
DOMAIN System User’s Guide

Order No. 005488
Revision 02

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Copyright © 1987 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing: July, 1985
Latest Printing: January, 1987

This document was produced using the Interleaf Workstation Publishing Soft-
ware (WPS). Interleaf and WPS are trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DO -
MAIN/Dialogue, DOMAIN/IX, DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/
SNA, D3M, DPSS, OSEE, GMR, and GPR are trademarks of Apollo Computer
Inc.

Apollo Computer Inc. reserves the right to make changes In specifications and
other Information contained In this publication without prior notice, and the
reader should In all cases consult Apollo Computer Inc. to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COM-
 PUTER INC. HARDWARE PRODUCTS AND THE LICENSING OF APOLLO
COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS
CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT
CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY , RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED
HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO COMPUTER
INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO
COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCI -
DENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSO-
EVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF
OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED
IN IT, EVEN IF APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW OR
SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFI-
DENTIAL INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO COM-
PUTER INC. OR ITS LICENSORS.

iii Preface

PREFACE

The DOMAIN® System User’s Guide is the second volume in the
two-volume introduction to the DOMAIN® (Distributed On-line
Multi-Access Interactive Network) Computing System. The first
volume, Getting Started With Your DOMAIN System, introduces you
to the basic concepts you’ll need to use the DOMAIN system on your
node. The DOMAIN System User’s Guide follows with more
detailed information about the system and describes how to use the
system to perform various computing tasks.

The Organization of this Manual

We’ve divided this manual into three separate parts, each part
describing a set of related topics. Part I describes the DOMAIN sys-
tem. Part II and Part III describe how to perform various tasks using
system commands and utilities. We’ve separated each part with a
tabbed divider for easy access.

Part I -- The DOMAIN System

Chapter 1 Provides an overview of the DOMAIN sys-
 tem and its distributed operating environ-
ment. It describes how the system organizes
objects in the system naming tree, and how
to use pathnames to identify these objects.

Chapter 2 Describes how the system functions at start-
up and log-in, and describes how to create,
modify, and organize the various scripts that
set up your node’s particular operating en-
vironment. The chapter also describes
procedures for changing your password and
log-in home directory when you log in.

ivPreface

Part II -- The Display Environment

Chapter 3 Explains the functions of the Display
Manager (DM), describes how to use DM
commands, and shows how to define keys to
perform DM functions.

Chapter 4 Describes how to use the DM to control your
node’s display. Each section describes a set
of related display management tasks and the
DM commands you use to perform them.

Chapter 5 Describes how to use the DM to control the
characteristics of edit pads and how to edit
text. Each section in this chapter describes
a set of editing tasks and the DM commands
you use to perform them.

Part III -- The Command Shell

Chapter 6 Describes the command Shell environment
that processes Shell commands. The chapter
includes information on: Shell commands,
controlling command input and output, the
command line parser, and using pathname
wildcards.

Chapter 7 Describes how to use Shell commands to
manage files, directories, and links on the
system.

Chapter 8 Describes Access Control Lists (ACLs) and
how to use them to control access to files
and directories.

Chapter 9 Describes how to write Shell scripts using
Shell commands, operators, and expres-
sions.

v Preface

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following
symbolic conventions.

UPPERCASE Bold, uppercase words or characters in for-
mats and command descriptions represent
commands or keywords that you must use
literally.

lowercase Bold, lowercase words or characters in for-
mats and command descriptions represent
values that you must supply.

example Color words in command examples
represent literal user keyboard input.

output System output in command examples ap-
pears in this font.

Bolded term or key When new terms or keys are introduced,
they appear in boldface.

[] Square brackets enclose optional items in
formats and command descriptions. In
sample Pascal statements, square brackets
assume their Pascal meanings.

{ } Braces enclose a list from which you must
choose an item in formats and command
descriptions. In sample Pascal statements,
braces assume their Pascal meanings.

 | A vertical bar separates items in a list of
choices.

< > Angle brackets enclose the name of a key
on the keyboard.

viPreface

CTRL/ The notation CTRL/ followed by the name
of a key indicates a control character se-
quence. You should hold down <CTRL>
while typing the character.

. . . Horizontal ellipsis points indicate that the
preceding item can be repeated one or more
times.

. Vertical ellipsis points mean that irrelevant

. parts of a figure or example have been omit-

. ted.

Related Manuals

If you are using the DOMAIN system for the first time, you should
read Getting Started With Your DOMAIN System (order number
002348) first. Getting Started With Your DOMAIN System teaches
you the basics of using the DOMAIN system.

The DOMAIN System Command Reference (order number 002547)
contains detailed descriptions of all DOMAIN system commands.
The command descriptions are arranged alphabetically for quick and
easy access.

For information on how to create the network environment, protect
the network software, create servers, and maintain and troubleshoot
the network, see Administering Your DOMAIN System (Order num-
ber 001746).

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In
order to make it easy for you to communicate with us, we provide the
User Change Request (UCR) system for software-related comments,
and the Reader’s Response form for documentation comments. By
using these formal channels you make it easy for us to respond to
your comments.

You can get more information about how to submit a UCR by con-
sulting the DOMAIN System Command Reference. Refer to the

vii Preface

CRUCR (Create User Change Request) Shell command description.
You can view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For your documentation comments, we’ve included a Reader’s
Response form at the back of each manual.

Using the Stand-Up Binder

The plastic page lifter is designed to function as an easel for propping
up the binder on your desktop. The following illustration shows how
to use it.

viiiContents

CONTENTS

Chapter 1 The DOMAIN System

Overview . 1-2
The Naming Tree . 1-4
Using Pathnames . 1-6

The Working Directory . 1-9
The Naming Directory . 1-11
The Parent Directory . 1-12
Pathname Summary . 1-13

Chapter 2 Start-Up and Log-In

Understanding the System at Start-Up 2-2
Disked Node Start-Up . 2-2
Diskless Node Start-Up . 2-8

Understanding the System at Log-In 2-13
Logging In . 2-20

Logging In as User . 2-20
Changing Your Password . 2-20
Changing Your Home Directory 2-21
Logging Into a DOMAIN Server Processor (DSP) 2-22

Chapter 3 Using The Display Manager

Using DM Commands . 3-2
DM Command Conventions . 3-4
Defining Points and Regions . 3-6

Using Keys to Perform DM Functions 3-10
Keyboard Types and Key Definitions 3-12
Key Naming Conventions . 3-15
Defining Keys . 3-18
Deleting Key Definitions . 3-21
Displaying Key Definitions . 3-21

ix Contents

Controlling Keys from Within a Program 3-21
Using DM Command Scripts . 3-22

Chapter 4 Controlling the Display

Controlling Cursor Movement . 4-2
Creating Processes . 4-4

Creating a Process with Pads and Windows 4-5
Creating a Process without Pads and Windows 4-7
Creating a Server Process . 4-8

Controlling a Process . 4-8
Stopping a Program or Process 4-9
Suspending and Resuming a Process 4-10

Creating Pads and Windows . 4-10
Creating an Edit Pad and Window 4-13
Creating a Read-Only Pad and Window 4-14
Copying a Pad and Window . 4-15

Closing Pads and Windows . 4-16
Managing Windows . 4-17

Changing Window Size . 4-18
Moving a Window . 4-20
Pushing and Popping Windows 4-21
Changing Process Window Modes 4-22
Defining Default Window Positions 4-25

Responding to DM Alarms . 4-26
Moving Pads Under Windows . 4-27

Moving to the Top or Bottom of a Pad 4-27
Scrolling a Pad Vertically . 4-28
Scrolling a Pad Horizontally . 4-30
Saving a Transcript Pad in a File 4-30
Using Window Groups and Window Icons 4-31
Creating and Adding to Window Groups 4-31
Removing Entries from Window Groups 4-32
Making Windows Invisible . 4-33
Using Icons . 4-33
Setting Icon Default Position and Offset 4-36
Displaying the Members of a Window Group 4-37

xContents

Chapter 5 Editing a Pad

Setting Edit Pad Modes . 5-2
Setting Read/Write Mode . 5-3
Setting Insert/Overstrike Mode 5-4

Inserting Characters . 5-4
Inserting a Text String . 5-5
Inserting a NEWLINE Character 5-5
Inserting a New Line . 5-6
Inserting an End-of-File Mark . 5-6

Deleting Text . 5-6
Deleting Characters . 5-7
Deleting Words . 5-7
Deleting Lines . 5-8

Defining a Range of Text . 5-9
Copying, Cutting, and Pasting Text 5-10

Using Paste Buffers . 5-11
Copying Text . 5-12
Copying a Display Image . 5-13
Cutting Text . 5-14
Pasting Text . 5-15

Using Regular Expressions . 5-16
Searching for Text . 5-23

Repeating a Search Operation . 5-25
Cancelling a Search Operation . 5-25
Setting Case Comparison . 5-25

Substituting Text . 5-26
Substituting All Occurrences of a String 5-27
Substituting the First Occurrence of a String 5-28
Changing the Case of Letters . 5-28

Undoing Previous Commands . 5-29
Updating an Edit File . 5-29

Chapter 6 Using the Shell

Shell Commands . 6-2
Command Line Format . 6-3
Standard Command Options . 6-4

xi Contents

Command Search Rules . 6-5
Special Characters . 6-7

Creating and Invoking Shells . 6-7
Setting Up the Initial Shell Environment 6-8

Controlling Input and Output . 6-9
Reading Input from a File . 6-11
Writing Output to a File . 6-12
Appending Output to a File . 6-12
Redirecting Output to Other Commands 6-13

The Command Line Parser . 6-14
Using Query Options . 6-15
Reading Data from Standard Input 6-16
Reading Pathnames from Standard Input 6-17
Using Pathname Wildcards . 6-18
Running Programs in a Background Process 6-22

Chapter 7 Managing Files, Directories, and Links

Moving Around the Naming Tree . 7-2
Setting the Working Directory . 7-3
Setting the Naming Directory . 7-3

Managing Files . 7-5
Creating Files . 7-5
Renaming Files . 7-7
Copying Files . 7-8
Moving Files . 7-9
Appending Files . 7-10
Printing Files . 7-11
Printing Files Using the Print Menu Interface 7-13
Displaying File Attributes . 7-16
Deleting Files . 7-18
Copying the Display to a File . 7-18
Comparing ASCII Files . 7-19

Managing Directories . 7-20
Creating Directories . 7-21
Renaming Directories . 7-21
Copying Directory Trees . 7-22
Replacing Directory Trees . 7-25
Merging Directory Trees . 7-26
Comparing Directory Trees . 7-27

xiiContents

Displaying Directory Information 7-28
Deleting Directory Trees . 7-30

Managing Links . 7-31
Creating Links . 7-32
Displaying Link Resolution Names 7-33
Redefining Links . 7-33
Renaming Links . 7-34
Copying Links . 7-35
Deleting Links . 7-36

Chapter 8 Controlling Access to Files and Directories

ACL Structure . 8-2
The Subject Identifier (SID) . 8-3
Access Rights . 8-4
Understanding SEARCH and EXPUNGE Rights 8-7
Managing ACLs . 8-7

Displaying ACLs . 8-8
Editing ACLs . 8-9

Rules to Specify ACL Entries . 8-11
Adding ACL Entries . 8-15
Changing Entry Rights . 8-15
Adding Entry Rights . 8-16
Deleting Entry Rights . 8-17
Deleting ACL Entries . 8-17

Copying ACLs . 8-18
Initial ACLs . 8-18

Editing Initial ACLs . 8-20
Copying Initial ACLs . 8-21

Protected Subsystems . 8-22
How Do Protected Subsystems Work? 8-23
Creating a Protected Subsystem 8-26
Assigning Protected Subsystem Status 8-27

xiii Contents

Chapter 9 Writing Shell Scripts

Creating Your Own Commands . 9-2
Creating Scripts . 9-2
Passing Arguments to Scripts . 9-4
Using Quoted Strings . 9-8
Using In-Line Data . 9-9
Executing DM Commands from Shell Scripts 9-10
Debugging Shell Scripts . 9-10

Using Expressions . 9-12
Operands in Expressions . 9-14
Mathematical Operators . 9-14
String Operators . 9-15
Comparison Operators . 9-16
Logical Operators . 9-17

Shell Variables . 9-18
Defining Variables . 9-18
Using Shell Variables . 9-19
Variable Commands . 9-21
Defining Variables Interactively 9-22
Using Active Functions . 9-24

Controlling Script Execution . 9-25
Using the IF Statement . 9-28
Using the WHILE Statement . 9-29
Using the FOR Statement . 9-31
Using the SELECT Statement . 9-34

Appendix A Initial Directory and File Structure

Appendix B Summary of Predefined Key Definitions

Index

xivContents

Illustrations

Figure Page
1-1 A Simple DOMAIN Network 1-2
1-2 A Sample Naming Tree . 1-4
1-3 A Sample Path Through the Naming Tree 1-7
1-4 A Sample Path Beginning at the Node Entry

Directory . 1-8
1-5 A Sample Path Beginning at the Current

Working Directory . 1-10
1-6 A Sample Path Beginning at the Current

Naming Directory . 1-12
1-7 A Sample Path Beginning at the Parent

Directory . 1-13
2-1 The Start-Up Sequence for Disked Nodes 2-3
2-2 A Sample Boot Script (STARTUP.19L) 2-6
2-3 The Start-Up Sequence for a Diskless Node 2-9
2-4 The Boot Script Search Sequence 2-13
2-5 The Log-In Sequence . 2-14
2-6 A Sample Log-In Start-Up Script

(STARTUP_LOGIN.19L) 2-17
2-7 A Sample DM Start-Up Script

(STARTUP_DM.19L) . 2-19
3-1 Invoking a DM Command Interactively 3-3
3-2 Defining a Display Region 3-9
3-3 Key Names for the Low-Profile Type

Keyboards . 3-13
4-1 A Process Running the Shell 4-6
4-2 Creating an Edit Pad and Window 4-13
4-3 Copying a Pad and Window 4-15
4-4 Growing a Window Using Rubberbanding 4-19
4-5 Pushing and Popping Windows 4-21

xv Contents

4-6 Process Window Legend . 4-23
4-7 Location of Pad Scroll Keys 4-29
4-8 Default Icon for Shell Process Windows 4-34
5-1 The Edit Pad Window Legend 5-3
5-2 Defining a Range of Text with <MARK> 5-10
5-3 Copying Text with the XC -R Command 5-13
6-1 The Shell Process . 6-2
6-2 Shell Command Line Components 6-3
6-3 Sample Shell Start-Up Script 6-9
7 -1 The Print Menu . 7-13
7-2 Print “Commands” Submenu 7-15
7-3 Sample Display Showing File Attributes 7-17
7-4 Comparing Two ASCII Files 7-19
7-5 Sample Directory Tree . 7-23
7-6 Copying a Directory Tree 7-24
7-7 Replacing a Directory Tree 7-25
7-8 Comparing Directory Trees 7-28
7-9 Sample Directory Display 7-29
7-10 Deleting a Directory Tree 7-30
7-11 Sample Display of Link Resolution Names 7-33
8-1 Structure of an ACL Entry 8-2
8-2 Sample ACL Entries . 8-3
8-3 Sample ACL Display . 8-8
8-4 Initial ACLs for Files and Directories 8-19
8-5 Controlling Access to Protected Subsystem Files . . 8-24
8-6 Sample of a Protected Subsystem Transcript 8-28
9-1 Including In-Line Data in a Script 9-9
9-2 A Sample Script Using the READ Command 9-23
9-3 Flow of Execution in a Simple Script 9-26
9-4 Flow of Execution with a Conditional Statement . . 9-27
A-1 The Node Entry Directory (/) and Subdirectories . A-2
A-2 The System Software Directory A-3

xviContents

A-3 The Display Manager Directory (/SYS/DM) A-4
A-4 The Network Management Directory (/SYS/NET) . A-5
B-1 Keynames for the 880 Keyboard B-2

xvii Contents

Tables

Table Page
1-1 Pathname Symbols . 1-9
2-1 Node Boot Script Files . 2-5
2-2 Node Log-In Start-Up Script Files 2-16
3-1 Rules for Using DM Special Characters 3-5
3-2 Formats for Specifying Points on the Display 3-7
3-3 Default Mouse Key Functions 3-11
3-4 Key Definition File Names 3-14
3-5 Key Naming Conventions 3-16
4-1 Cursor Control Commands 4-2
4-2 Commands for Creating Processes 4-5
4-3 Commands for Controlling a Process 4-9
4-4 Commands for Creating Pads and Windows 4-10
4-5 DM Rules for Defining Window Boundaries 4-11
4-6 Commands for Closing Pads and Windows 4-16
4-7 Commands for Managing Windows 4-18
4-8 Process Window Modes . 4-23
4-9 Commands for Moving Pads 4-27
4-10 Commands for Controlling Window Groups and

Icons . 4-31
4-11 Window Paste Buffers . 4-38
5-1 Commands for Setting Edit Modes 5-2
5-2 Commands for Inserting Characters 5-5
5-3 Commands for Deleting Text 5-7
5-4 Commands for Copying, Cutting, and Pasting

Text . 5-11
5-5 Characters Used in Regular Expressions 5-17
5-6 Commands for Searching for Text 5-23
5-7 Commands for Substituting Text 5-26
6-1 Standard Shell Command Options 6-5

xviiiContents

6-2 I/O Control Characters . 6-11
6-3 Command Line Parser Options 6-15
6-4 Command Query Responses 6-16
6-5 Summary of Pathname Wildcards 6-19
7-1 Commands for Setting the Working and Naming

Directory . 7-2
7-2 Commands for Managing Files 7-5
7-3 Print “Commands” Submenu Items 7-16
7-4 Commands for Managing Directories 7-20
7-5 Commands for Managing Links 7-31
8-1 Access Rights for Files and Directories 8-6
8-2 Summary of Commands for Editing ACLs 8-10
8-3 Valid Rights for Files and Directories 8-12
8-4 Class Names for Commonly Assigned Rights 8-14
8-5 Summary of Commands for Editing and Copying

Initial ACLs . 8-20
8-6 Options for Copying Initial ACLs 8-22
9-1 Shell Parsing Operators . 9-3
9-2 Script Verification Options 9-11
9-3 Summary of Expression Operators 9-13
9-4 Rules for Assigning Variable Types 9-19
9-5 Variable Commands . 9-21

1-1 The DOMAIN System

CHAPTER 1

The DOMAIN System

The DOMAIN system is a high-speed communications network con-
necting two or more of our computers, called nodes. Each node
loads programs into its own memory, and uses the computing func-
tions of its own central processing unit (CPU). Because the
DOMAIN system enables nodes to share information, you can log
into any node and access information stored anywhere in the net-
work.

Many of the operations you’ll perform on the system involve the use
of objects (files, directories, and links) that store information such as
programs, data, or text. Before you can work with these objects, you
must understand how the system organizes and identifies them.

This chapter describes the DOMAIN system, how it organizes objects
in the system naming tree, and how to use pathnames to identify
these objects.

1-2The DOMAIN System

Overview
The DOMAIN system uses a physical network, in which member
nodes can load data from the network into memory just as they
would load data from their own disk.

The DOMAIN System Site Planning and Preparation Guide
describes the DOMAIN network in much more detail. For our pur-
poses, we’re interested in the network to see how nodes use the sys-
tem to share information. Figure 1-1 shows a simple DOMAIN net-
work composed of three nodes and two disks.

Figure 1-1. A Simple DOMAIN Network

1-3 The DOMAIN System

The DOMAIN system makes the information on all disks available to
any node in the DOMAIN network. For example, in Figure 1-1,
NODE_C can access information stored on its own disk, as well as
information stored on the disk connected to NODE_ B. Although
NODE_ A doesn’t have its own disk, it can, via the network, access
information stored on the disks connected to NODE_ B or NODE_C.

Each node in the network requires the use of at least one disk, called
a boot volume, that contains the operating system and other system
software it needs to run. Some nodes, called disked nodes, are
physically connected to the disk that they use as the boot volume.
Other nodes, called diskless nodes, share the boot volume of some
other disked node in the network, called a network partner. In
Figure 1-1, NODE_ B and NODE_C are disked nodes. Because
NODE_ A is a diskless node, it must use either NODE_ B or NODE_C
as its partner.

To run in the network, a diskless node must have a network partner.
The network partner’s disk provides all of the necessary operating
system and support software for the diskless node. Because a disk-
less node relies on its partner for system software, it can operate only
when the partner node is operating. If the partner node is removed
from the network while the diskless node is running, the diskless
node will crash.

The operating system interface on each node, whether disked or
diskless, is made up of two main programs: the Display Manager
(DM) and the Shell.

The DM is the system program that controls your node’s display and
enables you to create processes. The DM listens for DM commands
that you specify in the DM command input pad of your display. Part
II of this manual describes your node’s display environment and how
to use the DM to control this environment.

The Shell is the program that you use to perform more traditional
computing operations such as managing files, and compiling
programs. The Shell listens for commands that you specify in the
Shell process’s command input pad. Each command invokes a diff-
erent utility program that performs a specific computing operation.
Part III of this manual describes the Shell program and the Shell com-
mands you use to perform standard computing operations.

1-4The DOMAIN System

The Naming Tree
To make information available to all the nodes in the network, the
DOMAIN system organizes objects in a hierarchical structure called
a naming tree. The naming tree serves as a type of map that the sys-
tem uses to keep track of where objects reside in the network. To
access an object, you refer to its location in the naming tree. Figure
1-2 shows a sample naming tree.

Figure 1-2. A Sample Naming Tree

The double slashes (//) in Figure 1-2 represent the top level of the
naming tree, the network root directory. Each node maintains its
own copy of the network root directory, which contains the name of
each node entry directory the node can access. Figure 1-2 shows a

1-5 The DOMAIN System

network root directory containing the names of two node entry direc-
tories: NODE_ B and NODE_C.

Each disked node in the network has a node entry directory name
associated with it. This name refers to the branch of the naming tree
that resides on its disk. (Since diskless nodes don’t have disks, they
use the node entry directory of their partner.) In Figure 1-2, all of
the objects under the node entry directory, NODE_ B, reside on the
disk NODE_ B, while all of the objects under the node entry direc-
tory NODE_C reside on the disk NODE_C. In other words, each
disk in the network represents an entry directory in the system
naming tree.

Entry directories contain one or more upper-level directories. An
upper-level directory is one level below the entry directory and nor-
mally serves as the main directory for a branch of logically related
objects. For example, the /SYS directory that we supply is an upper-
level directory that contains many of the system objects that make up
the operating system. (Appendix A contains a set of figures that il-
lustrate how the system organizes the software we supply with your
node.) An upper-level directory can also serve as a user’s main
directory for storing files.

In Figure 1-2, the directories OWNER and USER_1 are upper-level
directories, one level below the entry directory NODE_ B. The direc-
tory OWNER serves as the main directory for all objects that belong
to the owner of the node. The upper-level directory USER_1 is the
main directory for the user of a diskless node (NODE_ A) that uses
NODE_ B as its entry directory. The directory USER serves as the
main directory for the user on NODE_C.

In summary, the network root directory contains the names of node
entry directories in the network. The system uses your node’s net-
work root directory to determine which node entry directories in the
network it can access. Each node entry directory contains one or
more upper-level directories. An upper-level directory serves as the
main directory for logically related objects.

Your node can access only the node entry directories whose names
appear in the local copy of the network root directory. To keep your
local copy of the network root directory up to date, you should
catalog new disked nodes as they are added to the network. To
catalog new nodes, use the Shell command CTNODE

1-6The DOMAIN System

(CATALOG_NODE) described in the DOMAIN System Command
Reference.

Some network sites use the NS_HELPER (Naming Server Helper)
to maintain an up-to-date network root directory. If your site uses
NS_HELPER, you don’t need to use CTNODE to catalog nodes;
NS_HELPER does it for you. To find out if your network site uses
the NS_HELPER, ask your system administrator. Administering Your
DOMAIN System describes NS_HELPER and explains how to
catalog nodes to update the network root directory.

Using Pathnames
The system identifies each object in the naming tree by its unique
location. Whenever you specify a command to create or access an
object, you also specify a pathname that points to the object’s loca-
tion in the naming tree. The pathname tells the system what path to
follow when searching for an object.

The commands you use to create and manage objects require you to
specify a pathname as a command argument. When you invoke a
command, the command specifies the operation, and the pathname
tells the system where in the naming tree to perform it.

For example, the following Shell command deletes the file MEMO in
the naming tree shown in Figure 1-3:

$ DLF //NODE_B/USER_1/MEMO

 command pathname

The Shell command DLF (DELETE_FILE) tells the system to
delete the file at the location specified by the pathname. Figure 1-3
shows the path the system follows to the file.

1-7 The DOMAIN System

The pathname directs the system to:

1. Start at the network root directory (//).

2. Follow the path through the entry directory, NODE_ B, and
the subdirectory, USER_1.

3. Stop at the file, MEMO.

Figure 1-3. A Sample Path Through the Naming Tree

When the system searches for a location in the naming tree, it begins
its search at some point in the tree and follows a path to the location.
The pathname in the previous examples explicitly specified the net-
work root directory as the starting point for the system’s search
through the naming tree. (The double slashes (//) at the beginning
of the pathname specify the network root directory.) This type of
pathname, called an absolute pathname, tells the system the full
path, from the network root directory to the final location.

1-8The DOMAIN System

You don’t have to begin pathnames with the network root directory
specification. For example, the single slash (/) symbol directs the
system to begin its search at your node’s entry directory. Here is an
example using the single slash to start a search at your node’s entry
directory:

$ DLF /USER_1/MEMO

Figure 1-4. A Sample Path Beginning at the Node Entry
Directory

For this example, let’s assume that your node’s entry directory is
NODE_ B. As shown in Figure 1-4, the pathname directs the system
to:

1. Start at your node’s entry directory, NODE_ B.

2. Follow the path through the upper-level directory, USER_1.

3. Stop at the file, MEMO.

1-9 The DOMAIN System

You can specify other starting points in the naming tree by beginning
a pathname with any of the symbols in Table 1-1.

Table 1-1. Pathname Symbols

Symbol System starts search at:

// Network root directory

/ Node entry directory

No symbol or . Working directory

~ Naming directory

\ Parent directory

The Working Directory

If you specify a pathname without a symbol preceding it (or if you
precede the pathname with a period) the system starts its search at a
default location in the naming tree called the working directory.
Think of the working directory as the directory location in which you
are currently working. Each process that you create uses one of the
directories in the naming tree as its working directory.

When you log into a node, the system creates a process running the
Shell program and sets that process’s working directory to the home
directory name designated in your user account. (Chapter 2
describes your home directory and how to change it at log-in.) The
system uses this directory as your working directory unless you
change it to another directory. (Chapter 7 describes how to change
your working directory.)

1-10The DOMAIN System

The following command deletes the file MEMO in the current work-
ing directory:

$ DLF MEMO

In this example, let’s assume that the current working directory is the
directory REPORTS. As shown in Figure 1-5, the system begins its
search at REPORTS and deletes the file MEMO.

Figure 1-5. A Sample Path Beginning at the Current Working
Directory

You’ll notice in Figure 1-5 that another file named MEMO exists at
another location in the naming tree (in the directory USER_1). If the
current working directory was USER_1 instead of REPORTS, the
command in our example would delete this file instead. So you see,
a pathname that starts at the working directory functions differently
depending on the directory currently being used as the working
directory.

1-11 The DOMAIN System

The Naming Directory

If you precede a pathname with the tilde (~) symbol, the system
starts its search at a location in the naming tree called the naming
directory. Like the working directory, each process has a naming
directory that points to some directory in the naming tree.

When you log into a node, the system creates a process running the
Shell program and sets that process’s naming directory to the home
directory name designated in your user account. The system uses
this directory as your naming directory unless you change it to
another directory. (Chapter 7 describes how to change your naming
directory.)

The following command deletes the file MEMO in the current
naming directory:

$ DLF ~REPORTS/MEMO

In this example, let’s assume that the current naming directory is the
upper-level directory OWNER. As shown in Figure 1-6, the path-
name directs the system to:

1. Start at your node’s naming directory, OWNER.

2. Follow the path through the directory, REPORTS.

3. Stop at the file, MEMO.

Like pathnames that use the current working directory, pathnames
starting at the naming directory work differently depending on the
directory currently being used as the naming directory.

1-12The DOMAIN System

Figure 1-6. A Sample Path Beginning at the Current Naming
Directory

The Parent Directory

If you precede the pathname with a backslash (\) symbol, the system
starts its search at a location called the parent directory. A parent
directory is the directory one level above the current working direc-
tory. For example, the following command uses the \ symbol to
delete the file MEMO in the directory USER_1:

$ DLF \MEMO

In this example, let’s assume that the current working directory is the
directory PLANS. As shown in Figure 1-7, the system begins its
search at the directory USER_1 (the parent directory of the current
working directory PLANS) and deletes the file MEMO.

1-13 The DOMAIN System

Figure 1-7. A Sample Path Beginning at the Parent Directory

Pathname Summary

In this section, you learned how to use pathnames to point to objects
in the system naming tree. The examples showed you how to use
pathnames with commands to tell the system the naming tree location
where you want a particular operation performed.

Pathnames also serve to identify objects. As you read through this
manual, you will find that many of the objects that make up the
operating system are referred to by their pathnames. For example,
Chapter 2 describes many of the objects the system uses at start-up
and log-in. By understanding which objects the system uses and
where they are located, you’ll better understand how these objects
work together to make up a functioning system.

1-14The DOMAIN System

Appendix A contains a set of figures that illustrate how the system
organizes the system software that we supply with your node. These
figures also refer to system objects by their pathnames.

2-1 Start-Up and Log-In

CHAPTER 2

Start-Up and Log-In

Each time you start up a node and log in to it, the DOMAIN system
executes various programs that start the operating system, and scripts
that set up the node’s operating environment. You can tailor the
operating environment on your node by modifying the scripts the sys-
tem uses at start-up and log-in. For example, you may want to start
specific server processes when you start up your node. Or, you may
want your own specific key definitions, default window positions, and
tabs defined each time you log in.

This chapter describes how the system functions at start-up and log-
in, and describes the steps you can take to tailor your operating en-
vironment. The chapter also describes procedures for changing your
password and log-in home directory when you log in.

2-2Start-Up and Log-In

Understanding the System
at Start-Up
The Owner’s Guide for your node describes the proper procedure for
starting it up. When you initiate the node’s start-up by turning on
the power, the node performs a series of operations to boot the
operating system (load the operating system from disk into memory)
and begin executing it. The operating system then executes a series
of start-up files to set up the operating environment on your node.

This section explains the sequence of events occurring at start-up for
both disked and diskless nodes.

Disked Node Start-Up

If your node is a disked node, it reads the programs it needs for
start-up from its own disk. The f lowchart in Figure 2-1 shows the
start-up sequence on a disked node.

2-3 Start-Up and Log-In

Figure 2-1. The Start-Up Sequence for Disked Nodes

The descriptions that follow explain each step in the start-up se-
quence shown in Figure 2-1.

1. When you power on your node in NORMAL mode (follow
the instructions in your Owner’s Guide), a program called
the Mnemonic Debugger (MD) begins executing. The MD

2-4Start-Up and Log-In

 resides in the node’s boot PROM (Programmable Read-
Only Memory).

2. The MD reads a program called SYSBOOT from your
node’s disk and loads it into the CPU’s memory. The MD
then transfers control to SYSBOOT. SYSBOOT, as its name
indicates, is the program responsible for booting the operat-
ing system.

3. The SYSBOOT program loads the operating system into the
CPU’s memory. Once loaded, the operating system begins
executing and takes control.

4. The operating system starts either:

•	 The	Display Manager (DM) on nodes with displays.

•	 The	 Server Process Manager (SPM) on DOMAIN
Server Processors (DSPs). The SPM is the server
program that allows you to create a process on a DSP
from a remote node in the network. (For more informa-
tion about the SPM, see Administering Your DOMAIN
System.)

5. The DM or the SPM executes a start-up file, called a boot
script, that sets up the initial operating environment on your
node. Table 2-1 lists the different boot script files used at
start-up. As shown in Table 2-1, the system chooses which
boot script file to execute according to the type of node.

 All of the boot script files listed in Table 2-1 reside in the
directory ‘NODE_ DATA. The grave accent (‘) that
precedes the directory name is a special symbol that returns
a value for NODE_ DATA. For example, on disked nodes,
‘NODE_ DATA points to the directory /SYS/NODE_ DATA
on the node’s disk. On diskless nodes, ‘NODE_ DATA
points to the directory /SYS/NODE_ DATA.node_id on the
partner node’s disk. The node_id suffix refers to the disk-
less node’s hexadecimal node ID. (Refer to the “Diskless
Node Start-Up” section for more information on diskless
node start-up.)

2-5 Start-Up and Log-In

Table 2-1. Node Boot Script Files

Node Type Boot Script Filename

800x1024 (Portrait)

DN400

STARTUP

1024x800 (Landscape)

DN420, DN460, DN3xx,
DN550, DN560, DN570,
DN3000 (color)

STARTUP.19L

1280x1024
(Color Landscape)

DN580

STARTUP.1280COLOR

1280x1024
(Black & White Landscape)

DN3000 (Black & White)

STARTUP.1280BW

1024x1024 (Color)

DN600

STARTUP.COLOR

Displayless

DOMAIN Server Processor
(DSPs)

STARTUP.SPM

Figure 2-2 shows a sample boot script similar to the one we
provide with DN3xx nodes. The boot scripts for other nodes
are similar.

2-6Start-Up and Log-In

‘NODE_DATA/STARTUP, default system startup
command file for 19L, 4/21/83
Default is black characters on white (or green)
background.

INV -ON

(608,744)dr; (1023,799)cv /sys/dm/output
(556,744)dr; (608,799)cv /sys/dm/output;pb
(0,744)dr; (556,799)cv /sys/dm/input

To enable the diskless node boot server,
uncomment the following CPS command.

cps /sys/net/netman

To startup default printer

cps /com/sh -c ‘/com/prsvr’ -n print_server

To enable the summagraphic bit pad support,
uncomment the following CPS command.

cps /sys/dm/sbp1 /dev/sio2 L

To startup mbx (IPC) helper

cps /sys/mbx/mbx_helper

To Properly define the keys for the 880 keyboard,
uncomment the following command.

kbd

To properly define the keys for the low-profile
keyboard (KBD2), uncomment the following
command.

kbd 2

To properly define the keys for the low-profile
keyboard with the numeric keypad, uncomment the
following command.

kbd 3

•
•
•

Figure 2-2. A Sample Boot Script (STARTUP.19L)

2-7 Start-Up and Log-In

 The boot script contains commands that start various server
programs. These server programs run regardless of log-in
and log-out activity and provide various system services to
the node. For example, the NETMAN program makes the
node available as a host for diskless partners, and the print
server program (PRSVR) runs peripheral printers. For a
description of these and all of the DOMAIN server
programs, see Administering Your DOMAIN System.

 If you want your node to automatically start any of these
server programs, edit your node’s boot script and remove the
pound sign (#) from the command line that invokes the serv-
er. Note, however, that the system will not start any of these
servers until the next time you shut down and restart your
node. (See your node’s Owner’s Guide for node startup and
shutdown procedures.)

 The boot scripts that run on nodes that have displays contain
a set of commands that instruct the Display Manager to draw
the initial display windows on the screen. One of the win-
dows contains the “Please log in:” prompt.

 These boot scripts also contain commands that specify which
type of keyboard the node is using. If your node uses the
DOMAIN Low-profile Model I keyboard, remove the #
from the KBD2 command. If your node uses the low-profile
keyboard with the numeric keypad (DOMAIN Low-profile
Model II keyboard), remove the # from the KBD3 com-
mand. See the “Using Keys to Perform DM Functions” sec-
tion in Chapter 3 for a description of keyboard types.

Note: On DN3000 nodes, use of the KBD 3 command is
optional; KBD 3 is assumed by default.

 The STARTUP.SPM script used by DSPs is similar to the
other start-up scripts. However, since DSPs don’t have dis-
plays, STARTUP.SPM doesn’t contain commands for creat-
ing windows.

6. Once the boot script finishes executing, the node start-up
completes, and the system prompts you to log in.

2-8Start-Up and Log-In

Diskless Node Start-Up

The start-up sequence for diskless nodes is somewhat different than
the start-up sequence for disked nodes. A diskless node does not
have its own disk to store the operating system and other software
files it needs to run. Therefore, each time it starts up, the diskless
node must load parts of the operating system across the network
from its partner node. The diskless node also relies on its partner for
any utility programs and libraries it needs. Figure 2-3 presents a
f lowchart showing the start-up sequence for a diskless node.

From your perspective as a user, starting up a diskless node is the
same as starting up a disked node; you turn the power on in
NORMAL mode and wait for the log-in prompt to appear. However,
the start-up sequence that goes on internally is somewhat different.
The descriptions that follow explain each step in the diskless node
start-up sequence shown in Figure 2-3. Once you’ve read the
descriptions, go back and compare each step with the disked node
start-up sequence described in the “Disked Node Start-Up” section.

2-9 Start-Up and Log-In

Figure 2-3. The Start-Up Sequence for a Diskless Node

2-10Start-Up and Log-In

1. When you power on your node in NORMAL mode (by fol-
lowing the instructions in your Owner’s Guide), a program
called the Mnemonic Debugger (MD) begins executing. The
MD resides in the node’s boot PROM (Programmable Read-
Only Memory).

2. Because a diskless node does not have a disk, the MD can-
not load SYSBOOT and transfer control to it. Instead, the
MD must boot the system from another disked node in the
network. The MD then broadcasts a message across the net-
work asking for a partner node to volunteer the use of its
boot volume.

3. All nodes running the NETMAN program receive these re-
quest messages (NETMAN’s purpose is to respond to them).
In response to the diskless node’s request, NETMAN on
a disked node checks the file /SYS/NET/DISKLESS_ LIST.
This file on the disked node contains a list of hexadecimal
node IDs for all nodes the disked node may offer partner-
ship.

 If the diskless list contains the ID of the diskless node re-
questing partnership, NETMAN volunteers the node as a
partner. The first disked node to volunteer becomes the
partner of the diskless node. (It remains the diskless node’s
partner until the next time the diskless node boots.) At this
point, the diskless node displays the partner node’s node ID
for your information.

 You can take a look at a sample diskless list by reading the
file /SYS/NET/SAMPLE_ DISKLESS_ LIST. For a complete
description of how to create a diskless list and set up partners
for diskless nodes, see Administering Your DOMAIN System.

4. Once the diskless node finds a partner, the MD copies the
NETBOOT program from the file, /SYS/NET/NETBOOT on
the partner node into the diskless node’s memory. The
NETBOOT program is a special version of SYSBOOT that
diskless nodes use to boot the operating system across the

2-11 Start-Up and Log-In

 network. The MD, when finished loading NETBOOT, trans-
fers control to it.

5. The NETBOOT program, running on the diskless node,
loads the operating system from the partner node’s boot
volume into memory.

6. The operating system starts either:

•	 The	Display	Manager	(DM)	on	nodes	with	displays.	 	

•	 The	 Server	 Process	 Manager	 (SPM)	 on	 DOMAIN	 Serv-
er Processors (DSPs). The SPM is the server program
that allows you to create a process on a DSP from a
remote node in the network. (Refer to Administering
Your DOMAIN System for more information about the
SPM.)

7. The DM or the SPM executes a start-up file, called a boot
script, that sets up the initial operating environment on your
node. Table 2-1 lists the different boot script files used at
start-up. As shown in Table 2-1, the system chooses which
boot script file to execute according to the type of node.

 Since diskless nodes don’t have files of their own, the DM
or SPM must look to the partner node to find its boot script
file. Just as on a disked node, the DM or SPM on a diskless
node searches for the boot script file in the directory
‘NODE_ DATA. (The grave accent (‘) that precedes the
directory name is a special symbol that returns a value for
NODE_ DATA.) Unlike a disked node, however,
‘NODE_ DATA for the diskless node points to the directory
/SYS/NODE_ DATA.node-id on the partner’s disk. (The
node-id suffix is the hexadecimal node In of your diskless
node.)

 Once the DM or SPM finds the diskless node’s boot script,
the boot script executes. Figure 2-2 shows a sample boot
script similar to the one we provide with DN3xx nodes. For
information about this script refer to the “Understanding the
System at Log-In” section.

 A single disked node can serve as the partner for several
diskless nodes. Each diskless node may need to use a

2-12Start-Up and Log-In

 “node-specific” boot script to set up its own unique operat-
ing environment. Therefore, the system uses the node-id
suffix to denote a unique boot script location for each disk-
less node assigned to the partner.

 At start-up, if the partner does not have a NODE_ DATA
directory set up for the diskless node, NETMAN creates
one, copying it from a template stored in the partner’s
‘NODE_ DATA directory. The NETMAN program then
copies the partner node’s boot script file into the diskless
node’s ‘NODE_ DATA directory. If you want the newly
created boot script to perform different operations at start-
up than its partner, edit the boot script.

8. Once the boot script finishes executing, the node start-up
completes, and the system prompts you to log in.

A major difference between the disked node and diskless node start-
up sequence is the step where the DM or SPM searches for the
node’s boot script (Step 7 for diskless nodes and Step 5 for disked
nodes). Figure 2-4 presents a f lowchart that summarizes this search.

