted division slash, such as G, as shown in the code charts, and forms with a hori-
zontal division line, such as H, which are considered to be alternative glyphs for the same
fractions, as shown in Figure 15-8. A few other vulgar fraction characters are located in the
Latin-1 block in the range U+00BC..U+00BE.

The unusual fraction character, U+2189 vulgar fraction zero thirds, is in origin a
baseball scoring symbol from the Japanese television standard, ARIB STD B24.For baseball
scoring, this character and the related fractions, U+2153 vulgar fraction one third and
U+2154 vulgar fraction two thirds, use the glyph form with the slanted division slash,
and do not use the alternate stacked glyph form.

The vulgar fraction characters are given compatibility decompositions using U+2044 “/”
fraction slash. Use of the fraction slash is the more generic way to represent fractions in
text; it can be used to construct fractional number forms that are not included in the collec-
tions of vulgar fraction characters. For more information on the fraction slash, see “Other
Punctuation” in Section 6.2, General Punctuation.

Common Indic Number Forms: U+A830–U+A83F

The Common Indic Number Forms block contains characters widely used in traditional
representations of fractional values in numerous scripts of North India, Pakistan and in
some areas of Nepal. The fraction signs were used to write currency, weight, measure, time,
and other units. Their use in written documents is attested from at least the 16th century
ce and in texts printed as late as 1970. They are occasionally still used in a limited capacity.

The North Indic fraction signs represent fraction values of a base-16 notation system.
There are atomic symbols for 1/16, 2/16, 3/16 and for 1/4, 2/4, and 3/4. Intermediate values
such as 5/16 are written additively by using two of the atomic symbols: 5/16 = 1/4 + 1/16,
and so on.

The signs for the fractions 1/4, 1/2, and 3/4 sometimes take different forms when they are
written independently, without a currency or quantity mark. These independent forms
were used more generally in Maharashtra and Gujarat, and they appear in materials written
and printed in the Devanagari and Gujarati scripts. The independent fraction signs are rep-
resented by using middle dots to the left and right of the regular fraction signs.

U+A836 north indic quarter mark is used in some regional orthographies to explicitly
indicate fraction signs for 1/4, 1/2, and 3/4 in cases where sequences of other marks could
be ambiguous in reading.

This block also contains several other symbols that are not strictly number forms. They are
used in traditional representation of numeric amounts for currency, weights, and other
measures in the North Indic orthographies which use the fraction signs. U+A837 north

indic placeholder mark is a symbol used in currency representations to indicate the
absence of an intermediate value. U+A839 north indic quantity mark is a unit mark for
various weights and measures.

Figure 15-8. Alternate Forms of Vulgar Fractions

G H
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

510 Symbols
The North Indic fraction signs are related to fraction signs that have specific forms and are
separately encoded in some North Indic scripts. See, for example, U+09F4 bengali cur-

rency numerator one. Similar forms are attested for the Oriya script.

15.4 Superscript and Subscript Symbols
In general, the Unicode Standard does not attempt to describe the positioning of a charac-
ter above or below the baseline in typographical layout. Therefore, the preferred means to
encode superscripted letters or digits, such as “1st” or “DC0016”, is by style or markup in
rich text. However, in some instances superscript or subscript letters are used as part of the
plain text content of specialized phonetic alphabets, such as the Uralic Phonetic Alphabet.
These superscript and subscript letters are mostly from the Latin or Greek scripts. These
characters are encoded in other character blocks, along with other modifier letters or pho-
netic letters. In addition, superscript digits are used to indicate tone in transliteration of
many languages. The use of superscript two and superscript three is common legacy practice
when referring to units of area and volume in general texts.

Superscripts and Subscripts: U+2070–U+209F

A certain number of additional superscript and subscript characters are needed for round-
trip conversions to other standards and legacy code pages. Most such characters are
encoded in this block and are considered compatibility characters.

Parsing of Superscript and Subscript Digits. In the Unicode Character Database, super-
script and subscript digits have not been given the General_Category property value
Decimal_Number (gc=Nd), so as to prevent expressions like 23 from being interpreted like
23 by simplistic parsers. This should not be construed as preventing more sophisticated
numeric parsers, such as general mathematical expression parsers, from correctly identify-
ing these compatibility superscript and subscript characters as digits and interpreting them
appropriately. See also the discussion of digits in Section 15.3, Numerals.

Standards. Many of the characters in the Superscripts and Subscripts block are from charac-
ter sets registered in the ISO International Register of Coded Character Sets to be Used With
Escape Sequences, under the registration standard ISO/IEC 2375, for use with ISO/IEC
2022. Two MARC 21 character sets used by libraries include the digits, plus signs, minus
signs, and parentheses.

Superscripts and Subscripts in Other Blocks. The superscript digits one, two, and three
are coded in the Latin-1 Supplement block to provide code point compatibility with
ISO/IEC 8859-1. For a discussion of U+00AA feminine ordinal indicator and U+00BA
masculine ordinal indicator, see “Letters of the Latin-1 Supplement” in Section 7.1,
Latin. U+2120 service mark and U+2122 trade mark sign are commonly used symbols
that are encoded in the Letterlike Symbols block (U+2100..U+214F); they consist of
sequences of two superscripted letters each.

For phonetic usage, there are a small number of superscript letters located in the Spacing
Modifier Letters block (U+02B0..U+02FF) and a large number of superscript and subscript
letters in the Phonetic Extensions block (U+1D00..U+1D7F) and in the Phonetic Exten-
sions Supplement block (U+1D80..U+1DBF). Those superscript and subscript letters
function as modifier letters. The subset of those characters that are superscripted contain
the words “modifier letter” in their names, instead of “superscript.” The two superscript
Latin letters in the Superscripts and Subscripts block, U+2071 superscript latin small

letter i and U+207F superscript latin small letter n are considered part of that set
of modifier letters; the difference in the naming conventions for them is an historical arti-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.5 Mathematical Symbols 511
fact, and is not intended to convey a functional distinction in the use of those characters in
the Unicode Standard.

There are also a number of superscript or subscript symbols encoded in the Spacing Mod-
ifier Letters block (U+02B0..U+02FF). These symbols also often have the words “modifier
letter” in their names, but are distinguished from most modifier letters by having the
General_Category property value Sk. Like most modifier letters, the usual function of these
superscript or subscript symbols is to indicate particular modifications of sound values in
phonetic transcriptional systems. Characters such as U+02C2 modifier letter left

arrowhead or U+02F1 modifier letter low left arrowhead should not be used to
represent normal mathematical relational symbols such as U+003C “<” less-than sign in
superscripted or subscripted expressions.

Finally, a small set of superscripted CJK ideographs, used for the Japanese system of syntac-
tic markup of Classical Chinese text for reading, is located in the Kanbun block
(U+3190..U+319F).

15.5 Mathematical Symbols
The Unicode Standard provides a large set of standard mathematical characters to support
publications of scientific, technical, and mathematical texts on and off the Web. In addition
to the mathematical symbols and arrows contained in the blocks described in this section,
mathematical operators are found in the Basic Latin (ASCII) and Latin-1 Supplement
blocks. A few of the symbols from the Miscellaneous Technical, Miscellaneous Symbols,
and Dingbats blocks, as well as characters from General Punctuation, are also used in
mathematical notation. For Latin and Greek letters in special font styles that are used as
mathematical variables, such as U+210B script capital h, as well as the Hebrew letter
alef used as the first transfinite cardinal symbol encoded by U+2135 ℵ alef symbol, see
“Letterlike Symbols” and “Mathematical Alphanumeric Symbols” in Section 15.2, Letterlike
Symbols.

The repertoire of mathematical symbols in Unicode enables the display of virtually all stan-
dard mathematical symbols. Nevertheless, no collection of mathematical symbols can ever
be considered complete; mathematicians and other scientists are continually inventing new
mathematical symbols. More symbols will be added as they become widely accepted in the
scientific communities.

Semantics. The same mathematical symbol may have different meanings in different sub-
disciplines or different contexts. The Unicode Standard encodes only a single character for
a single symbolic form. For example, the “+” symbol normally denotes addition in a math-
ematical context, but it might refer to concatenation in a computer science context dealing
with strings, indicate incrementation, or have any number of other functions in given con-
texts. It is up to the application to distinguish such meanings according to the appropriate
context. Where information is available about the usage (or usages) of particular symbols,
it has been indicated in the character annotations in the code charts.

Mathematical Property. The mathematical (math) property is an informative property of
characters that are used as operators in mathematical formulas. The mathematical prop-
erty may be useful in identifying characters commonly used in mathematical text and for-
mulas. However, a number of these characters have multiple usages and may occur with
nonmathematical semantics. For example, U+002D hyphen-minus may also be used as a
hyphen—and not as a mathematical minus sign. Other characters, including some alpha-
betic, numeric, punctuation, spaces, arrows, and geometric shapes, are used in mathemat-
ical expressions as well, but are even more dependent on the context for their
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

512 Symbols
identification. A list of characters with the mathematical property is provided in the Uni-
code Character Database.

For a classification of mathematical characters by typographical behavior and mapping to
ISO 9573-13 entity sets, see Unicode Technical Report #25, “Unicode Support for Mathe-
matics.”

Mathematical Operators: U+2200–U+22FF

The Mathematical Operators block includes character encodings for operators, relations,
geometric symbols, and a few other symbols with special usages confined largely to mathe-
matical contexts.

Standards. Many national standards’ mathematical operators are covered by the characters
encoded in this block. These standards include such special collections as ANSI Y10.20,
ISO 6862, ISO 8879, and portions of the collection of the American Mathematical Society,
as well as the original repertoire of TEX.

Encoding Principles. Mathematical operators often have more than one meaning. There-
fore the encoding of this block is intentionally rather shape-based, with numerous
instances in which several semantic values can be attributed to the same Unicode code
point. For example, U+2218 ° ring operator may be the equivalent of white small circle or
composite function or apl jot. The Unicode Standard does not attempt to distinguish all pos-
sible semantic values that may be applied to mathematical operators or relation symbols.

The Unicode Standard does include many characters that appear to be quite similar to one
another, but that may well convey different meanings in a given context. Conversely, math-
ematical operators, and especially relation symbols, may appear in various standards,
handbooks, and fonts with a large number of purely graphical variants. Where variants
were recognizable as such from the sources, they were not encoded separately. For relation
symbols, the choice of a vertical or forward-slanting stroke typically seems to be an aes-
thetic one, but both slants might appear in a given context. However, a back-slanted stroke
almost always has a distinct meaning compared to the forward-slanted stroke. See
Section 16.4, Variation Selectors, for more information on some particular variants.

Unifications. Mathematical operators such as implies and if and only if ↔ have been
unified with the corresponding arrows (U+21D2 rightwards double arrow and
U+2194 left right arrow, respectively) in the Arrows block.

The operator U+2208 element of is occasionally rendered with a taller shape than shown
in the code charts. Mathematical handbooks and standards consulted treat these characters
as variants of the same glyph. U+220A small element of is a distinctively small version of
the element of that originates in mathematical pi fonts.

The operators U+226B much greater-than and U+226A much less-than are some-
times rendered in a nested shape. The nested shapes are encoded separately as U+2AA2
double nested greater-than and U+2AA1 double nested less-than.

A large class of unifications applies to variants of relation symbols involving negation. Vari-
ants involving vertical or slanted negation slashes and negation slashes of different lengths
are not separately encoded. For example, U+2288 neither a subset of nor equal to is
the archetype for several different glyph variants noted in various collections.

In two instances in this block, essentially stylistic variants are separately encoded: U+2265
greater-than or equal to is distinguished from U+2267 greater-than over equal

to; the same distinction applies to U+2264 less-than or equal to and U+2266 less-

than over equal to. Further instances of the encoding of such stylistic variants can be
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.5 Mathematical Symbols 513
found in the supplemental blocks of mathematical operators. The primary reason for such
duplication is for compatibility with existing standards.

Greek-Derived Symbols. Several mathematical operators derived from Greek characters
have been given separate encodings because they are used differently from the correspond-
ing letters. These operators may occasionally occur in context with Greek-letter variables.
They include U+2206 Δ increment, U+220F n-ary product, and U+2211 n-ary

summation. The latter two are large operators that take limits.

Other duplicated Greek characters are those for U+00B5 μ micro sign in the Latin-1 Sup-
plement block, U+2126 Ω ohm sign in Letterlike Symbols, and several characters among
the APL functional symbols in the Miscellaneous Technical block. Most other Greek char-
acters with special mathematical semantics are found in the Greek block because duplicates
were not required for compatibility. Additional sets of mathematical-style Greek alphabets
are found in the Mathematical Alphanumeric Symbols block.

N-ary Operators. N-ary operators are distinguished from binary operators by their larger
size and by the fact that in mathematical layout, they take limit expressions.

Invisible Operators. In mathematics, some operators or punctuation are often implied but
not displayed. For a set of invisible operators that can be used to mark these implied oper-
ators in the text, see Section 15.6, Invisible Mathematical Operators.

Minus Sign. U+2212 “–” minus sign is a mathematical operator, to be distinguished from
the ASCII-derived U+002D “-” hyphen-minus, which may look the same as a minus sign
or be shorter in length. (For a complete list of dashes in the Unicode Standard, see
Table 6-3.) U+22EE..U+22F1 are a set of ellipses used in matrix notation. U+2052 “%”
commercial minus sign is a specialized form of the minus sign. Its use is described in
Section 6.2, General Punctuation.

Delimiters. Many mathematical delimiters are unified with punctuation characters. See
Section 6.2, General Punctuation, for more information. Some of the set of ornamental
Brackets in the range U+2768..U+2775 are also used as mathematical delimiters. See
Section 15.9, Miscellaneous Symbols. See also Section 15.7, Technical Symbols, for specialized
characters used for large vertical or horizontal delimiters.

Bidirectional Layout. In a bidirectional context, with the exception of arrows, the glyphs
for mathematical operators and delimiters are adjusted as described in Unicode Standard
Annex #9, “Unicode Bidirectional Algorithm.” See Section 4.7, Bidi Mirrored, and “Seman-
tics of Paired Punctuation” in Section 6.2, General Punctuation.

Other Elements of Mathematical Notation. In addition to the symbols in these blocks,
mathematical and scientific notation makes frequent use of arrows, punctuation charac-
ters, letterlike symbols, geometrical shapes, and miscellaneous and technical symbols.

For an extensive discussion of mathematical alphanumeric symbols, see Section 15.2, Let-
terlike Symbols. For additional information on all the mathematical operators and other
symbols, see Unicode Technical Report #25, “Unicode Support for Mathematics.”

Supplements to Mathematical Symbols and Arrows

The Unicode Standard defines a number of additional blocks to supplement the repertoire
of mathematical operators and arrows. These additions are intended to extend the Unicode
repertoire sufficiently to cover the needs of such applications as MathML, modern mathe-
matical formula editing and presentation software, and symbolic algebra systems.

Standards. MathML, an XML application, is intended to support the full legacy collection
of the ISO mathematical entity sets. Accordingly, the repertoire of mathematical symbols
for the Unicode Standard has been supplemented by the full list of mathematical entity sets
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

514 Symbols
in ISO TR 9573-13, Public entity sets for mathematics and science. An additional repertoire
was provided from the amalgamated collection of the STIX Project (Scientific and Techni-
cal Information Exchange). That collection includes, but is not limited to, symbols gleaned
from mathematical publications by experts of the American Mathematical Society and
symbol sets provided by Elsevier Publishing and by the American Physical Society.

Supplemental Mathematical Operators: U+2A00–U+2AFF

The Supplemental Mathematical Operators block contains many additional symbols to
supplement the collection of mathematical operators.

Miscellaneous Mathematical Symbols-A: U+27C0–U+27EF

The Miscellaneous Mathematical Symbols-A block contains symbols that are used mostly
as operators or delimiters in mathematical notation.

Mathematical Brackets. The mathematical white square brackets, angle brackets, double
angle brackets, and tortoise shell brackets encoded at U+27E6..U+27ED are intended for
ordinary mathematical use of these particular bracket types. They are unambiguously nar-
row, for use in mathematical and scientific notation, and should be distinguished from the
corresponding wide forms of white square brackets, angle brackets, and double angle
brackets used in CJK typography. (See the discussion of the CJK Symbols and Punctuation
block in Section 6.2, General Punctuation.) Note especially that the “bra” and “ket” angle
brackets (U+2329 left-pointing angle bracket and U+232A right-pointing angle

bracket, respectively) are deprecated. Their use is strongly discouraged, because of their
canonical equivalence to CJK angle brackets. This canonical equivalence is likely to result in
unintended spacing problems if these characters are used in mathematical formulae.

The flattened parentheses encoded at U+27EE..U+27EF are additional, specifically-styled
mathematical parentheses. Unlike the mathematical and CJK brackets just discussed, the
flattened parentheses do not have corresponding wide CJK versions which they would need
to be contrasted with.

Long Division. U+27CC long division is an operator intended for the representation of
long division expressions, as may be seen in elementary and secondary school mathemati-
cal textbooks, for example. In use and rendering it shares some characteristics with
U+221A square root; in rendering, the top bar may be stretched to extend over the top of
the denominator of the division expression. Full support of such rendering may, however,
require specialized mathematical software.

Fractional Slash and Other Diagonals. U+27CB mathematical rising diagonal and
U+27CD mathematical falling diagonal are limited-use mathematical symbols, to be
distinguished from the more widely used solidi and reverse solidi operators encoded in the
Basic Latin, Mathematical Operators, and Miscellaneous Mathematical Symbols-B blocks.
Their glyphs are invariably drawn at a 45 degree angle, instead of the more upright slants
typical for the solidi operators. The box drawing characters U+2571 and U+2572, whose
glyphs may also be found at a 45 degree angle in some fonts, are not intended to be used as
mathematical symbols. One usage recorded for U+27CB and U+27CD is in the notation
for spaces of double cosets. The former corresponds to the LaTeX entity \diagup and the
latter to \diagdown.

Miscellaneous Mathematical Symbols-B: U+2980–U+29FF

The Miscellaneous Mathematical Symbols-B block contains miscellaneous symbols used
for mathematical notation, including fences and other delimiters. Some of the symbols in
this block may also be used as operators in some contexts.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.5 Mathematical Symbols 515
Wiggly Fence. U+29D8 left wiggly fence has a superficial similarity to U+FE34 presen-

tation form for vertical wavy low line. The latter is a wiggly sidebar character,
intended for legacy support as a style of underlining character in a vertical text layout con-
text; it has a compatibility mapping to U+005F low line. This represents a very different
usage from the standard use of fence characters in mathematical notation.

Miscellaneous Symbols and Arrows: U+2B00–U+2B7F

The Miscellaneous Symbols and Arrows block contains more mathematical symbols and
arrows. The arrows in this block extend and complete sets of arrows in other blocks. The
other mathematical symbols complement various sets of geometric shapes. For a discus-
sion of the use of such shape symbols in mathematical contexts, see “Geometric Shapes:
U+25A0–U+25FF” in Section 15.8, Geometrical Symbols.

This block also contains various types of generic symbols. These complement the set of
symbols in the Miscellaneous Symbols block, U+2600..U+26FF.

Arrows: U+2190–U+21FF

Arrows are used for a variety of purposes: to imply directional relation, to show logical der-
ivation or implication, and to represent the cursor control keys.

Accordingly, the Unicode Standard includes a fairly extensive set of generic arrow shapes,
especially those for which there are established usages with well-defined semantics. It does
not attempt to encode every possible stylistic variant of arrows separately, especially where
their use is mainly decorative. For most arrow variants, the Unicode Standard provides
encodings in the two horizontal directions, often in the four cardinal directions. For the
single and double arrows, the Unicode Standard provides encodings in eight directions.

Bidirectional Layout. In bidirectional layout, arrows are not automatically mirrored,
because the direction of the arrow could be relative to the text direction or relative to an
absolute direction. Therefore, if text is copied from a left-to-right to a right-to-left context,
or vice versa, the character code for the desired arrow direction in the new context must be
used. For example, it might be necessary to change U+21D2 rightwards double arrow

to U+21D0 leftwards double arrow to maintain the semantics of “implies” in a right-
to-left context. For more information on bidirectional layout, see Unicode Standard Annex
#9, “Unicode Bidirectional Algorithm.”

Standards. The Unicode Standard encodes arrows from many different international and
national standards as well as corporate collections.

Unifications. Arrows expressing mathematical relations have been encoded in the Arrows
block as well as in the supplemental arrows blocks. An example is U+21D2 right-

wards double arrow, which may be used to denote implies. Where available, such usage
information is indicated in the annotations to individual characters in the code charts.
However, because the arrows have such a wide variety of applications, there may be several
semantic values for the same Unicode character value.

Supplemental Arrows

The Supplemental Arrows-A (U+27F0..U+27FF), Supplemental Arrows-B (U+2900..
U+297F), and Miscellaneous Symbols and Arrows (U+2B00..U+2BFF) blocks contain a
large repertoire of arrows to supplement the main set in the Arrows block. Many of the sup-
plemental arrows in the Miscellaneous Symbols and Arrows block, particularly in the range
U+2B30..U+2B4C, are encoded to ensure the availability of left-right symmetric pairs of
less common arrows, for use in bidirectional layout of mathematical text.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

516 Symbols
Long Arrows. The long arrows encoded in the range U+27F5..U+27FF map to standard
SGML entity sets supported by MathML. Long arrows represent distinct semantics from
their short counterparts, rather than mere stylistic glyph differences. For example, the
shorter forms of arrows are often used in connection with limits, whereas the longer ones
are associated with mappings. The use of the long arrows is so common that they were
assigned entity names in the ISOAMSA entity set, one of the suite of mathematical symbol
entity sets covered by the Unicode Standard.

Standardized Variants of Mathematical Symbols

These mathematical variants are all produced with the addition of U+FE00 variation

selector-1 (VS1) to mathematical operator base characters. The valid combinations are
listed in the file StandardizedVariants.txt in the Unicode Character Database. All combina-
tions not listed there are unspecified and are reserved for future standardization; no con-
formant process may interpret them as standardized variants.

Change in Representative Glyphs for U+2278 and U+2279. In Version 3.2 of the Unicode
Standard, the representative glyphs for U+2278 neither less-than nor greater-than

and U+2279 neither greater-than nor less-than were changed from using a vertical
cancellation to using a slanted cancellation. This change was made to match the long-
standing canonical decompositions for these characters, which use U+0338 combining

long solidus overlay. The symmetric forms using the vertical stroke continue to be
acceptable glyph variants. Using U+2276 less-than or greater-than or U+2277
greater-than or less-than with U+20D2 combining long vertical line overlay

will display these variants explicitly. Unless fonts are created with the intention to add sup-
port for both forms, there is no need to revise the glyphs in existing fonts; the glyphic range
implied by using the base character code alone encompasses both shapes. For more infor-
mation, see Section 16.4, Variation Selectors.

15.6 Invisible Mathematical Operators
In mathematics, some operators and punctuation are often implied but not displayed. The
General Punctuation block contains several special format control characters known as
invisible operators, which can be used to make such operators explicit for use in machine
interpretation of mathematical expressions. Use of invisible operators is optional and is
intended for interchange with math-aware programs.

A more complete discussion of mathematical notation can be found in Unicode Technical
Report #25, “Unicode Support for Mathematics.”

Invisible Separator. U+2063 invisible separator (also known as invisible comma) is
intended for use in index expressions and other mathematical notation where two adjacent
variables form a list and are not implicitly multiplied. In mathematical notation, commas
are not always explicitly present, but they need to be indicated for symbolic calculation
software to help it disambiguate a sequence from a multiplication. For example, the double

ij subscript in the variable aij means ai, j —that is, the i and j are separate indices and not a
single variable with the name ij or even the product of i and j. To represent the implied list
separation in the subscript ij, one can insert a nondisplaying invisible separator between the
i and the j. In addition, use of the invisible comma would hint to a math layout program
that it should typeset a small space between the variables.

Invisible Multiplication. Similarly, an expression like mc2 implies that the mass m multi-
plies the square of the speed c. To represent the implied multiplication in mc2, one inserts a
nondisplaying U+2062 invisible times between the m and the c. Another example can be
seen in the expression f ij(cos(ab)), which has the same meaning as f ij(cos(a×b)), where ×
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.7 Technical Symbols 517
represents multiplication, not the cross product. Note that the spacing between characters
may also depend on whether the adjacent variables are part of a list or are to be concate-
nated (that is, multiplied).

Invisible Plus. The invisible plus operator, U+2064 invisible plus, is used to unambigu-
ously represent expressions like 3¼ which occur frequently in school and engineering texts.
To ensure that 3¼ means 3 plus ¼—in uses where it is not possible to rely on a human
reader to disambiguate the implied intent of juxtaposition—the invisible plus operator is
used. In such uses, not having an operator at all would imply multiplication.

Invisible Function Application. U+2061 function application is used for an implied
function dependence, as in f(x + y). To indicate that this is the function f of the quantity x
+ y and not the expression fx + fy, one can insert the nondisplaying function application
symbol between the f and the left parenthesis.

15.7 Technical Symbols

Control Pictures: U+2400–U+243F

The need to show the presence of the C0 control codes unequivocally when data are dis-
played has led to conventional representations for these nongraphic characters.

Code Points for Pictures for Control Codes. By definition, control codes themselves are
manifested only by their action. However, it is sometimes necessary to show the position of
a control code within a data stream. Conventional illustrations for the ASCII C0 control
codes have been developed—but the characters U+2400..U+241F and U+2424 are
intended for use as unspecified graphics for the corresponding control codes. This choice
allows a particular application to use any desired pictorial representation of the given con-
trol code. It assumes that the particular pictures used to represent control codes are often
specific to different systems and are rarely the subject of text interchange between systems.

Pictures for ASCII Space. By definition, the space is a blank graphic. Conventions have
also been established for the visible representation of the space. Three specific characters
are provided that may be used to visually represent the ASCII space character, U+2420
symbol for space, U+2422 blank symbol, and U+2423 open box.

Standards. The CNS 11643 standard encodes characters for pictures of control codes.
Standard representations for control characters have been defined—for example, in ANSI
X3.32 and ISO 2047. If desired, the characters U+2400..U+241F may be used for these rep-
resentations.

Miscellaneous Technical: U+2300–U+23FF

This block encodes technical symbols, including keytop labels such as U+232B erase to

the left. Excluded from consideration were symbols that are not normally used in one-
dimensional text but are intended for two-dimensional diagrammatic use, such as most
symbols for electronic circuits.

Keytop Labels. Where possible, keytop labels have been unified with other symbols of like
appearance—for example, U+21E7 upwards white arrow to indicate the Shift key.
While symbols such as U+2318 place of interest sign and U+2388 helm symbol are
generic symbols that have been adapted to use on keytops, other symbols specifically follow
ISO/IEC 9995-7.

Floor and Ceiling. The floor and ceiling symbols encoded at U+2308..U+230B are tall,
narrow mathematical delimiters. These symbols should not be confused with the CJK cor-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

518 Symbols
ner brackets at U+300C and U+300D, which are wide characters used as quotation marks
in East Asian text. They should also be distinguished from the half brackets at
U+2E22..U+2E25, which are the most generally used editorial marks shaped like corner
brackets. Additional types of editorial marks, including further corner bracket forms, can
be found in the Supplemental Punctuation block (U+2E00..U+2E7F).

Crops and Quine Corners. Crops and quine corners are most properly used in two-dimen-
sional layout but may be referred to in plain text. This usage is shown in Figure 15-9.

Angle Brackets. U+2329 left-pointing angle bracket and U+232A right-pointing

angle bracket have long been canonically equivalent to the CJK punctuation characters
U+3008 left angle bracket and U+3009 right angle bracket, respectively. This
canonical equivalence implies that the use of the latter (CJK) code points is preferred and
that U+2329 and U+232A are also “wide” characters. (See Unicode Standard Annex #11,
“East Asian Width,” for the definition of the East Asian wide property.) For this reason, the
use of U+2329 and U+232A is deprecated for mathematics and for technical publication,
where the wide property of the characters has the potential to interfere with the proper for-
matting of mathematical formulae. The angle brackets specifically provided for mathemat-
ics, U+27E8 mathematical left angle bracket and U+27E9 mathematical right

angle bracket, should be used instead. See Section 15.5, Mathematical Symbols.

APL Functional Symbols. APL (A Programming Language) makes extensive use of func-
tional symbols constructed by composition with other, more primitive functional symbols.
It used backspace and overstrike mechanisms in early computer implementations. In prin-
ciple, functional composition is productive in APL; in practice, a relatively small number of
composed functional symbols have become standard operators in APL. This relatively
small set is encoded in its entirety in this block. All other APL extensions can be encoded by
composition of other Unicode characters. For example, the APL symbol a underbar can be
represented by U+0061 latin small letter a + U+0332 combining low line.

Symbol Pieces. The characters in the range U+239B..U+23B3, plus U+23B7, constitute a
set of bracket and other symbol fragments for use in mathematical typesetting. These
pieces originated in older font standards but have been used in past mathematical process-
ing as characters in their own right to make up extra-tall glyphs for enclosing multiline
mathematical formulae. Mathematical fences are ordinarily sized to the content that they
enclose. However, in creating a large fence, the glyph is not scaled proportionally; in partic-
ular, the displayed stem weights must remain compatible with the accompanying smaller
characters. Thus simple scaling of font outlines cannot be used to create tall brackets.
Instead, a common technique is to build up the symbol from pieces. In particular, the char-
acters U+239B left parenthesis upper hook through U+23B3 summation bottom

represent a set of glyph pieces for building up large versions of the fences (,), [,], {, and },
and of the large operators and . These brace and operator pieces are compatibility char-
acters. They should not be used in stored mathematical text, although they are often used
in the data stream created by display and print drivers.

Figure 15-9. Usage of Crops and Quine Corners

Crops Quine corners
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.7 Technical Symbols 519
Table 15-5 shows which pieces are intended to be used together to create specific symbols.
For example, an instance of U+239B can be positioned relative to instances of U+239C and
U+239D to form an extra-tall (three or more line) left parenthesis. The center sections
encoded here are meant to be used only with the top and bottom pieces encoded adjacent
to them because the segments are usually graphically constructed within the fonts so that
they match perfectly when positioned at the same x coordinates.

Horizontal Brackets. In mathematical equations, delimiters are often used horizontally,
where they expand to the width of the expression they encompass. The six bracket charac-
ters in the range U+23DC..U+23E1 can be used for this purpose. In the context of mathe-
matical layout, U+23B4 top square bracket and U+23B5 bottom square bracket are
also used that way. For more information, see Unicode Technical Report #25, “Unicode
Support for Mathematics.”

The set of horizontal square brackets, U+23B4 top square bracket and U+23B5 bottom

square bracket, together with U+23B6 bottom square bracket over top square

bracket, are used by certain legacy applications to delimit vertical runs of text in non-CJK
terminal emulation. U+23B6 is used where a single character cell is both the end of one
such run and the start of another. The use of these characters in terminal emulation should
not be confused with the use of rotated forms of brackets for vertically rendered CJK text.
See the further discussion of this issue in Section 6.2, General Punctuation.

Terminal Graphics Characters. In addition to the box drawing characters in the Box
Drawing block, a small number of vertical or horizontal line characters are encoded in the
Miscellaneous Technical symbols block to complete the set of compatibility characters
needed for applications that need to emulate various old terminals. The horizontal scan
line characters, U+23BA horizontal scan line-1 through U+23BD horizontal scan

line-9, in particular, represent characters that were encoded in character ROM for use with
nine-line character graphic cells. Horizontal scan line characters are encoded for scan lines
1, 3, 7, and 9. The horizontal scan line character for scan line 5 is unified with U+2500 box

drawings light horizontal.

Decimal Exponent Symbol. U+23E8 decimal exponent symbol is for compatibility with
the Russian standard GOST 10859-64, as well as the paper tape and punch card standard,
Alcor (DIN 66006). It represents a fixed token introducing the exponent of a real number
in scientific notation, comparable to the more common usage of “e” in similar notations:
1.621e5. It was used in the early computer language ALGOL-60, and appeared in some
Soviet-manufactured computers, such as the BESM-6 and its emulators. In the Unicode
Standard it is treated simply as an atomic symbol; it is not considered to be equivalent to a
generic subscripted form of the numeral “10” and is not given a decomposition. The verti-
cal alignment of this symbol is slightly lower than the baseline, as shown in Figure 15-10.

Dental Symbols. The set of symbols from U+23BE to U+23CC form a set of symbols from
JIS X 0213 for use in dental notation.

Table 15-5. Use of Mathematical Symbol Pieces

Two-Row Three-Row Five-Row

Summation 23B2, 23B3

Integral 2320, 2321 2320, 23AE, 2321 2320, 3×23AE, 2321

Left parenthesis 239B, 239D 239B, 239C, 239D 239B, 3×239C, 239D

Right parenthesis 239E, 23A0 239E, 239F, 23A0 239E, 3×239F, 23A0

Left bracket 23A1, 23A3 23A1, 23A2, 23A3 23A1, 3×23A2, 23A3

Right bracket 23A4, 23A6 23A4, 23A5, 23A6 23A4, 3×23A5, 23A6

Left brace 23B0, 23B1 23A7, 23A8, 23A9 23A7, 23AA, 23A8, 23AA, 23A9

Right brace 23B1, 23B0 23AB, 23AC, 23AD 23AB, 23AA, 23AC, 23AA, 23AD
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

520 Symbols
Metrical Symbols. The symbols in the range U+23D1..U+23D9 are a set of spacing sym-
bols used in the metrical analysis of poetry and lyrics.

Electrotechnical Symbols. The Miscellaneous Technical block also contains a smattering of
electrotechnical symbols. These characters are not intended to constitute a complete
encoding of all symbols used in electrical diagrams, but rather are compatibility characters
encoded primarily for mapping to other standards. The symbols in the range
U+238D..U+2394 are from the character set with the International Registry number 181.
U+23DA earth ground and U+23DB fuse are from HKSCS-2001.

User Interface Symbols. The characters U+231A, U+231B, and U+23E9 through U+23F3
are often found in user interfaces for media players, clocks, alarms, and timers, as well as in
text discussing those user interfaces. The Miscellaneous Symbols and Pictographs block
also contains many user interface symbols in the ranges U+1F500..U+1F518 and
U+1F53A..U+1F53D, as well as clock face symbols in the range U+1F550..U+1F567.

Standards. This block contains a large number of symbols from ISO/IEC 9995-7:1994,
Information technology—Keyboard layouts for text and office systems—Part 7: Symbols used
to represent functions.

ISO/IEC 9995-7 contains many symbols that have been unified with existing and closely
related symbols in Unicode. These symbols are shown with their ordinary shapes in the
code charts, not with the particular glyph variation required by conformance to ISO/IEC
9995-7. Implementations wishing to be conformant to ISO/IEC 9995-7 in the depiction of
these symbols should make use of a suitable font.

Optical Character Recognition: U+2440–U+245F

This block includes those symbolic characters of the OCR-A character set that do not cor-
respond to ASCII characters, as well as magnetic ink character recognition (MICR) sym-
bols used in check processing.

Standards. Both sets of symbols are specified in ISO 2033.

15.8 Geometrical Symbols
Geometrical symbols are a collection of geometric shapes and their derivatives plus block
elements and characters used for box drawing in legacy environments. In addition to the
blocks described in this section, the Miscellaneous Technical (U+2300..U+23FF), Miscella-
neous Symbols (U+2600..U+26FF), and Miscellaneous Symbols and Arrows (U+2B00..
U+2BFF) blocks contain geometrical symbols that complete the set of shapes in the Geo-
metric Shapes block.

Figure 15-10. Usage of the Decimal Exponent Symbol

СИСТЕМА АЛГОЛ-БЭСМ6. ВАРИАНТ 01-05-79.
СЧЕТ БЕЗ КОНТРОЛЯ
1. _ВЕGIN ОUТРUТ(‘Е’, 355.0/113.0) _ЕND

.314159292010+01
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.8 Geometrical Symbols 521
Box Drawing and Block Elements

Box drawing and block element characters are graphic compatibility characters in the Uni-
code Standard. A number of existing national and vendor standards, including IBM PC
Code Page 437, contain sets of characters intended to enable a simple kind of display cell
graphics, assuming terminal-type screen displays of fixed-pitch character cells. The Uni-
code Standard does not encourage this kind of character-cell-based graphics model, but
does include sets of such characters for backward compatibility with the existing standards.

Box Drawing. The Box Drawing block (U+2500..U+257F) contains a collection of graphic
compatibility characters that originate in legacy standards and that are intended for draw-
ing boxes of various shapes and line widths for user interface components in character-cell-
based graphic systems.

The “light,” “heavy,” and “double” attributes for some of these characters reflect the fact
that the original sets often had a two-way distinction, between a light versus heavy line or a
single versus double line, and included sufficient pieces to enable construction of graphic
boxes with distinct styles that abutted each other in display.

The lines in the box drawing characters typically extend to the middle of the top, bottom,
left, and/or right of the bounding box for the character cell. They are designed to connect
together into continuous lines, with no gaps between them. When emulating terminal
applications, fonts that implement the box drawing characters should do likewise.

Block Elements. The Block Elements block (U+2580..U+259F) contains another collection
of graphic compatibility characters. Unlike the box drawing characters, the legacy block
elements are designed to fill some defined fraction of each display cell or to fill each display
cell with some defined degree of shading. These elements were used to create crude graphic
displays in terminals or in terminal modes on displays where bit-mapped graphics were
unavailable.

Half-block fill characters are included for each half of a display cell, plus a graduated series
of vertical and horizontal fractional fills based on one-eighth parts. The fractional fills do
not form a logically complete set but are intended only for backward compatibility. There is
also a set of quadrant fill characters, U+2596..U+259F, which are designed to complement
the half-block fill characters and U+2588 full block. When emulating terminal applica-
tions, fonts that implement the block element characters should be designed so that adja-
cent glyphs for characters such as U+2588 full block create solid patterns with no gaps
between them.

Standards. The box drawing and block element characters were derived from GB 2312, KS X
1001, a variety of industry standards, and several terminal graphics sets. The Videotex
Mosaic characters, which have similar appearances and functions, are unified against these
sets.

Geometric Shapes: U+25A0–U+25FF

The Geometric Shapes are a collection of characters intended to encode prototypes for var-
ious commonly used geometrical shapes—mostly squares, triangles, and circles. The col-
lection is somewhat arbitrary in scope; it is a compendium of shapes from various
character and glyph standards. The typical distinctions more systematically encoded
include black versus white, large versus small, basic shape (square versus triangle versus cir-
cle), orientation, and top versus bottom or left versus right part.

Hatched Squares. The hatched and cross-hatched squares at U+25A4..U+25A9 are derived
from the Korean national standard (KS X 1001), in which they were probably intended as
representations of fill patterns. Because the semantics of those characters are insufficiently
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

522 Symbols
defined in that standard, the Unicode character encoding simply carries the glyphs them-
selves as geometric shapes to provide a mapping for the Korean standard.

Lozenge. U+25CA lozenge is a typographical symbol seen in PostScript and in the
Macintosh character set. It should be distinguished from both the generic U+25C7 white

diamond and the U+2662 white diamond suit, as well as from another character some-
times called a lozenge, U+2311 square lozenge.

Use in Mathematics. Many geometric shapes are used in mathematics. When used for this
purpose, the center points of the glyphs representing geometrical shapes should line up at
the center line of the mathematical font. This differs from the alignment used for some of
the representative glyphs in the code charts.

For several simple geometrical shapes—circle, square, triangle, diamond, and lozenge—
differences in size carry semantic distinctions in mathematical notation, such as the differ-
ence between use of the symbol as a variable or as one of a variety of operator types. The
Miscellaneous Symbols and Arrows block contains numerous characters representing
other sizes of these geometrical symbols. Several other blocks, such as General Punctua-
tion, Mathematical Operators, Block Elements, and Miscellaneous Symbols contain a few
other characters which are members of the size-graded sets of such symbols.

For more details on the use of geometrical shapes in mathematics, see Unicode Technical
Report #25, “Unicode Support for Mathematics.”

Standards. The Geometric Shapes are derived from a large range of national and vendor
character standards. The squares and triangles at U+25E7..U+25EE are derived from the
Linotype font collection. U+25EF large circle is included for compatibility with the JIS
X 0208-1990 Japanese standard.

15.9 Miscellaneous Symbols
There are numerous blocks defined in the Unicode Standard which contain miscellaneous
symbols that do not fit well into any of the categories of symbols already discussed. These
include various small sets of special-use symbols such as zodiacal symbols, map symbols,
symbols used in transportation and accomodation guides, dictionary symbols, gender
symbols, and so forth. There are additional larger sets, such as sets of symbols for game
pieces or playing cards, and divination symbols associated with the Yijing or other texts, as
well as sets of medieval or ancient symbols used only in historical contexts.

Of particular note are the large number of pictographic symbols used in the core emoji
(“picture character”) set in common use on mobile phones in Japan. The majority of these
emoji symbols are encoded in the Miscellaneous Symbols and Pictographs and Emoticons
blocks, but many emoji symbols are encoded in other blocks. For a complete listing of the
core emoji set, including information about which emoji symbols have been unified with
other symbol characters in the Unicode Standard, see the data file EmojiSources.txt in the
Unicode Character Database.

An additional category of miscellaneous symbols are the so-called dingbat characters.
These are essentially compatibility characters representing very specific glyph shapes asso-
ciated with common “symbol” fonts in widespread legacy use. For a discussion of the par-
ticular issues involved in the interpretation and display of dingbats, see the documention of
the Dingbats block later in this section.

Corporate logos and collections of graphical elements or pictures are not included in the
Unicode Standard, because they tend either to be very specific in usage (logos, political
party symbols, and so on) or are nonconventional in appearance and semantic interpreta-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.9 Miscellaneous Symbols 523
tion (clip art collections), and hence are inappropriate for encoding as characters. The Uni-
code Standard recommends that such items be incorporated in text via higher-level
protocols that allow intermixing of graphic images with text, rather than by indefinite
extension of the number of miscellaneous symbols encoded as characters.

Rendering of Emoji Symbols. Many of the characters in the blocks associated with miscel-
laneous symbols, in particular the Miscellaneous Symbols and Pictographs, Emoticons,
Transport and Map Symbols, and Enclosed Alphanumeric Supplement blocks, are used in
the core emoji (“picture character”) sets available on cell phones in Japan. Especially in that
context, there may be a great deal of variability in presentation, along three axes:

• Glyph shape: Emoji symbols may have a great deal of flexibility in the choice of
glyph shape used to render them.

• Color: Many characters in an emoji context (such as Japanese cell phone e-mail
or text messages) are displayed in color, sometimes as a multicolor image.
While this is particularly true of emoji symbols, there are other cases where
non-emoji symbols, such as game symbols, may be displayed in color.

• Animation: Some characters in an emoji context are presented in animated
form, usually as a repeating sequence of two to four images.

Emoji symbols may be presented using color or animation, but need not be. Because many
characters in the core emoji sets are unified with Unicode characters that originally came
from other sources, there is no way based on character code alone to tell whether a charac-
ter should be presented using an “emoji” style; that decision depends on context.

Color Words in Unicode Character Names. The representative glyph shown in the code
charts for a character is always monochrome. The character name may include a term such
as black or white, or in the case of characters from the core emoji sets, other color terms
such as blue or orange. Neither the monochrome nature of the representative glyph nor
any color term in the character name are meant to imply any requirement or limitation on
how the glyph may be presented (see also “Images in the Code Charts and Character Lists”
in Section 17.1, Character Names List). The use of black or white in names such as black

medium square or white medium square is generally intended to contrast filled versus
outline shapes, or a darker color fill versus a lighter color fill; it is not intended to suggest
that the character must be presented in black or white, respectively. Similarly, the color
terms in names such as blue heart or orange book are intended only to help identify the
corresponding characters in the core emoji sets; the characters may be presented using
color, or in monochrome using different styles of shading or crosshatching, for example.

Miscellaneous Symbols: U+2600–U+26FF
Miscellaneous Symbols and Pictographs: U+1F300–U+1F5FF

The Miscellaneous Symbols and the Miscellaneous Symbols and Pictographs blocks con-
tain very heterogeneous collections of symbols that do not fit in any other Unicode charac-
ter block and that tend to be pictographic in nature. These symbols are typically used for
text decorations, but they may also be treated as normal text characters in applications such
as typesetting chess books, card game manuals, and horoscopes.

The order of symbols in these blocks is arbitrary, but an attempt has been made to keep like
symbols together and to group subsets of them into meaningful orders. Some of these sub-
sets include weather and astronomical symbols, pointing hands, religious and ideological
symbols, the Yijing (I Ching) trigrams, planet and zodiacal symbols, game symbols, musi-
cal dingbats, and recycling symbols. (For other moon phases, see the circle-based shapes in
the Geometric Shapes block.)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

524 Symbols
Standards. The symbols in these blocks are derived from a large range of national and ven-
dor character standards. Among them, characters from the Japanese Association of Radio
Industries and Business (ARIB) standard STD-B24 are widely represented in the Miscella-
neous Symbols block. The symbols from ARIB were initially used in the context of digital
broadcasting, but in many cases their usage has evolved to more generic purposes. The core
emoji sets used by Japanese cell phone carriers are another source for a large number of
characters in the Miscellaneous Symbols and Pictographs block.

Weather Symbols. The characters in the ranges U+2600..U+2603 and U+26C4..U+26CB,
as well as U+2614 umbrella with rain drops are weather symbols. These commonly
occur as map symbols or in other contexts related to weather forecasting in digital broad-
casting or on web sites.

Traffic Signs. In general, traffic signs are quite diverse, tend to be elaborate in form and dif-
fer significantly between countries and locales. For the most part they are inappropriate for
encoding as characters. However, there are a small number of conventional symbols which
have been used as characters in contexts such as digital broadcasting or mobile phones. The
characters in the ranges U+26CC..U+26CD and U+26CF..U+26E1 are traffic sign symbols
of this sort, encoded for use in digital broadcasting. Additional traffic signs are in included
in the Transport and Map Symbols block.

Dictionary and Map Symbols. The characters in the range U+26E8..U+26FF are diction-
ary and map symbols used in the context of digital broadcasting. Numerous other symbols
in this block and scattered in other blocks also have conventional uses as dictionary or map
symbols. For example, these may indicate special uses for words, or indicate types of build-
ings, points of interest, particular activities or sports, and so on.

Plastic Bottle Material Code System. The seven numbered logos encoded from U+2673 to
U+2679, ,-./012, are from “The Plastic Bottle Material Code System,” which was
introduced in 1988 by the Society of the Plastics Industry (SPI). This set consistently uses
thin, two-dimensional curved arrows suitable for use in plastics molding. In actual use, the
symbols often are combined with an abbreviation of the material class below the triangle.
Such abbreviations are not universal; therefore, they are not present in the representative
glyphs in the code charts.

Recycling Symbol for Generic Materials. An unnumbered plastic resin code symbol
U+267A 3 recycling symbol for generic materials is not formally part of the SPI sys-
tem but is found in many fonts. Occasional use of this symbol as a generic materials code
symbol can be found in the field, usually with a text legend below, but sometimes also sur-
rounding or overlaid by other text or symbols. Sometimes the universal recycling sym-

bol is substituted for the generic symbol in this context.

Universal Recycling Symbol. The Unicode Standard encodes two common glyph variants
of this symbol: U+2672 + universal recycling symbol and U+267B 4 black univer-

sal recycling symbol. Both are used to indicate that the material is recyclable. The white
form is the traditional version of the symbol, but the black form is sometimes substituted,
presumably because the thin outlines of the white form do not always reproduce well.

Paper Recycling Symbols. The two paper recycling symbols, U+267C x recycled paper

symbol and U+267D y partially-recycled paper symbol, can be used to distinguish
between fully and partially recycled fiber content in paper products or packaging. They are
usually accompanied by additional text.

Gender Symbols. The characters in the range U+26A2..U+26A9 are gender symbols. These
are part of a set with U+2640 female sign, U+2642 male sign, U+26AA medium white

circle, and U+26B2 neuter. They are used in sexual studies and biology, for example.
Some of these symbols have other uses as well, as astrological or alchemical symbols.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.9 Miscellaneous Symbols 525
Genealogical Symbols. The characters in the range U+26AD..U+26B1 are sometimes seen
in genealogical tables, where they indicate marriage and burial status. They may be aug-
mented by other symbols, including the small circle indicating betrothal.

Game Symbols. The Miscellaneous Symbols block also contains a variety of small symbol
sets intended for the representation of common game symbols or tokens in text. These
include symbols for playing card suits, often seen in manuals for bridge and other card
games, as well as a set of dice symbols. The chess symbols are often seen in old-style chess
notation. In addition, there are symbols for game pieces or notation markers for go, shogi
(Japanese chess), and draughts (checkers).

Larger sets of game symbols are encoded in their own blocks. See the discussion of playing
cards, mahjong tile symbols, and domino tile symbols later in this section.

Animal Symbols. The animal symbol characters in the range U+1F400..U+1F42C are
encoded primarily to cover the core emoji sets used by Japanese cell phone carriers. Animal
symbols are widely used in Asia as signs of the zodiac, and that is part of the reason for their
inclusion in the cell phone sets. However, the particular animal symbols seen in Japan and
China are not the only animals used as zodiacal symbols throughout Asia. The set of ani-
mal symbols encoded in this block includes other animal symbols used as zodiacal symbols
in Vietnam, Thailand, Persia, and other Asian countries. These zodiacal uses are specifically
annotated in the Unicode code charts.

Other animal symbols have no zodiacal associations, and are included simply to cover the
core emoji sets. A few of the animal symbols have conventional uses to designate types of
meat on menus.

Cultural Symbols. The five cultural symbols encoded in the range U+1F5FB..U+1F5FF
mostly designate cultural landmarks of particular importance to Japan. They are encoded
for compatibility with the core emoji sets used by Japanese cell phone carriers, and are not
intended to set a precedent for encoding additional sets of cultural landmarks or other pic-
tographic cultural symbols as characters.

Miscellaneous Symbols in Other Blocks. In addition to the blocks described in this section,
which are devoted entirely to sets of miscellaneous symbols, there are many other blocks
which contain small numbers of otherwise uncategorized symbols. See, for example, the
Miscellaneous Symbols and Arrows block U+2B00..U+2B7F and the Enclosed Alphanu-
meric Supplement block U+1F100..U+1F1FF. Some of these blocks contain symbols which
extend or complement sets of symbols contained in the Miscellaneous Symbols block.

Emoticons: U+1F600–U+1F64F

Emoticons (from “emotion” plus “icon”) originated as a way to convey emotion or attitude
in e-mail messages, using ASCII character combinations such as :-) to indicate a smile—
and by extension, a joke—and :-(to indicate a frown. In East Asia, a number of more elab-
orate sequences have been developed, such as (")(-_-)(") showing an upset face with hands
raised.

Over time, many systems began replacing such sequences with images, and also began pro-
viding a way to input emoticon images directly, such as a menu or palette. The core emoji
sets used by Japanese cell phone carriers contain a large number of characters for emoticon
images, and most of the characters in this block are from those sets. They are divided into a
set of humanlike faces, a smaller of set of cat faces that parallel some of the humanlike faces,
and a set of gesture symbols that combine a human or monkey face with arm and hand
positions.

Several emoticons are also encoded in the Miscellaneous Symbols block at U+2639..
U+263B.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

526 Symbols
Transport and Map Symbols: U+1F680–U+1F6FF

This block is similar to the blocks Miscellaneous Symbols and Miscellaneous Symbols and
Pictographs, but is a more cohesive set of symbols. As of Version 6.0, about half of these
symbols are from the core emoji sets used by Japanese cell phone carriers.

Various traffic signs and map symbols are also encoded in the Miscellaneous Symbols
block.

Dingbats: U+2700–U+27BF

Most of the characters in the Dingbats block are derived from a well-established set of
glyphs, the ITC Zapf Dingbats series 100, which constitutes the industry standard “Zapf
Dingbat” font currently available in most laser printers. Other series of dingbat glyphs also
exist, but are not encoded in the Unicode Standard because they are not widely imple-
mented in existing hardware and software as character-encoded fonts. The order of the
Dingbats block basically follows the PostScript encoding.

Unifications and Additions. Where a dingbat from the ITC Zapf Dingbats series 100 could
be unified with a generic symbol widely used in other contexts, only the generic symbol
was encoded. Examples of such unifications include card suits, black star, black tele-

phone, and black right-pointing index (see the Miscellaneous Symbols block); black

circle and black square (see the Geometric Shapes block); white encircled numbers 1 to
10 (see the Enclosed Alphanumerics block); and several generic arrows (see the Arrows
block). Those four entries appear elsewhere in this chapter. Other dingbat-like characters,
primarily from the core emoji sets, are encoded in the gaps that resulted from this unifica-
tion.

In other instances, other glyphs from the ITC Zapf Dingbats series 100 glyphs have come to
be recognized as having applicability as generic symbols, despite having originally been
encoded in the Dingbats block. For example, the series of negative (black) circled numbers
1 to 10 are now treated as generic symbols for this sequence, the continuation of which can
be found in the Enclosed Alphanumerics block. Other examples include U+2708 airplane

and U+2709 envelope, which have definite semantics independent of the specific glyph
shape, and which therefore should be considered generic symbols rather than symbols rep-
resenting only the Zapf Dingbats glyph shapes.

For many of the remaining characters in the Dingbats block, their semantic value is pri-
marily their shape; unlike characters that represent letters from a script, there is no well-
established range of typeface variations for a dingbat that will retain its identity and there-
fore its semantics. It would be incorrect to arbitrarily replace U+279D triangle-headed

rightwards arrow with any other right arrow dingbat or with any of the generic arrows
from the Arrows block (U+2190..U+21FF). However, exact shape retention for the glyphs
is not always required to maintain the relevant distinctions. For example, ornamental char-
acters such as U+2741 eight petalled outlined black florette have been successfully
implemented in font faces other than Zapf Dingbats with glyph shapes that are similar, but
not identical to the ITC Zapf Dingbats series 100.

The following guidelines are provided for font developers wishing to support this block of
characters. Characters showing large sets of contrastive glyph shapes in the Dingbats block,
and in particular the various arrow shapes at U+2794..U+27BE, should have glyphs that
are closely modeled on the ITC Zapf Dingbats series 100, which are shown as representative
glyphs in the code charts. The same applies to the various stars, asterisks, snowflakes, drop-
shadowed squares, check marks, and x’s, many of which are ornamental and have elaborate
names describing their glyphs.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.9 Miscellaneous Symbols 527
Where the preceding guidelines do not apply, or where dingbats have more generic applica-
bility as symbols, their glyphs do not need to match the representative glyphs in the code
charts in every detail.

Ornamental Brackets. The 14 ornamental brackets encoded at U+2768..U+2775 are part
of the set of Zapf Dingbats. Although they have always been included in Zapf Dingbats
fonts, they were unencoded in PostScript versions of the fonts on some platforms. The Uni-
code Standard treats these brackets as punctuation characters.

Alchemical Symbols: U+1F700–U+1F77F

Alchemical symbols were first used by Greek, Syriac, and Egyptian writers around the fifth
or sixth century ce and were adopted and proliferated by medieval Arabic and European
writers. European alchemists, natural philosophers, chemists, and apothecaries developed
and used several parallel systems of symbols while retaining many symbols created by
Greek, Syriac, and medieval Arabic writers. Alchemical works published in what is best
described as a textbook tradition in the seventeenth and eighteenth centuries routinely
included tables of symbols that probably served to spread their use. They became obsolete
as alchemy gave way to chemistry. Nevertheless, alchemical symbols continue to be used
extensively today in scholarly literature, creative works, New Age texts, and in the gaming
and graphics industries.

This block contains a core repertoire of symbols recognized and organized into tables by
European writers working in the alchemical textbook tradition approximately 1620–1720.
This core repertoire includes all symbols found in the vast majority of the alchemical works
of major figures such as Newton, Boyle, and Paracelsus. Some of the most common
alchemical symbols have multiple meanings, and are encoded in the Miscellaneous Sym-
bols block, where their usage as alchemical symbols is annotated. For example, U+2609
sun is also an alchemical symbol for gold.

The character names for the alchemical symbols are in English. Their equivalent Latin
names, which often were in greater currency during the period of greatest use of these sym-
bols, are provided as aliases in the code charts. Some alchemical names in English directly
derive from the Latin name, such as aquafortis and aqua regia, so in a number of cases the
English and Latin names are identical.

Mahjong Tiles: U+1F000–U+1F02F

The characters in this block are game symbols representing the set of tiles used to play the
popular Chinese game of mahjong. The exact origin of mahjong is unknown, but it has
been around since at least the mid-nineteenth century, and its popularity spread to Japan,
Britain, and the United States during the early twentieth century.

Like other game symbols in the Unicode Standard, the mahjong tile symbols are intended
as abstractions of graphical symbols for game pieces used in text. Simplified, iconic repre-
sentation of mahjong pieces are printed in game manuals and appear in discussion about
the game. There is some variation in the exact set of tiles used in different countries, so the
Unicode Standard encodes a superset of the graphical symbols for the tiles used in the var-
ious local traditions. The main set of tiles consists of three suits with nine numerical tiles
each: the Bamboos, the Circles, and the Characters.

Additional tiles include the Dragons, the Winds, the Flowers, and the Seasons. The blank
tile symbol is the so-called white dragon. Also included is a black tile symbol, which does
not represent an actual game tile, but rather indicates a facedown tile, occasionally seen as
a symbol in text about playing mahjong.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

528 Symbols
Domino Tiles: U+1F030–U+1F09F

This block contains a set of graphical symbols for domino tiles. Dominoes is a game which
derives from Chinese tile games dating back to the twelfth century.

Domino tile symbols are used for the “double-six” set of tiles, which is the most common
set of dominoes and the only one widely attested in manuals and textual discussion using
graphical tile symbols.

