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I. Early background and environment. 

1.1 Attitudes about automatic programming 
in the 1950's. 

Before 1954 almost all programming was 
done in machine language or assembly lan- 
guage. Programmers rightly regarded their 
work as a complex, creative art that re- 
quired human inventiveness to produce an 
efficient program. Much of their effort 
was devoted to overcoming the difficulties 
created by the computers of that era: the 
lack of index registers, the lack of built- 
in floating point operations, restricted 
instruction sets (which might have AND but 
not OR, for example), and primitive input- 
output arrangements. Given the nature of 
computers, the services which "automatic 
programming" performed for the programmer 
were concerned with overcoming the machine's 
shortcomings. Thus the primary concern of 
some "automatic programming" systems was to 
allow the use of symbolic addresses and 
decimal numbers (e.g., the MIDAC Input 
Translation Program [Brown and Carr 1954]). 

But most of the larger "automatic. pro- 
gramming" systems (with the exception of 
Laning and Zierler's algebraic system [Lan- 
ing and Zierler 1954] and the A-2 compiler 
[Remington Rand 1953; Moser 1954]) simply 
provided a synthetic "computer" with an or- 
der code different from that of the real 
machine. This synthetic computer usually 
had floating point instructions and index 
registers and had improved input-output com- 
mands; it was therefore much easier to pro- 
gram than its real counterpart. 

The A-2 compiler also came to be a syn- 
thetic computer sometime after early 1954. 
But in early 1954 its input had a much 
cruder form; instead of "pseudo-instruc- 
tions" its input was then a complex sequence 
of "compiling instructions" that could take 
a variety of forms ranging from machine code 
itself to lengthy groups of words consti- 
tuting rather clumsy calling sequences for 
the desired floating point subroutine, to 
"abbreviated form" instructions that were 
converted by a "Translator" into ordinary 
"compiling instructions" [Moser 1954]. 

After May 1954 the A-2 compiler acquired 
a "pseudocode" which was similar to the or- 
der codes for many floating point interpret- 
ive systems that were already in operation 
in 1953: e.g., the Los Alamos systems, DUAL 
and SHACO [Bouricius 1953; Schlesinger 1953], 
the MIT "Summer Session Computer" [Adams and 
Laning 1954], a system for the ILLIAC de- 
signed by D. J. Wheeler [Muller 1954], and 
the SPEEDCODING system for the IBM 701 
[Backus 1954]. 

The Laning and zierler system was quite 
a different story: it was the world's first 
operating algebraic compiler, a rather ele- 
gant but simple one. Knuth and Pardo [1977] 
assign this honor to Alick Glennie's AUTO- 
CODE, but I, for one, am unable to recognize 
the sample AUTOCODE program they give as 
"algebraic", especially when it is compared 
to the corresponding Laning and Zierler 
program. 

All of the early "automatic programming" 
systems were costly to use, since they slow- 
ed the machine down by a factor of five or 
ten. The most common reason for the slow- 
down was that these systems were spending 
most of their time in floating point sub- 
routines. Simulated indexing and other 
"housekeeping" operations could be done with 
simple inefficient techniques, since, slow 
as they were, they took far less time than 
the floating point work. 

Experience with slow "automatic program- 
ming" systems, plus their own experience 
with the problems of organizing loops 
and address modification, had convinced 
programmers that efficient programming was 
something that could not be automated. An- 
other reason that "automatic programming" 
was not taken seriously by the computing 
community came from the energetic public 
relations efforts of some visionaries to 
spread the word that their "automatic pro- 
gramming" systems had almost human abilities 
to understand the language and needs of the 
user; whereas closer inspection of these 
same systems would often reveal a complex, 
exception-ridden performer of clerical tasks 
which was both difficult to use and ineffi- 
cient. Whatever the reasons, it is diffi- 
cult to convey to a reader in the late sev- 
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enties the strength of the skepticism about 
"automatic programming" in general and about 
its ability to produce efficient programs 
in particular, as it existed in 1954. 

(In the above discussion of attitudes 
about "automatic programming" in 1954 I have 
mentioned only those actual systems of which 
my colleagues and I were aware at the time. 
For a comprehensive treatment of early pro- 
graining systems and languages I recommend 
the article by Knuth and Pardo [1977] and 
Sammet [1969].) 

1.2 The economics of programming. 

Another factor which influenced the de- 
velopment of FORTRAN was the economics of 
programming in 1954. The cost of program- 
mers associated with a computer center was 
usually at least as great as the cost of the 
computer itself. (This fact follows from 
the average salary-plus-overhead and number 
of programmers at each center and from the 
computer rental figures.) In addition, from 
one quarter to one half of the computer's 
time was spent in debugging. Thus p~ogram- 
ming and debugging accounted for as much as 
three quarters of the cost of operating a 
computer; and obviously, as computers got 
cheaper, this situation would get worse. 

This economic factor was one of the prime 
motivations which led me to propose the FOR- 
TRAN project in a letter to my boss, Cuth- 
bert Hurd, in late 1953 (the exact date is 
not known but other facts suggest December 
1953 as a likely date). I believe that the 
economic need for a system like FORTRAN was 
one reason why IBM and my successive bosses, 
Hurd, Charles DeCarlo, and John McPherson, 
provided for our constantly expanding needs 
over the next five years without ever ask- 
ing us to project or justify those needs in 
a formal budget. 

1.3 Programming systems in 1954. 

It is difficult for a programmer of to- 
day to comprehend what "automatic program- 
ming" meant to programmers in 1954. To 
many it then meant simply providing mnemon- 
ic operation codes and symbolic addresses, 
to others it meant the simple'process of 
obtaining subroutines from a library and 
inserting the addresses of operands into 
each subroutine. Most "automatic program- 
ming" systems were either assembly programs, 
or subroutine-fixing programs, or, most 
popularly, interpretive systems to provide 
floating point and indexing operations. 
My friends and I were aware of a number of 
assembly programs and interpretive systems, 
some of which have been mentioned above; 
besides these there were primarily two 
other systems of significance: the A-2 
compiler [Remington Rand 1953; Moser 1954] 
and the Laning and Zierler [1954] algebraic 
compiler at MIT. As noted above, the A-2 
compiler was at that time largely a sub- 
routine-fixer (its other principal task was 
to provide for "overlays"); but from the 

standpoint of its input "programs" it pro- 
vided fewer conveniences than most of the 
then current interpretive systems mention- 
ed earlier; it later adopted a "pseudo- 
code" as input which was similar to the 
input codes of these interpretive systems. 

The Laning and Zierler system accepted 
as input an elegant but rather simple alge- 
braic language. It permitted single-letter 
variables (identifiers) which could have a 
single constant or variable subscript. The 
repertoire of functions one could use were 
denoted by "F" with an integer superscript 
to indicate the "catalog number" of the de- 
sired function. Algebraic expressions were 
compiled into closed subroutines and placed 
on a magnetic drum for subsequent use. The 
system was originally designed for the 
Whirlwind computer when it had 1,024 stor- 
age cells, with the result that it caused 
a slowdown in execution speed by a factor 
of about ten [Adams and Laning 1954]. 