2-13 Start-Up and Log-In

Figure 2-4. The Boot Script Search Sequence

Understanding the System at Log-In
Once a node is up and running, you are ready to log in. At log-in,
the system executes a series of scripts that set up the working en-
vironment for your log-in session. This section describes the se-
quence of steps the system performs at log-in. This section also
shows you how to create and modify scripts to tailor your log-in en-

2-14Start-Up and Log-In

vironment. The f lowchart in Figure 2-5 shows the log-in sequence
for a node.

Figure 2-5. The Log-In Sequence

2-15 Start-Up and Log-In

The descriptions that follow explain each step in the log-in sequence
shown in Figure 2-5.

1. After you enter your username and password, the operating
system verifies your account. (Chapter 1 in Getting Started
With Your DOMAIN System describes how to log in.)

 The system verifies your account by checking the file AC-
COUNT in the site registry directory. If the username and
password match a valid account in the ACCOUNT file, the
system executes the next step. If the system cannot verify
the account, the log-in attempt fails, and the system displays
a log-in error message in the DM output window. For more
information about user accounts and registries, see Adminis-
tering Your DOMAIN System.

2. The system sets your initial working directory and naming
directory to the log-in home directory designated in your
user account. You can change your log-in home directory
anytime you log in. (See the “Changing Your Home Direc-
tory” section later in this chapter.)

3. The DM (on nodes with displays) executes the node’s log-in
start-up script, which resides in one of the files listed in
Table 2-2. As shown in Table 2-2, the system chooses
which log-in start-up file to execute according to the type of
node you are using. Note that on DSPs, the SPM does not
execute a log-in start-up file.

 The DM looks for log-in start-up scripts in two different
locations. First, it looks in ‘NODE_ DATA, which refers to
the node’s specific /SYS/NODE_ DATA directory. (By
default, no log-in start-up script exists in ‘NODE_ DATA;
you must put one there.) If the DM doesn’t find the log-in
start-up script in ‘NODE_ DATA, it executes one of the
default log-in start-up scripts that we supply in the directory
/SYS/DM.

2-16Start-Up and Log-In

Table 2-2. Node Log-In Start-Up Script Files

Node Type Boot Script Filename

800x1024 (Portrait)

DN400

STARTUP_LOGIN

1024x800 (Landscape)

DN420, DN460, DN3xx,
DN550, DN560, DN570,
DN3000 (color)

STARTUP_LOGIN.19L

1280x1024
(Color Landscape)

DN580

STARTUP_LOGIN.1280COLOR

1280x1024
(Black & White Landscape)

DN3000 (Black & White)

STARTUP_LOGIN.1280BW

1024x1024 (Color)

DN600

STARTUP_LOGIN.COLOR

 You may want to create a log-in start-up script in
‘NODE_ DATA in cases where you don’t want the DM to ex-
ecute the default version. For example, a diskless node, by
default, uses one of the log-in start-up scripts located in its
partner’s /SYS/DM directory. If you want the diskless node
to execute its own unique log-in start-up script, you can
create a copy in the diskless node’s ‘NODE_ DATA direc-
tory. For more information about ‘NODE_ DATA for
diskless nodes, refer back to the “Diskless Node Start-Up”
section.

 The system uses log-in start-up scripts to start processes that
you’ll need while you are logged in to your node. For ex-
ample, the log-in start-up scripts that we supply for nodes
with displays create a process running the Shell program.

2-17 Start-Up and Log-In

 When you log out, the DM stops the Shell process and
deletes its pads and windows from the display. Figure 2-6
shows a sample log-in start-up script that we supply for
DN300 nodes.

STARTUP LOGIN (the per_login startup file in
‘node_data or /sys/dm)

main shell whose shape is generally agreeable to
users of this node

(0,300)dr; (700,700)cp /com/sh

and the user’s private dm command file from his
home directory’s user_data sub-directory. Personal
key_defs file is also kept in user_data by DM.

cmdf user_data/startup_dm.19L

Figure 2-6. A Sample Log-In Start-Up Script
(STARTUP_LOGIN.19L)

 As shown in Figure 2-6, the command that creates the initial
Shell process is the only command not commented out in the
script. You may leave it in, comment it out by adding the
pound sign character (#), or change it to draw the process’s
windows in a different location. You can also add com-
mands that will start certain processes that you want to run
each time you log in.

 You’ll notice that the last line in the sample script shown in
Figure 2-6 contains the DM command CMDF (COM-
MAND_FILE). This command invokes another script,
STARTUP_ DM.19L. If you remove the # character from
the command line, the DM attempts to execute this addi-
tional script as part of the log-in sequence. Otherwise, the
system performs Step 5. (Note that when you remove the #,

2-18Start-Up and Log-In

 the DM will not attempt to execute the script until the next
time you log in.)

4. If no # character precedes the CMDF command line, the
DM looks in the USER_ DATA subdirectory of your log-in
home directory for the specified file. If the DM finds the
file, it executes the script; otherwise, it displays an error mes-
sage in the DM output window when the log-in sequence
completes.

 This script, called the DM start-up script, is an optional
script that you create to execute additional DM commands
during log-in. For example, you may want to include com-
mands that make specific key definitions or run specific
programs. Figure 2-7 shows a sample DM start-up script.

 Remember, we don’t supply a DM start-up script as part of
the system; if you want to use a DM start-up script, you must
create one. If you do create a DM start-up script, remem-
ber to create a file that has the same filename as the file
specified with the CMDF command. For example, the
CMDF command in Figure 2-6, specifies the filename
STARTUP_ DM.19L. The suffix 19L is the suffix for files
used by nodes with landscape displays, like the DN300.

2-19 Start-Up and Log-In

USER_DATA/STARTUP_DM (in login home directory)
Some personal preference keys:

Define < F4 > and < F5 > for easy PASCAL
indenting and undenting:

KD F4 T1 ;S/% // KE
KD F5 T1 ;S/%/ / KE

Define CTRL/J to repeat previous substitution:

KD ^J S KE

Set tab every 5 spaces:

TS 5 - R

Build a Shell window and execute a personal Shell
program

(0,500)dr; (799,955) cp /com/sh -f -c ‘user_data/sh’
(0,770)dr;(600,110) wdf1

Figure 2-7. A Sample DM Start-Up Script
(STARTUP_DM.19L)

5. The DM reads the file KEY_ DEFS3 (for nodes with
DOMAIN Low-profile Model II keyboards), KEY_ DEFS2
(for DOMAIN Low-profile Model I keyboards) or
KEY_ DEFS (for nodes with 880 keyboards). These files, lo-
cated in the USER_ DATA directory of your log-in home
directory. contain a record of any key definitions that you
made the last time you were logged in. By reading these
files, the DM carries over key definitions to the new log-in
session. These files are non-ASCII files; therefore, you can-
not edit them. The “Defining Keys” section in Chapter 3
describes the key definition files in more detail.

6. At this point, the log-in sequence is complete.

2-20Start-Up and Log-In

Logging In
Chapter 1 in Getting Started With Your DOMAIN System describes
the basic procedure for logging in to your node. This section
describes the various log-in procedures you can use to log in as
USER, change your password and log-in home directory, and log in
to a DOMAIN Server Processor (DSP).

Logging In as User

The registry file ACCOUNT, described earlier in the “Understanding
the System at Log-In” section, contains a default account named
USER.NONE.NONE, or simply USER. This default account allows
any user anywhere in the network to log into the DOMAIN system.

To use the default account, log in with the username USER as fol-
lows:

Please log in: USER <RETURN>

When the system prompts you for a password, simply press
<RETURN>.

Changing Your Password

You can change your password anytime you log in by typing -p after
your username as follows:

Please log in: L USERNAME -p <RETURN>

After you specify your current password at the” Password: “ prompt,
the system displays the following prompt if the log-in is successful:

Enter new password:

Specify the new password next to the prompt, and press <RETURN>.
Next the system prompts you to verify your new password (to ensure
that you entered it correctly). At the prompt, type the new password
again and press <RETURN>. Use the new password the next time
you log in.

2-21 Start-Up and Log-In

If you want to maintain a secure account, avoid using obvious
passwords such as your username or your initials. If security is not a
high priority, you can use a blank password. (Note, however, that
blank passwords violate system security.) To change your password
to a blank, specify a space in quotation marks. For example:

Enter new password: “ ” <RETURN>

To enter a blank password when you log in, just press <RETURN>.

Changing Your Home Directory

Each system account has a directory associated with it, called the
home directory. Anytime you log in, the system sets your initial
working and naming directories to your home directory. When you
log in, you can change your home directory to another directory in
the naming tree by specifying the -h option after your username as
follows:

Please log in: L USERNAME -h

Specify your current password at the “Password: “prompt. If the
log-in is successful, the system displays the following prompt along
with the pathname of your current home directory:

Change home directory: pathname

To change your home directory, change the pathname to the path-
name of the new home directory you want to use and press
<RETURN>.

When you enter the pathname of your new home directory, the sys-
tem attempts to update the file ACCOUNT in your site registry direc-
tory. This file contains information about your account, such as your
username, password, and home directory. By updating the AC-
COUNT file, the system stores your new home directory for logging in
later. See Administering Your DOMAIN System for more informa-
tion about the ACCOUNT file and system registries.

If the system succeeds in updating the ACCOUNT file, it displays a
message in the DM output window verifying the update. If the sys-
tem cannot update the ACCOUNT file, it displays a message in the
DM output window. In the latter case, although the system could not

2-22Start-Up and Log-In

update the file, it still uses the new home directory during the current
log-in session.

Logging Into a DOMAIN Server Processor
(DSP)

Unlike user nodes, a DOMAIN Server Processor (DSP) doesn’t have
a keyboard or display. Therefore, you must log into it from a user
node in the network.

As described earlier in the “Disked Node Start-Up” section, when
you start up a DSP, the system starts a program called the Server
Process Manager (SPM). The SPM makes it possible for you to
create a process on the DSP, log into the process, and execute
programs and commands, all while you sit at a user node in the net-
work.

For a complete description of the procedure for logging into a DSP,
see the Owner’s Guide for your particular processor.

3-1 Using the Display Manager

CHAPTER 3

Using the Display
Manager

The Display Manager (DM) is the operating system program that
controls your node’s display. Using DM commands, you can instruct
the DM to perform specific display management operations, such as:
moving the cursor around the display, creating and controlling
processes, creating and manipulating pads and windows, and modify-
ing display characteristics.

This chapter explains the functions of the DM and describes how to
specify DM commands. It also describes how to define keys to per-
form DM operations. Chapter 4 describes how to use the DM to
perform specific display-management tasks.

3-2Using the Display Manager

Using DM Commands
DM commands enable you to control your node’s display by instruct-
ing the DM to perform specific display management operations. To
use a DM command, you normally perform two basic steps:

1. Point to the spot on the display where you want the DM
operation performed.

2. Specify a DM command to execute the operation.

You point to a spot on the display either by moving the cursor to the
desired spot, or by explicitly defining a point on the screen as a com-
mand argument. If you don’t perform a pointing operation using
either method, the DM executes the command at the current cursor
position.

Some DM commands require you to define an area, or region, on
the screen instead of a single point. You define the size of a region
by defining two points on the screen. The region is simply the area
between the two points. The “Defining Points and Regions” section
describes how to define points and regions.

To specify a DM command interactively:

1. Press <CMD> to move the cursor next to the Command:
prompt in the DM input pad. (The DM remembers where
the cursor came from so it can apply the next command to
that point.)

2. Type the command along with any arguments or options.

3. Press <RETURN> to invoke the command.

Use this procedure to specify commands interactively from your
keyboard. You can also specify commands in special DM programs,
called scripts. When you invoke a DM script, the DM reads and ex-
ecutes DM commands in the order you specify them. The “Using
DM Command Scripts” section describes how to use DM scripts.

3-3 Using the Display Manager

The method you use to define a point depends on the DM command
you use, and how you use it. When you specify a command interac-
tively, you usually point with the cursor. In scripts, you specify a
point explicitly as a command argument. Figure 3-1 illustrates the
interactive procedure for invoking the WC command to delete a win-
dow.

Figure 3-1. Invoking a DM Command Interactively

You can also invoke DM commands interactively using DM function
keys and control key sequences. The “Using Keys to Perform DM
Functions” section describes how to use these keys to perform DM
functions.

3-4Using the Display Manager

DM Command Conventions

DM commands have the following general format:

[region] COMMAND [arguments ...] [options ...]

Separate the components of a command with the proper command
line delimiters, as follows:

•	 Separate	 an	 argument	 from	 a	 command	 and	 any	 additional	
arguments or options with at least one blank space.

•	 Precede	 each	 option	 with	 a	 hyphen	 (-).	 	 Separate	 each	 op-
tion from commands, arguments, or any additional options
with at least one blank space.

•	 If	 you	 precede	 the	 command	 with	 a	 region,	 make	 sure	 you	
use the correct syntax to define each point (see Table 3-2).
You can place multiple blanks before and after the region,
although they are not required.

•	 You	 can	 string	multiple	 commands	 together	 on	 the	 same	 line	
by separating each command with a semicolon (;) as shown
below:

 PT;TT;TL

 This command sequence executes three separate commands
to move the cursor to the first character in a pad.

When you use commands in scripts and key definitions, you can use
several special characters that control how the DM interprets com-
mands. Table 3-1 lists the rules for using these special characters.

3-5 Using the Display Manager

Table 3-1. Rules for Using DM Special Characters

@ The escape character (@) always nullifies the meaning of
any special character (such as the input request character) it
precedes. When the DM reads a command line containing
the escape character, it strips off the @ character, and any
special meaning of the character following its.

 If you can’t remember whether a character has some special
meaning, it is safe to escape the character. If the character
is not special, the DM still removes the @, so the character
appears as it should. Character escaping is generally con-
fined to search and substitute operations (see Chapter 5),
commands requiring quoted strings, and key definitions.

When the DM reads the pound sign (#) in a DM script, it ig-
nores the information on the remainder of the line. Use this
character to add comments to your DM script.

; Use the semicolon (;) to separate commands that you
specify on the same line.

& The input request character (&) enables you to supply
keyboard input from the DM input pad to a command in a
key definition or script. When the DM reads the &, it stops
reading commands and moves the cursor to the DM input
pad. When you enter input (usually a command argument),
the DM replaces the & character with the specified input and
continues reading commands. You can also specify a prompt
in the form

 & “prompt”

 to display a prompt in the DM input pad that requests the
proper input.

3-6Using the Display Manager

The following commands accept strings surrounded by single quotes:
KD, ES, CP, CPO, CPS, and &. When you use single quotes, the
only characters in the quoted string that retain their special meaning
are @ and &; all other characters revert to their literal values. Note,
however, that the KD command does not recognize single quotes
within the definition string.

Defining Points and Regions

Most DM commands require you to either point with the cursor or
define a point or region on the display. To point, simply move the
cursor to the desired location. For example, to point to a window,
position the cursor anywhere inside the window. Commands that
operate on windows read the cursor position to determine which win-
dow you want to work on.

The block cursor actually occupies many individual screen points.
When you use the block cursor to point to a spot on the screen, the
lower left-hand corner of the block cursor designates the exact
point. (When you point to the upper edge or right edge of a window,
the DM adjusts the point position to account for the size of the cur-
sor. See the “Creating Pads and Windows” section in Chapter 4 for
more information on how the DM defines window boundaries.)

If you choose not to point with the cursor, you can explicitly define a
point or pair of points (a region) using any of the point formats
described in Table 3-2. Note that some formats define points in
pads, and others define points on the display as a whole. You nor-
mally define points in pads when performing the pad editing opera-
tions described in Chapter 5.

3-7 Using the Display Manager

Table 3-2. Formats for Specifying Points on the Display

line-number

Specifies a line location in a pad. Line numbers begin at 1
and range upward to the last line in the pad. To refer to the
last line in a pad, you may specify the dollar sign ($) symbol.
The edit pad window legend displays the line number of the
top line in a window. You can also display the line number
(plus the column number, and x– and y- coordinates) of the
current cursor position by using the DM command =.

+/- n

Specifies a line location in a pad that is n lines before (-) or
after (+) the current cursor position.

[[line-number][,column-number]]

Specifies a point in a pad by line and column number. The
DM assumes the current line if you omit line-number; it as-
sumes column 1 if you omit column-number. Line numbers
range from 1 to the last line in the pad. Column numbers
range from 1 to 256. Some examples are:

[127,14] Line 127, column 14.

[53] Line 53, column 1.

[,12] Column 12 of the current line.

Note that you must use the outer set of square brackets;
however, when you specify line-number only, the brackets
are optional. When using this format, you cannot use the
dollar sign ($) to specify the last line in a pad; you must
specify the number of the last line.

/regular-expression/ or \regular-expression\

Specifies a string in a pad that begins or ends a specific
region. Chapter 5 describes regular expressions.

3-8Using the Display Manager

Table 3-2. Formats for Specifying Points on the Display
(continued)

([x-coordinate] [,y-coordinate])

Specifies a point on the display by screen coordinates.
Screen coordinates indicate bit positions on the display. The
origin (0,0) is at the extreme upper-left corner of the
screen. Values for coordinates have the following ranges:

Display Type x-coordinate y-coordinate

1024x800
1280x1024
(Landscape)

0 to 1023
0 to 1023

0 to 799
0 to 1279

800x1024
(Portrait)

0 to 799 0 to 1023

1024x1024
(Square)

0 to 1023 0 to 1023

If you omit either coordinate from the specification, the DM
uses the coordinates of the cursor. Note that you must
enclose the coordinates in parentheses. Some examples are:

(200,450) Bit position with an x–coordinate of 200
and a y-coordinate of 450.

(135) Bit position with an x–coordinate of 135
and the same y–coordinate as the current
cursor position.

(,730) Bit position with the same x–coordinate as
the current cursor position, and a y–coor-
dinate of 730.

3-9 Using the Display Manager

When you specify any of the formats described in Table 3-2 in the
DM input pad, the DM moves the cursor to the specified position.
For example, to move the cursor to line 75, column 5 in an edit pad,
specify the following in the DM input pad:

Command: [75,5]

You can also use any of the formats for defining points to define a
region on the display. To define a region, you must define two points
as follows:

[point] DR; [point]

The first point defines the beginning of the region and the DR com-
mand marks it. The second command defines the end of the region.
When defining a two-dimensional region, the first point defines one
corner, and the second point defines the opposite corner as shown in
Figure 3-2.

Figure 3-2. Defining a Display Region

When you define a region, if you don’t specify a second position, the
DM uses the current cursor position.

3-10Using the Display Manager

Like defining a single point, an easy way to define a region is to point
with the cursor. For convenience, we defined the function key
<MARK> to invoke the DR command, which marks the first point.
To define a region using the cursor:

1. Move the cursor to the first point.

2. Press the <MARK> key.

3. Move the cursor to the second point.

4. Specify the DM command.

For a complete description of the DM commands used to control
marks, see the DOMAIN System Command Reference.

For commands that require a region in which to operate, you have
the option of specifying the region as part of the command. The CV
(CREATE_VIEW) command, shown below, creates a read-only pad
and window. It uses a region to define the size and location of the
window it creates.

Command: (350,200) DR; (700,600) CV MY_FILE

 region command

Using Keys to Perform DM Functions
You can also perform display management operations using keys,
called function keys, that we’ve defined as specific DM commands.
When you press a function key, it invokes its assigned DM command
or command sequence.

By default, many keys perform DM operations when pressed simul-
taneously with the <CTRL> key. Like function keys, these key
combinations, called control key sequences, provide you with a
“shorthand” method of specifying commands.

The DOMAIN system’s set of predefined function keys and control
key sequences enable you to execute commonly performed opera-

3-11 Using the Display Manager

tions. For example, the directional keys described in Chapter 1 in
Getting Started With Your DOMAIN System are predefined keys that
you’ll use routinely to move the cursor.

We’ve also defined the mouse’s function keys to perform three use-
ful DM operations. Table 3-3 describes the default mouse key func-
tions.

Table 3-3. Default Mouse Key Functions

Mouse Key Function

Left Key
 (M1)

This key performs a GROW/MARK opera-
tion to change the size of windows. The sec-
tion, “Changing Window Size” in Chapter 4
describes how to use the left mouse key to
change the size of a window.

Center Key
 (M2)

This key works just like the <POP> key. To
use it, move the cursor inside the window
you want to pop, then press the key. See
the section, “Pushing and Popping Win-
dows” in Chapter 4 for more information.

Right Key
 (M3)

This key makes it easy for you to read files
in your current working directory. It ex-
ecutes the CV (CREATE_VIEW) command
with the name of the file you point to with
the cursor. To use this key, specify the LD
Shell command to list the contents of your
current directory. Then, position the cursor
over the name of the file you want to read
and press the right mouse key.

3-12Using the Display Manager

Keyboard Types and Key Definitions

The DOMAIN System supports two basic types of keyboards:

•	 DOMAIN	low-profile	keyboards	

•	 The	880	keyboard	

DOMAIN low-profile type keyboards (shown in Figure 3-3) include
the DOMAIN Low-profile Model I keyboard and the DOMAIN
Low-profile Model II keyboard. Notice that the key layout for both
of these keyboards is the same except that the Model II keyboard
has a numeric keypad and two additional function keys, F0 and F9.

Note: The 880 keyboard is an older style keyboard that we no
longer ship with new nodes. Appendix B describes the 880
keyboard and its predefined key functions. The command
summary tables in this manual list the predefined function
keys for the low-profile type keyboards only.

The system stores the definitions for its predefined keys in a
keyboard-specific definition file. Table 3-4 lists the names of the
definition file for each keyboard.

When you boot your node, the system loads the key definition
file according to which KBD (KEYBOARD) commands are specified
in your node’s boot script (STARTUP) file. (See the “Understanding
the System at Startup” section in Chapter 2 for a description of boot
scripts.)

3-13 Using the Display Manager

Fi
gu

re
 3

-3
.

K
ey

 N
am

es
 fo

r
th

e
D

O
M

A
IN

 L
ow

-P
ro

fi
le

 K
ey

bo
ar

ds

3-14Using the Display Manager

Table 3-4. Key Definition File Names

Keyboard Key Definition File

880

Low-profile Model I

Low-profile Model II

/SYS/DM/STD_KEYS

/SYS/DM/STD_KEYS2

/SYS/DM/STD_KEYS3

To direct the DM to execute the STD_ KEYS2 file and establish key
definitions for the low-profile Model I keyboard, remove the com-
ment character (#) from the KBD 2 command. To use a node with
the low-profile Model II keyboard, remove the comment character
from the KBD 3 command. To use a node with an 880 keyboard,
uncomment the command KBD.

After you log in, if you find that the predefined keys do not work as
described in this manual, you can execute the appropriate
STD_ KEYS(n) file to set up the proper default key definitions for
your keyboard. For example, to set up the predefined key defini-
tions for the Model I keyboard, specify the following in the DM input
pad:

Command: CMDF /SYS/DM/STD_KEYS2

You can also define your own function keys and control key se-
quences by assigning commands to specific key names. But, before
you can define keys, you must understand how they are named. The
next two sections describe key naming conventions and describe how
to define keys.

3-15 Using the Display Manager

Key Naming Conventions

The DM identifies each key on your keyboard (and mouse) by a
unique name. The names of the ordinary character keys (letters and
numbers) have the same name as the characters they represent. For
example, the A key has the name “A”. Other keys, like the DM
function keys, have special names that are different than the names
written on them. The <READ> key, for example, has the name R2.
Figure 3-3 shows the names and locations of the keys on both the
low-profile type keyboards.

For example, the <CUT> / <COPY> function key (L1A) performs a
different function when you use it with the <SHIFT> key. The name
(L1A) identifies the key’s normal function (when you press the key
down). The name (L1AS), referred to as the key’s shif ted name,
identifies the key’s function when pressed simultaneously with the
<SHIFT> key. The key’s up-transition name (L1AU) identifies the
function the key performs when released. Table 3-5 describes the
key naming conventions you should use when defining keys.

When defining a key as a command or sequence of commands, you
use the same name that the DM uses to identify the key. Some keys,
like the DM and program function keys, function differently depend-
ing on how you use them. Therefore, each of these keys has a set of
additional names that identify the manner in which the key is used.

3-16Using the Display Manager

Table 3-5. Key Naming Conventions

Key Type Description

Ordinary
Characters

These keys have the same name as the char-
acters (numbers and letters) they represent.
You can assign functions to lowercase letters
and numbers, as well as to capital letters and
special characters. When you specify ordi-
nary characters, enclose the character in
single quotes (‘ ’).

ASCII Control These are the standard line control keys.
Their names are:

CR
BS
TAB
TABS
^TAB
ESC

DEL

Carriage Return
Back Space
Tab
Shifted Tab
Control Shifted Tab
Escape (low-profile
only).
Same as ‘^[’ (hex
1B)
Delete (low-profile
only) Same as ‘^|’
(hex 7F)

Control
Key

These are ordinary character or program
function keys used with the <CTRL> key.
Specify a control key name as ^x (where x is
an ordinary character or program function
key name.). For example, use ^Y for
CTRL/Y or ^F4 for CTRL/F4.

Program
Function

These keys are reserved for user program
control. They appear at the top of the
keyboard and are named F1 through F8 as
labeled. (For DOMAIN Low-profile Model II
keyboards, these keys are named F0 through
F9). Their up-transition names are F0U
through F9U; their shifted names are F0S
through F9S; and their control key names are
^F0 through ^F9.

3-17 Using the Display Manager

Table 3-5. Key Naming Conventions (continued)

Key Type Description

DM Function These keys are predefined to perform special
display management functions. The function
keys on the left side of the keyboard are
named L 1 through LF. The function keys on
the right are named R1 through R5. Specify a
key’s up-transition name by adding the suffix
U to the key name. To specify a function
key’s shifted name (only on low-profile type
keyboards), add the suffix S. For example,
the up-transition name for R3 is R3U; the
shifted name is R3S.

Numeric
Keypad

These keys are only available on the
DOMAIN Low-profile Model II keyboard.
The keypad’s numeric keys are named NP0
through NP9. The keypad symbols are
named NP+, NP-, and NP, respectively. The
“Enter” key is named NPE. Keys 0 through
9, plus (+), and minus (-) can have shifted
names (for example, NP+S).

Mouse These are located on the optional mouse and
are named M1, M2, M3. Their up-transition
names are M1U, M2U, M3U. These keys do
not have shifted or control key names.

3-18Using the Display Manager

Defining Keys

As we described earlier, the DOMAIN system provides a set of
default function keys and control key sequences defined as DM com-
mands. You can override these definitions or create new ones in
either of the following ways:

•	 Specify	 the	 KD (KEY_DEFINITION) command from the
keyboard or in a script.

•	 Call	the	system	routine	PAD_$DEF_PFK from a program.

When you define keys with the KD command during a session on
your node, the DM writes the new definitions to one of the following
files:

•	 KEY_DEFS for the 880 keyboard

•	 KEY_DEFS2 for the DOMAIN Low-profile Model I
keyboard

•	 KEY_DEFS3 for the DOMAIN Low-profile Model II
keyboard

These files reside in the USER_ DATA subdirectory of your log-in
home directory (see Chapter 2); they apply only to you, not to other
node users. The DM checks these files whenever you log in, and sets
your personal definitions to reset any of the standard key definitions
set up by /SYS/DM/STD_ KEYS(n) (see Table 3-4).

Definitions made from within a program override those made by KD
commands; however, they work only within the program’s process
window. Therefore, keys defined from a program may function diff-
erently in different windows. The “Controlling Keys from Within a
Program” section describes how programs control key functions.

To define a key from the keyboard or from a script, specify the KD
command in the following format:

KD key_name definition KE

In the KD command format, key_name specifies the unique name
of the key you want to define. The previous section describes key

3-19 Using the Display Manager

naming conventions, and Figure 3-3 shows the location and names
of keys. Remember, always enclose ordinary character and special
character names in single quotes. For example, to define the Z key,
specify ‘Z’.

The definition argument specifies either a single DM command or a
sequence of DM commands that the desired key will perform. (The
DOMAIN System Command Reference describes all of the DM com-
mands you can use in key definitions.) When you specify a sequence
of commands, either specify each command on a new line (in
scripts) or separate each command with a semicolon (;). Always fol-
low the definition argument with the KE argument, which signals the
end of the KD command.

The command in the following example defines the program function
key, F1, to move the cursor to the end of the previous line in a win-
dow:

 KD F1 AU;TR KE

command key_name definition

The definition argument in the example above specifies a command
sequence composed of two commands: AU, which moves the cursor
up to the previous line, and TR, which moves the cursor to the end
of the line. You can specify any number of commands, but you can-
not exceed 256 characters in the entire KD command.

You can embed key definitions inside other key definitions, and
thereby define keys that define other keys. The embedded key
definition follows the same rules as any other key definition;
however, you must precede the semicolon (;) with an escape charac-
ter (@) to separate the embedded KD command from the next com-
mand. The following example shows an embedded key definition:

KD F3 KD ^X ES ‘THIS IS A TEST’ KE@ ; PV KE

 embedded key definition

3-20Using the Display Manager

This command defines the F3 key to perform the following opera-
tions when pressed:

•	 Define	CTRL/X	 to	print	out	 the	 string,	 “This	 is	 a	 test.”	 (The	
embedded key definition specifies this function.)

•	 Invoke	 the	 PV	 command	 to	 scroll	 the	 current	 pad	 one	 line.		
(Chapter 4 describes the PV command.)

Note that the DM scans embedded key definitions three times when:

1. It makes the outer key definition.

2. It executes the outer key definition and makes the inner key
definition.

3. It executes the inner key definition.

To define a key that prompts you for input, specify as part of the
definition argument, the input request character (&) in the follow-
ing format:

&”prompt”

where prompt specifies the prompt string. The input request charac-
ter and prompt cause the DM to prompt for part of the definition ar-
gument you specified in the key definition. For example, the
<READ> key (R3) has the following default key definition:

KD R3 CV &’Read File: ‘ KE

Whenever you press the <READ> key, the DM displays the prompt,
Read File: in the DM input pad and moves the cursor next to it.
When you respond to the prompt by typing the name of a file and
pressing <RETURN>, the DM replaces &’Read File: from the key
definition with your response. In this way, the CV command opens
the file you specify. (Chapter 4 describes the CV command.)

NOTE: When you define keys in scripts, you must precede the in-
put request character (&) with the escape character (@).

When you enter a response to a prompt, the DM remembers the
response you typed. So, the next time you press the key, the DM

3-21 Using the Display Manager

automatically displays the previous response next to the prompt.
(This is why the <READ> and <EDIT> keys remember the last files
used.) You can either move the cursor to the right of the previous
response and press <RETURN> to enter the response, or delete the
previous response and enter a new one.

Deleting Key Definitions

To delete a key definition, specify the KD command without a
definition argument. For example:

KD F1 KE

deletes the current definition for the key named F1. For keys with
ordinary character names, the key reverts to its normal graphic
value.

Displaying Key Definitions

To display a key’s current definition, specify the KD command
without the definition or KE arguments. The command in the fol-
lowing example displays the definition for the <READ> key (R3):

KD R3

The DM displays the current key definition in the DM output win-
dow.

Controlling Keys from Within a Program

The DOMAIN system enables application programs to assume con-
trol of various display and keyboard functions. For example, the
character font editor, EDFONT (EDIT_FONT), displays several dif-
ferent menus on your screen that you control with your mouse keys
(M1 through M3). When you use EDFONT, the EDFONT program
defines how these keys function; the keys do not maintain their nor-
mal DM definitions. The DM restores the mouse keys to their nor-
mal DM definitions when you end your EDFONT session. The
DOMAIN System Command Reference describes the EDFONT
character font editor.

3-22Using the Display Manager

For your own applications, you can control key definitions through
program calls to the PAD_$DEF_PFK and PAD_$DM_CMD
routines. For more information on these system routines, refer to
the PAD routines section of the DOMAIN System Call Reference.

You may find the normal functions of the DM keys useful even when
using an application program that has redefined them, With the
<HOLD> key, you can temporarily override the application
program’s key definitions and use the normal DM definitions.

To override an application program’s key definitions, press the
<HOLD> key. By pressing the <HOLD> key again, you restore the
application program’s key definitions. Note that this function of the
<HOLD> key is different than the normal DM function of switching
a window in and out of hold mode (see Chapter 4).

Using DM Command Scripts
A DM script is a file that contains one or several DM commands.
You can use DM scripts to perform any of the DM operations
described in this manual, such as creating and controlling processes,
manipulating pads and windows, editing files, and defining keys.

You execute scripts by specifying the pathname of the script file with
the DM command CMDF (COMMAND_FILE) as follows:

CMDF pathname

The start-up scripts discussed in Chapter 2 are examples of DM
command scripts that the system uses to set up your node’s operating
environment. In fact, your node’s log-in start-up script uses the
CMDF (COMMAND_FILE) command to invoke the DM start-up
script that you create. Figure 2-2 in Chapter 2 shows a sample DM
start-up script, STARTUP.19L, for a DN300 node.

4-1 Controlling the Display

CHAPTER 4

Controlling the
Display

This chapter describes how to use the DM to control your node’s dis-
play. Each section describes a set of related screen-management
tasks and the DM commands you use to perform them.

You can execute a DM command either from a DM script or interac-
tively by specifying the command in the DM input window. In some
cases, you can also execute a DM command by typing a function key
or control key sequence.

The command summary tables, at the beginning of each section, list
the DM commands, and related function keys and control key seq-
uences, used to perform a specific set of tasks. Note that the
predefined keys listed in these tables apply only to low-profile type
keyboards. For a description of the predefined keys for the 880
keyboard, refer to Appendix B.

4-2Controlling the Display

Chapter 3 explains how to specify DM commands from the keyboard
and from scripts, and how to use function keys and control key se-
quences. For a complete description of all the DM commands
described in this chapter, refer to the DOMAIN System Command
Reference.

Controlling Cursor Movement
Moving the cursor is the most basic of all display management opera-
tions; it’s also the one you’ll perform most frequently. You use the
cursor to move to a location on the display where you want to per-
form a specific operation. For example, you can move the cursor to
point to the location where you want a DM command to operate, or
you can move the cursor into the DM input window to type the name
of a command.

In Chapter 1 of Getting Started With Your DOMAIN System you
learned how to use the touchpad, mouse, and directional keys to
move the cursor around the display. This section summarizes the DM
commands and control key sequences used to control cursor move-
ment. Table 4-1 lists the commands used to control the cursor. It
also shows the predefined directional keys on low-profile type
keyboards. Predefined keys for the 880 keyboard are described in
Appendix B.

Table 4-1. Cursor Control Commands

Task DM Command Predefined Key

Move left one char.

Move right one char.

Move up one line

Move down one line

Set arrow key scale
factors

AL

AR

AU

AD

AS x y

← (LA)

→ (LC)

↑ (L8)

↓ (LE)

None

4-3 Controlling the Display

Table 4-1. Cursor Control Commands (continued)

Task DM Command Predefined Key

Move to the beginning
of line

Move to end of line

Move to top line in
window

Move to bottom line
in window

Tab to window
borders

Move to the beginning
of next line

TL

TR

TT

TB

TWB [1, r, t, b]

AD;TL

⇤ (L4)

⇥ (L6)

<SHIFT> ↑
(LDS)

<SHIFT> ↓
 (LFS)

None

CTRL/K

Tab left

Tab right

Set tabs

THL

TH

TS [n1 n2 ...]

CTRL/<TAB>

<TAB>

None

Move to DM input
pad

Move to next window
on screen

Move to previous
window

Move to next window
in which input is
enabled

TDM

TN

TLW

TI

<CMD>
(L5)

<NEXT_WNDW>
(L8)

CTRL/L

None

NOTE: In this command summary table, the symbols
enclosed in parentheses are the unique DM
keynames. Refer to Chapter 3 for more information
on key names and defining keys. This note applies
to all command summary tables in this chapter.

4-4Controlling the Display

Creating Processes
When you execute a program on a DOMAIN node, you run it in a
computing environment called a process. Each process that you
create is unique, providing a separate computing environment. Since
the DOMAIN system enables you to create multiple processes on
your node, you can run several programs simultaneously. You can
create and run up to 24 simultaneous processes.

The system associates each process that you create with a subject
identifier (SID). The SID identifies the owner of a process and
consists of the user’s name, project, organization, and node ID. SIDs
enable the system to control user access to processes and other ob-
jects on the system. Chapter 8 describes how the system uses SIDs
and Access Control Lists (ACLs) to control access to system objects.
By default, the system assigns the same SID to each process that you
create.

You can create processes that have pads and windows that let you
enter data and view program output. Or, you can create processes
that run without the use of the display. The type of process you
create depends on the program and its application.

To run an interactive program, for example, you create a process
with pads and windows. The Shell program that we supply with your
system is an interactive program. It prompts you for input (Shell
commands) and displays output.

We also supply a set of special programs called server programs that
provide you, or a program, with access to some service, such as the
use of a peripheral device. Server programs run in processes called
servers that you can create using any of the process creation com-
mands described in this chapter. Many of these servers run as back-
ground processes without pads or windows.

Table 4-2 summarizes the commands used to create processes.

4-5 Controlling the Display

Table 4-2. Commands for Creating Processes

Task DM Command Predefined Key

Create new process,
pads, and windows

Create new process
without pads or
windows

Create a server
process

CP pathname

CPO pathname

CPS pathname

<SHELL>
(L5S)

None

None

Creating a Process with Pads and Windows

To create a process with input and output pads and windows to view
these pads, use the CP (CREATE_PROCESS) command in the fol-
lowing format:

[region] CP pathname [options]

where region specifies the coordinates of the process window and
pathname specifies the pathname of the program you want the
process to execute. The process pads and windows that the CP com-
mand creates enable you to supply input to programs and view
program output.

The command in the following example creates a process that ex-
ecutes an interactive program called COUNTER.BIN. The program
prompts for program input and displays its output to the process’s
transcript pad.

CP /HORACE/PROGS/COUNTER.BIN -N COUNTER

The -N option assigns the process the name COUNTER. When
COUNTER.BIN completes (or if you stop the program or process),

4-6Controlling the Display

the input and transcript pads close. To delete the remaining process
window, type CTRL/N. Note that in this example, since no region is
specified, the DM uses its default window coordinates to create the
window (see the “Defining Default Window Positions” section later
in this chapter.)

One process that you’ll create frequently is a process that runs the
Shell program that we supply. You can create a process running “the
Shell” by pressing the <SHELL> key or typing the CP command with
the pathname /COM/SH as follows:

Command: CP /COM/SH

This command creates an input pad and a transcript pad, and opens
the input pad as standard input. (Standard input is where, by
default, a program gets user input.) In fact, the log-in start-up
script, /SYS/DM/STARTUP_ LOGIN executes this same command to
set up the initial Shell process that you see when you log in. Figure
4-1 shows a process running the Shell.

Figure 4-1. A Process Running the Shell

4-7 Controlling the Display

To stop both the Shell program and its process, type CTRL/Z
(CTRL/Z signals the end of input) in the Shell’s process input pad.
Then, to close all the windows associated with the Shell’s process,
type CTRL/N or press <ABORT>. The “Controlling A Process”
section describes how to stop programs and processes. The “Closing
Pads and Windows” section describes how to close windows.

Creating a Process without Pads and Windows

To create a background process without associated pads and win-
dows, specify the CPO (CREATE_PROCESS_ONLY) command in
the following format:

CPO pathname [options]

where pathname specifies the pathname of the file that you want the
process to execute.

When you invoke the CPO command, the system assigns the created
process the SID of the process that invoked the CPO command. The
created process runs until the owner of the process logs out.

Suppose you wanted to create a process running the alarm server
program to monitor your disk usage, and to warn you when your disk
becomes 90% full. To create the process and start the alarm server,
specify the following command:

CPO /SYS/ALARM/ALARM_SERVER -DISK 90

In this example, the alarm server runs as a background process on
your node. When you log off, the process stops. The manual, Ad-
ministering Your DOMAIN System provides detailed information
about the alarm server and other servers.

If you include the CPO command in the DM boot script,
‘NODE_ DATA/STARTUP (see Chapter 2), the system assigns the
created process the SID, USER.SERVER.NONE.local_node. In this
case, the created process continues to run regardless of who logs in
or out. You can perform this same function by executing the CPS
command from the DM input window.

4-8Controlling the Display

Creating a Server Process

You can create a server process without pads and windows that runs
continually on your node by specifying the CPS
(CREATE_PROCESS_SERVER) command in the following format:

CPS pathname [options]

where pathname specifies the pathname of the program you want the
process to execute.

Use the CPS command when you want to create a server that runs
regardless of whether anyone is logged in. For example, the following
command starts the mailbox server MBX_HELPER:

CPS /SYS/MBX/MBX_HELPER -N MBX_HELPER

In the example above, the -N option assigns the process the name
MBX_ HELPER.

You usually invoke CPS commands from your node’s boot script
(STARTUP) during start-up. (Chapter 2 describes the boot script
files the system uses when you start your node.) By including CPS
commands in your node’s boot script, you ensure that your servers
restart whenever you have to restart your node. You can also invoke
the CPS command from the DM input window.

Controlling a Process
Once you create a process, you can use the DM’s process control
commands to either stop it, suspend it, or restart it. Table 4-3 sum-
marizes the DM commands used to control processes.