The domino tile symbols do not represent the domino pieces per se, but instead constitute
graphical symbols for particular orientations of the dominoes, because orientation of the
tiles is significant in discussion of dominoes play. Each visually distinct rotation of a dom-
ino tile is separately encoded. Thus, for example, both U+1F081 domino tile vertical-

04-02 and U+1F04F domino tile horizontal-04-02 are encoded, as well as U+1F075
domino tile vertical- 02-04 and U+1F043 domino tile horizontal-02-04. All four of
those symbols represent the same game tile, but each orientation of the tile is visually dis-
tinct and requires its own symbol for text. The digits in the character names for the domino
tile symbols reflect the dot patterns on the tiles.

Two symbols do not represent particular tiles of the double-six set of dominoes, but instead
are graphical symbols for a domino tile turned facedown.

Playing Cards: U+1F0A0–U+1F0FF

These characters are used to represent the 52-card deck most commonly used today, and
the 56-card deck used in some European games; the latter includes a Knight in addition to
Jack, Queen, and King. These cards map completely to the Minor Arcana of the Western
Tarot from which they derive, and are unified with the latter. Also included are a generic
card back and two Jokers. U+1F0CF playing card black joker is used in one of the Jap-
anese cell phone core emoji sets; its presentation may be in color and need not be black.

These characters most commonly appear as the Anglo-French-style playing cards used with
international bridge or poker. However, in different countries, both the suits and the colors
may be substantially different, to the point of being unrecognizable. When used to repre-
sent the cards of divination Tarot decks, the visual appearance is usually very different and
much more complex. No one should expect reliable interchange of a particular appearance
of these characters without additional information (such as a font) or agreement between
sender and receiver. Without such information or agreement, the glyphs have only a sym-
bolic and schematic equivalence to particular varieties of actual playing cards.

These characters most commonly appear as the Anglo-French-style playing cards used with
international bridge or poker. However, playing card characters may have a variety of dif-
ferent appearances depending on language and usage. In different countries, the suits, col-
ors and numbers may be substantially different, to the point of being unrecognizable. For
example, the letters on face cards may vary (English cards use “K” for “king,” while French
cards use “R” for “roi”); the digits on the numbered cards may appear as a Western “10” or
as “” in Hindi, and the appearance of the suits may differ (Swiss playing cards depict
acorns rather than clubs, while Tarot cards use swords). The background decoration of
cards may also vary radically. When used to represent the cards of divination Tarot decks,
the visual appearance is usually very different and much more complex.

No one should expect reliable interchange of a particular appearance of the playing card
characters without additional information (such as a font) or agreement between sender
and receiver. Without such information or agreement, someone viewing an online docu-
ment may see substantially different glyphs from what the writer intended.

Basic playing card symbols are encoded in the Miscellaneous Symbols block in the range
U+2660..U+2667.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.9 Miscellaneous Symbols 529
Yijing Hexagram Symbols: U+4DC0–U+4DFF

Usage of the Yijing Hexagram Symbols in China begins with a text called !#&" Zhou Yi,
(“the Zhou Dynasty classic of change”), said to have originated circa 1000 bce. This text is
now popularly known as the Yijing, I Ching, or Book of Changes. These symbols represent a
primary level of notation in this ancient philosophical text, which is traditionally consid-
ered the first and most important of the Chinese classics. Today, these symbols appear in
many print and electronic publications, produced in Asia and all over the world. The
important Chinese character lexicon Hanyu Da Zidian, for example, makes use of these
symbols in running text. These symbols are semantically distinct written signs associated
with specific words. Each of the 64 hexagrams has a unique one- or two-syllable name.
Each hexagram name is intimately connected with interpretation of the six lines. Related
characters are Monogram and Digram Symbols (U+268A..U+268F), Yijing Trigram Sym-
bols (U+2630..U+2637), and Tai Xuan Jing Symbols (U+1D300..U+1D356).

Tai Xuan Jing Symbols: U+1D300–U+1D356

Usage of these symbols in China begins with a text called !$k)" Tai Xuan Jing (literally,
“the exceedingly arcane classic”). Composed by a man named '* Yang Xiong (53 bce–18
ce), the first draft of this work was completed in 2 bce, in the decade before the fall of the
Western Han Dynasty. This text is popularly known in the West under several titles, includ-
ing The Alternative I Ching and The Elemental Changes. A number of annotated editions of
Tai Xuan Jing have been published and reprinted in the 2,000 years since the original work
appeared.

These symbols represent a primary level of notation in the original ancient text, following
and expanding upon the traditions of the Chinese classic Yijing. The tetragram signs are
less well known and less widely used than the hexagram signs. For this reason they were
encoded on Plane 1 rather than the BMP.

Monograms. U+1D300 monogram for earth is an extension of the traditional Yijing
monogram symbols, U+268A monogram for yang and U+268B monogram for yin.
Because yang is typically associated with heaven (Chinese tian) and yin is typically associ-
ated with earth (Chinese di), the character U+1D300 has an unfortunate name. Tai Xuan
Jing studies typically associate it with human (Chinese ren), as midway between heaven and
earth.

Digrams. The range of characters U+1D301..U+1D302 constitutes an extension of the
Yijing digram symbols encoded in the range U+268C..U+268F. They consist of the combi-
nations of the human (ren) monogram with either the yang or the yin monogram. Because
of the naming problem for U+1D300, these digrams also have infelicitous character names.
Users are advised to identify the digram symbols by their representative glyphs or by the
Chinese aliases provided for them in the code charts.

Tetragrams. The bulk of the symbols in the Tai Xuan Jing Symbols block are the tetragram
signs. These tetragram symbols are semantically distinct written signs associated with spe-
cific words. Each of the 81 tetragrams has a unique monosyllabic name, and each tetragram
name is intimately connected with interpretation of the four lines.

The 81 tetragram symbols (U+1D306..U+1D356) encoded on Plane 1 constitute a com-
plete set. Within this set of 81 signs, a subset of 16 signs known as the Yijing tetragrams is of
importance to Yijing scholarship. These are used in the study of the “nuclear trigrams.”
Related characters are the Yijing Trigram symbols (U+2630..U+2637) and the Yijing Hexa-
gram symbols (U+4DC0..U+4DFF).
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

530 Symbols
Ancient Symbols: U+10190–U+101CF

This block contains ancient symbols, none of which are in modern use. Typically, they
derive from ancient epigraphic, papyrological, or manuscript traditions, and represent
miscellaneous symbols not specifically included in blocks dedicated to particular ancient
scripts. The first set of these consists of ancient Roman symbols for weights and measures,
and symbols used in Roman coinage.

Similar symbols can be found in the Ancient Greek Numbers block, U+10140..U+1018F

Phaistos Disc Symbols: U+101D0–U+101FF

The Phaistos disc was found during an archaeological dig in Phaistos, Crete about a cen-
tury ago. The small fired clay disc is imprinted on both sides with a series of symbols,
arranged in a spiral pattern. The disc probably dates from the mid-18th to the mid-14th
century bce.

The symbols have not been deciphered, and the disc remains the only known example of
these symbols. Because there is nothing to compare them to, and the corpus is so limited, it
is not even clear whether the symbols constitute a writing system for a language or are
something else entirely. Nonetheless, the disc has engendered great interest, and numerous
scholars and amateurs spend time discussing the symbols.

The repertoire of symbols is noncontroversial, as they were incised in the disc by stamping
preformed seals into the clay. Most of the symbols are clearly pictographic in form. The
entire set is encoded in the Phaistos Disc Symbols block as a set of symbols, with no
assumptions about their possible meaning and functions. One combining mark is
encoded. It represents a hand-carved mark on the disc, which occurs attached to the final
sign of groups of other symbols.

Directionality. Scholarly consensus is that the text of the Phaistos disc was inscribed start-
ing from the outer rim of the disc and going inward toward the center. Because of that lay-
out order and the orientation of the spiral, the disc text can be said to have right-to-left
directionality. However, the Phaistos disc symbols have been given a default directionality
of strong left-to-right in the Unicode Standard. This choice simplifies text layout of the
symbols for researchers and would-be decipherers, who wish to display the symbols in the
same order as the surrounding left-to-right text (for example, in the Latin script) used to
discuss them. The additional complexity of bidirectional layout and editing would be
unwelcome in such contexts.

This choice of directionality properties for the Phaistos disc symbols matches the precedent
of the Old Italic script. (See Section 14.2, Old Italic.) Early Old Italic inscriptions were often
laid out from right to left, but the directionality of the Old Italic script in the Unicode Stan-
dard is strong-left-to-right, to simplify layout using the modern scholarly conventions for
discussion of Old Italic texts.

The glyphs for letters of ancient Mediterranean scripts often show mirroring based on line
direction. This behavior is well-known, for example, for archaic Greek when written in
boustrophedon. Etruscan also displays glyph mirroring of letters. The choice of representa-
tive glyphs for the Phaistos disc symbols is based on this mirroring convention, as well. The
symbols on the disc are in a right-to-left line context. However, the symbols are given left-
to-right directionality in the Unicode Standard, so the representative glyphs in the code
charts are reversed (mirrored) from their appearance on the disc.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.10 Enclosed and Square 531
15.10 Enclosed and Square
There are a large number of compatibility symbols in the Unicode Standard which consist
either of letters or numbers enclosed in some graphic element, or which consist of letters or
numbers in a square arrangement. Many of these symbols are derived from legacy East
Asian character sets, in which such symbols are commonly encoded as elements.

Enclosed Symbols. Enclosed symbols typically consist of a letter, digit, Katakana syllable,
Hangul jamo, or CJK ideograph enclosed in a circle or a square. In some cases the enclosure
may consist of a pair of parentheses or tortoise-shell brackets, and the enclosed element
may also consist of more than a single letter or digit, as for circled numbers 10 through 50.
Occasionally the symbol is shown as white on a black encircling background, in which case
the character name typically includes the word negative.

Many of the enclosed symbols that come in small, ordered sets—the Latin alphabet, kana,
jamo, digits, and Han ideographs one through ten—were originally intended for use in text
as numbered bullets for lists. Parenthetical enclosures were in turn developed to mimic
typewriter conventions for representing circled letters and digits used as list bullets. This
functionality has now largely been supplanted by styles and other markup in rich text con-
texts, but the enclosed symbols in the Unicode Standard are encoded for interoperability
with the legacy East Asian character sets and for the occasional text context where such
symbols otherwise occur.

A few of the enclosed symbols have conventional meanings unrelated to the usage of encir-
cled letters and digits as list bullets. In some instances these are distinguished in the stan-
dard—often because legacy standards separately encoded them. Thus, for example,
U+24B8 g circled latin capital letter c is distinct from U+00A9 h copyright sign,
even though the two symbols are similar in appearance. In cases where otherwise generic
enclosed symbols have specific conventional meanings, those meanings are called out in
the code charts with aliases or other annotations. For example, U+1F157 i negative cir-

cled latin capital letter h is also a commonly occurring map symbol for “hotel.”

Square Symbols. Another convention commonly seen in East Asian character sets is the
creation of compound symbols by stacking two, three, four, or even more small-sized let-
ters or syllables into a square shape consistent with the typical rendering footprint of a CJK
ideograph. One subset of these consists of square symbols for Latin abbreviations, often for
SI and other technical units, such as “km” or “km/h”; these square symbols are mostly
derived from Korean legacy standards. Another subset consists of Katakana words for units
of measurement, classified ad symbols, and many other similar word elements stacked into
a square array; these symbols are derived from Japanese legacy standards. A third major
subset consists of Chinese telegraphic symbols for hours, days, and months, consisting of a
digit or sequence of digits next to the CJK ideograph for “hour,” “day” or “month.”

Source Standards. Major sources for the repertoire of enclosed and square symbols in the
Unicode Standard include the Korean national standard, KS X 1001:1998; the Chinese
national standard, GB 2312:1980; the Japanese national standards JIS X 0208-1997 and JIS
X 0213:2000; and CNS 11643. Others derive from the Japanese television standard, ARIB
STD B24, and from various East Asian industry standards, such as the Japanese cell phone
core emoji sets, or corporate glyph registries.

Allocation. The Unicode Standard includes five blocks allocated for the encoding of vari-
ous enclosed and square symbols. Each of those blocks is described briefly in the text that
follows, to indicate which subsets of these symbols it contains and to highlight any other
special considerations that may apply to each block. In addition, there are a number of cir-
cled digit and number symbols encoded in the Dingbats block (U+2700..U+27BF). Those
circled symbols occur in the ITC Zapf dingbats series 100, and most of them were encoded
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

532 Symbols
with other Zapf dingbat symbols, rather than being allocated in the separate blocks for
enclosed and square symbols. Finally, a small number of circled symbols from ISO/IEC
8859-1 or other sources can be found in the Latin-1 Supplement block (U+0080..U+00FF)
or the Letterlike Symbols block (U+2100..U+214F).

Decomposition. Nearly all of the enclosed and square symbols in the Unicode Standard are
considered compatibility characters, encoded for interoperability with other character sets.
A significant majority of those are also compatibility decomposable characters, given
explicit compatibility decompositions in the Unicode Character Database. The general pat-
terns for these decompositions are described here. For full details for any particular one of
these symbols, see the code charts or consult the data files in the UCD.

Parenthesized symbols are decomposed to sequences of opening and closing parentheses sur-
rounding the letter or digit(s) of the symbol. Square symbols consisting of digit(s) followed
by a full stop or a comma are decomposed into the digit sequence and the full stop or comma.
Square symbols consisting of stacks of Katakana syllables are decomposed into the corre-
sponding sequence of Katakana characters and are given the decomposition tag “<square>”.
Similar principles apply to square symbols consisting of sequences of Latin letters and sym-
bols. Chinese telegraphic symbols, consisting of sequences of digits and CJK ideographs, are
given compatibility decompositions, but do not have the decomposition tag “<square>”.

Circled symbols consisting of a single letter or digit surrounded by a simple circular
graphic element are given compatibility decompositions with the decomposition tag “<cir-
cle>”. Circled symbols with more complex graphic styles, including double circled and neg-
ative circled symbols, are simply treated as atomic symbols, and are not decomposed. The
same pattern is applied to enclosed symbols where the enclosure is a square graphic ele-
ment instead of a circle, except that the decomposition tag in those cases is “<square>”.
Occasionally a “circled” symbol that involves a sequence of Latin letters is preferentially
represented with an ellipse surrounding the letters, as for U+1F12E j circled wz, the
German Warenzeichen. Such elliptic shape is considered to be a typographical adaptation of
the circle, and does not constitute a distinct decomposition type in the Unicode Standard.

It is important to realize that the decomposition of enclosed symbols in the Unicode Stan-
dard does not make them canonical equivalents to letters or digits in sequence with com-
bining enclosing marks such as U+20DD % combining enclosing circle. The
combining enclosing marks are provided in the Unicode Standard to enable the representa-
tion of occasional enclosed symbols not otherwise encoded as characters. There is also no
defined way of indicating the application of a combining enclosing mark to more than a
single base character. Furthermore, full rendering support of the application of enclosing
combining marks, even to single base characters, is not widely available. Hence, in most
instances, if an enclosed symbol is available in the Unicode Standard as a single encoded
character, it is recommended to simply make use of that composed symbol.

Casing. There are special considerations for the casing relationships of enclosed or square
symbols involving letters of the Latin alphabet. The circled letters of the Latin alphabet
come in an uppercase set (U+24B6..U+24CF) and a lowercase set (U+24D0..U+24EA).
Largely because the compatibility decompositions for those symbols are to a single letter
each, these two sets are given the derived properties, Uppercase and Lowercase, respec-
tively, and case map to each other. The superficially similar parenthesized letters of the Latin
alphabet also come in an uppercase set (U+1F110..U+1F129) and a lowercase set
(U+24BC..U+24B5), but are not case mapped to each other and are not given derived cas-
ing properties. This difference is in part because the compatibility decompositions for these
parenthesized symbols are to sequences involving parentheses, instead of single letters, and
in part because the uppercase set was encoded many years later than the lowercase set.
Square symbols consisting of arbitrary sequences of Latin letters, which themselves may be
of mixed case, are simply treated as caseless symbols in the Unicode Standard.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.10 Enclosed and Square 533
Enclosed Alphanumerics: U+2460–U+24FF

The enclosed symbols in this block consist of single Latin letters, digits, or numbers—most
enclosed by a circle. The block also contains letters, digits, or numbers enclosed in paren-
theses, and a series of numbers followed by full stop. All of these symbols are intended to
function as numbered (or lettered) bullets in ordered lists, and most are encoded for com-
patibility with major East Asian character sets.

The circled numbers one through ten (U+2461..U+2469) are also considered to be unified
with the comparable set of circled black numbers with serifs on a white background from
the ITC Zapf Dingbats series 100. Those ten symbols are encoded in this block, instead of
in the Dingbats block.

The negative circled numbers eleven through twenty (U+24EB..U+24F4) are a continua-
tion of the set of circled white numbers with serifs on a black background, encoded at
U+2776..U+277F in the Dingbats block.

Enclosed CJK Letters and Months: U+3200–U+32FF

This block contains large sets of circled or parenthesized Japanese Katakana, Hangul jamo,
or CJK ideographs, from East Asian character sets. It also contains circled numbers twenty-
one through fifty, which constitute a continuation of the series of circled numbers from the
Enclosed Alphanumerics block. There are also a small number of Chinese telegraph sym-
bols and square Latin abbreviations, which are continuations of the larger sets primarily
encoded in the CJK Compatibility block.

The enclosed symbols in the range U+3248..U+324F, which consist of circled numbers ten
through eighty on white circles centered on black squares, are encoded for compatibility
with the Japanese television standard, ARIB STD B24. In that standard, they are intended
to represent symbols for speed limit signs, expressed in kilometers per hour.

CJK Compatibility: U+3300–U+33FF

The CJK Compatibility block consists entirely of square symbols encoded for compatibility
with various East Asian character sets. These come in four sets: square Latin abbreviations,
Chinese telegraph symbols for hours and days, squared Katakana words, and a small set of
Japanese era names.

Squared Katakana words are Katakana-spelled words that fill a single display cell (em-
square) when intermixed with CJK ideographs. Likewise, the square Latin abbreviation
symbols are designed to fill a single character position when mixed with CJK ideographs.
Note that modern software for the East Asian market can often support the comparable
functionality via styles that allow typesetting of arbitrary Katakana words or Latin abbrevi-
ations in an em-square. Such solutions are preferred when available, as they are not limited
to specific lists of encoded symbols such as those in this block.

Japanese Era Names. The Japanese era name symbols refer to the dates given in Table 15-6.

Table 15-6. Japanese Era Names

Code Point Name Dates
U+337B square era name heisei 1989-01-07 to present day
U+337C square era name syouwa 1926-12-24 to 1989-01-06
U+337D square era name taisyou 1912-07-29 to 1926-12-23
U+337E square era name meizi 1867 to 1912-07-28
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

534 Symbols
Enclosed Alphanumeric Supplement: U+1F100–U+1F1FF

This block contains more enclosed and square symbols based on Latin letters or digits.
Many are encoded for compatibility with the Japanese television standard, ARIB STD B24;
others are encoded for compatibility with the Japanese cell phone core emoji sets.

Regional Indicator Symbols. The regional indicator symbols in the range
U+1F1E6..U+1F1FF can be used in pairs to represent an ISO 3166 region code. This mech-
anism is not intended to supplant actual ISO 3166 region codes, which simply use Latin let-
ters in the ASCII range; instead the main purpose of such pairs is to provide unambiguous
roundtrip mappings to certain characters used in the emoji core sets. The representative
glyph for region indicator symbols is simply a dotted box containing a letter. The Unicode
Standard does not prescribe how the pairs of region indicator symbols should be rendered.
In emoji contexts, where text is displayed as it would be on a Japanese mobile phone, a pair
may be displayed using the glyph for a flag, as appropriate, but in other contexts the pair
could be rendered differently. See the file EmojiSources.txt in the Unicode Character Data-
base for more information about source mappings involving regional indicator symbols.

Enclosed Ideographic Supplement: U+1F200–U+1F2FF

This block consists mostly of enclosed ideographic symbols. It also contains some addi-
tional squared Katakana word symbols. As of Version 6.0, all of the symbols in this block
are either encoded for compatibility with the Japanese television standard ARIB STD B24,
and intended primarily for use in closed captioning, or are encoded for compatibility with
the Japanese cell phone core emoji sets.

The enclosed ideographic symbols in the range U+1F210..U+1F231 are enclosed in a
square, instead of a circle. One subset of these are symbols referring to broadcast terminol-
ogy, and the other subset are symbols used in baseball in Japan.

The enclosed ideographic symbols in the range U+1F240..U+1F248 are enclosed in tor-
toise shell brackets, and are also used in baseball scoring in Japan.

15.11 Braille

Braille Patterns: U+2800–U+28FF

Braille is a writing system used by blind people worldwide. It uses a system of six or eight
raised dots, arranged in two vertical rows of three or four dots, respectively. Eight-dot sys-
tems build on six-dot systems by adding two extra dots above or below the core matrix. Six-
dot Braille allows 64 possible combinations, and eight-dot Braille allows 256 possible pat-
terns of dot combinations. There is no fixed correspondence between a dot pattern and a
character or symbol of any given script. Dot pattern assignments are dependent on context
and user community. A single pattern can represent an abbreviation or a frequently occur-
ring short word. For a number of contexts and user communities, the series of ISO techni-
cal reports starting with ISO/TR 11548-1 provide standardized correspondence tables as
well as invocation sequences to indicate a context switch.

The Unicode Standard encodes a single complete set of 256 eight-dot patterns. This set
includes the 64 dot patterns needed for six-dot Braille.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.11 Braille 535
The character names for Braille patterns are based on the assignments of the dots of the
Braille pattern to digits 1 to 8 as follows:

The designation of dots 1 to 6 corresponds to that of six-dot Braille. The additional dots 7
and 8 are added beneath. The character name for a Braille pattern consists of braille pat-

tern dots-12345678, where only those digits corresponding to dots in the pattern are
included. The name for the empty pattern is braille pattern blank.

The 256 Braille patterns are arranged in the same sequence as in ISO/TR 11548-1, which is
based on an octal number generated from the pattern arrangement. Octal numbers are
associated with each dot of a Braille pattern in the following way:

The octal number is obtained by adding the values corresponding to the dots present in the
pattern. Octal numbers smaller than 100 are expanded to three digits by inserting leading
zeroes. For example, the dots of braille pattern dots-1247 are assigned to the octal val-
ues of 18, 28, 108, and 1008. The octal number representing the sum of these values is 1138.

The assignment of meanings to Braille patterns is outside the scope of this standard.

Example. According to ISO/TR 11548-2, the character latin capital letter f can be rep-
resented in eight-dot Braille by the combination of the dots 1, 2, 4, and 7 (braille pattern

dots-1247). A full circle corresponds to a tangible (set) dot, and empty circles serve as posi-
tion indicators for dots not set within the dot matrix:

Usage Model. The eight-dot Braille patterns in the Unicode Standard are intended to be
used with either style of eight-dot Braille system, whether the additional two dots are con-
sidered to be in the top row or in the bottom row. These two systems are never intermixed
in the same context, so their distinction is a matter of convention. The intent of encoding
the 256 Braille patterns in the Unicode Standard is to allow input and output devices to be
implemented that can interchange Braille data without having to go through a context-
dependent conversion from semantic values to patterns, or vice versa. In this manner, final-
form documents can be exchanged and faithfully rendered. At the same time, processing of
textual data that require semantic support is intended to take place using the regular char-
acter assignments in the Unicode Standard.

Imaging. When output on a Braille device, dots shown as black are intended to be rendered
as tangible. Dots shown in the standard as open circles are blank (not rendered as tangible).
The Unicode Standard does not specify any physical dimension of Braille characters.

In the absence of a higher-level protocol, Braille patterns are output from left to right.
When used to render final form (tangible) documents, Braille patterns are normally not
intermixed with any other Unicode characters except control codes.

1 4
2 5
3 6
7 8

1 10
2 20
4 40

100 200

1 4
2 ° 5
3 ° ° 6
7 ° 8
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

536 Symbols
Script. Unlike other sets of symbols, the Braille Patterns are given their own, unique value
of the Script property in the Unicode Standard. This follows both from the behavior of
Braille in forming a consistent writing system on its own terms, as well as from the inde-
pendent bibliographic status of books and other documents printed in Braille. For more
information on the Script property, see Unicode Standard Annex #24, “Unicode Script
Property.”

15.12 Western Musical Symbols

Musical Symbols: U+1D100–U+1D1FF

The musical symbols encoded in the Musical Symbols block are intended to cover basic
Western musical notation and its antecedents: mensural notation and plainsong (or Grego-
rian) notation. The most comprehensive coded language in regular use for representing
sound is the common musical notation (CMN) of the Western world. Western musical
notation is a system of symbols that is relatively, but not completely, self-consistent and rel-
atively stable but still, like music itself, evolving. This open-ended system has survived over
time partly because of its flexibility and extensibility. In the Unicode Standard, musical
symbols have been drawn primarily from CMN. Commonly recognized additions to the
CMN repertoire, such as quarter-tone accidentals, cluster noteheads, and shape-note note-
heads, have also been included.

Graphical score elements are not included in the Musical Symbols block. These pictographs
are usually created for a specific repertoire or sometimes even a single piece. Characters
that have some specialized meaning in music but that are found in other character blocks
are not included. They include numbers for time signatures and figured basses, letters for
section labels and Roman numeral harmonic analysis, and so on.

Musical symbols are used worldwide in a more or less standard manner by a very large
group of users. The symbols frequently occur in running text and may be treated as simple
spacing characters with no special properties, with a few exceptions. Musical symbols are
used in contexts such as theoretical works, pedagogical texts, terminological dictionaries,
bibliographic databases, thematic catalogs, and databases of musical data. The musical
symbol characters are also intended to be used within higher-level protocols, such as music
description languages and file formats for the representation of musical data and musical
scores.

Because of the complexities of layout and of pitch representation in general, the encoding
of musical pitch is intentionally outside the scope of the Unicode Standard. The Musical
Symbols block provides a common set of elements for interchange and processing. Encod-
ing of pitch, and layout of the resulting musical structure, involves specifications not only
for the vertical relationship between multiple notes simultaneously, but also in multiple
staves, between instrumental parts, and so forth. These musical features are expected to be
handled entirely in higher-level protocols making use of the graphical elements provided.
Lack of pitch encoding is not a shortcoming, but rather is a necessary feature of the encod-
ing.

Glyphs. The glyphs for musical symbols shown in the code charts, are representative of
typical cases; however, note in particular that the stem direction is not specified by the Uni-
code Standard and can be determined only in context. For a font that is intended to provide
musical symbols in running text, either stem direction is acceptable. In some contexts—
particularly for applications in early music—note heads, stems, flags, and other associated
symbols may need to be rendered in different colors—for example, red.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.12 Western Musical Symbols 537
Symbols in Other Blocks. U+266D music flat sign, U+266E music natural sign, and
U+266F music sharp sign—three characters that occur frequently in musical notation—
are encoded in the Miscellaneous Symbols block (U+2600..U+267F). However, four char-
acters also encoded in that block are to be interpreted merely as dingbats or miscellaneous
symbols, not as representing actual musical notes:

U+2669 quarter note

U+266A eighth note

U+266B beamed eighth notes

U+266C beamed sixteenth notes

Gregorian. The punctum, or Gregorian brevis, a square shape, is unified with U+1D147
musical symbol square notehead black. The Gregorian semibrevis, a diamond or loz-
enge shape, is unified with U+1D1BA musical symbol semibrevis black. Thus Grego-
rian notation, medieval notation, and modern notation either require separate fonts in
practice or need font features to make subtle differentiations between shapes where
required.

Processing. Most musical symbols can be thought of as simple spacing characters when
used inline within texts and examples, even though they behave in a more complex manner
in full musical layout. Some characters are meant only to be combined with others to pro-
duce combined character sequences, representing musical notes and their particular artic-
ulations. Musical symbols can be input, processed, and displayed in a manner similar to
mathematical symbols. When embedded in text, most of the symbols are simple spacing
characters with no special properties. A few characters have format control functions, as
described later in this section.

Input Methods. Musical symbols can be entered via standard alphanumeric keyboard, via
piano keyboard or other device, or by a graphical method. Keyboard input of the musical
symbols may make use of techniques similar to those used for Chinese, Japanese, and
Korean. In addition, input methods utilizing pointing devices or piano keyboards could be
developed similar to those in existing musical layout systems. For example, within a graph-
ical user interface, the user could choose symbols from a palette-style menu.

Directionality. When combined with right-to-left texts—in Hebrew or Arabic, for exam-
ple—the musical notation is usually written from left to right in the normal manner. The
words are divided into syllables and placed under or above the notes in the same fashion as
for Latin and other left-to-right scripts. The individual words or syllables corresponding to
each note, however, are written in the dominant direction of the script.

The opposite approach is also known: in some traditions, the musical notation is actually
written from right to left. In that case, some of the symbols, such as clef signs, are mirrored;
other symbols, such as notes, flags, and accidentals, are not mirrored. All responsibility for
such details of bidirectional layout lies with higher-level protocols and is not reflected in
any character properties. Figure 15-11 exemplifies this principle with two musical passages.
The first example shows Turkish lyrics in Arabic script with ordinary left-to-right musical
notation; the second shows right-to-left musical notation. Note the partial mirroring.

Format Characters. Extensive ligature-like beams are used frequently in musical notation
between groups of notes having short values. The practice is widespread and very predict-
able, so it is therefore amenable to algorithmic handling. The format characters U+1D173
musical symbol begin beam and U+1D174 musical symbol end beam can be used to
indicate the extents of beam groupings. In some exceptional cases, beams are left unclosed
on one end. This status can be indicated with a U+1D159 musical symbol null note-

head character if no stem is to appear at the end of the beam.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

538 Symbols
Similarly, format characters have been provided for other connecting structures. The char-
acters U+1D175 musical symbol begin tie, U+1D176 musical symbol end tie,
U+1D177 musical symbol begin slur, U+1D178 musical symbol end slur, U+1D179
musical symbol begin phrase, and U+1D17A musical symbol end phrase indicate the
extent of these features. Like beaming, these features are easily handled in an algorithmic
fashion.

These pairs of characters modify the layout and grouping of notes and phrases in full musi-
cal notation. When musical examples are written or rendered in plain text without special
software, the start/end format characters may be rendered as brackets or left uninterpreted.
To the extent possible, more sophisticated software that renders musical examples inline
with natural-language text might interpret them in their actual format control capacity,
rendering slurs, beams, and so forth, as appropriate.

Precomposed Note Characters. For maximum flexibility, the character set includes both
precomposed note values and primitives from which complete notes may be constructed.
The precomposed versions are provided mainly for convenience. However, if any normal-
ization form is applied, including NFC, the characters will be decomposed. For further
information, see Section 3.11, Normalization Forms. The canonical equivalents for these
characters are given in the Unicode Character Database and are illustrated in Figure 15-12.

Alternative Noteheads. More complex notes built up from alternative noteheads, stems,
flags, and articulation symbols are necessary for complete implementations and complex
scores. Examples of their use include American shape-note and modern percussion nota-
tions, as shown in Figure 15-13.

Figure 15-11. Examples of Specialized Music Layout

Figure 15-12. Precomposed Note Characters

‰„

..‚‰
�∑ÊÛ≠ ≠éÁ éó ÍÁ éó ÍÁ

fi = ◊ + Â
fl = ÿ + Â
‡ = ÿ + Â + Ó
· = ÿ + Â + Ô

‚ = ÿ + Â + �
„ = ÿ + Â + Ò
‰ = ÿ + Â + Ú

1D15E 1D157 1D165

1D15F 1D158 1D165

1D160 1D158 1D165 1D16E

1D161 1D158 1D165 1D16F

1D162 1D158 1D165 1D170

1D163 1D158 1D165 1D171

1D164 1D158 1D165 1D172
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.12 Western Musical Symbols 539
Augmentation Dots and Articulation Symbols. Augmentation dots and articulation sym-
bols may be appended to either the precomposed or built-up notes. In addition, augmen-
tation dots and articulation symbols may be repeated as necessary to build a complete note
symbol. Examples of the use of augmentation dots are shown in Figure 15-14.

Ornamentation. Table 15-7 lists common eighteenth-century ornaments and the
sequences of characters from which they can be generated.

Figure 15-13. Alternative Noteheads

Figure 15-14. Augmentation Dots and Articulation Symbols

Table 15-7. Examples of Ornamentation

N 1D19C stroke-2 + 1D19D stroke-3

O 1D19C stroke-2 + 1D1A0 stroke-6 + 1D19D stroke-3

P 1D1A0 stroke-6 + 1D19C stroke-2 + 1D19C stroke-2 + 1D19D stroke-3

Q 1D19C stroke-2 + 1D19C stroke-2 + 1D1A0 stroke-6 + 1D19D stroke-3

R 1D19C stroke-2 + 1D19C stroke-2 + 1D1A3 stroke-9

S 1D1A1 stroke-7 + 1D19C stroke-2 + 1D19C stroke-2 + 1D19D stroke-3

T 1D1A2 stroke-8 + 1D19C stroke-2 + 1D19C stroke-2 + 1D19D stroke-3

U 1D19C stroke-2 + 1D19C stroke-2 + 1D19D stroke-3 + 1D19F stroke-5

V 1D1A1 stroke-7 + 1D19C stroke-2 + 1D19C stroke-2 + 1D1A0 stroke-6 + 1D19D
stroke-3

W 1D1A1 stroke-7 + 1D19C stroke-2 + 1D19C stroke-2 + 1D19D stroke-3 + 1D19F
stroke-5

X 1D1A2 stroke-8 + 1D19C stroke-2 + 1D19C stroke-2 + 1D1A0 stroke-6 + 1D19D
stroke-3

Y 1D19B stroke-1 + 1D19C stroke-2 + 1D19C stroke-2 + 1D19D stroke-3

Z 1D19B stroke-1 + 1D19C stroke-2 + 1D19C stroke-2 + 1D19D stroke-3 + 1D19E
stroke-4

[1D19C stroke-2 + 1D19D stroke-3 + 1D19E stroke-4

Â
1D147 1D165

« = « + Â Â
1D143 1D165

√ = √ + Â

à

à‡ = ÿ + Â + Ó + Ìà
1D158 1D165 1D16E 1D16D

àfl = ÿ + Â + ¸
1D158 1D165 1D17C

˚ à ààà‡ = ÿ + Â + Ó + ˚ + Ì + Ì
1D158 1D165 1D16E 1D17B 1D16D 1D16D
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

540 Symbols
15.13 Byzantine Musical Symbols

Byzantine Musical Symbols: U+1D000–U+1D0FF

Byzantine musical notation first appeared in the seventh or eighth century ce, developing
more fully by the tenth century. These musical symbols are chiefly used to write the reli-
gious music and hymns of the Christian Orthodox Church, although folk music manu-
scripts are also known. In 1881, the Orthodox Patriarchy Musical Committee redefined
some of the signs and established the New Analytical Byzantine Musical Notation System,
which is in use today. About 95 percent of the more than 7,000 musical manuscripts using
this system are in Greek. Other manuscripts are in Russian, Bulgarian, Romanian, and Ara-
bic.

Processing. Computer representation of Byzantine musical symbols is quite recent,
although typographic publication of religious music books began in 1820. Two kinds of
applications have been developed: applications to enable musicians to write the books they
use, and applications that compare or convert this musical notation system to the standard
Western system. (See Section 15.12, Western Musical Symbols.)

Byzantine musical symbols are divided into 15 classes according to function. Characters
interact with one another in the horizontal and vertical dimension. There are three hori-
zontal “stripes” in which various classes generally appear and rules as to how other charac-
ters interact within them. These rules, which are still being specified, are the responsibilities
of higher-level protocols.

15.14 Ancient Greek Musical Notation

Ancient Greek Musical Notation: U+1D200–U+1D24F

Ancient Greeks developed their own distinct system of musical notation, which is found in
a large number of ancient texts ranging from a fragment of Euripides’ Orestes to Christian
hymns. It is also used in the modern publication of these texts as well as in modern studies
of ancient music.

The system covers about three octaves, and symbols can be grouped by threes: one symbol
corresponds to a “natural” note on a diatonic scale, and the two others to successive sharpen-
ings of that first note. There is no distinction between enharmonic and chromatic scales. The
system uses two series of symbols: one for vocal melody and one for instrumental melody.

The symbols are based on Greek letters, comparable to the modern usage of the Latin let-
ters A through G to refer to notes of the Western musical scale. However, rather than using
a sharp and flat notation to indicate semitones, or casing and other diacritics to indicate
distinct octaves, the Ancient Greek system extended the basic Greek alphabet by rotating
and flipping letterforms in various ways and by adding a few more symbols not directly
based on letters.

Unification. In the Unicode Standard, the vocal and instrumental systems are unified with
each other and with the basic Greek alphabet, based on shape. Table 15-8 gives the corre-
spondence between modern notes, the numbering used by modern scholars, and the Uni-
code characters or sequences of characters to use to represent them.

Naming Conventions. The character names are based on the standard names widely used
by modern scholars. There is no standardized ancient system for naming these characters.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

15.14 Ancient Greek Musical Notation 541
Table 15-8. Representation of Ancient Greek Vocal and Instrumental
Notation

Modern
Note

Modern
Number

Vocal
Notation

Instrumental
Notation

g” 70 2127, 0374 1D23C, 0374
69 0391, 0374 1D23B, 0374
68 0392, 0374 1D23A, 0374

f ’’ 67 0393, 0374 039D, 0374
66 0394, 0374 1D239, 0374
65 0395, 0374 1D208, 0374

e” 64 0396, 0374 1D238, 0374
63 0397, 0374 1D237, 0374
62 0398, 0374 1D20D, 0374

d” 61 0399, 0374 1D236, 0374
60 039A, 0374 1D235, 0374
59 039B, 0374 1D234, 0374

c” 58 039C, 0374 1D233, 0374
57 039D, 0374 1D232, 0374
56 039E, 0374 1D20E, 0374

b’ 55 039F, 0374 039A, 0374
54 1D21C 1D241
53 1D21B 1D240

a’ 52 1D21A 1D23F
51 1D219 1D23E
50 1D218 1D23D

g’ 49 2127 1D23C
48 0391 1D23B
47 0392 1D23A

f ’ 46 0393 039D
45 0394 1D239
44 0395 1D208

e’ 43 0396 1D238
42 0397 1D237
41 0398 1D20D

d’ 40 0399 1D236
39 039A 1D235
38 039B 1D234

c’ 37 039C 1D233
36 039D 1D232
35 039E 1D20E

b 34 039F 039A
33 03A0 03FD
32 03A1 1D231

a 31 03F9 03F9
30 03A4 1D230
29 03A5 1D22F

g 28 03A6 1D213
27 03A7 1D22E
26 03A8 1D22D

f 25 03A9 1D22C
24 1D217 1D22B
23 1D216 1D22A

e 22 1D215 0393
21 1D214 1D205
20 1D213 1D21C

d 19 1D212 1D229
18 1D211 1D228
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

542 Symbols
Apparent gaps in the numbering sequence are due to the unification with standard letters
and between vocal and instrumental notations.

If a symbol is used in both the vocal notation system and the instrumental notation system,
its Unicode character name is based on the vocal notation system catalog number. Thus
U+1D20D greek vocal notation symbol-14 has a glyph based on an inverted capital
lambda. In the vocal notation system, it represents the first sharp of B; in the instrumental
notation system, it represents the first sharp of d’. Because it is used in both systems, its
name is based on its sequence in the vocal notation system, rather than its sequence in the
instrumental notation system. The character names list in the Unicode Character Database
is fully annotated with the functions of the symbols for each system.

Font. Scholars usually typeset musical characters in sans-serif fonts to distinguish them
from standard letters, which are usually represented with a serifed font. However, this is not
required. The code charts use a font without serifs for reasons of clarity.

Combining Marks. The combining marks encoded in the range U+1D242..U+1D244 are
placed over the vocal or instrumental notation symbols. They are used to indicate metrical
qualities.

17 1D210 1D227
c 16 1D20F 0395

15 1D20E 1D211
14 1D20D 1D226

B 13 1D20C 1D225
12 1D20B 1D224
11 1D20A 1D223

A 10 1D209 0397
9 1D208 1D206
8 1D207 1D222

G 7 1D206 1D221
6 1D205 03A4
5 1D204 1D220

F 4 1D203 1D21F
3 1D202 1D202
2 1D201 1D21E

E 1 1D200 1D21D

Table 15-8. Representation of Ancient Greek Vocal and Instrumental
Notation (Continued)

Modern
Note

Modern
Number

Vocal
Notation

Instrumental
Notation
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 16

Special Areas and Format
Characters 16

This chapter describes several kinds of characters that have special properties as well as
areas of the codespace that are set aside for special purposes:

In addition to regular characters, the Unicode Standard contains a number of format char-
acters. These characters are not normally rendered directly, but rather influence the layout
of text or otherwise affect the operation of text processes.

The Unicode Standard contains code positions for the 64 control characters and the DEL
character found in ISO standards and many vendor character sets. The choice of control
function associated with a given character code is outside the scope of the Unicode Stan-
dard, with the exception of those control characters specified in this chapter.

Layout controls are not themselves rendered visibly, but influence the behavior of algo-
rithms for line breaking, word breaking, glyph selection, and bidirectional ordering.

Surrogate code points are reserved and are to be used in pairs—called surrogate pairs—to
access 1,048,544 supplementary characters.

Variation selectors allow the specification of standardized variants of characters. This abil-
ity is particularly useful where the majority of implementations would treat the two vari-
ants as two forms of the same character, but where some implementations need to
differentiate between the two. By using a variation selector, such differentiation can be
made explicit.

Private-use characters are reserved for private use. Their meaning is defined by private
agreement.

Noncharacters are code points that are permanently reserved and will never have charac-
ters assigned to them.

The Specials block contains characters that are neither graphic characters nor traditional
controls.

Tag characters were intended to support a general scheme for the internal tagging of text
streams in the absence of other mechanisms, such as markup languages. These characters
are deprecated, and their use is strongly discouraged.

Control codes Surrogates area Private-use characters

Layout controls Variation selectors Deprecated format characters

Specials Noncharacters Deprecated tag characters
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

544 Special Areas and Format Characters
16.1 Control Codes
There are 65 code points set aside in the Unicode Standard for compatibility with the C0
and C1 control codes defined in the ISO/IEC 2022 framework. The ranges of these code
points are U+0000..U+001F, U+007F, and U+0080..U+009F, which correspond to the 8-bit
controls 0016 to 1F16 (C0 controls), 7F16 (delete), and 8016 to 9F16 (C1 controls), respec-
tively. For example, the 8-bit legacy control code character tabulation (or tab) is the byte
value 0916; the Unicode Standard encodes the corresponding control code at U+0009.

The Unicode Standard provides for the intact interchange of these code points, neither
adding to nor subtracting from their semantics. The semantics of the control codes are gen-
erally determined by the application with which they are used. However, in the absence of
specific application uses, they may be interpreted according to the control function seman-
tics specified in ISO/IEC 6429:1992.

In general, the use of control codes constitutes a higher-level protocol and is beyond the
scope of the Unicode Standard. For example, the use of ISO/IEC 6429 control sequences for
controlling bidirectional formatting would be a legitimate higher-level protocol layered on
top of the plain text of the Unicode Standard. Higher-level protocols are not specified by
the Unicode Standard; their existence cannot be assumed without a separate agreement
between the parties interchanging such data.

Representing Control Sequences

There is a simple, one-to-one mapping between 7-bit (and 8-bit) control codes and the
Unicode control codes: every 7-bit (or 8-bit) control code is numerically equal to its corre-
sponding Unicode code point. For example, if the ASCII line feed control code (0A16) is to
be used for line break control, then the text “WX<LF>YZ” would be transmitted in Uni-
code plain text as the following coded character sequence: <0057, 0058, 000A, 0059,
005A>.

Control sequences that are part of Unicode text must be represented in terms of the Uni-
code encoding forms. For example, suppose that an application allows embedded font
information to be transmitted by means of markup using plain text and control codes. A
font tag specified as “^ATimes^B”, where ^A refers to the C0 control code 0116 and ^B
refers to the C0 control code 0216, would then be expressed by the following coded charac-
ter sequence: <0001, 0054, 0069, 006D, 0065, 0073, 0002>. The representation of the con-
trol codes in the three Unicode encoding forms simply follows the rules for any other code
points in the standard:

UTF-8: <01 54 69 6D 65 73 02>

UTF-16: <0001 0054 0069 006D 0065 0073 0002>

UTF-32: <00000001 00000054 00000069 0000006D

00000065 00000073 00000002>

Escape Sequences. Escape sequences are a particular type of protocol that consists of the
use of some set of ASCII characters introduced by the escape control code, 1B16, to convey
extra-textual information. When converting escape sequences into and out of Unicode text,
they should be converted on a character-by-character basis. For instance, “ESC-A” <1B 41>
would be converted into the Unicode coded character sequence <001B, 0041>. Interpreta-
tion of U+0041 as part of the escape sequence, rather than as latin capital letter a, is the
responsibility of the higher-level protocol that makes use of such escape sequences. This
approach allows for low-level conversion processes to conformantly convert escape
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.2 Layout Controls 545
sequences into and out of the Unicode Standard without needing to actually recognize the
escape sequences as such.

If a process uses escape sequences or other configurations of control code sequences to
embed additional information about text (such as formatting attributes or structure), then
such sequences constitute a higher-level protocol that is outside the scope of the Unicode
Standard.

Specification of Control Code Semantics

Several control codes are commonly used in plain text, particularly those involved in line
and paragraph formatting. The use of these control codes is widespread and important to
interoperability. Therefore, the Unicode Standard specifies semantics for their use with the
rest of the encoded characters in the standard. Table 16-1 lists those control codes.

Most of the control codes in Table 16-1 have the White_Space property. They have the
Bidi_Class property values of S, B, or WS, rather than the default of ON used for other con-
trol codes. (See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”) In addi-
tion, the separator semantics of the control codes U+001C..U+001F are recognized in the
Bidirectional Algorithm. U+0009..U+000D and U+0085 also have line breaking property
values that differ from the default CM value for other control codes. (See Unicode Standard
Annex #14, “Unicode Line Breaking Algorithm.”)

U+0000 null may be used as a Unicode string terminator, as in the C language. Such usage
is outside the scope of the Unicode Standard, which does not require any particular formal
language representation of a string or any particular usage of null.

Newline Function. In particular, one or more of the control codes U+000A line feed,
U+000D carriage return, and the Unicode equivalent of the EBCDIC next line can encode a
newline function. A newline function can act like a line separator or a paragraph separator,
depending on the application. See Section 16.2, Layout Controls, for information on how to
interpret a line or paragraph separator. The exact encoding of a newline function depends
on the application domain. For information on how to identify a newline function, see
Section 5.8, Newline Guidelines.

16.2 Layout Controls
The effect of layout controls is specific to particular text processes. As much as possible, lay-
out controls are transparent to those text processes for which they were not intended. In
other words, their effects are mutually orthogonal.

Table 16-1. Control Codes Specified in the Unicode Standard

Code Point Abbreviation ISO/IEC 6429 Name

U+0009 HT character tabulation (tab)

U+000A LF line feed

U+000B VT line tabulation (vertical tab)

U+000C FF form feed

U+000D CR carriage return

U+001C FS information separator four

U+001D GS information separator three

U+001E RS information separator two

U+001F US information separator one

U+0085 NEL next line
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

546 Special Areas and Format Characters
Line and Word Breaking

This subsection summarizes the intended behavior of certain layout controls which affect
line and word breaking. Line breaking and word breaking are distinct text processes.
Although a candidate position for a line break in text often coincides with a candidate posi-
tion for a word break, there are also many situations where candidate break positions of
different types do not coincide. The implications for the interaction of layout controls with
text segmentation processes are complex. For a full description of line breaking, see Uni-
code Standard Annex #14, “Unicode Line Breaking Algorithm.” For a full description of
other text segmentation processes, including word breaking, see Unicode Standard Annex
#29, “Unicode Text Segmentation.”

No-Break Space. U+00A0 no-break space has the same width as U+0020 space, but the
no-break space indicates that, under normal circumstances, no line breaks are permitted
between it and surrounding characters, unless the preceding or following character is a line
or paragraph separator or space or zero width space. For a complete list of space characters
in the Unicode Standard, see Table 6-2.

Word Joiner. U+2060 word joiner behaves like U+00A0 no-break space in that it indi-
cates the absence of word boundaries; however, the word joiner has no width. The function
of the character is to indicate that line breaks are not allowed between the adjoining char-
acters, except next to hard line breaks. For example, the word joiner can be inserted after the
fourth character in the text “base+delta” to indicate that there should be no line break
between the “e” and the “+”. The word joiner can be used to prevent line breaking with
other characters that do not have nonbreaking variants, such as U+2009 thin space or
U+2015 horizontal bar, by bracketing the character.

The word joiner must not be confused with the zero width joiner or the combining grapheme
joiner, which have very different functions. In particular, inserting a word joiner between
two characters has no effect on their ligating and cursive joining behavior. The word joiner
should be ignored in contexts other than word or line breaking.

Zero Width No-Break Space. In addition to its primary meaning of byte order mark (see
“Byte Order Mark” in Section 16.8, Specials), the code point U+FEFF possesses the seman-
tics of zero width no-break space, which matches that of word joiner. Until Unicode 3.2,
U+FEFF was the only code point with word joining semantics, but because it is more com-
monly used as byte order mark, the use of U+2060 word joiner to indicate word joining is
strongly preferred for any new text. Implementations should continue to support the word
joining semantics of U+FEFF for backward compatibility.

Zero Width Space. The U+200B zero width space indicates a word break or line break
opportunity, even though there is no intrinsic width associated with this character. Zero-
width space characters are intended to be used in languages that have no visible word spac-
ing to represent word break or line break opportunities, such as Thai, Myanmar, Khmer,
and Japanese.

The “zero width” in the character name for ZWSP should not be understood too literally.
While this character ordinarily does not result in a visible space between characters, text
justification algorithms may add inter-character spacing (letter spacing) between charac-
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.2 Layout Controls 547
ters separated by a ZWSP. For example, in Table 16-2, the row labeled “Display 4” illus-
trates incorrect suppression of inter-character spacing in the context of a ZWSP.

This behavior for ZWSP contrasts with that for fixed-width space characters, such as
U+2002 en space. Such spaces have a specified width that is typically unaffected by justifi-
cation and which should not be increased (or reduced) by inter-character spacing (see
Section 6.2, General Punctuation).

In some languages such as German and Russian, increased letter spacing is used to indicate
emphasis. Implementers should be aware of this issue.

Zero-Width Spaces and Joiner Characters. The zero-width spaces are not to be confused
with the zero-width joiner characters. U+200C zero width non-joiner and U+200D
zero width joiner have no effect on word or line break boundaries, and zero width no-

break space and zero width space have no effect on joining or linking behavior. The
zero-width joiner characters should be ignored when determining word or line break
boundaries. See “Cursive Connection” later in this section.

Hyphenation. U+00AD soft hyphen (SHY) indicates an intraword break point, where a
line break is preferred if a word must be hyphenated or otherwise broken across lines. Such
break points are generally determined by an automatic hyphenator. SHY can be used with
any script, but its use is generally limited to situations where users need to override the
behavior of such a hyphenator. The visible rendering of a line break at an intraword break
point, whether automatically determined or indicated by a SHY, depends on the surround-
ing characters, the rules governing the script and language used, and, at times, the meaning
of the word. The precise rules are outside the scope of this standard, but see Unicode Stan-
dard Annex #14, “Unicode Line Breaking Algorithm,” for additional information. A com-
mon default rendering is to insert a hyphen before the line break, but this is insufficient or
even incorrect in many situations.

Contrast this usage with U+2027 hyphenation point, which is used for a visible indica-
tion of the place of hyphenation in dictionaries. For a complete list of dash characters in the
Unicode Standard, including all the hyphens, see Table 6-3.

The Unicode Standard includes two nonbreaking hyphen characters: U+2011 non-break-

ing hyphen and U+0F0C tibetan mark delimiter tsheg bstar. See Section 10.2,
Tibetan, for more discussion of the Tibetan-specific line breaking behavior.

Line and Paragraph Separator. The Unicode Standard provides two unambiguous charac-
ters, U+2028 line separator and U+2029 paragraph separator, to separate lines and
paragraphs. They are considered the default form of denoting line and paragraph boundar-
ies in Unicode plain text. A new line is begun after each line separator. A new paragraph
is begun after each paragraph separator. As these characters are separator codes, it is not

Table 16-2. Letter Spacing

Type Justification Examples Comment

Memory the ISP® Charts The is inserted to allow
line break after ®

Display 1

Display 2

Display 3

Display 4

the ISP®Charts
the ISP®Charts
t h e I S P ® C h a r t s

the ISP ®Char ts

Without letter spacing

Increased letter spacing

“Thai-style” letter spacing

 incorrectly inhibiting
letter spacing (after ®)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

548 Special Areas and Format Characters
necessary either to start the first line or paragraph or to end the last line or paragraph with
them. Doing so would indicate that there was an empty paragraph or line following. The
paragraph separator can be inserted between paragraphs of text. Its use allows the cre-
ation of plain text files, which can be laid out on a different line width at the receiving end.
The line separator can be used to indicate an unconditional end of line.

A paragraph separator indicates where a new paragraph should start. Any interparagraph
formatting would be applied. This formatting could cause, for example, the line to be bro-
ken, any interparagraph line spacing to be applied, and the first line to be indented. A line
separator indicates that a line break should occur at this point; although the text continues
on the next line, it does not start a new paragraph—no interparagraph line spacing or
paragraphic indentation is applied. For more information on line separators, see
Section 5.8, Newline Guidelines.

Cursive Connection and Ligatures

In some fonts for some scripts, consecutive characters in a text stream may be rendered via
adjacent glyphs that cursively join to each other, so as to emulate connected handwriting.
For example, cursive joining is implemented in nearly all fonts for the Arabic scripts and in
a few handwriting-like fonts for the Latin script.

Cursive rendering is implemented by joining glyphs in the font and by using a process that
selects the particular joining glyph to represent each individual character occurrence, based
on the joining nature of its neighboring characters. This glyph selection is implemented in
the rendering engine, typically using information in the font.

In many cases there is an even closer binding, where a sequence of characters is represented
by a single glyph, called a ligature. Ligatures can occur in both cursive and noncursive
fonts. Where ligatures are available, it is the task of the rendering system to select a ligature
to create the most appropriate line layout. However, the rendering system cannot define the
locations where ligatures are possible because there are many languages in which ligature
formation requires more information. For example, in some languages, ligatures are never
formed across syllable boundaries.

On occasion, an author may wish to override the normal automatic selection of connecting
glyphs or ligatures. Typically, this choice is made to achieve one of the following effects:

• Cause nondefault joining appearance (for example, as is sometimes required in
writing Persian using the Arabic script)

• Exhibit the joining-variant glyphs themselves in isolation

• Request a ligature to be formed where it normally would not be

• Request a ligature not to be formed where it normally would be

The Unicode Standard provides two characters that influence joining and ligature glyph
selection: U+200C zero width non-joiner and U+200D zero width joiner. The zero
width joiner and non-joiner request a rendering system to have more or less of a connec-
tion between characters than they would otherwise have. Such a connection may be a sim-
ple cursive link, or it may include control of ligatures.

The zero width joiner and non-joiner characters are designed for use in plain text; they
should not be used where higher-level ligation and cursive control is available. (See Uni-
code Technical Report #20, “Unicode in XML and Other Markup Languages,” for more
information.) Moreover, they are essentially requests for the rendering system to take into
account when laying out the text; while a rendering system should consider them, it is per-
fectly acceptable for the system to disregard these requests.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.2 Layout Controls 549
The ZWJ and ZWNJ are designed for marking the unusual cases where ligatures or cursive
connections are required or prohibited. These characters are not to be used in all cases
where ligatures or cursive connections are desired; instead, they are meant only for overrid-
ing the normal behavior of the text.

Joiner. U+200D zero width joiner is intended to produce a more connected rendering of
adjacent characters than would otherwise be the case, if possible. In particular:

• If the two characters could form a ligature but do not normally, ZWJ requests
that the ligature be used.

• Otherwise, if either of the characters could cursively connect but do not nor-
mally, ZWJ requests that each of the characters take a cursive-connection form
where possible.

In a sequence like <X, ZWJ, Y>, where a cursive form exists for X but not for Y, the pres-
ence of ZWJ requests a cursive form for X. Otherwise, where neither a ligature nor a cursive
connection is available, the ZWJ has no effect. In other words, given the three broad cate-
gories below, ZWJ requests that glyphs in the highest available category (for the given font)
be used:

1. Ligated

2. Cursively connected

3. Unconnected

Non-joiner. U+200C zero width non-joiner is intended to break both cursive connec-
tions and ligatures in rendering.

ZWNJ requests that glyphs in the lowest available category (for the given font) be used.

For those unusual circumstances where someone wants to forbid ligatures in a sequence XY
but promote cursive connection, the sequence <X, ZWJ, ZWNJ, ZWJ, Y> can be used. The
ZWNJ breaks ligatures, while the two adjacent joiners cause the X and Y to take adjacent
cursive forms (where they exist). Similarly, if someone wanted to have X take a cursive form
but Y be isolated, then the sequence <X, ZWJ, ZWNJ, Y> could be used (as in previous ver-
sions of the Unicode Standard). Examples are shown in Figure 16-3.

Cursive Connection. For cursive connection, the joiner and non-joiner characters typically
do not modify the contextual selection process itself, but instead change the context of a
particular character occurrence. By providing a non-joining adjacent character where the
adjacent character otherwise would be joining, or vice versa, they indicate that the render-
ing process should select a different joining glyph. This process can be used in two ways: to
prevent a cursive joining or to exhibit joining glyphs in isolation.