The effect of the Laning and Zierler 
system on the development of FORTRAN is a 
question which has been muddled by many 
misstatements on my part. For many years 
I believed that we had gotten the idea for 
using algebraic notation in FORTRAN from 
seeing a demonstration of the Laning and 
Zierler system at MIT. In preparing a pa- 
per [Backus 1976] for the International 
Research Conference on the History of Com- 
puting at Los Alamos (June 10-15, 1976), 
I reviewed the matter with Irving Ziller 
and obtained a copy of a 1954 letter [Backus 
1954a] (which Dr. Laning kindly sent to me). 
As a result the facts of the matter have 
become clear. The letter in question is 
one I sent to Dr. Laning asking for a 
demonstration of his system. It makes clear 
that we had learned of his work at the 
Office of Naval Research Symposium on Auto- 
matic Programming for Digital Computers, 
May 13-14, 1954, and that the demonstration 
took place on June 2, 1954. The letter 
also makes clear that the FORTRAN project 
was well under way when the letter was sent 
(May 21, 1954) and included Harlan Herrick, 
Robert A. Nelson, and Irving Ziller as well 
as myself. Furthermore, an article in the 
proceedings of that same ONR Symposium by 
Herrick and myself [Backus and Herrick 1954] 
shows clearly that we were already consid- 

• b " ering input expressions like "Zaij jk 

and "X÷Y". We went on to raise the ques- 
tion "...can a machine translate a suffi- 
ciently rich mathematical language into a 
sufficiently economical program at a suf- 
ficiently low cost to make the whole affair 
feasible?" 

These and other remarks in our paper 
presented at the Symposium in May 1954 make 
it clear that we were already considering 
algebraic input considerably more sophis- 
ticated than that of Laning and Zierler's 
system when we first heard of their pioneer- 
ing work. Thus, although Laning and Zierler 
had already produced the world's first al- 
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gebraic compiler, our basic ideas for FOR- 
TRAN had been developed independently; thus 
it is difficult to know what, if any, new 
ideas we got from seeing the demonstration 
of their system. 

Quasi-footnote: In response 
to suggestions of the Program Committee 
let me try to deal explicitly with 
the question of what work might have in- 
fluenced our early ideas for FORTRAN, al- 
though it is mostly a matter of listing 
work of which we were then unaware. I have 
already discussed the work of Laning and 
Zierler and the A-2 compiler. The work of 
Heinz Rutishauser [1952] is discussed later 
on. Like most of the world (except perhaps 
Rutishauser and Corrado B6hm--who was the 
first to describe a compiler in its own 
language [B6hm 195~]) we were entirely un- 
aware of the work of Konrad Zuse [1959; 
1972]. Zuse's "Plankalk~l", which he com- 
pleted in 1945, was, in some ways, a more 
elegant and advanced programming language 
than those that appeared ten and fifteen 
years later. 

We were also unaware of the work of 
Mauchly et al. ("Short Code", 1950) , Burks 
("Intermediate PL", 1950) , B6hm (1951) , 
Glennie ("AUTOCODE", 1952) as discussed in 
Knuth and Pardo [1977]. We were aware of 
but not influenced by the automatic program- 
ming efforts which simulated a synthetic 
computer (e.g., MIT "Summer Session Com- 
puter", SHACO, DUAL, SPEEDCODING, and the 
ILLIAC system), since their languages and 
systems were so different from those of 
FORTRAN. Nor were we influenced by alge- 
braic systems which were designed after 
our "Preliminary Report" [1954] but which 
began operation before FORTRAN (e.g., 
BACAIC [Grems and Porter 1956], IT [Per- 
lis, Smith and Van Zoeren 1957], MATH- 
MATIC [Ash et al. 1957]). Although PACT 
I [Baker 1956] was not an algebraic com- 
piler, it deserves mention as a signifi- 
cant development designed after the FOR- 
TRAN language but in operation before 
FORTRAN, which also did not influence our 
work. (End of quasi-footnote.) 

Our ONR Symposium article [Backus and 
Herrick 195~] also makes clear that the 
FORTRAN group was already aware that it 
faced a new kind of problem in automatic 
programming. The viability of most compil- 
ers and interpreters prior to FORTRAN had 
rested on the fact that most source language 
operations were not machine operations. 
Thus even large inefficiencies in perform- 
ing both looping/testing operations and 
computing addresses were masked by most op- 
erating time being spent in floating point 
subroutines. But the advent of the 70~ with 
built in. floating point and indexing radi- 
cally altered the situation. The 70~ pre- 
sented a double challenge to those who 
wanted to simplify programming; first it re- 
moved the raison d'Etre of earlier systems 
by providing in hardware the operations they 

existed to provide; second, it increased the 
problem of generating efficient programs by 
an order of magnitude by speeding up float- 
ing point operations by a factor of ten and 
thereby leaving inefficiencies nowhere to 
hide. In view of the widespread skepticism 
about the possibility of producing efficient 
programs with an automatic programming sys- 
tem and the fact that inefficiencies could 
no longer be hidden, we were convinced that 
the kind of system we had in mind would be 
widely used only if we could demonstrate 
that it would produce programs almost as 
efficient as hand coded ones and do so on 
virtually every job. 

It was our belief that if FORTRAN, dur- 
ing its first months, were to translate any 
reasonable "scientific" source program into 
an object program only half as fast as its 
hand coded counterpart, then acceptance of 
our system would be in serious danger. 
This belief caused us to regard the design 
of the translator as the real challenge, 
not the simple task of designing the lan- 
guage. Our belief in the simplicity of 
language design was partly confirmed by the 
relative ease with which similar languages 
had been independently developed by Rutis- 
hauser [1952], Laning and Zierler [1954], 
and ourselves; whereas we were alone in 
seeking to produce really efficient object 
programs. 

To this day I believe that our emphasis 
on object program efficiency rather than on 
language design was basically correct. I 
believe that had we failed to produce ef- 
ficient programs, the widespread use of 
languages like FORTRAN would have been se- 
riously delayed. In fact, I believe that 
we are in a similar, but unrecognized, sit- 
uation today: in spite of all the fuss that 
has been made over myriad language details, 
current conventional languages are still 
very weak programming aids, and far more 
powerful languages would be in use today 
if anyone had found a way to make them run 
with adequate efficiency. In other words, 
the next revolution in programming will 
take place only when both of the following 
requirements have been met: (a) a new kind 
of programming language, far more powerful 
than those of today, has been developed 
and (b) a technique has been found for ex- 
ecuting its programs at not much greater 
cost than that of today's programs. 