4-9 Controlling the Display

Table 4-3. Commands for Controlling a Process

Task DM Command Predefined Key

Quit, stop, or blast
a process

Suspend execution of
a process

Resume execution of
a suspended process

DQ [-b | -s | -c nn]

DS

DC

CTRL/Q

None

None

Stopping a Program or Process

To stop a program or an entire process, use the DQ
(DEBUG_QUIT) command in the following format:

DQ [options]

To stop a program, position the cursor inside the window of the
process and either type CTRL/Q or specify the DQ command
without any options. Either operation will generate a normal quit
fault, which interrupts the execution of the current program and
returns the process to the calling program (usually the Shell).

To stop an entire process, position the cursor inside the window of
the process. Then, specify the following DM command:

DQ -S

This command stops the current process and closes any open
streams, files, and pads. To delete the remaining window, move the
cursor inside the window and type CTRL/N.

If you want to stop a Shell process, move the cursor to the Shell’s
process input window and type CTRL/Z. Typing CTRL/Z in the
Shell’s process input window signals the completion of input and

4-10Controlling the Display

stops both the Shell and the process. You may find this method
easier than using the DQ -S command.

Suspending and Resuming a Process

You can temporarily interrupt a process and then restart it using the
DS (DEBUG_SUSPEND) and DC (DEBUG_CONTINUE) com-
mands.

To interrupt a process, position the cursor inside the process window;
then specify the DS command. Later, to restart the process, position
the cursor inside the process window and specify the DC command.

Creating Pads and Windows
In order to read or edit a file, you must create a pad to hold it and a
window to view it. Table 4-4 summarizes the DM commands used to
create pads and windows for editing and reading files.

Table 4-4. Commands for Creating Pads and Windows

Task DM Command Predefined Key

Create an edit pad
and window

Create a read-only
window

Create a copy of an
existing pad and
window

CE pathname

CV pathname

CC

<EDIT>
(R4)

<READ>
(R3)

None

Before you can use the commands that create pads and windows, you
should understand just how the DM determines what boundaries to
assign to a new window.

4-11 Controlling the Display

When a window’s size or position on the screen is changed in any
way, the DM calculates the new boundaries of the window based on
a pair of points on the screen called a point pair. (Usually, you
define the first point in the pair with the DR command, and the
second point by the current cursor position. You may also provide
absolute point coordinates as described in the .. Defining Points and
Regions” section in Chapter 3.)

Each point in a point pair may specify either a new or existing edge
of a window, or a new or existing corner of a window. The DM
creates a new window based on the relationship between the x– and
y–coordinates of the two points.

The relationship between the two points in the point pair affects the
actions of the DM window-creation commands, CP, CE, CV, CC,
and the window-movement commands, WM, WME, WG, and WGE
(see the “Managing Windows” section). Table 4-5 shows how the
DM defines window boundaries according to the points given for win-
dow-creation and window-movement commands.

Table 4-5. DM Rules for Defining Window Boundaries

Points that have equal y-coordinates

Create Create a window bounded by the given x–
coordinates, the top of the display, and the
DM command window. In other words,
create a full vertical window.

Move Select the unobscured vertical edge nearest to
the first point and change the x-coordinate of
that edge to that of the second point.

Points that have equal x-coordinates

Create Create a window bounded by the given y–
coordinates and each side of the display. In
other words, create a full horizontal window.

Move Select the unobscured horizontal edge nearest
to the first point, and change the y–coordinate
of that edge to that of the second point.

4-12Controlling the Display

Table 4-5. DM Rules for Defining Window Boundaries
(continued)

Points that are equal

Create Create a 512 by 512 window centered as
nearly as possible to the given cursor
position.

Move Select the unobscured corner nearest the
given point, and move the corner to that
point.

Points that differ in both x and y

Create Each set of coordinates form opposing corners
of the window.

Move The first point selects the nearest unobscured
corner (this corner must be visible) and the
DM repositions the corner at the second
point.

Only one point is given
(no DR is specified)

Create The DM uses one of its five default window
regions (see the “Defining Default Window
Positions” section), or it determines the posi-
tion by the last window creation or deletion
command as follows:

•	 If	 the	 last	command	was	window	deletion	
(WC), the default region is the same as
that for the deleted window.

•	 If	the	last	command	was	a	successful	win-
dow-creation command, the default region
is the next third of the screen

•	 If	 the	 last	 command	was	 an	 unsuccessful	
window-creation command, the default
region is the same as that specified in the
unsuccessful command.

Move Grow is illegal and move behaves as if both
points are equal.

4-13 Controlling the Display

Creating an Edit Pad and Window

To create an edit pad and window, specify the CE (CREATE_EDIT)
command in the following format:

[region] CE pathname

where pathname specifies the pathname of the file you want to edit.
If the file you specify exists, the CE command opens the file for edit-
ing. If the file does not exist, the CE command creates a new file,
assigns it the pathname you specified, and opens it for editing. Note
that the CE command does not create a process; it opens a file for
editing within the current DM process.

Once you create an edit pad, you can use the DM edit commands to
manipulate the text that appears on the pad. Chapter 5 describes
how to use the DM edit commands to edit pads.

As described in Getting Started With Your DOMAIN System, you can
also create an edit pad and window using the <EDIT> key. When
you press <EDIT>, an “Edit File: “ prompt appears in the DM input
window, and the DM moves the cursor next to the prompt. To edit a
specific file, type the file’s pathname next to the prompt, and press
<RETURN> as shown in Figure 4-2.

Figure 4-2. Creating an Edit Pad and Window

4-14Controlling the Display

Creating a Read-Only Pad and Window

A read-only pad and window is identical to an edit pad and window
with one exception: you cannot make changes to a read-only pad;
you can only read it. (Note, however, that you can copy text from a
read-only pad.)

To create a read-only pad and window, specify the CV
(CREATE_VIEW) command in the following format:

[region] CV path name

where pathname specifies the pathname of the file you want to read.
If the file you specify exists. The CV command opens the file and dis-
plays its contents. If the file does not exist, the DM displays the fol-
lowing error message:

(CV) filename - Name not found

Note that the CV command does not create a process; it opens a file
for reading within the current DM process.

If the file you want to read is currently active in another window, you
can create another new pad and window to read it. You cannot,
however, edit a file while anyone else on the network has it open for
editing.

On occasion, you may create a read-only pad and window and
decide that you would like to make changes to the file. Instead of
creating a new edit pad and window for the file, you can either type
CTRL/M or specify the DM command, RO (set read/write mode),
to change the read-only pad to an edit pad. Chapter 5 describes
how to use the RO command to set a pad’s read/write mode.

You can also create a read-only pad and window using the <READ>
key. For a description of how to use the <READ> key, see Getting
Started With Your DOMAIN System.

4-15 Controlling the Display

Copying a Pad and Window

With the CC (CREATE_COPY) command, you can create a copy of
an existing pad and window and display it at a specific area on the
screen. Figure 4-3 illustrates how to use the CC command to copy a
pad and window.

Figure 4-3. Copying a Pad and Window

The numbers in Figure 4-3 correspond to the following steps:

1. Mark opposite corners of the new window. To mark each
corner: first move the cursor to the point on the screen
where you want the corner to appear, then either press the
<MARK> key or specify the DR command. (Chapter 3
describes how to use the DR command and <MARK> key to
mark regions on the display.)

2. Move the cursor inside the window you want to copy.

3. Specify the CC command.

4-16Controlling the Display

This procedure creates a copy of the pad and window and displays it
at the location on the screen that you marked. If you issue the CC
command without marking the display region, the DM determines
the location according to the rules described earlier in the “Creating
Pads and Windows” section.

Closing Pads and Windows
When you finish reading or editing a pad, you can close the pad and
window using any of the commands listed in Table 4-6.

Table 4-6. Commands for Closing Pads and Windows

Task DM Command Predefined Key

Close window and
pad; update file

Close window and
pad; no update

Close (delete) a
window

PW; WC -Q

WC -Q

WC [-Q | -F]

<EXIT>
(R5)

<ABORT>
(R5S)

None

To delete (quit) a read-only or edit pad and associated windows,
position the cursor inside the window and either press <ABORT> (on
low-profile type keyboards only), type CTRL/N, or specify the fol-
lowing command:

WC -Q

The -Q option causes WC to delete the pad and window without
saving the contents of the pad. If you modified the edit pad, you’ll

4-17 Controlling the Display

receive the following message in the DM input window asking you to
confirm your request to quit:

File Modified. OK to quit?

If you respond by typing Y or YES followed by <RETURN>, the WC
command deletes the pad and window without saving the contents of
the pad. If you respond N or NO, the system ignores the quit request
and returns the cursor to the edit pad.

If you modify an edit pad and want to save its contents (write its con-
tents to a file), either press <EXIT> (for low-profile type keyboards
only), type CTRL/Y, or specify the following command:

PW

The PW (PAD_WRITE) command copies the edited pad to a file
that has the same name as the original file. The system saves the
contents of the original pad in a file with the same name and the
added suffix .BAK. Once you’ve saved the pad, use WC to close the
edit window.

Managing Windows

Window control commands enable you to change the size, position,
and characteristics of windows on the screen. You can use window
control commands to manage edit pad windows, or process windows.
Table 4-7 summarizes the window control commands.

4-18Controlling the Display

Table 4-7. Commands for Managing Windows

Task DM Command Predefined Key

Changing window size

Changing window size
with rubberbanding

Move a window

Move a window
with rubberbanding

WG

WGE

WM

WME

CTRL/G

<GROW>
(LA3)

None

<MOVE>
(LA3S)

Set scroll mode

Set autohold mode

Scroll and autohold
mode

Set hold mode

WS [-on | -off]

WA [-on | -off]

WA;WS

WH [-on | -off]

CTRL/S

None

CTRL/A

<HOLD>
(R6)

Define position of
default window “n”

WDF [n] None

Acknowledge alarm

Acknowledge alarm
and pop window

AA

AP

None

None

Changing Window Size

Once you create a window on your screen, you can enlarge or shrink
it with the WGE (WINDOW_GROW_ECHO) command.

As shown in Figure 4-4, the WGE command displays a f lexible bor-
der, or rubberband, that changes as you move the cursor to enlarge
or shrink the window. The position of the rubberband shows you the
size and shape the window will become when you complete the
operation.

4-19 Controlling the Display

Figure 4-4. Growing a Window Using Rubberbanding

Use the following procedure to change the size of a window:

1. Move the cursor to the window corner or edge you want to
move.

2. Press the <GROW> key or specify the WGE command. A
rubberband border appears.

3. Move the cursor to stretch or shrink the rubberband until the
rubberband matches the new size you want for the window.

4. Either press the <MARK> key or specify the DR command
to complete the operation.

To cancel the procedure at any time, type CTRL/X or specify the
ABRT command.

4-20Controlling the Display

If you have a mouse, you can change the size of a window by using
the left mouse key. To use the mouse to change the size of a win-
dow, perform the following procedure:

1. Move the cursor to the window corner or edge you want to
move.

2. Press and hold the left mouse key. A rubberband border ap-
pears.

3. Holding the left key down, move the cursor to grow or shrink
the window.

4. When the rubberband matches the new size you want for the
window, release the left mouse key.

Moving a Window

To move a window to another location on the display, use the WME
(WINDOW_MOVE_ECHO) command. The WME command, like
the WGE command, uses a rubberband border to show you the exact
position the new window will occupy.

Use the following procedure to move a window:

1. Move the cursor to any corner of the window you want to
move.

2. Press the <MOVE> key or specify the WME command. A
rubberband border appears.

3. Move the cursor until the rubberband is at the new window
position.

4. Either press the <MARK> key or specify the DR;ECHO
command sequence to complete the operation,

To cancel the procedure at any time, type CTRL/X or specify the
ABRT command.

4-21 Controlling the Display

Pushing and Popping Windows

As you create multiple windows on your screen, you may begin to
stack windows one on top of another. Some windows will partially
obscure or completely hide others. To view hidden windows, use the
WP (WINDOW_POP) command in the following format:

WP [options] [window_name]

The WP command either pops a window to the top of the stack or
pushes a window to the bottom of the stack, depending on where you
position the cursor. Figure 4-5 illustrates how to push and pop win-
dows.

Figure 4-5. Pushing and Popping Windows

If you position the cursor in a partially obscured window, the WP
command pops the window to the top of the stack. If you position
the cursor in a completely visible window (the window on top), WP
pushes the window to the bottom of the stack.

4-22Controlling the Display

Use the following procedure to push or pop windows:

1. Position the cursor inside the window you want to push or
pop.

2. Pop or push the window by either pressing the <POP> key
(on low-profile type keyboards only), typing CTRL/P, or
specifying the WP command.

You can also refer to a window you want to push or pop by specifying
the name of the window. To specify a window name, either enter it
as an argument to the WP command, or point to window name as
follows:

1. Use the cursor to point to a text string that contains the
name of the window you want to push or pop,

2. Press <MARK>, or specify DR to mark the window name.

3. Specify the WP command.

This second method is useful when you’re displaying a list of all win-
dows that you currently have open (see the description of the CPB
command in the “Displaying the Members of a Window Group” sec-
tion later in this chapter).

Changing Process Window Modes

The DM provides several modes that control how the DM inserts text
into process input windows, and how process transcript windows dis-
play program output. Table 4-8 describes these modes.

You control window modes by positioning the cursor inside the
process window and specifying window mode control commands. If
you specify a command without any options, the command toggles
the mode setting (turns it on or off depending on its current state).

4-23 Controlling the Display

Table 4-8. Process Window Modes

Mode Description

Insert

Scroll

Hold

Autohold

Insert text in the input window rather
than overstrike.

Output scrolls one line at a time.

Content of the window does not
change when the program sends
output to the pad.

Window automatically enters hold
mode.

The window legend at the top of the process window displays a letter
code that indicates which modes are on. Figure 4-6 shows the mode
indicators and other components that make up the process window
legend.

Figure 4-6. Process Window Legend

4-24Controlling the Display

By default, the window legend displays the letter I indicating that the
process input window is in insert mode. In insert mode, the DM in-
serts characters you type at the current cursor position. The remain-
der of the line moves to the right to make room for new characters.

With insert mode turned off, the process input window is in over-
strike mode, in which characters you type replace those under the
cursor.

To turn insert mode on or off, specify the EI command in the follow-
ing format:

EI [-ON | -OFF]

If you do not specify an option, EI toggles the current mode.

To turn scroll mode on or off, specify the WS (WIN-
DOW_SCROLL) command in the following format:

WS [-ON | -OFF]

With scroll mode turned on, the window displays output one line at a
time as the transcript pad moves beneath the window. With scroll
mode ·turned off, output does not appear a line at a time. Instead,
when the program finishes sending output to the transcript pad, the
window automatically displays the end of the pad and any new out-
put.

Initially, all transcript pad windows have scroll mode turned on. The
window legend at the top of the window displays the letter S when
scroll mode is on. You can also toggle scroll mode on or off by
typing CTRL/S.

To turn hold mode on or off, specify the WH (WINDOW_HOLD)
command in the following format:

WH [-ON | -OFF]

When you turn hold mode on, the DM freezes the position of the
transcript pad beneath the window. The window will not display new
program output until you release the pad by turning hold mode off.
When you turn hold mode off again, the window automatically dis-
plays the end of the transcript pad and any new program output.

4-25 Controlling the Display

Initially, all transcript pad windows have hold mode turned off. With
hold mode turned off, the window automatically displays new output
as the pad moves beneath it. The window legend displays the letter
H when hold mode is on. You can also turn hold mode on or off by
pressing the <HOLD> key.

To turn autohold mode on or off, specify the WA (WIN-
DOW_AUTOHOLD) command in the following format:

WA [-ON | -OFF]

With autohold mode turned on, the window automatically turns hold
mode on under either of the following conditions:

•	 A	 full	window	of	 output	 is	 available	 and	 none	 of	 it	 has	 been	
displayed.

•	 A	 form	 feed	 or	 create	 frame	 operation	 is	 output	 to	 the	 pad.		
In this case, the window displays the output preceding the
form feed. When the window exits from hold mode, the out-
put following the form feed or create frame operation starts
at the top of the window.

To continue displaying output, turn hold mode off.

Initially, all transcript pad windows have auto hold mode turned off.
The window legend contains an A when autohold mode is on. You
can also turn autohold mode on or off by typing CTRL/A (which in-
vokes the commands WA;WS).

Defining Default Window Positions

The DM uses default window positions to determine where to display
the first five windows you create. To define any of the DM’s five
default window positions, specify the WDF (WINDOW_DEFAULT)
command in the following format:

[region] WDF [n]

where region specifies the position that the window will occupy on the
screen (see Table 4-5), and n specifies the identification number of
the default window you are defining. If you omit n, the WDF com-

4-26Controlling the Display

mand causes the DM to discard any current window information and
begin creating windows using its default window boundaries.

The command in the following example defines the window position
for default window four. Note the format of the region definition.

(0,770) DR; (600,110) WDF 4

 region

If you want to use your own default positions for each log-in session,
include WDF commands in your DM start-up script
(STARTUP_ DM). Once you’ve defined your default window posi-
tions, you should add the command WDF;CMS. This command in-
structs the DM to use the first WDF command to set up the default
position for the first window you create. Otherwise, the DM uses the
last WDF command in you script to determine the default position of
the first window you create. For more information on DM start-up
scripts, see “Understanding the System at Log-In” section in Chap-
ter 2.

Responding to DM Alarms

Whenever the DM writes output to a partially obscured or hidden
window, it sounds an alarm and displays a small pair of bells in the
alarm window. (See Chapter 2 in Getting Started With Your
DOMAIN System for a description of the DM alarm window.) To
respond to an alarm, specify either the AA or AP commands.

The AA command acknowledges the DM alarm by turning off the
current alarm and enabling further alarms (which may already be
waiting) .

The AP command acknowledges the DM alarm and pops to the top
of the stack, the window to which the alarm pertains. This command
is particularly useful when the window is completely hidden, and you
can’t point to it.

4-27 Controlling the Display

Moving Pads Under Windows
The DM pad control commands enable you to move a pad under a
window. Table 4-9 summarizes the pad control commands.

Table 4-9. Commands for Moving Pads

Task DM Command Predefined Key

Move top of pad into
window

Move cursor to first
character in pad

Move bottom of pad
into window

Move cursor to last
character in pad

PT

PT;TT;TL

PB

PB;TB;TR

None

CTRL/T

None

CTRL/B

Move pad n pages

Move pad n lines

Move pad n
characters

PP [-]n

PV [-]n

PH [-]n

 ↑ ↓

(LD, LF)

<SHIFT> ↑
 (L8S)

<SHIFT> ↓
 (LES)

 ← →
(L7, L9)

Save transcript pad
in a file

PN None

Moving to the Top or Bottom of a Pad

Two DM commands enable you to move from the current position in
a pad to the top or bottom of a pad. The PT (PAD_TOP) command
moves the top line of a pad to the top of the current window. The

4-28Controlling the Display

PB (PAD_BOTTOM) command moves the bottom line of a pad to
the bottom of the current window. Neither command accepts argu-
ments or options.

We also provide two predefined control key sequences that perform
the same functions as the PT and PB commands; they also move the
cursor to either the first or last character in the pad. To move the
cursor to the first character in the pad, type CTRL/T (defined as the
command sequence PT;TT;TL). To move the cursor to the last
character in the pad, type CTRL/B (defined as the command se-
quence, PB;TB;TR).

Scrolling a Pad Vertically

You can scroll a pad up or down by a specified number of lines or
pages using the vertical scroll commands or associated function keys.
To scroll a pad by pages, specify the PP (PAD_PAGE) command in
the following format:

PP [-]n

where n specifies the number (or fraction) of pages you want to
scroll. A positive n (n) scrolls the pad up n pages; a negative n (-n)
scrolls the pad down n pages. The DM considers a page the smaller
of the following values:

•	 The	number	of	lines	that	fit	in	a	window.	 	

•	 The	 number	 of	 lines	 between	 the	 bottom	 of	 the	 window	 and	
the next form feed or frame.

The command in the following example scrolls the pad down one
and one-half pages:

PP -1.5

We also provide two predefined keys that scroll a pad either up or
down one-half page at a time. Figure 4-7 shows the location of
these keys.

4-29 Controlling the Display

Figure 4-7. Location of Pad Scroll Keys

To scroll a pad by lines, specify the PV (PAD_LINE) command in
the following format:

PV [-]n

where n specifies the number of lines you want to scroll. A positive n
(n) scrolls the pad up n lines; a negative n (-n) scrolls the pad down
n lines.

You can also use the two predefined function keys shown in Figure
4-7 to scroll a pad either up or down one line at a time. To scroll
one line at a time, press <SHIFT> and the pad scroll key simul-
taneously.

4-30Controlling the Display

Scrolling a Pad Horizontally

To scroll a pad horizontally by a specified number of characters, use
the PH (PAD_HORIZONTAL) command or its associated func-
tion keys. The PH command has the following format:

PH [-]n

where n specifies the number of characters you want to scroll. A
positive n (n) scrolls the pad to the left n characters; a negative n
(-n) scrolls the pad to the right n characters.

You can also use two predefined function keys to scroll a pad either
right or left 10 characters. Figure 4-7 shows the location of these
keys.

Saving a Transcript Pad in a File

Normally, the DM deletes a transcript pad when you stop the pad’s
process and delete all windows. To keep a log of the current
transcript pad and save the log in a file, specify the PN
(PAD_NAME) command in the following format:

PN pathname

where pathname specifies the pathname of the file where the DM
saves the contents of the pad. You must specify a pathname
cataloged on your node; you can not use a pathname cataloged on
another node.

The PN command stores the current transcript pad in a file that
remains opened and locked until you stop the process and delete all
windows. Once you specify the PN command, the DM saves all cur-
rent and subsequent output written to the pad.

4-31 Controlling the Display

Using Window Groups and Window
Icons
The DM provides several commands that enable you to create win-
dow groups, make these groups invisible, or use icons to represent
them. Table 4-10 summarizes the commands used to control win-
dow groups and icons.

Table 4-10. Commands for Controlling Window Groups and
Icons

Task DM Command Predefined Key

Create or add to a
window group

Remove a window
from a window group

Make windows
invisible

Change windows to
icons

Set icon positioning
and offset

Display list of
windows in group

WGRA grp-name
[entry_name]

WGRR grp_name
[entry-name]

WI [entry_name]

ICON
[entry_name]
[character]

IDF

CPB group_name

None

None

None

None

None

None

Creating and Adding to Window Groups

When you create a window group, you establish a group name and
assign windows to the group. You can then make the window group
invisible or represent the group with icons by specifying the group

4-32Controlling the Display

name. Groups can contain individual windows, as well as other
groups of windows.

To create a window group or add a window to an existing group,
specify the WGRA (WINDOW_GROUP_ADD) command in the fol-
lowing format:

WGRA group_name [entry_name]

where group_name specifies the name of the group you want to
create or add to, and entry_name specifies the name of the window
or window group you want to add. For process windows, entry_name
specifies the process name that appears in the window legend; for
edit pad windows, entry_name specifies the pathname that appears in
the window legend.

You must specify the group_name argument when you use this com-
mand. If you omit the entry_name argument, WGRA uses the name
of the window where you last positioned the cursor.

The commands in the following example create a window group:

WGRA SHELL_WINDOWS PROCESS_1
WGRA SHELL_WINDOWS PROCESS_2
WGRA SHELL_WINDOWS PROCESS_3

The first command creates a window group named SHELL_WIN-
DOWS and adds the window named PROCESS_1 to the group. The
remaining commands add additional windows (PROCESS_ 2 and
PROCESS_ 3) to the SHELL_WINDOWS group.

Removing Entries from Window Groups

To remove an entry (window or window group) from a window
group, specify the WGRR (WINDOW_GROUP_REMOVE) com-
mand in the following format:

WGRR group_name [entry_name]

where group_name specifies the name of the group that contains the
entry you want to remove, and entry_name specifies the window
name or window group name you want to remove. You must specify
the group_name argument when you use this command. If you omit

4-33 Controlling the Display

the entry_name argument, WGRR uses the pathname of the window
where you last positioned the cursor.

The command in the following example removes a window named
PROCESS_1 from the group named SHELL_WINDOWS:

WGRR SHELL_WINDOWS PROCESS_1

Making Windows Invisible

To control whether a window or window group is visible or invisible,
specify the WI (WINDOW_INVISIBLE) command in the following
format:

WI [entry_name] [-W] [-I]

where entry_name specifies the name of the window or window group
you want to make visible or invisible. If you omit the entry_name ar-
gument, WI uses the pathname of the window where you last posi-
tioned the cursor.

The -W option forces the window or group to appear as a window;
the -I option forces the window or group to become invisible. If you
specify the WI command without either of these options, WI toggles
the setting (makes the window or group visible or invisible, whichever
is the opposite of its current state).

The command in the following example makes the window group
SHELL_WINDOWS invisible:

WI SHELL_WINDOWS -I

Using Icons

You use icons to represent a window or group of windows on your
display. Because icons are small, they enable you to keep windows
and window groups easily accessible without having them open on the
display.

Icons are very similar to the windows they represent. For example,
you can move icons with the WME command (see the “Moving a
Window” section discussed earlier), or you can set the position on

4-34Controlling the Display

the screen where icons will appear by default. You cannot, however,
change the size of an icon on the display.

The DM displays an icon as a small window containing a specific icon
symbol. The icon symbol describes the type of information the re-
lated window or group contains. Figure 4-8 shows the default icon
for Shell process windows.

Figure 4-8. Default Icon for Shell Process Windows

To either change a window or window group into an icon, or to
change an icon into the window or group it represents, specify the
ICON command in the following format:

ICON [entry_name] [-I] [-W] [-C ‘char’]

where entry_name specifies the name of the window or window group
you want to change into an icon, or change back into a window. If
you specify the name of a window group as the entry name, the
ICON command changes each window in the group. If you omit the
entry_name argument, ICON uses the window where you last posi-
tioned the cursor.

4-35 Controlling the Display

The -W option forces the specified window or window group to ap-
pear as a window; the -I option forces the specified window or group
to change to an icon. If you specify the ICON command without
either of these options, ICON toggles the setting (changes the window
or group to the opposite of its current state). The easiest way to
change individual windows and icons is to position the cursor inside
the window or icon and specify the ICON command.

The ICON command also accepts the -C option that allows you to
specify which icon you want to use. Before we look at an example,
let’s look at how the system uses icons, and where it stores them.

The system uses certain default icons that we supply to represent
specific types of windows. For example, whenever you change a
Shell process window into an icon, the system, by default, uses the
icon shown in Figure 4-8. Similarly, the system uses a special EDIT
icon to represent read/edit windows. Many application programs
that we supply also represent their specific process windows with their
own specific default icons.

The system stores the default icons in a font file named
/SYS/DM/FONTS/ICONS. (Note that this file is not an ASCII file;
you cannot read it.) You can examine this file by using the ED-
FONT (EDIT_FONT) program described in the DOMAIN System
Command Reference. You can also use EDFONT to create your own
icons or change those the system uses by default.

Each icon in the font file ICONS is associated with a specific
keyboard character. For example, the default Shell icon is as-
sociated with the lowercase “s” character. When you create an icon,
you first choose a character, and then use EDFONT to transform the
character into an icon symbol. (This is how we created the default
icons that the system and various application programs use.) To use
your own icon once you’ve created it, specify its associated character
name with the -C option.

The -C option allows you to specify the character associated with the
icon you want to use. For example, suppose you used EDFONT to
create your own icon associated with the uppercase “F” character in
the ICONS file. To use this icon to represent the read/edit window
JUNE_ REPORT, use the following command:

ICON JUNE_REPORT -I -C F

4-36Controlling the Display

In this example, the ICON command directs the DM to change the
read/edit window JUNE_ REPORT into an icon. Normally, the DM
uses the default icon for read/edit windows. The -C option directs
the DM to use the icon associated with the character F in
/SYS/DM/FONTS/ICONS instead of the default read/edit icon.

Setting Icon Default Position and Offset

The DM allows you to set the position of an icon on your screen and
specify an offset that the DM uses to determine the positions of the
next icons you create. The offset value specifies the position of new
windows relative to the position of the previous icon.

By default, the DM displays icons in a horizontal line across the top
of portrait displays, and in a vertical line along the right side of
landscape displays. The default offset is the width of one icon (60
bits); horizontally for portrait displays, vertically for landscape dis-
plays.

With the IDF (ICON_DEFAULT) command, you can change the
default positioning and offset of an icon, or to establish the position
of an icon you create in a script. You can use the IDF command in any
of the following ways:

•	 Move	 the	 cursor	 to	 the	 desired	 default	 icon	 position.	 	 Press	
the <MARK> key or specify the DR command to mark the
position. Specify the IDF command to set the new position.
Since you did not specify an offset value, the DM places any
new icons that you create at this one position.

•	 Move	 the	 cursor	 to	 the	 desired	 default	 icon	 position.	 	 Press	
the <MARK> key or specify the DR command to mark the
position. Move the cursor to indicate the offset vector for
the next icon. Specify the IDF command to set the new
position and offset.

•	 Specify	the	icon	position	and	offset	explicitly	in	the	following	
command line format:

 (position) DR; (offset) IDF

 where position specifies the x- and y-coordinates of the icon
position and offset specifies the coordinates of the offset vec-

4-37 Controlling the Display

 tor. For example, the following command line sets an icon
position and offset:

 (800,10) DR; (850,60) IDF

 This command sets the position for the first icon at bit posi-
tion (800,10). The next icon will appear at bit position
(850,60), an offset of (50,50) from the original position.
Refer to the “Defining Points and Regions” section in Chap-
ter 3 for more information.

Displaying the Members of a Window Group

To display a list of windows in a specific group, use the CPB
(COPY_PASTE_BUFFER) command in the following format:

CPB group_name

where group_name specifies the name of the window group you want
to list. The group_name refers to a paste buffer that contains the
names of the windows in the group. The CPB command creates a
window to the paste buffer you specify as the group_name and dis-
plays the paste buffer’s contents. For example:

CPB MY_GROUP

This command displays the names of all the windows in the window
group MY_GROUP. A paste buffer named MY_GROUP contains
these window names.

The DM automatically creates three special paste buffers to help you
manage your windows and icons. Table 4-11 describes these paste
buffers.

To list the contents of one of these special paste buffers, specify the
CPB command with the special group_name as follows:

This command opens the paste buffer INVIS_GROUP that contains
the names of all the windows you’ve made invisible.

4-38Controlling the Display

Table 4-11. Window Paste Buffers

Mode Description

INVIS_GROUP

ICON_GROUP

ALL_GROUP

Contains the pathnames of all the
windows that you’ve made invisible.

Contains the pathnames of all the
windows represented by icons.

Contains the pathname of every window
open on your node, including: Shell
process windows, DM windows, visible
and invisible windows, and windows
represented by icons.

5-1 Editing a Pad

CHAPTER 5

Editing a Pad

Chapter 4 describes how to create pads and windows to read and edit
files. This chapter describes how to use the DM to control the
characteristics of edit pads, and how to edit text.

Each section in this chapter describes a set of editing tasks and the
DM commands you use to perform them. You can execute a DM
command either from a DM script or interactively by specifying the
command in the DM input window. In many cases, you can execute
a DM editing command by typing a function key or control key se-
quence.

The command summary tables at the beginning of each section list
the DM commands, related function keys, and control key se-
quences used to perform a specific set of editing tasks. Note that the
predefined keys listed in these tables apply only to low-profile type

5-2Editing a Pad

keyboards. For a description of the predefined keys for the 880
keyboard, refer to Appendix B.

Chapter 3 explains how to specify DM commands from the keyboard
and from scripts, and how to use function keys and control key se-
quences. For a complete description of all the DM editing com-
mands described in this chapter, refer to the DOMAIN System Com-
mand Reference.

Setting Edit Pad Modes
All edit pads are controlled by a very important feature of the DM:
the modes in which the DM currently operates. The modes deter-
mine whether you can make changes to the material in the pad, and
whether the DM either inserts characters that you type or overstrikes
them. Table 5-1 summarizes the DM commands used to change edit
pad modes.

Table 5-1. Commands for Setting Edit Modes

Task DM Command Predefined Key

Set read/write
mode

Set insert/overstrike
mode

RO [-ON | -OFF]

EI [-ON | -OFF]

CTRL/M

<INS>
(L1S)

Figure 5-1 shows the window legend for edit pads. The edit pad win-
dow legend provides information about a window’s characteristics,
such as the pathname of the file and current window modes. The edit
pad window legend also displays the line number of the line at the
top of the window and the horizontal offset, which indicates the
number of columns the window has been scrolled sideways over the
pad. The horizontal offset number appears only when you scroll the
window sideways over the pad.

5-3 Editing a Pad

Figure 5-1. The Edit Pad Window Legend

Setting Read/Write Mode

Edit pads can be in read-only mode or write mode. In read-only
mode, you cannot write to or make changes to the text in a pad.
However, you can copy, search for, and scroll the text. In write
mode, you can write to a pad and change text using all of the editing
commands described in this chapter.

When a pad is in read-only mode, the letter R appears in the win-
dow legend as shown in Figure 5-1. The R disappears in write mode.

To turn read-only mode either on or off, specify the RO command
in the following format:

RO [-ON | -OFF]

The -ON option instructs RO to set the pad to read-only mode. The
-OFF option causes RO to set the pad to write mode (i.e., it turns
read-only mode off). If you do not specify an option, the RO com-
mand toggles the current mode setting.

You can also toggle the current setting by typing CTRL/M. The
CTRL/M sequence invokes the RO command without options.

If you’ve modified the text in a pad, you cannot change the pad to
read-only mode without first writing the changes to a disk file (saving

5-4Editing a Pad

the file). The PW command, described in the “Updating an Edit
File” section, allows you to write your changes to a disk file without
closing the pad and window.

Setting Insert/Overstrike Mode

The DM has two modes to control how text is added to a pad: insert
mode or overstrike mode. In insert mode, the DM inserts charac-
ters you type at the current cursor position. The remainder of the
line moves right to make room for the new characters.

In overstrike mode, characters you type replace, or “overstrike,”
those under the cursor. Overstrike mode is useful when you want to
enter text into a preformatted file without disrupting the file’s format.

When a pad is in insert mode, the letter I appears in the window
legend as shown in Figure 5-1. The I disappears in overstrike mode.
All pads are initially in insert mode, although this is irrelevant if the
pad is also read-only.

To turn insert mode either on or off, specify the EI command in the
following format:

EI [-ON | -OFF]

The -ON option instructs EI to set the current pad to insert mode. The
-OFF option causes EI to set the pad to overstrike mode (i.e., it
turns insert mode off). If you do not specify an option, the EI com-
mand toggles the current mode.

You can also toggle the current mode by pressing <INS>. This key
invokes the EI command without options.

Inserting Characters
Any pad that is in write mode automatically accepts anything that you
type at the keyboard as input to that pad. The commands listed in
Table 5-2 perform special insertion functions.

5-5 Editing a Pad

Table 5-2. Commands for Inserting Characters

Task DM Command Predefined Key

Insert string at
cursor

Insert NEWLINE
character

Insert a new line
after current line

Insert raw (no echo)
character

Insert end-of-file
mark

ES ‘string’

EN

TR;EN;TL

ER nn

EEF

Default DM operation

<RETURN>

<F1>

None

CTRL/Z

Inserting a Text String

When a pad is in write mode, the DM inserts any text character you
type at the current cursor position. This is the default Display
Manager action. If you try to type text into a read-only pad, the DM
displays an error message in the DM output window.

To insert a text string at the current cursor position, specify the ES
command in the following format:

ES ‘string’

The ‘string’ argument is the text that you want to insert. Enclose the
text in single quotes (‘’).

The ES command inserts a string of text at the current cursor posi-
tion. Since text insertion is the default action, you’ll probably find
this command most useful in key definition commands where you
want some text written out when the key is pressed. Chapter 3
describes how to define keys to perform DM functions.

5-6Editing a Pad

Inserting a NEWLINE Character

The NEWLINE character marks the end of the line.

To insert a NEWLINE character at the current cursor position,
either press <RETURN> or specify the EN command. When you in-
sert a NEWLINE character, the cursor moves to the beginning of the
next line.

Inserting a New Line

To insert a new, blank line following the current line, specify the fol-
lowing command sequence:

TR;EN;TL

The TR command moves the cursor to the end of the line, EN in-
serts (or overstrikes) a NEWLINE character, and TL moves the cur-
sor to the beginning of the next line.

By default, the <F1> key invokes the TR;EN;TL command se-
quence.

Inserting an End-of-File Mark

To insert an end-of-file mark (EOF) in a pad, type CTRL/Z or
specify the EEF command. If the line containing the cursor is
empty, the DM inserts the end-of-file mark on that line. Otherwise,
the DM inserts the end-of-file mark following the current line.

It is a common (although not universal) convention for programs to
terminate execution and return to the process that called them when
they receive an end-of-file mark on their standard input stream.

The Shell is such a program. When the top-level program in a
process (usually /COM/SH) returns, the process stops and all of its
streams are closed. The DM then closes and deletes the Shell’s
process input pad and window, and closes the transcript pad.

Whether or not the DM also deletes the transcript window depends
on the setting of its auto-close mode. If auto-close mode is disabled
(the default setting), then you must manually delete any windows as-

5-7 Editing a Pad

sociated with the closed transcript pad by using the DM command
WC -Q, or CTRL/N. The “Closing Pads and Windows” section in
Chapter 4 describes the WC -Q command and CTRL/N. See the WC
command description in the DOMAIN System Command Reference
for more information about auto-close mode.

Deleting Text
The commands listed in Table 5-3 delete characters, words, or lines
of text. To delete a larger block of text, refer to the “Cutting Text”
section.

Table 5-3. Commands for Deleting Text

Task DM Command Predefined Key

Delete character
at cursor

Delete character
before cursor

Delete “word”
of text

Delete from
cursor to end
of line

Delete entire
line

ED

EE

DR;/[~A-Z0-9$_]/XD

ES ‘‘;EE;DR;TR;
 XD;TL;TR

CMS;TL;XD

<CHAR DEL>
(L3)

<BACK SPACE>
(BS)

<F6>

<F7>

<LINE DEL>
(L2)

Deleting Characters

To delete the character under the cursor, press <CHAR DEL> or
specify the ED command. If the character under the cursor is a
NEWLINE, ED joins the current line and the following line.

5-8Editing a Pad

To delete the character to the left of the cursor, press
<BACK SPACE> or specify the EE command. If the pad is in over-
strike mode, the EE command replaces the character with a blank.

Both <CHAR DEL> and <BACK SPACE> are repeat keys. You can
repeat the operation by holding down the key.

Deleting Words

To delete a word of text at the current cursor position, press the
predefined function key <F6>. In this case, a “word” consists of a
string of characters that may include a tilde (~) in the first position of
the word, upper or lowercase letters, numbers, dollar signs ($), or
underscores (_). The deletion stops at the next space, punctuation
mark, or special character (other than a dollar sign or underscore).
Here are some examples of character strings that <F6> will delete:
$FILE, my_ file3, ~REPORT.

The <F6> function key invokes the command sequence
DR;/[~A-Z0-9$_]/XD.

The DM writes the deleted word to its default paste buffer (a tem-
porary file). You can reinsert the word elsewhere by moving the cur-
sor to the desired location and either pressing <PASTE> or specifying
the XP command. For more information about paste buffers and the
XP command, see the “Copying, Cutting, and Pasting Text” section.

Deleting Lines

To delete text from the current cursor position to the end of the line
(excluding the NEWLINE character), press the predefined function
key <F7>. The <F7> key invokes the following command sequence:

ES ‘ ’;EE;DR;TR;XD;TL;TR

The DM writes the deleted line to its default paste buffer. You can
reinsert the line elsewhere by either pressing <PASTE> or specifying
the XP command. For more information about paste buffers and the
XP command, see the “Copying, Cutting, and Pasting Text” section.

5-9 Editing a Pad

Defining a Range of Text
The editing commands that perform cut (delete), copy, and sub-
stitute functions operate on a range, or block, of text. You mark a
range of text just as you would mark any other region in a pad (see
the “Defining Points and Regions” section in Chapter 4). However,
you may not declare a range as an argument to an editing command.
You must use the DR command or the <MARK> key before specify-
ing the editing command.

To use the DR command to define a range of text, define two points
as follows:

[point] DR; [point]

The first point defines the beginning of the range, and the DR com-
mand marks it. The second point defines the end of the range. If
you do not specify literal points, DR places the marks at the current
cursor position.

An easy way to define a range of text is to point with the cursor and
use the <MARK> key. The <MARK> key invokes the DR and
ECHO commands, which mark the first point and begin highlighting
the text. Figure 5-2 illustrates how the DM highlights the text as you
move the cursor to the end of the range.

To define a range of text using the cursor and <MARK>, follow this
procedure:

1. Move the cursor to the first point (the beginning of the range
of text).

2. Press <MARK>.

3. Move the cursor to the second point (the end of the range).

4. Specify the appropriate DM editing command.

Please note that the character under the cursor at the end of the
range is not included within the range.

5-10Editing a Pad

Figure 5-2. Defining a Range of Text with <MARK>

Copying, Cutting, and Pasting Text
The commands listed in Table 5-4 copy, cut, and paste a range of
text. They allow you to move blocks of text from one place to
another in a pad (or between pads).