In Figure 16-1, the insertion of the ZWNJ overrides the normal cursive joining of sad and
lam.

Figure 16-1. Prevention of Joining

fiª

π

0644

200C

0635

0635 0644
›πÃ ›

π › →

→

+

+ +
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

550 Special Areas and Format Characters
In Figure 16-2, the normal display of ghain without ZWJ before or after it uses the nominal
(isolated) glyph form. When preceded and followed by ZWJ characters, however, the ghain
is rendered with its medial form glyph in isolation.

The examples in Figure 16-1 and Figure 16-2 are adapted from the Iranian national coded
character set standard, ISIRI 3342, which defines ZWNJ and ZWJ as “pseudo space” and
“pseudo connection,” respectively.

Examples. Figure 16-3 provides samples of desired renderings when the joiner or non-
joiner is inserted between two characters. The examples presume that all of the glyphs are
available in the font. If, for example, the ligatures are not available, the display would fall
back to the unligated forms. Each of the entries in the first column of Figure 16-3 shows
two characters in visual display order. The column headings show characters to be inserted
between those two characters. The cells below show the respective display when the joiners
in the heading row are inserted between the original two characters.

For backward compatibility, between Arabic characters a ZWJ acts just like the sequence
<ZWJ, ZWNJ, ZWJ>, preventing a ligature from forming instead of requesting the use of a
ligature that would not normally be used. As a result, there is no plain text mechanism for
requesting the use of a ligature in Arabic text.

Transparency. The property value of Joining_Type=Transparent applies to characters that
should not interfere with cursive connection, even when they occur in sequence between
two characters that are connected cursively. These include all nonspacing marks and most
format control characters, except for ZWJ and ZWNJ themselves. Note, in particular, that
enclosing combining marks are also transparent as regards cursive connection. For exam-
ple, using U+20DD combining enclosing circle to circle an Arabic letter in a sequence
should not cause that Arabic letter to change its cursive connections to neighboring letters.
See Section 8.2, Arabic, for more on joining classes and the details regarding Arabic cursive
joining.

Figure 16-2. Exhibition of Joining Glyphs in Isolation

Figure 16-3. Effect of Intervening Joiners

Ä

Õ

–
063A200D 200D

063A
Õ

Õ Ä →

→

+ +

As IsCharacter
Sequences

f i or fi f i f i fi

062C 0645

062C 0648

0627 0644

f i
0066 0069
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.2 Layout Controls 551
Joiner and Non-joiner in Indic Scripts. In Indic text, the ZWJ and ZWNJ are used to
request particular display forms. A ZWJ after a sequence of consonant plus virama requests
what is called a “half-form” of that consonant. A ZWNJ after a sequence of consonant plus
virama requests that conjunct formation be interrupted, usually resulting in an explicit
virama on that consonant. There are a few more specialized uses as well. For more informa-
tion, see the discussions in Chapter 9, South Asian Scripts-I.

Implementation Notes. For modern font technologies, such as OpenType or AAT, font
vendors should add ZWJ to their ligature mapping tables as appropriate. Thus, where a
font had a mapping from “f” + “i” to fi, the font designer should add the mapping from “f”
+ ZWJ + “i” to fi. In contrast, ZWNJ will normally have the desired effect naturally for
most fonts without any change, as it simply obstructs the normal ligature/cursive connec-
tion behavior. As with all other alternate format characters, fonts should use an invisible
zero-width glyph for representation of both ZWJ and ZWNJ.

Filtering Joiner and Non-joiner. zero width joiner and zero width non-joiner are
format control characters. As such, and in common with other format control characters,
they are ordinarily ignored by processes that analyze text content. For example, a spell-
checker or a search operation should filter them out when checking for matches. There are
exceptions, however. In particular scripts—most notably the Indic scripts—ZWJ and
ZWNJ have specialized usages that may be of orthographic significance. In those contexts,
blind filtering of all instances of ZWJ or ZWNJ may result in ignoring distinctions relevant
to the user’s notion of text content. Implementers should be aware of these exceptional cir-
cumstances, so that searching and matching operations behave as expected for those
scripts.

Combining Grapheme Joiner

U+034F combining grapheme joiner (CGJ) is used to affect the collation of adjacent
characters for purposes of language-sensitive collation and searching. It is also used to dis-
tinguish sequences that would otherwise be canonically equivalent.

Formally, the combining grapheme joiner is not a format control character, but rather a
combining mark. It has the General_Category value gc=Mn and the canonical combining
class value ccc=0.

As a result of these properties, the presence of a combining grapheme joiner in the midst of
a combining character sequence does not interrupt the combining character sequence; any
process that is accumulating and processing all the characters of a combining character
sequence would include a combining grapheme joiner as part of that sequence. This differs
from the behavior of most format control characters, whose presence would interrupt a
combining character sequence.

In addition, because the combining grapheme joiner has the canonical combining class of
0, canonical reordering will not reorder any adjacent combining marks around a combin-
ing grapheme joiner. (See the definition of canonical reordering in Section 3.11, Normaliza-
tion Forms.) In turn, this means that insertion of a combining grapheme joiner between
two combining marks will prevent normalization from switching the positions of those two
combining marks, regardless of their own combining classes.

Blocking Reordering. The CGJ has no visible glyph and no other format effect on neigh-
boring characters but simply blocks reordering of combining marks. It can therefore be
used as a tool to distinguish two alternative orderings of a sequence of combining marks for
some exceptional processing or rendering purpose, whenever normalization would other-
wise eliminate the distinction between the two sequences.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

552 Special Areas and Format Characters
For example, using CGJ to block reordering is one way to maintain distinction between dif-
ferently ordered sequences of certain Hebrew accents and marks. These distinctions are
necessary for analytic and text representational purposes. However, these characters were
assigned fixed-position combining classes despite the fact that they interact typographi-
cally. As a result, normalization treats differently ordered sequences as equivalent. In par-
ticular, the sequence

<lamed, patah, hiriq, finalmem>

is canonically equivalent to

<lamed, hiriq, patah, finalmem>

because the canonical combining classes of U+05B4 hebrew point hiriq and U+05B7
hebrew point patah are distinct. However, the sequence

<lamed, patah, CGJ, hiriq, finalmem>

is not canonically equivalent to the other two. The presence of the combining grapheme
joiner, which has ccc=0, blocks the reordering of hiriq before patah by canonical reordering
and thus allows a patah following a hiriq and a patah preceding a hiriq to be reliably distin-
guished, whether for display or for other processing.

The use of CGJ with double diacritics is discussed in Section 7.9, Combining Marks; see
Figure 7-10.

CGJ and Collation. The Unicode Collation Algorithm normalizes Unicode text strings
before applying collation weighting. The combining grapheme joiner is ordinarily ignored
in collation key weighting in the UCA. However, whenever it blocks the reordering of com-
bining marks in a string, it affects the order of secondary key weights associated with those
combining marks, giving the two strings distinct keys. That makes it possible to treat them
distinctly in searching and sorting without having to tailor the weights for either the com-
bining grapheme joiner or the combining marks.

The CGJ can also be used to prevent the formation of contractions in the Unicode Colla-
tion Algorithm. For example, while “ch” is sorted as a single unit in a tailored Slovak colla-
tion, the sequence <c, CGJ, h> will sort as a “c” followed by an “h”. The CGJ can also be
used in German, for example, to distinguish in sorting between “ü” in the meaning of u-
umlaut, which is the more common case and often sorted like <u,e>, and “ü” in the mean-
ing u-diaeresis, which is comparatively rare and sorted like “u” with a secondary key
weight. This also requires no tailoring of either the combining grapheme joiner or the
sequence. Because CGJ is invisible and has the default_ignorable property, data that are
marked up with a CGJ should not cause problems for other processes.

It is possible to give sequences of characters that include the combining grapheme joiner
special tailored weights. Thus the sequence <c, CGJ, h> could be weighted completely dif-
ferently from the contraction “ch” or from the way “c” and “h” would have sorted without
the contraction. However, such an application of CGJ is not recommended. For more
information on the use of CGJ with sorting, matching, and searching, see Unicode Techni-
cal Report #10, “Unicode Collation Algorithm.”

Rendering. For rendering, the combining grapheme joiner is invisible. However, some
older implementations may treat a sequence of grapheme clusters linked by combining
grapheme joiners as a single unit for the application of enclosing combining marks. For
more information on grapheme clusters, see Unicode Technical Report #29, “Unicode Text
Segmentation.” For more information on enclosing combining marks, see Section 3.11,
Normalization Forms.

CGJ and Joiner Characters. The combining grapheme joiner must not be confused with
the zero width joiner or the word joiner, which have very different functions. In particular,
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.2 Layout Controls 553
inserting a combining grapheme joiner between two characters should have no effect on
their ligation or cursive joining behavior. Where the prevention of line breaking is the
desired effect, the word joiner should be used. For more information on the behavior of
these characters in line breaking, see Unicode Standard Annex #14, “Unicode Line Break-
ing Algorithm.”

Bidirectional Ordering Controls

Bidirectional ordering controls are used in the Bidirectional Algorithm, described in Uni-
code Standard Annex #9, “Unicode Bidirectional Algorithm.” Systems that handle right-to-
left scripts such as Arabic, Syriac, and Hebrew, for example, should interpret these format
control characters. The bidirectional ordering controls are shown in Table 16-3.

As with other format control characters, bidirectional ordering controls affect the layout of
the text in which they are contained but should be ignored for other text processes, such as
sorting or searching. However, text processes that modify text content must maintain these
characters correctly, because matching pairs of bidirectional ordering controls must be
coordinated, so as not to disrupt the layout and interpretation of bidirectional text. Each
instance of a lre, rle, lro, or rlo is normally paired with a corresponding pdf.

U+200E left-to-right mark and U+200F right-to-left mark have the semantics of an
invisible character of zero width, except that these characters have strong directionality.
They are intended to be used to resolve cases of ambiguous directionality in the context of
bidirectional texts; they are not paired. Unlike U+200B zero width space, these charac-
ters carry no word breaking semantics. (See Unicode Standard Annex #9, “Unicode Bidi-
rectional Algorithm,” for more information.)

Stateful Format Controls

The Unicode Standard contains a small number of paired stateful controls. These characters
are used in pairs, with an initiating character (or sequence) and a terminating character.
Even when these characters are not supported by a particular implementation, complica-
tions can arise due to their paired nature. Whenever text is cut, copied, pasted, or deleted,
these characters can become unpaired. To avoid this problem, ideally both any copied text
and its context (site of a deletion, or target of an insertion) would be modified so as to
maintain all pairings that were in effect for each piece of text. This process can be quite
complicated, however, and is not often done—or is done incorrectly if attempted.

The paired stateful controls recommended for use are listed in Table 16-4.

The bidirectional overrides and embeddings and the annotation characters are reasonably
robust, because their behavior terminates at paragraph boundaries. Paired format controls
for representation of beams and slurs in music are recommended only for specialized musi-
cal layout software, and also have limited scope.

Table 16-3. Bidirectional Ordering Controls

Code Name Abbreviation

U+200E left-to-right mark lrm

U+200F right-to-left mark rlm

U+202A left-to-right embedding lre

U+202B right-to-left embedding rle

U+202C pop directional formatting pdf

U+202D left-to-right override lro

U+202E right-to-left override rlo
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

554 Special Areas and Format Characters
Bidirectional overrides and embeddings are default ignorable code points; if they are not
supported by an implementation, they should not be rendered with a visible glyph. The
paired stateful controls for musical beams and slurs are likewise default ignorable code
points.

The annotation characters, however, are different. When they are used and correctly inter-
preted by an implementation, they separate annotation text from the annotated text, and
the fully rendered text will typically distinguish the two parts quite clearly. Simply omitting
any display of the annotation characters by an implementation which does not interpret
them would have the potential to cause significant misconstrual of text content. Hence, the
annotation characters are not default ignorable code points; an implementation which
does not interpret them should render them with visible glyphs, using one of the tech-
niques discussed in Section 5.3, Unknown and Missing Characters. See “Annotation Charac-
ters” in Section 16.8, Specials for more discussion.

Other paired stateful controls in the standard are deprecated, and their use should be
avoided. They are listed in Table 16-5.

The tag characters, originally intended for the representation of language tags, are particu-
larly fragile under editorial operations that move spans of text around. See Section 5.10,
Language Information in Plain Text, for more information about language tagging.

16.3 Deprecated Format Characters

Deprecated Format Characters: U+206A–U+206F

Three pairs of deprecated format characters are encoded in this block:

• Symmetric swapping format characters used to control the glyphs that depict
characters such as “(” (The default state is activated.)

• Character shaping selectors used to control the shaping behavior of the Arabic
compatibility characters (The default state is inhibited.)

• Numeric shape selectors used to override the normal shapes of the Western dig-
its (The default state is nominal.)

The use of these character shaping selectors and codes for digit shapes is strongly discour-
aged in the Unicode Standard. Instead, the appropriate character codes should be used with
the default state. For example, if contextual forms for Arabic characters are desired, then
the nominal characters should be used, not the presentation forms with the shaping selec-
tors. Similarly, if the Arabic digit forms are desired, then the explicit characters should be
used, such as U+0660 arabic-indic digit zero.

Table 16-4. Paired Stateful Controls

Characters Documentation
Bidi Overrides and Embeddings Section 16.2, Layout Controls; UAX #9
Annotation Characters Section 16.8, Specials
Musical Beams and Slurs Section 15.12, Western Musical Symbols

Table 16-5. Paired Stateful Controls (Deprecated)

Characters Documentation
Deprecated Format Characters Section 16.3, Deprecated Format Characters
Tag Characters Section 16.9, Deprecated Tag Characters
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.3 Deprecated Format Characters 555
Symmetric Swapping. The symmetric swapping format characters are used in conjunction
with the class of left- and right-handed pairs of characters (symmetric characters), such as
parentheses. The characters thus affected are listed in Section 4.7, Bidi Mirrored. They indi-
cate whether the interpretation of the term left or right in the character names should be
interpreted as meaning opening or closing, respectively. They do not nest. The default state
of symmetric swapping may be set by a higher-level protocol or standard, such as ISO 6429.
In the absence of such a protocol, the default state is activated.

From the point of encountering U+206A inhibit symmetric swapping format character
up to a subsequent U+206B activate symmetric swapping (if any), the symmetric char-
acters will be interpreted and rendered as left and right.

From the point of encountering U+206B activate symmetric swapping format character
up to a subsequent U+206A inhibit symmetric swapping (if any), the symmetric charac-
ters will be interpreted and rendered as opening and closing. This state (activated) is the
default state in the absence of any symmetric swapping code or a higher-level protocol.

Character Shaping Selectors. The character shaping selector format characters are used in
conjunction with Arabic presentation forms. During the presentation process, certain let-
terforms may be joined together in cursive connection or ligatures. The shaping selector
codes indicate that the character shape determination (glyph selection) process used to
achieve this presentation effect is to be either activated or inhibited. The shaping selector
codes do not nest.

From the point of encountering a U+206C inhibit arabic form shaping format charac-
ter up to a subsequent U+206D activate arabic form shaping (if any), the character
shaping determination process should be inhibited. If the backing store contains Arabic
presentation forms (for example, U+FE80..U+FEFC), then these forms should be pre-
sented without shape modification. This state (inhibited) is the default state in the absence
of any character shaping selector or a higher-level protocol.

From the point of encountering a U+206D activate arabic form shaping format char-
acter up to a subsequent U+206C inhibit arabic form shaping (if any), any Arabic
presentation forms that appear in the backing store should be presented with shape modi-
fication by means of the character shaping (glyph selection) process.

The shaping selectors have no effect on nominal Arabic characters (U+0660..U+06FF),
which are always subject to character shaping (glyph selection).

Numeric Shape Selectors. The numeric shape selector format characters allow the selec-
tion of the shapes in which the digits U+0030..U+0039 are to be rendered. These format
characters do not nest.

From the point of encountering a U+206E national digit shapes format character up to
a subsequent U+206F nominal digit shapes (if any), the European digits (U+0030..
U+0039) should be depicted using the appropriate national digit shapes as specified by
means of appropriate agreements. For example, they could be displayed with shapes such
as the arabic-indic digits (U+0660..U+0669). The actual character shapes (glyphs) used
to display national digit shapes are not specified by the Unicode Standard.

From the point of encountering a U+206F nominal digit shapes format character up to
a subsequent U+206E national digit shapes (if any), the European digits (U+0030..
U+0039) should be depicted using glyphs that represent the nominal digit shapes shown in
the code tables for these digits. This state (nominal) is the default state in the absence of any
numeric shape selector or a higher-level protocol.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

556 Special Areas and Format Characters
16.4 Variation Selectors
Characters in the Unicode Standard can be represented by a wide variety of glyphs, as dis-
cussed in Chapter 2, General Structure. Occasionally the need arises in text processing to
restrict or change the set of glyphs that are to be used to represent a character. Normally
such changes are indicated by choice of font or style in rich text documents. In special cir-
cumstances, such a variation from the normal range of appearance needs to be expressed
side-by-side in the same document in plain text contexts, where it is impossible or inconve-
nient to exchange formatted text. For example, in languages employing the Mongolian
script, sometimes a specific variant range of glyphs is needed for a specific textual purpose
for which the range of “generic” glyphs is considered inappropriate.

Variation selectors provide a mechanism for specifying a restriction on the set of glyphs
that are used to represent a particular character. They also provide a mechanism for speci-
fying variants, such as for CJK ideographs and Mongolian letters, that have essentially the
same semantics but substantially different ranges of glyphs.

Variation Sequence. A variation sequence always consists of a base character followed by a
variation selector character. That sequence is referred to as a variant of the base character.

In a variation sequence the variation selector affects the appearance of the base character.
Such changes in appearance may, in turn, have a visual impact on subsequent characters,
particularly combining characters applied to that base character. For example, if the base
character changes shape, that should result in a corresponding change in shape or position
of applied combining marks. If the base character changes color, as can be the case for
emoji style variation sequences, the color may also change for applied combining marks. If
the base character changes in advance width, that would also change the positioning of
subsequent spacing characters.

In particular, the emoji style variation sequences for digits and U+0023 “#” number sign

are intended to affect the color, size, and positioning of U+20E3 0 combining enclosing

keycap when applied to those base characters. For example, the variation sequence <0023,
FE0F> selects the emoji style variant for “#”. The sequence <0023, FE0F, 20E3> should
show the enclosing keycap with an appropriate emoji style, matching the “#” in color, shape,
and positioning. Shape changes for variation sequences, with or without additional com-
bining marks, may also result in an increase of advance width; thus, each of the sequences
<0023, FE0F>, <0023, 20E3>, and <0023, FE0F, 20E3> may have a distinct advance width,
differing from U+0023 alone.

The variation selector is not used as a general code extension mechanism; only certain
sequences are defined, as follows:

Standardized variation sequences are defined in the file StandardizedVari-
ants.txt in the Unicode Character Database. Ideographic variation
sequences are defined by the registration process defined in Unicode Techni-
cal Standard #37, “Unicode Ideographic Variation Database,” and are
listed in the Ideographic Variation Database. Only those two types of varia-
tion sequences are sanctioned for use by conformant implementations. In
all other cases, use of a variation selector character does not change the
visual appearance of the preceding base character from what it would have
had in the absence of the variation selector.

The base character in a variation sequence is never a combining character or a decompos-
able character. The variation selectors themselves are combining marks of combining class
0 and are default ignorable characters. Thus, if the variation sequence is not supported, the
variation selector should be invisible and ignored. As with all default ignorable characters,
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.5 Private-Use Characters 557
this does not preclude modes or environments where the variation selectors should be
given visible appearance. For example, a “Show Hidden” mode could reveal the presence of
such characters with specialized glyphs, or a particular environment could use or require a
visual indication of a base character (such as a wavy underline) to show that it is part of a
standardized variation sequence that cannot be supported by the current font.

The standardization or support of a particular variation sequence does not limit the set of
glyphs that can be used to represent the base character alone. If a user requires a visual dis-
tinction between a character and a particular variant of that character, then fonts must be
used to make that distinction. The existence of a variation sequence does not preclude the
later encoding of a new character with distinct semantics and a similar or overlapping
range of glyphs.

Mongolian. For the behavior of older implementations of Mongolian using variation selec-
tors, see the discussion of Mongolian free variation selectors in Section 13.2, Mongolian.

16.5 Private-Use Characters
Private-use characters are assigned Unicode code points whose interpretation is not speci-
fied by this standard and whose use may be determined by private agreement among coop-
erating users. These characters are designated for private use and do not have defined,
interpretable semantics except by private agreement.

Private-use characters are often used to implement end-user defined characters (EUDC),
which are common in East Asian computing environments.

No charts are provided for private-use characters, as any such characters are, by their very
nature, defined only outside the context of this standard.

Three distinct blocks of private-use characters are provided in the Unicode Standard: the
primary Private Use Area (PUA) in the BMP and two supplementary Private Use Areas in
the supplemental planes.

All code points in the blocks of private-use characters in the Unicode Standard are perma-
nently designated for private use. No assignment to a particular standard set of characters
will ever be endorsed or documented by the Unicode Consortium for any of these code
points.

Any prior use of a character as a private-use character has no direct bearing on any eventual
encoding decisions regarding whether and how to encode that character. Standardization
of characters must always follow the normal process for encoding of new characters or
scripts.

Properties. No private agreement can change which character codes are reserved for pri-
vate use. However, many Unicode algorithms use the General_Category property or prop-
erties which are derived by reference to the General_Category property. Private agreements
may override the General_Category or derivations based on it, except where overriding is
expressly disallowed in the conformance statement for a specific algorithm. In other words,
private agreements may define which private-use characters should be treated like spaces,
digits, letters, punctuation, and so on, by all parties to those private agreements. In partic-
ular, when a private agreement overrides the General_Category of a private-use character
from the default value of gc=Co to some other value such as gc=Lu or gc=Nd, such a
change does not change its inherent identity as a private-use character, but merely specifies
its intended behavior according to the private agreement.

For all other properties the Unicode Character Database also provides default values for
private-use characters. Except for normalization-related properties, these default property
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

558 Special Areas and Format Characters
values should be considered informative. They are intended to allow implementations to
treat private-use characters in a consistent way, even in the absence of a particular private
agreement, and to simplify the use of common types of private-use characters. Those
default values are based on typical use-cases for private-use characters. Implementations
may freely change or override the default values according to their requirements for private
use. For example, a private agreement might specify that two private-use characters are to
be treated as a case mapping pair, or a private agreement could specify that a private-use
character is to be rendered and otherwise treated as a combining mark.

To exchange private-use characters in a semantically consistent way, users may also
exchange privately defined data which describes how each private-use character is to be
interpreted. The Unicode Standard provides no predefined format for such a data
exchange.

Normalization. The canonical and compatibility decompositions of any private-use char-
acter are equal to the character itself (for example, U+E000 decomposes to U+E000). The
Canonical_Combining_Class of private-use characters is defined as 0 (Not_Reordered).
These values are normatively defined by the Unicode Standard and cannot be changed by
private agreement. The treatment of all private-use characters for normalization forms
NFC, NFD, NFKD, and NFKC is also normatively defined by the Unicode Standard on the
basis of these decompositions. (See Unicode Standard Annex #15, “Unicode Normalization
Forms.”) No private agreement may change these forms—for example, by changing the
standard canonical or compatibility decompositions for private-use characters. The impli-
cation is that all private-use characters, no matter what private agreements they are subject
to, always normalize to themselves and are never reordered in any Unicode normalization
form.

This does not preclude private agreements on other transformations. Thus one could
define a transformation “MyCompanyComposition” that was identical to NFC except that
it mapped U+E000 to “a”. The forms NFC, NFD, NFKD, and NFKC themselves, however,
cannot be changed by such agreements.

Private Use Area: U+E000–U+F8FF

The primary Private Use Area consists of code points in the range U+E000 to U+F8FF, for
a total of 6,400 private-use characters.

Encoding Structure. By convention, the primary Private Use Area is divided into a corpo-
rate use subarea for platform writers, starting at U+F8FF and extending downward in val-
ues, and an end-user subarea, starting at U+E000 and extending upward.

By following this convention, the likelihood of collision between private-use characters
defined by platform writers with private-use characters defined by end users can be
reduced. However, it should be noted that this is only a convention, not a normative speci-
fication. In principle, any user can define any interpretation of any private-use character.

Corporate Use Subarea. Systems vendors and/or software developers may need to reserve
some private-use characters for internal use by their software. The corporate use subarea is
the preferred area for such reservations. Assignments of character semantics in this subarea
may be completely internal, hidden from end users, and used only for vendor-specific
application support, or they may be published as vendor-specific character assignments
available to applications and end users. An example of the former case would be the assign-
ment of a character code to a system support operation such as <MOVE> or <COPY>; an
example of the latter case would be the assignment of a character code to a vendor-specific
logo character such as Apple’s apple character.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.6 Surrogates Area 559
Note, however, that systems vendors may need to support full end-user definability for all
private-use characters, for such purposes as gaiji support or for transient cross-mapping
tables. The use of noncharacters (see Section 16.7, Noncharacters, and Definition D14 in
Section 3.4, Characters and Encoding) is the preferred way to make use of non-interchange-
able internal system sentinels of various sorts.

End-User Subarea. The end-user subarea is intended for private-use character definitions
by end users or for scratch allocations of character space by end-user applications.

Allocation of Subareas. Vendors may choose to reserve ranges of private-use characters in
the corporate use subarea and make some defined portion of the end-user subarea available
for completely free end-user definition. The convention of separating the two subareas is
merely a suggestion for the convenience of system vendors and software developers. No
firm dividing line between the two subareas is defined in this standard, as different users
may have different requirements. No provision is made in the Unicode Standard for avoid-
ing a “stack-heap collision” between the two subareas; in other words, there is no guarantee
that end users will not define a private-use character at a code point that overlaps and con-
flicts with a particular corporate private-use definition at the same code point. Avoiding
such overlaps in definition is up to implementations and users.

Supplementary Private Use Areas

Encoding Structure. The entire Plane 15, with the exception of the noncharacters
U+FFFFE and U+FFFFF, is defined to be the Supplementary Private Use Area-A. The
entire Plane 16, with the exception of the noncharacters U+10FFFE and U+10FFFF, is
defined to be the Supplementary Private Use Area-B. Together these areas make an addi-
tional 131,068 code points available for private use.

The supplementary PUAs provide additional undifferentiated space for private-use charac-
ters for implementations for which the 6,400 private-use characters in the primary PUA
prove to be insufficient.

16.6 Surrogates Area

Surrogates Area: U+D800–U+DFFF

When using UTF-16 to represent supplementary characters, pairs of 16-bit code units are
used for each character. These units are called surrogates. To distinguish them from ordi-
nary characters, they are allocated in a separate area. The Surrogates Area consists of 1,024
low-half surrogate code points and 1,024 high-half surrogate code points. For the formal
definition of a surrogate pair and the role of surrogate pairs in the Unicode Conformance
Clause, see Section 3.8, Surrogates, and Section 5.4, Handling Surrogate Pairs in UTF-16.

The use of surrogate pairs in the Unicode Standard is formally equivalent to the Universal
Transformation Format-16 (UTF-16) defined in ISO 10646. For more information, see
Appendix C, Relationship to ISO/IEC 10646. For a complete statement of UTF-16, see
Section 3.9, Unicode Encoding Forms.

High-Surrogate. The high-surrogate code points are assigned to the range U+D800..
U+DBFF. The high-surrogate code point is always the first element of a surrogate pair.

Low-Surrogate. The low-surrogate code points are assigned to the range U+DC00..
U+DFFF. The low-surrogate code point is always the second element of a surrogate pair.

Private-Use High-Surrogates. The high-surrogate code points from U+DB80..U+DBFF
are private-use high-surrogate code points (a total of 128 code points). Characters repre-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

560 Special Areas and Format Characters
sented by means of a surrogate pair, where the high-surrogate code point is a private-use
high-surrogate, are private-use characters from the supplementary private use areas. For
more information on private-use characters, see Section 16.5, Private-Use Characters.

The code tables do not have charts or name list entries for the range D800..DFFF because
individual, unpaired surrogates merely have code points.

16.7 Noncharacters

Noncharacters: U+FFFE, U+FFFF, and Others

Noncharacters are code points that are permanently reserved in the Unicode Standard for
internal use. They are forbidden for use in open interchange of Unicode text data. See
Section 3.4, Characters and Encoding, for the formal definition of noncharacters and con-
formance requirements related to their use.

The Unicode Standard sets aside 66 noncharacter code points. The last two code points of
each plane are noncharacters: U+FFFE and U+FFFF on the BMP, U+1FFFE and U+1FFFF
on Plane 1, and so on, up to U+10FFFE and U+10FFFF on Plane 16, for a total of 34 code
points. In addition, there is a contiguous range of another 32 noncharacter code points in
the BMP: U+FDD0..U+FDEF. For historical reasons, the range U+FDD0..U+FDEF is con-
tained within the Arabic Presentation Forms-A block, but those noncharacters are not
“Arabic noncharacters” or “right-to-left noncharacters,” and are not distinguished in any
other way from the other noncharacters, except in their code point values.

Applications are free to use any of these noncharacter code points internally but should
never attempt to exchange them. If a noncharacter is received in open interchange, an
application is not required to interpret it in any way. It is good practice, however, to recog-
nize it as a noncharacter and to take appropriate action, such as replacing it with U+FFFD
replacement character, to indicate the problem in the text. It is not recommended to
simply delete noncharacter code points from such text, because of the potential security
issues caused by deleting uninterpreted characters. (See conformance clause C7 in
Section 3.2, Conformance Requirements, and Unicode Technical Report #36, “Unicode
Security Considerations.”)

In effect, noncharacters can be thought of as application-internal private-use code points.
Unlike the private-use characters discussed in Section 16.5, Private-Use Characters, which
are assigned characters and which are intended for use in open interchange, subject to
interpretation by private agreement, noncharacters are permanently reserved (unassigned)
and have no interpretation whatsoever outside of their possible application-internal pri-
vate uses.

U+FFFF and U+10FFFF. These two noncharacter code points have the attribute of being
associated with the largest code unit values for particular Unicode encoding forms. In
UTF-16, U+FFFF is associated with the largest 16-bit code unit value, FFFF16. U+10FFFF is
associated with the largest legal UTF-32 32-bit code unit value, 10FFFF16. This attribute
renders these two noncharacter code points useful for internal purposes as sentinels. For
example, they might be used to indicate the end of a list, to represent a value in an index
guaranteed to be higher than any valid character value, and so on.

U+FFFE. This noncharacter has the intended peculiarity that, when represented in UTF-16
and then serialized, it has the opposite byte sequence of U+FEFF, the byte order mark. This
means that applications should reserve U+FFFE as an internal signal that a UTF-16 text
stream is in a reversed byte format. Detection of U+FFFE at the start of an input stream
should be taken as a strong indication that the input stream should be byte-swapped before
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.8 Specials 561
interpretation. For more on the use of the byte order mark and its interaction with the non-
character U+FFFE, see Section 16.8, Specials.

16.8 Specials
The Specials block contains code points that are interpreted as neither control nor graphic
characters but that are provided to facilitate current software practices.

For information about the noncharacter code points U+FFFE and U+FFFF, see
Section 16.7, Noncharacters.

Byte Order Mark (BOM): U+FEFF

For historical reasons, the character U+FEFF used for the byte order mark is named zero

width no-break space. Except for compatibility with versions of Unicode prior to Ver-
sion 3.2, U+FEFF is not used with the semantics of zero width no-break space (see
Section 16.2, Layout Controls). Instead, its most common and most important usage is in
the following two circumstances:

1. Unmarked Byte Order. Some machine architectures use the so-called big-
endian byte order, while others use the little-endian byte order. When Unicode
text is serialized into bytes, the bytes can go in either order, depending on the
architecture. Sometimes this byte order is not externally marked, which causes
problems in interchange between different systems.

2. Unmarked Character Set. In some circumstances, the character set information
for a stream of coded characters (such as a file) is not available. The only infor-
mation available is that the stream contains text, but the precise character set is
not known.

In these two cases, the character U+FEFF is used as a signature to indicate the byte order
and the character set by using the byte serializations described in Section 3.10, Unicode
Encoding Schemes. Because the byte-swapped version U+FFFE is a noncharacter, when an
interpreting process finds U+FFFE as the first character, it signals either that the process
has encountered text that is of the incorrect byte order or that the file is not valid Unicode
text.

In the UTF-16 encoding scheme, U+FEFF at the very beginning of a file or stream explicitly
signals the byte order.

The byte sequences <FE16 FF16> or <FF16 FE16> may also serve as a signature to identify a
file as containing UTF-16 text. Either sequence is exceedingly rare at the outset of text files
using other character encodings, whether single- or multiple-byte, and therefore not
likely to be confused with real text data. For example, in systems that employ ISO Latin-1
(ISO/IEC 8859-1) or the Microsoft Windows ANSI Code Page 1252, the byte sequence
<FE16 FF16> constitutes the string <thorn, y diaeresis> “þÿ”; in systems that employ the
Apple Macintosh Roman character set or the Adobe Standard Encoding, this sequence rep-
resents the sequence <ogonek, hacek> “”; in systems that employ other common IBM
PC code pages (for example, CP 437, 850), this sequence represents <black square, no-break
space> “ ”.

In UTF-8, the BOM corresponds to the byte sequence <EF16 BB16 BF16>. Although there
are never any questions of byte order with UTF-8 text, this sequence can serve as signature
for UTF-8 encoded text where the character set is unmarked. As with a BOM in UTF-16,
this sequence of bytes will be extremely rare at the beginning of text files in other character
encodings. For example, in systems that employ Microsoft Windows ANSI Code Page 1252,
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

562 Special Areas and Format Characters
<EF16 BB16 BF16> corresponds to the sequence <i diaeresis, guillemet, inverted question
mark> “ï » ¿”.

For compatibility with versions of the Unicode Standard prior to Version 3.2, the code
point U+FEFF has the word-joining semantics of zero width no-break space when it is not
used as a BOM. In new text, these semantics should be encoded by U+2060 word joiner.
See “Line and Word Breaking” in Section 16.2, Layout Controls, for more information.

Where the byte order is explicitly specified, such as in UTF-16BE or UTF-16LE, then all
U+FEFF characters—even at the very beginning of the text—are to be interpreted as zero
width no-break spaces. Similarly, where Unicode text has known byte order, initial U+FEFF
characters are not required, but for backward compatibility are to be interpreted as zero
width no-break spaces. For example, for strings in an API, the memory architecture of the
processor provides the explicit byte order. For databases and similar structures, it is much
more efficient and robust to use a uniform byte order for the same field (if not the entire
database), thereby avoiding use of the byte order mark.

Systems that use the byte order mark must recognize when an initial U+FEFF signals the
byte order. In those cases, it is not part of the textual content and should be removed before
processing, because otherwise it may be mistaken for a legitimate zero width no-break space.
To represent an initial U+FEFF zero width no-break space in a UTF-16 file, use
U+FEFF twice in a row. The first one is a byte order mark; the second one is the initial zero
width no-break space. See Table 16-6 for a summary of encoding scheme signatures.

If U+FEFF had only the semantics of a signature code point, it could be freely deleted from
text without affecting the interpretation of the rest of the text. Carelessly appending files
together, for example, can result in a signature code point in the middle of text. Unfortu-
nately, U+FEFF also has significance as a character. As a zero width no-break space, it indi-
cates that line breaks are not allowed between the adjoining characters. Thus U+FEFF
affects the interpretation of text and cannot be freely deleted. The overloading of semantics
for this code point has caused problems for programs and protocols. The new character
U+2060 word joiner has the same semantics in all cases as U+FEFF, except that it cannot
be used as a signature. Implementers are strongly encouraged to use word joiner in those
circumstances whenever word joining semantics are intended.

An initial U+FEFF also takes a characteristic form in other charsets designed for Unicode
text. (The term “charset” refers to a wide range of text encodings, including encoding
schemes as well as compression schemes and text-specific transformation formats.) The
characteristic sequences of bytes associated with an initial U+FEFF can serve as signatures
in those cases, as shown in Table 16-7.

Most signatures can be deleted either before or after conversion of an input stream into a
Unicode encoding form. However, in the case of BOCU-1 and UTF-7, the input byte
sequence must be converted before the initial U+FEFF can be deleted, because stripping
the signature byte sequence without conversion destroys context necessary for the correct
interpretation of subsequent bytes in the input sequence.

Table 16-6. Unicode Encoding Scheme Signatures

Encoding Scheme Signature

UTF-8 EF BB BF
UTF-16 Big-endian FE FF
UTF-16 Little-endian FF FE
UTF-32 Big-endian 00 00 FE FF
UTF-32 Little-endian FF FE 00 00
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.8 Specials 563
Specials: U+FFF0–U+FFF8

The nine unassigned Unicode code points in the range U+FFF0..U+FFF8 are reserved for
special character definitions.

Annotation Characters: U+FFF9–U+FFFB

An interlinear annotation consists of annotating text that is related to a sequence of anno-
tated characters. For all regular editing and text-processing algorithms, the annotated char-
acters are treated as part of the text stream. The annotating text is also part of the content,
but for all or some text processing, it does not form part of the main text stream. However,
within the annotating text, characters are accessible to the same kind of layout, text-pro-
cessing, and editing algorithms as the base text. The annotation characters delimit the
annotating and the annotated text, and identify them as part of an annotation. See
Figure 16-4.

The annotation characters are used in internal processing when out-of-band information is
associated with a character stream, very similarly to the usage of U+FFFC object replace-

ment character. However, unlike the opaque objects hidden by the latter character, the
annotation itself is textual.

Conformance. A conformant implementation that supports annotation characters inter-
prets the base text as if it were part of an unannotated text stream. Within the annotating
text, it interprets the annotating characters with their regular Unicode semantics.

U+FFF9 interlinear annotation anchor is an anchor character, preceding the interlin-
ear annotation. The exact nature and formatting of the annotation depend on additional
information that is not part of the plain text stream. This situation is analogous to that for
U+FFFC object replacement character.

U+FFFA interlinear annotation separator separates the base characters in the text
stream from the annotation characters that follow. The exact interpretation of this charac-
ter depends on the nature of the annotation. More than one separator may be present.
Additional separators delimit parts of a multipart annotating text.

Table 16-7. U+FEFF Signature in Other Charsets

Charset Signature

SCSU 0E FE FF
BOCU-1 FB EE 28
UTF-7 2B 2F 76 38 or

2B 2F 76 39 or
2B 2F 76 2B or
2B 2F 76 2F

UTF-EBCDIC DD 73 66 73

Figure 16-4. Annotation Characters

Felix
Text display

Text stream

Annotated
text

Annotating
text

Annotation
characters

Annotated
text

Annotating
text

Annotation
characters
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

564 Special Areas and Format Characters
U+FFFB interlinear annotation terminator terminates the annotation object (and
returns to the regular text stream).

Use in Plain Text. Usage of the annotation characters in plain text interchange is strongly
discouraged without prior agreement between the sender and the receiver, because the con-
tent may be misinterpreted otherwise. Simply filtering out the annotation characters on
input will produce an unreadable result or, even worse, an opposite meaning. On input, a
plain text receiver should either preserve all characters or remove the interlinear annota-
tion characters as well as the annotating text included between the interlinear annota-

tion separator and the interlinear annotation terminator.

When an output for plain text usage is desired but the receiver is unknown to the sender,
these interlinear annotation characters should be removed as well as the annotating text
included between the interlinear annotation separator and the interlinear anno-

tation terminator.

This restriction does not preclude the use of annotation characters in plain text inter-
change, but it requires a prior agreement between the sender and the receiver for correct
interpretation of the annotations.

Lexical Restrictions. If an implementation encounters a paragraph break between an
anchor and its corresponding terminator, it shall terminate any open annotations at this
point. Anchor characters must precede their corresponding terminator characters.
Unpaired anchors or terminators shall be ignored. A separator occurring outside a pair of
delimiters, shall be ignored. Annotations may be nested.

Formatting. All formatting information for an annotation is provided by higher-level pro-
tocols. The details of the layout of the annotation are implementation-defined. Correct for-
matting may require additional information that is not present in the character stream, but
rather is maintained out-of-band. Therefore, annotation markers serve as placeholders for
an implementation that has access to that information from another source. The format-
ting of annotations and other special line layout features of Japanese is discussed in JIS X
4051.

Input. Annotation characters are not normally input or edited directly by end users. Their
insertion and management in text are typically handled by an application, which will pres-
ent a user interface for selecting and annotating text.

Collation. With the exception of the special case where the annotation is intended to be
used as a sort key, annotations are typically ignored for collation or optionally preprocessed
to act as tie breakers only. Importantly, annotation base characters are not ignored, but
rather are treated like regular text.

Bidirectional Text. Bidirectional processing of text containing interlinear annotations
requires special care. This follows from the fact that interlinear annotations are fundamen-
tally non-linear—the annotations are not part of the main text flow, whereas bidirectional
text processing assumes that it is applied to a single, linear text flow. For best results, the
Bidirectional Algorithm should be applied to the main text, in which any interlinear anno-
tations are replaced by their annotated text, in each case bracketed by bidirectional format
control characters to ensure that the annotated text remains visually contiguous, and then
should be separately applied to each extracted segment of annotating text. (See Unicode
Standard Annex #9, “Unicode Bidirectional Algorithm,” for more information.)

Replacement Characters: U+FFFC–U+FFFD

U+FFFC. The U+FFFC object replacement character is used as an insertion point for
objects located within a stream of text. All other information about the object is kept out-
side the character data stream. Internally it is a dummy character that acts as an anchor
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.9 Deprecated Tag Characters 565
point for the object’s formatting information. In addition to assuring correct placement of
an object in a data stream, the object replacement character allows the use of general
stream-based algorithms for any textual aspects of embedded objects.

U+FFFD. The U+FFFD replacement character is the general substitute character in
the Unicode Standard. It can be substituted for any “unknown” character in another
encoding that cannot be mapped in terms of known Unicode characters. It can also be used
as one means of indicating a conversion error, when encountering an ill-formed sequence
in a conversion between Unicode encoding forms. See Section 3.9, Unicode Encoding Forms
for detailed recommendations on the use of U+FFFD as replacement for ill-formed
sequences. See also Section 5.3, Unknown and Missing Characters for related topics.

16.9 Deprecated Tag Characters

Deprecated Tag Characters: U+E0000–U+E007F

The characters in this block provide a mechanism for language tagging in Unicode plain
text. These characters are deprecated, and should not be used—particularly with any pro-
tocols that provide alternate means of language tagging. The Unicode Standard recom-
mends the use of higher-level protocols, such as HTML or XML, which provide for
language tagging via markup. See Unicode Technical Report #20, “Unicode in XML and
Other Markup Languages.” The requirement for language information embedded in plain
text data is often overstated, and markup or other rich text mechanisms constitute best cur-
rent practice. See Section 5.10, Language Information in Plain Text for further discussion.

This block encodes a set of 95 special-use tag characters to enable the spelling out of ASCII-
based string tags using characters that can be strictly separated from ordinary text content
characters in Unicode. These tag characters can be embedded by protocols into plain text.
They can be identified and/or ignored by implementations with trivial algorithms because
there is no overloading of usage for these tag characters—they can express only tag values
and never textual content itself.

In addition to these 95 characters, one language tag identification character and one cancel
tag character are encoded. The language tag identification character identifies a tag string
as a language tag; the language tag itself makes use of RFC 4646 (or its successors) language
tag strings spelled out using the tag characters from this block.

Syntax for Embedding Tags

To embed any ASCII-derived tag in Unicode plain text, the tag is spelled out with corre-
sponding tag characters, prefixed with the relevant tag identification character. The resul-
tant string is embedded directly in the text.

Tag Identification. The tag identification character is used as a mechanism for identifying
tags of different types. In the future, this could enable multiple types of tags embedded in
plain text to coexist.

Tag Termination. No termination character is required for the tag itself, because all char-
acters that make up the tag are numerically distinct from any non-tag character. A tag ter-
minates either at the first non-tag character (that is, any other normal Unicode character)
or at next tag identification character. A detailed BNF syntax for tags is listed in “Formal
Tag Syntax” later in this section.

Language Tags. A string of tag characters prefixed by U+E0001 language tag is specified
to constitute a language tag. Furthermore, the tag values for the language tag are to be
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

566 Special Areas and Format Characters
spelled out as specified in RFC 4646, making use only of registered tag values or of user-
defined language tags starting with the characters “x-”.

For example, consider the task of embedding a language tag for Japanese. The Japanese tag
from RFC 4646 is “ja” (composed of ISO 639 language id) or, alternatively, “ja-JP” (com-
posed of ISO 639 language id plus ISO 3166 country id). Because RFC 4646 specifies that
language tags are not case significant, it is recommended that for language tags, the entire
tag be lowercased before conversion to tag characters.

Thus the entire language tag “ja-JP” would be converted to the tag characters as follows:

<U+E0001, U+E006A, U+E0061, U+E002D, U+E006A, U+E0070>

The language tag, in its shorter, “ja” form, would be expressed as follows:

<U+E0001, U+E006A, U+E0061>

Tag Scope and Nesting. The value of an established tag continues from the point at which
the tag is embedded in text until either

A. The text itself goes out of scope, as defined by the application, for
example, for line-oriented protocols, when reaching the end-of-line or
end-of-string; for text streams, when reaching the end-of-stream; and so
on),

or

B. The tag is explicitly canceled by the U+E007F cancel tag character.

Tags of the same type cannot be nested in any way. For example, if a new embedded lan-
guage tag occurs following text that was already language tagged, the tagged value for sub-
sequent text simply changes to that specified in the new tag.

Tags of different types can have interdigitating scope, but not hierarchical scope. In effect,
tags of different types completely ignore each other, so that the use of language tags can be
completely asynchronous with the use of future tag types. These relationships are illus-
trated in Figure 16-5.

Figure 16-5. Tag Characters

Tags go out of scope:
at the end of the text

when the tag type is canceled

at the next tag of the same type

when all tags are canceled

Tags of different types can nest:

Tag types Tag values Cancel tag
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.9 Deprecated Tag Characters 567
Canceling Tag Values. The main function of cancel tag is to make possible operations
such as blind concatenation of strings in a tagged context without the propagation of inap-
propriate tag values across the string boundaries. There are two uses of cancel tag. To
cancel a tag value of a particular type, prefix the cancel tag character with the tag identi-
fication character of the appropriate type. For example, the complete string to cancel a lan-
guage tag is <U+E0001, U+E007F>. The value of the relevant tag type returns to the
default state for that tag type—namely, no tag value specified, the same as untagged text. To
cancel any tag values of any type that may be in effect, use cancel tag without a prefixed
tag identification character.

Currently there is no observable difference in the two uses of cancel tag, because only one
tag identification character (and therefore one tag type) is defined. Inserting a bare cancel

tag in places where only the language tag needs to be canceled could lead to unanticipated
side effects if this text were to be inserted in the future into a text that supports more than
one tag type.

Working with Language Tags

Avoiding Language Tags. Because of the extra implementation burden, language tags
should be avoided in plain text unless language information is required and the receivers of
the text are certain to properly recognize and maintain the tags. However, where language
tags must be used, implementers should consider the following implementation issues
involved in supporting language information with tags and decide how to handle tags
where they are not fully supported. This discussion applies to any mechanism for providing
language tags in a plain text environment.

Higher-Level Protocols. Language tags should be avoided wherever higher-level protocols,
such as a rich text format, HTML, or MIME, provide language attributes. This practice pre-
vents cases where the higher-level protocol and the language tags disagree. See Unicode
Technical Report #20, “Unicode in XML and Other Markup Languages.”

Effect of Tags on Interpretation of Text. Implementations that support language tags may
need to take them into account for special processing, such as hyphenation or choice of
font. However, the tag characters themselves have no display and do not affect line break-
ing, character shaping or joining, or any other format or layout properties. Processes inter-
preting the tag may choose to impose such behavior based on the tag value that it
represents.

Display. Characters in the tag character block have no visible rendering in normal text and
the language tags themselves are not displayed. This choice may not require modification of
the displaying program, if the fonts on that platform have the language tag characters
mapped to zero-width, invisible glyphs. For debugging or other operations that must ren-
der the tags themselves visible, it is advisable that the tag characters be rendered using the
corresponding ASCII character glyphs (perhaps modified systematically to differentiate
them from normal ASCII characters). The tag character values have been chosen, however,
so that the tag characters will be interpretable in most debuggers even without display sup-
port.

Processing. Sequential access to the text is generally straightforward. If language codes are
not relevant to the particular processing operation, then they should be ignored. Random
access to stateful tags is more problematic. Because the current state of the text depends on
tags that appeared previous to it, the text must be searched backward, sometimes all the
way to the start. With these exceptions, tags pose no particular difficulties as long as no
modifications are made to the text.

Range Checking for Tag Characters. Tag characters are encoded in Plane 14 to support
easy range checking. The following C/C++ source code snippets show efficient implemen-
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

568 Special Areas and Format Characters
tations of range checks for characters E0000..E007F expressed in each of the three signifi-
cant Unicode encoding forms. Range checks allow implementations that do not want to
support these tag characters to efficiently filter for them.

Range check expressed in UTF-32:

if (((unsigned) *s) - 0xE0000 <= 0x7F)

Range check expressed in UTF-16:

if ((*s == 0xDB40) && (((unsigned)*(s+1)) - 0xDC00 <= 0x7F))

Range check expressed in UTF-8:

if ((*s == 0xF3) && (*(s+1) == 0xA0) &&

((*(s+2) & 0xFE) == 0x80))

Alternatively, the range checks for UTF-32 and UTF-16 can be coded with bit masks. Both
versions should be equally efficient.

Range check expressed in UTF-32:

if (((*s) & 0xFFFFFF80) == 0xE0000)

Range check expressed in UTF-16:

if ((*s == 0xDB40) && (*(s+1) & 0xDC80) == 0xDC00)

Editing and Modification. Inline tags present particular problems for text changes,
because they are stateful. Any modifications of the text are more complicated, as those
modifications need to be aware of the current language status and the <start>...<end> tags
must be properly maintained. If an editing program is unaware that certain tags are stateful
and cannot process them correctly, then it is very easy for the user to modify text in ways
that corrupt it. For example, a user might delete part of a tag or paste text including a tag
into the wrong context.

Dangers of Incomplete Support. Even programs that do not interpret the tags should not
allow editing operations to break initial tags or leave tags unpaired. Unpaired tags should
be discarded upon a save or send operation.

Nonetheless, malformed text may be produced and transmitted by a tag-unaware editor.
Therefore, implementations that do not ignore language tags must be prepared to receive
malformed tags. On reception of a malformed or unpaired tag, language tag-aware imple-
mentations should reset the language to NONE and then ignore the tag.

Unicode Conformance Issues

The rules for Unicode conformance for the tag characters are exactly the same as those for
any other Unicode characters. A conformant process is not required to interpret the tag
characters. If it does interpret them, it should interpret them according to the standard—
that is, as spelled-out tags. However, there is no requirement to provide a particular inter-
pretation of the text because it is tagged with a given language. If an application does not
interpret tag characters, it should leave their values undisturbed and do whatever it does
with any other uninterpreted characters.

The presence of a well-formed tag is no guarantee that the data are correctly tagged. For
example, an application could erroneously label French data with a Spanish tag.

Implementations of Unicode that already make use of out-of-band mechanisms for lan-
guage tagging or “heavy-weight” in-band mechanisms such as XML or HTML will con-
tinue to do exactly what they are doing and will ignore the tag characters completely. They
may even prohibit their use to prevent conflicts with the equivalent markup.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

16.9 Deprecated Tag Characters 569
Formal Tag Syntax

An extended BNF description of the tags specified in this section is given here.

tag := language-tag | cancel-all-tag

language-tag := language-tag-introducer (language-tag-arg

 | tag-cancel)

language-tag-arg := tag-argument

In this rule, tag-argument is constrained to be a valid language identi-
fier according to RFC 4646, with the assumption that the appropriate
conversions from tag character values to ASCII are performed before
checking for syntactic correctness against RFC 4646. For example,
U+E0041 tag latin capital letter a is mapped to U+0041 latin

capital letter a, and so on.

cancel-all-tag := tag-cancel

tag-argument := tag-character+

tag-character := [U+E0020 - U+E007E]

language-tag-introducer := U+E0001

tag-cancel := U+E007F
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

570 Special Areas and Format Characters
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Chapter 17

About the Code Charts 17

The online Unicode code charts present the characters of the Unicode Standard. This chap-
ter explains the conventions used in the code charts and provides other useful information
about the accompanying names lists.

Characters are organized into related groups called blocks. Many scripts are fully contained
within a single character block, but other scripts, including some of the most widely used
scripts, have characters divided across several blocks. Separate blocks contain common
punctuation characters and different types of symbols.

A character names list follows the code chart for each block. The character names list item-
izes every character in that block and provides supplementary information in many cases.
A full set of character names, in machine-readable form, appears in the Unicode Character
Database.

An index to distinctive character names can also be found on the Unicode Web site.

For information about access to the code charts and the character name index, see
Section B.6, Other Unicode Online Resources.

17.1 Character Names List
The following illustration identifies the components of typical entries in the character
names list.

code image entry

00AE ® registered sign

= registered trade mark sign (1.0) (Version 1.0 name)

00AF ¯ macron (Unicode name)
= overline, APL overbar (alternative names)
• this is a spacing character (informative note)
→ 02C9 ¯ modifier letter macron (cross reference)
→ 0304 combining macron
→ 0305 combining overline
 0020 0304 (compatibility decomposition)

00E5 å latin small letter a with ring above

• Danish, Norwegian, Swedish, Walloon (sample of language use)

 0061 a 030A (canonical decomposition)

Disclaimer

Character images shown in the code charts are not prescriptive. In actual fonts,
considerable variations are to be expected.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

572 About the Code Charts
2272 B less-than or equivalent to

~ 2272 FE00 following the slant of the
lower leg (standardized variation sequence)

Images in the Code Charts and Character Lists

Each character in these code charts is shown with a representative glyph. A representative
glyph is not a prescriptive form of the character, but rather one that enables recognition of
the intended character to a knowledgeable user and facilitates lookup of the character in
the code charts. In many cases, there are more or less well-established alternative glyphic
representations for the same character.

Designers of high-quality fonts will do their own research into the preferred glyphic
appearance of Unicode characters. In addition, many scripts require context-dependent
glyph shaping, glyph positioning, or ligatures, none of which is shown in the code charts.
The Unicode Standard contains many characters that are used in writing minority lan-
guages or that are historical characters, often used primarily in manuscripts or inscriptions.
Where there is no strong tradition of printed materials, the typography of a character may
not be settled. Because of these factors, the glyph image chosen as the representative glyph
in these code charts should not be considered a definitive guide to best practice for typo-
graphical design.

Fonts. The representative glyphs for the Latin, Greek, and Cyrillic scripts in the code charts
are based on a serifed, Times-like font. For non-European scripts, typical typefaces were
selected that allow as much distinction as possible among the different characters.

The fonts used for other scripts are similar to Times in that each represents a common,
widely used design, with variable stroke width and serifs or similar devices, where applica-
ble, to show each character as distinctly as possible. Sans-serif fonts with uniform stroke
width tend to have less visibly distinct characters. In the code charts, sans-serif fonts are
used for archaic scripts that predate the invention of serifs, for example.

Alternative Forms. Some characters have alternative forms. For example, even the ASCII
character U+0061 latin small letter a has two common alternative forms: the “a” used
in Times and the “” that occurs in many other font styles. In a Times-like font, the char-
acter U+03A5 greek capital letter upsilon looks like “Y”; the form Y is common in
other font styles.

A different case is U+010F latin small letter d with caron, which is commonly type-
set as @ instead of A. In such cases, the code charts show the more common variant in pref-
erence to a more didactic archetypical shape.

Many characters have been unified and have different appearances in different language
contexts. The shape shown for U+2116 numero sign is a fullwidth shape as it would be
used in East Asian fonts. In Cyrillic usage, M is the universally recognized glyph. See
Figure 15-2.

In certain cases, characters need to be represented by more or less condensed, shifted, or
distorted glyphs to make them fit the format of the code charts. For example, U+0D10
malayalam letter ai is shown in a reduced size to fit the character cell.

When characters are used in context, the surrounding text gives important clues as to iden-
tity, size, and positioning. In the code charts, these clues are absent. For example, U+2075
superscript five is shown much smaller than it would be in a Times-like text font.

Whenever a more obvious choice for representative glyph may be insufficient to aid in the
proper identification of the encoded character, a more distinct variant has been selected as
representative glyph instead.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

17.1 Character Names List 573
Orientation. Representative glyphs for characters in the code charts are oriented as they
would appear in normal text. This is true regardless of whether the script in question is pre-
dominantly laid out in horizontal lines, as for most scripts, or is predominantly laid out in
vertical lines, as for Mongolian and Phags-pa. In cases such as Mongolian, this is accom-
plished using specialized chart fonts which show the glyphs correctly oriented, even though
the chart production software lays out all glyphs horizontally in their boxes. Note that com-
mercial production fonts for Mongolian do not behave this way; if used with common
charting tools, including those for the Unicode code charts, such fonts will show Mongo-
lian glyphs with their images turned 90 degrees counterclockwise.

Special Characters and Code Points

The code charts and character lists use a number of notational conventions for the repre-
sentation of special characters and code points. Some of these conventions indicate those
code points which are not assigned to encoded characters, or are permanently reserved.
Other conventions convey information about the type of character encoded, or provide a
possible fallback rendering for non-printing characters.

Combining Characters. Combining characters are shown with a dotted circle. This dotted
circle is not part of the representative glyph and it would not ordinarily be included as part
of any actual glyph for that character in a font. Instead, the relative position of the dotted
circle indicates an an approximate location of the base character in relation to the combin-
ing mark.