Because of our 1954 view that success in 
producing efficient programs was more im- 
portant than the design of the FORTRAN lan- 
guage, I consider the history of the com- 
piler construction and the work of its in- 
ventors an integral part of the history of 
the FORTRAN language; therefore a later 
section deals with that subject. 

2. The early stages of the FORTRAN project. 

After Cuthbert Hurd approved my proposal 
to develop a practical automatic program- 
ming system for the 704 in December 1953 or 
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January 1954, Irving Ziller was assigned to 
the project. We started work in one of the 
many small offices the project was to oc- 
cupy in the vicinity of IBM headquarters 
at 590 Madison Avenue in New York; the 
first of these was in the Jay Thorpe Build- 
ing on Fifth Avenue. By May 1954 we had 
been joined by Harlan Herrick and then by 
a new employee who had been hired to do 
technical typing, Robert A. Nelson (with 
Ziller, he soon began designing one of the 
most sophisticated sections of the compiler; 
he is now an IBM Fellow). By about May we 
had moved to the 19th floor of the annex of 
590 Madison Avenue, next to the elevator 
machinery; the ground floor of this build- 
ing housed the 701 installation on which 
customers tested their programs before the 
arrival of their own machines. It was here 
that most of the FORTRAN language was de- 
signed, mostly by Herrick, Ziller and my- 
self, except that most of the input-output 
language and facilities were designed by 
Roy Nutt, an employee of United Aircraft 
Corp. who was soon to become a member of 
the FORTRAN project. 

After we had finished designing most of 
the language we heard about Rutishauser's 
proposals for a similar language [Rutis- 
hauser 1952]. It was characteristic of the 
unscholarly attitude of most programmers 
then, and of ourselves in particular, that 
we did not bother to carefully review the 
sketchy translation of his proposals that 
we finally obtained, since from their sym- 
bolic content they did not appear to add 
anything new to our proposed language. 
Rutishauser's language had a for statement 
and one-dimensional arrays, but no IF, GOTO, 
nor I/O statements. Subscript variables 
could not be used as ordinary variables and 
operator precedence was ignored. His 1952 
article described two compilers for this 
language (for more details see [Knuth and 
Pardo 1977]). 

As far as we were aware, we simply made 
up the language as we went along. We did 
not regard language design as a difficult 
problem, merely a simple prelude to the 
real problem: designing a compiler which 
could produce efficient programs. Of 
course one of our goals was to design a 
language which would make it possible for 
engineers and scientists to write programs 
themselves for the 704. We also wanted to 
eliminate a lot of the bookkeeping and de- 
tailed, repetitive planning which hand cod- 
ing involved. Very early in our work we 
had in mind the notions of assignment state- 
ments, subscripted variables, and the DO 
statement (which I believe was proposed by 
Herrick). We felt that these provided a 
good basis for achieving our goals for the 
language, and whatever else was needed e- 
merged as we tried to build a way of pro- 
gramming on these basic ideas. 

We certainly had no idea that languages 
almost identical to the one we were working 
on would be used for more than one IBM com- 

puter, not to mention those of other manu- 
facturers. (After all, there were very few 
computers around then.) But we did expect 
our system to have a big impact, in the 
sense that it would make programming for 
the 704 very much faster, cheaper, more re- 
liable. We also expected that, if we were 
successful in meeting our goals, other 
groups and manufacturers would follow our 
example in reducing the cost of programming 
by providing similar systems with different 
but similar languages [Preliminary Report 
1954]. 

By the fall of 1954 we had become the 
"Programming Research Group" and I had be- 
come its "manager". By November of that 
year we had produced a paper: "Preliminary 
Report, Specifications for the IBM Mathemat- 
ical FORmula TRANslating System, FORTRAN" 
[Preliminary Report 1954] dated November 10. 
In its introduction we noted that "systems 
which have sought to reduce the job of cod- 
ing and debugging problems have offered the 
choice of easy coding and slow execution or 
laborious coding and fast execution." On 
the basis more of faith than of knowledge, 
we suggested that programs "will be executed 
in about the same time that would be re- 
quired had the problem been laboriously 
hand coded." In what turned out to be a 
true statement, we said that "FORTRAN may 
apply complex, lengthy techniques in coding 
a problem which the human coder would have 
neither the time nor inclination to derive 
or apply." 

The language described in the "Prelimin- 
ary Report" had variables of one or two 
characters in length, function names of 
three or more characters, recursively de- 
fined "expressions", subscripted variables 
with up to three subscripts, "arithmetic 
formulas" (which turn out to be assignment 
statements), and "DO-formulas". These lat- 
ter formulas could specify both the first 
and last statements to be controlled, thus 
permitting a DO to control a distant se- 
quence of statements, as well as specifying 
a third statement to which control would 
pass following the end of the iteration. 
If only one statement was specified, the 
"range" of the DO was the sequence of state- 
ments following the DO down to the specified 
statement. 

Expressions in "arithmetic formulas" 
could be "mixed": involve both "fixed point" 
(integer) and "floating point" quantities. 
The arithmetic used (all integer or all 
floating point) to evaluate a mixed expres- 
sion was determined by the type of the 
variable on the left of the "=" sign. "IF- 
formulas" employed an equality or inequal- 
ity sign ("=" or ">" or ">=") between two 
(restricted) expressions, followed by two 
statement numbers, one for the "true" case, 
the other for the "false" case. 

A "Relabel formula" was designed to make 
it easy to rotate, say, the indices of the 
rows of a matrix so that the same computa- 

168 



tion would apply, after relabelling, even 
though a new row had been read in and the 
next computation was now to take place on 
a different, rotated set of rows. Thus, 
for example, if b is a 4 by 4 matrix, after 
RELABEL b(3,1), a reference to b(1,j) has 
the same meaning as b(3,j) before relabel- 
ling; b(2,j) after = b(4,j) before; b(3,j) 
after = b(1,j) before; and b(4,j) after = 
b(2,j) before relabelling. 

The input-output statements provided in- 
cluded the basic notion of specifying the 
sequence in which data was to be read in or 
out, but did not include any "Format" state- 
ments. 

The Report also lists four kinds of 
"specification sentences": (I) "dimension 
sentences" for giving the dimensions of ar- 
rays, (2) "equivalence sentences" for as- 
signing the same storage locations to var- 
iables, (3) "frequency sentences" for in- 
dicating estimated relative frequency of 
branch paths or loops to help the compiler 
optimize the object program, and (4) "rel- 
ative constant sentences" to indicate sub- 
script variables which are expected to 
change their values very infrequently. 

Toward the end of the Report (pp. 26-27) 
there is a section "Future additions to the 
FORTRAN system". Its first item is: "a 
variety of new input-output formulas which 
would enable the programmer to specify var- 
ious formats for cards, printing, input 
tapes and output tapes" It is believed 
that this item is a result of our early 
consultations with Roy Nutt. This section 
goes on to list other proposed facilities 
to be added: complex and double precision 
arithmetic, matrix arithmetic, sorting, 
solving simultaneous equations, differential 
equations, and linear programming problems. 
It also describes function definition cap- 
abilities similar to those which later ap- 
peared in FORTRAN II; facilities for num- 
erical integration; a summation operator; 
and table lookup facilities. 