Before specifying the commands that copy or cut text, use the DR
command or <MARK> to define the range of text to be copied or cut
(see the previous section). If you do not define a range, the DM
copies or cuts the text from the current cursor position to the end of
the line.

5-11 Editing a Pad

Table 5-4. Commands for Copying, Cutting, and
Pasting Text

Task DM Command Predefined Key

Copy text to a paste
buffer or file

Cut (delete) text
and write it to a
paste buffer or file

Paste (write) text
from a paste buffer
or file into a pad

XC [name | -f
 pathname] [-R]

XD [name | -f
 pathname] [-R]

XP [name | -f
 pathname] [-R]

<COPY>
(L1A)

<CUT>
(L1AS)

<PASTE>
(L2A)

Using Paste Buffers

To perform copy, cut, and paste operations, the DM uses temporary
files called paste buffers. Paste buffers hold text you’ve copied
or cut so that you can paste it in elsewhere.

You can create up to 100 paste buffers, each containing different
blocks of text. To create a paste buffer, you specify a name for the
paste buffer as an argument to the commands that copy or cut text
(XC and XD). To insert the contents of a paste buffer you have
created, specify the name of the paste buffer as an argument to the
command that pastes text (XP). We describe the XC, XD, and XP
commands in the next three sections.

When you log off, the DM deletes all paste buffers you have created
during the session. If you want to save the copied or cut text for use
during another session, you can write it to a permanent file (see the
XC and XD command descriptions in the next two sections).

If you do not specify the name of a paste buffer or permanent file
when you specify the commands that copy or cut text, the DM writes
the text to its default (unnamed) paste buffer. The DM also uses
this default paste buffer when you press the predefined function keys
and control key sequences that copy, delete, and paste text.

5-12Editing a Pad

NOTE: In a paste buffer, the DM saves only the text copied or
deleted during the last DM operation. Therefore, do not
write anything else to the paste buffer until you have rein-
serted its contents. Otherwise, you will lose the text you’re
attempting to move.

Copying Text

To copy a defined range of text from any pad into a paste buffer or
file, specify the XC command in the following format:

XC [name | -f path name] [-R]

where name specifies the name of a paste buffer that the DM creates
to hold the copied text. The -f pathname option specifies the name
of a permanent file for the text. For example:

XC copy_text

copies a defined range of text into a paste buffer named copy_text.
Here is another example:

XC -f copy_text

copies a defined range of text into a permanent file named
copy_text.

If you supply the name of an existing paste buffer or file, XC over-
writes its contents with the newly copied text. If you omit the name
of a paste buffer or permanent file, XC writes the copied text to the
default (unnamed) paste buffer.

The -R option instructs XC to copy a rectangular block of text that
you have defined by marking the upper left and lower right corners
of a text region. To define the region, use the cursor and the DR
command or <MARK> to specify the left corner, then move the cur-
sor to specify the right corner. If you specify a column (the left and
right corners in the same column), XC copies all characters to the
right of the column.

Figure 5-3 shows the two cursor positions used to mark the column.
The dotted rectangle shows the block of text that the XC -R com-

5-13 Editing a Pad

mand copies. (The dotted rectangle is only for the purpose of il-
lustration; it does not appear on your display.)

Figure 5-3. Copying Text with the XC -R Command

By default, the <COPY> key invokes the XC command using the
default (unnamed) paste buffer. You must specify the XC command
with the name argument or the -f pathname option if you want to
copy text to a named paste buffer or permanent file.

Once you have copied a range of text, you can use the XP command
to paste the text in elsewhere (see the “Pasting Text” section).

Copying a Display Image

To copy a display image into a graphics map file (GMF), use the XI
command in the following format:

XI [-F pathname]

where -F pathname specifies the name of the file you want to store
the display image. If you omit the -F option, the system writes the
image to ‘NODE_ DATA/PASTE_ BUFFERS/DEFAULT.GMF.

5-14Editing a Pad

Once you copy the image to a file, you can print the file using the
PRF command with the -PLOT option as follows:

PRF MY_FILE.GMF -PLOT

To use the XI command, mark the range of the display you want to
copy. If you do not specify a range, XI copies the entire window in
which the cursor is positioned. Note that if you want to copy the
whole screen, use the Shell command CPSCR (COPY_SCREEN).
Chapter 7 describes the CPSCR command.

Cutting Text

When you cut text from a pad, the DM copies the text into a paste
buffer or file and then deletes it from the pad. To cut a defined
range of text, specify the XD command in the following format:

XD [name | -f pathname] [-R]

where name specifies the name of a paste buffer that the DM creates
to hold the deleted text. The -f pathname option specifies the name
of a permanent file for the text. You can use this command only in
pads created with <EDIT> or the CE command.

If you supply the name of an existing paste buffer or file, XD over-
writes its contents with the newly deleted text. If you omit the name
of a paste buffer or permanent file, XD writes the deleted text to the
default (unnamed) paste buffer.

The -R option instructs XD to delete a rectangular block of text that
you have defined by marking the upper left and lower right corners
of a text region. To define the region, use the cursor and the DR
command or <MARK> to specify the left corner, then move the cur-
sor to specify the right corner. If you specify a column (the left and
right corners in the same column), XD deletes all characters to the
right of the column.

By default, the <CUT> key invokes the XD command using the
default (unnamed) paste buffer. You must specify the XD command
with the name argument or the -f pathname option to write deleted
text to a named paste buffer or permanent file, respectively.

5-15 Editing a Pad

Once you have cut a range of text, you can use the XP command
(described in the next section) to paste the text in elsewhere.

Pasting Text

To insert the contents of a paste buffer or file into a pad at the cur-
rent cursor position, specify the XP command in the following for-
mat:

XP [name | -f pathname] [-R]

where name specifies the name of an existing paste buffer that con-
tains the text you want to insert. The -f pathname option specifies
the name of an existing file that contains the text you want to insert.
If you do not specify the name of a paste buffer or permanent file,
XP inserts the contents of the default (unnamed) paste buffer.

You can use this command only in pads created with <EDIT> or the
CE command.

The -R option instructs XP to insert a rectangular block of text that
you have copied or deleted using the XC or XD command and the
-R option. XP uses the current cursor position as the origin (upper
left corner) of the block.

By default, the <PASTE> key invokes the XP command using the
contents of the default (unnamed) paste buffer. You must specify
the XP command with the name argument or the -f pathname option
to insert the contents of a named paste buffer or permanent file,
respectively.

5-16Editing a Pad

Using Regular Expressions
The DM search and substitute operations (described in the next
several sections) allow you to use special notation, called regular ex-
pressions, to specify patterns for search and substitute text strings.
You can also use regular expressions with the Shell commands ED
(EDIT), EDSTR (EDIT_STREAM), FPAT (FIND_PATTERN),
FPATB (FIND_PATTERN_BLOCK), and CHPAT
(CHANGE_PATTERN). See the DOMAIN System Command
Reference for descriptions of these Shell commands.

Regular expressions permit you to concisely describe text patterns
without necessarily knowing their exact contents or format. You can
create expressions to describe patterns in particular positions on a
line, patterns that always contain certain characters and at times may
include others, or patterns that match text of indefinite length.

Table 5-5 provides a list of the characters used to construct regular
expressions and a brief description of their functions.

CAUTION: The special characters described in Table 5-5 apply
only to regular expression operations. Some of these
characters also have meanings (often radically dif-
ferent) in Shell commands and other software
products. If you want to use a regular expression as a
part of one of those Shell commands or products, be
sure to enclose the expression in quotation marks so
that it will not be misinterpreted.

5-17 Editing a Pad

Table 5-5. Characters Used in Regular Expressions

ASCII Character

Any standard ASCII character (except those listed in this
table) matches one and only one occurrence of that charac-
ter. By default, the case of the characters is insignificant. Use
the SC (SET_CASE) command to control case significance
(see the “Setting Case Comparison” section). The following
examples are all valid expressions:

SAM
fred12
Joe(a&b)

Percent Sign (%)

A percent sign (%) at the beginning of a regular expression
matches the empty string at the beginning of a line. If a % is
not the first character in the expression, it simply matches
the percent character. Use this special feature to mark the
beginning of a line in a regular expression. For example:

%Print matches the string in line a but not line b because
in line b, Print is not at the beginning of the line.

(a) Print this file
(b) This Print file

Dollar Sign ($)

A dollar sign ($) at the end of a regular expression matches
the end-of-line character (null) at the end of a line. If $ is
not the last character in the expression, it simply matches the
dollar sign character. Use this special feature to mark the
end of a line in a regular expression. For example:

file$ matches the string in line a, but not line b, because
in line b, f ile is not followed by an end-of-line marker.

(a) Print this file
(b) This file is permanent

5-18Editing a Pad

Table 5-5. Characters Used in Regular Expressions
(continued)

Question Mark (?)

A question mark (?) matches any single character except a
NEWLINE character. The only exception to this is when the
? appears inside a character class (see the” [string]” descrip-
tion in this table), in which case it represents the question
mark character itself. For example:

?OLD??? matches the strings in lines a and b, but not
line c, because in line c the letters “OLD” are alone on
the line:

(a) HOLDING
(b) FOLDERS
(c) OLD

Asterisk (*)

An asterisk (*) following a regular expression matches zero
or more occurrences of that expression. The only exception
to this is when the * appears inside a character class (see the
“[string] “ description in this table) , in which case it
represents the asterisk character itself. Matching zero or
more occurrences of some pattern is called a closure. An
expression used in a closure will never match a NEWLINE
character. Here are some examples:

a*b matches the strings b, ab, aab, etc.

%a?*b matches any string that begins with a and ends with
b, and that is also the first string in the line. Any number of
other characters can come between a and b.

[A-Z] [A-Z] [A-Z] * matches any string containing at least
two (and possibly more) uppercase characters (see the
“[string]” description in this table). Strings like Mary would
not match, since Mary does not begin with two uppercase
characters.

5-19 Editing a Pad

Table 5-5. Characters Used in Regular Expressions
(continued)

[string]

A string of characters enclosed in square brackets [string] is
called a character class. This pattern matches any one
character in the string but no others. Note that the other
regular expression characters % $? * lose their special
meaning inside square brackets, and simply represent them-
selves. For example:

[sam] matches the single character s, a, or m. (If you
want to match the word sam, omit the square brackets.)

[~string]

A string enclosed in square brackets whose first character is
a tilde [~string] matches any single character that does not
appear in the string. If a tilde (~) is not the first character in
the string, it simply matches the tilde character itself. For
example:

[~sam] matches any single character except s, a, or m.

[letter-letter] or [digit-digit]

Within a character class, you can specify anyone of a range
of letters or digits by indicating the beginning and ending
characters separated by a hyphen (-). F or example:

[A-Z] matches any single uppercase letter in the range A
through Z.

[a-z] matches any single lowercase letter in the range a
through z.

[0-9] matches any single digit in the range 0 through 9.

5-20Editing a Pad

Table 5-5. Characters Used in Regular Expressions
(continued)

Remember, though, that the actual search ignores case un-
less you have used the SC command to specify a case-sensi-
tive search (see the “Setting Case Comparison” section).
The range can be a subset of the letters or digits. However,
the first and last characters in the range must be of the same
type: uppercase letter, lowercase letter, or digit. For ex-
ample, [a-n] and [3-8] are valid expressions. [A-9] is in-
valid.

Note that a hyphen (-) has a special meaning inside square
brackets. If you want to include the literal hyphen character
in the class, it must be either the first or last character in the
class (so that it does not appear to separate two range-mark-
ing characters), or you can precede the hyphen with the es-
cape character @ (see the @ description in this table).

The right bracket (]) also has special meaning inside a
character class; it closes the class descriptor list. If you want
to include the right bracket in the class, precede it with the
escape character @ (see the @ description in this table). For
example:

[a-d] matches any single occurrence of a, b, c, or d.

%[A-Z] matches any uppercase letter that is also the first
character on the line.

5-[1-9][0-9]* matches any of the page numbers in this
chapter.

[0A-Z] matches any string containing a zero or an up-
percase letter.

[~a-z0-9] matches any uppercase letter or punctuation
mark (i.e., no lowercase letter or digit).

5-21 Editing a Pad

Table 5-5. Characters Used in Regular Expressions
(continued)

At Sign (@)

The at sign (@) is an escape character. Characters preceded
by the @ character have special meaning in regular expres-
sions, as indicated in the following list:

@n matches a NEWLINE character.

@t matches a tab character. Note, however, that the
<TAB> key does not insert a tab character. It simply
moves the cursor to the display’s next tab stop. In a
regular expression, @t matches only tab characters that
have been inserted with @t.

@f matches a form feed character.

In addition, you can use the escape character inside a
character class to specify literal occurrences of a hyphen (-)
or a right bracket (D. You may also use the @ character to
specify a literal occurrence of the other special characters
used in regular expressions: % $? * @. For example:

[A-Z@-@]] matches any uppercase letter, a hyphen, or
a right bracket.

@?@* matches a question mark followed by an asterisk,
rather than zero or more occurrences of any character
(?*).

{expr}

You can “tag” parts of a regular expression to help rearrange
pieces of a matched string. The DM remembers a text pat-
tern surrounded by braces {expr} so that you can refer to it
with @n, where n is a single digit referring to the string
remembered by the nth pair of braces. For example:

5-22Editing a Pad

Table 5-5. Characters Used in Regular Expressions
(continued)

S/{???} {?*}/@2@1/

S is the DM command for substituting strings of text (see the
“Substituting All Occurrences of a String” section). This ex-
ample of the S command moves a three-character sequence
from the beginning of a line to the end of the line. ???
matches the first three characters of the line, and ?* matches
the rest of the line. The @2 expression refers to the string ?*
inside the second pair of braces, and @1 refers to the string
??? inside the first pair of braces. For example:

SO/{?} {?}/@2@1/

SO is also a DM command for substituting strings of text, but
it only substitutes the first occurrence of the first pattern on a
line (see the “Substituting the First Occurrence of a String”
section). This example of the SO command transposes two
characters beginning with the one under the cursor. This
can be a handy key definition if you often type ie for ei, etc.

5-23 Editing a Pad

Searching for Text
The search operations shown in Table 5-6 locate strings of charac-
ters in a pad. You describe the string pattern using regular expres-
sions (see the previous section).

Table 5-6. Commands for Searching for Text

Task DM Command Predefined Key

Search forward for
string

Search backward for
string

Repeat last forward
search

Repeat last backward
search

Cancel search or any
action involving the
ECHO command

Set case comparison
for search

/string/

\string\

/ /

\\

ABRT

SC [-ON] [-OFF]

None

None

CTRL/R

CTRL/U

CTRL/X

None

To search forward from the current cursor position, enclose the
regular expression in slashes as follows:

/string/

To search backward from the current cursor position, enclose the
regular expression in backslashes as follows:

\string\

A search operation moves the cursor to the first character in the pat-
tern specified by string. If necessary, the pad moves under the win-
dow to display the matching string. If the search fails, the cursor

5-24Editing a Pad

position does not change, and the DM displays the message “No
match” in its output window.

Searches do not wrap around the end or beginning of the file. There-
fore, to search an entire pad, position the cursor at the beginning of
the pad.

By default, searches are not case-sensitive. This means, for ex-
ample, that /mary/ will locate mary, MARY, and even maRy. To per-
form a case-sensitive search, use the SC command (see the “Setting
Case Comparison” section).

Actually, a search is not syntactically a command. It is a pointing
operation. Note (as described in the “Defining Points and Regions”
section in Chapter 3) that one way to specify a point in a pad is by
matching a regular expression. This means that the search operation
is really a pointing action followed by a null command. Conse-
quently, you should not think of search operations as operating on a
text range, but rather searching from the initial cursor position to the
end (or beginning) of the file in order to properly position the cursor.

If the DM scans more than 100 lines in a search operation, it displays
a “Searching for /string/ ... “ message in its output window. Then it
polls for keystrokes every 10 lines it processes. At this point, you
may:

•	 Wait	for	the	DM	to	complete	the	operation.	 	

•	 Cancel	 the	 search	 by	 typing	 CTRL/X,	 or	 by	 pressing	 a	 key	
that has been defined to invoke the ABRT or SQ command
(see the “Cancelling a Search Operation” section).

•	 Use	 the	 keyboard;	 it	 works	 as	 it	 normally	 does.	 	 You	 can	
type into any pad except the one being searched. You can
specify any DM command except another search or sub-
stitute command. The DM executes these commands when
it completes the search. You can type input to another Shell
or program (if it was previously waiting for input). The
process executes these commands when the DM finishes the
search.

5-25 Editing a Pad

Repeating a Search Operation

To repeat the last search forward, specify the // command or type the
CTRL/R sequence.

To repeat the last search backward, specify the \\ command or type
the CTRL/U sequence.

The DM saves the most recent search instruction, so you may repeat
it even if you have specified other (non-searching) commands since
then.

Cancelling a Search Operation

To cancel the current search operation, type CTRL/X. The CTRL/X
sequence invokes the ABRT command. Since you cannot type DM
commands for the pad being searched, you must use CTRL/X or
define a key to invoke the ABRT command (see the “Defining Keys”
section in Chapter 4).

The DM command SQ also cancels a search operation. As with
the ABRT command, you must define a key to invoke SQ during a
search.

When you type CTRL/X or press a key defined to invoke ABRT or
SQ, the DM displays the message” Search aborted” in its output win-
dow.

Setting Case Comparison

As we said earlier, a search operation is not case sensitive by default.
In a case-insensitive search, upper- and lowercase letters are equiv-
alent. In a case-sensitive search, the characters must match in case
(i.e., /mary/ will not locate /MARY/).

To set case comparison for a search, specify the SC (SET_CASE)
command in the following format:

SC [-ON | -OFF]

5-26Editing a Pad

The -ON option specifies a case-sensitive search, and the -OFF op-
tion specifies a case-insensitive search. The SC command without
options toggles the current case comparison setting.

Substituting Text
The commands shown in Table 5-7 allow you to search a pad or part
of a pad for a text string, and to replace the string with a new string.
Before specifying a substitute command, use the DR command or
<MARK> to define the range of text in which you want the substitu-
tion to occur (see the “Defining a Range of Text” section earlier in
this chapter). If you do not define a range, the substitution occurs
from the current cursor position to the end of the line.

Unlike searches, which ignore case unless told otherwise, all substitu-
tions are case-sensitive. You cannot make a substitution case-insen-
sitive.

Table 5-7. Commands for Substituting Text

Task DM Command Predefined Key

Substitute string2 for
all occurrences of
string1 in a defined
range

Substitute string2 for
the first occurrence of
string1 in each line
of a defined range

Change case of each
letter in a defined
range

S/string1/string2

SO/string1/string2/

CASE [-S] [-U]
 [-L]

None

None

None

If the DM scans more than 100 lines while processing a substitute
command, it displays a “Substitute in progress ...” message in its out-
put window. Then it polls for keystrokes every 10 lines it processes.
At this point, you may:

5-27 Editing a Pad

•	 Wait	for	the	DM	to	complete	the	substitute	operation.	 	

•	 Use	 the	 keyboard;	 it	 works	 as	 it	 normally	 does.	 	 You	 can	
type into any pad except the one where the substitution is oc-
curring. You can specify any DM command except another
search or substitute command. The DM executes these
commands when it completes the substitution. You can type
input to another Shell or program (if it was previously waiting
for input). The process executes these commands when the
DM finishes the substitution.

Substituting All Occurrences of a String

To replace all occurrences of a text string with a new text string,
specify the S (SUBSTITUTE) command in the following format:

S[[/[string1]]/string2/]

where string1 specifies the string to be replaced. Use a regular ex-
pression to describe string1. If you supply the first delimiter (/) but
omit string1 (i.e., S//string2/), string1 defaults to the string used in
the last search operation. If you also omit the delimiter (i.e.,
S/string2/), then string1 defaults to the string used in the last sub-
stitute operation.

The string2 argument specifies a literal replacement string (not a
regular expression). If you supply string1, then string2 is required.

You can use an ampersand (&) to instruct the S command to use
string1 as part of string2. For example:

S/Tom/& Smith/

This command replaces all occurrences of Tom with Tom Smith over
the defined range of text.

The S command does not move the cursor or the pad, but does up-
date the pad when the substitution is complete.

5-28Editing a Pad

Substituting the First Occurrence of a String

The SO (SUBSTITUTE_ONCE) command is like the S (SUB-
STITUTE) command except that SO replaces only the first occur-
rence of a string in each line of a defined range of text. Specify the
SO command in the following format:

SO[[/[string1]]/string2/]

where string1 specifies the string to be replaced. Use a regular ex-
pression to describe string1. If you supply the first delimiter (/) but
omit string1 (i.e., SO//string2/), string1 defaults to the string used in
the last search operation. If you also omit the delimiter (i.e.,
SO/string2/), then string1 defaults to the string used in the last sub-
stitute operation.

The string2 argument specifies a literal replacement string (not a
regular expression). If you supply string1, then string2 is required.

You can use an ampersand (&) to instruct the SO command to use
string1 as part of string2. For example:

SO/Tom/& Smith/

This command replaces the first occurrence of Tom with Tom Smith
in each line of the defined range of text.

The SO command does not move the cursor or the pad, but does up-
date the pad when the substitution is complete.

Changing the Case of Letters

To change the case of letters in a defined range of text, specify the
CASE command in the following format:

CASE [-S] [-U] [-L]

where -S swaps all uppercase letters for lowercase and all lowercase
letters for uppercase. The -U option changes all letters in the
defined range to uppercase, and -L changes all letters to lowercase.
CASE without options swaps all uppercase letters for lowercase and
all lowercase letters for uppercase.

5-29 Editing a Pad

Undoing Previous Commands
To undo the most recent DM command you entered, specify the
UNDO command. You can also undo the previous command by
pressing the <UNDO> key.

NOTE: The UNDO command only applies to DM operations. You
cannot undo Shell commands.

The UNDO command works by compiling a history of DM opera-
tions in input and edit pads in reverse chronological order. UNDO
reverses the effect of the most recent DM command you specified.
Successive UNDOs reverse DM commands further back in history.

To compile its history of activities, the DM uses undo buffers (one
per edit pad and one per input pad). The undo buffers are circular
lists that, when full, eliminate the oldest entries to make room for
new ones.

The DM groups entries together in sets. For example, an S (SUB-
STITUTE) command may change five lines. While the DM con-
siders this to be five entries, the five entries are grouped into a single
set so that one UNDO will change all five lines back to their original
state. When a buffer becomes full, the DM erases the oldest set of
entries. This means that UNDO will never partially undo an opera-
tion; it will either completely undo the operation or do nothing.

An undo buffer for an edit pad can hold up to 1024 entries. An
undo buffer for an input pad can hold up to 128 entries.

Updating an Edit File
To update a file that you are currently editing, specify the PW
(PAD_WRITE) command. PW is valid for edit pads only. It re-
quires no arguments or options.

The first time you specify PW during an editing session, the DM
writes the contents of the edit pad to the file that is being edited,
without closing the edit pad. The DM writes the previous contents
of the file to a file with the same name and the added suffix .BAK.
Subsequent PW or WC (WINDOW_CLOSE) commands rewrite the
new file and leave the .BAK version unchanged. (For more informa-

5-30Editing a Pad

tion about the WC command, refer to the “Closing Pads and Win-
dows” section in Chapter 4)

PW is similar to WC with two exceptions:

1. PW leaves the edit pad open so that you can continue editing
the file.

2. PW writes the new version of the file even if other windows
are viewing the edit pad.

PW is useful if, for example, you want to try compiling a program you
are editing. If you decide to make additional changes to the
program, you can just go back to the edit pad and continue editing,
since updates made by PW leave the edit pad open and active.

You can also update an edit file by pressing the <SAVE> key or the
CTRL/Y sequence (see the “Closing Pads and Windows” section in
Chapter 4).

6-1 Using the Shell

CHAPTER 6

Using the Shell

Chapter 3 describes the Display Manager (DM), the operating sys-
tem program that you use to create processes and control your
node’s display. We supply another operating system program, called
the command Shell, that lets you perform more traditional comput-
ing operations. The Shell lets you enter commands to perform such
operations as copying files and directories, compiling and running
programs, and monitoring system activity.

This chapter describes the command Shell environment that
processes Shell commands. The chapter includes information on:
Shell commands, controlling command input and output, the com-
mand line parser, and using pathname wildcards.

6-2Using the Shell

Shell Commands
The command Shell runs in a process called a Shell process. As
shown in Figure 6-1, you enter Shell commands in the Shell’s
process input pad, referred to simply as the Shell input pad. To
specify a Shell command, type the name of the command next to the
dollar sign ($) prompt and press <RETURN>.

Most Shell commands that you specify in the Shell input pad are ac-
tually the names of command files that the Shell looks for and ex-
ecutes. For example, when you specify the command DATE, the
Shell looks for a command file named DATE and executes it. The
Shell looks for command files according to a set of command search
rules that indicate which directories the Shell should search. You’ll
learn more about command search rules later in this chapter.

Figure 6-1. The Shell Process

As part of the DOMAIN system, we supply a set of Shell commands
for your use. You’ve seen many of these commands in Getting
Started With Your DOMAIN System. The DOMAIN System Com-
mand Reference provides detailed descriptions of all the commands

6-3 Using the Shell

that we supply. You can also create your own Shell commands,
called Shell scripts, and execute them in the same way you execute
the Shell commands that we supply. Chapter 9 describes how to
write Shell scripts.

Command Line Format

Shell command lines have the following format:

COMMAND [options ...] [arguments ...] [options ...]

COMMAND is the name of either a Shell command or Shell script.

Arguments indicate which objects you want the command to operate
on. An argument is either the pathname of an object in the naming
tree, or a literal string that you want the command to manipulate. Al-
ways separate an argument from a command and any additional ar-
guments or options with at least one blank space.

Options direct the command to perform a special action. As shown
in the command line format, you can specify options either before or
after arguments on the command line. Many options require secon-
dary arguments of their own. Therefore, to properly delimit options,
always precede each option with a hyphen (-).

Figure 6-2 shows a sample command line and its components.

PRF FILE_1 FILE_2 -COP 2

 Secondary argument
 Option
 Arguments
 Command

Figure 6-2. Shell Command Line Components

6-4Using the Shell

The command line in Figure 6-2 prints two files: FILE_1 and
FILE_ 2. The -COP option directs PRF to print two copies of each
file.

Normally, you specify each command as a separate line. You can
also place multiple commands together on the same line by separat-
ing them with semicolons (;). For example:

$ WD //MY_DIR/SUB_1; LD

executes two commands: WD sets the working directory to
//MY_ DIR/SUB, and LD lists the contents of that directory.

You may also specify multiple commands on a single line when you
use pipes and filters. The “Redirecting Ouput to Other Commands”
section describes how to use pipes and filters.

The DM limits each Shell command line to 256 characters. You
can, however, continue a command over several lines by typing an at
sign (@) character and then pressing <RETURN> at the end of each
line you want to continue, as follows:

$ WD //NODE@ <RETURN>
$_ /DIRECTORY <RETURN>

The @ character is a special character (see the” Special Characters”
section) called an escape character. In this example, the @ charac-
ter “escapes” the normal execution of the <RETURN>, allowing you
to continue the command line at the continuation prompt ($_).

Standard Command Options

All Shell commands that we supply allow you to specify the standard
command options listed in Table 6-1. These options allow you to
display useful information about a command.

6-5 Using the Shell

Table 6-1. Standard Shell Command Options

Option Description

-HELP

-USAGE

-VERSION

Displays detailed information on how
to use the command.

Displays a brief summary on how to
use the command.

Displays the command’s software
version number.

Command Search Rules

As mentioned earlier, most commands are the names of files. Since
you usually specify command names, rather than the full pathnames
of the files they represent, the Shell searches different locations in
the system naming tree for the file that matches the command name
you specify. When you specify a command, the Shell determines
which directories to search according to a set of command search
rules.

Some commands, such as INLIB (INITIALIZE_LIBRARY) are not
files. They invoke internal Shell functions and do not follow com-
mand search rules. The DOMAIN System Command Reference
identifies which commands are internal Shell commands.

The default command search rules direct the Shell to search the fol-
lowing directories in the order shown:

•	 Your	current	working	directory	(.)

•	 Your	personal	command	directory	(~COM)

•	 The	system	command	directory	(/COM)

6-6Using the Shell

When you specify a command, the Shell searches the directories in
the order specified by the command search rules. As soon as the
Shell finds a file with the name that matches the command you
specified, it attempts to execute the file.

For example, when you specify the Shell command:

$ LD

the Shell first looks for a file named LD in your current working
directory. If the Shell does not find the file in the current working
directory, it checks the directory ~COM, which is a subdirectory of
your naming directory. The ~COM directory is your personal com-
mand directory where you store your own frequently used Shell
scripts. (Please note that you don’t have to create a personal com-
mand directory; if the Shell doesn’t find one, it continues its search
and no error occurs.)

The final directory that the Shell searches is the node’s main com-
mand directory /COM, which contains all of the standard commands
that we supply. Since LD is a system command, the Shell finds it in
/COM and executes it, sorting MY_ FILE and displaying output.

This example assumes that you have not created an executable file or
Shell script named LD in your working directory or personal com-
mand directory. Had you done so, the Shell would have executed
your version of LD before the system’s version.

You can set or show a Shell’s command search rules using the CSR
(COMMAND_SEARCH_RULES) command. For example, the
CSR command in the following example displays the Shell’s com-
mand search rules:

$ CSR
. ~com /com

You can use the -A option with the CSR command to append addi-
tional directories to the current list. For example, the following ex-
ample adds two additional directories (~PROG and /PROG) to the
current set:

6-7 Using the Shell

$ CSR -A ~PROG /PROG
$ CSR
. ~com /com ~prog /prog

To completely change a set of command search rules, specify the
CSR command along with a new set of rules. For example:

$ CSR /COM ~COM
$ CSR
/com ~com

If you change a Shell’s command search rules, any subordinate Shell
(created with the SH (SHELL) command), or Shell script that you
invoke, inherits the new command search rules. If you create a new
process running the Shell (see Chapter 4), the new Shell uses the
original default command search rules, not the new rules.

Special Characters

The Shell recognizes a variety of special characters that allow you to
direct the action of commands. These characters are divided into
three basic categories:

•	 input	and	output	(I/O)	control	characters	

•	 pathname	wildcards	

•	 parsing	operators	

The following sections explain how to use I/O control characters and
pathname wildcards. Since you will use Shell command parsing
operators most frequently in Shell scripts, we describe parsing
operators in detail in Chapter 9, “Writing Shell Scripts.”

Creating and Invoking Shells
The Shell is a command line interpreter that reads command lines
that you type and interprets them as requests to execute other
programs. When you press the <SHELL> key, you create a process

6-8Using the Shell

running the Shell program. Each new Shell process that you create
provides a separate environment in which the Shell runs.

You can invoke additional Shells from within a Shell process using
the Shell command SH (SHELL). When you specify SH, you
generate a separate subordinate Shell, in which you can carry on
separate operations and execute programs and scripts. Note that the
SH command does not create a new process, only a subordinate
Shell running in the current process. Each subordinate Shell inherits
environment characteristics, such as variables and command search
rules, from its parent Shell.

Setting Up the Initial Shell Environment

Whenever you create a new process to run the Shell (see Chapter 4),
the system looks for a file called STARTUP in the directory
~USER_ DATA/SH. If the file exists, the system executes it to set up
the initial environment for the Shell.

Since no default Shell start-up file exists, you must create one if you
want to use one. The Shell start-up script is useful when you want to
define a standard set of variables for each Shell process, or set up
certain Shell characteristics, such as variable evaluation (EON), or
new command search rules. Figure 6-3 shows a sample Shell start-
up script.

Note: Shell start-up files do not execute from siologin or CRP
(CREATE_REMOTE_PROCESS). For more information
about the CRP command, see the DOMAIN System Com-
mand Reference.

6-9 Using the Shell

Sample Shell start-up script -USER_DATA/SH/STARTUP

Set up standard variables

A := 3
B := 4

Turn on variable evaluation

EON

Add additional directory to command search rules

CSR -A -PROGS

Figure 6-3. Sample Shell Start-Up Script

Controlling Input and Output
Processes pass data to and from programs, such as the Shell, through
open system channels called streams. Every process that you create
has the following streams open for program input and output:

•	 standard	input	

•	 standard	output	

•	 error	input	

•	 error	output	

Standard input and standard output are the streams that channel
normal input and output between a program and a process. By
default, standard input passes program input that you type in the

6-10Using the Shell

process input pad; standard output passes program output to the
process transcript pad.

Error input and error output are two streams used for additional
program input and output. Like the standard streams, they use the
process input pad and process transcript pad by default.

The error input stream has nothing to do with errors; it is simply
another input stream for passing data to a program. For example,
when a command queries you to verify wildcard names, error input
passes your response to the command. (The “Using Query Options”
section describes how commands query you to verify wildcard
names.) Error output is the stream that passes program error mes-
sages to the process transcript pad.

Shell commands use input and output streams when processing com-
mand line data. When you specify a command in the Shell input
pad, standard input passes data from the command line to the com-
mand program. Standard output passes data from the program to
the transcript pad.

In certain instances, you may want the Shell to read input from and
write output to locations other than the input and transcript pads.
For example, you may want to save the output from a command in a
file. Using I/O control characters, you can redirect input and out-
put streams to pass data to and from other locations, usually files.

Table 6-2 lists the I/O control characters and a brief summary of their
functions.

The following sections show how to use I/O control characters. Chap-
ter 9 describes the characters used to redirect standard input to read
in-line data from scripts.

6-11 Using the Shell

Table 6-2. I/O Control Characters

Character Function

<

< ?

>

> ?

>>

>>?

|

()

<<

<< ?

Redirect standard input

Redirect error input

Redirect standard output

Redirect error output

Append standard output

Append error output

Pipe standard output

Group commands for I/O redirection

Redirect standard input to read in-line data
from scripts. (See Chapter 9 for a complete
description.)

Redirect error input to read in-line data
from scripts. (See Chapter 9 for a complete
description.)

Reading Input from a File

To redirect standard input to read data from a file rather than the in-
put pad, use the less-than symbol (<). For example, the following
command reads data from a file named FILE_1:

$ TLC a-z A-Z < FILE_1

6-12Using the Shell

The TLC (TRANSLITERATE_CHARACTERS) command nor-
mally substitutes or deletes characters from text that you type in the
Shell input pad. The TLC command in this example redirects stan-
dard input to read data from a file (FILE_1) instead of the input
pad. The command changes all lowercase characters in FILE_1
to uppercase characters, and writes the converted text to the transcript
pad.

Writing Output to a File

To redirect standard output to write output to a file rather than to the
transcript pad, use the greater-than (>) symbol. For example, the
following command writes output to a file named FILE_1.FMT:

$ FMT FILE_1 > FILE_1.FMT

The FMT (FORMAT_TEXT) command formats FILE_1 and writes
the output (the formatted file) to FILE_1.FMT instead of to the
transcript pad.

Shell commands use the error output stream to report any errors
found in the input file. By default, error output writes output to the
transcript pad. To redirect error output to write output to a file in-
stead of the transcript pad, use the greater-than/question mark
symbol (>?). For example, the following command redirects both
standard output and error output:

$ FMT FILE_1 > FILE_1.FMT >? FILE_1.ERR

The FMT command writes the formatted file to FILE_1.FMT, and if
it discovers any errors, writes error messages to the file FILE_1.ERR.

Appending Output to a File

To redirect standard output to append output to the end of a file, use
the double greater-than symbol (>>). For example, the following
command appends output to a file named BOOK:

$ CATF CH4 CH5 CH6 >>BOOK

6-13 Using the Shell

The CATF (CATENATE_FILE) command normally reads input
files in order and writes them to the transcript pad. The CATF com-
mand in this example reads the files CH4, CH5, and CH6 in that or-
der and appends them to the existing file BOOK. If the specified
output file didn’t exist, CATF would create a new file named BOOK
and write output to it.

To redirect error output to append error output to the end of a file,
use the double greater-than/question mark (»?) symbol. For ex-
ample, suppose you wanted to keep a record of all FMT errors. Each
time you used the FMT command to format a file, you could direct
the command to append error output to a file as follows:

$ FMT FILE_1 >>?ERROR_LOG

The command in this example formats FILE_1. If it encounters any
errors, it appends any error output to the file ERROR_ LOG.

Redirecting Output to Other Commands

If you place two commands on one line, and separate them with a
vertical bar (|), the Shell connects the standard output stream of
the first command to the standard input stream of the next com-
mand. For example:

$ SRF FILE_1 | DLDUPL

The SRF (SORT_FILE) command sorts the contents of FILE_1 and
passes the output to the Shell command DLDUPL
(DELETE_DUPLICATE_LINES) command. The DLDUPL com-
mand strips out duplicate lines.

The vertical bar between the commands is called a pipe. Commands
such as SRF and DLDUPL that copy standard input to standard out-
put (making some changes along the way) are called filters. A com-
mand line that uses pipes and filters is called a pipeline. You can
use either Shell commands or scripts as filters in pipelines.

6-14Using the Shell

To use a group of commands as a filter, enclose them in parentheses
using the following format:

(COMMAND_1; COMMAND_2) | COMMAND_3

The Shell passes output from the commands enclosed in parentheses
(COMMAND_1 and COMMAND_ 2) to the command to the right of
the vertical bar COMMAND_ 3. For example:

$ (LD MY_DIR1 -C -NHD; LD MY_DIR2 -C -NHD) | SRF >@

$_ LIST

This example concatenates the output of the two LD (LIST_DIREC-
TORY) commands and then sorts the reported file names, placing
the output in the file called LIST.

The Command Line Parser
Many of the Shell commands that we supply share a standard com-
mand line parsing procedure. This procedure, called the command
line parser, determines how each command processes command
line information. The Shell command descriptions in the DOMAIN
System Command Reference and the on-line HELP files identify
which commands use the command line parser.

Commands that use the command line parser allow you to:

•	 Specify	multiple	pathnames	as	pathname	arguments.	 	

•	 Use	pathname	wildcards	to	specify	existing	pathnames	and	to	
derive pathnames from other pathnames on the command
line.

Commands that use the command line parser also accept the com-
mand parser options listed in Table 6-3. These options allow you to:

•	 Control	 how	 a	 command	 queries	 you	 to	 verify	 wildcard	
matches.

•	 Direct	 a	 command	 to	 use	 standard	 input	 to	 read	 command	
line input.

6-15 Using the Shell

Table 6-3. Command Line Parser Options

Option Description

-AE

-NQ

-QW

-QA

-

* [pathname]

Causes the command to abort if it cannot find
a name in a pathname. By default, processing
continues to the next name.

Do not issue a query to verify wildcard names.
This is the default.

Issue a query to verify wildcard names.

Issue a query to verify all names.

Read additional data from standard input.

Read the specified file for additional pathname
arguments. If the pathname is omitted, read
the additional pathname arguments from
standard input.

Using Query Options

Commands that delete or modify objects query you to verify names
that you specify using wildcards. You can control how a command
queries by using any of the query options listed in Table 6-4.

By default, commands use error output to query you by writing
selected names to the transcript pad with a question mark (?),
prompting you for a response. The command uses the error input
stream to read your response from the Shell input pad.

To respond, type one of the responses listed in Table 6-4 and press
<RETURN>.

6-16Using the Shell

Table 6-4. Command Query Responses

Response Action

H [elp]

Y [es]

N [o]

Q [uit]

G [o]

D [efault]

Displays HELP information.

Operates on the file with that name.

Ignores the file with that name.

Quits immediately.

Operates on the file with that name and
suppresses further name queries.

Resets the default response.

By default, queries require a response; if you simply type
<RETURN> without a response, the command queries you again. To
change the default, use the D response, followed by either YES, NO,
or NONE. For example:

? D YES

sets the default to YES. If you respond to subsequent queries by
typing <RETURN>, the command uses the new default and operates
on the file with that name. NONE specifies that you must specify a
response.

Reading Data from Standard Input

When you enter a Shell command, the command normally reads in-
put data from arguments that you specify in the command line. For
example, the PRF (PRINT_FILE) command reads data from the
specified files and prints it. To direct the command to read data
from standard input instead of an input file, use the hyphen charac-
ter (-) as shown in the following example:

6-17 Using the Shell

$ PRF - <RETURN>
 PRINT THIS LINE ON THE LINE PRINTER <RETURN>
 AND THIS ONE TOO <RETURN>
 CTRL/Z

Standard input uses the Shell input pad by default, so PRF reads data
from the input pad. To input data to the PRF command, type in
data as shown in the example. The CTRL/Z control key inserts an
end-of-file (EOF) that signals the end of input and causes PRF to
print any data that you typed in the input pad.

Some commands and scripts receive data from both a list of files and
standard input. For these commands, specify the hyphen character
(-) as a pathname argument. For example:

$ FMT FILE_1 - FILE_2

The FMT command: formats FILE_1, formats data typed in stan-
dard input, and finally formats FILE_ 2.

Reading Path names from Standard Input

To direct a command to read pathnames (rather than data) from
standard input, use the asterisk symbol (*). The PRF command in
the following example reads pathname arguments that you type in the
Shell input pad:

$ PRF - <RETURN>
 FILE_1 <RETURN>
 FILE_2 <RETURN>
 FILE_3 <RETURN>
 CTRL/Z

The CTRL/Z control key inserts an end-of-file (EOF) that signals
the end of input, which causes PRF to print the contents of each file.