093F Á devanagari vowel sign i
• stands to the left of the consonant

0940 v devanagari vowel sign ii

0941 u devanagari vowel sign u

The detailed rules for placement of combining characters with respect to various base char-
acters are implemented by the selected font in conjunction with the rendering system.

During rendering, additional adjustments are necessary. Accents such as U+0302 combin-

ing circumflex accent are adjusted vertically and horizontally based on the height and
width of the base character, as in “” versus “”.

If the display of a combining mark with a dotted circle is desired, U+25CC ~ dotted cir-

cle is often chosen as the base character for the mark.

Dashed Box Convention. There are a number of characters in the Unicode Standard which
in normal text rendering have no visible display, or whose only effect is to modify the dis-
play of other characters in proximity to them. Examples include space characters, control
characters, and format characters.

To make such characters easily recognizable and distinguishable in the code charts and in
any discussion about the characters, they are represented by a square dashed box. This box
surrounds a short mnemonic abbreviation of the character’s name.

0020 space
• sometimes considered a control code
• other space characters: 2000 w - 200A x

Where such characters have a typical visual appearance in some contexts, an additional
representative image may be used, either alone or with a mnemonic abbreviation.

00AD Á soft hyphen
= discretionary hyphen
• commonly abbreviated as SHY
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

574 About the Code Charts
This convention is also used for some graphic characters which are only distinguished by
special behavior from another character of the same appearance.

2011 L non-breaking hyphen
→ 002D - hyphen-minus
→ 00AD Á soft hyphen
 <noBreak> 2010 -

The dashed box convention also applies to the glyphs of combining characters which have
no visible display of their own, such as variation selectors (see Section 16.4, Variation Selec-
tors).

FE00 y variation selector-1
• these are abbreviated VS1, and so on

Sometimes, the combining status of the character is indicated by including a dotted circle
inside the dashed box, for example for the consonant-stacking viramas.

17D2 A khmer sign coeng
• functions to indicate that the following Khmer letter is to be rendered
subscripted
• shape shown is arbitrary and is not visibly rendered

Even though the presence of the dashed box in the code charts indicates that a character is
likely to be a space character, a control character, a format character, or a combining char-
acter, it cannot be used to infer the actual General_Category value of that character.

Reserved Characters. Character codes that are marked “<reserved>” are unassigned and
reserved for future encoding. Reserved codes are indicated by a glyph. To ensure read-
ability, many instances of reserved characters have been suppressed from the names list.
Reserved codes may also have cross references to assigned characters located elsewhere.

2073 <reserved>
→ 00B3 3 superscript three

Noncharacters. Character codes that are marked “<not a character>” refer to noncharac-
ters. They are designated code points that will never be assigned to a character. These codes
are indicated by a glyph. Noncharacters are shown in the code charts only where they
occur together with other characters in the same block. For a complete list of noncharac-
ters, see Section 16.7, Noncharacters.

FFFF <not a character>
• the value FFFF is guaranteed not to be a Unicode character at all

Deprecated Characters. Deprecated characters are characters whose use is strongly dis-
couraged, but which are retained in the standard indefinitely so that existing data remain
well defined and can be correctly interpreted. (See D13 in Section 3.4, Characters and
Encoding.) Deprecated characters are explicitly indicated in the Unicode Code Charts using
annotations or subheads.

Character Names

The character names in the code charts precisely match the normative character names in
the Unicode Character Database. Character names are unique and stable. By convention,
they are in uppercase. For more information on character names, see Section 4.8, Name.

Informative Aliases

An informative alias (preceded by =) is an alternate name for a character. Characters may
have several aliases, and aliases for different characters are not guaranteed to be unique.
Aliases are informative and may be updated. By convention, aliases are in lowercase, except
where they contain proper names. Where an alias matches the name of a character in The
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

17.1 Character Names List 575
Unicode Standard, Version 1.0, it is listed first, followed by “1.0” in parentheses. Because the
formal character names may differ in unexpected ways from commonly used names (for
example, pilcrow sign = paragraph sign), some aliases may be useful alternate choices for
indicating characters in user interfaces. In the Hangul Jamo block, U+1100..U+11FF, the
normative short jamo names are given as aliases.

Normative Aliases

A normative character name alias (one preceded by ") is a formal, unique, and stable
alternate name for a character. Characters are given normative character name aliases in
certain cases where there is a defect in the character name. These aliases do not replace the
character name, but rather allow users to formally refer to the character without requiring
the use of a defective name. Normative character name aliases which provide information
about corrections to defective character names are always printed in the character names
list. Normative aliases serving other purposes, such as defining abbreviations for charac-
ters, may be omitted or may be presented with an alternative symbol to distinguish them.
For a definite list, suitable for machine parsing, see, NameAliases.txt in the UCD. For more
information, see Section 4.8, Name. By convention, normative character aliases are written
in uppercase letters.

FE18 q presentation form for vertical right white lenticular brakcet

" presentation form for vertical right white lenticular bracket
• misspelling of “BRACKET” in character name is a known defect
 <vertical> 3017

Cross References

Cross references (preceded by →) are used to indicate a related character of interest, but
without indicating the nature of the relation. Possibilities are a different character of simi-
lar appearance or name, the other member of a case pair, or some other linguistic relation-
ship.

Explicit Inequality. The two characters are not identical, although the glyphs that depict
them are identical or very close.

003A : colon
→ 0589 : armenian full stop
→ 2236 : ratio

Other Linguistic Relationships. These relationships include transliterations (such as
between Serbian and Croatian), typographically unrelated characters used to represent the
same sound, and so on.

01C9 lj latin small letter lj
→ 0459 cyrillic small letter lje
 006C l 006A j

Cross references are neither exhaustive nor symmetric. Typically a general character would
have cross references to more specialized characters, but not the other way around.

Information About Languages

An informative note may include a list of one or more of the languages using that character
where this information is considered useful. For case pairs, the annotation is given only for
the lowercase form to avoid needless repetition. An ellipsis “...” indicates that the listed lan-
guages cited are merely the principal ones among many.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

576 About the Code Charts
Case Mappings

When a case mapping corresponds solely to a difference based on small versus capital in
the names of the characters, the case mapping is not given in the names list but only in the
Unicode Character Database.

0041 A latin capital letter a

01F2 Dz latin capital letter d with small letter z
 0044 D 007A z

When the case mapping cannot be predicted from the name, the casing information is
sometimes given in a note.

00DF ß latin small letter sharp s
= Eszett
• German
• uppercase is “SS”
• in origin a ligature of 017F and 0073
→ 03B2 greek small letter beta

For more information about case and case mappings, see Section 4.2, Case.

Decompositions

The decomposition sequence (one or more letters) given for a character is either its canon-
ical mapping or its compatibility mapping. The canonical mapping is marked with an iden-
tical to symbol .

00E5 å latin small letter a with ring above

• Danish, Norwegian, Swedish, Walloon

 0061 a 030A
212B Å angstrom sign

 00C5 Å latin capital letter a with ring above

Compatibility mappings are marked with an almost equal to symbol . Formatting infor-
mation may be indicated with a formatting tag, shown inside angle brackets.

01F2 Dz latin capital letter d with small letter z
 0044 D 007A z

FF21 fullwidth latin capital letter a
 <wide> 0041 A

The following compatibility formatting tags are used in the Unicode Character Database:

 A font variant (for example, a blackletter form)

<noBreak> A no-break version of a space, hyphen, or other punctuation

<initial> An initial presentation form (Arabic)

<medial> A medial presentation form (Arabic)

<final> A final presentation form (Arabic)

<isolated> An isolated presentation form (Arabic)

<circle> An encircled form

<super> A superscript form

<sub> A subscript form

<vertical> A vertical layout presentation form

<wide> A fullwidth (or zenkaku) compatibility character

<narrow> A halfwidth (or hankaku) compatibility character

<small> A small variant form (CNS compatibility)
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

17.2 CJK Unified and Compatibility Ideographs 577
In the character names list accompanying the code charts, the “<compat>” label is sup-
pressed, but all other compatibility formatting tags are explicitly listed in the compatibility
mapping.

Decomposition mappings are not necessarily full decompositions. For example, the
decomposition for U+212B angstrom sign can be further decomposed using the
canonical mapping for U+00C5 latin capital letter a with ring above. (For more
information on decomposition, see Section 3.7, Decomposition.)

Compatibility decompositions do not attempt to retain or emulate the formatting of the
original character. For example, compatibility decompositions with the <noBreak> for-
matting tag do not use U+2060 word joiner to emulate nonbreaking behavior; compati-
bility decompositions with the <circle> formatting tag do not use U+20DD combining

enclosing circle; and compatibility decompositions with formatting tags <initial>,
<medial>, <final>, or <isolate> for explicit positional forms do not use ZWJ or ZWNJ.
The one exception is the use of U+2044 fraction slash to express the <fraction> seman-
tics of compatibility decompositions for vulgar fractions.

Standardized Variation Sequences

Characters for which one or more standardized variants have been defined are displayed in
the code charts with a special convention: the code chart cell for such characters has a small
black triangle in its upper-right corner.

In the character names list, each variation sequence for standardized variants is listed in the
entry for the base character for that sequence. In some cases a character may be associated
with multiple variation sequences. A standardized variation sequence is identified in the
character names list with an initial tilde symbol “~”.

The list of standardized variation sequences in the character names list exactly matches the
list defined in the data file StandardizedVariants.txt in the Unicode Character Database.
Ideographic variation sequences defined in the Ideographic Variation Database are not
included. See Section 16.4, Variation Selectors for more information.

Subheads

The character names list contains a number of informative subheads that help divide up
the list into smaller sublists of similar characters. For example, in the Miscellaneous Sym-
bols block, U+2600..U+26FF, there are subheads for “Astrological symbols,” “Chess sym-
bols,” and so on. Such subheads are editorial and informative; they should not be taken as
providing any definitive, normative status information about characters in the sublists they
mark or about any constraints on what characters could be encoded in the future at
reserved code points within their ranges. The subheads are subject to change.

17.2 CJK Unified and Compatibility Ideographs
The code charts for CJK ideographs differ significantly from those for other characters in
the standard.

<square> A CJK squared font variant

<fraction> A vulgar fraction form

<compat> Otherwise unspecified compatibility character
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

578 About the Code Charts
CJK Unified Ideographs

Character names are not provided for any of the code charts of CJK Unified Ideograph
character blocks, because the name of a unified ideograph simply consists of its Unicode
code point preceded by cjk unified ideograph-.

In other code charts each character is represented with a single representative glyph, but in
the code charts for CJK Unified and Compatibility Ideographs, each character may have
multiple representative glyphs. Each character is shown with as many representative glyphs
as there are Ideographic Rapporteur Group (IRG) sources defined for that character. Each
representative glyph is accompanied with its detailed source information provided in
alphanumeric form. Altogether, there are nine IRG sources, as shown in Table 17-1. Data
for these IRG sources are also documented in Unicode Standard Annex #38, “Unicode Han
Database (Unihan)”.

To assist in reference and lookup, each CJK Unified Ideograph is accompanied by a repre-
sentative glyph of its Unicode radical and by its Unicode radical-stroke counts. These are
printed directly underneath the Unicode code point for the character. A radical-stroke
index to all of the CJK ideographs is also provided separately on the Unicode Web site.

Chart for the Main CJK Block. For the CJK Unified Ideographs block (U+4E00..U+9FFF)
the glyphs are arranged in the following order: G source and T sources are grouped under
the header “C,” and J, K, V and H sources are listed under their respective headers. Each
row contains positions for all six sources, and if a particular source is undefined for CJK
Unified Ideograph, that position is left blank in the row. This format is illustrated by
Figure 17-1. If a character also has a U source, an additional line is used for that character.
Note that this block does not contain any characters with M sources. The KP sources are
not shown due to lack of reliable glyph information.

Charts for CJK Extensions. The code charts for all of the extension blocks for CJK Unified
Ideographs use a more condensed format. That format dispenses with the “C, J, K, V, and
H” headers and leaves no holes for undefined sources. For those blocks, sources are always
shown in the following order: G, T, J, K, KP, V, H, M, and U. The first letters of the source
information provide the source type for all sources except G. (For Unicode 6.0, KP sources

Table 17-1. IRG Sources

Name Source Identity
G source China PRC and Singapore
H source Hong Kong SAR
J source Japan
KP source North Korea
K source South Korea
M source Macau SAR
T source Taiwan
U source Unicode/USA
V source Vietnam

Figure 17-1. CJK Chart Format for the Main CJK Block

HVKJCHEX

4F1A
9.4

G0-3B61 T3-2275 J0-3271 K2-216D V1-4B24 H-894E
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

17.3 Hangul Syllables 579
are omitted from the code charts because of the lack of an appropriately vetted font for dis-
play.)

The multicolumn code chart for the CJK Unified Ideographs Extension A block
(U+3400..U+4DBF) uses the condensed format with three source columns per entry, and
with entries arranged in three columns per page. An entry may have additional rows, if it is
associated with more than three sources, as illustrated in Figure 17-2.

The multicolumn code charts for the other extension blocks for CJK Unicode Ideographs
use the condensed format with two source columns per entry, and with entries arranged in
four columns per page. An entry may have additional rows, if it is associated with more
than two sources, as illustrated in Figure 17-3.

Compatibility Ideographs

The format of the code charts for the CJK Compatibility Ideograph blocks is largely similar
to the CJK chart format for Extension A. However, several additional notational elements
described in Section 17.1, Character Names List are used. In particular, for each CJK com-
patibility ideograph other than the small list of unified ideographs included in these charts,
a canonical decomposition is shown. Each CJK unified ideograph in these charts has an
annotation identifying it as such. Character names are not provided for any CJK Compati-
bility Ideograph blocks because the name of a compatibility ideograph simply consists of
its Unicode code point preceded by cjk compatibility ideograph-.

17.3 Hangul Syllables
As in the case of CJK Unified Ideographs, a character names list is not provided for the
online chart of characters in the Hangul Syllables block, U+AC00..U+D7AF, because the
name of a Hangul syllable can be determined by algorithm as described in Section 3.12,

Figure 17-2. CJK Chart Format for CJK Extension A

Figure 17-3. CJK Chart Format for CJK Extension B

Figure 17-4. CJK Chart Format for Compatibility Ideographs

41EE
118.6

G5-6334 T4-3975 JA-254D

V2-7F50

41DB
118.4

GKX-0879.12 T3-3329 V2-7F4B

H-8EFE

41C9
117.5

GHZ-42707.25 T3-3322

41CA
117.5

JA-2549 H-8E55

20045
1.10

GHZ-80007.06

20046
1.11

TF-3932 H-9376

20031
1.7

GHZ-10025.01

20032
1.7

V0-305F

2001E
1.5

GHZ-80007.03

2001F
1.5

GHZ-80007.04

2000B
1.3

GHZ-10012.05 T3-2144

J3-2E22

•

The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

580 About the Code Charts
Conjoining Jamo Behavior. The short names used in that algorithm are listed in the code
charts as aliases in the Hangul Jamo block, U+1100..U+11FF, as well as in Jamo.txt in the
Unicode Character Database.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Appendix A

Notational Conventions A

This appendix describes the typographic conventions used throughout this core specifica-
tion.

Code Points

In running text, an individual Unicode code point is expressed as U+n, where n is four to
six hexadecimal digits, using the digits 0–9 and uppercase letters A–F (for 10 through 15,
respectively). Leading zeros are omitted, unless the code point would have fewer than four
hexadecimal digits—for example, U+0001, U+0012, U+0123, U+1234, U+12345,
U+102345.

• U+0416 is the Unicode code point for the character named cyrillic capital

letter zhe.

The U+ may be omitted for brevity in tables or when denoting ranges.

A range of Unicode code points is expressed as U+xxxx–U+yyyy or xxxx..yyyy, where xxxx
and yyyy are the first and last Unicode values in the range, and the long dash or two dots
indicate a contiguous range inclusive of the endpoints. For ranges involving supplementary
characters, the code points in the ranges are expressed with five or six hexadecimal digits.

• The range U+0900–U+097F contains 128 Unicode code points.

• The Plane 16 private-use characters are in the range 100000..10FFFD.

Character Names

In running text, a formal Unicode name is shown in small capitals (for example, greek

small letter mu), and alternative names (aliases) appear in italics (for example, umlaut).
Italics are also used to refer to a text element that is not explicitly encoded (for example,
pasekh alef) or to set off a non-English word (for example, the Welsh word ynghyd).

For more information on Unicode character names, see Section 4.8, Name.

For notational conventions used in the code charts, see Section 17.1, Character Names List.

Character Blocks

When referring to the normative names of character blocks in the text of the standard, the
character block name is titlecased and is used with the term “block.” For example:

the Latin Extended-B block

Optionally, an exact range for the character block may also be cited:

the Alphabetic Presentation Forms block (U+FB00..U+FB4F)

These references to normative character block names should not be confused with the
headers used throughout the text of the standard, particularly in the block description
chapters, to refer to particular ranges of characters. Such headers may be abbreviated in
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

582 Notational Conventions
various ways and may refer to subranges within character blocks or ranges that cross char-
acter block boundaries. For example:

Latin Ligatures: U+FB00–U+FB06

The definitive list of normative character block names is Blocks.txt in the Unicode Charac-
ter Database.

Sequences

A sequence of two or more code points may be represented by a comma-delimited list, set
off by angle brackets. For this purpose, angle brackets consist of U+003C less-than sign

and U+003E greater-than sign. Spaces are optional after the comma, and U+ notation
for the code point is also optional—for example, “<U+0061, U+0300>”.

When the usage is clear from the context, a sequence of characters may be represented with
generic short names, as in “<a, grave>”, or the angle brackets may be omitted.

In contrast to sequences of code points, a sequence of one or more code units may be rep-
resented by a list set off by angle brackets, but without comma delimitation or U+ nota-
tion. For example, the notation “<nn nn nn nn>” represents a sequence of bytes, as for the
UTF-8 encoding form of a Unicode character. The notation “<nnnn nnnn>” represents a
sequence of 16-bit code units, as for the UTF-16 encoding form of a Unicode character.

Rendering

A figure such as Figure A-1 depicts how a sequence of characters is typically rendered.

The sequence under discussion is depicted on the left of the arrow, using representative
glyphs and code points below them. A possible rendering of that sequence is depicted on
the right side of the arrow.

Properties and Property Values

The names of properties and property values appear in titlecase, with words connected by
an underscore—for example, General_Category or Uppercase_Letter. In some instances,
short names are used, such as gc=Lu, which is equivalent to General_Category =
Uppercase_Letter. Long and short names for all properties and property values are defined
in the Unicode Character Database; see also Section 3.5, Properties.

Occasionally, and especially when discussing character properties that have single words as
names, such as age and block, the names appear in lowercase italics.

Miscellaneous

Phonemic transcriptions are shown between slashes, as in Khmer /khnyom/.

Phonetic transcriptions are shown between square brackets, using the International Pho-
netic Alphabet. (Full details on the IPA can be found on the International Phonetic Associ-
ation’s Web site, http://www2.arts.gla.ac.uk/IPA/ipa.html.)

Figure A-1. Example of Rendering

A ¨
0041 0308

$ → Ä+
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www2.arts.gla.ac.uk/IPA/ipa.html

Notational Conventions 583
A leading asterisk is used to represent an incorrect or nonoccurring linguistic form.

In this specification, the word “Unicode” when used alone as a noun refers to the Unicode
Standard.

Unambiguous dates of the current common era, such as 1999, are unlabeled. In cases of
ambiguity, ce is used. Dates before the common era are labeled with bce.

The term byte, as used in this standard, always refers to a unit of eight bits. This corre-
sponds to the use of the term octet in some other standards.

Extended BNF

The Unicode Standard and technical reports use an extended BNF format for describing
syntax. As different conventions are used for BNF, Table A-1 lists the notation used here.

In other environments, such as programming languages or markup, alternative notation
for sequences of code points or code units may be used.

Character Classes. A code point class is a specification of an unordered set of code points.
Whenever the code points are all assigned characters, it can also be referred to as a character
class. The specification consists of any of the following:

• A literal code point

• A range of literal code points

• A set of code points having a given Unicode character property value, as
defined in the Unicode Character Database (see PropertyAliases.txt and
PropertyValueAliases.txt)

• Non-Boolean properties given as an expression <property> =
<property_value> or <property> ≠ <property_value>, such as
“General_Category=Titlecase_Letter”

Table A-1. Extended BNF

Symbols Meaning

x := ... production rule

x y the sequence consisting of x then y

x* zero or more occurrences of x

x? zero or one occurrence of x

x+ one or more occurrences of x

x | y either x or y

(x) for grouping

x || y equivalent to (x | y | (x y))

{ x } equivalent to (x)?

"abc" string literals (“_” is sometimes used to denote space for clarity)

'abc' string literals (alternative form)

sot start of text

eot end of text

\u1234 Unicode code points within string literals or character classes

\U00101234 Unicode code points within string literals or character classes

U+HHHH Unicode character literal: equivalent to ‘\uHHHH’

U-HHHHHHHH Unicode character literal: equivalent to ‘\UHHHHHHHH’

[gc=Lu] character class (syntax below)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

584 Notational Conventions
• Boolean properties given as an expression <property> = true or
<property> ≠ true, such as “Uppercase=true”

• Combinations of logical operations on classes

Further extensions to this specification of character classes are used in some Unicode Stan-
dard Annexes and Unicode Technical Reports. Such extensions are described in those doc-
uments, as appropriate.

A partial formal BNF syntax for character classes as used in this standard is given by the fol-
lowing:

char_class := "[" char_class - char_class "]" set difference
:= "[" item_list "]"
:= "[" property ("=" | "≠") property_value "]"

item_list := item (","? item)?
item := code_point either literal or escaped

:= code_point - code_point inclusive range

Whenever any character could be interpreted as a syntax character, it must be escaped.
Where no ambiguity would result (with normal operator precedence), extra square brack-
ets can be discarded. If a space character is used as a literal, it is escaped. Examples are
found in Table A-2.

For more information about character classes, see Unicode Technical Standard #18, “Uni-
code Regular Expressions.”

Operators

Operators used in this standard are listed in Table A-3.

Table A-2. Character Class Examples

Syntax Matches

[a-z] English lowercase letters

[a-z]-[c] English lowercase letters except for c

[0-9] European decimal digits

[\u0030-\u0039] (same as above, using Unicode escapes)

[0-9 A-F a-f] hexadecimal digits

[\p{gc=Letter} \p{gc=Nonspacing_Mark}] all letters and nonspacing marks

[\p{gc=L} \p{gc=Mn}] (same as above, using abbreviated nota-
tion)

[^\p{gc=Unassigned}] all assigned Unicode characters

[\u0600-\u06FF - \p{gc=Unassigned}] all assigned Arabic characters

[\p{Alphabetic}] all alphabetic characters

[^\p{Line_Break=Infix_Numeric}] all code points that do not have the line
break property of Infix_Numeric

Table A-3. Operators

Symbol Meaning

 is transformed to, or behaves like

 is not transformed to

¬ logical not
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Appendix B

Unicode Publications and
Resources B

This appendix provides information about the Unicode Consortium and its activities, par-
ticularly regarding publications other than the Unicode Standard. The Unicode Consor-
tium publishes a number of technical standards and technical reports, and the current list
of those, with abstracts of their content, is included here for convenient reference.

The Unicode Web site also has many useful online resources. Section B.6, Other Unicode
Online Resources, provides a guide to the kinds of information available online.

B.1 The Unicode Consortium

The Unicode Consortium was incorporated in January 1991, under the name Unicode,
Inc., to promote the Unicode Standard as an international encoding system for informa-
tion interchange, to aid in its implementation, and to maintain quality control over future
revisions.

To further these goals, the Unicode Consortium cooperates with the Joint Technical Com-
mittee 1 of the International Organization for Standardization and the International Elec-
trotechnical Commission (ISO/IEC JTC1). It holds a Class C liaison membership with
ISO/IEC JTC1/SC2; it participates in the work of both JTC1/SC2/WG2 (the technical work-
ing group for the subcommittee within JTC1 responsible for character set encoding) and
the Ideographic Rapporteur Group (IRG) of WG2. The Consortium is a member company
of the InterNational Committee for Information Technology Standards, Technical Com-
mittee L2 (INCITS/L2), an accredited U.S. standards organization. Many members of the
Unicode Consortium have representatives in many countries who also work with other
national standards bodies. In addition, a number of organizations are Liaison Members of
the Consortium. For a list, see the Unicode Web site.

Membership in the Unicode Consortium is open to organizations and individuals any-
where in the world who support the Unicode Standard and who would like to assist in its
extension and widespread implementation. Full, Institutional, Supporting, and Associate
Members represent a broad spectrum of corporations and organizations in the computer
and information processing industry. For a list, see the Unicode Web site. The Consortium
is supported financially solely through membership dues.

The Unicode Technical Committee

The Unicode Technical Committee (UTC) is the working group within the Consortium
responsible for the creation, maintenance, and quality of the Unicode Standard. The UTC
follows an open process in developing the Unicode Standard and its other technical publi-
cations. It coordinates and reviews all technical input to these documents and decides their
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

586 Unicode Publications and Resources
contents. For more information on the UTC and the process by which the Unicode Stan-
dard and the other technical publications are developed, see:

http://www.unicode.org/consortium/utc.html

Other Activities

Going beyond developing technical standards, the Unicode Consortium acts as registration
authority for the registration of script identifiers under ISO 15924, and it has a technical
committee dedicated to the maintenance of the Unicode Common Locale Data Repository
(CLDR). The repository contains a large and rapidly growing body of data used in the
locale definition for software internationalization. For further information about these and
other activities of the Unicode Consortium, visit:

http://www.unicode.org

B.2 Unicode Publications

In addition to the Unicode Standard, the Unicode Consortium publishes Unicode Techni-
cal Standards and Unicode Technical Reports. These materials are published as electronic
documents only and, unlike Unicode Standard Annexes, do not form part of the Unicode
Standard.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but is
published online as a separate document. The Unicode Standard may require conformance
to normative content in a Unicode Standard Annex, if so specified in the Conformance
chapter of that version of the Unicode Standard. The version number of a UAX document
corresponds to the version of the Unicode Standard of which it forms a part.

A Unicode Technical Standard (UTS) is an independent specification. Conformance to the
Unicode Standard does not imply conformance to any UTS.

A Unicode Technical Report (UTR) contains informative material. Conformance to the Uni-
code Standard does not imply conformance to any UTR. Other specifications, however, are
free to make normative references to a UTR.

In the past, some normative material was published as Unicode Technical Reports. Cur-
rently, however, such material is published either as a Unicode Technical Standard or a Uni-
code Standard Annex.

The Unicode Web site is the source for the most current version of all three categories of
technical reports:

http://www.unicode.org/reports/

The following sections provide lists of abstracts for current Unicode Technical Standards
and Unicode Technical Reports. They are listed numerically within each category. There are
gaps in the numerical sequence become some of the reports have been superseded or have
been incorporated into the text of the standard.

B.3 Unicode Technical Standards

UTS #6: A Standard Compression Scheme for Unicode

This report presents the specifications of a compression scheme for Unicode and sample
implementation.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.unicode.org/consortium/utc.html
http://www.unicode.org
http://www.unicode.org/reports/

B.4 Unicode Technical Reports 587
UTS #10: Unicode Collation Algorithm

This report provides the specification of the Unicode Collation Algorithm, which provides
a specification for how to compare two Unicode strings while remaining conformant to the
requirements of The Unicode Standard. The UCA also supplies the Default Unicode Colla-
tion Element Table (DUCET) as the data specifying the default collation order for all Uni-
code characters.

UTS #18: Unicode Regular Expressions

This document describes guidelines for how to adapt regular expression engines for use
with the Unicode Standard.

UTS #22: Character Mapping Markup Language (CharMapML)

This document specifies an XML format for the interchange of mapping data for character
encodings. It provides a complete description for such mappings in terms of a defined
mapping to and from Unicode code points, and a description of alias tables for the inter-
change of mapping table names.

UTS #35: Unicode Locale Data Markup Language (LDML)

This document describes an XML format (vocabulary) for the exchange of structured locale
data. This format is used in the Unicode Common Locale Data Repository.

UTS #37: Unicode Ideographic Variation Database

This document describes the organization of the Ideographic Variation Database and the
procedure to add sequences to that database.

UTS #39: Unicode Security Mechanisms

Because Unicode contains such a large number of characters and incorporates the varied
writing systems of the world, incorrect usage can expose programs or systems to possible
security attacks. This report specifies mechanisms that can be used in detecting possible
security problems.

UTS #46: Unicode IDNA Compatibility Processing

Client software, such as browsers and emailers, faces a difficult transition from the version
of international domain names approved in 2003 (IDNA2003), to the revision approved in
2010 (IDNA2008). The specification in this document provides a mechanism that mini-
mizes the impact of this transition for client software, allowing client software to access
domains that are valid under either system.

B.4 Unicode Technical Reports

UTR #16: UTF-EBCDIC

This document presents the specifications of UTF-EBCDIC: EBCDIC Friendly Unicode (or
UCS) Transformation Format.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

588 Unicode Publications and Resources
UTR #17: Unicode Character Encoding Model

This document clarifies a number of the terms used to describe character encodings, and
where the different forms of Unicode fit in. It elaborates the Internet Architecture Board
(IAB) three-layer “text stream” definitions into a four-layer structure.

UTR #20: Unicode in XML and Other Markup Languages

This document contains guidelines on the use of the Unicode Standard in conjunction with
markup languages such as XML.

UTR #23: The Unicode Character Property Model

This document presents a conceptual model of character properties defined in the Unicode
Standard.

UTR #25: Unicode Support for Mathematics

The Unicode Standard includes virtually all standard characters used in mathematics. This
set supports a wide variety of math usage on computers, including in document presenta-
tion languages like TEX, in math markup languages like MathML and OpenMath, in inter-
nal representations of mathematics for applications like Mathematica, Maple, and
MathCAD, in computer programs, and in plain text. This technical report describes the
Unicode support for mathematics and gives some of the imputed default math properties
for Unicode characters.

UTR #26: Compatibility Encoding Scheme for UTF-16: 8-Bit (CESU-8)

This document specifies an 8-bit Compatibility Encoding Scheme for UTF-16 (CESU) that
is intended for internal use within systems processing Unicode to provide an ASCII-com-
patible 8-bit encoding that is similar to UTF-8 but preserves UTF-16 binary collation. It is
not intended or recommended as an encoding used for open information exchange. The Uni-
code Consortium does not encourage the use of CESU-8, but does recognize the existence
of data in this encoding and supplies this technical report to clearly define the format and
to distinguish it from UTF-8. This encoding does not replace or amend the definition of
UTF-8.

UTR #33: Unicode Conformance Model

This report defines conformance terminology, specifies different areas and levels of confor-
mance, and describes what it means to make a claim of conformance or “support” of the
standard. This conformance model presented here is not a framework for conformance
verification testing.

UTR #36: Unicode Security Considerations

Because Unicode contains such a large number of characters and incorporates the varied
writing systems of the world, incorrect usage can expose programs or systems to possible
security attacks. This is especially important as more and more products are international-
ized. This document describes some of the security considerations that programmers, sys-
tem analysts, standards developers, and users should take into account, and provides
specific recommendations to reduce the risk of problems.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

B.5 Unicode Technical Notes 589
B.5 Unicode Technical Notes

Unicode Technical Notes provide information on a variety of topics related to Unicode and
internationalization technologies.

These technical notes are independent publications, not approved by any of the Unicode
Technical Committees, nor are they part of the Unicode Standard or any other Unicode
specification. Publication does not imply endorsement by the Unicode Consortium in any
way. These documents are not subject to the Unicode Patent Policy. Unicode Technical
Notes can be found on the Unicode Web site at:

http://www.unicode.org/notes/

The technical notes cover the following topics (among others):

• Algorithms

• Collation

• Compression and code set conversions

• Language identification

• Migration of software

• Modern and historical scripts

• Text layout and rendering

• Tutorials

• Social and cultural issues

B.6 Other Unicode Online Resources

The Unicode Consortium provides a number of online resources for obtaining informa-
tion and data about the Unicode Standard as well as updates and corrigenda.

Unicode Online Resources

Unicode Web Site

http://www.unicode.org

Unicode Anonymous FTP Site

ftp://ftp.unicode.org

Charts. The charts section of the Web site provides code charts for all of the Unicode char-
acters, plus specialized charts for normalization, collation, case mapping, script names, and
Unified CJK Ideographs.

http://www.unicode.org/charts/

Character Index. Online index by character name, to look up Unicode code points. This
index also makes it easy to look up the location of scripts in the standard, and indexes com-
mon alternative names for characters as well.

http://www.unicode.org/charts/charindex.html

Conferences. The Internationalization and Unicode Conferences are of particular value to
anyone implementing the Unicode Standard or working on internationalization. A variety
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.unicode.org/notes/
http://www.unicode.org
ftp://ftp.unicode.org
http://www.unicode.org/charts/
http://www.unicode.org/charts/charindex.html

590 Unicode Publications and Resources
of tutorials and conference sessions cover current topics related to the Unicode Standard,
the World Wide Web, software, internationalization, and localization.

http://www.unicode.org/conference/

E-mail Discussion List. Subscription instructions for the public e-mail discussion list are
posted on the Unicode Web site.

FAQ (Frequently Asked Questions). The FAQ pages provide an invaluable resource for
understanding the Unicode Standard and its implications for users and implementers.

http://www.unicode.org/conference/

Glossary. Online listing of definitions for technical terms used in the Unicode Standard
and other publications of the Unicode Consortium.

http://www.unicode.org/glossary/

Online Unicode Character Database. This page supplies information about the online
Unicode Character Database (UCD), including links to documentation files and the most
up-to-date version of the data files, as well as instructions on how to access any particular
version of the UCD.

http://www.unicode.org/ucd/

Online Unihan Database. The online Unihan Database provides interactive access to all of
the property information associated with CJK ideographs in the Unicode Standard.

http://www.unicode.org/chart/unihan.html

Policies. These pages describe Unicode Consortium policies on stability, patents, and Uni-
code Web site privacy. The stability policies are particularly important for implementers,
documenting invariants for the Unicode Standard that allow implementations to be com-
patible with future and past versions.

http://www.unicode.org/policies/

Unicode Common Locale Data Repository (CLDR). Machine-readable repository, in XML
format, of locale information for use in application and system development.

http://www.unicode.org/cldr/

Updates and Errata. This page lists periodic updates with corrections of typographic
errors and new clarifications of the text.

http://www.unicode.org/errata/

Versions. This page describes the version numbering used in the Unicode Standard, the
nature of the Unicode character repertoire, and ways to cite and reference the Unicode
Standard, the Unicode Character Database, and Unicode Technical Reports. It also specifies
the exact contents of each and every version of the Unicode Standard, back to Unicode
1.0.0.

http://www.unicode.org/versions/

Where Is My Character? This page provides basic guidance to finding Unicode characters,
especially those whose glyphs do not appear in the charts, or that are represented by
sequences of Unicode characters.

http://www.unicode.org/standard/where/
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.unicode.org/conference/
http://www.unicode.org/conference/
http://www.unicode.org/glossary/
http://www.unicode.org/ucd/
http://www.unicode.org/chart/unihan.html
http://www.unicode.org/policies/
http://www.unicode.org/cldr/
http://www.unicode.org/errata/
http://www.unicode.org/versions/
http://www.unicode.org/standard/where/

B.6 Other Unicode Online Resources 591
How to Contact the Unicode Consortium

The best way to contact the Unicode Consortium to obtain membership information is via
the Web site:

http://www.unicode.org/contacts.html

The Web site also lists the current telephone, fax, and courier delivery address. The Consor-
tium’s postal address is:

P.O. Box 391476
Mountain View, CA 94039-1476
USA
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.unicode.org/contacts.html

592 Unicode Publications and Resources
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Appendix C

Relationship to ISO/IEC
10646 C

The Unicode Consortium maintains a strong working relationship with ISO/IEC
JTC1/SC2/WG2, the working group developing International Standard 10646. Today both
organizations are firmly committed to maintaining the synchronization between the Uni-
code Standard and 10646. Each standard nevertheless uses its own form of reference and, to
some degree, separate terminology. This appendix gives a brief history and explains how
the standards are related.

C.1 History

Having recognized the benefits of developing a single universal character code standard,
members of the Unicode Consortium worked with representatives from the International
Organization for Standardization (ISO) during the summer and fall of 1991 to pursue this
goal. Meetings between the two bodies resulted in mutually acceptable changes to both
Unicode Version 1.0 and the first ISO/IEC Draft International Standard DIS 10646.1,
which merged their combined repertoire into a single numerical character encoding. This
work culminated in The Unicode Standard, Version 1.1.

ISO/IEC 10646-1:1993, Information Technology—Universal Multiple-Octet Coded Charac-
ter Set (UCS)—Part 1: Architecture and Basic Multilingual Plane, was published in May
1993 after final editorial changes were made to accommodate the comments of voting
members. The Unicode Standard, Version 1.1, reflected the additional characters introduced
from the DIS 10646.1 repertoire and incorporated minor editorial changes.

Merging The Unicode Standard, Version 1.0, and DIS 10646.1 consisted of aligning the
numerical values of identical characters and then filling in some groups of characters that
were present in DIS 10646.1, but not in the Unicode Standard. As a result, the encoded
characters (code points and names) of ISO/IEC 10646-1:1993 and The Unicode Standard,
Version 1.1, are precisely the same.

Versions 2.0, 2.1, and 3.0 of the Unicode Standard successively added more characters, match-
ing a series of amendments to ISO/IEC 10646-1. The Unicode Standard, Version 3.0, is pre-
cisely aligned with the second edition of ISO/IEC 10646-1, known as ISO/IEC 10646-1:2000.

In 2001, Part 2 of ISO/IEC 10646 was published as ISO/IEC 10646-2:2001. Version 3.1 of the
Unicode Standard was synchronized with that publication, which added supplementary
characters for the first time. Subsequently, Versions 3.2 and 4.0 of the Unicode Standard
added characters matching further amendments to both parts of ISO/IEC 10646. The Uni-
code Standard, Version 4.0, is precisely aligned with the third version of ISO/IEC 10646 (first
edition), published as a single standard merging the former two parts: ISO/IEC 10646:2003.

Versions 4.1 and 5.0 of the Unicode Standard added characters matching Amendments 1 and
2 to ISO/IEC 10646:2003. Version 5.0 also added four characters for Sindhi support from
Amendment 3 to ISO/IEC 10646:2003. Version 5.1 added the rest of the characters from
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

594 Relationship to ISO/IEC 10646
Amendment 3 and all of the characters from Amendment 4 to ISO/IEC 10646:2003. Version
5.2 added all of the characters from Amendments 5 and 6 to ISO/IEC 10646:2003. Version 6.0
added all of the characters from Amendments 7 and 8 to ISO/IEC 10646:2003.

In 2010, ISO approved republication of ISO/IEC 10646 as a second edition, ISO/IEC
10646:2011, consolidating all of the contents of Amendments 1 through 8 to the 2003 first
edition. The Unicode Standard, Version 6.0 is aligned with that second edition of the Inter-
national Standard, with the addition of U+20B9 indian rupee sign, accelerated into Ver-
sion 6.0 based on approval for the third edition of ISO/IEC 10646.

The Unicode Standard, Version 6.1 is aligned with the third edition of the International
Standard: ISOIEC 10646:2012. The third edition was approved for publication without an
intervening amendment to the second edition.

Table C-1 gives the timeline for these efforts.

Table C-1. Timeline

Year Version Summary

1989 DP 10646 Draft proposal, independent of Unicode

1990 Unicode Prepublication Prepublication review draft

1990 DIS-1 10646 First draft, independent of Unicode

1991 Unicode 1.0 Edition published by Addison-Wesley

1992 Unicode 1.0.1 Modified for merger compatibility

1992 DIS-2 10646 Second draft, merged with Unicode

1993 IS 10646-1:1993 Merged standard

1993 Unicode 1.1 Revised to match IS 10646-1:1993

1995 10646 amendments Korean realigned, plus additions

1996 Unicode 2.0 Synchronized with 10646 amendments

1998 Unicode 2.1 Added euro sign and corrigenda

1999 10646 amendments Additions

2000 Unicode 3.0 Synchronized with 10646 second edition

2000 IS 10646-1:2000 10646 part 1, second edition, publication
with amendments to date

2001 IS 10646-2:2001 10646 part 2 (supplementary planes)

2001 Unicode 3.1 Synchronized with 10646 part 2

2002 Unicode 3.2 Synchronized with Amd 1 to 10646 part 1

2003 Unicode 4.0 Synchronized with 10646 third version

2003 IS 10646:2003 10646 third version (first edition), merging
the two parts

2005 Unicode 4.1 Synchronized with Amd 1 to 10646:2003

2006 Unicode 5.0 Synchronized with Amd 2 to 10646:2003,
plus Sindhi additions

2008 Unicode 5.1 Synchronized with Amd 3 and Amd 4 to
10646:2003

2009 Unicode 5.2 Synchronized with Amd 5 and Amd 6 to
10646:2003

2010 Unicode 6.0 Synchronized with 10646 second edition of
third version, plus the Indian rupee sign

2011 IS 10646:2011 10646 second edition of third version

2012 Unicode 6.1 Synchronized with 10646 third edition of
third version

2012 IS 10646:2012 10646 third edition of third version

2012 Unicode 6.2 Added Turkish lira sign
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

C.1 History 595
Unicode 1.0

The combined repertoire presented in ISO/IEC 10646 is a superset of The Unicode Stan-
dard, Version 1.0, repertoire as amended by The Unicode Standard, Version 1.0.1. The Uni-
code Standard, Version 1.0, was amended by the Unicode 1.0.1 Addendum to make the
Unicode Standard a proper subset of ISO/IEC 10646. This effort entailed both moving and
eliminating a small number of characters.

Unicode 2.0

The Unicode Standard, Version 2.0, covered the repertoire of The Unicode Standard, Version
1.1 (and IS 10646), plus the first seven amendments to IS 10646, as follows:

Amd. 1: UTF-16

Amd. 2: UTF-8

Amd. 3: Coding of C1 Controls

Amd. 4: Removal of Annex G: UTF-1

Amd. 5: Korean Hangul Character Collection

Amd. 6: Tibetan Character Collection

Amd. 7: 33 Additional Characters (Hebrew, Long S, Dong)

In addition, The Unicode Standard, Version 2.0, covered Technical Corrigendum No. 1 (on
renaming of AE ligature to letter) and such Editorial Corrigenda to ISO/IEC 10646 as
were applicable to the Unicode Standard. The euro sign and the object replacement charac-
ter were added in Version 2.1, per amendment 18 of ISO 10646-1.

Unicode 3.0

The Unicode Standard, Version 3.0, is synchronized with the second edition of ISO/IEC
10646-1. The latter contains all of the published amendments to 10646-1; the list includes
the first seven amendments, plus the following:

Amd. 8: Addition of Annex T: Procedure for the Unification and Arrangement of CJK
Ideographs

Amd. 9: Identifiers for Characters

Amd. 10: Ethiopic Character Collection

Amd. 11: Unified Canadian Aboriginal Syllabics Character Collection

Amd. 12: Cherokee Character Collection

Amd. 13: CJK Unified Ideographs with Supplementary Sources (Horizontal Extension)

Amd. 14: Yi Syllables and Yi Radicals Character Collection

Amd. 15: Kangxi Radicals, Hangzhou Numerals Character Collection

Amd. 16: Braille Patterns Character Collection

Amd. 17: CJK Unified Ideographs Extension A (Vertical Extension)

Amd. 18: Miscellaneous Letters and Symbols Character Collection (which includes the
euro sign)

Amd. 19: Runic Character Collection

Amd. 20: Ogham Character Collection

Amd. 21: Sinhala Character Collection
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

596 Relationship to ISO/IEC 10646
Amd. 22: Keyboard Symbols Character Collection

Amd. 23: Bopomofo Extensions and Other Character Collection

Amd. 24: Thaana Character Collection

Amd. 25: Khmer Character Collection

Amd. 26: Myanmar Character Collection

Amd. 27: Syriac Character Collection

Amd. 28: Ideographic Description Characters

Amd. 29: Mongolian

Amd. 30: Additional Latin and Other Characters

Amd. 31: Tibetan Extension

The second edition of 10646-1 also contains the contents of Technical Corrigendum No. 2
and all the Editorial Corrigenda to the year 2000.

Unicode 4.0

The Unicode Standard, Version 4.0, is synchronized with the third version of ISO/IEC
10646. The third version of ISO/IEC 10646 is the result of the merger of the second edition
of Part 1 (ISO/IEC 10646-1:2000) with the first edition of Part 2 (ISO/IEC 10646-2:2001)
into a single publication. The third version incorporates the published amendments to
10646-1 and 10646-2:

Amd. 1 (to part 1): Mathematical symbols and other characters

Amd. 2 (to part 1): Limbu, Tai Le, Yijing, and other characters

Amd. 1 (to part 2): Aegean, Ugaritic, and other characters

The third version of 10646 also contains all the Editorial Corrigenda to date.

Unicode 5.0

The Unicode Standard, Version 5.0, is synchronized with ISO/IEC 10646:2003 plus its first
two published amendments:

Amd. 1: Glagolitic, Coptic, Georgian and other characters

Amd. 2: N’Ko, Phags-Pa, Phoenician and Cuneiform

Four Devanagari characters for the support of the Sindhi language (U+097B, U+097C,
U+097E, U+097F) were added in Version 5.0 per Amendment 3 of ISO 10646.

Unicode 6.0

The Unicode Standard, Version 6.0, is synchronized with the second edition of ISO/IEC
10646. The second edition of the third version of ISO/IEC 10646 consolidates all of the rep-
ertoire additions from the published eight amendments of ISO/IEC 10646:2003. These
include the first two amendments listed under Unicode 5.0, plus the following:
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

C.2 Encoding Forms in ISO/IEC 10646 597
Amd. 3: Lepcha, Ol Chiki, Saurashtra, Vai, and other characters

Amd. 4: Cham, Game Tiles, and other characters

Amd. 5: Tai Tham, Tai Viet, Avestan, Egyptian Hieroglyphs, CJK Unified Ideographs
Extension C, and other characters

Amd. 6: Javanese, Lisu, Meetei Mayek, Samaritan, and other characters

Amd. 7: Mandaic, Batak, Brahmi, and other characters

Amd. 8: Additional symbols, Bamum supplement, CJK Unified Ideographs Extension
D, and other characters

One additional character, for the support of the new Indian currency symbol (U+20B9
indian rupee sign), was accelerated into Version 6.0, based on its approval for the third
edition of ISO/IEC 10646.

Unicode 6.2

The Unicode Standard, Version 6.2, is synchronized with the third edition of ISO/IEC 10646
plus the accelerated publication of U+20BA turkish lira sign.

The synchronization of The Unicode Standard, Version 6.2, with ISO/IEC 10646:2012
means that the repertoire, encoding, and names of all characters are identical between the
two standards at those version levels, except for the addition of U+20BA to the Unicode
Standard. All other changes to the text of 10646 that have a bearing on the text of the Uni-
code Standard have been taken into account in the revision of the Unicode Standard.

C.2 Encoding Forms in ISO/IEC 10646

ISO/IEC 10646:2011 has significantly revised its discussion of encoding forms, compared
to earlier editions of that standard. The terminology for encoding forms (and encoding
schemes) in 10646 now matches exactly the terminology used in the Unicode Standard.
Furthermore, 10646 is now described in terms of a codespace U+0000..U+10FFFF, instead
of a 31-bit codespace, as in earlier editions. This convergence in codespace description has
eliminated any discrepancies in possible interpretation of the numeric values greater than
0x10FFFF. As a result, this section now merely notes a few items of mostly historic interest
regarding encoding forms and terminology.

UCS-4. UCS-4 stands for “Universal Character Set coded in 4 octets.” It is now treated sim-
ply as a synonym for UTF-32, and is considered the canonical form for representation of
characters in 10646.

UCS-2. UCS-2 stands for “Universal Character Set coded in 2 octets” and is also known as
“the two-octet BMP form.” It was documented in earlier editions of 10646 as the two-octet
(16-bit) encoding consisting only of code positions for plane zero, the Basic Multilingual
Plane. This documentation has been removed from ISO/IEC 10646:2011, and the term
UCS-2 should now be considered obsolete. It no longer refers to an encoding form in either
10646 or the Unicode Standard.

Zero Extending

The character “A”, U+0041 latin capital letter a, has the unchanging numerical value
41 hexadecimal. This value may be extended by any quantity of leading zeros to serve in the
context of the following encoding standards and transformation formats (see Table C-2).
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

598 Relationship to ISO/IEC 10646
This design eliminates the problem of disparate values in all systems that use either of the
standards and their transformation formats.

C.3 UTF-8 and UTF-16

UTF-8

The ISO/IEC 10646 definition of UTF-8 is identical to UTF-8 as described under Defini-
tion D92 in Section 3.9, Unicode Encoding Forms.

UTF-8 can be used to transmit text data through communications systems that assume that
individual octets in the range of x00 to x7F have a definition according to ISO/IEC 4873,
including a C0 set of control functions according to the 8-bit structure of ISO/IEC 2022.
UTF-8 also avoids the use of octet values in this range that have special significance during
the parsing of file name character strings in widely used file-handling systems.

UTF-16

The ISO/IEC 10646 definition of UTF-16 is identical to UTF-16 as described under Defini-
tion D91 in Section 3.9, Unicode Encoding Forms.

C.4 Synchronization of the Standards

Programmers and system users should treat the encoded character values from the Unicode
Standard and ISO/IEC 10646 as identities, especially in the transmission of raw character
data across system boundaries. The Unicode Consortium and ISO/IEC JTC1/SC2/WG2 are
committed to maintaining the synchronization between the two standards.

However, the Unicode Standard and ISO/IEC 10646 differ in the precise terms of their con-
formance specifications. Any Unicode implementation will conform to ISO/IEC 10646, but
because the Unicode Standard imposes additional constraints on character semantics and
transmittability, not all implementations that are compliant with ISO/IEC 10646 will be
compliant with the Unicode Standard.

C.5 Identification of Features for the Unicode Standard

ISO/IEC 10646 provides mechanisms for specifying a number of implementation parame-
ters. ISO/IEC 10646 contains no means of explicitly declaring the Unicode Standard as
such. As a whole, however, the Unicode Standard may be considered as encompassing the
entire repertoire of ISO/IEC 10646 and having the following features (as well as additional
semantics):

• Numbered subset 311 (UNICODE 6.1)

• Encoding forms: UTF-8, UTF-16, or UTF-32

Table C-2. Zero Extending

Bits Standard Binary Hex Dec Char

7 ASCII 1000001 41 65 A

8 8859-1 01000001 41 65 A

16 UTF-16 00000000 01000001 41 65 A

32 UTF-32, UCS-4 00000000 00000000 00000000 01000001 41 65 A
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

C.6 Character Names 599
• Encoding schemes: UTF-8, UTF-16BE, UTF-16LE, UTF-16, UTF-32BE, UTF-
32LE, or UTF-32

Few applications are expected to make use of all of the characters defined in ISO/IEC
10646. The conformance clauses of the two standards address this situation in very differ-
ent ways. ISO/IEC 10646 provides a mechanism for specifying included subsets of the char-
acter repertoire, permitting implementations to ignore characters that are not included
(see normative Annex A of ISO/IEC 10646). A Unicode implementation requires a mini-
mal level of handling all character codes—namely, the ability to store and retransmit them
undamaged. Thus the Unicode Standard encompasses the entire ISO/IEC 10646 repertoire
without requiring that any particular subset be implemented.

The Unicode Standard does not provide formal mechanisms for identifying a stream of
bytes as Unicode characters, although to some extent this function is served by use of the
byte order mark (U+FEFF) to indicate byte ordering. ISO/IEC 10646 defines an ISO/IEC
2022 control sequence to introduce the use of 10646. ISO/IEC 10646 also allows the use of
U+FEFF as a “signature” as described in ISO/IEC 10646. This optional “signature” conven-
tion for identification of UTF-8, UTF-16, and UTF-32 is described in the informative
Annex H of 10646. It is consistent with the description of the byte order mark in
Section 16.8, Specials.

C.6 Character Names

Unicode character names follow the ISO/IEC character naming guidelines (summarized in
informative Annex L of ISO/IEC 10646). In the first version of the Unicode Standard, the
naming convention followed the ISO/IEC naming convention, but with some differences
that were largely editorial. For example,

ISO/IEC 10646 name 029A latin small letter closed open e

Unicode 1.0 name 029A latin small letter closed epsilon

In the ISO/IEC framework, the unique character name is viewed as the major resource for
both character semantics and cross-mapping among standards. In the framework of the
Unicode Standard, character semantics are indicated via character properties, functional
specifications, usage annotations, and name aliases; cross-mappings among standards are
provided in the form of explicit tables available on the Unicode Web site. The disparities
between the Unicode 1.0 names and ISO/IEC 10646 names have been remedied by adop-
tion of ISO/IEC 10646 names in the Unicode Standard. The names adopted by the Unicode
Standard are from the English-language version of ISO/IEC 10646, even when other lan-
guage versions are published by ISO.

C.7 Character Functional Specifications

The core of a character code standard is a mapping of code points to characters, but in
some cases the semantics or even the identity of the character may be unclear. Certainly a
character is not simply the representative glyph used to depict it in the standard. For this
reason, the Unicode Standard supplies the information necessary to specify the semantics
of the characters it encodes.

Thus the Unicode Standard encompasses far more than a chart of code points. It also con-
tains a set of extensive character functional specifications and data, as well as substantial
background material designed to help implementers better understand how the characters
interact. The Unicode Standard specifies properties and algorithms. Conformant imple-
mentations of the Unicode Standard will also be conformant with ISO/IEC 10646.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

600 Relationship to ISO/IEC 10646
Compliant implementations of ISO/IEC 10646 can be conformant to the Unicode Stan-
dard—as long as the implementations conform to all additional specifications that apply to
the characters of their adopted subsets, and as long as they support all Unicode characters
outside their adopted subsets in the manner referred to in Section C.5, Identification of Fea-
tures for the Unicode Standard.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Appendix D

Changes from Previous
Versions D

This appendix provides version history of the standard and summarizes updates that have
been made to conformance specifications, character content, and data files in the Unicode
Character Database since the publication of The Unicode Standard, Version 5.0.

D.1 Versions of the Unicode Standard

The Unicode Technical Committee updates the Unicode Standard to respond to the needs
of implementers and users while maintaining consistency with ISO/IEC 10646. The rela-
tionship between these versions of Unicode and ISO/IEC 10646 is shown in Table D-1. For
more detail on the relationship of Unicode and ISO/IEC 10646, see Appendix C, Relation-
ship to ISO/IEC 10646.

Table D-2 documents the number of code points allocated in the different versions of the
Unicode Standard. The row in Table D-2 labeled “Graphic + Format” represents the tradi-
tional count of Unicode characters and is the typical answer to the question, “How many

Table D-1. Versions of Unicode and ISO/IEC 10646-1

Year Version Published ISO/IEC 10646-1

1991 Unicode 1.0 Vol. 1, Addison-Wesley Basis for Committee Draft 2 of 10646-1

1992 Unicode 1.0.1 Vol. 1, 2, Addison-Wesley Interim merger version

1993 Unicode 1.1 Technical Report #4 Matches ISO 10646-1

1996 Unicode 2.0 Addison-Wesley Matches ISO 10646-1 plus amendments

1998 Unicode 2.1 Technical Report #8 Matches ISO 10646-1 plus amendments

2000 Unicode 3.0 Addison-Wesley Matches ISO 10646-1 second edition

2001 Unicode 3.1 Standard Annex #27 Matches ISO 10646-1 second edition plus
two characters, 10646-2 first edition

2002 Unicode 3.2 Standard Annex #28 Matches ISO 10646-1 second edition plus
amendment, 10646-2 first edition

2003 Unicode 4.0 Addison-Wesley Matches ISO 10646:2003, third version

2005 Unicode 4.1 Web publication Matches ISO 10646:2003, third version, plus
Amd. 1

2006 Unicode 5.0 Addison-Wesley (2007) Matches ISO 10646:2003, third version, plus
Amd. 1, Amd. 2, and four characters from
Amd. 3

2008 Unicode 5.1 Web publication Matches ISO 10646:2003, third version, plus
Amd. 1 through Amd. 4

2009 Unicode 5.2 Web publication Matches ISO 10646:2003, third version, plus
Amd. 1 through Amd. 6

2010 Unicode 6.0 Web publication Matches ISO 10646:2011, second edition

2012 Unicode 6.1 Web publication Matches ISO 10646:2012, third edition

2012 Unicode 6.2 Web publication Matches ISO 10646:2012, third edition
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

602 Changes from Previous Versions
characters are in the Unicode Standard?” In Table D-2 the numbers for Han Compatibility
include the 12 unified ideographs encoded in the CJK Compatibility Ideographs block.

Table D-3 lists the allocation of code points by type for earlier, historic versions of the Uni-
code Standard prior to Version 4.0. In some cases the values in this table differ slightly from
summary statistics published in earlier versions of the standard, primarily due to a refined
accounting of the allocations in Unicode 1.0.