The final section of the Report (pp 28- 
29) discusses programming techniques to use 
to help the system produce efficient pro- 
grams. It discusses how to use parentheses 
to help the system identify identical sub- 
expressions within an expression and there- 
by eliminate their duplicate calculation. 
These parentheses had to be supplied only 
when a recurring subexpression occurred as 
part of a term (e.g., if a~b occurred in 
several places, it would be better to write 
the term a~b~c as (a~b)~c to avoid duplicate 
calculation); otherwise the system would 
identify duplicates without any assistance. 
It also observes that the system would not 
produce optimal code for loops constructed 
without DO statements. 

This final section of the Report also 
notes that "no special provisions have been 
included in the FORTRAN system for locating 
errors in formulas". It suggests checking 

a program "by independently recreating the 
specifications for a problem from its FOR- 
TRAN formulation [!]" It says nothing 
about the system catching syntactic errors, 
but notes that an error-finding program can 
be written after some experience with errors 
has been accumulated. 

Unfortunately we were hopelessly opti- 
mistic in 1954 about the problems of debug- 
ging FORTRAN programs (thus we find on page 
2 of the Report: "Since FORTRAN should vir- 
tually eliminate coding and debugging... 
[!]") and hence syntactic error checking 
facilities in the first distribution of 
FORTRAN I were weak. Better facilities 
were added not long after distribution and 
fairly good syntactic checking was provided 
in FORTRAN II. 

The FORTRAN language described in the 
Programmer's Reference Manual dated October 
15, 1956 [IBM 1956] differed in a few re- 
spects from that of the Preliminary Report, 
but, considering our ignorance in 1954 of 
the problems we would later encounter in 
producing the compiler, there were remark- 
ably few deletions (the Relabel and Rela- 
tive Constant statements), a few retreats, 
some fortunate, some not (simplification of 
DO statements, dropping inequalities from 
IF statements--for lack of a ">" symbol, 
and prohibiting most "mixed" expressions 
and subscripted subscripts), and the recti- 
fication of a few omissions (addition of 
FORMAT, CONTINUE, computed and assigned GO- 
TO statements, increasing the length of var- 
iables to up to six characters, and general 
improvement of input-output statements). 

Since our entire attitude about language 
design had always been a very casual one, 
the changes which we felt to be desirable 
during the course of writing the compiler 
were made equally casually. We never felt 
that any of them involved a real sacrifice 
in convenience or power (with the possible 
exception of the Relabel statement, whose 
purpose was to coordinate input-output with 
computations on arrays, but this was one 
facility which we felt would have been 
really difficult to implement). I believe 
the simplification of the original DO state- 
ment resulted from the realization that 
(a) it would be hard to describe precisely, 
(b) it was awkward to compile, and (c) it 
provided little power beyond that of the 
final version. 

In our naive unawareness of language 
design problems--of course we knew nothing 
of many issues which were later thought to 
be important, e.g., block structure, con- 
ditional expressions, type declarations-- 
it seemed to us that once one had the no- 
tions of the assignment statement, the sub- 
scripted variable, and the DO statement in 
hand (and these were among our earliest i- 
deas), then the remaining problems of lan- 
guage design were trivial: either their sol- 
ution was thrust upon one by the need to 
provide some machine facility such as read- 
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ing input, or by some programming task which 
could not be done with existing structures 
(e.g., skipping to the end of a DO loop 
without skipping the indexing instructions 
there: this gave rise to the CONTINUE state- 
ment). 

One much-criticized design choice in 
FORTRAN concerns the use of spaces: blanks 
were ignored, even blanks in the middle of 
an identifier. Roy Nutt reminds me that 
that choice was partly in recognition of a 
problem widely known in SHARE, the 704 us- 
ers' association. There was a common pro- 
blem with keypunchers not recognizing or 
properly counting blanks in handwritten 
data, and this caused many errors. We also 
regarded ignoring blanks as a device to en- 
able programmers to arrange their programs 
in a more readable form without altering 
their meaning or introducing complex rules 
for formatting statements. 

Another debatable design choice was to 
rule out "mixed" mode expressions involving 
both integer and floating point quantities. 
Although our Preliminary Report had included 
such expressions, and rules for evaluating 
them, we felt that if code for type conver- 
sion were to be generated, the user should 
be aware of that, and the best way to insure 
that he was aware was to ask him to specify 
them. I believe we were also doubtful of 
the usefulness of the rules in our Report 
for evaluating mixed expressions. In any 
case, the most common sort of "mixtures" 
was allowed: integer exponents and func- 
tion arguments were allowed in a floating 
point expression. 

In late 1954 and early 1955, after com- 
pleting the Preliminary Report, Harlan Her- 
rick, Irving Ziller and I gave perhaps five 
or six talks about our plans for FORTRAN to 
various groups of IBM customers who had or- 
dered a 704 (the 704 had been announced 
about May 1954). At these talks we covered 
the material in the Report and discussed our 
plans for the compiler (which was to be com- 
pleted within about six months [!] ; this 
was to remain the interval-to-completion 
until it actually was completed over two 
years later, in April 1957). In addition 
to informing customers about our plans, an- 
other purpose of these talks was to assemble 
a list of their objections and further re- 
quirements. In this we were disappointed; 
our listeners were mostly skeptical; I be- 
lieve they had heard too many glowing des- 
criptions of what turned out to be clumsy 
systems to take us seriously. In those days 
one was accustomed to finding lots of pecul- 
iar but significant restrictions in a system 
when it finally arrived that had not been 
mentioned in its original description. Most 
of all, our claims that we would produce ef- 
ficient object programs were disbelieved. 
Whatever thereasons, we received almost no 
suggestions or feedback; our listeners had 
done almost no thinking about the problems 
we faced and had almost no suggestions or 
criticisms. Thus we felt that our trips to 

Washington (D.C.), Albuquerque, Pittsburgh, 
Los Angeles, and one or two other places 
were not very helpful. 

One trip to give our talk, probably in 
January 1955, had an excellent payoff. This 
talk, at United Aircraft Corp., resulted in 
an agreement between our group and Walter 
Ramshaw at United Aircraft that Roy Nutt 
would become a regular part of our effort 
(although remaining an employee of United 
Aircraft) to contribute his expertise on 
input-output and assembly routines. With a 
few breaks due to his involvement in writing 
various SHARE programs, he would thenceforth 
come to New York two or three times a week 
until early 1957. 