You can also use the asterisk symbol and redirect standard input to
read pathnames from a names file, a file that contains the path-
names of other files, as follows:

$ PRF *JOBS

6-18Using the Shell

In this example, PRF prints the contents of each file listed in the
names file JOBS.

Using Pathname Wildcards

Most Shell commands accept pathnames as arguments. The com-
mands that use the command line parser also accept wildcards
as part of their pathname arguments. Wildcards are characters or
text strings that you can use in pathnames to represent one or more
text strings in a pathname. For example, the wildcards in the follow-
ing command line match every file that ends with .FTN in the cur-
rent working directory:

$ LD ?*.FTN

 wildcards

The question mark wildcard (?) matches any single character except
<RETURN>. The asterisk wildcard (*) matches zero or more occur-
rences of the character preceding it. As a result, this wildcard com-
bination matches zero or more occurrences of any character.

Table 6-5 provides a list of pathname wildcards along with a brief
description of how they work. Chapter 7 describes how to use Shell
commands to manage files, directories, and links. Many of the ex-
amples in Chapter 7 provide specific examples of how to use path-
name wildcards.

6-19 Using the Shell

Table 6-5. Summary of Path name Wildcards

Character Description

? Matches any single character except
<RETURN>. For example:

Z? matches any two-character name that
begins with the letter Z (ZA and Z1).

% Matches zero or more characters up to, but
not including, a period. For example:

%.BAK matches any name that ends in .BAK
(SALES.BAK and INV.BAK, but not
SALES.BAK.BAK)

DEMO.% matches any name that begins with
DEMO, up to and including the period
(DEMO.BAK and DEMO.PAS)

DEMO.%.% matches DEMO.PAS.BAK

* Matches zero or more occurrences of the
character that precedes it. When * follows the
? character, it matches zero or more occur-
rences of any character except <RETURN>.
For example:

FILE9* matches FILE, FILE9, and FILE999.

DE?* matches DEMO, DESK, and
DEPARTMENT.

DEMO.*% matches any name that DEMO.%
matches (see the % example above), but also
matches the period (DEMO.FMT and
DEMO).

6-20Using the Shell

Table 6-5. Summary of Pathname Wildcards (continued)

Character Description

[string] Matches any single character listed in a string.
For example:

FILE[0-9] matches any five-character name
that begins with FILE and ends in a single
digit (FILE4 and FILE8)

FILE[A-D] matches FILEA and FILEB but
not FILEM

FILE[AXY] matches FILEA, FILEX, and
FILEY

[~string] Matches any single character that does not ap-
pear in a string. For example:

FILE.[~A-Z] matches FILE and FILE.9 but
not FILE.A or FILE.P

... Matches zero or more directories subordinate
to the starting point. For example:

//MY_NODE/... matches all the directories in
MY_ NODE

/OWNER/.../DEMO matches any object
named DEMO in a subdirectory of OWNER

.../JAN?* matches any object starting with
JAN in all subdirectories of the current work-
ing directory

6-21 Using the Shell

Table 6-5. Summary of Pathname Wildcards (continued)

Character Description

= Shell commands that let you copy, compare,
or rename files sometimes require two path-
names as arguments. Many of these com-
mands derive the second name from the first
name. In this case, we refer to the second
name as the derived name. The Shell
replaces the equal sign wildcard (=) in the
second name with the first name. For ex-
ample:

CPF MY_FILE=.OLD copies the file
MY_ FILE to the file MY_ FILE.OLD

CPF MEMO MY=.BAK copies the file
MEMO to MYMEMO.BAK

(names)
derived-name

Enclose the first names in parentheses to
create several derived names with one com-
mand line.

For example:

CPF (A B C) =.FMT copies the files A, B,
and C to A.FMT, B.FMT, and C.FMT

{ expr } Use braces to tag an expression (expr) for use
in a derived name. Refer to tagged expres-
sions in arguments as @1 (first expression
tagged), @2 (second expression tagged), etc.
For example:

CPF {PROG.FTN}.BAK @1 copies
PROG.FTN.BAK to PROG.FTN

CPF {FIL}E_{A} @1.@2 copies FILE_ A to
a file named FIL.A

6-22Using the Shell

Running Programs in a Background Process

The command Shell has another set of special characters, called
parsing operators, that control how a command parses (interprets
and categorizes) the individual components on a command line.
We’ve already seen how to use some of these parsing operators: the
semicolon (;) to separate multiple commands on a command line,
the escape character (@) to continue commands on more than one
line, and blank spaces to separate command arguments and options.

Another parsing operator is the ampersand character (&). It in-
structs the Shell to run a program in a background process (a
process that runs without pads and windows). To run a command or
program in a background process, enter the command line or
program name in the Shell input pad, followed by the & character.
For example:

$ BIND FILE_1.BIN -MAP > PROG.MAP &

This command line runs the binder as a background process to bind
the file FILE_1.BIN and writes a complete map to the file
PROG.MAP.

By default, the Shell directs output to the file /DEV/NULL. You can
display output from the background process by specifying the Shell
command BON. The BON command directs the Shell where the
background process was invoked to display output in its transcript
pad. To turn output off (direct output to /DEV/NULL), specify the
BOFF command.

The remainder of the Shell parsing operators are used most fre-
quently in scripts. Chapter 9 contains a complete list of parsing
operators and describes how to use them in writing Shell scripts.

7-1 Managing Objects

CHAPTER 7

Managing Files,
Directories, and
Links

In Chapter 1, we looked at how the system organizes objects (files,
directories, and links) in a structure called a naming tree. This chap-
ter describes how to use Shell commands to manage these objects on
your system. Shell commands let you move around the system
naming tree and create, rename, copy, move, print, delete, and
compare objects.

Since all of the commands described in this chapter require you to
specify pathnames, you should understand the rules for pathnames
described in Chapter 1. Commands that use the Shell command line
parser also allow you to perform operations on groups of objects, and

7-2Managing Objects

therefore accept one or more pathname wildcards. Many of the ex-
amples in this chapter show you how to use pathname wildcards in
specific operations. For a complete description of the pathname
wildcards you can use with Shell commands, refer to Chapter 6.

Keep in mind that this chapter describes the basic functions of the
commands you use to manage objects. For a complete description of
a particular command and all of its options, refer to the DOMAIN
System Command Reference.

Moving Around the Naming Tree
Most of the commands described in this chapter require you to use
pathnames to specify locations in the naming tree where you want
particular operations performed. Often, you will specify pathnames
that use the current working directory or naming directory. To move
around the naming tree, you need to know how to set your working
directory and naming directory. Table 7-1 summarizes the com-
mands used to move around the naming tree.

Table 7-1. Commands for Setting the Working and Naming
Directory

Task Shell Command

Set or display working directory

Set or display naming directory

WD [pathname]

ND [pathname]

7-3 Managing Objects

Setting the Working Directory

The working directory is where the system begins its search for
ob-jects when you omit the object’s full pathname. At log-in, the
system sets your initial working directory to the home directory desig-
nated in your user account (see Chapter 2). Each subsequent
process that you create uses the working directory of the previous
process as its working directory.

To display the name of a process’s current working directory, specify
the WD (WORKING_DIRECTORY) command without any argu-
ments or options as follows:

$ WD

To change a process’s working directory to another directory, specify
the WD command in the following format:

WD [pathname]

where pathname specifies the pathname of the directory you want to
use as the working directory. For example:

$ WD //MY_NODE/OWNER/FORMS

sets the working directory for the current process to FORMS. Once
set, anytime you omit the full pathname of an object, the system
starts its search at the directory FORMS by default.

Setting the Naming Directory

The system searches the naming directory’s COM directory (~COM)
as part of the default command search rules (see Chapter 6). As
described in Chapter 1, the naming directory is also where the system
begins its search for an object when you precede an object’s path-
name with the tilde (~) symbol.

7-4Managing Objects

At log-in, the system sets the naming directory to the home directory
designated in your user account (see Chapter 2). Each subsequent
process that you create uses the naming directory of the previous
process as its naming directory.

To display the name of a process’s current working directory, specify
the ND (NAMING_DIRECTORY) command without any argu-
ments or options as follows:

$ ND

To change a process’s naming directory to another directory, specify
the ND command in the following format:

ND [pathname]

where pathname specifies the pathname of the directory you want to
use as the naming directory. For example:

$ ND /USER_1/REPORTS

sets the naming directory to the directory REPORTS. Once set, you
can use a tilde (~) in place of /USER_1/REPORTS at the beginning
of any pathname. Thus, ~CAL_ 85 would be the same as
/USER_1/REPORTS/CAL_ 85.

7-5 Managing Objects

Managing Files
Table 7-2 summarizes the commands for managing files.

Table 7-2. Commands for Managing Files

Task Shell Command

Create a file

Rename a file

Copy a file

Move a file

Append a file to another file

Print a file

Display file attributes

Delete a file

Copy display Image to a file

Compare ASCII flies

Compare sorted flies

CE pathname (DM command)

CHN old_name [new_name]

CPF source [target]

MVF source [target]

CATF source >>target

PRF [pathname]

LD [pathname]

DLF [pathname]

CPSCR pathname

CMF source [target]

CMSRF [options] source [target]

Creating Files

To create normal text files, specify the DM command CE
(CREATE_EDIT) along with the pathname of the file you want to
create. By default, the <EDIT> key invokes the CE command. The
CE command directs the DM to create the file and open an edit pad
and window for the file on the display. Using the DM editor, you
can edit the file then save its contents by typing CTRL/Y. When you
save the file, the system stores it at the location in the naming tree

7-6Managing Objects

specified by the file’s pathname. Refer to the “Creating Pads and
Windows” section in Chapter 4 for a description of how to use the
CE command to create and edit files.

The following example creates a file named MEMO in the directory
/USER, and opens the file for editing:

Command: CE //NODE/USER/MEMO

The previous example uses an absolute pathname to specify the
name of the new file. When you use a pathname that assumes the
current working directory or naming directory, the system uses the
working or naming directory of the current process. (The last
process to perform an operation before you specified the CE com-
mand is the current process.)

The following example creates a file named MEMO in the current
working directory:

Command: CE MEMO

The command in this example specifies the filename MEMO. Since
the pathname does not specify an explicit directory location, the sys-
tem uses the current process’s working directory to determine where
to create the new file. If the current process’s working directory is
//NODE/USER, then the system will create the new file with the
pathname //NODE/USER/MEMO.

When you run multiple Shell processes, you typically move between
processes, often changing the current working directory. As a result,
you may find it difficult to keep track of the current working direc-
tory. In situations where you run multiple processes, you may want
to specify absolute pathnames to avoid creating files at an unintended
location.

Whenever you create a file, the system assigns the file a set of initial
ACLs from the file’s parent directory. After you create a file you
can change its ACLs with the EDACL command. Chapter 8 explains
ACLs and describes how to use the EDACL command.

7-7 Managing Objects

Renaming Files

To change the name of a file, use the CHN (CHANGE_NAME)
command in the following format:

CHN old_name [new_name] [options]

where old_name specifies the current pathname of the file you want
to rename, and new_name specifies the new name of the file. For
example:

$ CHN /OWNER/JOHN PAUL

changes the name of the file JOHN to PAUL. Notice that the
new_name argument applies to the rightmost component (JOHN) of
the old_name argument.

To append a naming suffix to the new filename, specify any of the
following naming options:

Option Description

 -D Appends the current month and day to the
new name (new_name.mm.dd.).

 -Y Appends the current year, month, and date
to the new name (new_name.yy.mm.dd).

 -U Forces the system to create a unique new
name by appending a sequence of num-
ber(s) to the end of the name.

If you omit the new_name argument, you must specify one of the
options in the previous list; the system creates a new name by copy-
ing the old_name and appending the proper suffix as shown below.

$ CHN /OWNER/JOHN -D

This command changes the name of the file JOHN to JOHN.06.16.

7-8Managing Objects

Copying Files

When you copy a file, you create a copy of the file at another loca-
tion in the naming tree. To copy a file or group of files, use the CPF
(COPY_FILE) command in the following format:

CPF source [target] [options]

where source specifies the pathname of the file you want to copy,
and target specifies the pathname of the naming tree location where
you want the copy created. The rules for pathnames described in
Chapter 6 apply to both command arguments.

The CPF command always creates a copy of the source file at the
location specified by the target. For example:

$ CPF MEMO /USER_1/NEW_MEMO

creates a copy of the source file MEMO in the directory USER_1. In
this example, since the target specifies the pathname of a file, CPF
assigns the copy the name specified by the target, which in this ex-
ample is NEW_ MEMO.

If the target specifies the pathname of a directory, CPF creates a
copy of the source file in the target directory (the current working
directory if you omit the target) and assigns the copy the filename of
the source file. For example:

$ CPF MEMO /USER_1

copies the file MEMO from the current working directory to the tar-
get directory USER_1. Because CPF assigns the copy the name of
the source file, the new file has the pathname /USER_1/MEMO.

If you omit the target pathname entirely, CPF creates a copy of the
source in the current working directory, unless the source file also
resides there. In the previous example, since the source file MEMO
is in the current working directory, CPF can’t create another file
named MEMO in the same directory. In this case, CPF displays the
error message, “... can’t copy a file or tree to itself” and does not
make a copy.

7-9 Managing Objects

By default, the system assigns the target file the default file ACLs of
its parent directory (see Chapter 8). So, in the previous example, the
system assigns the target file the default file ACLs of the directory
USER_1.

To replace an existing file with a copy of another file, use the -R op-
tion as follows:

$ CPF /OWNER/JUNE_REPORT LATEST_REPORT -R

This command replaces the file LATEST_ REPORT (in the current
working directory) with a copy of JUNE_ REPORT. As a result,
LATEST_ REPORT now contains a copy of JUNE_ REPORT.

You can copy or replace several files using a single CPF command by
either specifying multiple pairs of source and target pathnames (each
pair separated by a space) or by using pathname wildcards. The fol-
lowing command uses pathname wildcards to copy all the files ending
with PLAN to the current working directory:

$ CPF /OWNER/?*PLAN -LF

The -LF option directs the CPF command to list the name of each
file it copies. For more information on using pathname wildcards,
see Chapter 6.

Moving Files

When you move a file, you literally relocate the file in the naming
tree. Use the MVF (MOVE_FILE) command the same way you use
the CPF command described in the previous section. In fact, moving
a file has the same effect as copying the file to another location and
then deleting the original. Unlike a copy operation, however, when
you move a file, it retains its original ACLs.

To move a file or group of files from one location in the naming tree
to another, use the MVF command in the format:

MVF source [target] [options]

where source specifies the pathname of the file you want to move
and target specifies the pathname of the file’s new location in the

7-10Managing Objects

naming tree. The rules for pathnames described in Chapter 1 apply
to both arguments.

The following command moves the file FLOORPLAN:

$ MVF /DESIGNER/FLOORPLAN /BUILDER/PLANS/CAPE

In this example, the target specifies the pathname for a nonexistent
file named CAPE. The MVF command moves the file
FLOORPLAN from the directory DESIGNER to the directory BUIL-
DER/PLANS and names the file CAPE.

If the target pathname specifies a directory, MVF moves the source
file into the target directory (or current working directory if you omit
the target pathname). For example, the following command moves
the file FLOORPLAN into the current working directory:

$ MVF /DESIGNER/FLOORPLAN

In this example, since no target filename was specified, the file
retains the name of the source file (FLOORPLAN) .

You can move a file to replace an existing file in another directory by
using the MVF command with the -R option, as follows:

$ MVF /OWNER/REPORT LATEST_REPORT -R

This command replaces the contents of the file LATEST_ REPORT
(in the current working directory) with the contents of the file
REPORT (in the directory /OWNER).

To move several files in one operation, you can specify multiple pairs
of source and target pathnames or use pathname wildcards. Chapter
6 describes how to use pathname wildcards.

Appending Files

To append the contents of one or more files to the end of another
file, use the CATF (CATENATE_FILE) command in the following
format:

CATF [source ...] >>target

7-11 Managing Objects

where source specifies the pathname of the file whose contents you
want to append, and target specifies the pathname of the file to
which you want to append. When you specify more than one source
file, separate each file with a space. The system concatenates the
source files and appends them to the target file.

The CATF command reads source files in order and normally writes
them to standard output, which is, by default, the Shell’s process
transcript pad. The double right-angle brackets (>>) , however,
redirect output from standard output and append the output to the
target file. For example:

$ CATF MEMO_1 MEMO_ 4 >> PLAN_MEMOS

reads the files MEMO_1 and MEMO_4 in that order, and appends
them to the file PLAN_ MEMOS.

Chapter 6 provides more information on how to use I/O control
characters.

Printing Files

To print one or more files, use the PRF (PRINT_FILE) command
in the following format:

PRF [pathname ...] [options]

where pathname specifies the name of the file you want to print. If
you specify more than one file, separate each pathname with a space.
The following example prints the file MY_ PLAN on the printer
named SPIN:

$ PRF MY_PLAN -PR SPIN

The PRF command itself doesn’t actually print files; a server process,
called PRINT_SERVER (PRSVR) does. (The PRSVR process runs
on the node that is physically connected to the printer.) The PRF
command queues a file for printing by copying the file to a directory,
where it waits for PRSVR to get it and print it. By default, PRF
queues files to the directory /SYS/PRINT/QUEUE.

7-12Managing Objects

To see which files are queued for printing in the default queue direc-
tory (/SYS/PRINT/QUEUE), use the PRF command with the
-INTER[ACTIVE] option. This option causes PRF to enter interac-
tive mode, in which you can specify PRF commands and options in-
teractively. For example, the following example lists all of the files
queued to the printer named SPIN:

$ PRF -INTER
PRF> -PR SPIN
PRF> READ

For more information about the PRF command and its commands
and options, see the DOMAIN System Command Reference.

If you normally use a printer connected to your node,
/SYS/PRINT/QUEUE is the name of the queue directory on your
node. If a remote node controls the printers that you use by default,
then /SYS/PRINT is a link that your System Administrator creates to
point to the /SYS/PRINT directory on the remote node. This link
causes PRF to queue files to the /SYS/PRINT/QUEUE directory on
the remote node by default. (The “Managing Links” section
describes links in more detail.)

You can queue a file to the /SYS/PRINT/QUEUE directory on
another node by specifying the -S option along with the name of the
node’s entry directory. For example:

$ PRF MY_PLAN -S //BOSTON

queues MY_ PLAN to the /SYS/PRINT/QUEUE directory on the
remote node BOSTON.

Another option that you’ll find useful is the -COP[IES] option. This
option lets you print multiple copies of a file, as shown in the follow-
ing example:

$ PRF MY_PLAN -COP 16

This command prints 16 copies of the file MY_ PLAN.

You can print multiple files using a single PRF command by either
specifying multiple pathnames (each pathname separated by a space)
or by using pathname wildcards. The following command uses path-

7-13 Managing Objects

name wildcards to print any file in the current working directory that
begins with FILE and ends with a one-digit number:

$ PRF FILE_[0-9]

This command, for example, will print FILE_ 2 and FILE_ 8 but not
FILE_ A or FILE_ B.

Printing Files Using the Print Menu Interface

In addition to the PRF command, you can print files using the
print menu interface shown in Figure 7-1. This menu allows you to
specify print arguments and select various options without having to
type them on the command line. The print menu interface is useful
when you routinely specify several print options for each file you
print. By using the menu interface, you can select all of the options
once, and print several files without respecifying the options for each
file you print.

Figure 7-1. The Print Menu

To print files using the print menu interface, specify the PRFD
(PRINT_FILE_DIALOG) command as follows:

$ PRFD

As shown in Figure 7-1, the PRFD command creates a special win-
dow pane at the top of the Shell process window displaying the print
menu. The print menu is in control until you either print the file by
selecting Print, quit the menu by selecting Quit, or select one of the

7-14Managing Objects

commands submenu items (we’ll learn more about the commands
submenu later in this section.)

To use the print menu, move the arrow cursor to the menu item you
want to select; the system highlights the item name in reverse video.
To select the item, press either the <F1> key, the space bar, or if you
are using a mouse, the left mouse button (M1). (Hereafter, we use
the term select key to refer to any of these keys.) You can also dis-
play help information about an item by moving the cursor over the
item and pressing <HELP>.

To specify any of the File type: items (text, bitmap, or
transparent), move the cursor over the item name. Once the item is
highlighted, use the select key to select it, and a checkmark will ap-
pear as shown below:

For items that require you to type in specific information, such as
File to print:, printer:, and #copies:, a small, triangular cursor ap-
pears in the item field. For example, to specify the pathname of the
file you want to type, move the cursor to the line next to File to
print: and press the select key. When the triangular cursor appears,
type in the pathname as follows:

When you finish typing in the file’s pathname, press <RETURN> and
move to another item.

The items along the top row of the menu, and the profile and
commands items on the bottom row, display submenus when you
select them. These submenus allow you to select or specify addi-
tional print information. Use the submenu in the same way you use
the main menu: either select an item, or type in the requested infor-
mation. When you finish with a submenu, move the arrow cursor out
of the submenu box, and it will close.

7-15 Managing Objects

For example, when you select the commands item, the submenu
shown in Figure 7-2 appears.

Figure 7-2. Print “Commands” Submenu

The commands submenu is very useful, because it allows you to per-
form specific operations outside of the print menu. For example, to
return control to the Shell without quitting the print menu, you can
select the shell submenu item. Table 7-3 describes the function of
each item in the commands submenu.

When you’re satisfied with the selections you’ve made in the print
menu, you can print the file by selecting Print. After you print a file,
the menu maintains control and remains on the screen, enabling you
to print additional files. The print menu remembers all of the sub-
menu selections you’ve made for the previous file. To print another
file using the same selections, specify a new file on the line next to
File to print: and select Print. To exit the menu interface, select
Quit.

Most of the selections in the print menu perform the same print
functions as options on the command line. For more information on
a specific menu or submenu item, refer to the description of its re-
lated PRF command option in the DOMAIN System Command
Reference. Remember, you can get help information for any item by
moving the cursor over the item and pressing the <HELP> key.

7-16Managing Objects

Table 7-3. Print “Commands” Submenu Items

Item Description

shell

wdir

read

cancel

Returns control to the Shell. When you select
shell, the dollar sign prompt appears in the Shell
input window. To return control to the print menu
again, type CTRL/Z.

Changes the current working directory to the
specified directory. When you select wdir,
a prompt appears in the Shell input window
requesting a directory pathname. If you type
<RETURN> without specifying a pathname, the
system displays the current working directory.

Reads the queue directory and list the entries
with the printer name specified by the printer
item. If no printer name is specified, the system
lists all the entries in the queue

 Deletes the specified file from the queue. When
you select cancel, a prompt appears in the Shell
input window requesting the name of the file.
If you type <RETURN> without specifying
a filename, the system deletes the last file you
queued.

Displaying File Attributes

To display a file’s attributes, such as its size, creation date, and ac-
cess rights, to name a few, use the LD (LIST_DIRECTORY) com-
mand in the following format:

LD pathname... [-options]

7-17 Managing Objects

where pathname specifies the pathname of the file, and options
specifies which attributes you want displayed.

The LD command in the following example displays attribute infor-
mation for the file MEMO, as shown in Figure 7-3. The command
specifies two attribute options: -R, which displays the file’s access
rights, and -DTC, which displays the file’s creation date and time.

$ LD //NODE/USER/MEMO -R -DTC

rights
date/time
created name

pgndcalr 85/01/04.09:16 //node/user/memo

1 entries, 2 blocks used.

Figure 7-3. Sample Display Showing File Attributes

To display an entire set of attributes for a file, use the -A option as
follows:

$ LD //NODE/USER/MEMO -A

You can display the attributes of several files by either specifying
multiple file pathnames, (each pathname separated by a space) or by
using pathname wildcards. The command in the following example
uses the question mark (?) and asterisk (*) pathname wildcards to
display attribute information for all files in the current working direc-
tory that have the suffix, _ PLAN:

$ LD ?*_PLAN -R -DTC

You can also display the attributes of all the files in a particular direc-
tory by specifying the name of the directory as the pathname argu-
ment. The “Displaying Directory Information” section describes how
to use LD to list the contents of a directory and display attribute in-
formation about its contents.

7-18Managing Objects

Deleting Files

To delete one or more files, use the DLF (DELETE_FILE) com-
mand in the following format:

DLF [pathname ...] [options]

where pathname specifies the pathname of the file you want to
delete. If you specify multiple pathnames to delete multiple files,
separate each pathname with a space.

The following command deletes the files MY_ PLAN and REPORT
from the current working directory:

$ DLF MY_PLAN REPORT

You can also use pathname wildcards to delete related groups of
files. For example:

$ DLF %.BAK -L

The percent sign (%) wildcard character causes DLF to delete all of
the files in the current working directory that end in .BAK. The -L
option lists each file as DLF deletes it.

DLF is an example of a command that queries you to verify names
that you specify with pathname wildcards. In the previous example,
the DLF command asks you to verify the deletion of each file that
matches the pathname %.BAK.

Copying the Display to a File

You can copy the image of your current display to a file using the
CPSCR (COPY_SCREEN) command in the following format:

CPSCR path name [-INV]

where pathname specifies the pathname of the file to which you want
to copy the display image. The -INV option directs CPSCR to store
the file in reverse video (black on white or white on black depending
on the current display setting).

7-19 Managing Objects

To print a file that contains a screen image, use the PRF command
with the -PLOT option.

Comparing ASCII Files

To identify differences between ASCII text files, use the CMF
(COMPARE_FILE) command in the following format:

CMF source [target ...] [-options]

where source specifies the pathname of the file to which CMF com-
pares one or more target files; CMF reports all differences in relation
to the source file. If you specify multiple target pathnames, separate
them with spaces. If you omit a target pathname, CMF compares the
source with text from standard input.

The CMF command in Figure 7-4 compares the contents of the file
SPEECH to the contents of SPEECH.BAK.

Figure 7-4. Comparing Two ASCII Files

7-20Managing Objects

Managing Directories
Directories are the naming tree components that contain other ob-
jects. Table 7-4 summarizes the commands for managing directories.

Table 7-4. Commands for Managing Directories

Task Shell Command

Create a directory

Rename a directory

Copy a directory tree

Replace a directory tree

Merge directory trees

Compare directory trees

Display contents of a directory

Delete a directory tree

CRD pathname

CHN old_name [new_name]

CPT source [target]

CPT source [target] -R

CPT source [target] -MS

CMT source target

LD [pathname]

DLT pathname

7-21 Managing Objects

Creating Directories

Each directory that you create is actually a subdirectory of its parent
directory (the directory above it in the naming tree). To create a
directory, specify the CRD (CREATE_DIRECTORY) command in
the following format:

CRD pathname ...

where pathname specifies the pathname of the directory you want to
create. If you specify multiple pathnames to create multiple direc-
tories, separate each pathname with a space. The following com-
mand creates a directory named REPORTS:

$ CRD /OWNER/REPORTS

The CRD command creates the directory REPORTS as a subdirec-
tory of the parent directory /OWNER. The new directory,
(REPORTS) also receives an initial set of ACLs from the initial
directory ACLs of the parent directory (/OWNER). You can change
the initial ACLs with the EDACL command. Chapter 8 explains
ACLs and describes how to use the EDACL command.

Renaming Directories

To change the name of a directory, use the CHN
(CHANGE_NAME) command in the following format:

CHN old_name [new_name] [options]

where old_name specifies the pathname of the directory you want to
rename, and new_name specifies the new name of the directory. For
example:

$ CHN /OWNER/REPORTS PROGRESS

changes the name of the directory REPORTS to PROGRESS. Notice
that the new_name argument applies to the rightmost component
(REPORTS) of the old_name argument. You cannot use CHN to
change the name of a directory embedded in a pathname.

7-22Managing Objects

To append a naming suffix to the new directory name, specify any of
the following naming options:

Option Description

 -D Appends the current month and day to the
new name (new_name.mm.dd.).

 -Y Appends the current year, month, and date to
the new name (new_name.yy.mm.dd).

 -U Forces the system to create a unique new
name by appending a sequence of number(s)
to the end of the name.

If you omit the new_name argument, you must specify one of the op-
tions in the previous list; the system creates a new name by copying
the old_name and appending the proper suffix as shown here:

$ CHN /OWNER/REPORTS -D

This command changes the name of the directory REPORTS to
REPORTS.06.16.

Copying Directory Trees

A directory and all of the objects it contains is called a directory
tree. A directory tree represents the part of a naming tree that ex-
tends from a specific directory through all its files, subdirectories,
and links as shown in Figure 7-5.

7-23 Managing Objects

Figure 7-5. Sample Directory Tree

To copy a directory tree to another location, use the CPT
(COPY_TREE) command in the following format:

CPT source target

where source specifies the pathname of the directory you want to
copy and target specifies the pathname of the naming tree location
where you want the copy created. The rules for pathnames
described in Chapter 1 apply to both command arguments.

Figure 7-6 illustrates how the CPT command in the following ex-
ample copies a directory tree.

7-24Managing Objects

$ CPT REPORTS //BOSTON/USER_1/PROG -L

Figure 7-6. Copying a Directory Tree

The CPT command creates a copy of the directory tree REPORTS
and names the copy PROG. CPT creates the copy in the directory
USER_1. The -L option lists the name of each object as it is copied.

7-25 Managing Objects

Replacing Directory Trees

To replace one directory tree with another directory tree, specify the
-R option with the CPT (COPY_TREE) command described in the
previous section. The -R option directs CPT to delete the directory
tree specified by the target pathname and to create a copy of the
source tree in its place. Figure 7-7 illustrates how the following com-
mand replaces a directory tree.

$ CPT REPORTS //BOSTON/USER_1 -R

Figure 7-7. Replacing a Directory Tree

7-26Managing Objects

The CPT command in Figure 7-7 does the following:

1. Deletes the target tree starting at the pathname //BOS-
TON/USER_1.

2. Replaces the target tree with a copy of the entire REPORTS
directory tree.

Merging Directory Trees

You can merge directory trees using either the -MS or -MD option
with the CPT (COPY_TREE) command described in the “Copying
Directory Trees” section discussed earlier. When merging directory
trees, CPT first compares the source and target directories object by
object. It then merges the directories according to the option you
specified.

When you specify the -MS option, CPT uses the following process to
merge the source directory with the target directory:

•	 Objects	 that	 exist	 in	 the	 source	 but	 not	 in	 the	 target	 are	
created in the target.

•	 Objects	 that	 exist	 in	 the	 target	 but	 not	 in	 the	 source	 remain	
unchanged.

•	 Files	 and	 links	 with	 the	 same	 name	 in	 both	 the	 source	 and	
target are deleted from the target and replaced by the source
version.

•	 Directories	with	 the	same	name	in	both	source	and	 target	are	
merged.

The CPT command continues this process until it reaches the end of
the source tree.

The following command merges the source directory PROGRESS
with the target directory REPORTS.

$ CPT //BOSTON/USER_1 /PROGRESS REPORTS @
$_ -MD -L

7-27 Managing Objects

The -L option directs CPT to list all objects that it creates in the tar-
get directory.

If you specify the -MD option, the merging process is similar to that
of -MS; however, files and links with the same name in the source
and target are left unchanged in the target.

Comparing Directory Trees

To compare the contents of one directory tree to another, use the
CMT (COMPARE_TREE) command in the following format:

CMT source target [options]

CMT compares all of the objects in the source directory tree against
all the objects in the target directory tree. CMT reports the follow-
ing:

•	 Any	 objects	 that	 appear	 in	 both	 the	 source	 and	 target	 but	
whose contents are different.

•	 Any	objects	that	appear	in	the	source	but	not	in	the	target.		If	
the target contains objects that do not appear in the source,
CMT ignores the differences.

For example, let’s assume that directories DIR_1 and DIR_ 2 contain
the following files:

DIR_1

FILE_A

FILE_B

FILE_C

FILE_D

Contain
different text

DIR_2

FILE_A

FILE_B

FILE_C

Let’s also assume that the contents of all the files in DIR_1 and
DIR_ 2 are identical, except for FILE_ B which contains different

7-28Managing Objects

text. Figure 7-8 illustrates how the CMT command compares the
files in DIR_1 against those in DIR_ 2.

Figure 7-8. Comparing Directory Trees

Notice in Figure 7-8 that the first message reports a difference be-
tween the contents of each directory’s FILE_ B. The second message
reports that FILE_ D in DIR_1 did not appear in DIR_ 2.

Displaying Directory Information

To list the contents of a directory and report information about the
objects the directory contains, specify the LD (LIST_DIRECTORY)
command in the following format:

LD [pathname ...] [options]

where pathname specifies the pathname of the directory, and options
specifies the types of information you want LD to report about the
objects it lists. If you omit the pathname argument, LD lists the con-
tents of the current working directory.

The command in the following example lists the contents of the
directory REPORTS; the options direct LD to report each object’s

7-29 Managing Objects

creation date and time, system object type, and rights (ACLs).
Figure 7-9 shows a sample display produced by the following LD
command:

$ LD /OWNER/REPORTS -DTC -ST -R

 Directory ”/owner/reports”:

 sys date/time
 type rights created name

 dir pgndcalr 85/01/04.09:16 april
 dir pgndcalr 85/01/04.09:16 july
 dir pgndcalr 85/01/04.09:16 june
 dir pgndcalr 85/01/04.09:16 may
 file pgndwrx 85/01/04.09:18 procedure
 link progress
 file pgndwrx 85/01/04.09:16 sample
 file pgndwrx 85/01/04.09:18 template

 8 entries, 7 blocks used.

Figure 7-9. Sample Directory Display

To list the contents of an entire directory tree, specify the ellipsis
wildcard (...) as part of the pathname argument. For example:

$ LD /OWNER/...

This command lists the contents of the directory OWNER, as well as
the contents of all its subdirectories.

You can also use LD to report information about specific files by
specifying the pathname of the file as an argument. The “Displaying
File Attributes” section discussed earlier describes how to use LD to
report file information.

7-30Managing Objects

Deleting Directory Trees

To delete a directory tree, use the DLT (DELETE_TREE) com-
mand in the following format:

DLT pathname ...

where pathname specifies the pathname of the directory you want to
delete.

NOTE: The pathname you specify does not have to be a directory. If
you specify the pathname of a file or link, DLT will delete
the object with no warning message. To delete files, use the
DLF (DELETE_FILE) command; to delete links, use the
DLL (DELETE_LINK) command.

The DLT command deletes the specified directory and all of the ob-
jects it contains. For example, the following command deletes the
directory tree shown in Figure 7-10:

$ DLT REPORTS -L

Figure 7-10. Deleting a Directory Tree

7-31 Managing Objects

The command in the previous example deletes the directory tree
starting at the directory REPORTS in the current working directory.
The -L option directs DLT to list each object it deletes.

Managing Links
As you use the system, you may find that many of the files and direc-
tories that you access frequently have unusually long pathnames. You
can eliminate the inconvenience of typing a lengthy pathname by
creating a shorthand name for the object, called a link.

A link is a special object that contains the name of another object.
When you specify a link as a pathname or part of a pathname, the
system substitutes the pathname that the link contains (the resolution
name) for the name of the link.

This section describes how to manage links on your system. Table
7-5 summarizes the commands used to manage links.

Table 7-5. Commands for Managing Links

Task Shell Command

Create a link

Display link resolution names

Redefine a link

Rename a link

Copy a link

Delete a link

CRL link_name object_name

LD [pathname] -LL -LT

CRL link_name Object_name -R

CHN old_name [new_name]

CPL source [target]

DLL link_name

7-32Managing Objects

Creating Links

To create a link, specify the CRL (CREATE_LINK) command in

the following format:

CRL link_name object_name

where link_name specifies the pathname of the link, and
object_name specifies the pathname of the object to which the link
points. The rules for pathnames described in Chapter 1 apply to
both arguments.

The following command creates a link:

$ CRL REPORTS /OWNER/APRIL/PROGRESS_REPORTS

The command in this example creates a link named REPORTS in the
process’s current working directory. The link contains the pathname
for the subdirectory PROGRESS_ REPORTS. As shown in the fol-
lowing example, when you specify REPORTS as a pathname or part
of a pathname, the system substitutes the pathname
/OWNER/APRIL/PROJECT_ REPORTS. For example, instead of
specifying

$ DLF /OWNER/APRIL/PROGRESS_REPORTS/MR_JONES

to delete the file MR_ JONES, you could specify

$ DLF REPORTS/MR_JONES

You can also use the CRL command to create more than one link by
specifying link_name/object_name pairs as shown below:

$ CRL BUGS /MAINTENANCE/REPORTS STARTS /SYS/DM

 pair pair

This command creates two links: BUGS and STARTS.

7-33 Managing Objects

Displaying Link Resolution Names

To display the resolution names for all the links listed in a particular
directory, use the LD (LIST_DIRECTORY) command in the follow-
ing format:

LD pathname -LT [-LL]

where pathname specifies the pathname of the directory that con-
tains the link, and -LT directs LD to display the resolution name of
each link. Normally, LD lists all the objects in the directory, includ-
ing files and subdirectories. The -LL option directs LD to list only
the links.

The command in the following example displays the link resolution
names for all links in the node entry directory, as shown in Figure
7-11:

$ LD / -LT -LL

BUGS “/maintenance/reports”
STARTS “/sys/dm”
NEWS “//my_boss/owner/project/status”

30 entries, 3 listed.

Figure 7-11. Sample Display of Link Resolution Names

Redefining Links

You can redefine an existing link by changing its link resolution
name. To redefine a link, use the -R option with the CRL
(CREATE_LINK) command as follows:

$ CRL REPORTS /OWNER/MAY/PROGRESS_REPORTS -R

This command replaces the object name for the existing link
REPORTS that we created in the “Creating Links” section discussed
earlier. Notice that the new link name points to the subdirectory
MAY instead of APRIL.

7-34Managing Objects

Renaming Links

To change the name of a link, use the CHN (CHANGE_NAME)
command in the following format:

CHN old_name [new_name] [options]

where old_name specifies the pathname of the link you want to
rename, and new_name specifies the new name of the link. For ex-
ample, the command:

$ CHN REPORTS PROGRESS

changes the name of the link REPORTS, in the current working
directory, to PROGRESS.

You can specify any of the following naming options with the CHN
command:

Option Description

 -D Appends the current month and day to the
new name (new_name.mm.dd.).

 -Y Appends the current year, month, and date to
the new name (new_name.yy.mm.dd).

 -U Forces the system to create a unique new
name by appending a sequence of number(s)
to the end of the name.

If you omit the new_name argument, you must specify one of the op-
tions in the previous list; the system creates a new name by copying
the old_name and appending the proper suffix as shown here:

$ CHN REPORTS -U

This command changes the name of the link REPORTS to
REPORTS.1.

7-35 Managing Objects

Copying Links

Copying links is basically the same as copying files; when you copy a
link, you create a copy of the link in another location in the naming
tree. To copy a link, use the CPL (COPY_LINK) command in the
following format:

CPL source [target ...] [option]

where source specifies the pathname of the link you want to copy,
and target specifies the naming tree location where you want the
copy created. The rules for pathnames described in Chapter 1 apply
to both command arguments.

The CPL command always creates a copy of the source link at the
location specified by the target. For example:

$ CPL REPORTS /USER_1/STATUS

creates a copy of the source link REPORTS in the directory USER_1.
And, since the target specifies the pathname of a link, CPL assigns
the copy the name specified by the target, which in this example is
STATUS.

If the target specifies the pathname of a directory, CPL creates a
copy of the source link in the target directory (the current working
directory if you omit the target) and assigns the copy the name of the
source link. For example:

$ CPL REPORTS /USER_1

copies the link REPORTS from the current directory to the target
directory USER_1. Because CPL assigns the copy the name of the
source link, the new link has the pathname /USER_1/REPORTS.

To replace an existing link with a copy of another link, use the -R
option as follows:

$ CPL REPORTS /USER_2/PROGRESS -R

This command replaces the link PROGRESS with a copy of the link
REPORTS (from the current working directory).

7-36Managing Objects

You can copy or replace several links using a single CPL command
by either specifying multiple pairs of source and target pathnames
(each pair separated by a space) or by using pathname wildcards.
The following command copies all of the links in the current working
directory to the directory /USER_ 2.

$ CPL ?* /USER_2/MY=

The wildcards (?) that make up the source pathname direct CPL to
copy all links in the current working directory. The wildcard (=) in
the target pathname directs CPL to derive the name of each new link
from the source link names. For example, the link REPORTS be-
comes MYREPORTS in the target directory.

Deleting Links

To delete one or more links, use the DLL (DELETE_LINK) com-
mand in the following format:

DLL [link_name ...] [options]

where link_name specifies the pathname of the link you want to
delete. If you specify multiple pathnames to delete multiple links,
separate each pathname with a space.

The following command deletes the link REPORTS from the current
working directory:

$ DLL REPORTS

You can also use pathname wildcards to delete related groups of
links. For example:

$ DLL /.../STATUS

The ellipsis wildcard (...) directs the DLL command to delete every
link named STATUS in all directories subordinate to the node entry
directory.

8-1 Controlling Access

CHAPTER 8

Controlling Access to
Files and Directories

You can protect your files and directories from unauthorized use with
a system protection mechanism called an access control list (ACL).
Every file and directory in the system has an access control list that
defines:

•	 Who	can	use	the	object	

•	 What	operations	these	users	can	perform	on	the	object	

An ACL for a file, for example, can authorize some users to read the
file, and permit others to edit it.