Table D-2. Allocation of Code Points by Type

V4.0 V4.1 V5.0 V5.1 V5.2 V6.0 V6.1 V6.2

Alphabetics, Symbols 13,973 15,117 16,486 18,101 20,588 22,454 23,182 23,183

Han (URO) 20,902 20,902 20,902 20,902 20,902 20,902 20,902 20,902

Han (URO Extension) 22 22 30 38 38 39 39

Han Extension A 6,582 6,582 6,582 6,582 6,582 6,582 6,582 6,582

Han Extension B 42,711 42,711 42,711 42,711 42,711 42,711 42,711 42,711

Han Extension C 4,149 4,149 4,149 4,149

Han Extension D 222 222 222

Han Compatibility 903 1,009 1,009 1,009 1,012 1,012 1,014 1,014

Subtotal Han 71,098 71,226 71,226 71,234 75,394 75,616 75,619 75,619

Hangul Syllables 11,172 11,172 11,172 11,172 11,172 11,172 11,172 11,172

Graphic Characters 96,243 97,515 98,884 100,507 107,154 109,242 109,973 109,974

Format Characters 139 140 140 141 142 142 143 143

Graphic + Format 96,382 97,655 99,024 100,648 107,296 109,384 110,116 110,117

Controls 65 65 65 65 65 65 65 65

Private Use 137,468 137,468 137,468 137,468 137,468 137,468 137,468 137,468

Total Assigned 233,915 235,188 236,557 238,181 244,829 246,917 247,649 247,650

Surrogate Code Points 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048

Noncharacters 66 66 66 66 66 66 66 66

Total Designated 236,029 237,302 238,671 240,295 246,943 249,031 249,763 249,764

Reserved Code Points 878,083 876,810 875,441 873,817 867,169 865,081 864,349 864,348

Table D-3. Allocation of Code Points by Type (Early Versions)

V1.0.0 V1.0.1 V1.1 V2.0 V2.1 V3.0 V3.1 V3.2

Alphabetics, Symbols 4,734 4,728 6,290 6,491 6,493 10,210 11,798 12,753

Han (URO) 20,902 20,902 20,902 20,902 20,902 20,902 20,902

Han Extension A 6,582 6,582 6,582

Han Extension B 42,711 42,711

Han Compatibility 302 302 302 302 302 844 903

Subtotal Han 21,204 21,204 21,204 21,204 27,786 71,039 71,098

Hangul Syllables 2,350 2,350 6,656 11,172 11,172 11,172 11,172 11,172

Graphic Characters 7,084 28,282 34,150 38,867 38,869 49,168 94,009 95,023

Format Characters 12 12 18 18 18 26 131 133

Graphic + Format 7,096 28,294 34,168 38,885 38,887 49,194 94,140 95,156

Controls 65 65 65 65 65 65 65 65

Private Use 5,632 6,144 6,400 137,468 137,468 137,468 137,468 137,468

Total Assigned 12,793 34,503 40,633 176,418 176,420 186,727 231,673 232,689

Surrogate Code Points 2,048 2,048 2,048 2,048 2,048

Noncharacters 2 2 2 34 34 34 66 66

Total Designated 12,795 34,505 40,635 178,500 178,502 188,809 233,787 234,803

Reserved Code Points 52,741 31,031 24,901 935,612 935,610 925,303 880,325 879,309
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

D.2 Clause and Definition Updates 603
D.2 Clause and Definition Updates

Several updates were made to definitions and conformance clauses in Version 5.1 primarily
to address potential security exploits. The updates also reflect updated Consortium policies
to increase property stability, and include a few other textual clarifications.

Table D-4 provides a list of all clauses and definitions that were clarified, changed, or newly
added in Version 5.1.

For Version 5.2, a number of updates were made to incorporate the specification of the
normalization algorithm into Chapter 3, Conformance, including definitions formerly
specified in Unicode Standard Annex #15, “Unicode Normalization Forms.” Other changes
include those to tighten security for the handling of noncharacters, and new or changed
definitions for deprecated character, code point type, and contributory property. Due to
the creation of a new section on normalization, many definitions were renumbered, and a
few were moved into other sections.

Table D-5 provides a list of all clauses and definitions that were clarified, changed, newly
added, renumbered, or moved in Version 5.2.

Table D-4. Version 5.1 Clause and Definition Updates

Number Clause or Definition Type of Update

C7 Modification Clarification

D40 Stable property Clarification

D51a Extended base New

D56a Extended combining character sequence New

D60 Grapheme cluster Changed

D61 Extended grapheme cluster Changed

D84a Ill-formed code unit subsequence New

D85 Well-formed Changed

D85a Minimal well-formed code unit subsequence New

D86 Well-formed UTF-8 code unit sequence Changed

D121 Case-ignorable Changed

Table D-5. Version 5.2 Clause and Definition Updates

Number Clause or Definition Type of Update

C7 Modification Clarification

C13 Normalization Changed

C14 Normalization Changed

D10a Code point type New

D13 Deprecated character Clarification

D35a Contributory property New

D61a Dependence Renumbered (was D102)

D61b Graphical application Renumbered (was D103)

D107 Starter New

D108 Reorderable pair New

D109 Canonical Ordering Algorithm New

D110 Singleton decomposition New

D111 Non-starter decomposition New

D112 Composition exclusion New

D113 Full composition exclusion New

D114 Primary composite New
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

604 Changes from Previous Versions
Version 6.0 of the Unicode Standard updated the explanatory text of a few conformance
clauses to highlight security considerations. Extensive new text was added to clarify the best
practices for using U+FFFD, two new definitions were added in support of the Canonical
Composition Algorithm, and new definitions, rules, and explanatory text were added to
default case algorithms.

Table D-6 provides a list of all clauses and definitions that were clarified, changed, or newly
added in Version 6.0.

Table D-7 provides a list of all clauses and definitions that were clarified, changed, or newly
added in Version 6.1.

There are no changes to any clauses and no updates to definitions in Version 6.2.

D115 Blocked New

D116 Non-blocked pair New

D117 Canonical Composition Algorithm New

D118 Normalization Form D New

D119 Normalization Form KD New

D120 Normalization Form C New

D121 Normalization Form KC New

D122 to D133 Hangul syllables Renumbered (were D107 to D118)

D134 Standard Korean syllable Renumbered (was D119)

D135 to D138 Case Renumbered (were D120 to D123)

D139 to D143 Case detection Renumbered (were D124 to D128)

D144 to D146 Caseless matching Renumbered (were D129 to D131)

Table D-6. Version 6.0 Clause and Definition Updates

Number Clause or Definition Type of Update

C7 Modification Clarification

C10 Character encoding forms Clarification

D92 UTF-8 Clarification

D93a to D93b Constraints on Conversion Process New

D110a to D110b Canonical Composition Algorithm New

D111 Canonical Composition Algorithm Clarification

D138 Default Case Algorithms Clarification

D144 to D146 Default Case Algorithms Clarification

D147 Default Case Algorithms New

Table D-7. Version 6.1 Clause and Definition Updates

Number Clause or Definition Type of Update

D58 Grapheme base Clarification

D59 Grapheme extender Clarification

D60 Grapheme cluster Clarification

D107 Starter Clarification

D110 Singleton decomposition Clarification

Table D-5. Version 5.2 Clause and Definition Updates (Continued)

Number Clause or Definition Type of Update
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Appendix E

Han Unification History E

Efforts to standardize a comprehensive Han character repertoire go back at least as far as
the Eastern Han dynasty, when the important dictionary Shuowen Jiezi (121 ce) codified a
set of some 10,000 characters and variants, crystallizing earlier Qin dynasty initiatives at
orthographic reform. Subsequent dictionaries in China grew larger as each generation re-
combined the Shuowen script elements to create new characters. By the time the Qing
dynasty Kang Xi dictionary was completed in the 18th century, the character set had grown
to include more than 40,000 characters and variants. In relatively recent times many more
characters and variants have been created and catalogued, reflecting modern PRC simplifi-
cation and standardization initiatives, as well as ongoing inventories of legacy printed texts.

The effort to create a unified Han character encoding was guided by the developing
national standards, driven by offshoots of the dictionary traditions just mentioned, and
focused on modern bibliographic and pedagogical lists of characters in common use in
various genres. Much of the early work to create national and transnational encoding stan-
dards was published in China and Japan in the late 1970s and early 1980s.

The Chinese Character Code for Information Interchange (CCCII), first published in Tai-
wan in 1980, identified a set of some 5,000 characters in frequent use in China, Taiwan, and
Japan. (Subsequent revisions of CCCII considerably expanded the set.) In somewhat mod-
ified form, CCCII was adopted for use in the United States as ANSI Z39.64-1989, also
known as EACC, the East Asian Character Code For Bibliographic Use. EACC encoded some
16,000 characters and variants, organized using a twelve-layer variant mapping mecha-
nism.

In 1980, Takahashi Tokutaro of Japan’s National Diet Library proposed ISO standardiza-
tion of a character set for common use among East Asian countries. This proposal included
a report on the first Japanese Industrial Standard for kanji coding (JIS C 6226-1978). Pub-
lished in January 1978, JIS C 6226-1978 was growing in influence: it encoded a total of
6,349 kanji arranged in two levels according to frequency of use, and approximately 500
other characters, including Greek and Cyrillic.

E.1 Development of the URO

The Unicode Han character set began with a project to create a Han character cross-refer-
ence database at Xerox in 1986. In 1988, a parallel effort began at Apple based on the RLG’s
CJK Thesaurus, which is used to maintain EACC. The merger of the Apple and Xerox data-
bases in 1989 led to the first draft of the Unicode Han character set. At the September 1989
meeting of X3L2 (an accredited standards committee for codes and character sets operating
under the procedures of the American National Standards Institute), the Unicode Working
Group proposed this set for inclusion in ISO 10646.

The primary difference between the Unicode Han character repertoire and earlier efforts
was that the Unicode Han character set extended the bibliographic sets to guarantee com-
plete coverage of industry and newer national standards. The unification criteria employed
in this original Unicode Han character repertoire were based on rules used by JIS and on a
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

606 Han Unification History
set of Han character identity principles (rentong yuanze) being developed in China by
experts working with the Association for a Common Chinese Code (ACCC). An important
principle was to preserve all character distinctions within existing and proposed national
and industry standards.

The Unicode Han proposal stimulated interest in a unified Han set for inclusion in ISO
10646, which led to an ad hoc meeting to discuss the issue of unification. Held in Beijing in
October 1989, this meeting was the beginning of informal cooperation between the Uni-
code Working Group and the ACCC to exchange information on each group’s proposals
for Han unification.

A second ad hoc meeting on Han unification was held in Seoul in February 1990. At this
meeting, the Korean delegation proposed the establishment of a group composed of the
East Asian countries and other interested organizations to study a unified Han encoding.
From this informal meeting emerged the Chinese/Japanese/Korean Joint Research Group
(hereafter referred to as the CJK-JRG).

A second draft of the Unicode Han character repertoire was sent out for widespread review
in December 1990 to coincide with the announcement of the formation of the Unicode
Consortium. The December 1990 draft of the Unicode Han character set differed from the
first draft in that it used the principle of KangXi radical-stroke ordering of the characters.
To verify independently the soundness and accuracy of the unification, the Consortium
arranged to have this draft reviewed in detail by East Asian scholars at the University of
Toronto.

In the meantime, China announced that it was about to complete its own proposal for a
Han Character Set, GB 13000. Concluding that the two drafts were similar in content and
philosophy, the Unicode Consortium and the Center for Computer and Information
Development Research, Ministry of Machinery and Electronic Industry (CCID, China’s
computer standards body), agreed to merge the two efforts into a single proposal. Each
added missing characters from the other set and agreed upon a method for ordering the
characters using the four-dictionary ordering scheme described in Section 12.1, Han. Both
proposals benefited greatly from programmatic comparisons of the two databases.

As a result of the agreement to merge the Unicode Standard and ISO 10646, the Unicode
Consortium agreed to adopt the unified Han character repertoire that was to be developed
by the CJK-JRG.

The first CJK-JRG meeting was held in Tokyo in July 1991. The group recognized that there
was a compelling requirement for unification of the existing CJK ideographic characters
into one coherent coding standard. Two basic decisions were made: to use GB 13000 (pre-
viously merged with the Unicode Han repertoire) as the basis for what would be termed
“The Unified Repertoire and Ordering,” and to verify the unification results based on rules
that had been developed by Professor Miyazawa Akira and other members of the Japanese
delegation.

The formal review of GB 13000 began immediately. Subsequent meetings were held in
Beijing and Hong Kong. On March 27, 1992, the CJK-JRG completed the Unified Reper-
toire and Ordering (URO), Version 2.0. This repertoire was subsequently published both by
the Unicode Consortium in The Unicode Standard, Version 1.0, Volume 2, and by ISO in
ISO/IEC 10646-1:1993.

E.2 Ideographic Rapporteur Group

In October 1993, the CJK-JRG became a formal subgroup of ISO/IEC JTC1/SC2/WG2 and
was renamed the Ideographic Rapporteur Group (IRG). The IRG now has the formal
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

E.2 Ideographic Rapporteur Group 607
responsibility of developing extensions to the URO 2.0 to expand the encoded repertoire of
unified CJK ideographs. The Unicode Consortium participates in this group as a liaison
member of ISO.

In its second meeting in Hanoi in February 1994, the IRG agreed to include Vietnamese
Ch Nôm ideographs in a future version of the URO and to add a fifth reference dictionary
to the ordering scheme.

In 1998, the IRG completed work on the first ideographic supplement to the URO, CJK
Unified Ideographs Extension A. This set of 6,582 characters was culled from national and
industrial standards and historical literature and was first encoded in The Unicode Stan-
dard, Version 3.0. CJK Unified Ideographs Extension A represents the final set of CJK ideo-
graphs to be encoded on the BMP.

In 2000, the IRG completed work on the second ideographic supplement to the URO, a
very large collection known as CJK Unified Ideographs Extension B. These 42,711 charac-
ters were derived from major classical dictionaries and literary sources, and from many
additional national standards, as documented in Table 12-1 in Section 12.1, Han. The
Extension B collection was first encoded in The Unicode Standard, Version 3.1, and is the
first collection of unified CJK ideographs to be encoded on Plane 2.

In 2005, the IRG identified a subset of the unified ideographs, called the International
Ideograph Core (IICore). This subset is designed to serve as a relatively small collection of
around 10,000 ideographs, mainly for use in devices with limited resources, such as mobile
phones. The IICore subset is meant to cover the vast majority of modern texts in all locales
where ideographs are used. The repertoire of the IICore subset is identified with the
kIICore key in the Unihan Database.

Also in 2005, a small set of ideographs was encoded to support the complete repertoire of
the of the GB 18030:2000 and HKSCS 2004 standards. In addition, an initial set of CJK
strokes was encoded.

In 2008, the IRG completed work on the third ideographic supplement to the URO, a col-
lection of 4,149 characters from various sources. The Extension C collection was first
encoded in the Unicode Standard, Version 5.2.

In 2009, the IRG completed work on the fourth ideographic supplement to the URO, a col-
lection of 222 characters from various sources as documented in Table 12-1 in Section 12.1,
Han. The Extension D collection represents a small number of characters which IRG mem-
bers felt were urgently needed; this collection was first encoded in the Unicode Standard,
Version 6.0.

At the present time (early 2012), the IRG is working on a fifth ideographic supplement,
Extension E, as well as on an independent set of ideographs, Old Hanzi, for use in repre-
senting writing with pre-modern forms. Current IRG work includes submissions from
China, Hong Kong, Macao, Taiwan, Japan, South Korea, Vietnam, Malaysia, and the
United States.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

608 Han Unification History
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

Appendix F

Documentation of CJK
Strokes F

This appendix provides additional documentation regarding each of the CJK stroke char-
acters encoded in the CJK Strokes block (U+31C0..U+31EF). For a general introduction to
CJK characters and CJK strokes, see Section 12.1, Han.

The information in Table F-1 gives five types of identifying data for each CJK stroke. Each
stroke is also exemplified in a spanning lower row, with a varying number of examples, as
appropriate. The information contained in each of the five columns and in the examples
row is described more specifically below.

• Stroke: A representative glyph for each CJK stroke character, with its Unicode
code point shown underneath.

• Acronym: The abbreviation used in the Unicode character name for the CJK
stroke character.

• Pinyin: The Hanyu Pinyin (Modern Standard Chinese) romanization of the
stroke name (as given in the next column), hyphenated to make clear the rela-
tionship between the romanization of the stroke name and the acronym value.

• Name: A traditional name for this stroke, as written in Han characters.

• Variant: Alternative (context-specific) forms of the representative glyph for this
stroke, if any.

• Examples: Representative glyphs and variant forms of CJK unified ideographs,
exemplifying typical usage of this stroke type in Han characters. Each example
glyph (or variant) is followed by the Unicode code point for the CJK unified
ideograph character it represents, for easy reference.

The CJK stroke characters in the table are ordered according to the traditional “Five Types.”
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

610 Documentation of CJK Strokes
Table F-1. CJK Strokes

Stroke Acronym Pīnyīn Name Variant

31D0

H héng

4E00, 4E8C, 4E09, 4E01, 4E1E, 4E08, 4E16, 4E0D, 571F,

4E0A, 5341, 5345, 4E03

31C0

T tí

51AB, 6C3E, 51B0, 51B6, 51BD, 6C35, 6DCB, 6CBB, 6C3A,

5F55, 66B4, (571F), 5730, 866B

31D1

S shù

4E28, 4E29, 4E0A, 5DE5, 4E2D, 4E32, 8BA7, 4E4D, 4E94,

4E11

31DA

SG shù-gōu

4E85, 6C34, 6C42, 722D, 4E8B

31D2

P piě

4E3F, 4EBA, 516B, 4E42, 723B, 79BE, 6BDB, 4E4F, 4E56,

91C6, 8863, 884C

31D3

SP shù-piě

4E43, 51E0, (4EBA), 5927, 6708, 7528, 5C70, 73ED,

9F4A

31D4

D diăn

4E36, 4E38, 4E49, 6C38, 51AB, 51B0, 51E1, 4E39, 4E3B,

6C42, 706B, 5203
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

611
Table F-1. CJK Strokes (Continued)

Stroke Acronym Pīnyīn Name Variant

31CF

N nà

5927, 4EBA, 5929, (5165), 5C3A, 8D70, 662F, 8FB9,

5EF7

31DD

TN tí-nà

4E40, 5C10, (516B), (5165), (6587), 590A(),

(5EFB)

31D5

HZ héng-zhé

200CD, 53E3, 56D7, 7530, 5415, 54C1, 7533, 7532, 5706,

5DEA

31C7

HP héng-piě

53C8, 53CC, 53D2, (4ECA)

31D6

HG héng-gōu

4E5B, 5196, 4E86, 5B50, 4E88, 77DB, 758B, 51995B57,

758F

31D7

SZ shù-zhé

200CA, 200CB, 5C71, 7259, 4E92, 4E50, 4E1C, 65AD, 7EE7,

5F59

31D8

SWZ shù-wān-zuŏ
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

200CE, (23D92), (8085), 562F, 856D, 7C2B

612 Documentation of CJK Strokes
Table F-1. CJK Strokes (Continued)

Stroke Acronym Pīnyīn Name Variant

31C4

SW shù-wān

(5338), (5340), (4EA1), (5984), 56DB

31D9

ST shù-tí

2010C, 6C11, 826E, 826F, 98DF, 5F88, 72E0, 9109

31DC

PZ piě-zhé

53B6, 5E7A, 7CF8, 7D72, 5F18, 516C, 7FC1

31DB

PD piě-diăn

21FE8, 5DDB, 5973, 5DE1, 707D, 753E, 5DE4, 7375

31E2

PG piě-gōu

4E44, 219D1, 211A2

31C1

WG wān-gōu

72AD, 8C55, 8C78, 72D0, 5DBD, 8C93, 5BB6, 9010

31C2

XG xié-gōu

5F0B, 6208, 6211, 6230

31C3

BXG biăn-xié-gōu

心5FC3(“” HKSCS)
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

613
Table F-1. CJK Strokes (Continued)

Stroke Acronym Pīnyīn Name Variant

31C5

HZZ héng-zhé-zhé

534D, 2067F

31CD

HZW héng-zhé-wān

6BB3, 6735, 6295

31CA

HZT héng-zhé-tí

8BA0, 8BA1, 9CE9

31C6

HZG héng-zhé-gōu

200CC, 4E60, 7FBD, 5305, 52FB, 8461, 7528, 9752, 752B,

52FA, 6708, 4E5C, 4E5F

31C8

HZWG héng-zhé-wān-
gōu

4E5D, 51E0, 98DE, 98CE, 6C14, 8671, 760B

31DE

SZZ shù-zhé-zhé

200D1, 5350, 4E9E, 9F0E, 5433, 4E13, 279AE, 244F7, 249A1

31DF

SWG shù-wān-gōu

4E5A, 793C, 4E71, 513F, 5DF1, 5DF2, 5DF3, 5FC3, 5FC5

31CE

HZZZ héng-zhé-zhé-
zhé

51F8, 21E2D
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

614 Documentation of CJK Strokes
Table F-1. CJK Strokes (Continued)

Stroke Acronym Pīnyīn Name Variant

31CB

HZZP héng-zhé-zhé-
piě

53CA, 5EF4, 5EFA

31E0

HXWG héng-xié-wān-
gōu

4E59, 6C39, 4E5E

31CC

HPWG héng-piě-wān-
gōu

961D, 961F, 90AE

31C9

SZWG shù-zhé-wān-
gōu

4E02, 4E8F, 53F7, 5F13, 5F3A, 4E10, 9A6C

31E1

HZZZG héng-zhé-zhé-
zhé-gōu

2010E, 4E43, 5B55, 4ECD

31E3

Q quān

3007, 3514, 3AB3, 3AC8
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

References R

Citations are given for the standards and dictionaries that were used as the actual resources
for The Unicode Standard, primarily for Version 1.0. Where a Draft International Standard
(DIS) is known to have progressed to International Standard status, the entry for the DIS
has been revised. A revised or reaffirmed edition, with a different date, may have been pub-
lished subsequently. For the current version of a standard, see the catalog issued by the stan-
dards organization. The Web site of the International Organization for Standardization
(http://www.iso.org) includes the ISO Catalogue and links to the sites of member organiza-
tions. Many of the ISO character set standards were originally developed by ECMA and are
also ECMA standards.

In general, American library practice has been followed for the romanization of titles and
names written in non-Roman script. Exceptions are when information supplied by an
author had to be used because the name or title in the original script was unavailable.

R.1 Source Standards and Specifications
This section identifies the standards and specifications used as sources for the Unicode
Standard. The section also includes selected current standards and specifications relevant
to the use of coded character sets.

AAT: “About Apple Advanced Typography Fonts.” In TrueType Reference Manual, Chapter
6: Font Files. Apple Computer, ©1997–2002 (last updated 18 Dec 2002).

http://developer.apple.com/fonts/TTRefMan/RM06/Chap6AATIntro.html

ANSI X3.4: American National Standards Institute. Coded character set—7-bit American
national standard code for information interchange. New York: 1986. (ANSI X3.4-1986).

ANSI X3.32: American National Standards Institute. American national standard graphic
representation of the control characters of American national standard code for information
interchange. New York: 1973. (ANSI X3.32-1973).

ANSI Y10.20: American National Standards Institute. Mathematic signs and symbols for use
in physical sciences and technology. New York: 1988. (ANSI Y10.20-1975 (R1988)).

ANSI Z39.47: American National Standards Institute. Extended Latin alphabet coded char-
acter set for bibliographic use. New York: 1985. (ANSI Z39.47-1985).

ANSI Z39.64: American National Standards Institute. East Asian character code for biblio-
graphic use. New Brunswick, NJ: Transaction, 1991. (ANSI Z39.64-1989).

ARIB STD-B24: Association of Radio Industries and Businesses. Data Coding and Trans-
mission Specification for Digital Broadcasting. Tokyo: 2008.

ASMO 449: Arab Organization for Standardization and Metrology. Data processing 7-bit
coded character set for information interchange. [s.l.]: 1983. (Arab standard specifications,
449-1982). Authorized English translation.

BCP 47: (See RFC 4646 and RFC 4647.)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.iso.org
http://developer.apple.com/fonts/TTRefMan/RM06/Chap6AATIntro.html

616 References
CCCII: Zhongwen Zixun Jiaohuanma (Chinese Character Code for Information Inter-
change). Revised edition. Taipei: Xingzhengyuan Wenhua Jianshe Xiaozu (Executive Yuan
Committee for Cultural Construction), 1985.

CNS 11643-1986: Tongyong hanzi biaozhun jiaohuanma (Han character standard inter-
change code for general use). Taipei: Xingzhengyuan (Executive Yuan), 1986.

CNS 11643-1992: Zhongwen biaozhun jiaohuanma (Chinese standard interchange code).
Taipei: 1992.

Obsoletes 1986 edition.

DIN 66006: Informationsverarbeitung—Darstellung von ALGOL-Symbolen auf 5-Spur-
Lochstreifen und 80spaltigen Lochkarten. (Information processing—representation of ALGOL
symbols on 5-track punched tape and on 80-column punched cards). Berlin: Fachnor-
menausschuß Informationsverarbeitung (FNI) im Deutschen Normenausschuß (DNA),
1965.

Also cited as: Darstellung von ALGOL/ALCOR-Programmen auf Lochstreifen und Loch-
karten.

EACC: (See ANSI Z39.64.)

ECMA Registry: (See ISO Register.)

ELOT 1373: Hellenic Organization for Standardization (ELOT). The Greek Byzantine musi-
cal notation system. Athens: 1997.

GB 2312: Xinxi jiaohuanyong hanzi bianmaji, jibenji (Code of Chinese graphic character set
for information interchange, primary set). Beijing: Jishu Biaozhun Chubanshe (Technical
Standards Press), 1981. (GB 2312-1980).

GB 12345: Xinxi jiaohuanyong hanzi bianmaji, fuzhuji (Code of Chinese ideogram set for
information interchange, supplementary set). Beijing: Jishu Biaozhun Chubanshe (Technical
Standards Press), 1990. (GB 12345-1990).

GB 13000: Xinxi jishu—Tongyong duobawei bianma zifuji (UCS)—Diyi bufen: Tixi jiegou
yu jiben duowenzhong pingmian (Information technology—Universal multiple-octet coded
character set (UCS)—Part 1: Architecture and basic multilingual plane). Beijing: Jishu Biao-
zhun Chubanshe (Technical Standards Press), 1993. (GB 13000.1-93). (ISO/IEC 10646.1-
1993).

GB 13134: Xinxi jiaohuanyong yiwen bianma zifuji (Yi coded character set for information
interchange), [prepared by] Sichuansheng Minzushiwu Weiyuanhui. Beijing: Jishu Biaoz-
hun Chubanshe (Technical Standards Press), 1991. (GB 13134-1991).

GB 18030: Xinxi jishu—Xinxi jiaohuan yong hanzi bianma zufuji—Jibenji de kuochong.
(Information technology—Chinese ideograms coded character set for information inter-
change—Extension for the basic set). Beijing: Guojiao zhiliang jishu jianduju, 2000. (GB
18030-2000).

GBK: Xinxi jiaohuanyong hanzi bianma kuozhan guifan (Extended Code of Chinese graphic
character set for information interchange). Beijing: Zhongguo dianzi gongyebu [and] Guo-
jiao jishu jianduju, 1995.

The Chinese-specific subset of GB 13000.1-93.

GOST 10859-64: USSR. State Committee on Standards, Measures and Measuring Devices
of the USSR. Computational machinery. Alphanumerical Codes for Punchcards and
Punchtapes. Moscow: Standards Publishing, 1964.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

R.1 Source Standards and Specifications 617
HKSCS-2001: Hong Kong Supplementary Character Set – 2001. Hong Kong: Information
Technology Services Department & Official Languages Agency, Government of the Hong
Kong Special Administrative Region, 2001.

English: http://www.info.gov.hk/digital21/eng/hkscs/download/e_hkscs.pdf

Chinese: http://www.info.gov.hk/digital21/chi/hkscs/download/c_hkscs.pdf

Irish Standard 434:1999. Information technology—8-bit single-byte graphic coded character
set for Ogham / Teicneolaíocht eolais—Tacar carachtar grafach Oghaim códaithe go haonb-
heartach le 8 ngiotán.

ISCII-88: India. Department of Electronics. Indian script code for information interchange.
New Delhi: 1988.

ISCII-91: India. Bureau of Indian Standards. Indian script code for information interchange.
New Delhi: 1991.

ISIRI 3342: Institute of Standards and Industrial Research of Iran. estaandaard-e tabaadol-
e ettelaa’aat-e 8 biti-e faarsi = Farsi 8-bit coded character set for information interchange.
Tehran: 1993 (1372 AP). (ISIRI 3342:1993).

ISO Register: International Organization for Standardization. ISO international register of
coded character sets to be used with escape sequences.

Current register: http://www.itscj.ipsj.or.jp/ISO-IR/

ISO 639: International Organization for Standardization. Code for the representation of
names of languages. [Geneva]: 1988. (ISO 639:1988).

ISO/IEC 646: International Organization for Standardization. Information technology—
ISO 7-bit coded character set for information interchange. [Geneva]: 1991. (ISO/IEC
646:1991).

ISO/IEC 2022: International Organization for Standardization. Information processing—
ISO 7-bit and 8-bit coded character sets—Code extension techniques. 3rd ed. [Geneva]: 1986.
(ISO 2022:1994).

Edition 4 (ISO/IEC 2022:1994) has title: Information technology—Character code structure and
extension techniques.

ISO 2033: International Organization for Standardization. Information processing—Coding
of machine-readable characters (MICR and OCR). 2nd ed. [Geneva]: 1983. (ISO
2033:1983).

ISO 2047: International Organization for Standardization. Information processing—Graph-
ical representations for the control characters of the 7-bit coded character set. [Geneva]: 1975.
(ISO 2047:1975).

ISO/IEC 2375: International Organization for Standardization. Information technology—
Procedure for registration of escape sequences and coded character sets. [Geneva]: 2003. (ISO/
IEC 2375:2003).

ISO 3166: International Organization for Standardization. Codes for the representation of
names of countries and their subdivisions. [Geneva]. Part 1: Country Codes (ISO 3166-
1:1997). Part 2: Country subdivision code (ISO 3166-2:1998). Part 3: Code for formerly used
names of countries (ISO 3166-3:1999).

ISO/IEC 4873: International Organization for Standardization. Information technology—
ISO 8-bit code for information interchange—Structure and rules for implementation.
[Geneva]: 1991. (ISO/IEC 4873:1991).
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.info.gov.hk/digital21/eng/hkscs/download/e_hkscs.pdf
http://www.info.gov.hk/digital21/chi/hkscs/download/c_hkscs.pdf
http://www.itscj.ipsj.or.jp/ISO-IR/

618 References
ISO 5426: International Organization for Standardization. Extension of the Latin alphabet
coded character set for bibliographic information interchange. 2nd ed. [Geneva]: 1983. (ISO
5426:1983).

ISO 5426-2: International Organization for Standardization. Information and documenta-
tion—Extension of the Latin alphabet coded character set for bibliographic information
interchange—Part 2: Latin characters used in minor European languages and obsolete typog-
raphy. [Geneva]: 1996. (ISO 5426-2:1986).

ISO 5427: International Organization for Standardization. Extension of the Cyrillic alphabet
coded character set for bibliographic information interchange. [Geneva]: 1984. (ISO
5427:1984).

ISO 5428: International Organization for Standardization. Greek alphabet coded character
set for bibliographic information interchange. [Geneva]: 1984. (ISO 5428-1984).

ISO/IEC 6429: International Organization for Standardization. Information technology—
Control functions for coded character sets. 3rd ed. [Geneva]: 1992. (ISO/IEC 6429:1992).

ISO 6438: International Organization for Standardization. Documentation—African coded
character set for bibliographic information interchange. [Geneva]: 1983. (ISO 6438:1983).

ISO 6861:1996. International Organization for Standardization. Information and documen-
tation—Glagolitic alphabet coded character set for bibliographic information interchange.
[Geneva]: 1996. (ISO 6861:1996).

ISO 6862: International Organization for Standardization. Information and documen-
tation—Mathematics character set for bibliographic information interchange. [Geneva]:
1996. (ISO 6862:1996).

ISO/IEC 6937: International Organization for Standardization. Information processing—
Coded character sets for text communication. [Geneva]: 1984.

Edition 3 (ISO/IEC 6937:2001) has the following title: Information technology—Coded graphic
character set for text communication—Latin alphabet.

ISO/IEC 8859: International Organization for Standardization. Information processing—
8-bit single-byte coded graphic character sets. [Geneva]: 1987–.

These parts of ISO/IEC 8859 predate the Unicode Standard, Version 1.0, and were used as
resources: Part 1, Latin alphabet No. 1; Part 2, Latin alphabet No. 2; Part 3, Latin alphabet No. 3;
Part 4, Latin alphabet No. 4; Part 5, Latin/Cyrillic alphabet; Part 6, Latin/Arabic alphabet; Part 7,
Latin/Greek alphabet; Part 8, Latin/Hebrew alphabet; and Part 9, Latin alphabet No. 5.

The other parts of ISO/IEC 8859 are Part 10, Latin alphabet No. 6; Part 11, Latin/Thai alphabet;
Part 13, Latin alphabet No. 7; Part 14, Latin alphabet No. 8 (Celtic); Part 15, Latin alphabet No. 9;
and Part 16, Latin alphabet No. 10. There is no Part 12.

ISO 8879: International Organization for Standardization. Information processing—Text
and office systems—Standard generalized markup language (SGML). [Geneva]: 1986. (ISO
8879:1986).

ISO 8957: International Organization for Standardization. Information and documenta-
tion—Hebrew alphabet coded character sets for bibliographic information interchange.
[Geneva]: 1996. (ISO 8957:1996).

ISO 9036: International Organization for Standardization. Information processing—Arabic
7-bit coded character set for information interchange. [Geneva]: 1987. (ISO 9036:1987).

ISO/IEC 9573-13: International Organization for Standardization. Information technol-
ogy—SGML support facilities—Techniques for using SGML—Part 13: Public entity sets for
mathematics and science. [Geneva]: 1991. (ISO/IEC TR 9573-13:1991).
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

R.1 Source Standards and Specifications 619
ISO/IEC 9995-7: International Organization for Standardization. Information technology—
Keyboard layouts for text and office systems—Part 7: Symbols used to represent functions.
[Geneva]: 1994. (ISO/IEC 9995-7:1994).

ISO/IEC 10367: International Organization for Standardization. Information technology—
Standardized coded graphic character sets for use in 8-bit codes. [Geneva]: 1991. (ISO/IEC
10367:1991).

ISO 10585: International Organization for Standardization. Information and documenta-
tion—Armenian alphabet coded character set for bibliographic information interchange.
[Geneva]: 1996. (ISO 10585:1996).

ISO 10586: International Organization for Standardization. Information and docu-
mentation—Georgian alphabet coded character set for bibliographic information interchange.
[Geneva]: 1996. (ISO 10586:1996).

ISO/IEC 10646: International Organization for Standardization. Information Technology—
Universal Multiple-Octet Coded Character Set (UCS). [Geneva]: 2012. (ISO/IEC
10646:2012).

ISO 10754: International Organization for Standardization. Information and documenta-
tion—Extension of the Cyrillic alphabet coded character set for non-Slavic languages for bib-
liographic information interchange. [Geneva]: 1996. (ISO 10754:1996).

ISO/TR 11548-1: International Organization for Standardization. Communication aids for
blind persons—Identifiers, names and assignation to coded character sets for 8-dot Braille
characters—Part 1: General guidelines for Braille identifiers and shift marks. [Geneva]: 2001.
(ISO/TR 11548-2001).

ISO/TR 11548-2: International Organization for Standardization. Communication aids for
blind persons—Identifiers, names and assignation to coded character sets for 8-dot Braille
characters—Part 2: Latin alphabet based character sets. [Geneva]: 2001. (ISO/TR 11548-
2:2001).

ISO 11822: International Organization for Standardization. Information and docu-
mentation—Extension of the Arabic coded character set for bibliographic information inter-
change. [Geneva]: 1996. (ISO 11822:1996).

ISO/IEC 14651: International Organization for Standardization. Information technology—
International string ordering and comparison—Method for comparing character strings and
description of the common template tailorable ordering. [Geneva]: 2001. (ISO/IEC
14651:2001).

ISO 15919: International Organization for Standardization. Information and documenta-
tion—Transliteration of Devanagari and related Indic scripts into Latin characters. [Geneva]:
2001. (ISO 15919:2001).

ISO 15924: International Organization for Standardization. Information and Documenta-
tion—Codes for the representation of names of scripts = Information et documentation—
Codes pour la représentation des noms d’écritures. Bilingual edition = Édition bilingue.
[Geneva: 2004]. (ISO 15924:2004).

ISO/IEC TR 19769: International Organization for Standardization. Information technol-
ogy—Programming languages, their environments and system software interfaces—Exten-
sions for the programming language C to support new character data types. [Geneva]: 2004.
(ISO/IEC TR 19769:2004).
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

620 References
JIS X 0208: Japanese Industrial Standards Committee. 7 bitto oyobi 8 bitto no 2 baito jouhou
koukan you fugouka kanji shuugou (7-bit and 8-bit double byte coded kanji sets for informa-
tion interchange). Tokyo: Japanese Standards Association, 1997. (JIS X 0208:1997).

Revision of the 1990 edition, which was the original source for the Unicode Standard.

JIS X 0212: Japanese Industrial Standards Committee. Jouhou koukan you kanji fugou—
hojo kanji (Code of the supplementary Japanese graphic character set for information inter-
change). Tokyo: Japanese Standards Association, 1990. (JIS X 0212:1990).

JIS X 0213: Japanese Industrial Standards Committee. 7 bitto oyobi 8 bitto no 2 baito jouhou
koukan you fugouka kakuchou kanji shuugou (7-bit and 8-bit double byte coded extended
kanji sets for information interchange). Tokyo: Japanese Standards Association, 2000. (JIS X
0213:2000).

JIS X 0221: Japanese Industrial Standards Committee. Information Technology—Universal
Multiple-Octet Coded Character Set (UCS)—Part 1: Architecture and Basic Multilingual
Plane. Tokyo: Japanese Standards Association, 2001. (JIS X 0221-1:2001).

Identical to ISO/IEC 10646-1:2000.

JIS X 4051-1995: Line Composition Rules for Japanese Documents. Japanese Standards Asso-
ciation, 1995.

JIS X 4051:2004: Japanese Industrial Standards Committee. Nihongo Bunsho no Kumihan
Houhou. (Formatting rules for Japanese documents). Tokyo: Japanese Standards Association,
2004. (JIS X 4051:2004).

Revision of the 1995 edition, used in Unicode Standard Annex #14, Line Breaking Properties.

JIS X 4052:2000: Japanese Industrial Standards Committee. Nihongo Bunsho no Kumihan
Shitei Koukan Keishiki. (Exchange format for Japanese documents with composition markup).
Tokyo: Japanese Standards Association, 2000. (JIS X 4052:2000).

KPS 9566-97: Committee for Standardization of the Democratic People’s Republic of
Korea. (Code of the Korean graphic character set for information interchange). Pyongyang:
1997. (KPS 9566-97).

KPS 10721-2000: Committee for Standardization of the Democratic People’s Republic of
Korea. (Code of the supplementary Korean hanja set for information interchange). Pyong-
yang: 2000. (KPS 10721-2000).

KS C 5601: Korea Industrial Standards Association. Chongbo kyohwanyong puho (Han’gul
mit Hancha). Seoul: 1989. (KS C 5601-1987).

KS X 1001: Korean Agency for Technology and Standards. Chongbo kyohwanyong puho
(Han’gul mit Hancha). (Code for information interchange (Hanguel and Hanja)). Seoul:
1992. (KS X 1001-1992).

Last confirmed 1998. Originally designated as KS C 5601-1992.

KS X 1002: Korean Agency for Technology and Standards. Chongbo kyohwanyong puho
hwakchang set’u. (Extension code sets for information interchange.) Seoul: 1991. (KS X 1002-
1991).

Last confirmed 1996. Originally designated as KS C 5657-1991.

KS X 1026-1:2007 Korean Agency for Technology and Standards. Information Technology –
Universal Multiple Octet Coded Character Set – Hangul, Part 1, Hangul processing guide for
information interchange. 2008.

MIME: (See RFCs 2045-2049, 4648-4649.)
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

R.1 Source Standards and Specifications 621
OpenType: OpenTypeTM Specification, version 1.4.

http://partners.adobe.com/asn/developer/opentype/main.html (Adobe Systems, ©2000–2003)

http://www.microsoft.com/typography/otspec/ (Microsoft, ©2001)

The RFCs listed below are available through the Request for Comments page of the IETF
Web site (http://www.ietf.org/rfc.html). This page provides for retrieval by RFC number
and includes a list of all RFCs in numerical order (RFC Index).

RFC 2045: Multipurpose Internet Mail Extensions (MIME). Part One: Format of Internet
message bodies, by N. Freed and N. Borenstein. November 1996. (Status: DRAFT STAN-
DARD).

Updated by RFC 2184, RFC 2231.

RFC 2046: Multipurpose Internet Mail Extensions (MIME). Part Two: Media types, by N.
Freed and N. Borenstein. November 1996. (Status: DRAFT STANDARD).

Updated by RFC 2646, RFC 3798.

RFC 2047: MIME (Multipurpose Internet Mail Extensions). Part Three: Message header exten-
sions for non-ASCII text, by K. Moore. November 1996. (Status: DRAFT STANDARD).

Updated by RFC 2184, RFC 2231.

RFC 2048: Obsoleted by RFC 4288, RFC 4289.

RFC 2049: Multipurpose Internet Mail Extensions (MIME). Part Five: Conformance criteria
and examples, by N. Freed and N. Borenstein. November 1996. (Status: DRAFT STAN-
DARD).

RFC 2152: UTF-7: A mail-safe transformation format of Unicode, by D. Goldsmith and M.
Davis. May 1997. (Status: INFORMATIONAL).

RFC 3066: Obsoleted by RFC 4646, RFC 4647.

RFC 3629: UTF-8: A transformation format of ISO 10646, by F. Yergeau. November 2003.
(Also STD0063). (Status: STANDARD).

RFC 4288: Media type specifications and registration procedures, by N. Freed and J. Klensin.
December 2005. (Also BCP0013). (Status: BEST CURRENT PRACTICE).

RFC 4289: Multipurpose Internet Mail Extensions (MIME). Part Four: Registration proce-
dures, by N. Freed and J. Klensin. December 2005. (Also BCP0013). (Status: BEST CUR-
RENT PRACTICE).

RFC 4646: Tags for identifying languages, edited by A. Phillips and M. Davis. 2006. (Also
BCP0047). (Status: BEST CURRENT PRACTICE).

RFC 4647: Matching of language tags, edited by A. Phillips and M. Davis. 2006. (Also
BCP0047). (Status: BEST CURRENT PRACTICE).

SI 1311.1: Standards Institution of Israel. Information technology: ISO 8-bit coded character
set with Hebrew points. [Tel Aviv: 1996]. (SI 1311.1 (1996)).

SI 1311.2: Standards Institution of Israel. Information technology: ISO 8-bit coded character
set with Hebrew accents. [Tel Aviv: 1996]. (SI 1311.2 (1996)).

SLS 1134: Sri Lanka Standards Institution. Sinhala character code for information inter-
change. Colombo: 1996. (SLS 1134: 1996).

TIS 620-2529: Thai Industrial Standards Institute, Ministry of Industry. Thai Industrial
Standard for Thai character code for computer. Bangkok: 1986. (TIS 620-2529–1986).
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://partners.adobe.com/asn/developer/opentype/main.html
http://www.microsoft.com/typography/otspec/
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html

622 References
TIS 620-2533: Thai Industrial Standards Institute. Standard for Thai character codes for
computers. Bangkok: 1990. (TIS 620-2533–1990). ISBN 974-606-153-4.

In Thai. Online version: http://www.nectec.or.th/it-standards/std620/std620.htm

Extensible Markup Language (XML) 1.0. 4th ed. (W3C Recommendation 16 August 2006).
Editors: Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, [and] François Yer-
geau.

http://www.w3.org/TR/2006/REC-xml-20060816/

Extensible Markup Language (XML), 1.1. 2nd ed. (W3C Recommendation 16 August
2006). Editors: Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yer-
geau, [and] John Cowan.

http://www.w3.org/TR/2006/REC-xml11-20060816/

R.2 Source Dictionaries for Han Unification
Dae Jaweon. Seoul: Samseong Publishing Co. Ltd., 1988.

Dai Kan-Wa Jiten / Morohashi Tetsuji cho. Shu teiban. Tokyo: Taishukan Shoten, Showa
59-61, [1984–86].

Hanyu Da Zidian. 1st ed. Chendu: Sichuan Cishu Publishing, 1986.

KangXi Zidian. 7th ed. Beijing: Zhonghua Bookstore, 1989.

R.3 Other Sources for the Unicode Standard

General

ALA-LC Romanization Tables: Transliteration Schemes for Non-Roman Scripts, Approved by
the Library of Congress and the American Library Association. Tables compiled and edited by
Randall K. Barry. Washington, DC: Library of Congress, 1997. ISBN 0-8444-0940-5.

Alchemical Symbols

Berthelot, Marcelin. Collection des anciens alchimistes grecs. 3 vols. Paris: G. Steinheil, 1888.

Berthelot, Marcelin. La chimie au moyen âge. 3 vols. Osnabrück: O. Zeller, 1967.

Lüdy-Tenger, Fritz. Alchemistische und chemische Zeichen. Würzburg: JAL-reprint,

1973.

Schneider, Wolfgang. Lexicon alchemistisch-pharmazeutischer Symbole. Weinheim/Bergstr.:
Verlag Chemie, 1962.

Avestan

Geldner, Karl F. Avesta: The Sacred Books of the Parsis. Stuttgart: W. Kohlhammerm, 1880.

Reprinted, with an introduction in Persian by Dr. Jaleh Amouzgar. Tehran: Asatir, 2003. ISBN
964-331-126-0.

Hoffmann, Karl, and B. Forssman. Avestische Laut- und Flexionslehre. Innsbruck: Inns-
brucker Beiträge zur Sprachwissenschaft, 1996. ISBN 3851246527.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.nectec.or.th/it-standards/std620/std620.htm
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/

R.3 Other Sources for the Unicode Standard 623
Oryan, Said. Pahlavi-Pazand Glossary: Farhang \ Pahlavi. Tehran: Research Institute for
Islamic Culture and Art, 1999 (1377 AP). (Language and Literature, 4). ISBN
964-471-414-8.

Reichelt, Hans. Avesta Reader: An Approach to the Zoroaster’s Gathas and New Avestan Texts.
Translated and annotated with Persian translation of hymns and texts by Jalil Doostkhah.
Tehran: Qoqnoos Publishing, 2004 (1383 AP). ISBN 964-311-473-2.

Balinese

Medra, Nengah. Pedoman Pasang Aksara Bali. Denpasar: Dinas Kebudayaan Propinsi Bali,
2003.

Menaka, Made. Kamus Kawi Bali / olih, made Menaka. Singaraja: Yayasan Kawi Sastra
Mandala, 1990.

Simpen, I Wayan. Pasang Aksara Bali. Denpasar: Upada Sastra, 1992.

Also published: Denpasar: Dinas Pengajaran Daerah Tingkat I Bali, 1979.

Bamum

Dugast, J., and M. D. W. Jeffreys. L’écriture des bamum: sa naissance, son evolution, sa valeur
phonétique, son utilisation. Memoires de l’Institut Francais d’Afrique Noire, Centre du
Cameroun, 1950.

Nchare, Oumarou. The Writing of King Njoya: Genesis, Evolution, Use. Foumban: Palais des
Rois Bamoun, Maison de la Culture, [s.d.].

Schmitt, Alfred. Die Bamum-Schrift. Band I: Text. Wiesbaden: Harrassowitz, 1963.

Batak

Kozok, Uli. Warisan leluhur: sastra lama dan aksara Batak. Jakarta: École française
d’Extrême Orient, 1999. ISBN 979-9023-33-5.

Meerwaldt, J H. Handleiding tot de beoefening der Bataksche taal. Leiden: E.J. Brill, 1904.

Tuuk, Herman Neubronner van der. A Grammar of Toba Batak. Translated by Jeune Scott-
Kemball, edited by Andries Teeuw and R. Roolvink. The Hague: Nijhoff, 1971.

First English edition of Tobasche spraakkunst, 1864-1867.

Brahmi

Baums, Stefan. “Towards a Computer Encoding for Br#hmG.” In Script and Image: Papers on
Art and Epigraphy, edited by Adalbert J. Gail, Gerd J. R. Mevissen and Richard Salomon,
vol. 11.1, 111–143. Delhi: Motilal Banarsidass Publishers, 2006.

Bühler, G. “The Bhattiprolu Inscriptions.” In Epigraphia Indica: A Collection of Inscriptions
Supplementary to the Corpus Inscriptionum Indicarum of the Archaeological Survey, vol. 2,
323–329. Calcutta: Epigraphia Indica, 1894.

Dani, Ahmad Hasan. Indian Palaeography. 2nd edition. New Delhi: Munshiram Manohar-
lal Publishers, 1986.

Mahadevan, Iravatham. Early Tamil Epigraphy: From the Earliest Times to the Sixth Century
A.D. Chennai, India: Cre-A, 2003. (Harvard Oriental Series, vol. 62.)
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

624 References
Canadian Aboriginal Syllabics

Canadian Aboriginal Syllabic Encoding Committee. Repertoire of Unified Canadian Aborig-
inal Syllabics Proposed for Inclusion into ISO/IEC 10646: International Standard Universal
Multiple-Octet Coded Character Set. [Canada]: CASEC, [1994].

Carian

Adiego, Ignacio-Javier. The Carian Language. Leiden; Boston: Brill, 2007.

Melchert, H. Craig. “Carian.” In The Cambridge Encyclopedia of the World’s Ancient Lan-
guages, edited by Roger Woodard, 609–613. Cambridge: Cambridge University Press, 2004.
ISBN-13: 978-0521562560.

Chakma

CQtmQ, Cirajyoti and Matgal CQtgmQ. CZvmZr Zg p u d h i = Chakma primer. RQtamQPi:
CQtmQbhQ1Q PrakQ0anQ Pari1ad. 1982.

Khisa, Bhagadatta. CZVmZ pattham pZt = Chakma primer. RQtamQPi: Tribal Cultural Insti-
tute, 2001.

Cham

Aymonier, Étienne, and Antoine Cabaton. Dictionnaire {am-Français. Paris, 1906.

Bùi Khánh Thx. Ty diên Châm-Vizt: InZlang cam-biet |am. [H{ Chí Minh]: Nhà xu}t ban
Khoa H|c Xã H~i, 1995.

KTno RokurT, Chino Eiichi, and Nishida Tatsuo. The Sanseido Encyclopaedia of Linguistics.
Volume 7: Scripts and Writing Systems of the World [Gengogaku dai ziten (bekkan) sekai
mozi ziten]. Tokyo: Sanseido Press, 2001. ISBN 4-385-15177-6.

Cherokee

Alexander, J. T. A Dictionary of the Cherokee Indian Language. [Sperry, Oklahoma?]: Pub-
lished by the author, 1971.

Holmes, Ruth Bradley. Beginning Cherokee, by Ruth Bradley Holmes and Betty Sharp
Smith. 2nd ed. Norman: University of Oklahoma Press, 1977. ISBN 0-8061-1464-9.

New Echota Letters: Contributions of Samuel A. Worcester to the Cherokee Phoenix, edited by
Jack Frederick Kilpatrick and Anna Gritts Kilpatrick. Dallas: Southern Methodist Univer-
sity Press, [s.d.].

Includes reprint of an article by S. A. Worcester, which appeared in the Cherokee Phoenix, Feb. 21,
1828.

Coptic

Browne, Gerald M. Old Nubian Grammar. München: Lincom Europa, 2002. (Languages of
the world: Materials, 330). ISBN 3-89586-893-0 (pbk.).

Kasser, Rodolphe. “La ‘Genève 1986’: une nouvelle série de caractères typographiques cop-
tes, protocoptes et vieux-coptes créée à Genève.” Bulletin de la Société d’égyptologie de
Genève, 12 (1988): 59–60. ISSN 0255-6286.

Kasser, Rodolphe. “A Standard System of Sigla for Referring to the Dialects of Coptic.” Jour-
nal of Coptic Studies, 1 (1990): 141–151. ISSN 1016-5584.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

R.3 Other Sources for the Unicode Standard 625
Cypriot

See Linear B and Cypriot.

Deseret

Encyclopedia of Mormonism, entry for “Deseret Alphabet.”

New York: Macmillan, 1992. ISBN 0-02-904040-X.

Monson, Samuel C. Representative American Phonetic Alphabets. New York: 1954.

Ph.D. dissertation—Columbia University.

Egyptian Hieroglyphs

Allen, James P. Middle Egyptian: An Introduction to the Language and Culture of Hiero-
glyphs. Cambridge: Cambridge University Press, 1999. ISBN 0-521-77483-7.

Gardiner, Alan H. Catalogue of the Egyptian Hieroglyphic Printing Type, from Matrices
Owned and Controlled by Dr. Alan H. Gardiner, in Two Sizes, 18 Point, 12 Point with Inter-
mediate Forms. Oxford: Oxford University Press, 1928.

Gardiner, Alan H. “Additions to the New Hieroglyphic Fount (1928).” The Journal of Egyp-
tian Archaeology, 15 (1929): 95. ISSN 0307 5133.

Gardiner, Alan H. “Additions to the New Hieroglyphic Fount (1931).” The Journal of Egyp-
tian Archaeology, 17 (1931): 245–247. ISSN 0307 5133.

Gardiner, Alan H. Supplement to the Catalogue of the Egyptian Hieroglyphic Printing Type,
Showing Acquisitions to December 1953. Oxford: Oxford University Press, 1953.

Gardiner, Alan H. Egyptian Grammar: Being an Introduction to the Study of Hieroglyphs. 3rd
edition. London: Oxford University Press, 1957. ISBN 0-900416-35-1.

Ethiopic

Armbruster, Carl Hubert. Initia Amharica: An Introduction to Spoken Amharic. Cambridge:
Cambridge University Press, 1908–1920.

Launhardt, Johannes. Guide to Learning the Oromo (Galla) Language. Addis Ababa: Laun-
hardt, [1973?].

Leslau, Wolf. Amharic Textbook. Wiesbaden: Harrassowitz; Berkeley: University of Califor-
nia Press, 1968.

Glagolitic

Glagolitica: zum Ursprung der slavischen Schriftkultur, herausgegeben von Heinz Miklas,
unter der Mitarbeit von Sylvia Richter und Velizar Sadovski. Wien: Verlag der Öster-
reichischen Akademie der Wissenschaften, 2000. (Schriften der Balkan-Kommission, Philol-
ogische Abteilung, 41). ISBN 3-7001-2895-9.

Khaburgaev, Georgii Aleksandrovich. Staroslavianskii iazyk. Izd. 2-e, perer. i dop. Moskva:
Prosveshchenie, 1986.

Žubrinic, Darko. Hrvatska glagoljica: biti pismen—biti svoj. Zagreb: Hrvatsko književno
društvo sv. Jeronima (sv. Cirila i Metoda): Element, 1996. ISBN 953-6111-35-7.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

626 References
Gothic

Ebbinghaus, Ernst. “The Gothic Alphabet.” In The World’s Writing Systems, edited by Peter
T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-
507993-0.

Greek Editorial Marks

Austin, Colin. Comicorum Graecorum Fragmenta in Papyris Reperta, ed. Colinus Austin.
Berolini [Berlin], Novi Eboraci [New York]: de Gruyter, 1973, p. 29. ISBN 3110024012.

Homer. Iliad. Homeri Ilias, edidit Thomas W. Allen. 3 vols. Oxonii [Oxford]: e typogra-
pheo Clarendoniano [Clarendon Press], 1931, vol. 2: pp. 39, 234.

The Oxyrhynchus Papyri, Part XV, edited with translations and notes by Bernard P. Grenfell
and Arthur S. Hunt. London: Egypt Exploration Society, 1921, p. 56. (Egypt Exploration
Society, Graeco-Roman Memoirs, 18).

Imperial Aramaic

Driver, G. R. Semitic Writing from Pictograph to Alphabet. 3rd ed. by S. A. Hopkins. Lon-
don: Oxford University Press for the British Academy, 1976. ISBN 9780197259177.

Lidzbarski, Mark. Handbuch der nordsemitischen Epigraphik nebst ausgewählten Inschriften.
Hildesheim: Georg Olms Verlagsbuchhandlung, 1962.

Reprint of 1898 edition.

Naveh, Joseph. Early History of the Alphabet: An Introduction to West Semitic Epigraphy and
Palaeography. Jerusalem: Magnes Press, the Hebrew University, 1987. ISBN 965-223-436-2.

Porten, Bezalel, and Ada Yardeni. Textbook of Aramaic Documents from Ancient Egypt. 4
vols. Jerusalem: Hebrew University, 1986–1999. ISBN 9652220752 (v. 1), 9653500031 (v.
2), 9653500147 (v. 3), 9653500899 (v. 4).

Rosenthal, Franz. A Grammar of Biblical Aramaic. 7th rev. ed. Wiesbaden: Harrassowitz,
2006. ISBN 3-447-05251-1.

Inscriptional Parthian and Inscriptional Pahlavi

Akbarz#deh, D#riyUš. Katibe-hZ-ye Pahlavi-ye AškZni (PZrti) = Parthian Inscriptions. Vol. 2.
Tehran: Pazineh Press, 2002 (1381 AP). ISBN 964-5722-74-8.

Akbarz#deh, D#riyUš. Katibe-hZ-ye Pahlavi: sang-negZre, sekke, mohr, asar-e mohr, zarf-
nebešte = Pahlavi Inscriptions: Inscriptions, Coins, Seals, Sealing Impression. Vol. I. Tehran:
Pazineh Press, 2003 (1382 AP). ISBN 964-5722-44-6.

Nyberg, Henrik Samuel. A Manual of Pahlavi. 2 vols. Wiesbaden: Harrassowitz, 1964–1974.
ISBN 9783447015806 (vol. 2).

Reprinted: Tehran: Asatir, 2003. ISBN 964-331-132-5, 964-331-131-7.