It is difficult to assess the influence 
the early work of the FORTRAN group had on 
other projects. Certainly the discussion 
of Laning and Zierler's algebraic compiler 
at the ONR Symposium in May 1954 would have 
been more likely to persuade someone to un- 
dertake a similar line of effort than would 
the brief discussion of the merits of using 
"a fairly natural mathematical language" 
that appeared there in the paper by Herrick 
and myself [Backus and Herrick 1954]. But 
it was our impression that our discussions 
with various groups after that time, their 
access to our Preliminary Report, and their 
awareness of the extent and seriousness of 
our efforts, that these factors either gave 
the initial stimulus to some other projects 
or at least caused them to be more active 
than they might have been otherwise. It 
was our impression, for example, that the 
"IT" project [Perlis, Smith and Van Zoeren 
1957] at Purdue and later at Carnegie-Mellon 
began shortly after the distribution of our 
Preliminary Report, as did the "MATH-MATIC" 
project [Ash et al. 1957] at Sperry Rand. 

It is not clear what influence, if any, 
our Los Angeles talk and earlier contacts 
with members of their group had on the PACT 
I effort [Baker 1956], which I believe was 
already in its formative stages when we got 
to Los Angeles. It is clear, whatever in- 
fluence the specifications for FORTRAN may 
have had on other projects in 1954-55-56, 
that our plans were well advanced and quite 
firm by the end of 1954 and before we had 
contact or knowledge of those other pro- 
jects. Our specifications were not affected 
by them in any significant way as far as I 
am aware, even though some were operating 
before FORTRAN was (since they were prima- 
rily interested in providing an input lan- 
guage rather than in optimization, their 
task was considerably simpler than ours). 

3. The construction of the compiler. 

The FORTRAN compiler (or "translator" as 
we called it then) was begun in early 1955, 
although a lot of work on various schemes 
which would be used in it had been done in 
1954; e.g., Herrick had done a lot of trial 
programming to test out our language and we 
had worked out the basic sort of machine 
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programs which we wanted the compiler to 
generate for various source language 
phrases; Ziller and I had worked out a basic 
scheme for translating arithmetic expres- 
sions. 

But the real work on the compiler got 
under way in our third location on the fifth 
floor of 15 East 56th Street. By the middle 
of February three separate efforts were un- 
derway. The first two of these concerned 
sections I and 2 of the compiler, and the 
third concerned the input, output and as- 
sembly programs we were going to need (see 
below). We believed then that these efforts 
would produce most of the compiler. 

(The entire project was carried on by a 
loose cooperation between autonomous, sep- 
arate groups of one, two, or three people; 
each group was responsible for a "section" 
of the compiler; each group gradually devel- 
oped and agreed upon its own input and out- 
put specifications with the groups for 
neighboring sections; each group invented 
and programmed the necessary techniques for 
doing its assigned job.) 

Section I was to read the entire source 
program, compile what instructions it could, 
and fi]e all the rest of the information 
from the source program in appropriate 
tables'. Thus the compiler was "one pass" 
in the sense that it "saw" the source pro- 
gram only once. Herrick was responsible 
for creating most of the tables, Peter 
Sheridan (who had recently joined us) com- 
piled all the arithmetic expressions, and 
Roy Nutt compiled and/or filed the I/O 
statements. Herrick, Sheridan and Nutt got 
some help later on from R. J. Beeber and H. 
Stern, but they were the architects of sec- 
tion I and wrote most of its code. Sheridan 
devised and implemented a number of optimiz- 
ing transformations on expressions [Sheridan 
1959] which sometimes radically altered them 
(of course without changing their meaning). 
Nutt transformed the I/O "lists of quan- 
tities" into nests of DO statements which 
were then treated by the regular mechanisms 
of the compiler. The rest of the I/O infor- 
mation he filed for later treatment in sec- 
tion 6, the assembler section. (For further 
details about how the various sections of 
the compiler worked see [Backus et al. 
1957] .) 

Using the information that was filed 
in section I, section 2 faced a completely 
new kind of problem; it was required to an- 
alyze the entire structure of the program 
in order to generate optimal code from DO 
statements and references to subscripted 
variables. The simplest way to effect a 
reference to A(I,J) is to evaluate an ex- 
pression involving the address of A(I,1), 
I, and K×J, where K is the length of a col- 
umn (when A is stored column-wise). But this 
calculation, with its multiplication, is 
much less efficient than the way most hand 
coded programs effect a reference to A(I,J), 
namely, by adding an appropriate constant to 

the address of the preceding reference to 
the array A whenever I and J are changing 
linearly. To employ this far more efficient 
method section 2 had to determine when the 
surrounding program was changing I and J 
linearly. 

Thus one problem was that of distinguish- 
ing between, on the one hand, references to 
an array element which the translator might 
treat by incrementing the ad4ress used for 
a previous reference, and those array ref- 
erences, on the other hand, which would re- 
quire an address calculation starting from 
scratch with the current values of the sub- 
scripts. 

It was decided that it was not practical 
to track down and identify linear changes 
in subscripts resulting from assignment 
statements. Thus the sole criterion for 
linear changes, and hence for efficient 
handling of array references, was to be 
that the subscripts involved were being 
controlled by DO statements. Despite this 
simplifying assumption, the number of cases 
that section 2 had to analyze in order to 
produce optimal or near-optimal code was 
very large. (The number of such cases in- 
creased exponentially with the number of 
subscripts; this was a prime factor in our 
decision to limit them to three; the fact 
that the 704 had only three index registers 
was not a factor.) 

It is beyond the scope of this paper to 
go into the details of the analysis which 
section 2 carried out. It will suffice to 
say that it produced code of such efficien- 
cy that its output would startle the pro- 
grammers who studied it. It moved code out 
of loops where that was possible; it took 
advantage of the differences between row- 
wise and column-wise scans; it took note of 
special cases to optimize even the exits 
from loops. The degree of optimization 
performed by section 2 in its treatment of 
indexing, array references, and loops was 
not equalled again until optimizing compil- 
ers began to appear in the middle and late 
sixties. 

The architecture and all the techniques 
employed in section 2 were invented by Rob- 
ert A. Nelson and Irving Ziller. They plan- 
ned and programmed the entire section. Orig- 
inally it was their intention to produce 
the complete code for their area, including 
the choice of the index registers to be 
used (the 704 had three index registers). 
When they started looking at that problem 
it rapidly became clear that it was not go- 
ing to be easy to treat it optimally. At 
that point I proposed that they should pro- 
duce a program for a 704 with an unlimited 
number of index registers, and that later 
sections would analyze the frequency of ex- 
ecution of various parts of the program 
(by a Monte Carlo simulation of its execu- 
tion) and then make index register assign- 
ments so as to minimize the transfers of 
items between the store and the index reg- 
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isters. 