8-2Controlling Access

This chapter describes the following ACL topics:

•	 The	structure	of	an	ACL	and	its	component	parts	

•	 How	the	system	assigns	initial	ACLs	to	objects	

•	 How	 you	 can	 use	 Shell	 commands	 to	 display,	 edit,	 and	 copy	
ACLs

•	 Protected	 subsystems	 and	 the	 commands	 you	 use	 to	 create	
and use them

ACL Structure
The ACL for each file and directory contains one or more ACL
entries. An entry describes the operations a user or set of users can
perform on the object. For a file, the ACL can also contain an in-
dicator that it belongs to a protected subsystem. (We describe
protected subsystems in the “Protected Subsystems” section.)

Each ACL entry consists of two elements: a subject identifier (SID)
specification and a set of access rights. Figure 8-1 shows the ele-
ments that make up an ACL entry.

 SID Specification Access Rights

PERSON.PROJECT.ORGANIZATION.NODE right1 right2 right3 ...

Figure 8-1. Structure of an ACL Entry

The SID specification identifies a specific user or group of users. The
access rights define what operations that user or group can perform
on the object. Let’s take a closer look at these two elements to see
how the system uses them to control access to an object.

8-3 Controlling Access

The Subject Identifier (SID)

As described in Chapter 4, the system associates each user process
with a SID that identifies the owner of the process. Like the SID
specification in an ACL entry, the SID assigned to a user process has
the following format:

PERSON.PROJECT.ORGANIZATION.NODE

The SID consists of four fields: username, project, organization,
and node (abbreviated ppon). (The node field specifies the
hexadecimal node ID of the node on which the user is logged in).
When you log in, the system gathers SID information for your ac-
count. Then, each time you create a process, the system assigns the
same SID to it to identify you as the owner.

When a user requests access to a file or directory, the system checks
the object’s ACL. Specifically, the system searches for an ACL
entry whose SID matches the SID of the user’s process. If the sys-
tem doesn’t find a match, it denies the user access to the object. If
the system does find a match, it grants the user the set of rights
specified by the ACL entry. (The “Access Rights” section describes
the meaning of the various access rights.)

Figure 8-2 shows a set of two ACL entries for a file.

 SID Specification Access Rights

 JOE.%.ENG.% pgndwrx

 %.%.ENG.% - - - - - r -

Figure 8-2. Sample ACL Entries

The percent signs (%) that appear in the different fields of the SID
specification are wildcards. Wildcards match any name in the net-
work with a specific SID field. For example, the SID for the second
ACL entry in Figure 8-2 (%.%.ENG.%) contains wildcards in the

8-4Controlling Access

PERSON, PROJECT, and NODE fields. These wildcards match any
name in the corresponding fields of a user’s process SID. As a result,
the ACL entry for %.%.ENG.% matches any process SID with the
organization name ENG.

When a user process requests access to an object, the system starts its
search for a matching SID at the most specific SID specification and
continues searching toward the most general. As soon as the system
finds a specification that matches the process’s SID, it stops the
search and grants the rights listed in that ACL entry.

For example, the SID specification for the first ACL entry in Figure
8-2 (JOE.%.ENG.%) is more specific than that of the second entry
(JOE is a specific person in the organization ENG). Suppose a
process with the SID JOE.BRIDGE.ENG.1E07 tries to access the
object. In this case, the SIDs for both ACL entries match the
process SID. However, since the system matched the more specific
SID (JOE.%.ENG.%) first, it grants the process the associated rights
(pgndwrx).

Access Rights

Access rights specify what operations, such as read, write, execute,
and delete, a user process can perform on a particular file or direc-
tory. Table 8-1 lists the access rights for files and directories.

For example, the following ACL entry for a file grants the specified
set of access rights to all users:

%.%.%.% - - - - wrx

In this example, the wrx specification indicates that the file has
WRITE (w), READ (r), and EXECUTE (x) rights. Notice the four
hyphens that precede wrx rights. When you list the ACL entries for
an object (see the “Displaying ACLs” section) the system displays
the hyphens to represent access rights that are not valid (denied) for
the entry. In the previous example, the entry denies p, g, n, and d
rights (represented by hyphens) and grants w, r, and x rights.

8-5 Controlling Access

As you’ll see later in this chapter, you can also deny certain users any
access to an object. For example:

%.BRIDGE.ENG.% pgndwrx
%.%.ENG.% - - - - - - -

This ACL denies every user in the ENG group access to the file, ex-
cept those working on the BRIDGE project.

As shown in Table 8-1, the types of access for directories are dif-
ferent than those for files. While PROTECT (P), GRANT (G), and
NODE (N), have the same meaning for files and directories,
DELETE (D) and READ (R) have different meanings. In addition,
WRITE (W) and EXECUTE (X) access apply only to files; CHANGE
(C), LINKS (L), ADD (A), SEARCH (S), and EXPUNGE (E) rights
apply only to directories.

8-6Controlling Access

Table 8-1. Access Rights for Files and Directories

Access Right Abbrev. Meaning for
Directories

Meaning for
Files

Protect

Grant

Node

P

G

N

Change the object’s ACLs.

Grant any subset of your rights to
other users.

Change the nodes from which
users can access objects.

Delete

Read

Write

Execute

Change

Links

Add

Search

Expunge

D

R

W

X

C

L

A

S

E

Delete the
directory. (See
note below.)

List entries.

None.

None.

Change names
and delete links.

Add links

Add files and
subdirectories.

Access subdir-
ectories and
subdirectory
objects.

Delete subdir-
ectories and
subdirectory
objects.

Delete the file.

Read the file.

Write to the file.

Execute object
file.

None.

None.

None.

None.

None.

Note: To delete a directory tree, you need directory delete
rights, directory expunge rights (see “Understanding
Search and Expunge Rights” section), directory
change rights (if the directory contains links), and
file delete rights (if the directory contains files).

8-7 Controlling Access

Understanding SEARCH and EXPUNGE Rights

To access an object, in addition to appropriate rights to the object,
you must have appropriate rights to the object’s parent directory. To
access an object, its parent must grant you SEARCH (S) rights. To
delete an object, its parent must grant you EXPUNGE (E) rights.
Consider the following example:

$ LD /OWNER/REPORTS

In order to list the contents of REPORTS, you must have S rights to
its parent directory /OWNER, as well as R rights to REPORTS.
Similarly, to delete the subdirectory REPORTS, you need E rights to
/OWNER, as well as D rights to REPORTS.

If REPORTS contains additional objects, you need E rights to
REPORTS to delete them. Therefore, to delete a directory tree, you
must have E rights to the parent directory and all of its subdirectories
except the subdirectories at the very bottom of the tree.

For reasons of compatibility, the system, by default, assigns S and E
rights to all ACL entries for directories. In addition, if the directory
ACL does not contain a %.%.%.% entry, the system adds the follow-
ing entry by default whenever the object is accessed:

%.%.%.% - - - - - - - - SE

Since both DOMAIN software and user-supplied software depend
on these rights, you should always leave S and E rights on. To deny S
and E rights, you must explicitly delete them from the entry.

Managing ACLs

By default, the system assigns an ACL to every file or directory that
you create. (The “Initial ACLs” section describes how the system as-
signs ACLs to objects.) You can display, edit, and copy an object’s
ACL using the following Shell commands:

•	 ACL displays and copies ACLs.

•	 EDACL displays and edits ACLs.

The following sections describe how you use these commands.

8-8Controlling Access

Displaying ACLs
To display an object’s ACL, use the Shell command ACL (AC-
CESS_CONTROL_LIST) in the following format:

ACL pathname

where pathname specifies the pathname of the object whose ACL
you want to list. For example:

$ ACL /OWNER/REPORT

This command lists the ACL entries for the file REPORT. Figure
8-3 shows a sample display produced by this command.

ACL for report:

%.%.%.%

%.%.ENG.%

%.%.MRKT.%

- - - - - r -

pgndwrx

pgndwrx

Figure 8-3. Sample ACL Display

By using pathname wildcards (see Chapter 6), you can list the ACLs
for a specific group of objects. For example, the following command
lists the ACLs for all the files in the current working directory that
have the suffix .BIN:

$ ACL ?*.BIN

You can also display the ACL for an object using the EDACL
(EDIT_ACCESS_CONTROL_LIST) command as follows:

$ EDACL /OWNER/REPORT -L

The next section, “Editing ACLs,” provides more information on
how to use the EDACL command to display and edit ACLs.

8-9 Controlling Access

Editing ACLs
You can edit an object’s ACL using the Shell command EDACL
(EDIT_ACCESS_CONTROL_LIST). The EDACL command al-
lows you to display, add, change, and delete ACL entries. You can
also use the EDACL command to edit a directory’s initial ACLs.
(The “Editing Initial ACLs” section describes how to use the
EDACL command to edit initial ACLs).

Like most Shell commands, you can direct EDACL to perform
specific operations by specifying options on the command line. In
addition to its command options, the EDACL command also accepts
a special set of ACL editing commands. The way you specify these
editing commands depends on the mode in which EDACL operates.

The EDACL command operates in two modes: command line mode
and interactive mode. In command line mode, you specify editing
commands as options on the command line. For example, EDACL
in the following example uses the editing command -L to display the
ACL for the file REPORT:

$ EDACL REPORT -L

If you specify the EDACL command without any editing commands
on the command line, EDACL enters interactive mode and prompts
you for editing commands. When you specify editing commands in
interactive mode, do not precede the command with a hyphen (-).
For example:

$ EDACL REPORT
report
* L <RETURN>

In this example, since no editing commands appear on the EDACL
command line, EDACL enters interactive mode. Specifying the L
command (without a hyphen) at the asterisk (*) prompt directs
EDACL to list the ACL entries for REPORT.

Once you enter interactive mode, you can continue to specify
EDACL editing commands to perform a series of edit operations. To
exit interactive mode and save the changes you’ve made, type

8-10Controlling Access

CTRL/Z. The Q command quits interactive mode without saving
your changes.

You can edit the ACLs of several objects either by specifying multiple
pathnames (separating each pathname with a space) or by using
pathname wildcards. Chapter 6 describes how to use pathname
wildcards.

This section describes how to use the EDACL command to list and
edit ACLs. The examples presented in this section show how to use
EDACL commands in command line mode. For a complete descrip-
tion of EDACL, see the DOMAIN System Command Reference.

Table 8-2 summarizes the commands used to edit ACLs.

Table 8-2. Summary of Commands for Editing ACLs

Task Command

Display an object’s ACL

Add an ACL entry

Add rights to an ACL entry

Change access rights for an ACL
entry.

Delete rights from an ACL entry

Delete an ACL entry

EDACL pathname -L

EDACL pathname -A ppon rights

EDACL pathname -AR ppon rights

EDACL pathname -C ppon rights

EDACL pathname -DR ppon rights

EDACL pathname -D ppon rights

8-11 Controlling Access

Rules to Specify ACL Entries

Most of the EDACL commands described in this section require you
to specify SID and access right information. For example, to add an
ACL entry, you must specify a SID and a set of access rights. Before
you attempt to use EDACL commands, you should understand the
rules for specifying SIDs and access rights.

When you specify a SID, you can use the percent sign (%) wildcard
character in each field to match any name in the corresponding field
of a process SID. For example, the following SID matches any
process SID in the system with the username JOE:

JOE.%.%.%

When you specify a SID that uses % wildcards, you may omit trailing
% wildcards and the periods that separate them. For example, the
following SID specifications are the same:

JOE.%.%.%
JOE.%
JOE

Table 8-3 lists the access rights that you can specify for files and
directories. Remember, directories and files have their own unique
set of access rights. You cannot specify file rights for a directory or
directory rights for a file.

To specify access rights individually, use the one-letter abbreviations
listed in Table 8-3. For example:

$ EDACL REPORT -A JOE RW

 Access rights

The command in this example specifies the READ (R) and WRITE
(W) access rights for the file REPORT.

8-12Controlling Access

To deny rights (grant no rights) for an entry, specify a hyphen
character (-) as follows:

$ EDACL REPORT -A JOE -

 No access rights

Table 8-3. Valid Rights for Files and Directories

FILES DIRECTORIES

P Protect

G Grant

N Node

D Delete

R Read

W Write

X Execute

P Protect

G Grant

N Node

C Change

A Add files and
 subdirectories

L Add links

D Delete

R Read

S Search

E Expunge

8-13 Controlling Access

You can also use any of the special class names in Table 8-4 to
specify a set of commonly used rights. For example:

$ EDACL REPORT -A JOE -USER

 Class name

The -USER class name in this example specifies a set of rights that
you commonly grant to other users on the system. For both files and
directories, -USER grants all rights to the object except the ability to
change the object’s ACL. Since the object in this example is a file,
-USER grants DELETE (D), WRITE (W), READ (R), and EX-
ECUTE (X) access.

NOTE: EDACL will not allow you to perform an operation that
restricts everyone from changing an ACL. At least one user
must have the right PROTECT (P) to change the ACL.

System users with the project name BACKUP may create back-up
copies of files and directories on magnetic tape. Users with the
project name BACKUP need READ (R) access to files and direc-
tories. EDACL issues a warning when you change an ACL in a way
that denies BACKUP access; however, EDACL does make the
change. You should ignore the warning only if the object(s) does not
require back-up copies. If the object does require back-up copies,
edit the ACL again and add an entry that grants the BACKUP project
(%.BACKUP.%.%) READ (R) access. The next section, “Adding
ACL Entries,” describes how to add an ACL entry.

8-14Controlling Access

Table 8-4. Class Names for Commonly Assigned Rights

Name Meaning Directories Files
-OWNER

-USER

-READ

-EXEC

-LDIR

-ADIR

-NONE

All rights.

All rights except the
ability to change ACL.

File read access.

File read access.
Execute access to
object files.

List directory. Search
and expunge the
directory’s subdir-
ectories.

List directory and
add entries. Search
and expunge the
directory’s subdir-
ectories.

Grants no rights
except Sand E.
(denies access).

PGNDCALRSE

DCALRSE

Not allowed

Not allowed

RSE

ALRSE

SE

PGNDRWX

DWRX

R

RX

Not allowed

Not allowed

None

8-15 Controlling Access

Adding ACL Entries

To add an entry (SID and rights) to an ACL, use the -A command
in the following format:

EDACL pathname ... -A ppon rights

where ppon specifies the SID for the new entry and rights specifies
the set of access rights. The -A command directs EDACL to add the
specified SID and access rights to the ACL. For example:

$ EDACL REPORT -A %.%.MAN -OWNER

The command in this example adds a new ACL entry to the ACL for
the file REPORT. The -OWNER rights class name (see Table 8-4)
specifies a full set of rights for the entry. The new entry grants full
access (pgndrwx) to anyone in the organization named MAN. Notice
that the SID specification in this example omits the trailing %
wildcard for the NODE field.

Changing Entry Rights

To change the access rights for an existing ACL entry, use the -C
command in the following format:

EDACL pathname ... -C ppon rights

where ppon specifies the SID for the entry you want to change, and
rights specifies the new set of access rights. The -C command directs
EDACL to change the access rights for the specified SID.

For example, suppose the file REPORT has the following ACL entry
granting full rights:

%.%.MAN.% pgndwrx

The following command changes the access rights for %.%.MAN to
READ (R) access:

$ EDACL REPORT -C %.%.MAN R

8-16Controlling Access

As a result, the new ACL entry now looks like this:

%.%.MAN.% - - - - - r -

If you try to change the access rights for an entry that doesn’t exist,
you will receive an error message.

Adding Entry Rights

To add access rights to an existing ACL entry, use the -AR com-
mand in the following format:

EDACL pathname ... -AR ppon rights

where ppon specifies the SID for the entry you want to change, and
rights specifies the new set of access rights. The -AR command
directs EDACL to add rights to the existing list of access rights for
the specified SID.

For example, suppose the file REPORT has the following ACL entry:

%.%.MAN.% - - - - - r -

The following command adds the rights WRITE (W) and EXECUTE
(X) to the current access rights for %.%.MAN.

$ EDACL /OWNER/REPORT -AR %.%.MAN WX

As a result, the ACL entry now looks like this:

%.%.MAN.% - - - - wrx

If you try to add rights to an entry that doesn’t exist, you will receive
an error message.

8-17 Controlling Access

Deleting Entry Rights

To delete the set of rights from a particular ACL entry, use the -DR
command in the following format:

EDACL pathname ... -DR ppon rights

where ppon specifies the SID for the entry you want to change, and
rights specifies the access rights you want to delete. The -DR com-
mand directs EDACL to delete the access rights for the specified SID.

For example, suppose the file REPORT has the following ACL entry:

%.%.MAN.% - - - - wrx

The following command deletes WRITE (W) access from the current
access rights for %.%.MAN:

$ EDACL /OWNER/REPORT -DR %.%.MAN W

As a result, the ACL entry now looks like this:

%.%.MAN.% - - - - - rx

If you try to delete rights from an entry that doesn’t exist, you will
receive an error message.

Deleting ACL Entries

To delete an entry (SID and rights) from an ACL, use the -D com-
mand in the following format:

EDACL pathname ... -D ppon

where ppon specifies the SID for the entry you want to delete. For
example:

$ EDACL /OWNER/REPORT -D %.%.MAN.%

This command deletes the entry %.%.MAN.% from the ACL for the
file REPORT.

8-18Controlling Access

Copying ACLs
To copy an ACL from one object to another, use the ACL (AC-
CESS_CONTROL_LIST) command in the following format:

ACL target source

where target specifies the pathname of the object to which you want
the ACL copied. The source argument specifies the pathname of the
object whose ACL you want to copy.

The following command copies the ACLs from the directory
/OWNER to the directory /USER_1:

$ ACL /USER_1 /OWNER

Initial ACLs
Whenever you create a new file or directory, the system assigns it a
default ACL by copying a special ACL, called an initial ACL, from
the parent directory. Each directory, in addition to its own ACL, has
two initial ACLs: an initial file ACL for new files, and an initial
directory ACL for new directories.

For example, if you create a file named REPORT in the directory
OWNER, the system assigns REPORT the initial file ACL of the
directory OWNER. If you create a subdirectory in OWNER, the sys-
tem assigns the new subdirectory OWNER’s initial directory ACL.
New subdirectories also receive a set of initial ACLs that match the
parent directory’s initial ACLs. In this example, the new subdirec-
tory also receives OWNER’s initial ACLs.

Figure 8-4 shows how the system assigns initial ACLs to files and
directories.

8-19 Controlling Access

Figure 8-4. Initial ACLs for Files and Directories

Table 8-5 summarizes the commands used to edit and copy initial
ACLs.

8-20Controlling Access

Table 8-5. Summary of Commands for Editing and Copying
Initial ACLs

Task Command

Edit Initial directory ACL

Edit Initial file ACL

Copy both Initial ACLs

Copy Initial directory ACL

Copy Initial file ACL

EDACL pathname -ID command

EDACL pathname -IF command

ACL target source -I

ACL target source -ID

ACL target source -IF

Editing Initial ACLs

You can edit a directory’s initial ACLs with the EDACL command.

To edit the initial directory ACL, use EDACL with the -ID option
in the following format:

EDACL pathname -ID -command

where -ID directs EDACL to edit initial directory ACLs, and
-command specifies one of the ACL editing commands described in
the “Editing ACLs” section discussed earlier. For example:

$ EDACL /OWNER -ID -L

The command in this example displays the initial directory ACL for
the directory /OWNER.

To add an entry to the initial directory ACL for /OWNER, use the
-A command as follows:

$ EDACL /OWNER -ID -A %.%.ENG ALDR

8-21 Controlling Access

The following example uses the -DR command to take away or
delete DELETE (D) rights from the entry we added in the previous
example:

$ EDACL /OWNER -ID -DR %.%.ENG D

To edit the initial file ACL, use the EDACL command with the -IF
option in the following format:

EDACL pathname -IF -command

where -IF directs EDACL to edit initial file ACLs, and -command
specifies one of the ACL editing commands described in the “Editing
ACLs” section discussed earlier. For example:

$ EDACL REPORT -IF -L

The command in this example displays the initial file ACL for the file
REPORT.

Copying Initial ACLs

You can copy a directory’s initial ACLs using the ACL command in
the following format:

ACL target source option

where option specifies one of the options listed in Table 8-6. The
target argument specifies the pathname of the object to which you
want the initial ACL copied. The source argument specifies the
pathname of the object whose initial ACL you want to copy.

8-22Controlling Access

Table 8-6. Options for Copying Initial ACLs

Option Description

-I

-ID

-IF

Copies both the initial file and initial
directory ACLs from the source to the
target.

Copies the initial directory ACL from the
source to the target.

Copies the initial file ACL from the source
to the target.

The command in the following example uses the -I option to copy
the initial file and directory ACLs from the directory /OWNER to the
directory /USER_1.

$ ACL /USER_1 /OWNER -I

To copy only the initial file ACL, use the -IF option as shown in the
following example:

$ ACL /USER_1 /OWNER -IF

For a complete description of how to use the ACL command to copy
initial ACLs, see the DOMAIN System Command Reference.

Protected Subsystems
Another method of controlling access to files is through a protection
mechanism called a protected subsystem. Protected subsystems al-
low you to designate a collection of data (a protected group of files)
for use solely by specific programs.

A protected subsystem is composed of one or more programs and a
set of data files. The programs are called the managers of the
protected subsystem; the data files, called data objects, are owned

8-23 Controlling Access

by the subsystem. Thus, files in a protected subsystem have either
manager or data object status.

Protected subsystems permit broad groups of users to access data ob-
jects through the programs, or managers, of the subsystem. You typi-
cally create a protected subsystem when you want only specific
programs to act on data files, regardless of the SIDs of the processes
in which the programs run.

For example, you might have a group of data files produced and
used by a specific program. If you want to prevent these files from
being used for any other purpose, you can assign protected subsystem
status to both the program and the data files. As a result, only those
users authorized to run the subsystem manager program can use the
files protected by the subsystem.

This section explains how to create a protected subsystem and how to
assign subsystem status to files.

How Do Protected Subsystems Work?

In order to understand how to assign subsystem status to files, you
must first understand how the system handles protected subsystems.
Figure 8-5 presents a f lowchart that shows how the system controls
access to protected subsystem files.

8-24Controlling Access

Figure 8-5. Controlling Access to Protected Subsystem Files

8-25 Controlling Access

The following descriptions explain the sequence of events shown in
Figure 8-5:

1. When a program in a protected subsystem requests access to
a file, the system first checks whether the file belongs to a
protected subsystem. If the file does not belong to a
protected subsystem, the system uses the file’s ACL informa-
tion to control access.

2. If the file does belong to a protected subsystem, the system
determines whether the requesting program owns the file
(whether the program is a manager in that subsystem). If the
program is not a manager in that subsystem, the system treats
it like any other program and uses ACL information to con-
trol access.

3. If the program is a manager in that subsystem, the system
verifies that the program has executed a command or system
call that raises the manager program’s privilege level. If a
manager program hasn’t raised its privilege level, the system
treats it like a non-manager program and uses ACL informa-
tion to control access.

 The system allows you to raise a program’s privilege level by
using either the Shell command SUBS (SUBSYSTEM) or a
set of programming calls. For more information, see the
SUBS Shell command in the DOMAIN System Command
Reference or the ACLM call descriptions in the DOMAIN
System Call Reference.

4. If the manager program has raised its privilege level, the sys-
tem allows it to operate on the file.

To use a protected subsystem, you must first create it, and then enter
it to add files. The following sections describe how to create and en-
ter a protected subsystem.

8-26Controlling Access

Creating a Protected Subsystem

To create a protected subsystem, use the CRSUBS (CREATE_SUB-
SYSTEM) command in the following format:

CRSUBS subsystem_name

where subsystem_name specifies the name you want to assign to the
subsystem. For example, the following command creates a protected
subsystem named PROTECTOR:

$ CRSUBS PROTECTOR

When you create a protected subsystem, the system assigns it the
subsystem name that you specify. The system also assigns the subsys-
tem name to a subsystem Shell in the node’s /SYS/SUBSYS directory.
The subsystem Shell is actually a copy of the Shell program. This
Shell program is the first manager program in your newly-created
subsystem.

The operating system uses the managers in the /SYS/SUBSYS direc-
tory when it checks for the names of protected subsystems. Internal
to the ACL for each of these managers, and to the ACL for any file,
is a field for protected subsystem status. Only the operating system
can see this field. If the file belongs to a protected subsystem, the
field contains an internal identifier for that subsystem. All files in a
particular subsystem, including the files in /SYS/SUBSYS, have the
same internal identifier.

When you display an object’s ACL (see the “Displaying ACLs” sec-
tion discussed earlier), the system looks at the ACLs subsystem field.
If the field contains a subsystem identifier, the system looks in
/SYS/SUBSYS for a file with the same internal identifier. The system
then displays the name of that file as the name of the subsystem.

To use CRSUBS to create a protected subsystem, you must have
ADD rights to the /SYS/SUBSYS directory. The initial file ACL for
this directory must also grant READ and EXECUTE rights to any file
created in /SYS/SUBSYS. You should normally limit these rights to
the creator of the subsystem or to the system administrator.

8-27 Controlling Access

Assigning Protected Subsystem Status

Before you can assign subsystem status to files, you must first enter
the subsystem using the ENSUBS (ENTER_SUBSYSTEM) com-
mand in the following format:

ENSUBS subsystem_name

where subsystem_name specifies the name of the subsystem you
want to enter. (To use ENSUBS to enter a subsystem, you must have
READ and EXECUTE access to the subsystem file in /SYS/SUBSYS.)
For example, the following command lets you enter the subsystem
named PROTECTOR:

$ ENSUBS PROTECTOR

When the dollar sign prompt appears after you specify ENSUBS, you
are “inside” the subsystem. Once inside, you can assign manager or
data object status to files using the SUBS (SUBSYSTEM) command
in the following format:

SUBS pathname subsystem_name option

where pathname specifies the name of the file, and subsystem_name
specifies the name of the current subsystem. The option specifies
either -MGR for manager status or -DATA for data object status.
For example:

$ SUBS MY _PROG PROTECTOR -MGR
$ SUBS DATA_1 PROTECTOR -DATA
$ SUBS DATA_2 PROTECTOR -DATA

The commands in this example assign subsystem status to files of the
subsystem PROTECTOR. The first command assigns manager status
to the program file MY_ PROG. (You can assign manager status to
either a binary program or a script.) The remaining commands as-
sign data object status to the files DATA_1 and DATA_ 2.

When you’re finished assigning status to files, you can leave the
protected subsystem by typing CTRL/Z. You’ve exited the protected
subsystem when the EOF marker appears and the dollar sign prompt
returns.

8-28Controlling Access

Create the subsystem.

$ crsubs protector

Change ACL entries for the subsystem.

$ edacl /sys/subsys/protector -af fran.%Iab.% -owner
$ edacl /sys/subsys/protector -cf %.sys_admin -owner
$ edacl /sys/subsys/protector -cf %.%.%.% -none

Check to make sure entries are right.

$ acl /sys/subsys/protector
ACL for /sys/subsys/protector
Subsystem protector manager

fran.%.Iab.% pgndwrx
%.sys_admin.%.% pgndwrx
%.%.%.% - - - - - - -

Enter the subsystem.

$ ensubs protector

Assign subsystem status to two files.
The files must already exist.

$ subs /owner/my_prog protector -mgr
$ subs /owner/data_1 protector -data

List the subsystem status to check for mistakes.

$ subs /owner/my_prog
“/owner/my_prog” is a PROTECTOR subsystem manager
“/owner/my_prog” is a file subsystem data object

$ subs /owner/data_1
“/owner/data_1” is a nil subsystem manager
“/owner/data_1” is a PROTECTOR subsystem data object.

Type CTRL/Z to exit the subsystem.

$ ***EOF***

$

Figure 8-6. Sample of a Protected Subsystem Transcript

Figure 8-6 contains a transcript that shows how a user created a
protected subsystem, entered it, created a subsystem manager and
data object, and exited the subsystem.

9-1 Writing Shell Scripts

 CHAPTER 9

Writing Shell Scripts

Most of the Shell command examples that you’ve seen so far show
you how to use commands interactively by specifying them in the
Shell input pad. You can also use Shell commands in Shell scripts.
Shell scripts are essentially programs made up of Shell commands
and other valid Shell characters, operators, and expressions. Think
of scripts as programs written in the” Shell language.”

This chapter describes how to write Shell scripts using Shell com-
mands, operators, and expressions. Although you can use many of
the commands and conventions presented in this chapter when you
use the Shell interactively, they have their most practical applications
in scripts.

9-2Writing Shell Scripts

Creating Your Own Commands
In its simplest form, a script is a file containing Shell commands that
you create to perform some customized operation. For example, a
Shell script can contain a sequence of commands that you specify
frequently, such as WD to set the working directory, and LD to list
the directory’s contents. Or, it could contain a single command with
a long list of options. By including commands such as these in a
script, you can execute them at any time by specifying a single com-
mand name.

For example, when you specify the LD command to list the contents
of a directory, by default it displays only the name of each object.
Suppose, however, that you want to display each objects’ access
rights, creation date, and object type. Normally, each time you
specify the LD command you have to specify the same list of options.
 Instead, you can create a Shell script named LIST that contains the
following command line:

LD -R -DTC -ST

Whenever you specify the command name LIST, the Shell lists the
access rights, creation date, and object type of each object in the
current working directory.

Of course, you can write much more complicated scripts that perform
more sophisticated tasks. This section describes some of the basic
components for writing scripts.

Creating Scripts

To create a script, simply create a file and insert Shell command
lines. Command lines in scripts use the same command line format
described in Chapter 6.

Like commands that you enter in the Shell input pad, you can use
parsing operators like the semicolon (;) to separate commands on a
command line, and the escape character (@) to continue a com-
mand on more than one line. Other operators, like the pound sign
character (#), have functions more suited for use in scripts. The #
character allows you to include comments in your scripts, since it
directs the Shell to ignore anything that follows it on the command

9-3 Writing Shell Scripts

line. Table 9-1 lists the Shell parsing operators you’ll use when writ-
ing scripts.

Table 9-1. Shell Parsing Operators

Character Function

;

&

^n

^*

!n

!*

‘string’

“string”

@

Direct the Shell to ignore anything that
follows it on the command line.

Separate commands on a line.

Run a command or program in the background
without pads and windows (see Chapter 6).

Substitute nth parameter (n is a number).

Substitute all parameters (not including the
command itself).

Substitute parameter for n (n is a number) and
rescan it.

Substitute and rescan all parameters (not
including the command name itself).

Quoted string, no parameters inserted.

Quoted string, parameter may be inserted.

Escape character

Space (separates arguments).

An important consideration when creating scripts is where to create
them. Remember, when you specify a command name, the Shell
searches for the corresponding file according to a set of command
search rules. By default, the second directory the Shell searches is
your personal command directory ~COM. Therefore, you should

9-4Writing Shell Scripts

normally create your own personal scripts there. In fact, all of the ex-
amples in this chapter assume that the scripts reside in your ~COM
directory. For more information on command search rules, refer to
Chapter 6.

Passing Arguments to Scripts

Let’s take a look at a slightly more sophisticated script. This script is
in a file called COMPILE and contains the following lines:

COMPILE

This file compiles and binds PROG

PAS PROG -L -MAP -OPT
BIND PROG.BIN -MAP >PROG.MAP
ARGS “PROG compiled and bound.”

When you specify COMPILE in the Shell input pad, the Shell ex-
ecutes the script. The script compiles and binds the program in file
PROG and produces various output files (listings and maps), all in
the current working directory. When finished, it uses the ARGS
(ARGUMENTS) command to display the message, “PROG com-
piled and bound.”

The ARGS command uses standard output to write its arguments
(one per line) to the Shell transcript pad. You can use the ARGS
command in scripts to display the results of expressions (see the
“Using Expressions” section) or to display messages and diagnostics
(as in the previous example). In fact, many of the examples in this
chapter use the ARGS command to show how the Shell evaluates
various strings and expressions. You can also use the ARGS com-
mand with the -ERR[OUT] option to write arguments to error out-
put.

The Shell script COMPILE isn’t very useful, since it only operates on
a single file named PROG and performs fixed compilation and bind-
ing operations. A script is more versatile if you can pass arguments
to it when you specify the command to invoke it. Consider the fol-
lowing script named COMPILE2:

9-5 Writing Shell Scripts

COMPILE2

This file compiles and binds a program whose name you
pass to it as (^1).

PAS A1 -L -MAP -OPT
BIND A1.BIN -MAP >A1.MAP
ARGS “A1 compiled and bound.”

Specifying the following command in the Shell input pad causes the
Shell to find and execute the script COMPILE2:

$ COMPILE2 MY_PROG

The Shell substitutes MY_ PROG, which is the first argument on the
command line, for every occurrence of the (^1) in the script. As a
result, the script compiles MY_ PROG, binds MY_ PROG.BIN, writes
a map to MY_ PROG.MAP, and when complete, writes the message:

MY _PROG compiled and bound.

Arguments that you specify on the command line correspond to sym-
bols in the script, called substitution parameters. Each substitution
parameter is composed of a caret character (^) and a number. The
caret character (^) instructs the Shell to substitute an argument for
the parameter; the number refers to the position the argument oc-
cupies on the command line that invoked the script.

In the previous example, ^1 refers to MY_ PROG, which is the first
argument after the command name COMPILE. You can use any
number of substitution parameters in Shell scripts (beginning with ^0
which refers to the command name itself).

Our COMPILE2 script is still very specific, since the compile and
bind operations are still fixed. To make those operations variable,
simply pass in more parameters. Consider the following script named
COMPILE3:

9-6Writing Shell Scripts

COMPILE3

************ (THIS EXAMPLE IS WRONG)**********

This file compiles and binds a program whose name you
pass to it as ^1, and whose options you pass to it as ^2.

PAS ^1 ^2
BIND ^1.BIN -MAP >^1.MAP
ARGS “^1 compiled and bound.”

How do we pass the multiple parameters if we want COMPILE3 to
behave like COMPILE2? Let’s take a look at what happens if we
specify the following command:

$ COMPILE3 MY _PROG -L -MAP -OPT

 1 2 3 4

As shown in this example, the Shell tries to substitute -L for
parameter 2, -MAP for 3, and -OPT for 4. This command won’t
work, however, because COMPILE3 doesn’t contain substitution
parameters ^3 and ^4. As a result, the Shell ignores the -MAP and
-OPT options.

Normally, we can group the arguments and pass them as a single ar-
gument by enclosing them in single quotation marks as follows:

$ COMPILE3 MY_PROG ‘-L -MAP -OPT’

 1 2

The single quotation marks tell the command Shell to treat the
characters inside them as a single string, even if there are intervening
spaces. When you specify the command, the Shell substitutes the

9-7 Writing Shell Scripts

string ‘-L -MAP -OPT’ for substitution parameter 2 in COM-
PILE3. However, this still won’t work, because the Shell tries to in-
terpret the entire string as a single argument, instead of the three
separate options the string represents.

Let’s look at a fourth and final COMPILE script to see how to solve
our problem.

COMPILE4

********** (THIS EXAMPLE IS CORRECT) *********

This file compiles and binds a program whose name you
pass to it as ^1, and whose options you pass to it as !2

PAS ^1 !2
BIND ^1.BIN -MAP >^1.MAP
ARGS “^1 compiled and bound.”

Now, typing the following command will work:

$ COMPILE4 MY _PROG ‘-L -MAP -OPT’

 1 2

Like the caret (^), the exclamation point (!) parsing operator causes
the Shell to substitute the string in quotation marks for the second
parameter. However, the exclamation point directs the Shell to res-
can the command line before executing it. When the Shell scans the
line a second time it breaks apart the three options in the string. As a
result, the Shell interprets the options correctly.

9-8Writing Shell Scripts

Using Quoted Strings

The proper use of quotation marks can make a big difference in the
way the Shell interprets quoted strings. In order to use quoted strings
correctly in scripts, you must understand the subtle differences in the
Shell’s interpretation of single and double quotation marks.

When you want the Shell to interpret a string literally, you can use
either single or double quotation marks as follows:

ARGS ‘compiled and bound’

or

ARGS “compiled and bound”

Both commands use standard output to write the message, “compiled
and bound” to the Shell’s transcript pad. But suppose you wanted to
substitute arguments inside the quoted string.

To substitute arguments inside a quoted string, you must use double
quotation marks. For example, let’s use a line from the script, COM-
PILE4 that we created in the “Passing Arguments to Scripts” section.

ARGS “^1 compiled and bound”

When you use double quotes, the Shell performs substitutions in the
quoted string. In this example, if the argument passed to the script is
MY_ PROG, the Shell outputs the string:

MY_PROG compiled and bound.

On the other hand, if you enclose the string in single quotation
marks:

ARGS ‘^1 compiled and bound.’

the Shell will not perform the substitution. Instead, it displays the
message:

^1 compiled and bound.

9-9 Writing Shell Scripts

Using In-Line Data

As we saw in Chapter 6, certain Shell commands use standard input
to read data from the Shell input pad. When you use these com-
mands in scripts, you can redirect standard input to read data from
within the script itself.

For example, the ED (EDIT) command normally uses standard
input to read special editing commands that you enter in the Shell in-
put pad. Using the I/O redirection character (<<), you can redirect
standard input to read commands from inside the script instead.
Figure 9-1 shows a script in which the ED command reads in-line
data.

This is a sample script that uses in-line data

ED MY_FILE << /
editing commands

.

.

.
/

Figure 9-1. Including In-Line Data in a Script

In Figure 9-1, the list of editing commands between the two slash
characters (/) is called a here document. The I/O redirection
character (<<) redirects standard input to read the data (in this case
commands) contained in the here document.

The script in Figure 9-1 uses a slash character (/) as a delimiter to
indicate both the beginning and end of the here document. You can
use any character as a delimiter, as long as the beginning and ending
characters are the same. Also, in order for the Shell to recognize the
end of the here document, you must specify the ending delimiter as
the first and only character on the line.

9-10Writing Shell Scripts

Executing DM Commands from Shell Scripts

You can invoke DM commands from the command Shell or from
within a Shell script using the Shell command XDMC (EX-
ECUTE_DM_COMMAND) in the following format:

XDMC dm_command

where dm_command specifies the name of the DM command you
want to execute. For example:

XDMC CV NEWS

This command executes the DM command CV (CREATE_VIEW)
to open a read-only pad and window for the file NEWS.

Debugging Shell Scripts

Normally, when a script runs, it doesn’t display commands as it ex-
ecutes them. As a result, when a script doesn’t work, it is difficult to
locate which command or commands cause the errors.

To debug a Shell script, invoke the script using the SH (SHELL)
command in the following format:

SH option script

where script specifies the name of the script, and option specifies one
of the options in Table 9-2. Each option activates a specific func-
tion.

The following command executes the script COMPILE and writes
each command line to standard output immediately before execu-
tion:

$ SH -X COMPILE

9-11 Writing Shell Scripts

Table 9-2. Script Verification Options

Option Function

-x

-v

-n

Writes each command line in
the script to standard output
immediately before execution.
Provides the complete pathname
for each command and evaluates all
expressions.

Writes each command line in the
script to standard output. Each
variable is expanded, but expressions
are not evaluated, and command
pathnames are not expanded.

Interprets commands without
actually executing them.

If you want to turn either of these features on or off without using the
SH command options, you may specify the Shell commands VON,
VOFF, XON, or XOFF and then run your script directly using the
current Shell. For example, the following are equivalent:

$ SH -X COMPILE

or

$ XON
$ COMPILE
$ XOFF

You can also include these commands within the script itself to
enable or disable verification. For example, to debug part of a
script, you can place XON and XOFF commands around the seg-
ment of the script you want to debug. Or, to debug an entire script,
include the XON command as the first line in the script. When the
script completes, control of verification returns to the Shell.

9-12Writing Shell Scripts

Using Expressions
Like programs written in a high-level programming language such as
FORTRAN or Pascal, scripts allow you to use expressions to perform
mathematical, string, and Boolean operations. Table 9-3 provides a
summary of the operators you can use in expressions.

To evaluate an expression, you must enclose the expression within
expression delimiters (a set of double parentheses) as follows:

ARGS ((4 + 2))

The only exception to this rule is the case where you use the assign-
ment operator (:=) to assign an expression to a variable:

TOTAL := 4 + 2

In this example, the Shell evaluates the expression and assigns the
resulting value to the variable TOTAL. While the assignment
operator doesn’t require you to use expression delimiters, you can
use them if you prefer; no error will occur if you do use them. The
“Defining Variables” section describes how to use the assignment
operator to assign values to variables.

9-13 Writing Shell Scripts

Table 9-3. Summary of Expression Operators

Type Char. Function Legal Operands P①

Grouping
Operators

() Group
operations

Any value 8

Math
Operators

+

-

* *

Mod

*

/

+

-

Positive value
Negative value
Op1 to the
Op2
Mod Op1 by
Op2
Multiply
Divide
Add
Subtract

Integer
Integer
Integers

Integers

Integers
Integers
Integers
Integers

7

7

6

5

4

4

3

3

String
Operators

+

-

Concatenate
Subtract last
occurrence of
Op2

Strings
Strings

3

3

Math or
String
Comparison
Operators

=

<

>

< =

> =

< >

Compare for
equality
Less than
Greater than
Less than or
equal to
Greater than
or equal to
Not equal

Integer or string

Integer or string
Integer or string
Integer or string

Integer or string

Integer or string

2

2

2

2

2

2

Logical
Operators

or

and

not

Logical or
Logical and
Logical negate

Boolean
Boolean
Boolean

1

1

9

1. Precedence: 1 is the lowest; 9 is the highest

9-14Writing Shell Scripts

Operands in Expressions

You can use any of the following as operands in expressions:

•	 Single	integer,	string,	or	Boolean	values	

•	 Operations	that	result	in	integer,	string,	or	Boolean	values	

•	 Variables	 assigned	 integer,	 string,	 or	 Boolean	 values	 (the	
“Shell Variables” section describes variables).