Oryan, Saeed. RahnmZ-ye katibe-hZ-ye IrZni-ye miyZne Pahlavi-PZrti = Manual of Middle
Iranian Inscriptions (Parthian-Pahlavi). Tehran: Iranian Cultural Heritage Organization,
2003 (1382 AP). ISBN 964-7483-71-6.

Rezai Baghbidi, Hassan. Dastur-e ZabZn-e PZrti (Pahlavi-e AškZni) = A Grammar of Par-
thian (Arsacid Pahlavi). Iranian Academy of Persian Language and Literature, 2002 (1381
AP). ISBN 964-7531-05-2.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

R.3 Other Sources for the Unicode Standard 627
International Phonetic Alphabet

Esling, John. “Computer Coding of the IPA: Supplementary Report.” Journal of the Interna-
tional Phonetic Association, 20.1 (1990): 22–26.

International Phonetic Association. Handbook of the International Phonetic Association: A
Guide to the Use of the International Phonetic Alphabet. Cambridge: Cambridge University
Press, 1999. ISBN 0-521-65236-7; 0-521-63751-1 (pbk.).

International Phonetic Association.

 http://www2.arts.gla.ac.uk/IPA/ipa.html

Journal of the International Phonetic Association, 24.2 (1994): 95–98, and 25.1 (1995): 21.

Pullum, Geoffrey K. “Remarks on the 1989 Revision of the International Phonetic Alpha-
bet.” Journal of the International Phonetic Association, 20.1 (1990): 33–40.

Pullum, Geoffrey K., and William A. Ladusaw. Phonetic Symbol Guide. 2nd ed. Chicago:
University of Chicago Press, 1996. ISBN 0-226-68535-7; 0-226-68536-5 (pbk.).

Wells, John Christopher. Accents of English. Cambridge, New York: Cambridge University
Press, 1982.

Vol. 1: Introduction. ISBN 0-521-22919-7; ISBN 0-521-29719-2 (pbk.); vol. 2: The British Isles.
ISBN 0-521-24224-X, ISBN 0-521-28540-2 (pbk.); vol. 3: Beyond the British Isles. ISBN 0-521-
24225-8, ISBN 0-521-28541-0 (pbk.).

Javanese

Bohatta, Hanns. Praktische Grammatik der javanischen Sprache, mit Lesestücken, einem
javanisch-deutschen und deutsch-javanischen Wörterbuch. Wien, Pest, Leipzig: Hartleben,
[1892]. (Kunst der Polyglottie, 39).

Rochadi GK, R. H., and R. L. Sadeli Erawan BK. Cacarakan aksara Sunda. Bandung:
Harisma, 1984.

Roorda, T. Javaansche grammatica, benevens een leesboek tot oefening in de javaansche taal.
Amsterdam: Johannes Müller, 1855.

Walbeehm, A. H. J. G. Javaansche spraakkunst: schrift, uitspraak, taalsoorten en woordaflei-
ding. Leiden: E. J. Brill, 1905.

Kaithi

Bihar High Court of Judicature. Selection of Hindusthani Documents from the Courts of
Bihar, compiled by S. K. Das. Patna, Bihar: Superintendent, Government Printing, 1939.

Grierson, George A. A Handbook to the Kaithi Character. 2nd rev. ed. Calcutta: Thacker,
Spink & Co., 1899.

Revised edition of A Kaithi Handbook, 1881.

King, Christopher R. One Language, Two Scripts: The Hindi Movement in Nineteenth Cen-
tury North India. Bombay: Oxford University Press, 1994.

Kayah Li

Bennett, J. Fraser. Kayah Li Script: A Brief Description. Urbana-Champaign: University of
Illinois, 1993.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www2.arts.gla.ac.uk/IPA/ipa.html

628 References
Karenni Literature Department. Ka1ya3lhi1-Ku3la3 Nghôchozha3: The Modern Western
Kayah Li-English Lexicon. [Chiang Mai]: Payap University, 1994. [without tones = Kayalhi-
Kula Nghôchozha]

Solnit, David B. Eastern Kayah Li: Grammar, Texts, Glossary. Honolulu: University of
Hawai‘i Press, 1997. ISBN 0-8248-1743-5.

Kharoshthi

Glass, Andrew. A Preliminary Study of Kharosthi Manuscript Paleography. 2000.

Thesis (M.A.), University of Washington, 2000.

Glass, Andrew. “KharoDEhG Manuscripts: A Window on GandhFran Buddhism.” Nagoya
Studies in Indian Culture and Buddhism, 24 (2004): 129–152. ISSN 0285-7154.

Salomon, Richard. Ancient Buddhist Scrolls from GandhZra: The British Library Kharosthi
Fragments. Seattle: University of Washington Press; London: British Library, 1999. ISBN
029597768X; 0295977698 (pbk).

Lepcha

Mainwaring, G. B. A Grammar of the Rong (Lepcha) Language as it Exists in the Dorjeling
and Sikim Hills. Delhi: Daya Publishing House, 1985 (1876).

Plaisier, H. “A Brief Introduction to Lepcha Orthography and Literature.” Bulletin of Tibet-
ology 41:1 (2005), 7–24.

Plaisier H. A Grammar of Lepcha. Leiden: Brill, 2007. (Brill’s Tibetan Studies Library, Lan-
guages of the Greater Himalayan Region 5).

Limbu

Cemjonga, Imana Simha, and Bairagi Kaila, eds. Limbu-Nepali-Angreji #abdako#. [Limbu-
Nepali-English Dictionary.] Kathmandu: Royal Nepal Academy, 2059 [2002].

Includes an introduction describing the Limbu script.

Cemjonga, Imana Simha. Yakthun-Pene-Mikphula Pancheka. = Limbu-Nepali-Angareji
#abdako#. = Limbu-Nepali-English Dictionary. [Lekhaka] Imanasimha Cemajon. [Katha-
mandu]: Nepala Ekedemi [2018 vi., i.e., 1962].

In Devanagari script. Author also known as Chemjong, Iman Singh.

Driem, George van. A Grammar of Limbu. Berlin, New York: Mouton de Gruyter, 1987.
(Mouton grammar library, 4.) ISBN 0-89925-345-8.

Appendix: Anthology of Kiranti scripts, pp. 550–558.

Shafer, Robert. Introduction to Sino-Tibetan. Wiesbaden: Harrassowitz, 1966–1974.

Published in five parts with continuous pagination.

Sprigg, R. K. “Limbu Books in the Kiranti Script.” In International Congress of Orientalists
(24th: 1957: Munich). Akten des Vierundzwanzigsten Internationalen Orientalisten-Kon-
gresses München 28. August bis 4. September 1957, hrsg. von Herbert Franke. Wiesbaden:
Deutsche Morgenländische Gesellschaft, in Kommission bei Franz Steiner Verlag, 1959.

The modern script described in this work is now outdated.

Sprigg, R. K. [Review of van Driem (1987)]. Bulletin of the School of Oriental and African
Studies, University of London, 52:1 (1989), 163–165.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

R.3 Other Sources for the Unicode Standard 629
Subba, B. B. Limbu, Nepali, English Dictionary. Gangtok: Text Book Unit, Directorate of
Education, Govt. of Sikkim, 1979 [i.e. 1980].

Cover title: Yakthun-Pene-Mikphula-panchekva. In Limbu and Devnagari scripts.

Subba, B. B. Yakthu9 hu8si9lam (“Limbu self-teaching method”) = Limbu akXar gZiE
(“Limbu letter guide”). Gangtok: Kwality Stores, 1991?

In Nepali and Limbu.

Yo7h#7, Khel R#j. Limb^ NepZl\ #abdako#. [Lalitpur]: 2052 B.S. [i.e. 1995].

In Limbu script.

Linear B and Cypriot

Bennett, Emmett L. “Aegean Scripts.” In The World’s Writing Systems, edited by Peter T.
Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Chadwick, John. The Decipherment of Linear B. 2nd ed. London: Cambridge University
Press, 1967 [i.e. 1968].

Chadwick, John. Linear B and Related Scripts. Berkeley: University of California Press;
[London]: British Museum, 1987. (Reading the Past, v. 1). ISBN 0-520-06019-9.

Hooker, J. T. Linear B: An Introduction. Bristol: Bristol Classical Press, 1980. ISBN
0-906515-69-6.

Corrected printing published 1983. ISBN 0-906515-69-6; 0-906515-62-9 (pbk.).

International Colloquium on Mycenaean Studies (3rd: 1961: Racine, WI). Mycenaean
Studies: Proceedings of the Third International Colloquium for Mycenaean Studies held at
“Wingspread,” 4–8 September 1961, edited by Emmett L. Bennett, Jr. Madison: University of
Wisconsin Press, 1964.

Appendix: The Wingspread Convention for the Transcription of Mycenaean (Linear B) Texts: pp.
254–262.

Masson, Olivier. Les Inscriptions chypriotes syllabiques: recueil critique et commenté. Réimpr.
augm. Paris: E. de Boccard, 1983.

Sampson, Geoffrey. Writing Systems: A Linguistic Introduction. Stanford, CA: Stanford Uni-
versity Press, 1985. ISBN 0-8047-1254-9.

Also published: London, Hutchinson. ISBN 0-09-156980-X; 0-09-173051-1 (pbk.).

Ventris, Michael. Documents in Mycenaean Greek. 1st ed. by Michael Ventris and John
Chadwick with a foreword by Alan J. B. Wace. 2nd ed. by John Chadwick. Cambridge:
Cambridge University Press, 1973. ISBN 0-521-08558-6.

Lisu

Bya, Yuliya. Li-su Tho Uh Ba Pa Pha Tso So Du (Lisu Alphabet Primer). Chiang Mai: Chris-
tian Literature Fellowship, 2000.

Xu, Lin, Yuzhang Mu, and Xingzhi Gai, eds. Lisuyu Jianzhi (A Sketch of the Lisu Language).
Beijing: The Ethnic Publishing House, 1986. (Chinese Minority Language Sketch Series.)

Yunnan Minority Language Commission, and Weixi Culture and Education Bureau, eds.
Li-su Tho Uh Tso So Du (Lisu Primer). Kunming: Yunnan Nationality Publishing House,
1981.

Zhu, Faqing. Li-su Be Xuh Ngo Bae Khuh Tae Du Ra (Small Lisu-Chinese Dictionary).
Dehong: Dehong Nationality Publishing House, 1984.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

630 References
Lycian

Carruba, O. “La scrittura licia.” Annali della scuola normale superiore di Pisa, classe di letter
e filosofia. 3rd series. 8 (1978):849–867.

Melchert, H. Craig. “Lycian.” In The Cambridge Encyclopedia of the World’s Ancient Lan-
guages, edited by Roger Woodard, 591–600. Cambridge: Cambridge University Press, 2004.
ISBN-13: 978-0521562560.

Lydian

Gérard, Raphaël. Phonétique et morphologie de la langue lydienne. Louvain-la-Neuve:
Peeters, 2005.

Gusmani, Roberto. Lydisches Wörterbuch mit grammatischer Skizze und Inschriftensam-
mlung. Heidelberg: Carl Winter, 1964.

Melchert, H. Craig. “Lydian.” In The Cambridge Encyclopedia of the World’s Ancient Lan-
guages, edited by Roger Woodard, 601–608. Cambridge: Cambridge University Press, 2004.
ISBN-13: 978-0521562560.

Mandaic

Daniels, P. “Aramaic Scripts for Aramaic Languages.” In The World’s Writing Systems, edited
by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-
19-507993-0.

Häberl, C. “Iranian Scripts for Aramaic Languages: The Origin of the Mandaic Script,” Bul-
letin of the American Schools of Oriental Research, No. 341 (Feb., 2006), pp. 53-62.

Coulmas, Florian. The Blackwell Encyclopedia of Writing Systems. Oxford, Cambridge:
Blackwell, 1999. ISBN 0-631-19446-0, 0-631-21481-X (pbk.).

Mandean script, p. 320.

Mathematical Symbols

Mathematical Markup Language (MathML) Version 2.0. (W3C Recommendation 21 Febru-
ary 2001). Editors: David Carlisle, Patrick Ion, Robert Miner, [and] Nico Poppolier.

Latest version: http://www.w3.org/TR/MathML2/

STIPub Consortium. STIX (Scientific and Technical Information Exchange) Project.

 http://www.ams.org/STIX/

Swanson, Ellen. Mathematics into Type. Updated ed. by Arlene O’Sean and Antoinette
Schleyer. Providence, RI: American Mathematical Society, 1999. ISBN 0-8218-1961-5.

Meetei Mayek

Chelliah, Shobhana L. A Grammar of Meithei. Berlin and New York: Mouton de Gruyter,
1997. ISBN 978-3-11-014321-8.

Debendra Singh, N. Evolution of Manipuri Script. [Imphal]: Manipur University, Centre for
Manipuri Studies, 1990. (Research Report, 5).

Meroitic

Griffith, F. Ll. Karanòg: The Meroitic inscriptions of Shablûl and Karanòg. Philadelphia: Uni-
versity Museum, 1911.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.w3.org/TR/MathML2/
http://www.ams.org/STIX/

R.3 Other Sources for the Unicode Standard 631
Millet, N. B. “The Meroitic script.” In The World’s Writing Systems, edited by Peter T. Dan-
iels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Rilly, Claude. La langue du royaume de Méroé: un panorama de la plus ancienne culture écrite
d’Afrique subsaharienne. Paris: Librairie Honoré Champion, 2007.

Miao

Enwall, Joakim. A Myth Become Reality: History and development of the Miao written lan-
guage. 2 vols. Stockholm: Institute of Oriental Languages, Stockholm University, 1994–
1995. (Stockholm East Asian monographs no. 5-6.)

Xiong Yuyou. Miao zu wen hua shi = A Cultural History of the Miao Nationality. Kunming
Shi: Yunnan min zu chu ban she, 2003.

Musical Symbols

Catholic Church. Graduale Sacrosanctae Romanae Ecclesiae de Tempore et de Sanctis SS. D.
N. Pii X. Pontificis Maximi. Parisiis: Desclée, 1961. (Graduale Romanum, no. 696).

Gazimihal, Mahmut R. Anadolu türküleri ve mûsikî istikbâlimiz [by] Mahmut Ragip.
[Istanbul]: Mârifet Matbaasi, 1928.

Heussenstamm, George. Norton Manual of Music Notation. New York: W.W. Norton, 1987.
ISBN 0-393-95526-5 (pbk.).

Kennedy, Michael. Oxford Dictionary of Music. Oxford, New York: Oxford University Press,
1985. ISBN 0-19-311333-3.

2nd ed. published 1994. ISBN 0-19-869162-9.

New Encyclopedia Britannica. 15th ed. Entry for “Music.”

The New Harvard Dictionary of Music, edited by Don Michael Randel. Cambridge, MA:
Belknap Press of Harvard University Press, 1986. ISBN 0-674-61525-5.

Ottman, Robert W. Elementary Harmony: Theory and Practice. 2nd ed. Englewood Cliffs,
NJ: Prentice-Hall, 1970. ISBN 0-13-257451-9.

Fifth ed. published 1998. ISBN 0-13-281610-5.

Rastall, Richard. The Notation of Western Music: An Introduction. London: Dent, 1983.
ISBN 0-460-04205-X.

Also published: New York: St. Martin’s Press, 1982. ISBN 0-312-57963-2.

Read, Gardner. Music Notation: A Manual of Modern Practice. Boston: Allyn and Bacon,
1964.

Stone, Kurt. Music Notation in the Twentieth Century: A Practical Guidebook. New York:
W.W. Norton, 1980. ISBN 0-393-95053-0.

Understanding Music with AI: Perspectives on Music Cognition, edited by Mira Balaban,
Kemal Ebcioglu, and Otto Laske. Cambridge, MA: MIT Press; Menlo Park, CA: AAAI
Press, 1992. ISBN 0-262-52170-9.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

632 References
Myanmar

MranmZ–A<glip abhidhZn= Myanmar–English Dictionary. Rankun: Dept. of Myanmar
Language Commission, Ministry of Education, Union of Myanmar, 1993.

Compiled and edited by the Myanmar Language Commission.

MranmZ cZlui:po<g:satpui kyam: nha<. khwaithZ:. [Rankun]: 1996.

Translated title: Myanmar orthography treatise.

Roop, D. Haigh. An Introduction to the Burmese Writing System. [Honolulu]: Center for
Southeast Asian Studies, University of Hawaii at Manoa, 1997. (Southeast Asia Paper, 11).

Originally published: New Haven: Yale University Press, 1972. (Yale linguistic series). ISBN 0-300-
01528-3.

N’Ko

Introduction to N’Ko. http://home.gwu.edu/~cwme/Nko/Nkohome.htm

Kanté, Souleymane. Méthode pratique d’écriture n’ko, 1961. Kankan, Guinea: Association
de traditherapeutes et pharmacologues, 1995.

N’Ko: The Common Language of Mandens. http://www.nkoinstitute.com

N’Ko: The Mandingo Language Site. http://www.kanjamadi.com

Ogham

McManus, Damian. A Guide to Ogam. Maynooth: An Sagart, 1991. (Maynooth mono-
graphs, 4). ISBN 1-87068-417-6.

Ol Chiki

Hembram, S. M., et al. Adibasi Ol script = at’ip’asi al ciki. Calcutta: Adibasi Socio-Educa-
tional & Cultural Association, 1972.

Murmu, Raghunath. RanaW: A Santali Grammar in Santali. Singhbhum, Bihar: Adibasi
Socio-Educational & Cultural Association, 1972.

Zide, Norman. “Scripts for Munda languages.” In The World’s Writing Systems, edited by
Peter T. Daniels and William Bright. New York; Oxford: Oxford University Press, 1996.
ISBN 0-19-507993-0.

Old Italic

Bonfante, Larissa. “The Scripts of Italy.” In The World’s Writing Systems, edited by Peter T.
Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Cristofani, Mauro. “L’alfabeto etrusco.” In Lingue e dialetti dell’Italia antica, a cura di Aldo
Larosdocimi. Roma: Biblioteca di storia patria, a cura dell’ Ente per la diffusione e l’educa-
zione storia, 1978. (Popoli e civiltà dell’Italia antica, VI.)

Gordon, Arthur E. Illustrated Introduction to Latin Epigraphy. Berkeley: University of Cali-
fornia Press, 1983. ISBN 0-520-03898-3.

Marinetti, Anna. Le iscrizione sudpicene. I. Testi. Firenze: Olschki, 1985. ISBN 88-222-3331-
X (v. 1).

Parlangèli, Oronzo. Studi Messapici. Milano: Istituto lombardo di scienze e lettere, 1960.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://home.gwu.edu/~cwme/Nko/Nkohome.htm
http://www.kanjamadi.com
http://www.nkoinstitute.com

R.3 Other Sources for the Unicode Standard 633
Old Persian

Schmitt, Rüdiger. The Bisitun Inscriptions of Darius the Great, Old Persian Text. London,
School of Oriental and African Studies, 1991. (Corpus Inscriptionum Iranicarum, Part I:
Inscriptions of Ancient Iran, v.1, Text 1). ISBN 0-7286-0181-8.

Schweiger, Günter. Kritische Neuedition der achaemenidischen Keilinschriften. Taimering:
Schweiger VWT-Verlag, 1998. (Studien zur Iranistik). ISBN 3-934548-00-8.

Old South Arabian

Nebes, Norbert, and Peter Stein. “Ancient South Arabian.” In The Cambridge Encyclopedia
of the World’s Ancient Languages, edited by Roger D. Woodard. 454–487. Cambridge Uni-
versity Press, 2004. ISBN-13: 978-0521562560.

Ryckmans, J. “Origin and Evolution of South Arabian Minuscule Writing on Wood (1).”
Arabian Archaeology and Epigraphy 12 (2001): 223–235. ISSN 0905-7196.

Smithsonian Institution. “Written in Stone: Inscriptions from the National Museum of
Saudi Arabic.”

http://www.mnh.si.edu/epigraphy/figs-stones/x-large/color_xl_jpeg/fig02.jpg

Stein, Peter. “The Ancient South Arabian Minuscule Inscriptions on Wood: A New Genre
of Pre-Islamic Epigraphy.” Jaarbericht van het Vooraziatisch-Egyptisch Genootschap “Ex Ori-
ente Lux”, 39 (2005): 181–199. ISSN 0075-2118.

Old Turkic

Erdal, Marcel. A Grammar of Old Turkic. Leiden & Boston: Brill, 2004. ISBN 9004102949.

Scharlipp, Wolfgang Ekkehard. Eski Türk run yazitlarina giri!: ders kitabi = An Introduction
to the Old Turkish Runic Inscriptions: A Textbook in English and Turkish. Engelschoff: Auf
dem Ruffel, 2000. ISBN 3-933847-00-X.

von Gabain, A. Alttürkische Grammatik mit Bibliographie, Lesestücken und Wörterverzeich-
nis, auch Neutürkisch. Leipzig: Harrassowitz, 1941. (Porta Linguarum Orientalium, 23).

Osmanya

Afkeenna iyo fartiisa: buug koowaad. Xamar: Goosanka afka iyo suugaanta Soomaalida,
1971.

Translated title: Our language and its handwriting: book one.

Cerulli, Enrico. “Tentativo indigeno di formare un alfabeta somalo.” Oriente moderno, 12
(1932): 212–213. ISSN 0030-5472.

Gaur, Albertine. A History of Writing. London: British Library, 1992. ISBN 0-7123-0270-0.

Also published: Rev. ed. New York: Cross River Press, 1992. ISBN 1-558-59358-6.

Gregersen, Edgar A. Language in Africa: An Introductory Survey. New York: Gordon and
Breach, 1977. (Library of Anthropology). ISBN 0-677-04380-5; 0-677-04385-6 (pbk.).

Maino, Mario. “L’alfabeta ‘Osmania’ in Somalia.” Rassegna di studi etiopici, 10 (1951): 108–
121. ISSN 0390-3699.

Nakanishi, Akira. Writing Systems of the World: Alphabets, Syllabaries, Pictograms. Rutland,
VT: Tuttle, 1980. ISBN 0-8048-1293-4; 0-8048-1654-9 (pbk.).

Revised translation of Sekai no moji.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.mnh.si.edu/epigraphy/figs-stones/x-large/color_xl_jpeg/fig02.jpg

634 References
Phags-pa

Luo, Changpei. Basibazi yu Yuandai Hanyu [ziliao huibian] / Luo Changpei, Cai Meibiao
bian zhu. Beijing: Kexue chubanshe, 1959.

Poppe, Nikolai Nikolaevich. The Mongolian Monuments in hP’ags-pa Script. Translated and
edited by John R. Krueger. 2nd ed. Wiesbaden: Harrassowitz, 1957. (Göttinger asiatische
Forschungen, 8).

Zhaonasitu. Menggu ziyun jiaoben / Zhaonasitu, Yang Naisi bian zhu. [Beijing]: Min zu chu
ban she, 1987.

Author Zhaonasitu also known as Jagunasutu or Junast.

Philippine Scripts

Doctrina Christiana: The First Book Printed in the Philippines, Manila 1593. A facsimile of
the copy in the Lessing J. Rosenwald Collection, with an introductory essay by Edwin Wolf
II. Washington, DC: Library of Congress, 1947.

Kuipers, Joel C., and Ray McDermott. “Insular Southeast Asian Scripts.” In The World’s
Writing Systems, edited by Peter T. Daniels and William Bright. New York: Oxford Univer-
sity Press, 1996. ISBN 0-19-507993-0.

Santos, Hector. The Living Scripts. Los Angeles: Sushi Dog Graphics, 1995. (Ancient Philip-
pine scripts series, 2).

 User’s guide accompanying Computer Fonts, Living Scripts software.

Santos, Hector. Our Living Scripts. January 31, 1997.

 http://www.bibingka.com/dahon/living/living.htm

 Part of his A Philippine Leaf.

Santos, Hector. The Tagalog Script. Los Angeles: Sushi Dog Graphics, 1994. (Ancient Philip-
pine scripts series, 1).

 User’s guide accompanying Tagalog Script Fonts software.

Santos, Hector. The Tagalog Script. October 26, 1996.

 http://www.bibingka.com/dahon/tagalog/tagalog.htm

 Part of his A Philippine Leaf.

Phoenician

Branden, Albertus van den. Grammaire phénicienne. Beyrouth: Librairie du Liban, 1969.
(Bibliothèque de l’Université Saint-Esprit, 2).

McCarter, P. Kyle. The Antiquity of the Greek Alphabet and the Early Phoenician Scripts. Mis-
soula, MT: Published by Scholars Press for Harvard Semitic Museum, 1975. (Harvard
Semitic Monographs, 9). ISBN 0-89130-066-X.

Noldeke, Theodor. Beiträge zur semitischen Sprachwissenschaft. Strassburg: Karl J. Trübner,
1904.

Reprinted as: vol. 1 of Beiträge und Neue Beiträge zur semitischen Sprachwissenschaft: achtzehn
Aufsätze und Studien. Amsterdam: APA-Philo Press, [1982].

Also published on microfiche by the American Theological Library Association.

Powell, Barry B. Homer and the Origin of the Greek Alphabet. Cambridge, New York: Cam-
bridge University Press, 1991. ISBN 0-521-37157-0.

Reprinted, 1996. ISBN 0-521-58907-X (pbk).
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.bibingka.com/dahon/living/living.htm
http://www.bibingka.com/dahon/tagalog/tagalog.htm

R.3 Other Sources for the Unicode Standard 635
Rejang

Jaspan, M. A. Folk Literature of South Sumatra: Redjang Ka-Ga-Nga Texts. Canberra: Aus-
tralian National University, 1964.

Runic

Friesen, Otto von. Runorna. Stockholm: A. Bonnier, [1933]. (Nordisk kultur, 6).

Haugen, Einar Ingvald. The Scandinavian Languages: An Introduction to Their History. Lon-
don: Faber, 1976. ISBN 0-571-10423-1.

Also published: Cambridge, MA: Harvard University Press, 1976. ISBN 0-674-79002-2.

Musset, Lucien. Introduction à la runologie. Paris: Aubier-Montaigne, 1965.

Page, Raymond Ian. Runes. Berkeley: University of California Press; [London]: British
Museum, 1987. (Reading the Past). ISBN 0-520-06114-4.

British Museum Publications edition has ISBN 0-7141-8065-3.

Samaritan

Ben-Hayyam, Ze’ev. A Grammar of Samaritan Hebrew, Based on the Recitation of the Law in
Comparison with the Tiberian and other Jewish Traditions. Jerusalem: Hebrew University
Magnes Press, 2000. ISBN 1-57506-047-7.

Macuch, Rudolf. Grammatik des samaritanischan Hebräisch. Berlin: Walter de Gruyter,
1969. ISBN 9783110083767.

Murtonen, A. Materials for a Non-Masoretic Hebrew Grammar III: A Grammar of the
Samaritan Dialect of Hebrew. Helsinki: Societas Orientalis Fennica, 1964. (Studia Orienta-
lia, 29).

Saurashtra

U`ida, Norihiko. Language of the Saurashtrans in Tirupati. 2nd revised ed. Bangalore:
Mahalaxmi Enterprises, 1991. (In Latin script.)

U`ida, Norihiko. Saurashtra-English Dictionary. Wiesbaden: Harrassowitz, 1990. ISBN
3447030550. (In Latin script.)

Sharada

Deambi, Kaul and Bushan Kumar. YZradZ and 2Zkar\ Alphabets: Origin and Development.
New Delhi: Indira Gandhi National Centre for the Arts, 2008.

Grierson, George A. “On the Sharada Alphabet.” The Journal of the Asiatic Society of Great
Britain and Ireland, (1916): 677–708.

Shavian

ConScript Unicode Registry [by] John Cowan and Michael Everson. “E700–E72F Shavian.”

Included in the ConScript Registry (http://www.evertype.com/standards/csur/index.html) in
1997. Shavian was withdrawn from the ConScript Registry in 2001, because of its addition to the
Unicode Standard and ISO/IEC 10646.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://www.evertype.com/standards/csur/index.html

636 References
Crystal, David. The Cambridge Encyclopedia of Language. Cambridge, New York: Cam-
bridge University Press, 1987. ISBN 0-521-26438-3.

2nd ed. Cambridge, New York: Cambridge University Press, 1997. ISBN 0-521-55050-5; 0-521-
55967-7.

DeMeyere, Ross. About Shavian. 1997. http://www.demeyere.com/Shavian/info.html.

Shaw, George Bernard. Androcles and the Lion: An Old Fable Renovated, by Bernard Shaw,
with a Parallel Text in Shaw’s Alphabet to Be Read in Conjunction Showing Its Economies in
Writing and Reading. Harmondsworth: Penguin Books, 1962.

Sinhala

Gunasekara, Abraham Mendis. A Comprehensive Grammar of the Sinhalese Language. New
Delhi: Asian Education Services, 1986.

Reprint of 1891 edition.

Sora Sompeng

Mahapatra, Khageshwar. “‘Soraw Sompew’: A Sora Script.” Unpublished conference paper.
Delhi, Mysore, 1978–1979.

Zide, Norman. “Scripts for Munda languages.” In The World’s Writing Systems, edited by
Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-
507993-0.

Zide, Norman. “Three Munda scripts.” In Linguistics of the Tibeto-Burman Area. Vol.
22.2—Fall 1999

Sundanese

Baidillah, Idin, Cucu Komara, and Deuis Fitni. Ngalagena: Panglengkep Pangajaran Aksara
Sunda pikeun Murid Sakola Dasar/Dikdas 9 Taun. [Bandung]: CV Walatra, [2002].

Hardjasaputra, A. Sobana, Tedi Permadi, Undang A. Darsa, and Edi S. Ekadjati. Rancangan
Pembakuan Aksara Sunda. Bandung, 1998.

Syriac

Kefarnissy, Paul. Grammaire de la langue Araméenne syriaque. Beyrouth, 1962.

Nöldeke, Theodor. Compendious Syriac Grammar. With a table of characters by Julius
Euting. Translated from the 2nd and improved German ed., by James A. Crichton. London:
Williams & Norgate, 1904.

Reprinted: Tel Aviv: Zion Pub. Co., [1970].

Robinson, Theodore Henry. Paradigms and Exercises in Syriac Grammar. 4th ed. Rev. by
L. H. Brockington. Oxford: Clarendon Press; New York: Oxford University Press, 1962.
ISBN 0-19-815416-X, 0-19-815458-5 (pbk.).

Tai Le

Coulmas, Florian. The Blackwell Encyclopedia of Writing Systems. Oxford, Cambridge:
Blackwell, 1996. ISBN 0-631-19446-0.

Dehong writing, pp. 118–119.

Lá ai2 ma=3 lá ai2 ka va3 mi2 tse2 la= ya pa me na4 ka na: tá va 8á na kó ma6 sá na2 teh ma6.
Yina5lána5 mina5su4 su4pána2se3 (Yunnan minzu chubanshe). 1988. ISBN 7-5367-1100-4.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.demeyere.com/Shavian/info.html

R.3 Other Sources for the Unicode Standard 637
Tsa va4 má3 hó va3: la ta6 mé2 sá ai3 seh va2 xo 9a3. Yina5lána5 mina5su4 su4pána2se3 (Yun-
nan minzu chubanshe). 1997. ISBN 7-5367-1455-6.

Tai Tham

Peltier, Anatole-Roger. 1996. Lanna Reader. Chiang Mai: Wat Tha Kradas.

KasRm Siriratphiriya, and MahQwitthayQlai SukhTthaithammQthirQt. T^a Mueang: kZnr\an
phZsZ LZnnZ phZn khr]ngsZng kham. NonthaburS: RTngphim MahQwitthayQlai SukhTthait-
hammQthirQt, 2548 [2005]. ISBN 974-9942-00-0.

Rungrueangsri, Udom. 2004. PacanZnukrom LZnnZ-Thai: Chabaph maefZhluang. ISBN
974-685-175-9.

Baephryar phZsZ LZnnZ. ISBN 974-386-044-4.

Takri

Deambi, Kaul and Bushan Kumar. YZradZ and 2Zkar\ Alphabets: Origin and Development.
New Delhi: Indira Gandhi National Centre for the Arts, 2008.

Thaana

Geiger, Wilhelm. Maldivian Linguistic Studies. New Delhi: Asian Educational Services,
1996. ISBN 81-206-1201-9.

Originally published: Colombo: H. C. Cottle, Govt. Printer, 1919.

Maniku, Hassan Ahmed. Say It in Maldivian (Dhivehi), [by] H. A. Maniku [and] J. B. Dis-
anayaka. Colombo: Lake House Investments, 1990.

Ugaritic

O’Connor, M. “Epigraphic Semitic Scripts.” In The World’s Writing Systems, edited by Peter
T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-
507993-0.

Walker, C. B. F. Cuneiform. London: British Museum Press, 1987. (Reading the Past, v. 3.)
ISBN 0-7141-8059-9.

University of California Press edition has ISBN 0-520-06115-2 (pbk.).

Vai

Dalby, David. “A Survey of the Indigenous Scripts of Liberia and Sierra Leone: Vai, Mende,
Loma, Kpelle and Bassa.” African Language Studies 8 (1967), 1–51.

Kandakai, Zuke, et al. Vai kpolo saikilamaa ms = The Standard Vai Script. Monrovia: Uni-
versity of Liberia African Studies Program, 1962.

Massaquoi, Momolu. “The Vai People and Their Syllabic Writing.” Journal of the Royal Afri-
can Society 10.40, July (1911): 459–466.

Singler, John. “Scripts of West Africa.” In The World’s Writing Systems, edited by Peter T.
Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Stewart, Gail, and P. E. H. Hair. “A Bibliography of the Vai Language and Script.” Journal of
West African Languages, 6.2 (1969): 124.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

638 References
Yi

Nuo-su bbur-ma shep jie zzit. = Yi wen jian zi ben. Chengdu: Sìchuan minzu chubanshe,
1984.

Nip huo bbur-ma ssix jie. = Yi Han zidian. Chengdu: Sìchuan minzu chubanshe, 1990. ISBN
7-5409-0128-4.

R.4 Selected Resources: Technical
American Mathematical Society. TeX Resources. http://www.ams.org/tex/tex-resources.html

For AMS TeX-related products, see AMS TeX Resources. http://www.ams.org/tex/

André, Jacques. Unicode, écriture du monde? / Jacques André, Henri Hudrisier. Paris:
Lavoisier, 2002. (Document numérique, v. 6, no. 3–4.) ISBN 2-7426-0594-7.

Bringhurst, Robert. The Elements of Typographic Style. 3rd ed. Point Roberts, WA: Hartley
& Marks, 2004. ISBN 0-88179-205-5; 0-88179-206-3 (pbk.).

Chaundy, Theodore William. The Printing of Mathematics: Aids for Authors and Editors and
Rules for Compositors and Readers at the University Press, Oxford. By T. W. Chaundy, P. R.
Barrett, and Charles Batey. London: Oxford University Press, [1965].

Reprint of the second impression (revised) 1957.

Deitsch, Andrew. Java Internationalization [by] Andrew Deitsch and David Czarnecki. Bei-
jing, Sebastopol, CA: O’Reilly, 2001. ISBN 0-596-00019-7.

Desgraupes, Bernard. Passeport pour Unicode. Paris: Vuibert, informatique, 2005. ISBN
2-7117-4827-8.

Developing International Software [by] Dr. International. 2nd ed. Redmond, WA: Micro-
soft, 2002. ISBN 0-7356-1583-7.

Also published: London: Chrysalis, 2002.

Esselink, Bert. A Practical Guide to Localization. Amsterdam, Philadelphia: John Benjamins,
2000. ISBN 1-588-11006-0 (pbk.), 1-588-11005-2 (hardcover).

Rev. ed. of A Practical Guide to Software Localization.

Flanagan, David. Java in a Nutshell. 5th ed. Sebastopol, CA: O’Reilly, 2005. ISBN
0896007736.

Garneau, Denis. Keys to Sort and Search for Culturally-Expected Results. [s.l.] IBM, 1990.
(IBM document number GG24-3516, June 1, 1990).

Gillam, Richard. Unicode Demystified: A Practical Programmer’s Guide to the Encoding Stan-
dard. Boston: Addison-Wesley, 2002. ISBN 0-201-70052-2.

Graham, Tony. Unicode: A Primer. Foster City, CA: MIS Press, M&T Books, 2000. ISBN
0-7645-4625-2.

The Guide to Translation and Localization: Preparing Products for the Global Marketplace.
[5th ed.] Portland, OR: Lingo Systems; [Sandpoint, ID]: Multilingual Computing, 2004.
ISBN 0970394829 (pbk.).

IBM. e-Business Globalization Solution Design Guide: Getting Started. 2002, updated 2004.
(IBM Redbook). (SG24-6851-00). ISBN 0738426563.

Available in PDF, HTML, or hardcopy from:
http://www.redbooks.ibm.com/abstracts/sg246851.html?Open
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.ams.org/tex/tex-resources.html
http://www.ams.org/tex/
http://www.redbooks.ibm.com/abstracts/sg246851.html?Open

R.4 Selected Resources: Technical 639
ICU User Guide. http://icu.sourceforge.net/userguide/

User guide for International Components for Unicode (ICU), a set of C/C++ and Java libraries
for Unicode support.

International Organization for Standardization. Information Technology—An Operational
Model for Characters and Glyphs. Geneva: 1998. (ISO/IEC TR 15285:1998).

International User Interfaces, edited by Elisa M. del Galdo and Jakob Nielsen. New York:
Wiley, 1996. ISBN 0-471-14965-9.

Knuth, Donald E. TEX, the Program. Reading, MA: Addison-Wesley, 1986. (Computers &
Typesetting, B). ISBN 0-201-13437-3.

Knuth, Donald E. The TEXbook. 21st printing, rev. Reading, MA: Addison-Wesley, 1994.
(Computers & Typesetting, A). ISBN 0-201-13448-9.

Korpela, Jukka K. Unicode Explained. Beijing, Sebastopol, CA: O’Reilly, 2006. ISBN 0-596-
10121-X.

Krantz, Steven G. Handbook of Typography for the Mathematical Sciences. Boca Raton:
Chapman & Hall/CRC, 2001. ISBN 1584881496.

Lamport, Leslie. LATEX, a Document Preparation System: User’s Guide & Reference Manual.
2nd ed. Reading, MA: Addison-Wesley, 1999, ©1994. ISBN 0-201-52983-1.

Updated for LATEX 2nd ed.

Language Culture Type: International Type Design in the Age of Unicode, edited by John D.
Berry; with a special section showing the winners in Bukva:Raz!, the type design competition
of the Association typographique internationale. New York: ATypI, Graphis, 2002. ISBN
1-932026-01-0.

Lunde, Ken. CJKV Information Processing. 2nd ed. Beijing, Cambridge, MA: O’Reilly, 2009.
ISBN 9780596514471 (pbk.).

Mathematics in Type. Richmond, VA: The William Byrd Press, [1954].

PAN Localization Project. Survey of Language Computing in Asia 2005, by Sarmad Hussain,
Nadir Durrani, and Sana Gul. Lahore: Center for Research in Urdu Language Processing;
Ottawa: International Development Research Center, 2005. ISBN 969-8961-00-3.

Available as a book and also in PDF from:
http://www.idrc.ca/uploads/user-S/11446781751Survey.pdf

Savourel, Yves. XML Internationalization and Localization. Indianapolis, IN: Sams, 2001.
ISBN 0-672-32096-7.

Also published: Hemel Hempstead: Prentice-Hall, 2001.

Swanson, Ellen. Mathematics into Type. Updated ed. [by] Arlene O’Sean and Antoinette
Schleyer. Providence, RI: American Mathematical Society, 1999. ISBN 0821819615.

Takahashi, Tokutaro. “A Proposal For a Standardized Common Use Character Set in East
Asian Countries.” Journal of East Asian Libraries, 63.1 (1980): 48-52. ISSN 1087-5093.

Unicode Guide, [by] Joe Becker, Rich Gillam, Mark Davis, and the Unicode Consortium
Editorial Committee. Boca Raton, FL: BarCharts, 2006. (QuickStudy: Computer). ISBN
978-14230-180-9.

Wick, Karel. Rules for Type-setting Mathematics. Prague: Publishing House of the Czecho-
slovak Academy of Sciences, 1965.

W3C Internationalization (I18n) Activity. http://www.w3.org/International/
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

http://icu.sourceforge.net/userguide/
http://www.idrc.ca/uploads/user-S/11446781751Survey.pdf
http://www.w3.org/International/

640 References
W3C Web Internationalization Tutorials. http://www.w3.org/International/tutorials/

Tutorials include Character sets & encodings in XHTML, HTML and CSS, and Using language
information in XHTML, HTML and CSS, both by Richard Ishida.

Yunikodo kanji joho jiten = Sanseido’s Unicode Kanji Information Dictionary / Yunikodo
Kanji Joho Jiten Henshu Iinkai hen. Tokyo: Sanseido, 2000. ISBN 4-385-13690-4.

R.5 Selected Resources: Other
Bibliographies

A Bibliography on Writing and Written Language, edited by Konrad Ehlich, Florian Coul-
mas, and Gabriele Graefen. Berlin, New York: Mouton de Gruyter, 1996. (Trends in Linguis-
tics. Studies and Monographs, 89). ISBN 3-11-010158-0.

Contains references to about 27,500 publications covering mainly 1930–1992.

Michael Everson’s Cool Bibliography of Typography and Scripts.

http://www.evertype.com/scriptbib.html

Translations

Unicode Consortium. The Unicode Standard, Version 5.0. Chinese Simplified language edi-
tion. Beijing: Pearson Education Asia Ltd. and Tsinghua University Press, 2010.

In Chinese, authorized partial translation of English language edition of The Unicode Standard,
Version 5.0. Boston, MA: Addison-Wesley, 2007. ISBN 0-321-48091-0.

Selected Works on Scripts, Languages, and Writing

Allworth, Edward. Nationalities of the Soviet East: Publications and Writing Systems. New
York: Columbia University Press, 1971. ISBN 0-231-03274-9.

The Alphabet Makers: A Presentation from the Museum of the Alphabet, Waxhaw, North Car-
olina. 2nd ed. Huntington Beach, CA: Summer Institute of Linguistics, 1991. ISBN
0-938978-13-6.

Alphabete und Schriftzeichen des Morgen- und Abendlandes. 2. übearb, u. erw. Aufl. Berlin:
Bundesdruckerei, 1969.

Bergsträsser, Gotthelf. Introduction to the Semitic Languages: Text Specimens and Grammat-
ical Sketches. Translated with an appendix on the scripts by Peter T. Daniels. [2nd ed.] Win-
ona Lake: Eisenbrauns, 1995. ISBN 0-931464-10-2.

Translation of Einführung in die semitischen Sprachen, 1928.

The Book of a Thousand Tongues, by Eugene A. Nida. Rev. ed. London: United Bible Society,
1972.

First ed. by Eric M. North, 1938.

The Cambridge Encyclopedia of the World’s Ancient Languages, edited by Roger D. Woodard.
Cambridge, New York: Cambridge University Press, 2004. ISBN 0521562562.

Campbell, George L. Compendium of the World’s Languages. London: Routledge, 1990.
ISBN 0-415-06937-6 (set); 0-415-06978-5 (v.1); 0-415-06979-3 (v.2).

Cleator, Philip Ellaby. Lost Languages, by P. E. Cleator. London: Day, 1959.

Also published: London: R. Hale, [1959]; New York: John Day Co., [1961]; [New York]: New
American Library, [1962].
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

http://www.w3.org/International/tutorials/
http://www.evertype.com/scriptbib.html

R.5 Selected Resources: Other 641
Comrie, Bernard, ed. The Languages of the Soviet Union. Cambridge: Cambridge University
Press, 1981. ISBN 0-521-23230-9; 0-521-9877-6 (pbk.).

Comrie, Bernard, ed. The World’s Major Languages. Oxford: Oxford University Press, 1987.
ISBN 0-19-520521-9; 0-19-506511-5 (pbk.).

Coulmas, Florian. The Blackwell Encyclopedia of Writing Systems. Cambridge, MA: Black-
well, 1996. ISBN 0-631-19446-0.

Coulmas, Florian. The Writing Systems of the World. Oxford, New York: Blackwell, 1989.

Crystal, David. The Cambridge Encyclopedia of Language. 2nd ed. Cambridge, New York:
Cambridge University Press, 1997. ISBN 0-521-55050-5; 0-521-55967-7 (pbk.).

Dalby, Andrew. Dictionary of Languages: The Definitive Reference to More Than 400 Lan-
guages. New York: Columbia University Press, 1998. ISBN 0231115687; 0231115695 (pbk.).

Daniels, Peter T. The World’s Writing Systems. (See World’s Writing Systems.)

DeFrancis, John. Visible Speech: The Diverse Oneness of Writing Systems. Honolulu: Univer-
sity of Hawaii Press, 1989. ISBN 0-8248-1207-7.

Diringer, David. The Alphabet: A Key to the History of Mankind. 3rd ed., completely rev.
with the assistance of Reinhold Regensburger. New York: Funk and Wagnalls, 1968.

Also published: London: Hutchinson. ISBN 0-906764-0-8.

Diringer, David. Writing. London: Thames and Hudson, 1962.

Also published: New York: Praeger.

Dixon, Robert M. W. The Languages of Australia. Cambridge: Cambridge University Press,
1980. ISBN 0-521-22329-6.

Drucker, Johanna. The Alphabetic Labyrinth: The Letters in History and Imagination. Lon-
don: Thames & Hudson, 1999. ISBN 0-500-28068-1.

Endo, Shotoku. Hayawakari chugoku kantai-ji. Tokyo: Kokusho Kankokai, Showa 61,
[1986].

Faulmann, Carl. Das Buch der Schrift: enthaltend die Schriftzeichen und Alphabete aller
Zeiten und aller Völker. 2. verm. und verb. Aufl. Wien: Kaiserlich-Königliche Hof- und Sta-
atsdruckerei, 1880.

Reprinted as: Schriftzeichen und Alphabete aller Zeiten und Völker. Augsburg: Augustus Verlag,
1990. ISBN 3-8043-0142-8.

Reprinted as: Das Buch der Schrift: enthaltend die Schriftzeichen und Alphabete aller Zeiten und
aller Völker des Erdkreises. Frankfurt am Main: Eichborn, 1990. ISBN 3-8218-1720-8.

Friedrich, Johannes. Extinct Languages. New York: Philosophical Library, 1957.

Translation of Entzifferung Verschollener Schriften und Sprachen. Berlin: Springer-Verlag, 1954.

Also published: London: Peter Owen, [1962]; Westport, CT: Greenwood Press, [1971, ©1957].

ISBN 0-8371-5748-X; New York: Dorset Press, 1989, ©1957. ISBN 0-88029-338-1.

Friedrich, Johannes. Geschichte der Schrift. Heidelberg: C. Winter, 1966.

Gaur, Albertine. A History of Writing. Rev. ed. New York: Cross River Press, 1992. ISBN
1-558-59358-6.

Also published: London: British Library. ISBN 0-7123-0270-0.

Gelb, Ignace J. A Study of Writing. Rev. ed. Chicago: University of Chicago Press, 1963.
ISBN 0-226-28605-3; 0-226-28606-1 (pbk.).
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

642 References
Giliarevskii, Rudzhero Sergeevich. Languages Identification Guide, by Rudzhero S.
Gilyarevsky and Vladimir S. Grivnin. Moscow: Nauka, 1970.

Gordon, Cyrus Herzl. Forgotten Scripts: How They Were Deciphered and Their Impact on
Contemporary Culture [by] Cyrus H. Gordon. New York: Basic Books, [1968].

The Gospel in Many Tongues: Specimens of 875 Languages ... London: British and Foreign
Bible Society, 1965.

Haarmann, Harald. Universalgeschichte der Schrift. Frankfurt: Campus Verlag, 1990. ISBN
3-593-34346-0.

Habein, Yaeko Sato. The History of the Japanese Written Language. Tokyo: University of
Tokyo Press, 1984. ISBN 0-86008-347-0; 4-13-087047-5.

Healey, John F. The Early Alphabet. Berkeley: University of California Press; [London]:
British Museum, 1990. (Reading the Past, 9). ISBN 0-520-07309-6.

British Museum Publications edition has ISBN 0-7141-8073-4.

A History of Writing: From Hieroglyph to Multimedia, edited by Anne-Marie Christin. Paris:
Flammarion; London: Thames & Hudson, 2002. ISBN 2-08-010887-5.

Ifrah, Georges. From One to Zero, a Universal History of Numbers. New York: Penguin, 1987.
ISBN 0-14-009919-0.

Translation of Histoire universelle des chiffres. Also published: New York: Viking, 1985. ISBN
0-670-37395-8.

Isaev, Magomet Izmailovich. Sto tridtsat’ ravnopravnykh: o iazykakh narodov SSSR. Moskva:
Nauka, 1970.

Jensen, Hans. Sign, Symbol and Script: An Account of Man’s Efforts to Write. New York: Put-
nam, 1969.

Translation of Die Schrift in Vergangenheit und Gegenwart (Berlin: Deutscher Verlag, 1969). Also
published: London: Allen & Unwin. ISBN 0-04-400021-9.

Katzner, Kenneth. The Languages of the World. New ed. London: Routledge, 1995. ISBN
0-415-11809-3.

Lyovin, Anatole. Introduction to the Languages of the World. New York: Oxford University
Press, 1997. ISBN 0-19-508115-3; ISBN 0-19-508116-1 (pbk.).

Malherbe, Michel. Les Langages de l’humanité: une encyclopédie des 3000 langues parlées
dans le monde. Paris: Laffont, 1995. ISBN 2-221-05947-6.

Muller, Siegfried H. The World’s Living Languages: Basic Facts of Their Structure, Kinship,
Location, and Number of Speakers. New York: Ungar, 1964.

Musaev, Kenesbai Musaevich. Alfavity iazykov narodov SSSR. Moskva: Nauka, 1965.

Naik, Bapurao S. Typography of Devanagari. 1st ed., rev. Bombay: Directorate of Languages,
Govt. of Maharashtra, 1971.

Nakanishi, Akira. Writing Systems of the World: Alphabets, Syllabaries, Pictograms. Rutland,
VT: Tuttle, 1980. ISBN 0-8048-1293-4; 0-8048-1654-9 (pbk.).

Revised translation of Sekai no moji.

Nida, Eugene A. The Book of a Thousand Tongues. (See Book of a Thousand Tongues.)

Pavlenko, Nikolai Andreevich. Istoria pis’ma. 2. izd. Minsk: Vysshaia Shkola, 1987.
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

R.5 Selected Resources: Other 643
Ramsey, S. Robert. The Languages of China. 2nd printing with revisions. Princeton: Prince-
ton University Press, 1989. ISBN 0-691-01468-X.

2nd ed. published London: Gollancz, 1974. ISBN 0-575-01758-9.

Robinson, Andrew. The Story of Writing. London: Thames and Hudson, 1995. ISBN 0-500-
01665-8.

Ruhlen, Merritt. A Guide to the World’s Languages, volume 1: Classification, with a Postscript
on Recent Developments. Stanford, CA: Stanford University Press, 1991. ISBN 0-8047-1894-
6 (v. 1).

Also published: London: Arnold. ISBN 0-340-56186-6 (v.1).

Sampson, Geoffrey. Writing Systems: A Linguistic Introduction. Stanford, CA: Stanford Uni-
versity Press, 1985. ISBN 0-8047-1254-9.

Also published: London: Hutchinson. ISBN 0-09-156980-X; 0-09-173051-1 (pbk.).

Sekai moji jiten / Kono, Rokuro; Chino, Eiichi; Nishida, Tatsuo. Tokyo: Sanseido, 2001.
(Gengogaku daijiten = The Sanseido Encyclopaedia of Linguistics, 7). ISBN 4-385-15177-6.

Senner, Wayne M. The Origins of Writing. Lincoln: University of Nebraska Press, 1989.
ISBN 0-8032-4202-6; 0-8032-9167-1 (pbk.).

Shepherd, Walter. Shepherd’s Glossary of Graphic Signs and Symbols. Compiled and classi-
fied for ready reference by Walter Shepherd. New York: Dover, 1971. ISBN 0-486-20700-5.

Also published: London: Dent. ISBN 0-460-03818-4.

Shinmura, Izuru. Kojien / Shinmura Izuru hen. Dai 4-han. Tokyo: Iwanami Shoten, 1991.

Passage cited in Section 12.1, Han is from the 1983 edition, translated from the Japanese by Lee
Collins.

Stevens, John. Sacred Calligraphy of the East. 3rd ed., rev. and expanded. Boston: Shambala,
1995. ISBN 1-570-62122-5.

Suarez, Jorge A. The Mesoamerican Indian Languages. Cambridge: Cambridge University
Press, 1983. ISBN 0-521-22834-4; 0-521-29669-2 (pbk.).

von Ostermann, Georg F. Manual of Foreign Languages. 4th ed., revised and enlarged. New
York: Central Book Company, 1952.

Wemyss, Stanley. The Languages of the World, Ancient and Modern: The Alphabets, Ideo-
graphs, and Other Written Characters of the World in Sound and Symbol. Philadelphia: 1950.

The World’s Writing Systems. Edited by Peter T. Daniels and William Bright. New York:
Oxford University Press, 1996. ISBN 0-19-507993-0.
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

644 References
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

I General Index

The General Index covers the contents of this core specification. To find topics in the Uni-
code Standard Annexes, Unicode Technical Standards, and Unicode Technical Reports, use
the search feature on the Unicode Web site.