This proposal gave rise to two new sec- 
tions of the compiler which we had not an- 
ticipated, sections 4 and 5 (section 3 was 
added still later to convert the output of 
sections I and 2 to the form required for 
sections 4, 5, and 6). In the fall of 1955 
Lois Mitchell Haibt joined our group to 
plan and program section 4, which was to 
analyze the flow of a program produced by 
sections I and 2, divide it into "basic 
blocks" (which contained no branching), do 
a Monte Carlo (statistical) analysis of the 
expected frequency of execution of basic 
blocks--by simulating the behavior of the 
program and keeping counts of the use of 
each block--using information from DO state- 
ments and FREQUENCY statements, and collect 
information about index register usage (for 
more details see [Backus et al. 1957; Cocke 
and Schwartz 1970 p.511]) . Section 5 
would then do the actual transformation of 
the program from one having an unlimited 
number of index registers to one having only 
three. Again, the section was entirely 
planned and programmed by Haibt. 

Section 5 was planned and programmed by 
Sheldon Best, who was loaned to our group 
by agreement with his employer, Charles W. 
Adams, at the Digital Computer Laboratory 
at MIT; during his stay with us Best was a 
temporary IBM employee. Starting in the 
early fall of 1955, he designed what turned 
out to be, along with section 2, one of the 
most intricate and complex sections of the 
compiler, one which had perhaps more in- 
fluence on the methods used in later com- 
pilers than any other part of the FORTRAN 
compiler. (For a discussion of his tech- 
niques see [Cocke and Schwartz 1970 pp. 510- 
515].) It is impossible to describe his 
register allocation method here; it suffices 
to say that it was to become the basis for 
much subsequent work and produced code which 
was very difficult to improve. 

Although I believe that no provably 
optimal register allocation algorithm is 
known for general programs with loops, etc., 
empirically Best's 1955-56 procedure ap- 
peared to be optimal. For straight-line 
code Best's replacement policy was the same 
as that used in Belady's MIN algorithm, 
which Belady proved to be optimal [Belady 
1965]. Although Best did not publish a 
formal proof, he had convincing arguments 
for the optimality of his policy in 1955. 

Late in 1955 it was recognized that yet 
another section, section 3, was needed. 
This section merged the outputs of the pre- 
ceding sections into a single uniform 704 
program which could refer to any number of 
index registers. It was planned and pro- 
grammed by Richard Goldberg, a mathematician 
who joined us in November 1955. Also, late 
in 1956, after Best had returned to MIT and 
during the debugging of the system, section 
5 was taken over by Goldberg and David 
Sayre (see below), who diagrammed it care- 

fully and took charge of its final debug- 
ging. 

The final section of the compiler, sec- 
tion 6, assembled the final program into 
a relocatable binary program (it could also 
produce a symbolic program in SAP, the 
SHARE Assembly Program for the 704). It 
produced a storage map of the program and 
data that was a compact summary of the FOR- 
TRAN output. Of course it also obtained 
the necessary library programs for inclusion 
in the object program, including those re- 
quired to interpret FORMAT statements and 
perform input-output operations. Taking 
advantage of the special features of the 
programs it assembled, this assembler was 
about ten times faster than SAP. It was 
designed and programmed by Roy Nutt, who 
also wrote all the I/O programs and the re- 
locating binary loader for loading object 
programs. 

By the summer of 1956 large parts of the 
system were working. Sections I, 2, and 3 
could produce workable code provided no 
more than three index registers were needed. 
A number of test programs were compiled and 
run at this time. Nutt took part of the 
system to United Aircraft (sections I, 2, 
and 3 and the part of section 6 which pro- 
duced SAP output). This part of the system 
was productive there from the summer of 
1956 until the complete system was available 
in early 1957. 

From late spring of 1956 to early 1957 
the pace of debugging was intense; often we 
would rent rooms in the Langdon Hotel (which 
disappeared long ago) on 56th Street, 
sleep there a little during the day and then 
stay up all night to get as much use of the 
computer (in the headquarters annex on 57th 
Street) as possible. 

It was an exciting period; when later on 
we began to get fragments of compiled pro- 
grams out of the system, we were often as- 
tonished at the surprising transformations 
in the indexing operations and in the ar- 
rangement of the computation which the com- 
piler made, changes which made the object 
program efficient but which we would not 
have thought to make as programmers our- 
selves (even though, of course, Nelson or 
Ziller could figure out how the indexing 
worked, Sheridan could explain how an ex- 
pression had been optimized beyond recog- 
nition, and Goldberg or Sayre could tell us 
how section 5 had generated additional in- 
dexing operations). Transfers of control 
appeared which corresponded to no source 
statement, expressions were radically re- 
arranged, and the same DO statement might 
produce no instructions in the object pro- 
gram in one context, and in another it 
would produce many instructions in differ- 
ent places in the program. 

By the summer of 1956 what appeared to 
be the imminent completion of the project 
started us worrying (for perhaps the first 

172 



time) about documentation. David Sayre, a 
crystallographer who had joined us in the 
spring (he had earlier consulted with Best 
on the design of section 5 and had later be- 
gun serving as second-in-command of what was 
now the '~Programming Research Department") 
took up the task of writing the Programmer's 
Reference Manual [IBM 1956]. It appeared 
in a glossy cover, handsomely printed, with 
the date October 15, 1956. It stood for 
some time as a unique example of a manual 
for a programming language (perhaps it still 
does): it had wide margins, yet was only 51 
pages long. Its description of the FORTRAN 
language, exclusive of input-output state- 
ments, was 21 pages; the I/O description 
occupied another 11 pages; the rest of it 
was examples and details about arithmetic, 
tables, etc.. It gave an elegant recursive 
definition of expressions (as given by Sher- 
idan), and concise, clear descriptions, with 
examples, of each statement type, of which 
there were 32, mostly machine dependent i- 
tems like SENSE LIGHT, IF DIVIDE CHECK, 
PUNCH, READ DRUM, and so on. (For examples 
of its style see figs. I, 2, and 3.) 

One feature of FORTRAN I is missing from 
the Programmer's Reference Manual, not from 
an oversight of Sayre's, but because it was 
added to the system after the manual was 
written and before the system was distrib- 
uted. This feature was the ability to de- 
fine a function by a "function statement". 
These statements had to precede the rest of 
the program. They looked like assignment 
statements, with the defined function and 
dummy arguments on the left and an expres- 
sion involving those arguments on the right. 
They are described in the addenda to the 
Programmer's Reference Manual [Addenda 1957] 
which we sent on February 8, 1957 to John 
Greenstadt, who was in charge of IBM's fac- 
ility for distributing information to 
SHARE. They are also described in all sub- 
sequent material on FORTRAN I. 

The next documentation task we set our- 
selves was to write a paper describing the 
FORTRAN language and the translator program. 
The result was a paper entitled "The FOR- 
TRAN automatic coding system" [Backus et al. 
1957] which we presented at the Western 
Joint Computer Conference in Los Angeles in 
February 1957. I have mentioned all of the 
thirteen authors of that paper in the pre- 
ceding narrative except one: Robert A. 
Hughes. He was employed by the Livermore 
Radiation Laboratory; by arrangement with 
Sidney Fernbach, he visited us for two or 
three months in the summer of 1956 to help 
us document the system. (The authors of 
that paper were: J. W. Backus, R. J. Beeber, 
S. Best, R. Goldberg, L. M. Haibt, H. L. 
Herrick, R. A. Hughes, R. A. Nelson, R. 
Nutt, D. Sayre, P. B. Sheridan, H. Stern, 
I. Ziller.) 