Certain types of operations in expressions take precedence over
others. For example, the Shell will perform a mathematical opera-
tion in an expression before a comparison operation. As shown in
Table 9-3, the Shell performs operations according to a specific or-
der of precedence where 1 is the lowest (last performed) and 9 is the
highest (first performed).

The last operation performed in an expression (the operation with
the lowest precedence) determines the type of value, either integer,
string, or Boolean, returned by the expression.

When you create expressions, refer to Table 9-3 to check the
precedence of the operators you use. Understanding the order in
which the Shell performs operations will reduce the possibility of an
expression resulting in an unexpected answer. Many of the examples
that we’ll see in this chapter demonstrate operator precedence.

Mathematical Operators

Use mathematical operators in expressions to perform calculations
on integers. The result of a mathematical operation is always an in-
teger. For example:

ARGS ((5 + 4 * 3 - 2))

returns the value 15. If you’re wondering why the answer isn’t 9 (9
times 1), the reason is that the Shell performs multiplication opera-
tions in this expression before it performs addition and subtraction
operations. In our example, the Shell multiplied 4 by 3 before it
added 5 and subtracted 2.

9-15 Writing Shell Scripts

To perform the addition and subtraction first, you could use the
grouping operators (parentheses) to group the addition and sub-
traction operations within the expression as follows:

ARGS (((5 + 4) * (3 - 2)))

The Shell always performs operations inside parentheses first, from
left to right. In this example, the Shell first adds 5 and 4 and sub-
tracts 2 from 3, and then multiplies the resulting values. Table 9-3
lists the order of precedence for all operators where 1 is the lowest
and 9 is the highest precedence.

Since all mathematical operators perform integer arithmetic, expres-
sions always result in whole numbers; the Shell truncates fractional
values.

String Operators

Use string operators to either concatenate or reduce strings. For ex-
ample:

ARGS ((“FILE” + “.PAS”))

uses the + operator to concatenate two strings and form the string
FILE.PAS.

Using the - operator to reduce a string is a little trickier. Let’s look
at a simple example first:

ARGS ((“FILE.PAS” - “.PAS”))

This operation subtracts the second operand from the first operand
to return the string FILE. The behavior of the - operator gets more
complicated when the first operand contains more than one occur-
rence of the second operand. In this case, the Shell string you are
subtracting matches the last occurrence in the first operand. For ex-
ample:

ARGS ((“PROG.PAS AND FILE.PAS” - “.PAS”))

9-16Writing Shell Scripts

This expression subtracts the last occurrence of the second operand
(.PAS) from the first operand. The result of this example is
PROG.PAS AND FILE. To subtract both occurrences of the string
.PAS in the first operand, use the following expression:

ARGS ((“PROG.PAS AND FILE.PAS” - “.PAS” - .PAS))

This expression performs two operations, each subtracting the last
occurrence of the string .PAS in the first operand. The result is the
string PROG AND FILE.

When you use string operators, the Shell treats all operands as
strings. If an operand in a string operation is an integer, the Shell
converts the integer to a string. For example:

ARGS ((50 + “shares at $” + 30 + “a share is $” @
 + (50 * 30)))

returns the string

50 shares at $30 a share is $1500

Notice that the Shell performs the mathematical operation inside the
grouping operators first. The result of this operation (50 * 30) is the
integer 1500. Since this integer is part of a string concatenation
operation, the Shell converts it to a string. Even if you omitted the
grouping operators, the Shell would still multiply the two integers
first, since multiplication operations have a higher precedence than
string concatenation operations (see Table 9-3).

Comparison Operators

Use comparison operators to compare either integer or string values.
The result of a comparison operation is always a Boolean value (true
or false). The following expression compares two integers:

ARGS ((5 > 2))

9-17 Writing Shell Scripts

This expression results in the Boolean value TRUE, because the in-
teger 5 is greater than the integer 2.

When you compare strings, the Shell compares them according to
the sequential position they hold in the ASCII character set. For ex-
ample:

ARGS ((a < b))

results in the value TRUE because a holds a lower position than b in
the character set. Also, the Shell is case-sensitive when comparing
strings. For example, the following expression results in the value
FALSE:

ARGS ((A = a))

Logical Operators

Use logical operators to perform logical operations with Boolean
values. The result of a logical operation is always a Boolean value.
For example:

ARGS ((5 > 2 OR 5 > 6))

results in the value TRUE. In this example, the first operand (the
result of the integer comparison) is true, while the second operand is
false (5 is not greater than 6). With the OR operator, if either one of
the operands results in the value TRUE, then the result of the opera-
tion is TRUE.

When you use the AND operator, both operands must be true for the
operation to result in a TRUE value. For example:

ARGS ((5 > 2 AND 5 > 6))

This expression results in the value FALSE because both operands
are not TRUE; the second operand is FALSE.

9-18Writing Shell Scripts

Shell Variables
You use variables in Shell scripts as symbolic names for specific in-
teger, string, or Boolean values. Once you assign a value to a vari-
able name, you can refer to that value in the script by its variable
name rather than its actual value.

•	 The	Shell	allows	you	to	use	variables	in	any	of	the	following:	

•	 Command	lines	as	commands,	arguments,	or	options	

•	 Here	documents	

•	 Strings	enclosed	in	double	quotation	marks	

•	 Expressions	

Defining Variables

To define a variable, use the assignment character (:=) in the follow-
ing format:

variable name := value

where variable name specifies the name of the variable, and value
specifies the value you want to assign to the variable. Variable names
can contain alphanumeric characters, as well as the underscore (_)
and dollar sign ($), and up to 1024 characters. You MUST,
however, begin all variable names with a letter. (Variables are not
case-sensitive.) The following statement assigns the integer value 30
to the variable name WORK_ DAYS:

WORK_DAYS := 30

Unlike many programming languages that require you to declare vari-
able types, the Shell automatically assigns the variable a type based
on the assigned value. In the previous example, since the value 30 is
an integer, the Shell assigns the variable WORK_ DAYS the type in-
teger. Table 9-4 lists the rules the Shell uses to assign variable types.

When you define a variable at the current Shell level, you define it
for all levels below the current Shell level. For example, suppose you

9-19 Writing Shell Scripts

define the variable D:= 25 in the Shell input pad, and then execute a
Shell script. Since scripts run at a lower Shell level, the value as-
signed to variable D remains 25, unless the script redefines the vari-
able by changing its value. If the script does change the value for
variable D, the value returns to 25 when the script completes execu-
tion.

Table 9-4. Rules for Assigning Variable Types

Type Assignment Rule

Integer

String

Boolean

When the assigned value is an integer, constant,
an integer expression, or another integer
variable. For example:

INT := 7
or
INT := 5 + (4-2)

When the assigned value is a quoted string, a
string constant, a string expression, or another
string variable. For example:

STR := “APRIL” + ^VAR2

When the assigned value is a Boolean constant
(TRUE or FALSE), a Boolean expression, or
another Boolean variable. For example:

BOOL := ^VAR1 = VAR2

Using Shell Variables

To use a Shell variable, precede the variable name with the substitu-
tion character (^). When the Shell encounters the substitution
character in a command line, it substitutes the value of the variable

9-20Writing Shell Scripts

for the variable name. Variable names are not case-sensitive. Let’s
look at an example.

Suppose we assign the variable CITIES a string value:

CITIES := “Boston and NY”

To use the variable CITIES, simply precede it with the substitution
character as follows:

ARGS ((“Cities with early flights are” + ^CITIES))

The ARGS command uses standard output to display the result of the
expression to the transcript pad. In this example, the Shell sub-
stitutes the string value “Boston and NY” for the variable name
CITIES. The expression concatenates the first string and the second
string to form the following string:

Cities with early flights are Boston and NY

The Shell automatically substitutes values for (evaluates) Shell vari-
ables when you use them as operands in expressions (as shown in the
previous example). However, you may want to evaluate a variable
that isn’t part of an expression. Consider the following example:

ARGS “Cities with early flights are ^CITIES”

By default, the Shell won’t evaluate the variable CITIES since the
variable is not used in an expression. In order for the Shell to
evaluate variables outside of expressions, you must turn on evalua-
tion using the EON command.

You can either specify the EON command before you run a script
to turn on evaluation for the current Shell, or include the EON com-
mand in the script itself. The EON command, when used in a script,
turns on evaluation for the script only, not for the current Shell. To
turn evaluation off, use the EOFF command.

With variable evaluation turned on, the command in the previous ex-
ample evaluates the variable CITIES and displays the following
string:

Cities with early flights are Boston and NY

9-21 Writing Shell Scripts

You can also turn evaluation on when you create a Shell by specify-
ing the -E option with the SH (SHELL) command. By default,
when you create a Shell, evaluation is off.

Variable Commands

The Shell provides three commands that let you verify or delete vari-
ables. Table 9-5 lists these commands.

Table 9-5. Variable Commands

Command Description

EXISTVAR

LVAR

DLVAR

EXPORT

Verifies whether the variable(s) you specify
as arguments exist. If all of the variables
specified exist, the command returns the
value TRUE. If anyone of the variables
does not exist, the command returns the
value FALSE.

Lists the type, name, and assigned value of
the variable(s) you specify as arguments.
If you don’t specify any variables, LVAR
lists information about currently assigned
variables.

Deletes all variables that you specify as
arguments.

Changes all specified variable names into
environment variables. If the specified
variable does not exist, EXPORT creates it.

The EXISTVAR and LVAR commands verify variables defined at
the current level and every level above. For example, when you
specify the LVAR command from within a script, the command lists
variables defined in the script, as well as variables defined at the

9-22Writing Shell Scripts

Shell level (one level above). When you specify LVAR at the Shell
level, the command lists only variables defined at the Shell level.

The DLVAR command deletes only the variables defined at the cur-
rent level. For example, suppose you defined the variable D := 25
at the Shell level. If you executed a script that used the DLVAR
command to delete the variable D (assuming that you didn’t redefine
D in the script), you’d receive an error. In this example, if the script
redefined D by assigning it a new value, the command would delete
the new value, and D would return to the value defined at the Shell
level.

Use the EXPORT command to create environment variables or
change variables into environment variables. Environment variables
store global state information about the system. We supply a set of
default environment variables that you can list using the LVAR com-
mand.

Defining Variables Interactively

So far, we’ve looked at variables that you either define at the Shell
level or from within scripts. When you define variables in a script,
you assign them initial values. These initial values are used every
time you execute the script, unless you edit the script to change the
values prior to each execution.

Instead of including values for variables directly in scripts, you can
direct the script to read values supplied by the user of the script. To
read user input into variables, use the READ command in the follow-
ing format:

READ [option] variable_list

where variable_ list specifies one or more variables that receive the
input values. Figure 9-2 shows a sample script that demonstrates
how to use the READ command to read user input.

9-23 Writing Shell Scripts

STOCKS

This script calculates the value of stock holdings.
It reads In both the number of shares held by the
user, and the current market price per share.

Read In number of shares

READ -PROMPT “Number of shares:” SHARES

Read In current market price

READ -PROMPT “Current market value:” PRICE

Calculate value of holdings and display value.

ARGS ((“ ^SHARES shares at $ ^PRICE per share $ ” + @
(^SHARES * ^PRICE)))

Figure 9-2. A Sample Script Using the READ Command

By default, the Shell uses standard input to read values that the user
of the script types in the Shell input pad. Our sample script in Figure
9-2 uses two READ commands: one reads in the number of shares
and assigns the value to the variable SHARES, the other reads in the
current price of each share and assigns the value to the variable
PRICE. Notice that each READ command uses the -PROMPT op-
tion to prompt the user for the proper input. To see just how this
script works, create your own copy and execute it.

The sample script in Figure 9-2 expects the user to supply integer
values. But what if the user entered a string or Boolean value? The
script would use the value, and as a result, the final calculation
(^SHARES * ^PRICE) would result in an error. To prevent a user
from entering the wrong variable type, use the -TYPE option with
the READ command as follows:

READ -PROMPT “Number of shares: ” -TYPE INTEGER @
SHARES

The -TYPE option in this example directs the READ command to
accept only integer values as input. If the user specifies any other

9-24Writing Shell Scripts

type of value, the Shell will display an error and prompt the user
again to enter the proper value.

Other READ commands, like READC and READLN also enable
you to read user input into scripts. For more information on these
commands, refer to the DOMAIN System Command Reference.

Using Active Functions

You can use active functions in scripts to include string output from
a command, program, or other script. When you use an active func-
tion, the system replaces it with a string containing standard output
from the command, program, or script used in the function. Active
functions have the following format:

^“command”

where command specifies the name of a command, program, or
script whose output you want to use. You can use either single or
double quotes according to the rules described in the .. Using Quoted
Strings” section discussed earlier. Note that output from an active
function cannot exceed 1024 characters. If output does exceed this
limit, the system displays an error.

You can use active functions in the same way you use variables. For
example, suppose you want to use a string that shows the current
date and time. (The Shell command DATE displays the current date
and time.) By using DATE in an active function, you can substitute
the standard output string in the script as follows:

EON
ARGS “The date is ^‘DATE’ ”

In this example, the system substitutes the standard output string
from the active function ‘DATE’ to display the following line:

The date is Wednesday, May 1, 1985 10:59:28 (EDT)

Note that the system deletes the trailing CR from the output string;
however, any internal CRs remain.

By assigning active functions to variables, you can define your own
“Shell functions.” For example, suppose you wrote a program called

9-25 Writing Shell Scripts

GET_ PROCESS_ NAME that displays the current process name. To
make use of this program in a script, you can refer to the program in
an active function. For example:

EON
#
Assign active function to variable

PROCNAME := ^“GET_PROCESS_NAME”

Execute DM command to make process window
invisible

XDMC “WI -W ^PROCNAME

Go off and do something else

.

.

.
Make process window visible again

XDMC “WI -I ^PROCNAME

The script in this example assigns the active function to the variable
PROCNAME. It uses PROCNAME with the DM command WI
(WINDOW_INVISIBLE) to make the current process window in-
visible and then visible again. The system substitutes the output string
generated by the active function for the variable PROCNAME.

Controlling Script Execution
In all of the scripts we’ve seen in this chapter, the Shell executes
each command in sequence, following an unaltered path from the
beginning of the script to the end as shown in Figure 9-3. As a
result, these scripts perform the same basic operations each time you
execute them.

9-26Writing Shell Scripts

Figure 9-3. Flow of Execution in a Simple Script

You can also create scripts in which the f low of execution varies ac-
cording to the results of tests performed in the script. To perform
these tests in a script, you use conditional statements.

Conditional statements test to see if the results of a command or ex-
pression are TRUE or FALSE. Then, based on the result of the test,
execute a particular command or sequence of commands. Figure 9-4
shows an example of a conditional statement called an IF statement.
The IF statement in Figure 9-4 controls the f low of execution by ex-
ecuting STEP 2 only if the result of the conditional statement is
TRUE, and executing STEP 3 if the result is FALSE. In this way, the
script executes different commands depending on different condi-
tions in the script.

9-27 Writing Shell Scripts

Figure 9-4. Flow of Execution with a Conditional Statement

Figure 9-4 shows a very basic example of how to use an IF statement
to control execution. As you’ll see later in this section, you can use
one or more conditional statements to create more sophisticated f low
patterns in scripts.

The Shell supports four different types of conditional statements:

•	 IF	statement	

•	 WHILE	statement	

•	 FOR	statement	

•	 SELECT	statement	

The sections that follow describe these conditional statements and
the commands that execute them.

9-28Writing Shell Scripts

Using the IF Statement

The IF command and all its arguments make up an IF statement
that executes one or more commands depending on the result of a
Boolean test. The IF command has the following format:

IF com_1 THEN com_2 ... [ELSE com_3 ...] ENDIF

where com_1 specifies a command, program, expression, or Boolean
variable you want tested for “truth.” A test of a command or
program is TRUE, if the command or program executes successfully
(returns an abort severity level of zero). A test of an expression or
Boolean variable is TRUE if they result in a TRUE value.

The com_ 2 argument specifies one or more commands or expres-
sions to execute if the result of the test on com_1 is TRUE. The EN-
DIF command signifies the end of an IF statement. For example:

EON
IF ((^A < 100))
THEN ARGS “ ^A is less than 100 ”
ENDIF

The IF statement in this example tests whether the value for variable
A is less than 100. If the value for A is 55, then the result of the test
is TRUE (the expression results in a TRUE value), and the ARGS
command executes displaying the message:

55 is less than 100

In this example, if the result of the test is FALSE, the next command
in the script (following ENDIF) executes.

The com_ 3 argument, which is optional, specifies one or more com-
mands to execute if the test on com_1 is FALSE. For example:

EON
IF ((^A < 100))
THEN ARGS “ ^A is less than 100 ”
ELSE ARGS “ ^A is greater than 100 ”
ENDIF

9-29 Writing Shell Scripts

In this example, if the value of A is 900, then the test results in the
value FALSE (900 is not less than 100). As a result, the ARGS com-
mand following the ELSE statement executes displaying the message:

900 is greater than 100

When the IF statement completes, execution of the script continues
sequentially with the next command following ENDIF.

Using the WHILE Statement

The WHILE command and all its arguments make up a WHILE
statement that executes one or more commands as long as the result
of a Boolean test is TRUE. The WHILE command has the following
format:

WHILE com_1 ... DO com_2... ENDDO

where com_1 specifies a command, program, expression, or Boolean
variable you want tested for “truth.” A test of a command or
program is TRUE, if the command or program executes successfully
(returns an abort severity level of zero). A test of an expression or
Boolean variable is TRUE if it results in a TRUE value.

The com_ 2 argument specifies one or more commands or expres-
sions to execute as long as the result of the test on com_1 is TRUE.
For example:

i := 0
WHILE ((^i < 5))
DO
 ARGS ((^i))
 i := (^i) +1
ENDDO

The WHILE statement in this example tests whether the value for
the variable i is less than 5. As long as i is less than 5, the ARGS
command displays the value of i and the next command adds 1 to its

9-30Writing Shell Scripts

value. Thus, the WHILE statement executes the ARGS command 5
times and produces the following display:

0
1
2
3
4

On the sixth pass, the test results in a FALSE value (5 is not less than
5). As a result, the script leaves the WHILE “loop” and continues
execution at the next command in sequence.

You can also use two special commands with the WHILE statement:

•	 NEXT	

•	 EXIT	

The NEXT command returns to the top of the WHILE loop. You
normally use the NEXT command to return prematurely to the top of
the loop before executing additional commands. For example, con-
sider the following section from a Shell script:

WHILE ((TRUE))
DO READ -PROMPT “Enter number: ” -TYPE INTEGER A
 IF ((^A < 50)) THEN NEXT ENDIF
ARGS ((^A))
ENDDO

This WHILE loop executes three commands:

•	 A	READ command to read in an integer value.

•	 An	IF command to test whether the value is less than 50.

•	 An	ARGS command to display the value.

If the integer value is greater than 50, the IF statement is FALSE and
the next command (ARGS) executes. If the value is less than 50,
however, the IF statement is TRUE and the NEXT command ex-
ecutes, returning execution to the top of the WHILE loop. As a

9-31 Writing Shell Scripts

result, this section of the script displays any value that is greater than
50.

The EXIT command exits the WHILE loop. You normally use the
EXIT command to exit a WHILE loop prematurely before executing
additional commands. For example:

WHILE ((TRUE))
DO READ -PROMPT “Enter number: ” -TYPE INTEGER A
 IF ((^A < 50)) THEN EXIT ENDIF
ARGS ((^A))
ENDDO
ARGS “Finished”

The WHILE loop in this example is very similar to the loop in the
previous example, except that the IF statement uses the EXIT com-
mand instead of NEXT. If the integer value is greater than SO, the
IF statement is FALSE, and the command (ARGS) executes. If the
value is less than 50, however, the IF statement is TRUE, and the
EXIT command executes.

The EXIT command causes execution to exit the WHILE loop and
skip to the next command outside the loop (after ENDDO). As a
result, this section of the script displays any value that is greater than
5O, but exits the loop if you enter a value less than 5O.

Using the FOR Statement

The FOR command and all its arguments make up a FOR statement
that executes commands as long as the result of a -Boolean test is
true. The FOR command has two formats: one for using integer ex-
pressions, and one for using string expressions.

The FOR command used with integer expressions has the following
format:

FOR variable := exp_1 [TO exp_2] [BY exp_3]
command ...

ENDFOR

9-32Writing Shell Scripts

where exp_1, exp_ 2, and exp_ 3 are all expressions that result in in-
teger values. The exp_1 argument specifies the initial integer value
assigned to variable.

The command argument specifies one or more commands to execute
as long as the test on variable results in a TRUE value. Before each
iteration, the FOR statement tests to see if the current variable value
is less than the value specified by exp_ 2. As long as the variable value
is less than the value for exp_ 2, the result is TRUE.

Like the WHILE statement, you can use the FOR statement to ex-
ecute commands repetitively in a loop. The FOR statement is dif-
ferent, however, because it increments its variable automatically after
each iteration. For example, the WHILE and FOR statements in the
following example perform the same operation:

#Example using WHILE Statement

A:= 0
WHILE ((A < = 10)) DO

ARGS AA
A := ^A + 2

ENDDO

#Example using the FOR statement

FOR A : = 0 TO 10 BY 2

ARGS ^A
ENDFOR

In this example, both the WHILE loop and the FOR loop execute
the ARGS command six times. By default, the FOR statement incre-
ments the value of the variable by one after each iteration. Notice,
however, that this example uses BY 2 to increment the variable by

9-33 Writing Shell Scripts

two after each iteration. Instead of the FOR loop counting from 0 to
10 by 1, it counts to 10 by 2. The result is:

0
2
4
6
8
10

The FOR command used with string expressions has the following
format:

FOR variable IN exp [BY [CHAR] [WORD] [LINE]]
command ...

ENDFOR

where exp specifies a string expression. By default, during each itera-
tion, FOR reads a word from the string and assigns it to variable.
You can also direct FOR to read the string by character or line by
specifying BY with the appropriate option.

The command argument specifies one or more commands to execute
as long as the test on variable results in a TRUE value. Before each
iteration, the FOR statement tests to see if any more characters,
words, or lines exist (depending on the BY argument specified). As
long as a value exists to assign to the variable, the result is TRUE.
For example:

EON
FOR FILE IN “foo bar zap” BY WORD

ARGS “The current file is ^FILE”
ENDFOR

In this example, with each pass through the FOR loop, FOR assigns
the variable FILE a word from, the string. When FOR runs out of
words, it exits. As a result, the FOR statement in this example dis-
plays the following lines then exits:

The current file is foo
The current file is bar
The current file is zap

9-34Writing Shell Scripts

Using the SELECT Statement

The SELECT command and all its arguments make up a SELECT
statement that executes commands according to the results of one or
more Boolean tests. The SELECT command has the following for-
mat:

SELECT arg_1 [ONEOF | ALLOF]
 CASE arg [TO arg]
 commands ...
 [CASE ...
 commands ...]
 [OTHERWISE
 commands ...]
ENDSELECT

where arg_1 specifies the argument that SELECT compares to the
CASE argument, arg. All arguments are either integers, strings, vari-
ables, or expressions.

The Shell uses each CASE statement to perform a separate Boolean
test on the initial SELECT argument. If the CASE argument is equal
to the SELECT argument, the result of the test is TRUE, and the
command following the CASE statement executes. Let’s look at a
simple example:

EON
SELECT ^A ALLOF
 CASE 1
 ARGS “First case will execute if ^A = 1 ”
 CASE ((2 + 4))
 ARGS “Second case will execute if ^A = 6 ”
 CASE 6
 ARGS “Third case will execute if ^A = 6 ”

ENDSELECT

In this example, the first case tests to see if the variable A equals 1,
and the second and third cases test to see if A equals 6. The ALLOF
statement directs SELECT to execute the commands associated with
all cases that result in TRUE. If A is 6, the SELECT statement in

9-35 Writing Shell Scripts

this example executes the commands for the second and third case
to display the following:

Second case will execute if 6 = 6
Third case will execute if 6 = 6

If you specify ONEOF (the default), SELECT executes only the first
case that results in a TRUE value. In the previous example, where A
equals 6, SELECT executes only the second case to display the fol-
lowing:

Second case will execute if 6 = 6

You can also use the NEXT and EXIT commands to control execu-
tion within the SELECT statement. For example, when using
ONEOF you can use the NEXT statement to direct SELECT to ex-
ecute another case as shown in the following example:

EON
SELECT ^A ONEOF
 CASE 1
 ARGS “First case will execute if ^A = 1 ”
 NEXT
 CASE ((2 + 4))
 ARGS “Second case will execute if ^A = 6 ”
 NEXT
 CASE 6
 ARGS “Third case will execute if ^A = 6 ”
ENDSELECT

In this example, if variable A equals 6, the second CASE executes.
Although this script uses ONEOF, the NEXT command following the
second case directs SELECT to execute the next case that’s TRUE.
Since the third case is TRUE, the script in this example executes the
third case.

Using the TO statement, you can specify a range for a case argument.
The case in the following script tests for a value in the range of 1 to
10:

9-36Writing Shell Scripts

EON
SELECT ^A ALLOF
 CASE 1 TO 10
 ARGS “Variable A is the number ^A”
ENDSELECT

You can also use the TO statement to test for a range of string
characters. For example:

EON
SELECT ^A ALLOF
 CASE a TO z
 ARGS “Variable A is the letter ^A”
ENDSELECT

The case in this example tests for a string value between a and z.
Note that this range is case-sensitive, so the case is TRUE for ex-
ample, if A equals r but not R.

Use the OTHERWISE statement when you want to perform an
operation if the test on a case is FALSE. For example:

EON
SELECT ^A ALLOF
 CASE 0 TO 10
 ARGS “Value for A is a number from 0 to 10”
 OTHERWISE
 ARGS “Value for A is greater than 10”
ENDSELECT

In this example, if the value for A is a number between 1 and 10, the
case is TRUE. As a result, SELECT displays the following:

Value for A is a number from 1 to 10

If the value is a number greater than 10, the case is FALSE, and the
command following OTHERWISE executes displaying the following:

Value for A is greater than 10

If you include several cases on the same line, SELECT separates
each case with an implied OR operator (see the “Logical Operators”
section discussed earlier). You can also use the @ character to es-

9-37 Writing Shell Scripts

cape NEWLINE characters and continue an “ORed” case on more
than one line. For example:

EON
SELECT ^A
 CASE 1 CASE 3 CASE 5
 ARGS “Variable A matches 1, 3, or 5”
 CASE 2 @
 CASE 4 @
 CASE 6
 ARGS “Variable A matches 2, 4, or 6”
ENDSELECT

A-1 Initial Structures

APPENDIX A

Initial Directory and
File Structure

The following illustrations show how the system organizes the
software that we supply with your node:

•	 Figure	 A-1	 shows	 the	 contents	 of	 the	 node	 entry	 directory	
(/)

•	 Figure	 A-2	 shows	 the	 files	 and	 directories	 in	 the	 system	
software directory (/SYS)

•	 Figure	 A-3	 shows	 the	 files	 and	 directories	 in	 the	 Display	
Manager directory (/SYS/DM)

•	 Figure	 A-4	 shows	 the	 network	 management	 directory	
(/SYS/NET)

A-2Initial Structures

Figure A-1. The Node Entry Directory (/) and Subdirectories

A-3 Initial Structures

Figure A-2. The System Software Directory (/SYS)

A-4Initial Structures

Figure A-3. The Display Manager Directory (/SYS/DM)

A-5 Initial Structures

Figure A-4. The Network Management Directory (/SYS/NET)

B-1 Summary of Key Definitions

APPENDIX B

Summary of
Predefined Key
Definitions

The tables presented in this appendix describe the predefined key
definitions for both the 880 and low-profile type keyboards. The 880
keyboard is an older style keyboard that we no longer ship with new
nodes. Figure B-1 shows the names and locations of the keys on the
880 keyboard.

B-2Summary of Key Definitions

F
ig

u
re

 B
-1

.
 K

ey
n

am
es

 f
o

r
th

e
8

8
0

K
ey

b
o

ar
d

B-3 Summary of Key Definitions

F
ig

u
re

 B
-1

.
 K

ey
n

am
es

 f
o

r
th

e
8

8
0

K
ey

b
o

ar
d

Controlling the Cursor

Task DM Command

Predefined Key

Low-Profile 880

Move left one char.

Move right one char.

Move up one line

Move down one line

Set arrow key scale
factors

AL

AR

AU

AD

AS x y

← (LA)

→ (LC)

↑ (LB)

 ↓ (LE)

None

← (LA)

→ (LC)

 ↑ (LB)

 ↓ (LE)

None

Move to the
beginning of line

Move to end of line

Move to top line in
window

TL

TR

TT

⇤ (L4)

⇥ (L6)

<SHIFT> ↑
(LDS)

⇤ (L4)

⇥ (L6)

None

Move to bottom line
in window

Tab to window
borders

Move to the
beginning
of next line

TB

TWB [1, r, t, b]

AD;TL

<SHIFT> ↓
 (LFS)

None

CTRL/K

None

None

CTRL/K

Tab left

Tab right

Set tabs

THL

TH

TS [n1 n2 ...]

CTRL/<TAB>

<TAB>

None

CTRL/<TAB>

<TAB>

None

B-4Summary of Key Definitions

Controlling the Cursor (continued)

Task DM Command

Predefined Key

Low-Profile 880

Move to DM input
pad

Move to next
window on screen

Move to previous
window

Move to next
window in which
input is enabled

TDM

TN

TLW

TI

<CMD>
(L5)

<NEXT
 WNDW>

(LB)

CTRL/L

None

<CMD>
(L5)

<NEXT
 WNDW>

(LB)

CTRL/L

None

Creating Processes

Task DM Command

Predefined Keys

 Low-Profile 880

Create new process,
pads, and windows

Create new process
without pads or
windows

Create a server
process

CP pathname

CPO pathname

CPS pathname

<SHELL>
 (L5S)

None

None

<SHELL>
 (R2)

None

None

B-5 Summary of Key Definitions

Controlling Processes

Task DM Command

Predefined Key

Low-Profile 880

Quit, stop, or blast
a process

Suspend execution
of a process

Resume execution of
a suspended process

DQ [-b | -s | -c nn]

OS

DC

CTRL/Q

None

None

CTRL/Q

None

None

Creating Pads and Windows

Task DM Command

Predefined Key

Low-Profile 880

Create an edit pad
and window

Create a read-only
window

Create a copy of an
existing pad and
window

CE pathname

CV pathname

CC

<EDIT>
 (R4)

<READ>
 (R3)

None

<EDIT>
 (R4)

<READ>
 (R3)

None

B-6Summary of Key Definitions

Closing Pads and Windows

Task DM Command

Predefined Key

Low-Profile 880

Close window and
pad; update file

Close window and
pad; no update

Close (delete) a
window

PW; WC -Q

WC -Q

WC [-Q | -F]

<EXIT>
 (R5)

<ABORT>
 (R5S)

None

CTRL/Y

CTRL/N

None

Managing Windows

Task DM Command

Predefined Key

Low-Profile 880

Changing window
size

Changing
window size with
rubberbanding

Move a window

Move a window
with rubberbanding

WG

WGE

WM

WME

CTRL/G

<GROW>
 (LA3)

None

<MOVE>
 (LA3S)

None

CTRL/G

None

CTRL/W

Set scroll mode

Set autohold mode

Scroll and
autoholdmode

Set hold mode

WS [-on | -off]

WA [-on | -off]

WA;WS

WH [-on | -off]

CTRL/S

None

CTRL/A

<HOLD>
 (R6)

CTRL/S

None

CTRL/A

<HOLD/GO>
 (R5)

B-7 Summary of Key Definitions

Moving Pads

Task DM Command

Predefined Key

Low-Profile 880

Move top of pad
into window

Move cursor to first
character in pad

Move bottom of
pad into window

Move cursor to last
character in pad

PT

PT;TT;TL

PB

PB; TB; TR

None

CTRL/T

None

CTRL/B

None

CTRL/T

None

CTRL/B

Move pad n pages

Move pad n lines

Move pad n
characters

PP [-]n

PV [-]n

PH [-]n

 ↑ ↓

(LD, LF)

<SHIFT> ↑
 (L8S)

<SHIFT> ↓
 (LES)

 ← →

(L7, L9)

 ↑ ↓

(LD, LF)

(F2)

(F3)

 ← →

(L7, L9)

Save transcript pad
in a file

PN None None

B-8Summary of Key Definitions

Controlling Window Groups and Icons

Task DM Command

Predefined Key

Low-Profile 880

Create or add to a
window group

Remove a window
from a window
group

Make windows
invisible

Change windows to
icons

Set icon positioning
and offset

Display list of
windows in group

WGRA grp-name
[entry_name]

WGRR grp_name
[entry-name]

WI [entry_name]

ICON
[entry_name]
[character]

IDF

CPS group_name

None

None

None

None

None

None

None

None

None

None

None

None

Setting Edit Modes

Task DM Command

Predefined Key

Low-Profile 880

Set read/write
mode

Set insert/
overstrike mode

RO [-ON | -OFF]

EI [-ON | -OFF]

CTRL/M

<INS>
 (L1S)

CTRL/M

<INS MODE>
 (L1)

B-9 Summary of Key Definitions

Inserting Characters

Task DM Command

Predefined Key

Low-Profile 880

Insert string at
cursor

Insert NEWLINE
character

Insert a new line
after current line

Insert end-of-file
mark

ES ‘string’

EN

TR;EN;TL

EEF

Default DM operation

<RETURN>

<F1>

CTRL/Z

<RETURN>

<F1>

CTRL/Z

Deleting Text

Task DM Command

Predefined Key

Low-Profile 880

Delete character
at cursor

Delete character
before cursor

Delete “word”
of text

Delete from
cursor to end of
line

Delete entire
line

ED

EE

DR;/[~A-Z0-9$_]/XD

ES ‘‘;EE;DR;TR;
XD;TL;TR

CMS;TL;XD

<CHAR DEL>
(L3)

<BACKSPACE>
(BS)

<F6>

<F7>
(L3A)

<LINE DEL>
(L2)

<CHAR DEL>
(L3)

<BACKSPACE>
(BS)

<F6>

<F7>
(L3A)

<LINE DEL>
(L2)

B-10Summary of Key Definitions

Copying, Cutting, and Pasting Text

Task DM Command

Predefined Key

Low-Profile 880

Copy text to a
paste buffer or file

Cut (delete) text
and write it to a
paste buffer or file

Paste (write) text
from a paste buffer
or file into a pad

XC [name | -f
 pathname] [-R]

XD [name | -f
 pathname] [-R]

XP [name | -f
 pathname] [-R]

 <COPY>
(L1A)

<CUT>
(L1AS)

<PASTE>
(L2A)

CTRL/C

CTRL/E

CTRL/O

Commands for Searching for Text

Task DM Command

Predefined Key

Low-Profile 880

Search forward for
string

Search backward
for string

Repeat last
forward search

Repeat last
backward search

Cancel search
or any action
involving the
ECHO command

Set case
comparison for
search

/string/

\string\

/ /

\ \

ABRT

SC [-ON] [-OFF]

None

None

CTRL/R

CTRL/U

CTRL/X

None

None

None

CTRL/R

CTRL/U

CTRL/X

None

B-11 Summary of Key Definitions

Commands for Substituting Text

Task DM Command

Predefined Key

Low-Profile 880

Substitute
string2 for all
occurrences
of string1 in a
defined range

Substitute string2
for the first
occurrence of
string1 in each
line of a defined
range

Change case of
each letter in a
defined range

S/string1/string2

SO/string1/string2/

CASE [-S] [-U]
 [-L]

None

None

None

None

None

None

Index-1

Symbols

{ } (braces)
as pathname wildcard characters
 6-21
in regular expressions 5-21

(()) (double parentheses)
as expression delimiters 9-12

() (parentheses)
as pathname wildcard characters
 6-21

& (ampersand)
as input request character 3-5, 3-20
as Shell parsing operator 6-22

* (asterisk)
as EDACL prompt 8-9
as multiplication operator 9-14
as pathname wildcard character
 6-18f
in regular expressions 5-18
reading pathnames from standard
 input 6-17

@ (at sign)
escape character

In DM commands 3-5
in Shell commands 6-4

in regular expressions 5-21
\ (backslash)

beginning pathnames 1-12f
to search backwards for text 5-23

~ (tilde)
beginning pathnames 1-11

^ (caret)
as substitution character 9-4, 9-19
in active functions 9-24

$ (dollar sign)
as Shell command prompt 6-2
in regular expressions 5-17

\\ (double backslash)
to repeat search backwards 5-25

>> (double greater-than)
appending files 7-10f
appending standard output 6-12

>>? (double greater-than/question
 mark)

appending error output 6-13

<< (double less-than)
redirecting standard input 9-9

// (double slash) 1-4
in absolute pathnames 1-7
 to repeat search forward 5-25

 ... (ellipsis)
as pathname wildcard character
 6-20

= (equal sign)
as comparison operator 9-17
as pathname wildcard character
 6-21

! (exclamation mark)
as substitution character 9-7

> (greater-than)
as comparison operator 9-16
redirecting standard output 6-12

>? (greater-than/question mark)
redirecting error output 6-12

 - (hyphen)
preceding DM command options
 3-4
preceding Shell command options
 6-3
reading data from standard input
 6-17

 < (less-than)
as comparison operator 9-17
redirecting standard input 6-11

 % (percent sign)
as pathname wildcard character
 6-18f
as SID wildcard 8-3, 8-11
In regular expressions 5-17

(pound sign)
in DM commands 3-5
in Shell commands 9-2

? (question mark)
 as pathname wildcard character
 6-18f
 in regular expressions 5-18

; (semicolon)
separating DM commands 3-5
separating Shell commands 6-4

/ (slash) 1-4
beginning pathnames 1-8
 to search forward for text 5-23

Index

The letter f means “and the following page”; the letters f f mean “and the
following pages.” Symbols are listed at the beginning of the index. Task
oriented entries appear in color.