For definitions of terms used, see the glossary on the Unicode Web site. To find the code
points for specific characters or the code ranges for particular scripts, use the Character
Index on the Unicode Web site. (See Section B.6, Other Unicode Online Resources.)
A
abbreviation, Coptic . 228
abjads . 188, 245
abstract character sequences

definition . 67
abstract characters . 21

definition . 67
abugidas . 189, 190, 277, 363
accent marks see diacritics
accented characters

encoding . 9
Latin . 212
normalization . 152

accounting numbers, ideographic 134
acrophonic numerals 151, 226
Aegean numbers . 473
Afrikaans . 216
Ainu . 429
Aiton . 373
Alchemical Symbols . 527

reference materials . 622
Algonquian . 457
Ali Gali . 441
aliases

character name 66, 136, 574
property . 123
property value . 123

allocation areas . 34
allocation of encoded characters 33–40, 601
Alphabetic (informative property) 140
alphabets . 188

European . 211–243
mathematical . 498–502

Alpine . 468
alternate format characters (deprecated) . . 141, 554–

555
Amharic . 438
Ancient Symbols . 530
angle brackets (U+2329 and U+232A)

deprecated for technical publication 518
Annexes, Unicode Standard (UAX) xxvii, 586

as components of Unicode Standard 59
conformance . 64
list of . 64

annotation characters 563–564
use in plain text discouraged 564

ANSI/ISO C
wchar_t and Unicode .148

apostrophe (U+0027) .200
Arabic . 250–266

digits .503
Arabic-Indic digits . 253–254

signs used with .255
ArabicShaping.txt 256, 260, 271
Aramaic 277, 324, 355, 441, 478
archaic scripts . 465–474
areas of the Unicode Standard 34
ARIB .524
Armenian . 232–233
arrows . 515–516
ASCII

characters with multiple semantics 193
transparency of UTF-8 .27
Unicode modeled on .1
zero extension .148, 597

Assamese .296
assigned code points .8, 23
Athapascan .457
atomic character boundaries159
Avestan .482

reference materials .622

B
Balinese . 394–399

reference materials .623
Bamum . 455–456

reference materials .623
Bangla . 295–299
base characters .238

definition .79
multiple .45
ordered before combining marks161, 238

Basic Multilingual Plane (BMP)1, 33
allocation areas .37
representation in UTF-1627

Basque .216
Batak . 402–403

reference materials .623
benefits of Unicode .1
Bengali . 295–299
Bidi Class (normative property)130
Bidi Mirrored (normative property) 135
Bidi Mirroring Glyph (informative property)135
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

646 Indices
BidiMirroring.txt .135
Bidirectional Algorithm, Unicode 40, 63
bidirectional ordering .15

controls .141, 553
bidirectional text .40, 63

Middle Eastern scripts .245
nonspacing marks in .163
punctuation in .192

big-endian .30
definition .63

Bihari .293
binary comparison and sort order

caution for UTF-16 .27
UTF differences .168, 170
UTF-8 .29

blocks of the Unicode Standard 34, 187
Blocks.txt .34
BMP see Basic Multilingual Plane
BNF (Backus-Naur Form) .583
BOCU-1 see UTN #6, BOCU-1

MIME-Compatible Unicode Compression
Bodhi .325
Bodo .292
BOM (U+FEFF) 30, 50, 98–101, 561–562
Bopomofo . 426–427
boundaries, text 8, 46, 140, 158–159, 167

see also UAX #14, Unicode Line Breaking Algo-
rithm

see also UAX #29, Unicode Text Segmentation
boustrophedon .41, 470
Brahmi 277, 324, 355, 359–361, 364

reference materials .623
Braille . 534–536
Breton .216
Buginese . 393–394
Buhid .392
Bulgarian .230
bullets .202

numeric .505
Burmese see Myanmar
Byelorussian .230
byte order mark (BOM) (U+FEFF) . . 30, 50, 98–101,

561– .562
byte ordering

changing .61
conformance .62

byte serialization .30, 50
Byzantine Musical Symbols540

C
C language

wchar_t and Unicode .148
C0 and C1 control codes 23, 139, 544
Cambodian see Khmer
camelcase .174
Canadian Aboriginal Syllabics 457–458

reference materials .624
candrabindu .294, 349
canonical composite characters

see canonical decomposable characters
canonical composition algorithm105
canonical decomposable characters

definition .88

canonical decomposition . 48
definition . 88
mappings . 87

canonical equivalence
definition . 88
nonspacing marks . 164

canonical equivalent character sequences
conformance . 60, 61

canonical mappings
see canonical decomposition mappings

canonical ordering algorithm 104
canonical precomposed characters

see canonical decomposable characters
Cantonese . 413
capital letters . 124, 172, 211
Carian . 474

reference materials . 624
carriage return (U+000D) (CR) 154, 545
carriage return and line feed (CRLF) 154
case . 217

and text processes . 9
beyond ASCII . 172
camelcase . 174
case folding . 175
case operations (conformance) 64, 115–120
case operations and normalization 177
case operations, reversibility 174
cased (definition) . 115
case-insensitive comparison . . .119, 168, 169, 175
casing context (definition) 116
conversion . 117
detection . 118
European alphabets . 211
exceptional Latin pairs 214, 217
Georgian . 234
lowercase . 124, 172, 211
mapping tables . 146
mappings115, 126, 172–174
mappings noted in code charts 576
titlecase . 124, 172
Turkish I . 173, 174, 214
uppercase . 124, 172, 211
see also default case

Case (normative property) 124, 172
CaseFolding.txt . 126, 175, 176
caseless letters . 217
Catalan . 215
cedilla . 213
CEF see character encoding forms
CES see character encoding schemes
CESU-8

see UTR #26, Compatibility Encoding Scheme for
UTF-16: 8-Bit (CESU-8)

Chakma . 350–351
reference materials . 624

Cham . 390–391
reference materials . 624

character encoding forms (CEF) 24–29, 597
see also Unicode encoding forms

character encoding model 24, 31
see also UTR #17, Unicode Character Encoding

Model
character encoding schemes (CES) 30–32

see also Unicode encoding schemes
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

647
character encoding standards
coverage by Unicode . 2

Character Index . 589
character literals, Unicode

code point notation U+ 583
character mapping

interchange format see UTS #22, Character Map-
ping Markup Language (CharMapML)

character names 66, 135–139, 599
aliases . 66, 136, 574
conventions . 581
for CJK ideographs . 577
for control codes . 138, 139
in code charts . 571–575
matching . 136

character properties
see properties
see also individual properties, e.g. Combining Class

character semantics 1, 60, 65–66, 599
as Unicode design principle 14
ASCII . 193
definition . 65

character sequences
abstract see abstract character sequences
canonical equivalent see canonical equivalent

character sequences
compatibility equivalent see compatibility equiva-

lent character sequences
conformance . 60
named . 136

character sequences, combining 79
character shaping selectors (deprecated) 555
character tabulation (U+0009) 545
characters

abstract see abstract characters
arrangement in Unicode 35
assigned . 8, 23
blocks . 34, 187
boundaries . 158
canonical decomposable see canonical decompos-

able characters
classes . 583
code charts . 571–580, 589
coded see encoded characters
combining see combining characters
compatibility decomposable see compatibility

decomposable characters
composite see decomposable characters
concept of . 11, 46
conformance definitions 67–69
confusable . 179
conversion . 145–147
decomposable see decomposable characters
deprecated see deprecated characters
encoded see encoded characters
encoding forms see encoding forms
encoding schemes see encoding schemes
end-user perceived . 46
format control 23, 51, 193, 543–569
glyphs, relationship to . 11
graphic . 23
identity (definition) . 65
ignored in processing 180–185
interpretation . 59
layout control 51, 545–554

modification .61
names list . 571–575
names see character names
not encoded in Unicode .2
number encoded in this and earlier versions .601
number encoded in Version 6.22
precomposed see decomposable characters
properties see properties
semantics see character semantics
special . 50, 543–569
supplementary see supplementary characters
transcoding . 145–147
unsupported . 148–149

characters, not glyphs
in spoofing .180
Unicode principle .11

CharMapML
see UTS #22, Character Mapping Markup Lan-

guage (CharMapML)
charsets

IANA registered names .31
charts, character code see code charts
Cherokee .456

reference materials .624
Chinese . 413–414

Cantonese .413
Hakka .427
Mandarin .413
Minnan (Hokkien/Fujian, incl. Taiwanese) . .427
simplified and traditional413

Chu hán .412
Chu Nôm .607
citations for

properties .58
Unicode algorithms .58
Unicode Standard .57

CJK ideographs 190, 406–421
accounting numbers .134
CJK Compatibility Ideographs 420–421
CJK Compatibility Supplement421
CJK Strokes .423, 609
CJK Unified Ideographs 406–420
CJK Unified Ideographs Extension A 410
CJK Unified Ideographs Extension B420
CJK Unified Ideographs Extension C 420
CJK Unified Ideographs Extension D 420
code charts .577
compatibility ideographs in Plane 2 40
component structure .416
encoding blocks .409
ideographic description sequences 423–425
ideographic variation mark (U+303E) 425
KangXi radicals 419, 421–422
names .577
numbers .503
numeric values .133, 151
order of encoding .418
radicals . 421–422
source standards 407–409
unknown or unavailable208
Vietnamese .405

CJK Miscellaneous Area .38
CJK punctuation and symbols 207

compatibility forms .209
overscores and underscores 209
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

648 Indices
quotation marks .198
sesame dots .208
vertical forms .209

CJK-JRG (Chinese/Japanese/Korean Joint Research
Group) .606

CJKV Ideographs Area .38
CLDR (Unicode Common Locale Data Repository) .

590
cluster boundaries .158
code charts . 571–580, 589

representative glyphs .572
code point sequences

notation .582
code points .5, 22

assigned .8, 23
assignment .35, 601
categories .22
default ignorable .149, 184
definition .67
designated .23
notation .581
number in Unicode Standard1
private-use see private-use code points
reserved see reserved code points
semantics .24
surrogate see surrogates
unassigned see unassigned code points
undesignated .23

code positions see code points
code set independence .14
code unit sequences

definition .90
ill-formed (definition) .91
notation .582
well-formed (definition)91

code units
definition .90
isolated .89

code values see code units
coded character representations

see coded character sequences
coded character sequences

definition .68
coded characters see encoded characters
codespace see Unicode codespace
coeng .375, 376
Collation Algorithm, Unicode (UCA)10
collation see sorting
collation tables .146
combining character sequences 42, 79

defective .163
definition .81
Latin .212
line breaking .160
matching .160
order of base character and marks161, 238
rendering .160
selection .158
truncation . 161–162

combining characters 41–46, 83–86, 159–166
blocking reordering .551
canonical ordering 47, 104, 126
class zero .127
combining marks 238–239
definition .80

dependence . 238
display order . 43
keyboard input . 160
ligatures . 45
multiple . 43
multiple base characters 45
normalization of . 152
ordering conventions . 42
rendering of marks 162–166
reordrant . 127
script-specific . 42
split . 128
strikethrough . 130
subjoined . 129
typographical interaction 43, 126
vertical stacking . 44
see also diacritics

Combining Class (normative property) 126
combining classes 102, 126, 165

class zero characters . 126
definition . 102

combining grapheme joiner (U+034F) 551
combining half marks 141, 243
combining marks see combining characters
comma below . 213
Compatibility and Specials Area 20, 38
compatibility characters . 18
compatibility composite characters 21

see compatibility decomposable characters
compatibility decomposable characters 20

definition . 87
compatibility decomposition 48

definition . 87
compatibility decomposition mappings 87
Compatibility Encoding Scheme for UTF-16

see UTR #26, Compatibility Encoding Scheme for
UTF-16: 8-Bit (CESU-8)

compatibility equivalence
definition . 88

compatibility equivalent character sequences
conformance . 61

compatibility mappings
see compatibility decomposition mappings

compatibility precomposed characters
see compatibility decomposable characters

compatibility variants . 20
mapping . 177

composite characters
 see decomposable characters
compatibility see compatibility decomposable

characters
Composition Exclusion (normative property) 74
compression . 153

see also UTS #6, A Standard Compression Scheme
for Unicode (SCSU)

conferences . 589
conformance . 55–120

clause and definition updates 603
definitions . 65–69
examples . 51
ISO/IEC 10646 implementations 600
requirements . 59–63

confusables . 179
conjunct consonants

Indic . 158, 281
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

649
Myanmar . 369
selection of clusters . 158

contextual shaping
apostrophe . 200
Arabic . 251
not used for Hebrew final forms 247
quotation marks . 197
Syriac . 269

contour tones . 237
control codes . 23, 51, 544

graphics for . 517
names . 139
properties . 545
semantics . 24, 545
specified in Unicode . 545

control sequences . 544
conversion of characters 96, 145–147, 185
convertibility

as Unicode design principle 19
Coptic . 225, 227–229

reference materials . 624
corporate use subarea . 558
corrigenda . 57
CR (U+000D carriage return) 154, 545
CRLF (carriage return and line feed) 154
Croatian . 216

digraphs . 216
culturally expected sorting 10, 168
Cuneiform

Old Persian . 484
Sumero-Akkadian 485–487
Ugaritic . 483

Cuneiform and Hieroglyphic Area 39
currency symbols . 494–496

encoded in script blocks 495
cursive joining . 548–551

Arabic . 256–262
control characters for 141, 252, 443, 547
Mandaic . 480
Mongolian . 442–444
N’Ko . 453
Syriac . 269–272
transparency . 550

cursive scripts . 245
Cypriot . 474

reference materials . 629
see also Linear B

Cyrillic . 229–231
Czech . 216

D
danda, in Devanagari block 291
Danish . 215
dashes . 195
Database, Unicode Character

see Unicode Character Database (UCD)
dead consonants, Indic . 281
dead keys . 160
decomposable characters . 48

definition . 87
normalization of . 152

decomposition . 48, 87–89
canonical see canonical decomposition
compatibility see compatibility decomposition

definition .87
in normalization .152
mapping, definition .87
mappings noted in code charts 576

default case
algorithms . 64, 115–120
conversion .117
detection .118
folding .117

default caseless matching .119
default grapheme clusters .159

see also UAX #29, Unicode Text Segmentation
Default Ignorable Code Point (property) 184
default ignorable code points 149, 184
default property values .72

definition .72
defective combining character sequences 163

definition .81
dependent vowel signs

Indic .280
Khmer .378
Philippine scripts .392

deprecated characters .55, 574
alternate format 141, 554–555
definition .68

Derived Age (property) .149
derived properties

definition .78
DerivedCoreProperties.txt 116, 124, 184
DerivedNormalizationProps.txt177
Deseret . 459–460

reference materials .625
design goals of Unicode .3
design principles of Unicode10–19
designated code points .23
Devanagari . 278–295
Dhivehi .274
diacritics .42, 238

alternative glyphs .212, 239
Czech .212
display in isolation45, 195, 239
double .85, 141, 240
Greek . 222–223, 226
Latin . 212–214
Latvian .213
mathematical .501
on i and j .214
rendering . 162–166
Slovak .212
spacing clones of .237, 239
symbol .42, 242
see also combining characters

dictionary symbols .524
digit form names .254
digits .151

Arabic .503
Arabic-Indic . 253–254
compatibility .504
decimal .133
glyph variants .505
hexadecimal .504
Myanmar .503
national shapes .555
Shan .503
superscript and subscript 504
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

650 Indices
Tai Tham .503
digraphs . 216, 219, 220
dingbats . 526–527
directionality .15, 40

East Asian scripts .406
Middle Eastern scripts .245
Mongolian .442
musical symbols .537
normative property .130
Ogham .467
Old Italic .468
Philippine scripts .393
Runic .470

discussion list for Unicode 590
Dogri .292
Domino Tiles .528
dotless i . 173, 174, 214
dotted circle

in code charts .80, 239
in fallback rendering .163
to indicate diacritic .41
to indicate vowel sign placement 43

double diacritics . 85, 141, 240
Dutch .215, 216
dynamic composition

as Unicode design principle 18
Dzongkha .325

E
East Asian scripts . 405–435

writing direction .41
see also CJK ideographs

Eastern Arabic-Indic digits 253
EBCDIC

newline function .154
see UTR #16, UTF-EBCDIC

editing, text boundaries for 158–159
efficiency

as Unicode design principle 11
Egyptian hieroglyphs 487–491

reference materials .625
e-mail discussion list for Unicode 590
emoji .522, 523

animal symbols .525
cultural symbols .525
zodiacal symbols .525

Emoticons .525
Enclosed Alphanumerics .533
enclosing marks .243

definition .80
encoded characters .5, 22

allocation . 33–40, 601
definition .67

encoding form conversion
definition .95

encoding forms .24–29
ISO/IEC 10646 definitions 597

encoding forms, Unicode
see Unicode encoding forms

encoding model for Unicode characters 24, 31
see also UTR #17, Unicode Character Encoding

Model
encoding schemes .30–32

encoding schemes, Unicode
see Unicode encoding schemes

endian ordering
see byte order mark (BOM) (U+FEFF)

end-user subarea . 559
English . 215
equivalent sequences . 152

as Unicode design principle 18
case-insensitivity . 169, 175
combining characters in matching 160
conformance . 61
Hangul syllables . 432
in sorting and searching 167
language-specific . 88
security implications . 179
see also canonical equivalence
see also compatibility equivalence
see also encoding forms, encoding schemes

errata . xxviii, 57, 590
escape sequences . 544

not used in Unicode . 1, 3
Esperanto . 216
Estonian . 216
Ethiopic . 438–440

reference materials . 625
Etruscan . 467
euro sign (U+20AC) . 496
European alphabetic scripts 211–243
eyelash-RA . 286

F
fallback rendering . 184

of nonspacing marks . 162
FAQ (Frequently Asked Questions) 590
Faroese . 215
Farsi . 250, 252
featural syllabaries . 189
FF (U+000C form feed) 154, 545
file separator (U+001C) . 545
Finnish . 215
Finno-Ugric Transcription (FUT)

see Uralic Phonetic Alphabet (UPA)
fixed-width Unicode encoding form (UTF-32) 26, 93
flat tables . 146
Flemish . 215
fonts

and Unicode characters 13
for mathematical alphabets 500–502
style variation for symbols 493

form feed (U+000C) (FF) 154, 545
format control characters23, 51, 193, 543–569

deprecated . 554–555
prefixed . 141
stateful . 553

fraction characters . 511
fraction slash (U+2044) 200, 509
French . 216
Frisian . 216
FTP site, Unicode Consortium 589
fullwidth forms in East Asian encodings 429–430
futhark . 470

G
Garshuni . 266
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

651
Ge’ez . 438
General Category (normative property) 130

list of values . 130
general punctuation . 191–209
General Scripts Area . 38
geometrical symbols . 520–522
Georgian . 233–235
German . 215
geta mark (U+3013) . 208
Glagolitic . 231–232

reference materials . 625
Glossary . 590
glyph selection tables . 146
glyphs . 5, 12

characters, relationship to 11
diacritics alternative 212, 239
Greek alternative 223–224
Latin alternative . 212
mathematical alternative 512
missing . 184
representative in code charts 572
standardized variants . 556
symbols alternative . 493

golden numbers . 471
Gothic . 471–472

reference materials . 626
grapheme base . 238

definition . 81
grapheme clusters . 8, 46

 see also UAX #29, Unicode Text Segmentation
default . 159
definition . 82

grapheme extender
definition . 81

grapheme joiner, combining (U+034F) 551
graphic characters . 23
Greek . 222–226

acrophonic numerals 151, 226
alternative glyphs 223–224
ancient musical notation 540–542
editorial marks . 205, 626
letters as symbols 223–225, 513
see also Cypriot, Linear B

Greenlandic . 216
group separator (U+001D) 545
guillemets . 198
Gujarati . 303–304
Gurmukhi . 300–303

H
Hakka . 427
halant . 277

see also virama
half marks, combining 141, 243
half-consonants, Indic . 282
halfwidth forms in East Asian encodings . . . 429–430
Han ideographs see CJK ideographs
Han unification . 414–420

and language tags . 157
history . 605–607
language usage . 412
source separation rule 410, 415
source standards . 407–409

Hangul Area . 38

Hangul syllables 405, 430–433
and combining marks .86
as grapheme clusters .46
canonical decomposition 109
collation .433
composition .111
conjoining jamo . 107–115
equivalent sequences .432
Hangul Compatibility Jamo431
Hangul Jamo . 430–433
Hangul Syllables block 432–433
Johab set .432
name generation .112
normalization .431
standard .108

Hangzhou numerals .508
Hanja see CJK ideographs
Hanunóo .392
Hanzi see CJK ideographs
harakat, Arabic pronunciation marks 250
hasant .296
hash tables .146
Hebrew . 246–250
hentaigana .429
hieroglyphs

Egyptian . 487–491
Meroitic . 491–492

high surrogate
definition .89
high-surrogate code points59, 559
high-surrogate code units89

higher-level protocols
definition .69

Hindi .278
Hiragana .428
historic scripts . 465–474
horizontal tab (U+0009) .545
HTML newline function .155
Hungarian .216
hyphenation .547

as a text process .8
hyphens .195, 547

I
I Ching symbols .529
IANA charset names .31
Icelandic .215
identifiers .167

see also UAX #31, Unicode Identifier and Pattern
Syntax

Ideographic (informative property)140
ideographic description sequences424
Ideographic Rapporteur Group (IRG)407, 606
Ideographic Variation Database see UTS #37, Unicode

Ideographic Variation Database
ideographs see also CJK ideographs
IDNA see UTS #46, Unicode IDNA Compatibility

Processing
IICore .411, 607
ill-formed

definition .91
Imperial Aramaic . 478–479

reference materials .626
implementation guidelines 145–185
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

652 Indices
in a Unicode encoding form
definition .92

in-band mechanisms .568
Indian rupee sign (U+20B9)496
Indic scripts 277–322, 323–325

principles, in terms of Devanagari 279–285
relation to ISCII standard278

Indonesian .215
industry character sets

covered in Unicode .2
information separators (U+001C..U+001F)545
informative properties

definition .75
Inscriptional Pahlavi .481
Inscriptional Parthian .481
inside-out rule .162
interchange restrictions .23
International Phonetic Alphabet (IPA) 188, 218–219

reference materials .627
Spacing Modifier Letters236
see also phonetic alphabets

internationalization .14
Internationalization & Unicode Conference589
Internet protocols

UTF-8 as preferred encoding 28
Inuktitut .457
invisible operators .516
iota subscript .223
IPA see International Phonetic Alphabet
IRG (Ideographic Rapporteur Group)407, 606
Irish .215, 466
ISCII standard and Unicode 278
ISO/IEC 10646 . 593–600

conformance of Unicode implementations . . .599
encoding forms .597
synchrony with Unicode Standard598
timeline compared to Unicode versions 594

Italian .215
ITC Zapf Dingbats .526
IUC see Internationalization & Unicode Conference

J
jamos see Hangul syllables
Japanese .405
Javanese . 399–401

reference materials .627
Jawi .264
jihvamuliya .295, 349
Johab .432
joiners .252

combining grapheme joiner (U+034F)551
word joiner (U+2060) .546
zero width joiner (U+200D)252, 549

justification .164

K
Kaithi . 345–347

reference materials .627
Kana (Hiragana and Katakana) 428–429
Kanbun .421
KangXi radicals . 419, 421–422
Kanji see CJK ideographs
Kannada . 315–317
Kashmiri .293

Katakana . 428–429
Kawi . 394, 396
Kayah Li . 389–390

reference materials . 627
KC (normalization form)

see Normalization Form KC
KD (normalization form)

see Normalization Form KD
keytop labels . 517
Khamti Shan . 372
Kharoshthi . 355–356

reference materials . 628
Khmer . 374–383

characters not recommended 380
syllable components, order of 381

killer . 189
Batak . 402
Brahmi . 359
Meetei Mayek . 352
Myanmar (asat) . 370
see also virama

Konkani . 292
Korean Hangul see Hangul
Kurdish . 250, 264

L
Ladino . 246
language tags .157, 565–568

and Han unification . 157
use strongly discouraged 568

Lanna . 384
Lao . 366–368
last-resort glyphs . 184
Latin . 212–222

alternative glyphs . 212
Basic Latin . 215
encoding blocks . 34
IPA Extensions . 218–219
Latin Extended Additional 220–222
Latin Extended-A . 216
Latin Extended-B 216–218
Latin Extended-C . 220
Latin Extended-D . 221
Latin Ligatures . 220
Latin-1 Supplement . 215
Phonetic Extensions 219–221

Latvian . 216, 221
cedilla . 213

layout control characters51, 545–554
leading surrogates

see high-surrogate code units
legibility criterion for plain text 15
Lepcha . 335–336

reference materials . 628
letter spacing . 547
letterlike symbols . 496–502
LF (U+000A line feed) 154, 545
ligatures . 548–551

Arabic . 258–259
combining characters on 45
control characters for . 141
for nonspacing marks . 165
Latin . 220
selection . 159
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

653
Syriac . 272
Limbu . 342–344

reference materials . 628
line breaking 153–156, 546–548

control characters . 143
in South Asian scripts 366, 371, 383
recommendations . 155
see also UAX #14, Unicode Line Breaking Algo-

rithm
line feed (U+000A) (LF) 154, 545
line separator (U+2028) (LS) 154, 547
line tabulation (U+000B) (VT) 545
Linear B . 473

reference materials . 629
see also Cypriot

linear boundaries . 159
lira sign, Turkish (U+20BA) 496
Lisu . 461–463

reference materials . 629
Lithuanian . 216
little-endian . 30

definition . 63
Locale Data Markup Language

see UTS #35, Unicode Locale Data Markup Lan-
guage (LDML)

logical order
as Unicode design principle 15
exceptions to . 128

logograph . 190
logosyllabaries . 190
low surrogate

definition . 89
low-surrogate code points 59, 559
low-surrogate code units 89

lowercase . 124, 172, 211
LS (U+2028 line separator) 154, 547
Lycian . 474

reference materials . 630
Lydian . 474

reference materials . 630

M
MacOS newline function . 154
Mahjong Tiles . 527
mail discussion list for Unicode 590
Maithili . 292
major version . 56
Malay . 215
Malayalam . 317–322
Maltese . 216
Manchu . 441
Mandaic . 479–481

reference materials . 630
Mandarin . 413
Manden . 450
map symbols . 524
mapping tables see tables of character data
Marathi . 278, 286, 290
markup languages

and Unicode conformance 568
line breaking . 153
see also UTR #20, Unicode in XML and Other

Markup Languages
Mathematical (informative property) 511

mathematical expression format characters 141
see also UTR #25, Unicode Support for Mathe-

matics
mathematical symbols 511–516

alphabets . 498–502
alphanumeric . 498–502
fonts . 500–502
format characters .516
fragments for typesetting 518
invisible operators .516
operators . 512–513
reference materials .630
standardized variants .516

MathML .513
matras .127, 280
Meetei Mayek . 351–353

reference materials .630
Meroitic

cursive . 491–492
hieroglyphs . 491–492
reference materials .630

Miao . 463–464
reference materials .631

Middle Eastern scripts 245–275
Min .413
Minnan (Hokkien/Fujian, incl. Taiwanese)427
minor version .56
minus sign .513

commercial (U+2052) .203
mirrored property

see Bidi Mirrored (normative property)
mirroring of paired punctuation 197
Miscellaneous Symbols .523
missing glyphs .184
modifier letters . 235–238
Modifier Letters, Spacing .220
Mongolian . 337, 440–447

writing direction .442
multibyte encodings

compared to UTF-8 .28
multistage tables .146
musical symbols . 536–542

ancient Greek . 540–542
Balinese .398
Byzantine .540
directionality .537
Gregorian .537
reference materials .631
Western . 536–539

Myanmar . 368–373
digits .503
Myanmar Extended-A .371
reference materials .632

N
N’Ko . 450–454

reference materials .632
named character sequences136
names, character see character names
namespace .66
NEL (U+0085 next line) 154, 545
Nepali .278
neutral directional characters130
New Tai Lue . 384–385
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

654 Indices
newline function (NLF)154, 545
newline guidelines . 153–156
next line (U+0085) (NEL)154, 545
NFC (Normalization Form C) 47
NFD (Normalization Form D)47
NFKC (Normalization Form KC)47
NFKD (Normalization Form KD) 47
NLF (newline function)154, 545
no-break space (U+00A0) .546

base for diacritic in isolation 45, 195, 239
no-break space, narrow (U+202F)445
noncharacter code points see noncharacters
noncharacters .23, 50, 560

conformance .59
definition .68
handling .61
in code charts .574
interchange restrictions .24
semantics .24
U+10FFFF (not a character code) 560
U+FDD0..U+FDEF23, 560
U+FFFE (not a character code) 50, 560
U+FFFF (not a character code) 23, 560

nondecomposable characters 48
non-joiner, zero width (U+200C) 252, 549
nonlinear boundaries .159
non-overlap principle in Unicode encoding forms .24
nonspacing marks .238

definition .80
display in isolation 45, 195, 239
positioning .165
rendering . 162–166
see also combining characters
see also diacritics

normalization .47, 152
and case operations .177
canonical ordering algorithm 47, 104, 126
conformance .63
of private-use characters558
see also UAX #15, Unicode Normalization Forms
stability .102

Normalization Form C (NFC) 47
Normalization Form D (NFD)47
Normalization Form KC (NFKC)47
Normalization Form KD (NFKD) 47
normalization forms 101–107

definition .107
specification .103

normative behaviors
definition .65

normative properties
definition .74
list .74
may change .74

Norwegian .215
notational conventions 581–584
notational systems .191
nukta .265, 287
null (U+0000)

as Unicode string terminator 545
number forms

CJK ideographs .151
numbers

handling .151
ideographic accounting134

numerals . 502–510
acrophonic . 226
Chinese counting rods 510
Coptic . 229
Cuneiform . 487
Ethiopic . 439
Greek acrophonic . 151
Hangzhou . 508
old-style . 201
Roman . 151, 511
Rumi . 507
Suzhou-style . 508

numeric separators . 203
numeric shape selectors (deprecated) 555
Numeric Type (normative property) 133
Numeric Value (normative property) 133
numero sign (U+2116) . 496

O
object replacement character (U+FFFC) 564
octet . 583
Ogham . 466–467

reference materials . 632
Ol Chiki . 353–354

reference materials . 632
Old Italic . 467–469

reference materials . 632
Old Persian . 484–485

reference materials . 633
Old South Arabian . 475–477

reference materials . 633
Old Turkic . 472

reference materials . 633
old-style numerals . 201
Oriya . 304–306
Oromo . 438
Osmanya . 447

reference materials . 633
out-of-band mechanisms . 568
overlapping encodings . 24
overscores . 201

P
Pahlavi, Inscriptional . 481

reference materials . 626
Panjabi . 300
paragraph or section marks 203
paragraph separator (U+2029) (PS) 154, 547
Parthian, Inscriptional . 481

reference materials . 626
Pashto . 250
Persian . 250, 252
Phags-pa . 336–341

reference materials . 634
Phaistos Disc symbols . 530
Phake . 373
Philippine scripts . 392–393

reference materials . 634
Phoenician . 477

reference materials . 634
phonemes . 190
phonetic alphabets . 188

IPA Extensions . 218–219
Phonetic Extensions 219–221
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

655
Spacing Modifier Letters 236–238
Uralic Phonetic Alphabet (UPA) 203, 219
see also International Phonetic Alphabet (IPA)

Pinyin . 215
pivot code, Unicode as . 146
plain text

as Unicode design principle 14
legibility criterion . 15

planes of Unicode codespace 33
Plane 0 (BMP) . 33
Plane 1 (SMP) . 33, 39
Plane 14 (SSP) . 33
Plane 2 (SIP) . 33, 40
Planes 15-16 (Private Use) 40, 559

Playing Cards . 528
points, Hebrew pronunciation marks 246
policies of the Unicode Consortium 590
Polish . 216
Portuguese . 215
precomposed characters

see decomposable characters
compatibility see compatibility decomposable

characters
prefixed format control characters 141
Private Use Area (PUA) 38, 558
Private Use planes . 34, 40, 559
private-use characters

properties . 557
semantics . 24

private-use code points 23, 148
conformance . 60
definition . 79
high surrogates . 559

processing code, choice of Unicode encoding form 28
properties 14, 70–79, 121–143

aliases . 123
aliases (definition) . 78
and Unicode algorithms 74
data tables . 146
derived see derived properties
in Unicode Character Database (UCD) 34
informative see informative properties
normative references to 58, 63
normative see normative properties
of control codes . 545
provisional see provisional properties
simple see simple properties
see also individual properties, e.g. combining

classes
property values

aliases . 123
aliases (definition) . 78
default . 72
default (definition) . 72
normative references to 63

PropertyAliases.txt . 78, 583
PropertyValueAliases.txt 78, 583
PropList.txt . 126
Provençal . 216
provisional properties

definition . 76
PS (U+2029 paragraph separator) 154, 547
PUA (Private Use Area) 38, 558
pukki . 306

punctuation . 191–209
blocks containing .187
CJK .207
doubled .201
in bidirectional text .192
paired .197
small form variants .209
typographic forms .192
vertical forms .209

Punctuation and Symbols Area 38
Punjabi .300

Q
quotation marks . 197–199

East Asian .199
European .198

R
radicals, KangXi and other CJK 421–422
radical-stroke index .419
record separator (U+001E)545
recycling symbols .524
referencing .63

properties .58
Unicode algorithms .58
Unicode Standard .57

regional indicator symbols 534
regular expressions .156

and line breaking .153
see also UTS #18, Unicode Regular Expressions

Rejang . 401–402
reference materials .635

rendering of text .5, 8, 13
fallback .184
unsupported characters 149

repertoire of abstract characters22
replacement character (U+FFFD) 32, 51, 62, 96, 185,

565
reserved code points .23, 148

definition .68
in code charts .574
preservation in interchange 24
see also unassigned code points

Rhaeto-Romanic .216
rich text .14
right single quotation mark (U+2019)

preferred for apostrophe200
right-to-left text .40

East Asian scripts .406
Middle Eastern scripts .245

roadmap for script additions 34
Roman numerals .151, 511
Romanian .216

comma below .213
Romany .216
Rumi numeral forms .507
Runic . 469–471

reference materials .635
rupee sign, Indian (U+20B9) 496
Russian .229

S
Samaritan . 273–274
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

656 Indices
reference materials .635
Sami .216
Sanskrit .278
Saurashtra . 347–348

reference materials .635
scalar values, Unicode

see Unicode scalar values
scripts

in Unicode Standard .2
roadmap for future additions34
types of .191
see also UAX #24, Unicode Script Property

SCSU
see UTS #6, A Standard Compression Scheme for

Unicode
searching . 167–169

as a text process .8
case-insensitive .169, 175

section or paragraph marks 203
security issues .179
self-synchronization of encoding forms 25
semantics

see character semantics
sequences

notation .582
Serbian

corresponding digraphs in Croatian 216
Shan .383

digits .503
Sharada . 348–349

reference materials .635
Shavian .461

reference materials .635
Show Hidden 61, 163, 184, 557
SHY (U+00AD soft hyphen)547
Sibe .442
signature for Unicode data 51, 561–562
simple properties

definition .78
simplified Chinese .413
Sindhi .250, 292
Sinhala . 324–325

reference materials .636
SIP (Supplementary Ideographic Plane) 33, 40
slash, fraction (U+2044) .200
Slovak .216
Slovenian .216
small letters . 124, 172, 211
SMP (Supplementary Multilingual Plane) 33, 39
soft hyphen (U+00AD) (SHY)547
Somali .447
Sora Sompeng .354

reference materials .636
Sorbian .216
sorting .10, 167

and combining grapheme joiner 552
as a text process .8
case-insensitive .168
culturally expected .10, 168
language-insensitive .168
see also Unicode Collation Algorithm (UCA)

source separation rule 410, 415
South Asian scripts 277–322, 323–344
Southeast Asian scripts 363–393
space (U+0020)

base for diacritic in isolation 46, 195, 239
space characters .194, 546–548

graphics for . 517
space, zero width (U+200B) 194
spacing clones of diacritics 237, 239
spacing marks . 238

definition . 81
Spacing Modifier Letters 236–238
Spanish . 215
special characters .50, 543–569
SpecialCasing.txt . 115, 126
Specials . 561–565
spell-checking

as a text process . 8
spellings, alternative

see equivalent sequences
spoofing . 179
SSP (Supplementary Special-purpose Plane) 33
stability . 76, 122

as Unicode design principle 18
stacked boundaries . 159
stacking sequences . 43

nondefault . 44
Standard Compression Scheme for Unicode (SCSU)

see UTS #6, A Standard Compression Scheme for
Unicode

standardized variants 444, 556
in the code charts . 577
mathematical symbols 516

StandardizedVariants.txt 444, 516
standards coverage . 2
starters . 103
stateful encoding

not used in Unicode . 3
paired format controls 553

string comparison . 10
string literals, Unicode

code point notation \u1234 583
strings, Unicode . 32, 91

null termination . 545
strong directional characters 130
styled text . 14
sublinear searching . 169
subsets, supported . 53

conformance . 60
ISO/IEC 10646 specification for 599

substitution character
see replacement character

Sumero-Akkadian . 485–487
Sundanese . 403–404

reference materials . 636
superscripts . 236

and subscripts . 510
supplementary characters

in UTF-16 strings . 32
tables for . 146

Supplementary General Scripts Area 38
Supplementary Ideographic Plane (SIP) 33, 40
Supplementary Multilingual Plane (SMP) 33, 39
supplementary planes

representation in UTF-16 27
representation in UTF-8 28

Supplementary Private Use Areas 40, 559
Supplementary Special-purpose Plane (SSP) 33
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

657
supported subsets . 53
conformance . 60

supralineation . 228
surrogate code points

see surrogates
surrogate pairs . 27, 94

definition . 89
processing . 28, 149–151

surrogates . 23, 89, 559
interchange restrictions 23
isolated surrogates, handling 32
isolated surrogates, ill-formed 94
isolated surrogates, uninterpreted 89
support levels . 150

Surrogates Area . 38, 559
Suzhou-style numerals . 508
svasti signs . 331
Swahili . 215
Swedish . 215
syllabaries . 188

alphabetic property . 140
featural . 189

Syloti Nagri . 344–345
symbols . 493–542

animal . 525
appearance variation . 493
arrows . 515–516
cultural . 525
currency . 494–496
dictionary . 524
dingbats . 526–527
emoji . 522, 523, 534
Enclosed Alphanumerics 533
fragments for mathematical typesetting 518
game . 525
gender . 524
genealogical . 525
geometrical . 520–522
Khmer lunar calendar 383
letterlike . 496–502
map . 524
mathematical . 511–516
mathematical alphanumeric 498–502
miscellaneous . 523
musical . 536–542
numerals . 502–510
recycling . 524
regional indicator . 534
technical . 517–520
weather . 524
zodiacal . 525

symmetric swapping format characters (deprecated)
555

Syriac . 266–272
reference materials . 636

T
tab (U+0009 character tabulation) 545
tab, vertical (U+000B) 154, 545
tables of character data 145–147

optimization . 146
supplementary characters 146

tag characters . 565–569
Tagalog . 392

Tagbanwa .392
tags, language . 157, 565–568

use strongly discouraged568
Tai Le . 383–384

reference materials .636
Tai Tham . 385–387

digits .503
reference materials .637

Tai Viet . 387–389
Tai Xuan Jing symbols .529
Takri . 349–350

reference materials .637
Tamil . 306–313
TCHAR in Win32 API .148
Technical Notes (UTN) .589
Technical Reports (UTR) .586

abstracts .587
Technical Standards (UTS) xxviii, 586

abstracts .586
technical symbols . 517–520
Telugu . 313–315
terminal emulation .494
text boundaries 8, 46, 140, 158–159, 167

see also UAX #14, Unicode Line Breaking Algo-
rithm

see also UAX #29, Unicode Text Boundaries
text elements .5, 8, 158

boundaries .167
for sorting .168
variable-width nature .29

text processes .4, 8–10
text rendering .5, 8, 13
text selection, boundaries for 158–159
Thaana . 274–275

reference materials .637
Thai . 364–366
Tibetan . 325–334
Tifinagh .448
Tigre .438
tilde (U+007E) .203
titlecase .124, 172
Todo .441
tone letters . 237–238
tone marks

Bopomofo spacing426, 427
Chinantec .238
Chinese .237
Tai Le .383
Thai .364
Vietnamese .214

traditional Chinese .413
traffic signs .524
trailing surrogates

see low-surrogate code units
transcoding . 145–147

tables .146
Transport and Map Symbols526
triangulation in transcoding146
tries .146
truncation

combining character sequences 161–162
surrogates and .151

Turkish .216
case mapping of I 173, 174, 214
cedilla .213
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

658 Indices
lira sign (U+20BA) .496
two-stage tables .146

U
U+ notation .583
U+10FFFF (not a character code) 560
U+FEFF (BOM) . 561–562
U+FFFE (not a character code) 560
U+FFFF (not a character code) 560
UAX (Unicode Standard Annex) xxvii, 586

as component of Unicode Standard59
conformance .64
list of .64

UCA see Unicode Collation Algorithm
UCD see Unicode Character Database
UCS (Universal Character Set)

see ISO/IEC 10646
UCS-2 .597
UCS-4 .597
Ugaritic . 483–484

reference materials .637
Uighur .337, 441
Ukrainian .230
unassigned code points 23, 59, 149

defined as reserved code points 68
handling .55
properties of .72
semantics .59
see also reserved code points

underscores .201
undesignated code points .23
Unicode 1.0 Name (informative property) 139
Unicode algorithms

and properties .74
conformance .63
definition .69
normative references to58, 63

Unicode Bidirectional Algorithm16, 40
see also UAX #9, Unicode Bidirectional Algorithm

Unicode Character Database (UCD) . xxviii, 122, 590
as component of Unicode Standard59
changes .56
properties in .34

Unicode character encoding model 24, 31
see also UTR #17, Unicode Character Encoding

Model
Unicode character literals

code point notation U+ 583
Unicode codespace

allocation numbers .601
definition .67
planes .33
size .1, 22

Unicode Collation Algorithm (UCA) 10
see also UTS #10, Unicode Collation Algorithm

Unicode Common Locale Data Repository (CLDR) .
590

Unicode conferences .589
Unicode Consortium .585

addresses .591
Consortium membership in standards bodies 585
e-mail discussion list .590
FTP site .589
membership .585

policies . 590
Web site . 589

Unicode data signature51, 561–562
Unicode data types . 147–148

for C . 147–148
Unicode encoding forms 89–95

advantages of each . 28
conformance . 26, 62
definition . 90
fixed-width (UTF-32) 26, 93
signatures . 562, 563
variable-width . 27, 93, 94
see also encoding forms

Unicode encoding schemes
conformance . 98–101
definition . 98
endian ordering . 30
see also encoding schemes

Unicode escape sequence notation \u1234 583
Unicode Regular Expressions see UTS #18, Unicode

Regular Expressions
Unicode scalar values

definition . 89
Unicode security mechanisms

 see also UTS #39, Unicode Security Mechanisms
Unicode security . 179

Unicode Standard
allocation of encoded characters 33–40
architecture . 7–10
areas . 34
benefits . 1
blocks . 34, 187
code charts .571–580, 589
components . 59
conformance . 55–120
conformance of ISO/IEC 10646 implementations

600
corrections . 57
definitions for conformance 65–69
design goals . 3
design principles . 10–19
errata . 57, 590
normative references to 57, 63
number of characters 2, 601
number of code points 1, 22
script coverage . 2
security issues . 179
synchrony with ISO/IEC 10646 598
updates . 590
versions see versions of the Unicode Standard
see also Version 6.2

Unicode Standard Annexes (UAX) xxvii, 586
as components of Unicode Standard 59
conformance . 64
list of . 64

Unicode string literals
code point notation \u1234 583

Unicode strings . 32
definition . 91

Unicode Technical Committee (UTC) 585
Unicode Technical Notes (UTN) 589
Unicode Technical Reports (UTR) 586

abstracts . 587
Unicode Technical Standards (UTS) xxviii, 586

abstracts . 586
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

659
UnicodeData.txt . 115, 126
unification

as Unicode design principle 17
see also Han unification

Unified Repertoire and Ordering (URO) . . . 415, 606
see also Han unification

Unihan Database 122, 418, 419, 578, 590, 607
Unihan.zip . 76, 122
unit separator (U+001F) . 545
Universal Character Set (UCS)

see ISO/IEC 10646
universality

as Unicode design principle 10
Unix

and UTFs . 29
newline function . 154
UTF-32 in . 27
UTF-8 in . 14

unsupported characters 148–149
upadhmaniya . 295, 349
update version . 57
uppercase . 124, 172, 211
Uralic Phonetic Alphabet (UPA) 203, 219
Urdu . 250
URO (Unified Repertoire and Ordering) . . . 415, 606

see also Han unification
UTF, Unicode Transformation Formats 24, 90

advantages of each . 28
as encoding form or scheme 100
binary comparison and sort order differences . .

168, . 170
in APIs . 148

UTF-16 . 27, 93, 598
binary comparison and sort order caution . . . 27
bit distribution (table) . 94
BOM in . 99, 561
encoding form (definition) 93
encoding scheme (definition) 99
encoding schemes . 30
in ISO/IEC 10646 . 598
in UTF-8 order . 171
surrogates and string handling 32, 149

UTF-16BE (Big-endian) . 562
encoding scheme . 30
encoding scheme (definition) 98

UTF-16LE (Little-endian) 562
encoding scheme . 30
encoding scheme (definition) 98

UTF-32 . 26, 93
BOM in . 100
encoding form (definition) 93
encoding scheme (definition) 100
encoding schemes . 30
in Unix . 27

UTF-32BE (Big-endian)
encoding scheme . 30
encoding scheme (definition) 99

UTF-32LE (Little-endian)
encoding scheme . 30
encoding scheme (definition) 99

UTF-8 . 27, 94, 598
ASCII transparency . 27
binary comparison and sort order 29
bit distribution (table) . 94
BOM in . 98, 101, 561

byte ranges .94
compared to multibyte encodings 28
encoding form (definition)94
encoding scheme .30
encoding scheme (definition)98
in Unix .14
in UTF-16 order .170
non-shortest form is invalid94, 179
preferred encoding for Internet protocols28
security and .179
signature .98, 101, 561

UTF-EBCDIC
see UTR #16, UTF-EBCDIC

UTN (Unicode Technical Note) 589
UTR (Unicode Technical Report)586

abstracts .587
UTS (Unicode Technical Standard) xxviii, 586

abstracts .586

V
Vai . 454–455

reference materials .637
valid (synonym for well-formed)92
variable-width Unicode encoding form27, 93, 94
variants

compatibility .20
fullwidth and halfwidth 209
mathematical symbols .516
small form .209
standardized .556

variation selectors .142, 556
ideographic variation mark (U+303E) 425
Mongolian free variation selectors444

variation sequences .556
for Phags-pa . 340–341

Version 6.2 .59
number of characters 2, 601

versions of the Unicode Standard xxviii, 55, 590, 601–
602
backward compatibility .55
compared to ISO/IEC 10646 editions 601
content .56
interaction in implementations 149
numbering .56
property changes .56
stability .56
updates .590

vertical tab (U+000B) 154, 545
vertical text .41, 192, 209

East Asian scripts .406
Mongolian .442

Vietnamese .214, 220
ideographs .405

virama .189, 277
definition .280
Kharoshthi .358
Khmer .376
Myanmar .369
Philippine scripts .392
virama-like characters .142

visual order used for Thai and Lao16
vowel harmony

Mongolian .445
vowel marks, Middle Eastern scripts 245
The Unicode Standard, Version 6.2 Copyright © 1991–2012 Unicode, Inc.

660 Indices
vowel separator
Mongolian .446

vowel signs
Indic .43, 280
Khmer .378
Philippine scripts .392

W
wchar_t

and Unicode encoding forms28
in C language .148

weak directional characters130
weather symbols .524
Web site, Unicode Consortium589
Weierstrass elliptic function symbol 497
well-formed

definition .91
Welsh .216
Where Is My Character? .590
wide characters

data type in C .148
wiggly fence (U+29DB) .515
Windows newline function154
word breaks . 160, 546–548

in South Asian scripts 366, 371, 383
word joiner (U+2060) .546
writing direction see directionality
writing systems . 188–191
Wu (Shanghainese) .413

X
Xibe .442
Xishuang Banna Dai .384
XML

see UTR #20, Unicode in XML and Other Markup
Languages

Y
yen currency sign .495
Yi . 433–435

reference materials .638
Yiddish .246
Yijing Hexagram Symbols .529
ypogegrammeni .223
yuan currency sign .495

Z
Zapf Dingbats .526
zero extension relation among encodings 597
zero width joiner (U+200D)252, 549
zero width no-break space (U+FEFF) 50, 63, 546

initial .101, 562
zero width non-joiner (U+200C)252, 549
zero width space (U+200B)546

for word breaks in South Asian scripts . 366, 371,
383

zero-width space characters 547
ZWJ see zero width joiner (U+200D)
ZWNBSP see zero width no-break space (U+FEFF)
ZWNJ see zero width non-joiner (U+200C)
ZWSP see zero width space (U+200B)
Copyright © 1991–2012 Unicode, Inc. The Unicode Standard, Version 6.2

	Figures xvii
	Tables xxi
	Preface xxv
	1 Introduction 1
	2 General Structure 7
	3 Conformance 55
	4 Character Properties 121
	5 Implementation Guidelines 145
	6 Writing Systems and Punctuation 187
	7 European Alphabetic Scripts 211
	8 Middle Eastern Scripts 245
	9 South Asian Scripts-I 277
	10 South Asian Scripts-II 323
	11 Southeast Asian Scripts 363
	12 East Asian Scripts 405
	13 Additional Modern Scripts 437
	14 Additional Ancient and Historic Scripts 465
	15 Symbols 493
	16 Special Areas and Format Characters 543
	17 About the Code Charts 571
	A Notational Conventions 581
	B Unicode Publications and Resources 585
	C Relationship to ISO/IEC 10646 593
	D Changes from Previous Versions 601
	E Han Unification History 605
	F Documentation of CJK Strokes 609
	R References 615
	I General Index 645
	Figures
	Tables
	Preface
	Why Unicode?
	What’s New?
	Support for Languages and Symbol Sets
	Detailed Change Information

	Organization of This Standard
	Concepts, Architecture, Conformance, and Guidelines
	Character Block Descriptions
	Code Charts
	Appendices
	References and Index
	Glossary and Character Index

	Unicode Standard Annexes
	The Unicode Character Database
	Unicode Code Charts
	Unicode Technical Standards and Unicode Technical Reports
	Updates and Errata
	Acknowledgements

	Introduction
	Figure 1-1. Wide ASCII
	1.1 Coverage
	Standards Coverage
	New Characters

	1.2 Design Goals
	Figure 1-2. Unicode Compared to the 2022 Framework

	1.3 Text Handling
	Characters and Glyphs
	Text Elements

	General Structure
	2.1 Architectural Context
	Basic Text Processes
	Text Elements, Characters, and Text Processes
	Figure 2-1. Text Elements and Characters

	Text Processes and Encoding
	Character Identity

	2.2 Unicode Design Principles
	Table 2-1. The 10 Unicode Design Principles
	Universality
	Efficiency
	Characters, Not Glyphs
	Figure 2-2. Characters Versus Glyphs
	Table 2-2. User-Perceived Characters with Multiple Code Points
	Figure 2-3. Unicode Character Code to Rendered Glyphs

	Semantics
	Plain Text
	Logical Order
	Figure 2-4. Bidirectional Ordering
	Figure 2-5. Writing Direction and Numbers

	Unification
	Figure 2-6. Typeface Variation for the Bone Character

	Dynamic Composition
	Figure 2-7. Dynamic Composition
	Equivalent Sequences

	Stability
	Convertibility

	2.3 Compatibility Characters
	Usage
	Allocation
	Compatibility Variants
	Compatibility Decomposable Characters
	Compatibility Character Versus Compatibility Decomposable Character

	2.4 Code Points and Characters
	Figure 2-8. Abstract and Encoded Characters
	Types of Code Points
	Table 2-3. Types of Code Points
	Control Codes
	Noncharacters
	Private Use
	Surrogates
	Restricted Interchange
	Code Point Semantics

	2.5 Encoding Forms
	Non-overlap
	Figure 2-9. Overlap in Legacy Mixed-Width Encodings
	Figure 2-10. Boundaries and Interpretation
	Conformance
	Examples
	Figure 2-11. Unicode Encoding Forms
	UTF-32
	Fixed Width
	Preferred Usage

	UTF-16
	Optimized for BMP
	Supplementary Characters and Surrogates
	Preferred Usage
	Origin
	Collation

	UTF-8
	Byte-Oriented
	Variable Width
	ASCII Transparency
	Preferred Usage
	Self-synchronizing

	Comparison of the Advantages of UTF-32, UTF-16, and UTF-8
	UTF-32 Versus UTF-16
	Characters Versus Code Points
	UTF-8
	Binary Sorting

	2.6 Encoding Schemes
	Byte Order
	Table 2-4. The Seven Unicode Encoding Schemes
	Encoding Scheme Versus Encoding Form
	Examples
	Figure 2-12. Unicode Encoding Schemes

	2.7 Unicode Strings
	2.8 Unicode Allocation
	Planes
	Basic Multilingual Plane
	Supplementary Multilingual Plane
	Supplementary Ideographic Plane
	Supplementary Special-purpose Plane
	Private Use Planes

	Allocation Areas and Character Blocks
	Allocation Areas
	Blocks
	Allocation Order

	Assignment of Code Points

	2.9 Details of Allocation
	Figure 2-13. Unicode Allocation
	Plane 0 (BMP)
	Figure 2-14. Allocation on the BMP
	ASCII and Latin-1 Compatibility Area
	General Scripts Area
	Punctuation and Symbols Area
	Supplementary General Scripts Area
	CJK Miscellaneous Area
	CJKV Ideographs Area
	General Scripts Area (Asia and Africa)
	Hangul Area
	Surrogates Area
	Private Use Area
	Compatibility and Specials Area

	Plane 1 (SMP)
	Figure 2-15. Allocation on Plane 1
	General Scripts Areas
	General Scripts Areas (RTL)
	Cuneiform and Hieroglyphic Area
	Ideographic Scripts Area
	Symbols Areas

	Plane 2 (SIP)
	Other Planes

	2.10 Writing Direction
	Figure 2-16. Writing Directions
	Bidirectional
	Vertical
	Boustrophedon
	Other Historical Directionalities

	2.11 Combining Characters
	Combining Characters
	Diacritics
	Symbol Diacritics
	Enclosing Combining Marks
	Figure 2-17. Combining Enclosing Marks for Symbols
	Script-Specific Combining Characters
	Sequence of Base Characters and Diacritics
	Figure 2-18. Sequence of Base Characters and Diacritics
	Ordering
	Indic Vowel Signs
	Figure 2-19. Reordered Indic Vowel Signs
	Properties
	Figure 2-20. Properties and Combining Character Sequences

	Multiple Combining Characters
	Figure 2-21. Stacking Sequences
	Table 2-5. Interaction of Combining Characters
	Table 2-6. Nondefault Stacking

	Ligated Multiple Base Characters
	Figure 2-22. Ligated Multiple Base Characters

	Exhibiting Nonspacing Marks in Isolation
	“Characters” and Grapheme Clusters

	2.12 Equivalent Sequences and Normalization
	Figure 2-23. Equivalent Sequences
	Normalization
	Figure 2-24. Canonical Ordering

	Decompositions
	Types of Decomposables
	Examples
	Figure 2-25. Types of Decomposables

	Non-decomposition of Overlaid Diacritics
	Security Issue

	2.13 Special Characters and Noncharacters
	Special Noncharacter Code Points
	Byte Order Mark (BOM)
	Unicode Signature

	Layout and Format Control Characters
	The Replacement Character
	Control Codes

	2.14 Conforming to the Unicode Standard
	Characteristics of Conformant Implementations
	Unacceptable Behavior
	Acceptable Behavior
	Supported Subsets

	Conformance
	3.1 Versions of the Unicode Standard
	Stability
	Version Numbering
	Major and Minor Versions
	Update Version

	Errata and Corrigenda
	Errata
	Corrigenda

	References to the Unicode Standard
	Precision in Version Citation
	References to Unicode Character Properties
	References to Unicode Algorithms

	3.2 Conformance Requirements
	Code Points Unassigned to Abstract Characters
	Interpretation
	Modification
	Character Encoding Forms
	Character Encoding Schemes
	Bidirectional Text
	Normalization Forms
	Normative References
	Unicode Algorithms
	Default Casing Algorithms
	Unicode Standard Annexes

	3.3 Semantics
	Definitions
	Character Identity and Semantics

	3.4 Characters and Encoding
	Table 3-1. Named Unicode Algorithms

	3.5 Properties
	Types of Properties
	Property Values
	Default Property Values
	Classification of Properties by Their Values
	Property Status
	Table 3-2. Normative Character Properties
	Table 3-3. Informative Character Properties

	Context Dependence
	Stability of Properties
	Simple and Derived Properties
	Property Aliases
	Private Use

	3.6 Combination
	Combining Character Sequences
	Grapheme Clusters
	Application of Combining Marks
	Figure 3-1. Enclosing Marks
	Combining Marks and Korean Syllables

	3.7 Decomposition
	Compatibility Decomposition
	Canonical Decomposition

	3.8 Surrogates
	3.9 Unicode Encoding Forms
	Table 3-4. Examples of Unicode Encoding Forms
	UTF-32
	UTF-16
	Table 3-5. UTF-16 Bit Distribution

	UTF-8
	Table 3-6. UTF-8 Bit Distribution
	Table 3-7. Well-Formed UTF-8 Byte Sequences

	Encoding Form Conversion
	Constraints on Conversion Processes
	Best Practices for Using U+FFFD
	Table 3-8. Use of U+FFFD in UTF-8 Conversion

	3.10 Unicode Encoding Schemes
	Table 3-9. Summary of UTF-16BE, UTF-16LE, and UTF-16
	Table 3-10. Summary of UTF-32BE, UTF-32LE, and UTF-32

	3.11 Normalization Forms
	Normalization Stability
	Combining Classes
	Specification of Unicode Normalization Forms
	Starters
	Table 3-11. Combining Marks and Starter Status

	Canonical Ordering Algorithm
	Table 3-12. Reorderable Pairs

	Canonical Composition Algorithm
	Definition of Normalization Forms

	3.12 Conjoining Jamo Behavior
	Definitions
	Hangul Syllable Decomposition
	Table 3-13. Hangul Characters Used in Examples
	Common Constants
	Syllable Index
	Arithmetic Decomposition Mapping
	Full Canonical Decomposition
	Example

	Hangul Syllable Composition
	Arithmetic Primary Composite Mapping
	Example

	Hangul Syllable Name Generation
	Full Canonical Decomposition
	Jamo Short Name Mapping
	Name Concatenation
	Example

	Sample Code for Hangul Algorithms
	Common Constants
	Hangul Decomposition
	Hangul Composition
	Hangul Character Name Generation
	Additional Transformations for Hangul Jamo

	3.13 Default Case Algorithms
	Tailoring
	Definitions
	Table 3-14. Context Specification for Casing

	Default Case Conversion
	Default Case Folding
	Default Case Detection
	Table 3-15. Case Detection Examples

	Default Caseless Matching

	Character Properties
	Status and Attributes
	Consistency of Properties
	4.1 Unicode Character Database
	Unihan Database
	Stability
	Aliases
	UCD in XML
	Online Availability

	4.2 Case
	Definitions of Case and Casing
	Table 4-1. Relationship of Casing Definitions
	Table 4-2. Case Function Values for Strings

	Case Mapping
	Table 4-3. Sources for Case Mapping Information

	4.3 Combining Classes
	Figure 4-1. Positions of Common Combining Marks
	Reordrant, Split, and Subjoined Combining Marks
	Reordrant Class Zero Combining Marks
	Table 4-4. Class Zero Combining Marks—Reordrant
	Table 4-5. Thai, Lao, and Tai Viet Logical Order Exceptions
	Split Class Zero Combining Marks
	Table 4-6. Class Zero Combining Marks—Split
	Subjoined Class Zero Combining Marks
	Table 4-7. Class Zero Combining Marks—Subjoined
	Strikethrough Class Zero Combining Marks
	Table 4-8. Class Zero Combining Marks—Strikethrough

	4.4 Directionality
	4.5 General Category
	Table 4-9. General Category

	4.6 Numeric Value
	Decimal Digits
	Script-Specific Digits
	Ideographic Numeric Values
	Table 4-10. Primary Numeric Ideographs
	Table 4-11. Ideographs Used as Accounting Numbers

	4.7 Bidi Mirrored
	4.8 Name
	Stability
	Character Name Syntax
	Names as Identifiers
	Character Name Matching
	Named Character Sequences
	Character Name Aliases
	Unicode Name Property
	Formal Definition of the Name Property
	Name Uniqueness
	Interpretation of Field 1 of UnicodeData.txt
	Control Codes

	Code Point Labels
	Table 4-12. Construction of Code Point Labels

	Use of Character Names in APIs and User Interfaces
	Use in APIs
	User Interfaces

	4.9 Unicode 1.0 Names
	4.10 Letters, Alphabetic, and Ideographic
	Letters and Syllables
	Alphabetic
	Ideographic

	4.11 Properties Related to Text Boundaries
	4.12 Characters with Unusual Properties
	Table 4-13. Unusual Properties

	Implementation Guidelines
	5.1 Data Structures for Character Conversion
	Issues
	Multistage Tables
	Flat Tables.
	Ranges
	Two-Stage Tables
	Figure 5-1. Two-Stage Tables
	Optimized Two-Stage Table
	Multistage Table Tuning

	5.2 Programming Languages and Data Types
	Unicode Data Types for C
	ANSI/ISO C wchar_t

	5.3 Unknown and Missing Characters
	Reserved and Private-Use Character Codes
	Interpretable but Unrenderable Characters
	Default Ignorable Code Points
	Interacting with Downlevel Systems

	5.4 Handling Surrogate Pairs in UTF-16
	Strategies for Surrogate Pair Support

	5.5 Handling Numbers
	5.6 Normalization
	Alternative Spellings
	Normalization
	Figure 5-2. Normalization

	5.7 Compression
	5.8 Newline Guidelines
	Definitions
	Table 5-1. Hex Values for Acronyms
	Encoding
	Notation
	EBCDIC
	Newline Function
	Table 5-2. NLF Platform Correlations