At about the time of the Western Joint 
Computer Conference we spent some time in 
Los Angeles still frantically debugging the 
system. North American Aviation gave us 

time at night on their 704 to help us in 
our mad rush to distribute the system. Up 
to this point there had been relatively 
little interest from 704 instablations (with 
the exception of Ramshaw's United Aircraft 
shop, Harry Cantrell's GE installation in 
Schenectady, and Sidney Fernbach's Liver- 
more operation), but now that the full sys- 
tem was beginning to generate object pro- 
grams, interest picked up in a number of 
places. 

Sometime in early April 1957 we felt the 
system was sufficiently bug-free to distrib- 
ute to all 704 installations. Sayre and 
Grace Mitchell (see below) started to punch 
out the binary decks of the system, each of 
about 2,000 cards, with the intention to 
make 30 or 40 decks for distribution. This 
process was so error-prone that they had to 
give up after spending an entire night in 
producing only one or two decks. 

(Apparently one of those decks was sent, 
without any identification or directions, 
to the Westinghouse Bettis installation, 
where a puzzled group headed by Herbert S. 
Bright, suspecting that it might be the 
long-awaited FORTRAN deck, proceeded, en- 
tirely by guesswork, to get it to compile 
a test program--after a diagnostic print- 
out noting that a comma was missing 
in a specific statement! This program then 
printed 28 pages of correct results--with a 
few FORMAT errors. The date: April 20, 
1957. An amusing account of this incident 
by Bright is in Computers and Automation 
[Bright 1971].) 

After failing to produce binary decks, 
Sayre devised and programmed the simple 
editor and loader that made it possible to 
distribute and update the system from mag- 
netic tapes; this arrangement served as the 
mechanism for creating new system tapes 
from a master tape and the binary correction 
cards which our group would generate in 
large numbers during the long field debug- 
ging and maintenance period which followed 
distribution. 

With the distribution of the system 
tapes went a "Preliminary Operator's Man- 
ual" [Operator's Manual 1957] dated April 8, 
1957. It describes how to use the tape ed- 
itor and how to maintain the library of 
functions. Five pages of such general in- 
structions are followed by 32 pages of er- 
ror stops; many of these say "source 
program error, get off machine, correct for- 
mula in question and restart problem" and 
then, for example (stop 3624) "non-zero 
level reduction due to insufficient or re- 
dundant parentheses in arithmetic or IF- 
type formula". Shortly after the distrib- 
ution of the system we distributed--one 
copy per installation--what was fondly 
known as the "Tome", the complete symbolic 
listing of the entire compiler plus other 
system and diagnostic information, an 11" 
by 15" volume about four or five inches 
thick. 
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Subscripts. 

G E N E R A L  F O R M  E X A M P L E S  

Let v represent any fixed point variable 

and c (or c') any-unsigned fixed point 

constant. Then a subscript is 

an expression of one of the forms: V 

C 

V+C or V--C 

c *v  

c* V+C'  or c*v--c '  

I 

3 

MU+2 

MU-2 

5 * J  

5 " J + 2  

5 " J - 2  

The  symbol  • denotes multiplication. The  variable v must  not  itself be  sub- 

scripted. 

Subscripted Variables. 

G E N E R A L  F O R M  E X A M P L E S  

A fixed or floating point variable 

followed, by parentheses enclosing 1, 2, or 3 

subscripts separated by commas. 

A(I) 

K(3) 
BEIA(5*.I-2, K + 2,L) 

For  each wlriable that appears  in subscripted form the size of the array (i.e. the 

maxinuun wdues which its subscripts can at tain)  must  be stated in a D I M E N -  

SION sta tement  (see Chapte r  6) preceding the first appearance  of the variable.  

The min imum value which a subscript  may assume in the object  p rogram is + 1. 

A rrangement o / A  rrays in Storage. 

A 2-dimensional  array A will, in the object  p rogram,  be stored sequentially in 

the order  A1,1, A2.1, • . . . . .  Am,l, A],z, A2,2, • . . . . .  Am,2, • . . . . . . . .  Am,,. Thus  

it is stored "columnwise" ,  with the first of its subscripts varying most  rapidly,  

and the last varying least rapidly. The  same is true of 3-dimensional  arrays.  

l -d imensional  arrays are of course simply stored sequentially. All ar rays  are 

stored backwards  in storage; i.e. the above sequence is in the order  of decreas-  

ing absolute location. 

II 

Figure I: Original FORTRAN Manual, Page 11 

174 



Any such routine will be compiled into the object program as a closed subrou- 

tine. In the section on Writing Subroutines for the Master Tape in Chapter  7 

are given the specifications which any such routine must meet. 

Expressions An expression is any sequence of constants,  w~riables (subscripted or not sub- 

scripted),  and functions, separated by operation symbols, commas,  and paren- 

theses so as to form a meaningful  mattmmatical expression. 

However, one special restriction does exist. A FORTRAN expression may 

be either a fixed or a lloating point expression, but it must not be a mixed 

expression. This does not mean that a floating point quant i ty  can not appear 

in a fixed point  expression, or vice versa, but rather that a quanti ty of one 

mode can appear in an expression of the other mode only in certain ways. 

Brielty, a floating point quanti ty can appear in a fixed point expression only 

as an argument  of a function; a fixed point quanti ty can appear  in a floating 

point expression only as an argument of a function, or as a subscript, or as 

an exponent.  

Formal Rules /or Forming Expressions. By repeated use of the following 

rules, all permissible expressions may be derived. 

1. Any fixed point (floating point) constant, variable, or subscripted variable 
is an expression of the same mode. Thus 3 and I are fixed point expressions, 
and AI.I 'HA and A(I,J,K) are tloating point exprcssi~ms. 

2. If SOMEF is some function of n wLriahles, and if E, F . . . . . .  H are a set 
of n expressions of the correct modes for SOMEF, then SONIEF (E, F, 

. . . .  , H) is an expression of the same mode as SOMEF. 

3. If E is an expression, and if its lirst character is not -t or --, then t- E and 

--E are expressions of the same mode as E. Thus - A  is an expression, but 
-k-A is not. 

4. If E is an expression, then (E) is an expression of the same mode as E. 
Thus (A),  ( ( A ) ) ,  ( ( (A) ) ) , . c t c .  are expressions. 

5. If E and F are expressions of the same mode, and if the first character of 
F is not + o r - - ,  then 

E + F  

E - F  
E *  F 

[ / F  

are expressions of the same mode. Thus A--+ B and A / 4  B are not expres- 
sions. The characters + ,  - ,  *, and / denote addition, subtraction, multi- 
plication, and division. 