Index-2

[] (square brackets)
as pathname wildcard character
 6-19
in regular expressions 5-19

~ (tilde)
as pathname wildcard character
 6-20
in regular expressions 5-19

| (vertical bar)
as pipe 6-13

A

AA (Acknowledge alarm) command
 4-26
ABORT key 4-7, 4-16
ABRT (ABORT) command 4-19, 4-20

absolute pathname 1-7, 7-6
Access Control List (see ACL)
access rights 8-12

class names 8-14
denying 8-4, 8-12
EXPUNGE 8-7
for backup files 8-14
in ACL entries 8-2
in ACL entries 8-4
SEARCH 8-7
types for directories 8-6
types for files 8-6

ACCOUNT
components 2-21
default account (USER) 2-20
file 2-15
initial naming directory 2-15
initial working directory 2-15
updating 2-21
verification at login 2-15

ACL (Access Control List) 8-lff
ACL (ACCESS_CONTROL_LIST)

command 8-7
copying initial ACLs 8-21f
copying ACLs 8-18
displaying ACLs 8-8

ACLs
access rights

adding 8-16
changing 8-15
class names 8-14
deleting 8-17
for backup files 8-14

commands for editing and copying
 8-9, 8-20
copying 8-21
displaying 8-8
editing 8-9, 8-20

entries 8-2
adding 8-15
deleting 8-17
rights element 8-2
SID element 8-2f
rules for specifying 8-11f

initial 8-18f
managing 8-7f
on new files 7-6
sample display 8-8
structure 8-2
valid access rights 8-12

active functions 9-24f
assigning to variables 9-24

adding
ACL access rights 8-16
ACL entries 8-15

alarm server
running in a process 4-7

alarms
responding to 4-26

ALL_GROUP paste buffer 4-38
ampersand (&)

as input request character 3-5, 3-20
as Shell parsing operator 6-22

AP (Acknowledge alarm and pop) 4-26

appending
directories to command search rules
 6-6
error output to files 6-13
files 7-10f
standard output to files 6-12f

ARGS (ARGUMENTS) command 9-4
arguments

in DM commands 3-4
in Shell commands 6-3
passing to Shell scripts 9-4ff

ASCII characters
in regular expressions 5-17

assigning
protected subsystem status to files
 8-27

asterisk (*)
as EDACL prompt 8-9
as multiplication operator 9-14
as path name wildcard character
 6-18f
in regular expressions 5-18
reading pathnames from standard
 input 6-17

at Sign (@)
escape character

in Shell commands 6-4
in regular expressions 5-21

autohold mode 4-23f

Index-3

B

BACK SPACE key 5-8
background processes 6-22

creating 4-7
backslash

to search backwards for text 5-23
backup files 4-17, 5-30

access rights 8-14
BOFF command 6-22
BON command 6-22
Boolean values

comparing 9-17
in expressions 9-14
logical operations 9-17

boot script 2-4, 2-11
creating processes from 4-7
editing 2-7
invoking CPS commands from 4-8
node-specific 2-11
used by DSPs 2-7

boot volume 1-3
sharing by nodes 1-3

booting
operating system on disked nodes
 2-4
operating system on diskless nodes
 2-10

braces ({ })
as path name wildcard characters
 6-21
in regular expressions 5-21

buffers
for window groups 4-37
paste (see paste buffers)
undo 5-29

C

cancelling
search operations 5-25
window grow operation 4-19
window move operation 4-20

caret (^)
as substitution character 9-4, 9-19
in active functions 9-24

CASE (CHANGE_CASE) command
 5-28
case

changing 5-28
case companson

setting 5-25

CASE statement 9-34
cataloging nodes 1-5f
CATF (CATENATE_FILE) command
 6-12
CATF (CATENATE_FILES) command
 7-10f
CC (CREATE_COPY) command 4-15
CE (CREATE_EDIT) command 4-13,
 7-6
changing

ACL access rights 8-15
case of lellers 5-28
command search rules 6-7
naming directory 7-4
process window modes 4-22ff
size of windows 4-18f
working directory 7-3

CHAR DEL key 5-7
character class 5-19
characters

ASCII control 3-16
ASCII

in regular expressions 5-17
control key 3-16
deleting from pads 5-7f
DM function 3-16
end-of-line 5-17
in regular expressions 5-17ff
inserting into pads 5-4ff
I/O control 6-11
matching with regular expressions
 5-18
mouse 3-16
ordinary 3-16
program function 3-16
Shell command line limit 6-4
special Shell 6-7

CHN (CHANGE_NAME) command
changing directory names 7-21
changing file names 7-7
changing link names 7-34

class names 8-12
closing

pads and windows 4-7, 4-16
CMD key 3-2
CMDF (COMMAND_FILE) command
 2-17, 3-22
CMF (COMPARE_FILE) command
 7-19
CMT (COMPARE_TREE) command
 7-27
/COM directory 6-5
~COM directory 7-3, 9-3
command line parser 6-14ff
command parser options 6-15
command search rules 6-2, 6-5ff

Index-4

appending directories to 6-6
changing 6-7
default 6-5
displaying 6-6

commands
DM (see DM commands)
for changing Shell variables 9-21
for closing pads and windows 4-16
for controlling edit pad modes 5-2
for controlling window groups 4-31
for controlling window icons 4-31
for copying text 5-11, 5-11
for creating pads and windows 4-10
for creating processes 4-5
for cutting text 5-11, 5-11
for deleting Shell variables 9-21
for deleting text from pads 5-7
for editing ACLs 8-10
for editing and copying initial ACLs
 8-20
for inserting characters into pads
 5-5
for managing ACLs 8-7
for managing directories 7-20
for managing files 7-5
for managing links 7-31
for managing windows 4-17
for moving cursor 4-2f
for moving pads under windows
 4-27
for pasting text 5-11, 5-11
for searching for text 5-23
for setting directories 7-2
for substituting text 5-26
for verifying Shell variables 9-21
Shell (see Shell commands)
undoing 5-29

comments
in DM command scripts 3-5
in Shell scripts 9-2

comparing
ASCII files 7-19
Boolean values 9-17
directory trees 7-27f

comparison operators 9-16f
components

in Shell command line 6-3
concatenating strings 9-15
conditional statements 9-26

types 9-27
continuing

Shell commands 6-4
control characters 6-11
control key sequences
predefined 3-10f

to invoke DM commands 3-3,
 3-10ff

controlling
access to protected subsystem files
 8-24
command queries 6-15
cursor movement 4-2f
edit pad modes 5-2
icons 4-33ff
Shell command input and output
 6-9f
Shell script execution 9-25ff
the display 3-2, 4-1ff
window groups 4-31ff

conventions
for DM commands 3-4
for naming keys 3-15ff
for Shell command lines 6-3f

COPY key 3-15
copying

ACLs 8-18
directory trees 7-22ff
display images to files 5-13
display to files 7-18f
files 7-8
initial ACLs 8-21
links 7-35
pads and windows 4-15
text from pads 5-12

CP (CREATE_PROCESS) command
 4-5
CPB (COPY PASTE_BUFFER)
 command 4-37
CPF (COPY_FILE) command 7-8
CPL (COPY_LINK) command

copying links 7-35
replacing links 7-35f

CPO (CREATE_PROCESS_ONLY)
 command 4-7
CPS (CREATE_SERVER_PROCESS)
 command 4-8
CPSCR (COPY_SCREEN) command
 7-18
CPT (COPY_TREE) command

copying trees 7-23
merging trees 7-26
replacing trees 7-25

CRO (CREATE_DIRECTORY)
 command 7-2f
creating

directories 7-21
edit pads and windows 4-13
files 7-5
icons 4-35
links 7-32
new files 4-13
pads 4-10ff

Index-5

paste buffers 5-11
processes 4-4
processes running the Shell 4-6
processes

with pads and windows 4-5f
processes without pads and windows
 4-7
protected subsystems 8-26
server processes 4-8
Shell scripts 9-2f
Shells 6-7f
subordinate Shells 6-8
window groups 4-31f
windows 4-10ff

CRL (CREATE_LINK) command
creating links 7-32
redefining links 7-33

CRSUBS (CREATE_SUBSYSTEM)
 command 8-26
CSR (COMMAND_SEARCH_RULES)
 command 6-6
CTNODE (CATALOG_NODE)
 command 1-5f
CTRL/A key 4-25
CTRL/B key 4-28
CTRL/E key 5-14
CTRL/M key 4-14, 5-3
CTRL/N key 4-7, 4-16
CTRL/P key 4-22
CTRL/Q key 4-9
CTRL/R key 5-25
CTRL/S key 4-24
CTRL/T key 4-28
CTRL/U key 5-25
CTRL/X key 4-19, 5-25
CTRL/Y key 4-17.5-30,7-5
CTRL/Z key 4-7, 5-6, 6-17

saving EDACL changes 8-10
cursor

controlling movement 4-2f
defining display points 3-2, 3-6

CUT key 3-15, 5-14
cutting

text from pads 5-14
CV (CREATE_VIEW) command 3-10
 3-11, 4-14

D

DATE command 6-2 9-24
DC (DEBUG_CONTINUE) command
 4-10
debugging

Shell scripts 9-10f
default

access rights 8-7
account (USER) 2-20
ACLs 8-18f
command search rules 6-5f
icon position and offset 4-36
icons 4-35
paste buffer 5-11
paste buffers

writing text to 5-8
window positions 4-25

defining
a range of text in pads 5-9f
default window positions 4-25
display points 3-6ff
display regions 3-6ff
keys 3-18ff

at startup 2-7
at startup 2-11
at start-up 3-12ff
from within a program 3-18
from within a program 3-22
to prompt for input 3-20

Shell
environment 6-8f
variables 9-18
variables interactively 9-22f

deleting
ACL

access rights 8-17
entries 8-17

characters from pads 5-7f
directory trees 7-30
edit pads and windows 4-16
entries from window groups 4-32f
files 7-18
key definitions 3-21
lines of text from pads 5-8
links 7-36
NEWLINE characters from pads
 5-7
paste buffers 5-11
read-only pads and windows 4-16
text from pads 5-7ff, 5-14
windows 5-7
words from pads 5-8

delimiters
for DM command lines 3-4

derived-name
in path name wildcards 6-21

/DEV/NULL 6-22
directories

appending to command search rules
 6-6
/COM 6-5
~COM 6-5, 7-3, 9-3
commands for managing 7-20

Index-6

comparing 7-27f
copying trees 7-22ff
creating 7-21
deleting trees 7-30
displaying information 7-28f
EXPUNGE rights 8-7
for personal commands 9-3
initial ACLs 8-l8f
log-in home 2-l5
managing 7-20ff
merging 7-26f
naming 1-11

changing 7-4
setting 7-3

network root 1-4f
node entry 1-4f
parent 1-12f
protecting 8-1ff
queue 7-12
renaming 7-21f
replacing trees 7-25f
SEARCH rights 8-7
site registry 2-21
/SYS 1-5
upper-level 1-4
valid access rights 8-12
working 1-9f, 7-2

changing 7-3
setting 7-3

directory tree 7-23
disked node 1-3

as network partner 2-9
booting 2-4
‘NODE_DATA 2-11
start-up 2-2ff

diskless list 2-10
diskless node 1-3

‘NODE_DATA 2-4
start-up 2-8ff

display
controlling with DM commands
 3-2ff
copying images to files 5-13
defining points 3-2, 3-6ff
defining regions 3-2, 3-6ff
drawing initial windows 2-7

Display Manager (DM) 1-3, 2-4,
 2-10, 3-1ff
display

printing images 5-14, 7-18f
displaying

ACLs 8-8
command search rules 6-6
current naming directory 7-3
current working directory 7-3
directory information 7-28f

file attributes 7-16f
key definitions 3-21
link resolution names 7-33
naming directory 7-3
window group members 4-37

DLDUPL
(DELETE DUPLICATE_LINES)
 command 6-13f
DLF (DELETE_FILE) command 1-6,
 7-18
DLL (DELETE_LINK) command
 7-36
DLT (DELETE_TREE) command
 7-30
DLVAR (DELETE_VAR) command
 9-21f
DM command scripts 3-22f
DM commands

AA (Acknowledge alarm) 4-26
ABRT (ABORT) 4-19, 4-20
AP (Acknowledge alarm and pop)
 4-26
CASE (Change case) 5-28
CC (CREATE_COPY) 4-15
CE (CREATE_EDIT) 4-13, 7-6
CMDF (COMMAND_FILE) 3-22
conventions 3-4
CP (CREATE_PROCESS) 4-5
CPB (COPY_PASTE_BUFFER)
 4-37
CPO (CREATE_PROCESS_ONLY)
 4-7
CPS
(CREATE_SERVER_PROCESS)
 4-8
CV (CREATE_VIEW) 3-10, 3-11,
 4-14
DC (DEBUG_CONTINUE) 4-10
DQ (DEBUG_QUIT) 4-9
DR 3-9, 4-15
DS (DEBUG_SUSPEND) 4-10
ED (Delete character at cursor) 5-7
EE (Delete character before cursor)
 5-8
EEF (Insert end-of-file) 5-6
EI (Set insert/overstrike mode)
 4-24, 5-4
EN (Insert NEWLINE) 5-6
ES (Insert string) 5-5
executing from a script 2-18
executing from scripts 3-22f
executing from Shell scripts 9-10
format 3-4
ICON 4-34
IDF (ICON_DEFAULT) 4-36
KD (KEY_DEFINITION) 3-18
PB (PAD_BOTTOM) 4-28

Index-7

PN (PAD_NAME) 4-30
PP (PAD_PAGE) 4-28
prompt 3-2
PT (PAD_TOP) 4-28
PV (PAD_LINE) 4-29
PW (PAD_WRITE) 5-30
RO (READ_ONLY) 5-3
RO (Set read/write mode) 4-14
S (SUBSTITUTE) 5-27
SC (Set case comparison) 5-25
SC (SET_CASE) 5-17
SO (SUBSTITUTE_ONCE) 5-28
special characters 3-5
specifying interactively 3-2
UNDO (Undo previous
 command(s)) 5-29
using 3-2ff
WA (WINDOW_AUTOHOLD)
 4-25
WC (WINDOW_CLOSE) 4-16
WD (WINDOW_DEFAULT)
 4-25f
WGE (WINDOW_GROW_ECHO)
 4-18
WGRA (WINDOW_GROUP_ADD)
 4-32
WGRR
 (WINDOW_GROUP_REMOVE)
 4-32
WH (WINDOW_HOLD) 4-24
WI (WINDOW_INVISIBLE) 4-33
WME (WINDOW_MOVE_ECHO)
 4-20
WP (WINDOW_POP) 4-21
WS (WINDOW_SCROLL) 4-24
XC (Copy text) 5-12
XD (Cut (delete) text) 5-14
XI (Copy portion of display) 5-13
XP (Paste text) 5-15

DM
defining window boundaries 4-11f

DM scripts
executing 3-2

DM (see Display Manager)
DM start-up script 2-18f

defining default window positions
 4-25f

dollar sign ($)
as Shell command prompt 6-2
in regular expressions 5-17

DOMAIN ring network 1-2
DOMAIN Server Processor (see DSP)
DOMAIN System 1-1ff

at log-in 2-13ff
at start-up 2-2ff

DQ (DEBUG_QUIT) command 4-9
DR command 3-9, 4-15

DS (DEBUG_SUSPEND) command
 4-10
DSP (DOMAIN Server Processor) 2-4,
 2-11
DSP

logging into 2-22

E

ED (Delete character at cursor)
 command 5-7
ED (EDIT) command 9-9
EDACL
 (EDIT_ACCESS_CONTROL_LIST)
 command 8-7, 8-9

adding access rights 8-16
adding ACL entries 8-15
changing access rights 8-15
deleting access rights 8-17
deleting ACL entries 8-17
editing commands 8-9
operation modes 8-9

EDFONT (EDIT_FONT) program
 3-21, 4-35
EDIT key 3-21, 4-13, 7-6
edit modes 5-3
edit pads

deleting 4-16
modes 5-2
saving contents of 4-17
window legend 5-3

editing
ACLs 8-9
files 4-13
initial ACLs 8-20
pads 5-1ff

EE (Delete character before cursor)
 command 5-8
EEF (Insert end-of-file) command 5-6
EI (Set insert/overstrike mode)
 command 4-24, 5-4
ellipsis (...) ,

as pathname wildcard character
 6-20

EN (Insert NEWLINE) command 5-6
end-of-file mark

inserting into pads 5-6
end-of-line character

matching 5-17
enlarging windows 4-19
ENSUBS (ENTER_SUBSYSTEM)
 command 8-27
entering

protected subsystems 8-27
Shell commands 6-2

Index-8

entry directory 1-4f
beginning pathnames 1-8

environment variables 9-22
EOFF command 9-20
EON command 9-20
equal sign (=)

as comparison operator 9-17
as pathname wildcard character
 6-21

error input 6-10
in reading query responses 6-16

error output 6-10, 6-12
appending to files 6-13
displaying query options 6-16
redirecting 6-12

ES (Insert string) command 5-5
escape character (@)

in DM commands 3-5
in Shell commands 6-4

evaluating
expressions 9-12
Shell variables 9-20

exclamation mark (!)
as substitution character 9-7

executing
DM commands

from scripts 3-22f
from Shell scripts 9-10

Shell scripts 6-2
EXISTVAR (EXIST_VARIABLE)
 command 9-21
EXIT command 9-30, 9-35
EXIT key 4-17
EXPORT command 9-21f
expressions

delimiters 9-12
evaluating 9-12, 9-20
in Shell scripts 9-12ff
operands 9-14
regular 5-16
characters used in 5-17ff

EXPUNGE access rights 8-7

F

F1 key 5-6
F6 key 5-8
F7 key 5-8
files

appending 7-10f
appending standard output to 6-12f
as standard input 6-11

ASCII
comparing 7-19

assigning protected subsystem status
 to 8-27
backup 4-17, 5-30

access rights 8-14
boot script 2-5, 2-11
commands for managing 7-5
comparing 7-19
copying 7-8
copying display to 7-18f
creating 4-13, 7-5
deleting 7-18
displaying attributes 7-16f
edit

updating 5-30
editing 4-13
in protected subsystems 8-22f
initial ACLs 7-6
keyboard definitions 3-12f
managing 7-5ff
moving 7-9
names 6-17
printing 7-11

in interactive mode 7-12
on other nodes 7-12
using print menu interface
 7-13ff

protecting 8-1ff
reading pathnames from 6-17
renaming 7-7
replacing 7-9
saving 4-17, 7-5
saving transcript pads In 4-30
Shell command 6-2
startup

DM 2-18f
start-up

Shell 6-8f
operators 9-13
valid access rights 8-12
writing Shell command output to
 6-12
writing Shell error output to 6-12

filters 6-13
FMT (FORMAT_TEXT) command
 6-12
font editor (EDFONT) (See EDFONT)
FOR command 9-31f
FOR statement 9-31f
formats

for DM commands 3-4
for Shell command lines 6-3

function keys
predefined 3-10f
to invoke DM commands 3-3,
 3-10ff

Index-9

G

greater-than (>)
as comparison operator 9-16
redirecting standard output 6-12

greater-than/question mark (>?)
redirecting error output 6-12

GROW key 4-19

H

here document 9-9
HOLD key 3-22
hold mode 4-23f
home directory 2-15

changing at log-in 2-21
hyphen (-)

preceding DM command options
 3-4
preceding Shell command options
 6-3
reading data from standard input
 6-17

I

ICON command 4-34
ICON_GROUP paste buffer 4-38
icons 4-31ff, 4-33ff

changing into windows 4-35
creating 4-35
defaults 4-35
group paste buffer 4-37
setting default position and offset
 4-36

IDF (ICON_DEFAULT) command
 4-36
IF command 9-28
IF statement 9-26, 9-28f
information

sharing 1-3
initial ACLs 8-18f

commands for editing and copying
 8-20
copying 8-21
editing 8-20

initial naming directory
at log-in 2-15

initial working directory
at log-in 2-15

INLIB (INITIALIZE_LIBRARY)
 command 6-5
in-line data

in Shell scripts 9-9f
INS key 5-4
INS MODE key 5-4
insert mode 4-23f, 5-4
inserting

blank lines into pads 5-6
characters into pads 5-4ff
end-of-file mark into pads 5-6
NEWLINE characters into pads 5-6

integers
in expressions 9-14

interactive
procedure for specifying DM
 commands 3-2

internal Shell commands 6-5
INVIS_GROUP paste buffer 4-38
invoking

DM commands
using control key sequences 3-3
using control key sequences
 3-10ff
using function keys 3-3
using function keys 3-10ff

Shells 6-7f
subordinate Shells 6-8

I/O control characters 6-11

K

KD (KEY_DEFINITION) command
 3-18
key definitions

deleting 3-21
displaying 3-21
embedding key definitions in 3-19

keyboards
880 3-12

key names 3-16
start-up definitions 3-14

low-profile
key names 3-16
Model I 3-12
Model II 3-12
start-up definitions 2-7, 3-14

types 3-12
keys

ABORT 4-7, 4-16
BACK SPACE 5-8
CHAR DEL 5-7
CMD 3-2

Index-10

controlling from within a program
 3-22
COPY 3-15
CTRL/A 4-25
CTRL/B 4-28
CTRL/E 5-14
CTRL/M 4-14, 5-3
CTRL/N 4-7, 4-16
CTRL/P 4-22
CTRL/Q 4-9
CTRL/R 5-25
CTRL/S 4-24
CTRL/T 4-28
CTRL/U 5-25
CTRL/X 4-19, 5-25
CTRL/Y 4-17, 5-30, 7-5
CTRL/Z 4-7, 5-6, 6-17

saving EDACL changes 8-10
CUT 3-15, 5-14
defining 3-18ff

at log-in 2-18
at start-up 2-7
at start-up 2-11
at start-up 3-12ff
from within a program 3-18
from within a program 3-22
to prompt for input 3-20

deleting definitions 3-21
displaying definitions 3-21
EDIT 3-21, 4-13, 7-6
embedded definitions 3-19
EXIT 4-17
F1 5-6
F6 5-8
F7 5-8
for scrolling pads 4-29
GROW 4-19
HOLD 3-22
INS 5-4
INS MODE 5-4
MARK 3-10, 4-15
MOVE 4-20
naming conventions 3-15ff
PASTE 5-15
POP 4-22
READ 3-20, 4-14
RETURN 3-2, 5-6
SAVE 5-30
SHELL 6-7
SHIFT 3-15

with pad scroll keys 4-29
shifted name 3-15
to perform DM functions 3-10ff
UNDO 5-29
up-transition name 3-15

L

LD (LIST DIRECTORY) command
displaying directory information
 7-28
displaying file attributes 7-16f
displaying link resolution names
 7-33
in Shell script 9-2

less-than (<)
redirecting standard Input 6-11

links
commands for managing 7-31
copying 7-35
creating 7-32
deleting 7-36
managing 7-31ff
redefining 7-33
renaming 7-34
replacing 7-35f
resolution names

displaying 7-33
loading

key definitions 2-7
operating system across network
 2-10f

logging in
as USER 2-20
basic procedure 2-20
changing home directory 2-21
changing password 2-20
to a DSP 2-22

logical operators 9-17
log-in

executing DM commands 2-18
failure 2-15
gathering SID Information 8-2
sequence 2-14

log-in home directory 2-15
log-in start-up script 2-15

creating 2-17
creating Shell process 4-6
locations 2-16

LVAR (LIST_VARIABLES) command
 9-21

M

mailbox server (see MBX_HELPER)
managing

ACLs 8-7f
directories 7-20ff

Index-11

files 7-5ff
links 7-31ff
windows 4-17ff

MARK key 3-10, 4-15
marking

a range of text in pads 5-9f
mathematical operators 9-14f
MBX_HELPER (mailbox server) 4-8
merging

directory trees 7-26f
messages

error
file not found 4-14

request to quit edit 4-17
searching for text 5-24
substitute in progress 5-26

Mnemonic Debugger (MD) 2-3, 2-10
Model I keyboard 3-12
Model II keyboard 3-12
modes

edit 5-3
for edit pads 5-2
for process windows 4-23
insert 5-4
overstrike 5-4
read-only 5-3
read/write 5-3

mouse
default function keys 3-11

MOVE key 4-20
moving

around the naming tree 7-2
cursor 4-2f
files 7-9
pads under windows 4-27ff
to bottom of pad 4-27f
to first character in pad 4-28
to last character in pad 4-28
to top of pad 4-27f
windows 4-20

MVF (MOVE FILE) command 7-9

N

names file 6-17
naming directory 1-11

at log-in 2-15
changing 7-4
displaying 7-3
setting 7-3

Naming Server Helper (NS_HELPER)
 1-6
naming tree 1-4ff

moving around 7-2

search for Shell commands 6-5ff
ND (NAMING DIRECTORY)
 command 7-3
NETBOOT 2-10f
NETMAN 2-7

creating ‘NODE_DATA 2-12
during diskless start-up 2-10

network partner
as boot volume 1-3
node 2-10

network
ring 1-2

network root directory 1-4f
in absolute pathnames 1-7

NEWLINE character
deleting from pads 5-7
inserting into pads 5-6

NEXT command 9-30, 9-35
node entry directory 1-4f

beginning pathnames 1-8
‘NODE_DATA

on disked nodes 2-4
on diskless nodes 2-11

‘NODE DATA/PASTE_BUFFERS
 /DEFAULT.GMF 5-13
‘NODE_DATA/STARTUP

creating processes from 4-7
nodes

boot script files 2-5, 2-11
cataloging 1-5f
disked 1-3
disked start-up 2-2ff
diskless 1-3
diskless start-up 2-8ff
IDs 2-10
in DOMAIN system 1-1
partner 2-10
powering on 2-3, 2-10

NS_HELPER 1-6

O

N objects 1-1
organization 1-4
protecting 8-1ff

offset
for icon positions 4-36

ONEOF statement 9-35
operands

in expressions 9-14
operating system

booting 2-4
booting on diskless node 2-10
components 1-3

Index-12

loading across the network 2-10f
operators

comparison 9-16f
in expressions 9-13
logical 9-17
mathematical 9-14f
parsing 6-22
precedence 9-13
string 9-15f

options
command parser 6-15
in DM commands 3-4
in Shell commands 6-3

overstrike mode 4-23f, 5-4

P

PAD_$DEF_PFK call 3-18, 3-22
PAD_$DM_CMD call 3-22
pads

closing 4-16
copying 4-15
copying text 5-12
creating 4-10ff
defining a range of text in 5-9f
edit

inserting blank lines into 5-6
creating 4-13
cutting text from 5-14
deleting characters from 5-7f
deleting lines of text from 5-8
deleting NEWLINE characters
 from 5-7
deleting text from 5-7ff
deleting words from 5-8
inserting characters into 5-4ff
inserting end-of-file mark into
 5-6
inserting NEWLINE characters
 into 5-6
inserting text string into 5-5
modes 5-2
opening 7-6
pasting text into 5-15
substituting text in 5-26ff
window legend 5-3

editing 5-1ff
moving to bottom of 4-28
moving to first character 4-28
moving to last character 4-28
moving to top of 4-27f
moving under windows 4-27ff
process input 6-10
process output 6-10

read-only 4-14
saving transcript in a file 4-30
scrolling horizontally 4-30
scrolling vertically by lines 4-29
scrolling vertically by pages 4-28
searching for text in 5-22ff
Shell input 6-2
specifying text patterns in 5-16

parent directory 1-12f
parentheses ()

as pathname wildcard characters
 6-21

parser options 6-15
parsing operators 6-22, 9-3
partner node 2-10
passing

arguments to Shell scripts 9-4ff
password

changing at log-in 2-20
entering at login 2-15

paste buffers
copying text into 5-12, 5-14
creating 5-11
default

writing text to 5-7
deleting 5-11
for icon groups 4-37
for window groups 4-37
pasting contents into pads 5-15

PASTE key 5-15
pasting

text into pads 5-15
pathnames

absolute 1-7, 7-6
beginning at naming directory 1-11
beginning at network root directory
 1-7
beginning at node entry directory
 1-8
beginning at parent directory 1-12f
beginning at working directory 1-9f
reading from files 6-17
reading from standard input 6-17
symbols 1-9
to identify objects 1-6ff
wildcards 6-18ff

PB (PAD_BOTTOM) command 4-28
percent sign (%)

as pathname wildcard character
 6-18f
as SID wildcard 8-3, 8-11
regular expressions 5-17

pipelines 6-13
pipes 6-13
PN (PAD_NAME) command 4-30
point pair 4-10

Index-13

points
defining 3-2, 3-4, 3-6ff
preceding DM commands 3-4

POP command 4-22
pound sign character (#)

in DM commands 3-5
in Shell commands 9-2

power on
to start up node 2-3, 2-10

PP (PAD_PAGE) command 4-28
predefined function keys 3-10f
PRF (PRINT_FILE) command 6-17,
 7-11
PRFD (PRINT_FILE_DIALOG)
 command 7-13
print menu interface 7-13ff
print server (PRSVR) 2-7
printing

display images 5-14, 7-18f
files 7-11

in interactive mode 7-12
on other nodes 7-12
using print menu interface
 7-13ff

PRINT_SERVER (see PRSVR) 7-11
process window legend 4-23
processes

background 6-22
closing pads 4-7
closing windows 4-7
creating 4-4

at log-in 2-17
with pads and windows 4-5f
without pads and windows 4-7

interrupting execution of 4-10
nammg directory

changing 7-4
displaying 7-3

passing data 6-9
resuming 4-10
running the Shell 4-6
servers 4-4
Shell 6-2

creating 6-7f
SID 8-3, 8-11
standard streams 6-9f
stopping 4-8f

with CTRL/Z 5-6
suspending 4-10
transcript pads 6-10
window legend 4-23
window modes 4-23
working directory

changing 7-3
displaying 7-3

program

input and output 6-10
Programmable Read-Only Memory (see
 PROM)
programs

as protected subsystem managers
 8-22f
EDFONT 4-35
running in background processes
 6-22
server 4-4
Shell

creating 6-8
PROM (Programmable Read-Only
 Memory) 2-4, 2-10
prompt

for changing home directory 2-21
prompts

for DM commands 3-2
Edit file: 4-13
for continuing Shell commands 6-4f
for EDACL 8-9
for Shell commands 6-2
for variable assignment input 9-24
in key definitions 3-20

protected subsystems 8-22f
assigning status to files 8-27
creating 8-26
entering 8-27

protecting
files and directories 8-1ff

PRSVR (PRINT_SERVER) 7-11
PRSVR (see print server) 2-7
PT (PAD_TOP) command 4-28
pushing and popping windows 4-21
PV (PAD_LINE) command 4-29
PW (PAD_WRITE) command 5-30

Q

query options 6-16
question mark (?)

as path name wildcard character
 6-18f

question mark
in regular expressions 5-18

queues
print 7-11f

quoted stings 9-8

R

READ command 9-23
READ key 3-20, 4-14

Index-14

READC command 9-24
reading

data from standard input 6-16f
pathnames from files 6-17
pathnames from standard input
 6-17
standard input from files 6-11f

READLN command 9-24
read-only mode 5-3
read-only pads 4-14

deleting 4-16
read-only windows 4-14
read/write mode 5-3
redefining

links 7-33
redirecting

error output 6-12
output to Shell commands 6-13
standard input 6-11, 9-9
standard output 6-12

reducing strings 9-16
regions

defining 3-2f, 3-6ff
preceding DM commands 3-4

regular expressions 5-16
characters used in 5-17ff
removing

entries from window groups 4-32f
renaming

directories 7-21f
files 7-7
links 7-34

repeating
search operation 5-25

replacing
all occurrences of a string 5-27
directory trees 7-25f
files 7-9
first occurrence of a string 5-28
links 7-35f
text in pads 5-26ff

responding
to DM alarms 4-26

resuming
processes 4-10

RETURN key 3-2, 5-6
RO (READ_ONLY) command 5-3
RO (Set read/write mode) command
 4-14
root directory 1-4f

in absolute pathnames 1-7
rubberband 4-19
rules

for assigning variables 9-19
for Shell command search 6-2
for specifying ACL entries 8-1lf

running
programs in background processes
 6-2

S

S (SUBSTITUTE) command 5-27
SAVE key 5-30
saving

contents of an edit-pad 4-17
EDACL changes 8-10
files 7-5
Shell command output 6-10
transcript pads 4-30

SC (Set case comparison) 5-25
SC (SET_CASE) command 5-17
screen coordinates 3-8
scripts

boot 2-4, 2-11
DM

command 3-22f
executing 3-2
including comments 3-5
start-up 2-18f
start-up 3-22

executing at login 2-13ff
log-in start-up 2-15, 4-6
Shell (see Shell scripts)

start-up 6-8f
scroll mode 4-23f
scrolling

keys 4-29
pads horizontally 4-30
pads vertically by lines 4-29
pads vertically by pages 4-28

SEARCH access rights 8-7
searching
cancelling operation 5-25

entire pad 5-24
for Shell commands 6-5
for text in pads 5-22ff
repeating operation 5-25

securing accounts 2-21
SELECT command 9-34f
SELECT statement 9-34f
semicolon (;)

separating command lines 6-4
separating DM commands 3-5

Server Process Manager (see SPM)
server processes

creating 4-8
server programs 4-4
servers

alarm 4-7

Index-15

MBX HELPER 4-8
naming 1-6
NETMAN 2-7, 2-12
process manager 2-4, 2-11
PRSVR 2-7
PRSVR (PRINT_SERVER) 7-11
starting from boot script 2-7

setting
case comparison 5-25
default icon position and offset 4-36
initial Shell environment 6-8
naming directory 7-3
read/write modes 5-3, 5-3
working directory 7-3

SH (SHELL) command 6-8, 9-11
 9-20
SH (SHELL) command 6-7
Shell 1-3, 6-1ff

ACL (ACCESS_CONTROL_LIST)
 8-7

copying ACLs 8-18
copying initial ACLs 8-21f
displaying ACLs 8-8

ARGS (ARGUMENTS) 9-4
as filters 6-13
BOFF 6-22
BON 6-22
CATF (CATENATE_FILE) 6-12
CATF (CATENATE_FILES) 7-10f
character limit 6-4
CHN (CHANGE_NAME) 7-7,
 7-21, 7-34
CMF (COMPARE_FILE) 7-19
CMT (COMPARE_TREE) 7-27
continuing on next line 6-4
controlling input and output 6-9f
controlling queries 6-15
CPF (COPY_FILE) 7-8
CPL (COPY_LINK) 7-35, 7-35f
CPSCR (COPY_SCREEN) 7-18
CPT (COPY_TREE) 7-23, 7-25,
 7-26
CRD (CREATE_DIRECTORY)
 7-21
CRL (CREATE_LINK) 7-32,
 7-33
CRSUBS (CREATE_SUBSYSTEM)
 8-26
CSR
 (COMMAND_SEARCH_RULES)
 6-6
DATE 6-2, 9-24
DLDUPL
 (DELETE_DUPLICATE_LINES)
 6-13f

DLF (DELETE_FILE) 7-18
DLL (DELETE_LINK) 7-36
DLT (DELETE_TREE) 7-30
DLVAR (DELETE_VAR) 9-21f
ED (EDIT) 9-9
 (EDIT_ACCESS_CONTROL_LIST)
 8-7, 8-9
ENSUBS (ENTER_SUBSYSTEM)
 8-27
entering 6-2
EOFF 9-20
insert/overstrike modes 5-4
EON 9-20
EXISTVAR (EXIST_VARIABLE)
 9-21
EXIT 9-30, 9-35
EXPORT 9-21f
FMT (FORMAT_TEXT) 6-12
FOR 9-31f
format 6-3
Shell commands 6-2ff
IF 9-28
in active functions 9-24f
in Shell scripts 9-1ff
INLIB (INITIALIZE_LIBRARY)
 6-5
internal 6-5
LD (LIST_DIRECTORY) 7-16f,
 7-28, 7-33
LVAR (LIST_VARIABLES) 9-21
MVF (MOVE_FILE) 7-9
ND (NAMING_DIRECTORY) 7-3
NEXT 9-30, 9-35
PRF (PRINT_FILE) 6-17, 7-11
PRFD (PRINT_FILE_DIALOG)
 7-13
processing command line
 information 6-14ff
READ 9-23
READC 9-24
reading input from files 6-11f
READLN 9-24
saving output 6-10
search rules 6-2
SELECT 9-34f
SH (SHELL) 6-7, 6-8, 9-11, 9-20
SRF (SORT_FILE) 6-13f
standard options 6-4f
SUBS (SUBSYSTEM) 8-27
TLC
 (TRANSLITERATE_CHARACTER)
 6-12
VOFF 9-11
VON 9-11
WD (WORKING_DIRECTORY)
 7-3
WHILE 9-30
writing error output to files 6-12

Index-16

writing output to files 6-12
XOFF 9-11
XDMC
 (EXECUTE_DM_COMMAND)
 9-10
XON 9-11

Shell
creating 6-7f
creating process 4-6
input pad 6-2
invoking 6-7f

SHELL key 6-7
Shell

parsing operators 9-3
Shell process

creation at log-in 2-17
Shell scripts 9-1ff

controlling execution 9-25ff
creating 9-2f
debugging 9-10f
defining variables interactively 9-22f
executing DM commands 9-10
passing arguments to 9-4ff
quoted strings 9-8
using active functions 9-24f
using conditional statements 9-26ff
using expressions 9-12ff
using variables 9-18ff

Shell
setting up initial environment 6-8
start-up files 6-8
subordinate

creating 6-8
Shell variables 9-18ff

assigning active functions 9-24
assignment rules 9-19
defining 9-18
defining interactively 9-22f
environment 9-22
evaluating 9-20
substituting 9-19f

SHIFT key 3-15
with pad scroll keys 4-29

shifted key name 3-15
shrinking windows 4-19

SID (subject identifier) 4-4
for processes created at start-up 4-7
in ACL entries 8-2f

single quotes (‘ ‘)
in DM commands 3-5

site registry directory 2-21

slash (/)
to search forward for text 5-23

SO (SUBSTITUTE_ONCE) command
 5-28
special characters

in DM commands 3-5
in Shell commands 6-7

specifying
ACL entries 8-11f
DM commands 3-2f
Shell commands 6-2
text patterns in pads 5-16

SPM (Server Process Manager) 2-4,
 2-11
square brackets ([])

as pathname wildcard character
 6-19
in regular expressions 5-19

SRF (SORT_FILE) command 6-13f
standard input 6-10

connecting to standard output 6-13
reading data from 6-16f
reading pathnames from 6-17
redirecting 6-11
redirecting to read in-line data 9-9

standard options
for Shell commands 6-4f

standard output 6-10
appending to files 6-12f
connecting to standard input 6-13
in active functions 9-24f
redirecting 6-12

standard streams 6-9f
start-up

boot scripts 2-5, 2-11
defining keys 2-7
differences between disked and
diskless nodes 2-12
disked nodes 2-2ff
diskless nodes 2-8ff
files

Shell 6-8f
sequence for disked nodes 2-3,
 2-9ff

STARTUP_LOGIN 2-17
statements

CASE 9-34
FOR 9-31f
IF 9-26, 9-28f
ONEOF 9-35

Index-17

SELECT 9-34f T
WHILE 9-29

stopping
processes 4-8f

streams 6-9f
closing with CTRL/Z 5-6

string operators 9-15f
strings

changing case of 5-28
concatenating 9-15
deleting from pads 5-8
in expressions 9-14
inserting into pads 5-5
quoted 9-8
reducing 9-16
searching for 5-22ff
substituting all occurrences of 5-28
substituting first occurrence of 5-28
substituting in pads 5-26

structure
of ACLs 8-2

subject identifier (SID) (See SID)
subordinate Shell 6-7

creating 6-8
SUBS (SUBSYSTEM) command 8-27
substituting

all occurrences of a string 5-27
first occurrence of a string 5-28
for variables 9-19f
text in pads 5-26ff

substitution parameters 9-5
suspending

processes 4-10
symbols

for pathnames 1-9
/SYS

as upper-level directory 1-5
SYSBOOT 2-4

in diskless start-up 2-10
/SYS/DM/FONTS/ICONS 4-35
/SYS/DM/STARTUP_LOGIN 4-6
/SYS/DM/STD_KEYS 3-14
/SYS/NET/DISKLESS_LIST 2-10
/SYS/NET/NETBOOT 2-10f
/SYS/NODE_DATA 2-4
/SYS/NODE_DATA/node_id 2-4,
 2-11
/SYS/PRINT/QUEUE 7-11f
system calls

PAD_$DEF_PFK 3-18, 3-22
PAD_$DM_CMD 3-22

T

text
changing case of 5-28
copying from pads 5-12
cutting from pads 5-14
defining a range of 5-9f
deleting from pads 5-7ff
lines

deleting from pads 5-8
pasting into pads 5-15
searching for 5-22ff
specifying patterns in pads 5-16
substituting in pads 5-25ff

tilde (~)
as pathname wildcard character
 6-20
beginning pathnames 1-11
in regular expressions 5-19

TLC
 (TRANSLITERATE_CHARACTER)
 command 6-12
transcript pad

saving in file 4-30
transcript pads 6-10

U

undo buffers 5-29
UNDO key 5-29
UNDO (Undo previous command(s))
 command 5-29
undoing

previous command 5-29
updating

edit files 5-30
upper-level directory 1-4
up-transition

key name 3-15
USER_DATA/KEY_DEFS 2-19
/USER_DATA/KEY_DEFS 3-18
USER_DATA/KEY_DEFS2 2-19
~USER_DATA/SH 6-8
/USER_DATA/STARTUP_DM 2-18f
 username

entering at log-in 2-15
in SID 4-4, 8-2

Index-18

V

variables
in Shell (see Shell variables)

verifying
Shell scripts 9-11

viewing
hidden windows 4-21

VOFF command 9-11
VON command 9-11

W

WA (WINDOW_AUTOHOLD)
 command 4-25
WC (WINDOW_CLOSE) command
 4-16
WD (WINDOW_DEFAULT) command
 4-25
WD (WORKING_DIRECTORY)
 command 7-3
WGE (WINDOW_GROW_ECHO)
 command 4-18
WGRA (WINDOW_GROUP_ADD)
 command 4-32
WGRR
 (WINDOW_GROUP_REMOVE)
 command 4-32
WH (WINDOW_HOLD) command
 4-24
WHILE command 9-29
WHILE statement 9-29
WI (WINDOW_INVISIBLE) command
 4-33
wildcards 6-18ff

query verification 6-16
verification 6-10

window groups 4-31ff
changing into icons 4-34
creating 4-31f
displaying members 4-37
making invisible 4-33
making visible 4-33
paste buffers 4-37
removmg entries from 4-32f

window icons 4-31ff
windows

alarm 4-26
cancelling move 4-20
cancelling size change 4-19
changing groups into icons 4-34
changing size of 4-18f
closing 4-16
copying 4-15
creating 4-10ff

defining default positions 4-25
deleting 5-7
determining boundaries 4-11f
displaying members of window
 groups 4-37
drawing at start-up 2-7
edit

creating 4-13
edit pad window legend 5-3
group paste buffers 4-37
in groups 4-31ff
legend 4-23
making invisible 4-33
making visible 4-33
managing 4-17ff
moving 4-20
moving pads under 4-27ff
process

changing modes 4-22ff
pushing and popping 4-21
read-only 4-14
removing from window groups 4-32f
representing with icons 4-33ff
using icons 4-31ff

WME (WINDOW_MOVE_ECHO)
 command 4-20
words

deleting from pads 5-8
inserting into pads 5-5

working directory 1-9f, 7-2
at log-in 2-15
beginning pathnames 1-9f
changing 7-3
setting 7-3

WP (WINDOW_POP) command 4-21
writing

error output to files 6-12
standard output to files 6-12

WS (WINDOW_SCROLL) command
 4-24

X

XC (Copy text) command 5-12
XD (Cut (delete) text) command 5-14
XDMC (EXECUTE_DM_COMMAND)
 command 9-10
XI (Copy portion of display) command
 5-13
XOFF command 9-11
XON command 9-11
XP (Paste text) command 5-15