	Line Separator and Paragraph Separator
	Recommendations
	Converting from Other Character Code Sets
	Interpreting Characters in Text
	Converting to Other Character Code Sets
	Input and Output
	Page Separator

	5.9 Regular Expressions
	5.10 Language Information in Plain Text
	Requirements for Language Tagging
	Language Tags and Han Unification
	Typical Scenarios

	5.11 Editing and Selection
	Consistent Text Elements
	Cluster Boundaries
	Figure 5-3. Consistent Character Boundaries
	Stacked Boundaries
	Atomic Character Boundaries.
	Linear Boundaries
	Nonlinear Boundaries

	5.12 Strategies for Handling Nonspacing Marks
	Rendering
	Other Processes
	Keyboard Input
	Figure 5-4. Dead Keys Versus Handwriting Sequence

	Truncation
	Figure 5-5. Truncating Grapheme Clusters

	5.13 Rendering Nonspacing Marks
	Figure 5-6. Inside-Out Rule
	Fallback Rendering
	Figure 5-7. Fallback Rendering
	Bidirectional Positioning
	Figure 5-8. Bidirectional Placement
	Justification
	Figure 5-9. Justification
	Canonical Equivalence
	Table 5-3. Typing Order Differing from Canonical Order
	Table 5-4. Permuting Combining Class Weights

	Positioning Methods
	Positioning with Ligatures
	Figure 5-10. Positioning with Ligatures
	Positioning with Contextual Forms
	Figure 5-11. Positioning with Contextual Forms
	Positioning with Enhanced Kerning
	Figure 5-12. Positioning with Enhanced Kerning

	5.14 Locating Text Element Boundaries
	5.15 Identifiers
	5.16 Sorting and Searching
	Culturally Expected Sorting and Searching
	Language-Insensitive Sorting
	Searching
	Sublinear Searching
	Figure 5-13. Sublinear Searching

	5.17 Binary Order
	UTF-8 in UTF-16 Order
	UTF-16 in UTF-8 Order

	5.18 Case Mappings
	Titlecasing
	Complications for Case Mapping
	Change in Length
	Greek iota subscript
	Context-dependent Case Mappings
	Locale-dependent Case Mappings
	Figure 5-14. Uppercase Mapping for Turkish I
	Figure 5-15. Lowercase Mapping for Turkish I
	Caseless Characters
	German sharp s
	Figure 5-16. Casing of German Sharp S

	Reversibility
	Caseless Matching
	Stability

	Normalization and Casing
	Table 5-5. Casing and Normalization in Strings

	5.19 Mapping Compatibility Variants
	Confusables

	5.20 Unicode Security
	Alternate Encodings
	Spoofing

	5.21 Ignoring Characters in Processing
	Characters Ignored in Text Segmentation
	Characters Ignored in Line Breaking
	Characters Ignored in Cursive Joining
	Characters Ignored in Identifiers
	Characters Ignored in Searching and Sorting
	Characters Ignored for Display
	Normal Rendering
	Fallback Rendering
	Default Ignorable Code Point

	5.22 Best Practice for U+FFFD Substitution

	Writing Systems and Punctuation
	Scripts and Blocks
	Scripts and Writing Systems
	Punctuation
	6.1 Writing Systems
	Alphabets
	Abjads
	Syllabaries
	Abugidas
	Figure 6-1. Overriding Inherent Vowels
	Logosyllabaries
	Typology of Scripts in the Unicode Standard
	Table 6-1. Typology of Scripts in the Unicode Standard
	Notational Systems

	6.2 General Punctuation
	Use and Interpretation
	Rendering
	Writing Direction
	Figure 6-2. Forms of CJK Punctuation
	Layout Controls
	Encoding Characters with Multiple Semantic Values
	Blocks Devoted to Punctuation
	Format Control Characters
	Space Characters
	Table 6-2. Unicode Space Characters
	No-Break Space
	Narrow No-Break Space

	Dashes and Hyphens
	Table 6-3. Unicode Dash Characters
	Soft Hyphen
	Tilde.
	Dictionary Abbreviation Symbols

	Paired Punctuation
	Mirroring of Paired Punctuation.
	Quotation Marks and Brackets

	Language-Based Usage of Quotation Marks
	European Usage
	Figure 6-3. European Quotation Marks
	East Asian Usage
	Table 6-4. East Asian Quotation Marks
	Glyph Variation.
	Figure 6-4. Asian Quotation Marks
	Table 6-5. Opening and Closing Forms
	Overloaded Character Codes
	Consequences for Semantics

	Apostrophes
	Letter Apostrophe
	Punctuation Apostrophe

	Other Punctuation
	Hyphenation Point
	Word Separator Middle Dot
	Fraction Slash
	Spacing Overscores and Underscores
	Doubled Punctuation
	Period or Full Stop
	Ellipsis
	Vertical Ellipsis
	Leader Dots
	Other Basic Latin Punctuation Marks
	Canonical Equivalence Issues for Greek Punctuation
	Bullets
	Paragraph Marks
	Numeric Separators.
	Commercial Minus
	At Sign
	Table 6-6. Names for the @

	Archaic Punctuation and Editorial Marks
	Archaic Punctuation
	Editorial Marks
	New Testament Editorial Marks
	Ancient Greek Editorial Marks
	Figure 6-5. Examples of Ancient Greek Editorial Marks
	Figure 6-6. Use of Greek Paragraphos
	Double Oblique Hyphen

	Indic Punctuation
	Dandas
	Table 6-7. Unicode Danda Characters

	CJK Punctuation
	Figure 6-7. CJK Parentheses
	Sesame Dots

	Unknown or Unavailable Ideographs
	CJK Compatibility Forms
	Vertical Forms
	Styled Overscores and Underscores
	Small Form Variants
	Fullwidth and Halfwidth Variants

	European Alphabetic Scripts
	7.1 Latin
	Languages
	Diacritical Marks.
	Alternative Glyphs.
	Figure 7-1. Alternative Glyphs in Latin
	Variations in Diacritical Marks
	Latvian Cedilla
	Cedilla and Comma Below in Turkish and Romanian
	Exceptional Case Pairs
	Diacritics on i and j
	Figure 7-2. Diacritics on i and j
	Vietnamese
	Figure 7-3. Vietnamese Letters and Tone Marks
	Standards.
	Related Characters
	Letters of Basic Latin: U+0041–U+007A
	Letters of the Latin-1 Supplement: U+00C0–U+00FF
	Languages
	Ordinals

	Latin Extended-A: U+0100–U+017F
	Compatibility Digraphs
	Languages

	Latin Extended-B: U+0180–U+024F
	Arrangement
	Croatian Digraphs Matching Serbian Cyrillic Letters
	Pinyin Diacritic–Vowel Combinations
	Case Pairs
	Caseless Letters
	Glottal Stop

	IPA Extensions: U+0250–U+02AF
	Standards
	Unifications
	IPA Alternates
	Case Pairs
	Typographic Variants
	Affricate Digraph Ligatures
	Arrangement

	Phonetic Extensions: U+1D00–U+1DBF
	Typographic Features of the UPA.
	Other Phonetic Extensions
	Digraph for th

	Latin Extended Additional: U+1E00–U+1EFF
	Capital Sharp S
	Vietnamese Vowel Plus Tone Mark Combinations

	Latin Extended-C: U+2C60–U+2C7F
	Uighur
	Claudian Letters

	Latin Extended-D: U+A720–U+A7FF
	Egyptological Transliteration
	Historic Mayan Letters
	European Medievalist Letters
	Insular and Celticist Letters
	Orthographic Letter Additions
	Latvian Letters
	Ancient Roman Epigraphic Letters

	Latin Ligatures: U+FB00–U+FB06

	7.2 Greek
	Greek: U+0370–U+03FF
	Standards
	Polytonic Greek
	Nonspacing Marks
	Table 7-1. Nonspacing Marks Used with Greek
	Iota
	Variant Letterforms
	Figure 7-4. Variations in Greek Capital Letter Upsilon
	Representative Glyphs for Greek Phi
	Greek Letters as Symbols
	Symbols Versus Numbers
	Compatibility Punctuation
	Historic Letters
	Coptic-Unique Letters
	Related Characters

	Greek Extended: U+1F00–U+1FFF
	Spacing Diacritics
	Table 7-2. Greek Spacing and Nonspacing Pairs

	Ancient Greek Numbers: U+10140–U+1018F
	Acrophonic Numerals
	Other Numerical Symbols
	Symbol for Zero

	7.3 Coptic
	Development of the Coptic Script
	Casing
	Font Styles
	Characters for Cryptogrammic Use
	Crossed Shei
	Supralineation
	Combining Diacritical Marks
	Punctuation
	Numerical Use of Letters
	Figure 7-5. Coptic Numerals

	7.4 Cyrillic
	Historic Letterforms
	Glagolitic
	Cyrillic: U+0400–U+04FF
	Standards
	Extended Cyrillic
	Abkhasian
	Palochka

	Cyrillic Supplement: U+0500–U+052F
	Komi
	Kurdish Letters

	Cyrillic Extended-A: U+2DE0–U+2DFF
	Titlo Letters

	Cyrillic Extended-B: U+A640–U+A69F
	Numeric Enclosing Signs
	Old Abkhasian Letters

	7.5 Glagolitic
	Glyph Forms
	Ordering
	Punctuation and Diacritics
	Numerical Use of Letters

	7.6 Armenian
	Orthography
	User Community
	Punctuation
	Preferred Characters
	Ligatures

	7.7 Georgian
	Script Forms
	Case Forms
	Mtavruli Style
	Figure 7-6. Georgian Scripts and Casing
	Punctuation
	Historic Punctuation

	7.8 Modifier Letters
	Case and Modifier Letters
	General Category
	Blocks
	Names
	Spacing Modifier Letters: U+02B0–U+02FF
	Phonetic Usage
	Encoding Principles
	Superscript Letters
	Spacing Clones of Diacritics
	Rhotic Hook
	Tone Letters
	Figure 7-7. Tone Letters

	Modifier Tone Letters: U+A700–U+A71F

	7.9 Combining Marks
	Sequence of Base Letters and Combining Marks
	Multiple Semantics
	Glyphic Variation
	Overlaid Diacritics
	Marks as Spacing Characters
	Spacing Clones of Diacritical Marks
	Relationship to ISO/IEC 8859-1
	Diacritics Positioned Over Two Base Characters
	Figure 7-8. Double Diacritics
	Figure 7-9. Positioning of Double Diacritics
	Figure 7-10. Use of CGJ with Double Diacritics
	Combining Marks with Ligatures
	Figure 7-11. Interaction of Combining Marks with Ligatures
	Combining Diacritical Marks: U+0300–U+036F
	Standards
	Underlining and Overlining

	Combining Diacritical Marks Supplement: U+1DC0–U+1DFF
	Combining Marks for Symbols: U+20D0–U+20FF
	Figure 7-12. Use of Vertical Line Overlay for Negation
	Enclosing Marks

	Combining Half Marks: U+FE20–U+FE2F
	Figure 7-13. Double Diacritics and Half Marks

	Combining Marks in Other Blocks

	Middle Eastern Scripts
	8.1 Hebrew
	Hebrew: U+0590–U+05FF
	Directionality
	Cursive.
	Standards
	Vowels and Other Marks of Pronunciation
	Shin and Sin
	Final (Contextual Variant) Letterforms
	Yiddish Digraphs
	Punctuation
	Cantillation Marks
	Positioning
	Meteg
	Atnah Hafukh and Qamats Qatan
	Holam Male and Holam Haser
	Puncta Extraordinaria
	Nun Hafukha
	Currency Symbol

	Alphabetic Presentation Forms: U+FB1D–U+FB4F
	Use of Wide Letters

	8.2 Arabic
	Arabic: U+0600–U+06FF
	Figure 8-1. Directionality and Cursive Connection
	Directionality
	Standards
	Encoding Principles
	Punctuation
	The Non-joiner and the Joiner
	Figure 8-2. Using a Joiner
	Figure 8-3. Using a Non-joiner
	Figure 8-4. Combinations of Joiners and Non-joiners
	Harakat (Vowel) Nonspacing Marks
	Figure 8-5. Placement of Harakat
	Arabic-Indic Digits
	Table 8-1. Arabic Digit Names
	Table 8-2. Glyph Variation in Eastern Arabic-Indic Digits
	Extended Arabic Letters
	Koranic Annotation Signs
	Additional Vowel Marks
	Honorifics
	Arabic Mathematical Symbols
	Date Separator
	Full Stop
	Currency Symbols
	End of Ayah
	Other Signs Spanning Numbers
	Figure 8-6. Arabic Year Sign
	Poetic Verse Sign

	Arabic Cursive Joining
	Minimum Rendering Requirements
	Joining Types
	Table 8-3. Primary Arabic Joining Types
	Table 8-4. Derived Arabic Joining Types
	Joining Rules
	Table 8-5. Arabic Glyph Types

	Arabic Ligatures
	Ligature Classes
	Table 8-6. Arabic Obligatory Ligature Joining Groups
	Ligature Rules
	Table 8-7. Arabic Ligature Notation
	Optional Features

	Arabic Joining Groups
	Dual-Joining
	Table 8-8. Dual-Joining Arabic Characters
	Right-Joining
	Table 8-9. Right-Joining Arabic Characters
	Letter heh
	Letter yeh
	Table 8-10. Forms of the Arabic Letter yeh
	Combining Hamza Above
	Table 8-11. Arabic Letters With Hamza Above
	Jawi
	Kurdish

	Arabic Supplement: U+0750–U+077F
	Marwari

	Arabic Extended-A: U+08A0–U+08FF
	Arabic Presentation Forms-A: U+FB50–U+FDFF
	Ornate Parentheses
	Nuktas

	Arabic Presentation Forms-B: U+FE70–U+FEFF
	Spacing and Tatweel Forms of Arabic Diacritics
	Zero Width No-Break Space

	8.3 Syriac
	Syriac: U+0700–U+074F
	Syriac Language
	Languages Using the Syriac Script.
	Shaping
	Directionality
	Syriac Type Styles
	Character Names
	Syriac Abbreviation Mark
	Figure 8-7. Syriac Abbreviation
	Figure 8-8. Use of SAM
	Ligatures and Combining Characters
	Diacritic Marks and Vowels
	Punctuation
	Digits
	Harklean Marks
	Dalath and Rish
	Semkath
	Vowel Marks
	Miscellaneous Diacritics.
	Table 8-12. Miscellaneous Syriac Diacritic Use
	Use of Characters of the Arabic Block

	Syriac Shaping
	Minimum Rendering Requirements
	Joining Types
	Table 8-13. Syriac Final Alaph Glyph Types
	Syriac Character Joining Groups
	Table 8-14. Dual-Joining Syriac Characters
	Table 8-15. Right-Joining Syriac Characters
	Table 8-16. Syriac Alaph Glyph Forms
	Ligature Classes
	Table 8-17. Syriac Ligatures

	8.4 Samaritan
	Directionality
	Vowel Signs
	Consonant Modifiers
	Punctuation
	Table 8-18. Samaritan Performative Punctuation Marks

	8.5 Thaana
	Directionality
	Vowels
	Table 8-19. Thaana Glyph Placement
	Numerals
	Punctuation
	Character Names and Arrangement

	South Asian Scripts-I
	9.1 Devanagari
	Devanagari: U+0900–U+097F
	Standards
	Encoding Principles

	Principles of the Devanagari Script
	Rendering Devanagari Characters
	Consonant Letters
	Independent Vowel Letters
	Dependent Vowel Signs (Matras)
	Vowel Letters
	Table 9-1. Devanagari Vowel Letters
	Virama (Halant)
	Figure 9-1. Dead Consonants in Devanagari
	Consonant Conjuncts
	Figure 9-2. Conjunct Formations in Devanagari
	Explicit Virama (Halant)
	Figure 9-3. Preventing Conjunct Forms in Devanagari
	Explicit Half-Consonants
	Figure 9-4. Half-Consonants in Devanagari
	Figure 9-5. Independent Half-Forms in Devanagari
	Figure 9-6. Half-Consonants in Oriya
	Consonant Forms
	Figure 9-7. Consonant Forms in Devanagari and Oriya

	Rendering Devanagari
	Rules for Rendering
	Notation
	Dead Consonant Rule
	Consonant RA Rules
	Modifier Mark Rules
	Ligature Rules
	Memory Representation and Rendering Order
	Figure 9-8. Rendering Order in Devanagari
	Sample Half-Forms
	Table 9-2. Sample Devanagari Half-Forms
	Sample Ligatures
	Table 9-3. Sample Devanagari Ligatures
	Sample Half-Ligature Forms
	Table 9-4. Sample Devanagari Half-Ligature Forms
	Language-Specific Allographs
	Figure 9-9. Marathi Allographs
	Combining Marks

	Devanagari Digits, Punctuation, and Symbols
	Digits
	Punctuation
	Other Symbols

	Extensions in the Main Devanagari Block
	Sindhi Letters
	Konkani
	Bodo, Dogri, and Maithili
	Figure 9-10. Use of Apostrophe in Bodo, Dogri and Maithili
	Figure 9-11. Use of Avagraha in Dogri
	Kashmiri Letters
	Letters for Bihari Languages
	Table 9-5. Devanagari Vowels Used in Bihari Languges
	Prishthamatra Orthography
	Table 9-6. Prishthamatra Orthography

	Devanagari Extended: U+A8E0-U+A8FF
	Cantillation Marks for the SZmaveda
	Marks of Nasalization
	Editorial Marks

	Vedic Extensions: U+1CD0-U+1CFF
	Tone Marks
	Diacritics for the Visarga.
	Nasalization Marks
	Ardhavisarga

	9.2 Bengali (Bangla)
	Virama (Hasant)
	Vowel Letters
	Table 9-7. Bengali Vowel Letters
	Two-Part Vowel Signs
	Special Characters
	Historic Characters
	Characters for Assamese
	Rendering Behavior
	Consonant-Vowel Ligatures
	Table 9-8. Bengali Consonant-Vowel Combinations
	Figure 9-12. Requesting Bengali Consonant-Vowel Ligature
	Figure 9-13. Blocking Bengali Consonant-Vowel Ligature
	Khiya
	Khanda Ta.
	Figure 9-14. Bengali Syllable tta
	Ya-phalaa
	Interaction of Repha and Ya-phalaa
	Punctuation
	Truncation
	Table 9-9. Use of Apostrophe in Bangla

	9.3 Gurmukhi
	Encoding Principles
	Vowel Letters
	Table 9-10. Gurmukhi Vowel Letters
	Tones
	Ordering
	Rendering Behavior
	Table 9-11. Gurmukhi Conjuncts
	Table 9-12. Additional Pairin and Addha Forms in Gurmukhi
	Table 9-13. Use of Joiners in Gurmukhi
	Other Symbols
	Punctuation

	9.4 Gujarati
	Vowel Letters
	Table 9-14. Gujarati Vowel Letters
	Rendering Behavior
	Table 9-15. Gujarati Conjuncts
	Punctuation

	9.5 Oriya
	Special Characters
	Vowel Letters
	Table 9-16. Oriya Vowel Letters
	Rendering Behavior
	Table 9-17. Oriya Conjuncts
	Consonant Forms
	Vowels
	Table 9-18. Oriya Vowel Placement
	Oriya VA and WA.
	Punctuation and Symbols
	Fraction Characters

	9.6 Tamil
	Tamil: U+0B80–U+0BFF
	Virama (Pu!!i)
	Figure 9-15. Kssa Ligature in Tamil
	Rendering of the Tamil Script

	Tamil Vowels
	Independent Versus Dependent Vowels
	Left-Side Vowels
	Table 9-19. Tamil Vowel Reordering
	Two-Part Vowels
	Figure 9-16. Tamil Two-Part Vowels
	Table 9-20. Tamil Vowel Splitting and Reordering
	Figure 9-17. Vowel Reordering Around a Tamil Conjunct

	Tamil Ligatures
	Ligatures with Vowel i
	Figure 9-18. Tamil Ligatures with i
	Ligatures with Vowel u
	Table 9-21. Tamil Ligatures with u
	Figure 9-19. Spacing Forms of Tamil u
	Ligatures with ra
	Figure 9-20. Tamil Ligatures with ra
	Ligatures with aa in Traditional Tamil Orthography
	Figure 9-21. Traditional Tamil Ligatures with aa
	Figure 9-22. Traditional Tamil Ligatures with o
	Ligatures with ai in Traditional Tamil Orthography
	Figure 9-23. Traditional Tamil Ligatures with ai
	Figure 9-24. Vowel ai in Modern Tamil
	Tamil aytham
	Punctuation

	Tamil Named Character Sequences
	Table 9-22. Tamil Vowels, Consonants, and Syllables

	9.7 Telugu
	Vowel Letters
	Table 9-23. Telugu Vowel Letters
	Rendering Behavior
	NakZra-Pollu
	Table 9-24. Rendering of Telugu na + virama
	Reph
	Special Characters
	Fractions
	Punctuation

	9.8 Kannada
	Kannada: U+0C80–U+0CFF
	Principles of the Kannada Script
	Vowel Letters
	Table 9-25. Kannada Vowel Letters
	Consonant Conjuncts
	Special Characters
	Kannada Letter LLLA

	Rendering Kannada
	Explicit Virama (Halant)
	Consonant Clusters Involving RA
	Modifier Mark Rules
	Avagraha Sign
	Punctuation

	9.9 Malayalam
	Vowel Letters
	Table 9-26. Malayalam Vowel Letters
	Rendering Behavior
	Table 9-27. Malayalam Orthographic Reform
	Table 9-28. Malayalam Conjuncts
	Table 9-29. Candrakala Examples
	Chillu Characters
	Table 9-30. Atomic Encoding of Malayalam Chillus
	Special Cases Involving ra
	Table 9-31. Malayalam /rr/ and /tt/
	Table 9-32. Malayalam /nr/ and /nt/
	Dot Reph
	Historic Characters
	Special Characters
	Punctuation

	South Asian Scripts-II
	10.1 Sinhala
	Vowel Letters
	Table 10-1. Sinhala Vowel Letters
	Other Letters for Tamil.
	Historical Symbols.

	10.2 Tibetan
	General Principles of the Tibetan Script
	Figure 10-1. Tibetan Syllable Structure
	Consonants
	Vowels
	Coding Order
	Allographical Considerations
	Head Position “ra”
	Full-Form “ra” in Head Position.
	Subjoined Position “wa”, “ya”, and “ra”
	Halanta (Srog-Med).
	Line Breaking Considerations
	Tibetan Punctuation
	Svasti Signs
	Other Characters
	Tibetan Half-Numbers
	Tibetan Transliteration and Transcription of Other Languages
	Other Signs
	Traditional Text Formatting and Line Justification
	Figure 10-2. Justifying Tibetan Tseks
	Tibetan Shorthand Abbreviations (bskungs-yig) and Limitations of the Encoding

	10.3 Lepcha
	Structure
	Vowels
	Medials
	Retroflex Consonants
	Ordering of Syllable Components
	Table 10-2. Lepcha Syllabic Structure
	Rendering
	Digits
	Punctuation

	10.4 Phags-pa
	History
	Basic Structure
	Syllable Division
	Candrabindu
	Figure 10-3. Phags-pa Syllable Om
	Alternate Letters
	Numbers
	Punctuation
	Positional Variants
	Table 10-3. Phags-pa Positional Forms of I, U, E, and O
	Mirrored Variants
	Table 10-4. Contextual Glyph Mirroring in Phags-pa
	Table 10-5. Phags-pa Standardized Variants
	Figure 10-4. Phags-pa Reversed Shaping

	10.5 Limbu
	Consonants
	Vowels
	Vowel Length
	Glottalization
	Collating Order
	Glyph Placement
	Table 10-6. Positions of Limbu Combining Characters
	Punctuation
	Digits

	10.6 Syloti Nagri
	Virama and Conjuncts
	Digits
	Punctuation
	Poetry Marks

	10.7 Kaithi
	Standards
	Styles
	Rendering Behavior
	Vowel Letters
	Consonant Conjuncts
	Ruled Lines
	Nukta
	Punctuation
	Digits

	10.8 Saurashtra
	Glyph Placement
	Digits
	Punctuation
	Saurashtra Consonant Sign Haaru

	10.9 Sharada
	Rendering Behavior
	Ruled Lines
	Virama
	Candrabindu and Avagraha
	Jihvamuliya and Upadhmaniya
	Punctuation
	Digits

	10.10 Takri
	Vowel Letters
	Table 10-7. Takri Vowel Letters
	Consonant Conjuncts
	Nukta
	Headlines
	Punctuation
	Fractions

	10.11 Chakma
	Independent Vowels
	Vowel Killer and Virama
	Chakma Fonts
	Punctuation
	Digits

	10.12 Meetei Mayek
	Structure
	Vowel Letters
	Final Consonants
	Abbreviations
	Order
	Punctuation
	Digits

	10.13 Ol Chiki
	Structure
	Digits
	Punctuation
	Modifier Letters
	Glottalization
	Aspiration
	Ligatures

	10.14 Sora Sompeng
	Encoding Structure
	Character Names
	Punctuation
	Linebreaking

	10.15 Kharoshthi
	Kharoshthi: U+10A00–U+10A5F
	Figure 10-5. Geographical Extent of the Kharoshthi Script
	Directionality
	Diacritic Marks and Vowels
	Numerals
	Figure 10-6. Kharoshthi Number 1996
	Punctuation
	Word Breaks, Line Breaks, and Hyphenation
	Sorting

	Rendering Kharoshthi
	Figure 10-7. Kharoshthi Rendering Example
	Combining Vowels
	Table 10-8. Kharoshthi Vowel Signs
	Combining Vowel Modifiers
	Table 10-9. Kharoshthi Vowel Modifiers
	Combining Consonant Modifiers
	Table 10-10. Kharoshthi Consonant Modifiers
	Virama
	Table 10-11. Examples of Kharoshthi Virama

	10.16 Brahmi
	Encoding Model
	Vowel Letters
	Table 10-12. Brahmi Vowel Letters
	Rendering Behavior
	Figure 10-8. Consonant Ligatures in Brahmi
	Vowel Modifiers
	Old Tamil Brahmi
	Bhattiprolu Brahmi
	Punctuation
	Numerals
	Table 10-13. Brahmi Positional Digits

	Southeast Asian Scripts
	11.1 Thai
	Standards.
	Encoding Principles.
	Table 11-1. Glyph Positions in Thai Syllables
	Rendering of Thai Combining Marks
	Thai Punctuation
	Spacing
	Thai Transcription of Pali and Sanskrit

	11.2 Lao
	Encoding Principles
	Punctuation
	Glyph Placement
	Table 11-2. Glyph Positions in Lao Syllables
	Additional Letters
	Rendering of Lao Combining Marks
	Lao Aspirated Nasals

	11.3 Myanmar
	Myanmar: U+1000–U+109F
	Standards
	Encoding Principles
	Composite Characters
	Encoding Subranges
	Conjuncts
	Kinzi
	Medial Consonants
	Asat
	Contractions
	Great sa
	Tall aa
	Ordering of Syllable Components
	Table 11-3. Myanmar Syllabic Structure
	Spacing.

	Myanmar Extended-A: U+AA60–U+AA7F
	Khamti Shan
	Consonants
	Vowels
	Tones
	Table 11-4. Khamti Shan Tone Marks
	Digits
	Other Symbols
	Subjoined Characters
	Historical Khamti Shan

	Aiton and Phake
	Consonants
	Subjoined Consonants
	Vowels
	Ligatures
	Tones

	11.4 Khmer
	Khmer: U+1780–U+17FF
	Principles of the Khmer Script
	Glottal Consonant
	Table 11-5. Independent Khmer Vowel Characters
	Subscript Consonants
	Subscript Independent Vowel Signs
	Consonant Registers
	Table 11-6. Two Registers of Khmer Consonants
	Encoding Principles
	Subscript Consonant Signs
	Table 11-7. Khmer Subscript Consonant Signs
	Dependent Vowel Signs
	Table 11-8. Khmer Composite Dependent Vowel Signs with Nikahit
	Independent Vowel Characters
	Subscript Independent Vowel Signs
	Table 11-9. Khmer Subscript Independent Vowel Signs
	Other Signs as Syllabic Components
	Ligatures
	Figure 11-1. Common Ligatures in Khmer
	Multiple Glyphs
	Figure 11-2. Common Multiple Forms in Khmer
	Characters Whose Use Is Discouraged
	Ordering of Syllable Components.
	Figure 11-3. Examples of Syllabic Order in Khmer
	Consonant Shifters
	Ligature Control
	Figure 11-4. Ligation in Muul Style in Khmer
	Spacing.

	Khmer Symbols: U+19E0–U+19FF
	Symbols

	11.5 Tai Le
	Table 11-10. Tai Le Tone Marks
	Digits.
	Table 11-11. Myanmar Digits
	Punctuation.

	11.6 New Tai Lue
	Syllabic Structure
	Table 11-12. New Tai Lue Vowel Placement
	Final Consonants
	Tones
	Table 11-13. New Tai Lue Registers and Tones
	Digits

	11.7 Tai Tham
	Consonants
	Independent Vowels
	Dependent Consonant Signs
	Dependent Vowel Signs
	Tone Marks
	Other Combining Marks
	Digits
	Punctuation
	Collating Order
	Linebreaking

	11.8 Tai Viet
	Structure
	Visual Order
	Tone Classes and Tone Marks
	Final Consonants
	Symbols and Punctuation
	Table 11-14. Tai Viet Symbols and Punctuation
	Word Spacing
	Collating Order

	11.9 Kayah Li
	Structure
	Vowels
	Tones
	Digits
	Punctuation

	11.10 Cham
	Structure
	Independent Vowel Letters
	Consonants
	Ordering of Syllable Components
	Table 11-15. Cham Syllabic Structure
	Digits
	Punctuation
	Line Breaking

	11.11 Philippine Scripts
	Tagalog: U+1700–U+171F
	Hanunóo: U+1720–U+173F
	Buhid: U+1740–U+175F
	Tagbanwa: U+1760–U+177F
	Principles of the Philippine Scripts
	Consonant Letters.
	Independent Vowel Letters.
	Dependent Vowel Signs.
	Virama.
	Directionality.
	Rendering.
	Table 11-16. Hanunóo and Buhid Vowel Sign Combinations
	Punctuation.

	11.12 Buginese
	Structure
	Ligature
	Figure 11-5. Buginese Ligature
	Order
	Punctuation
	Numerals

	11.13 Balinese
	Structure
	Table 11-17. Balinese Base Consonants and Conjunct Forms
	Table 11-18. Sasak Extensions for Balinese
	Behavior of ra
	Figure 11-6. Writing dharma in Balinese
	Behavior of ra repa
	Rendering
	Table 11-19. Balinese Consonant Clusters with u and u:
	Nukta
	Ordering
	Punctuation
	Hyphenation
	Musical Symbols
	Modre Symbols

	11.14 Javanese
	Consonants
	Independent Vowels
	Dependent Vowels
	Figure 11-7. Representation of Javanese Two-Part Vowels
	Consonant Signs
	Rendering
	Digits
	Punctuation
	Reduplication
	Ordering of Syllable Components
	Linebreaking

	11.15 Rejang
	Structure
	Rendering
	Ordering
	Digits
	Punctuation

	11.16 Batak
	Structure
	Rendering
	Punctuation
	Linebreaking

	11.17 Sundanese
	Structure
	Consonant Additions
	Digits
	Punctuation
	Ordering
	Ordering of Syllable Components
	Table 11-20. Sundanese Syllabic Structure
	Rendering

	East Asian Scripts
	12.1 Han
	CJK Unified Ideographs
	CJK Standards
	Table 12-1. Sources for Unified Han
	Omission of Repertoire for Some Sources

	Blocks Containing Han Ideographs
	Table 12-2. Blocks Containing Han Ideographs
	Table 12-3. Small Extensions to the URO
	IICore

	General Characteristics of Han Ideographs
	Table 12-4. Common Han Characters
	Terminology
	Distinguishing Han Character Usage Between Languages
	Figure 12-1. Han Spelling
	Figure 12-2. Semantic Context for Han Characters
	Simplified and Traditional Chinese
	Dialects and Early Forms of Chinese
	Sorting Han Ideographs.
	Character Glyphs

	Principles of Han Unification
	Three-Dimensional Conceptual Model
	Figure 12-3. Three-Dimensional Conceptual Model

	Unification Rules
	Figure 12-4. CJK Source Separation
	Table 12-5. Source Encoding for Sword Variants
	Figure 12-5. Not Cognates, Not Unified

	Abstract Shape
	Two-Level Classification
	Ideographic Component Structure
	Figure 12-6. Ideographic Component Structure
	Figure 12-7. The Most Superior Node of an Ideographic Component
	Ideograph Features
	Uniqueness or Unification
	Spatial Positioning
	Examples
	Table 12-6. Ideographs Not Unified
	Table 12-7. Ideographs Unified

	Han Ideograph Arrangement
	Table 12-8. Han Ideograph Arrangement

	Radical-Stroke Indices
	Mappings for Han Ideographs
	CJK Unified Ideographs Extension B: U+20000–U+2A6D6
	CJK Unified Ideographs Extension C: U+2A700–U+2B734
	CJK Unified Ideographs Extension D: U+2B740–U+2B81D
	CJK Compatibility Ideographs: U+F900–U+FAFF
	CJK Compatibility Supplement: U+2F800–U+2FA1D
	Kanbun: U+3190–U+319F
	Symbols Derived from Han Ideographs
	CJK and KangXi Radicals: U+2E80–U+2FD5
	Standards.
	Semantics.

	CJK Additions from HKSCS and GB 18030
	CJK Strokes: U+31C0–U+31EF

	12.2 Ideographic Description Characters
	Applicability to Other Scripts
	Ideographic Description Sequences
	Figure 12-8. Using the Ideographic Description Characters
	Equivalence.
	Interaction with the Ideographic Variation Mark.
	Rendering.
	Character Boundaries.
	Standards.

	12.3 Bopomofo
	Standards
	Mandarin Tone Marks
	Table 12-9. Mandarin Tone Marks
	Standard Mandarin Bopomofo
	Extended Bopomofo.
	Extended Bopomofo Tone Marks.
	Table 12-10. Minnan and Hakka Tone Marks
	Rendering of Bopomofo.

	12.4 Hiragana and Katakana
	Hiragana: U+3040–U+309F
	Standards
	Combining Marks
	Iteration Marks
	Vertical Text Digraph

	Katakana: U+30A0–U+30FF
	Standards
	Punctuation-like Characters
	Vertical Text Digraph

	Katakana Phonetic Extensions: U+31F0–U+31FF
	Standards

	Kana Supplement U+1B000–U+1B0FF
	Figure 12-9. Japanese Historic Kana for e and ye

	12.5 Halfwidth and Fullwidth Forms
	Unifications

	12.6 Hangul
	Hangul Jamo: U+1100–U+11FF
	Hangul Jamo Extended-A: U+A960–U+A97F
	Hangul Jamo Extended-B: U+D7B0–U+D7FF
	Hangul Compatibility Jamo: U+3130–U+318F
	Standards
	Normalization
	Table 12-11. Separating Jamo Characters

	Hangul Syllables: U+AC00–U+D7A3
	Standards
	Equivalence
	Hangul Syllable Composition
	Hangul Syllable Decomposition
	Hangul Syllable Name
	Hangul Syllable Representative Glyph
	Table 12-12. Line-Based Placement of Jungseong
	Collation

	12.7 Yi
	Traditional Yi Script
	Standardized Yi Script
	Standards
	Naming Conventions and Order
	Yi Syllable Iteration Mark
	Punctuation
	Rendering
	Yi Radicals

	Additional Modern Scripts
	13.1 Ethiopic
	Ethiopic: U+1200–U+137F
	Basic and Extended Ethiopic.
	Encoding Principles.
	Variant Glyph Forms.
	Labialized Subseries.
	Table 13-1. Labialized Forms in Ethiopic -WAA
	Table 13-2. Labialized Forms in Ethiopic -WE
	Keyboard Input.
	Syllable Names.
	Encoding Order and Sorting.
	Word Separators.
	Section Mark
	Diacritical Marks.
	Numbers.

	Ethiopic Extensions

	13.2 Mongolian
	History
	Directionality
	Encoding Principles
	Figure 13-1. Mongolian Glyph Convergence
	Cursive Joining
	Figure 13-2. Mongolian Consonant Ligation
	Figure 13-3. Mongolian Positional Forms
	Free Variation Selectors
	Figure 13-4. Mongolian Free Variation Selector
	Representative Glyphs
	Vowel Harmony
	Figure 13-5. Mongolian Gender Forms
	Narrow No-Break Space
	Mongolian Vowel Separator
	Figure 13-6. Mongolian Vowel Separator
	Numbers
	Punctuation
	Nirugu
	Syllable Boundary Marker

	13.3 Osmanya
	Structure
	Ordering
	Names and Glyphs

	13.4 Tifinagh
	History
	Source Standards
	Ordering
	Directionality
	Diacritical Marks.
	Contextual Shaping
	Figure 13-7. Tifinagh Contextual Shaping
	Bi-Consonants
	Figure 13-8. Tifinagh Consonant Joiner and Bi-consonants

	13.5 N’Ko
	Structure
	Digits
	Diacritical Marks
	Table 13-3. N’Ko Tone Diacritics on Vowels
	Table 13-4. Other N’Ko Diacritic Usage
	Ordinal Numbers
	Figure 13-9. Examples of N’Ko Ordinals
	Punctuation
	Character Names and Block Name
	Ordering
	Rendering
	Table 13-5. N’Ko Letter Shaping

	13.6 Vai
	Sources
	Basic Structure
	Historic Syllables
	Logograms
	Digits
	Punctuation
	Segmentation
	Ordering

	13.7 Bamum
	Bamum: U+A6A0–U+A6FF
	Structure
	Diacritical Marks
	Punctuation
	Digits

	Bamum Supplement: U+16800–U+16A3F

	13.8 Cherokee
	Tones.
	Case and Spelling.
	Numbers.
	Rendering and Input.
	Punctuation.
	Standards.

	13.9 Canadian Aboriginal Syllabics
	Canadian Aboriginal Syllabics: U+1400–U+167F
	Organization
	Arrangement
	Extensions
	Punctuation and Symbols

	Canadian Aboriginal Syllabics Extended: U+18B0–U+18FF

	13.10 Deseret
	Letter Names and Shapes.
	Structure.
	Sorting.
	Typographic Conventions.
	Figure 13-10. Short Words Equivalent to Deseret Letter Names
	Phonetics.
	Table 13-6. IPA Transcription of Deseret

	13.11 Shavian
	Structure.
	Collation

	13.12 Lisu
	Structure
	Tone Letters
	Table 13-7. Lisu Tone Letters
	Other Modifier Letters
	Digits and Separators
	Punctuation
	Table 13-8. Punctuation Adopted in Lisu Orthography
	Linebreaking
	Word Separation

	13.13 Miao
	Encoding Principles
	Tone Marks
	Rendering of “wart”
	Ordering
	Digits
	Punctuation

	Additional Ancient and Historic Scripts
	14.1 Ogham
	Structure.
	Rendering.
	Forfeda (Supplementary Characters)

	14.2 Old Italic
	Directionality.
	Punctuation.
	Numerals.
	Glyphs.
	Figure 14-1. Distribution of Old Italic

	14.3 Runic
	Historical Script
	Direction
	The Runic Alphabet
	Representative Glyphs
	Unifications
	Long-Branch and Short-Twig
	Staveless Runes
	Punctuation Marks
	Golden Numbers
	Encoding

	14.4 Gothic
	Diacritics.
	Numerals.
	Punctuation.

	14.5 Old Turkic
	Structure
	Directionality
	Punctuation

	14.6 Linear B
	Linear B Syllabary: U+10000–U+1007F
	Standards

	Linear B Ideograms: U+10080–U+100FF
	Aegean Numbers: U+10100–U+1013F

	14.7 Cypriot Syllabary
	Table 14-1. Similar Characters in Linear B and Cypriot

	14.8 Ancient Anatolian Alphabets
	Lycian: U+10280–U+1029F
	Carian: U+102A0–U+102DF
	Lydian: U+10920–U+1093F
	Lycian
	Carian
	Lydian

	14.9 Old South Arabian
	Directionality
	Structure
	Segmentation
	Monograms
	Numbers
	Table 14-2. Old South Arabian Numeric Characters
	Table 14-3. Number Formation in Old South Arabian
	Names

	14.10 Phoenician
	Directionality
	Punctuation
	Stylistic Variation
	Numerals
	Names

	14.11 Imperial Aramaic
	Directionality
	Punctuation
	Numbers
	Table 14-4. Number Formation in Aramaic

	14.12 Mandaic
	Structure
	Punctuation
	Directionality
	Shaping and Layout Behavior
	Table 14-5. Dual-Joining Mandaic Characters
	Table 14-6. Right-Joining Mandaic Characters
	Linebreaking

	14.13 Inscriptional Parthian and Inscriptional Pahlavi
	Directionality
	Shaping and Layout Behavior
	Table 14-7. Inscriptional Parthian Shaping Behavior
	Numbers
	Heterograms

	14.14 Avestan
	Directionality
	Shaping Behavior
	Table 14-8. Avestan Shaping Behavior
	Punctuation

	14.15 Ugaritic
	Variant Glyphs
	Ordering.
	Character Names.

	14.16 Old Persian
	Directionality
	Repertoire
	Numerals
	Variants

	14.17 Sumero-Akkadian
	Cuneiform: U+12000–U+123FF
	Early History of Cuneiform
	Geographic Range
	Table 14-9. Cuneiform Script Usage
	Sources and Coverage
	Simple Signs
	Complex and Compound Signs
	Mergers and Splits
	Glyph Variants Acquiring Independent Semantic Status
	Formatting
	Ordering
	Other Standards

	Cuneiform Numbers and Punctuation: U+12400–U+1247F
	Cuneiform Punctuation
	Cuneiform Numerals

	14.18 Egyptian Hieroglyphs
	Structure
	Directionality
	Rendering
	Table 14-10. Hieroglyphic Character Sequence
	Figure 14-2. Interpretion of Hieroglyphic Markup
	Hieratic Fonts
	Repertoire
	Character Names
	Sign Classification
	Enclosures
	Numerals

	14.19 Meroitic Hieroglyphs and Meroitic Cursive
	Structure
	Directionality
	Shaping
	Punctuation
	Symbols

	Symbols
	15.1 Currency Symbols
	Unification
	Figure 15-1. Alternative Glyphs for Dollar Sign
	Fonts.
	Table 15-1. Currency Symbols Encoded in Other Blocks
	Lira Sign
	Yen and Yuan
	Euro Sign
	Indian Rupee Sign
	Turkish Lira Symbol

	15.2 Letterlike Symbols
	Letterlike Symbols: U+2100–U+214F
	Numero Sign
	Figure 15-2. Alternative Glyphs for Numero Sign
	Unit Symbols
	Compatibility
	Styles
	Standards

	Mathematical Alphanumeric Symbols: U+1D400–U+1D7FF
	Words Used as Variables.

	Mathematical Alphabets
	Basic Set of Alphanumeric Characters.
	Additional Characters.
	Dotless Characters
	Figure 15-3. Wide Mathematical Accents
	Semantic Distinctions.
	Figure 15-4. Style Variants and Semantic Distinctions in Mathematics
	Mathematical Alphabets.
	Table 15-2. Mathematical Alphanumeric Symbols
	Compatibility Decompositions.

	Fonts Used for Mathematical Alphabets
	Fraktur
	Math Italics
	Figure 15-5. Easily Confused Shapes for Mathematical Glyphs
	Hard-to-Distinguish Letters.
	Font Support for Combining Diacritics.
	Type Style for Script Characters.
	Double-Struck Characters.

	Arabic Mathematical Alphabetic Symbols: U+1EE00–U+1EEFF
	Shaping
	Large Operators
	Properties

	15.3 Numerals
	Encoding Principles
	Decimal Digits
	Table 15-3. Script-Specific Decimal Digits
	Exceptions
	CJK Ideographs Used as Decimal Digits
	Figure 15-6. CJK Ideographic Numbers

	Other Digits
	Hexadecimal Digits
	Compatibility Digits
	Table 15-4. Compatibility Digits
	Parsing of Superscript and Subscript Digits
	Numeric Bullets
	Glyph Variants of Decimal Digits
	Figure 15-7. Regular and Old Style Digits
	Accounting Numbers

	Non-Decimal Radix Systems
	Ethiopic Numerals
	Cuneiform Numerals
	Other Ancient Numeral Systems

	Acrophonic Systems and Other Letter-based Numbers
	Roman Numerals
	Greek Numerals

	Rumi Numeral Forms: U+10E60–U+10E7E
	CJK Numerals
	CJK Ideographic Traditional Numerals
	Chinese Counting-Rod Numerals
	Suzhou-Style Numerals

	Fractions
	Figure 15-8. Alternate Forms of Vulgar Fractions

	Common Indic Number Forms: U+A830–U+A83F

	15.4 Superscript and Subscript Symbols
	Superscripts and Subscripts: U+2070–U+209F
	Parsing of Superscript and Subscript Digits
	Standards
	Superscripts and Subscripts in Other Blocks

	15.5 Mathematical Symbols
	Semantics.
	Mathematical Property
	Mathematical Operators: U+2200–U+22FF
	Standards
	Encoding Principles
	Unifications
	Greek-Derived Symbols
	N-ary Operators
	Invisible Operators
	Minus Sign
	Delimiters
	Bidirectional Layout
	Other Elements of Mathematical Notation

	Supplements to Mathematical Symbols and Arrows
	Standards.

	Supplemental Mathematical Operators: U+2A00–U+2AFF
	Miscellaneous Mathematical Symbols-A: U+27C0–U+27EF
	Mathematical Brackets.
	Long Division
	Fractional Slash and Other Diagonals

	Miscellaneous Mathematical Symbols-B: U+2980–U+29FF
	Wiggly Fence.

	Miscellaneous Symbols and Arrows: U+2B00–U+2B7F
	Arrows: U+2190–U+21FF
	Bidirectional Layout
	Standards
	Unifications

	Supplemental Arrows
	Long Arrows.

	Standardized Variants of Mathematical Symbols
	Change in Representative Glyphs for U+2278 and U+2279

	15.6 Invisible Mathematical Operators
	Invisible Separator
	Invisible Multiplication
	Invisible Plus
	Invisible Function Application

	15.7 Technical Symbols
	Control Pictures: U+2400–U+243F
	Code Points for Pictures for Control Codes
	Pictures for ASCII Space
	Standards

	Miscellaneous Technical: U+2300–U+23FF
	Keytop Labels.
	Floor and Ceiling
	Crops and Quine Corners
	Figure 15-9. Usage of Crops and Quine Corners
	Angle Brackets.
	APL Functional Symbols
	Symbol Pieces.
	Table 15-5. Use of Mathematical Symbol Pieces
	Horizontal Brackets
	Terminal Graphics Characters.
	Decimal Exponent Symbol
	Figure 15-10. Usage of the Decimal Exponent Symbol
	Dental Symbols.
	Metrical Symbols
	Electrotechnical Symbols
	User Interface Symbols
	Standards.

	Optical Character Recognition: U+2440–U+245F
	Standards

	15.8 Geometrical Symbols
	Box Drawing and Block Elements
	Box Drawing
	Block Elements
	Standards

	Geometric Shapes: U+25A0–U+25FF
	Hatched Squares
	Lozenge
	Use in Mathematics
	Standards

	15.9 Miscellaneous Symbols
	Rendering of Emoji Symbols
	Color Words in Unicode Character Names
	Miscellaneous Symbols: U+2600–U+26FF
	Miscellaneous Symbols and Pictographs: U+1F300–U+1F5FF
	Standards
	Weather Symbols
	Traffic Signs
	Dictionary and Map Symbols
	Plastic Bottle Material Code System.
	Recycling Symbol for Generic Materials.
	Universal Recycling Symbol.
	Paper Recycling Symbols.
	Gender Symbols
	Genealogical Symbols
	Game Symbols
	Animal Symbols
	Cultural Symbols
	Miscellaneous Symbols in Other Blocks

	Emoticons: U+1F600–U+1F64F
	Transport and Map Symbols: U+1F680–U+1F6FF
	Dingbats: U+2700–U+27BF
	Unifications and Additions.
	Ornamental Brackets.

	Alchemical Symbols: U+1F700–U+1F77F
	Mahjong Tiles: U+1F000–U+1F02F
	Domino Tiles: U+1F030–U+1F09F
	Playing Cards: U+1F0A0–U+1F0FF
	Yijing Hexagram Symbols: U+4DC0–U+4DFF
	Tai Xuan Jing Symbols: U+1D300–U+1D356
	Monograms
	Digrams
	Tetragrams

	Ancient Symbols: U+10190–U+101CF
	Phaistos Disc Symbols: U+101D0–U+101FF
	Directionality

	15.10 Enclosed and Square
	Enclosed Symbols
	Square Symbols
	Source Standards
	Allocation
	Decomposition
	Casing
	Enclosed Alphanumerics: U+2460–U+24FF
	Enclosed CJK Letters and Months: U+3200–U+32FF
	CJK Compatibility: U+3300–U+33FF
	Japanese Era Names
	Table 15-6. Japanese Era Names

	Enclosed Alphanumeric Supplement: U+1F100–U+1F1FF
	Regional Indicator Symbols

	Enclosed Ideographic Supplement: U+1F200–U+1F2FF

	15.11 Braille
	Example
	Usage Model.
	Imaging.
	Script

	15.12 Western Musical Symbols
	Glyphs
	Symbols in Other Blocks
	Gregorian
	Processing.
	Input Methods.
	Directionality.
	Figure 15-11. Examples of Specialized Music Layout
	Format Characters.
	Precomposed Note Characters.
	Figure 15-12. Precomposed Note Characters
	Alternative Noteheads.
	Figure 15-13. Alternative Noteheads
	Augmentation Dots and Articulation Symbols.
	Figure 15-14. Augmentation Dots and Articulation Symbols
	Ornamentation.
	Table 15-7. Examples of Ornamentation

	15.13 Byzantine Musical Symbols
	Processing.

	15.14 Ancient Greek Musical Notation
	Unification
	Table 15-8. Representation of Ancient Greek Vocal and Instrumental Notation
	Naming Conventions
	Font
	Combining Marks

	Special Areas and Format Characters
	16.1 Control Codes
	Representing Control Sequences
	Escape Sequences

	Specification of Control Code Semantics
	Table 16-1. Control Codes Specified in the Unicode Standard
	Newline Function

	16.2 Layout Controls
	Line and Word Breaking
	No-Break Space
	Word Joiner
	Zero Width No-Break Space
	Zero Width Space
	Table 16-2. Letter Spacing
	Zero-Width Spaces and Joiner Characters
	Hyphenation.
	Line and Paragraph Separator

	Cursive Connection and Ligatures
	Joiner
	Non-joiner
	Cursive Connection
	Figure 16-1. Prevention of Joining
	Figure 16-2. Exhibition of Joining Glyphs in Isolation
	Examples.
	Figure 16-3. Effect of Intervening Joiners
	Transparency
	Joiner and Non-joiner in Indic Scripts
	Implementation Notes.
	Filtering Joiner and Non-joiner

	Combining Grapheme Joiner
	Blocking Reordering
	CGJ and Collation
	Rendering
	CGJ and Joiner Characters

	Bidirectional Ordering Controls
	Table 16-3. Bidirectional Ordering Controls

	Stateful Format Controls
	Table 16-4. Paired Stateful Controls
	Table 16-5. Paired Stateful Controls (Deprecated)

	16.3 Deprecated Format Characters
	Symmetric Swapping
	Character Shaping Selectors
	Numeric Shape Selectors

	16.4 Variation Selectors
	Variation Sequence
	Mongolian

	16.5 Private-Use Characters
	Properties.
	Normalization.
	Private Use Area: U+E000–U+F8FF
	Encoding Structure.
	Corporate Use Subarea.
	End-User Subarea.
	Allocation of Subareas.

	Supplementary Private Use Areas
	Encoding Structure.

	16.6 Surrogates Area
	High-Surrogate
	Low-Surrogate
	Private-Use High-Surrogates

	16.7 Noncharacters
	U+FFFF and U+10FFFF
	U+FFFE

	16.8 Specials
	Byte Order Mark (BOM): U+FEFF
	Table 16-6. Unicode Encoding Scheme Signatures
	Table 16-7. U+FEFF Signature in Other Charsets

	Specials: U+FFF0–U+FFF8
	Annotation Characters: U+FFF9–U+FFFB
	Figure 16-4. Annotation Characters
	Conformance
	Use in Plain Text
	Lexical Restrictions
	Formatting
	Input
	Collation
	Bidirectional Text

	Replacement Characters: U+FFFC–U+FFFD
	U+FFFC
	U+FFFD

	16.9 Deprecated Tag Characters
	Deprecated Tag Characters: U+E0000–U+E007F
	Syntax for Embedding Tags
	Tag Identification.
	Tag Termination.
	Language Tags.
	Tag Scope and Nesting.
	Figure 16-5. Tag Characters
	Canceling Tag Values.

	Working with Language Tags
	Avoiding Language Tags.
	Higher-Level Protocols.
	Effect of Tags on Interpretation of Text.
	Display.
	Processing.
	Range Checking for Tag Characters.
	Editing and Modification.
	Dangers of Incomplete Support.

	Unicode Conformance Issues
	Formal Tag Syntax

	About the Code Charts
	17.1 Character Names List
	Images in the Code Charts and Character Lists
	Fonts
	Alternative Forms
	Orientation

	Special Characters and Code Points
	Combining Characters
	Dashed Box Convention
	Reserved Characters
	Noncharacters
	Deprecated Characters

	Character Names
	Informative Aliases
	Normative Aliases
	Cross References
	Explicit Inequality
	Other Linguistic Relationships

	Information About Languages
	Case Mappings
	Decompositions
	Standardized Variation Sequences
	Subheads

	17.2 CJK Unified and Compatibility Ideographs
	CJK Unified Ideographs
	Table 17-1. IRG Sources
	Chart for the Main CJK Block
	Figure 17-1. CJK Chart Format for the Main CJK Block
	Charts for CJK Extensions
	Figure 17-2. CJK Chart Format for CJK Extension A
	Figure 17-3. CJK Chart Format for CJK Extension B

	Compatibility Ideographs
	Figure 17-4. CJK Chart Format for Compatibility Ideographs

	17.3 Hangul Syllables

	Notational Conventions
	Code Points
	Character Names
	Character Blocks
	Sequences
	Rendering
	Figure A-1. Example of Rendering

	Properties and Property Values
	Miscellaneous
	Extended BNF
	Table A-1. Extended BNF
	Character Classes
	Table A-2. Character Class Examples

	Operators
	Table A-3. Operators

	Unicode Publications and Resources
	B.1 The Unicode Consortium
	The Unicode Technical Committee
	Other Activities

	B.2 Unicode Publications
	B.3 Unicode Technical Standards
	UTS #6: A Standard Compression Scheme for Unicode
	UTS #10: Unicode Collation Algorithm
	UTS #18: Unicode Regular Expressions
	UTS #22: Character Mapping Markup Language (CharMapML)
	UTS #35: Unicode Locale Data Markup Language (LDML)
	UTS #37: Unicode Ideographic Variation Database
	UTS #39: Unicode Security Mechanisms

	B.4 Unicode Technical Reports
	UTR #16: UTF-EBCDIC
	UTR #17: Unicode Character Encoding Model
	UTR #20: Unicode in XML and Other Markup Languages
	UTR #23: The Unicode Character Property Model
	UTR #25: Unicode Support for Mathematics
	UTR #26: Compatibility Encoding Scheme for UTF-16: 8-Bit (CESU-8)
	UTR #33: Unicode Conformance Model
	UTR #36: Unicode Security Considerations

	B.5 Unicode Technical Notes
	B.6 Other Unicode Online Resources
	Unicode Online Resources
	Unicode Web Site
	Unicode Anonymous FTP Site
	Charts
	Character Index
	Conferences
	E-mail Discussion List
	FAQ (Frequently Asked Questions)
	Glossary
	Online Unicode Character Database
	Online Unihan Database
	Policies
	Unicode Common Locale Data Repository (CLDR)
	Updates and Errata
	Versions
	Where Is My Character?

	How to Contact the Unicode Consortium

	Relationship to ISO/IEC 10646
	C.1 History
	Table C-1. Timeline

	C.2 Encoding Forms in ISO/IEC 10646
	UCS-4
	UCS-2
	Zero Extending
	Table C-2. Zero Extending

	C.3 UTF-8 and UTF-16
	UTF-8
	UTF-16

	C.4 Synchronization of the Standards
	C.5 Identification of Features for the Unicode Standard
	C.6 Character Names
	C.7 Character Functional Specifications

	Changes from Previous Versions
	D.1 Versions of the Unicode Standard
	Table D-1. Versions of Unicode and ISO/IEC 10646-1
	Table D-2. Allocation of Code Points by Type
	Table D-3. Allocation of Code Points by Type (Early Versions)

	D.2 Clause and Definition Updates
	Table D-4. Version 5.1 Clause and Definition Updates
	Table D-5. Version 5.2 Clause and Definition Updates
	Table D-6. Version 6.0 Clause and Definition Updates
	Table D-7. Version 6.1 Clause and Definition Updates

	Han Unification History
	E.1 Development of the URO
	E.2 Ideographic Rapporteur Group

	Documentation of CJK Strokes
	Table F-1. CJK Strokes

	References
	R.1 Source Standards and Specifications
	R.2 Source Dictionaries for Han Unification
	R.3 Other Sources for the Unicode Standard
	R.4 Selected Resources: Technical
	R.5 Selected Resources: Other

	I General Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