14 

Figure 2: Original FORTRAN Manual, Page 14 
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S T O P  
GENERAL FORM EXAMPLES 

"STOP" or "STOP n" where n is an STOP 
unsigned octal fixed point constant. STOP 77777 

This s ta tement  causes the machine  to H A L T  in such a way that  pressing the 

S T A R T  but ton has no effect. Therefore ,  in cont ras t  to the P A U S E ,  it is used 

where a ge t -o i l - the -machine  stop, ra ther  than a t empora ry  stop, is desired.  The  

octal  number  n is d i sp layed  on the 704 console in the address  field of the 

storage register.  ( I f  n is not  s tated it is taken to be 0 . )  

D O  
G E N E R A L  F O R M  E X A M P L E S  

"DO n i = m,, m2" or "DO n i = m,, m2, m3" 

where n is a statement number, i is a 

non-subscripted fixed point variable, and 

m,, m2, ma are each either an unsigned fixed point 

constant or a non-subscripted fixed point variable. 

If ma is not stated it is taken to be 1. 

DO 301 = 1,10 

DO301 = 1, M, 3 

The  D O  s ta tement  is a c o m m a n d  to " D O  the s ta tements  which follow, to and 

including the s ta tement  with s ta tement  number  n, repeatedly ,  the first t ime with 

i = m~ and with i increased by mz for  each succeeding t ime; after  they have 

been done with i equal  to the highest of this sequence of values which does not  

exceed m., let control  reach the s ta tement  fol lowing the s ta tement  with state-  

mcnt  number  n". 

The  range of a DO is the set of s ta tements  which will be executed  re- 

pea tedly ;  it is the sequence of consecut ive s ta tements  immedia te ly  following 

the DO,  to and including the s ta tement  n u m b e r e d  n. 

The  index of a DO is the fixed po in t  var iable  i, which is con t ro l led  by the 

DO in such a way that  its value begins at  ml  and is increased  each t ime by 

ma until  it is about  to exceed m> Throughou t  the range it is avai lable  for com-  

puta t ion ,  e i ther  as an o rd inary  fixed poin t  var iable  or  as the var iable  of a 

subscript .  Dur ing  the last execut ion of the range,  the DO is said to be satisfied. 

Suppose,  for example ,  that  cont ro l  has reached s ta tement  10 of the 

p rogram 
10 DO 11 I =  1, 10 

11 A(I) = I*N(I) 

12 

20 

Figure 3: Original FORTRAN Manual, Page 20 
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The proprietors of the six sections were 
kept busy tracking down bugs elicited by 
our customers' use of FORTRAN until the late 
summer of 1957. Hal Stern served as the co- 
ordinator of the field debugging and main- 
tenance effort; he received a stream of 
telegrams, mail and phone calls from all 
over the country and distributed the in- 
coming problems to the appropriate members 
of our group to track down the errors and 
generate correction cards, which he then 
distributed to every installation. 

In the spring of 1957 Grace E. Mitchell 
joined our group to write the Programmer's 
Primer [IBM 1957] for FORTRAN. The Primer 
was divided into three sections; each des- 
cribed successively larger subsets of the 
language accompanied by many example pro- 
grams. The first edition of the Primer was 
issued in the late fall or winter of 1957; 
a slightly revised edition appeared in 

March 1958. Mitchell planned and wrote the 
64-page Primer with some consultation with 
the rest of the group; she later programmed 
most of the extensive changes in the system 
which resulted in FORTRAN II (see below). 

The Primer had an important influence on 
the subsequent growth in the use of the sys- 
tem. I believe it was the only available 
simplified instruction manual (other than 
reference manuals) until the later appear- 
ance of books such as [McCracken 1961], 
[Organick 1963] and many others. 

A report on FORTRAN usage in November 
1958 [Backus 1958] says that "a survey in 
April [1958] of twenty-six 704 installations 
indicates that over half of them use FORTRAN 
[I] for more than half of their problems. 
Many use it for 80~ or more of their work... 
and almost all use it for some of their 
work." By the fall of 1958 there were some 
60 installations with about 66 704s, 
and "... more than half the machine instruc- 
tions for these machines are being produced 
by FORTRAN. SHARE recently designated FOR- 
TRAN as the second official medium for 
transmittal of programs [SAP was the first] 
., ." 

4. FORTRAN II 

During the field debugging period some 
shortcomings of the system design, which we 
had been aware of earlier but had no time 
to deal with, were constantly coming to our 
attention. In the early fall of 1957 we 
started to plan ways of correcting these 
shortcomings; a document dated September 
25, 1957 [Proposed Specifications 1957] 
characterizes them as (a) a need for better 
diagnostics, clearer comments about the 
nature of source program errors, and (b) 
the need for subroutine definition capabil- 
ities. "(Although one FORTRAN I diagnostic 
would pinpoint, in a printout, a missing 
comma in a particular statement, others 
could be very cryptic.) This document is 
titled "Proposed Specifications for FORTRAN 
II for the 704"; it sketches a more general 

diagnostic system and describes the new 
"subroutine definition" and END statements, 
plus some others which were not implemented. 
It describes how symbolic information is 
retained in the relocatable binary form of 
a subroutine so that the "binary symbolic 
subroutine [BSS] loader" can implement ref- 
erences to separately compiled subroutines. 
It describes new prologues for these sub- 
routines and points out that mixtures of 
FORTRAN-coded and assembly-coded relocat- 
able binary programs could be loaded and 
run together. It does not discuss the FUNC- 
TION statement that was also available in 
FORTRAN II. FORTRAN II was designed mostly 
by Nelson, Ziller, and myself. Mitchell 
programmed the majority of new code for 
FORTRAN II (with the most unusual feature 
that she delivered it ahead of schedule). 
She was aided in this by Bernyce Brady and 
LeRoy May. Sheridan planned and made the 
necessary changes in his part of section I; 
Nutt did the same for section 6. FORTRAN 
II was distributed in the spring of 1958. 

5. FORTRAN III 

While FORTRAN II was being developed, 
Ziller was designing an even more advanced 
system that he called FORTRAN III. It al- 
lowed one to write intermixed symbolic in- 
structions and FORTRAN statements. The sym- 
bolic (704) instructions could have FORTRAN 
variables (with or without subscripts) as 
"addresses". In addition to this machine 
dependent feature (which assured the demise 
of FORTRAN III along with that of the 704), 
it contained early versions of a number of 
improvements that were later to appear in 
FORTRAN IV. It had "Boolean" expressions, 
function and subroutine names could be 
passed as arguments, and it had facilities 
for handling alphanumeric data, including 
a new FO~4AT code "A" similar to codes "I" 
and "E". This system was planned and pro- 
grammed by Ziller with some help from Nelson 
and Nutt. Ziller maintained it and made it 
available to about 20 (mostly IBM) instal- 
lations. It was never distributed general- 
ly. It was accompanied by a brief descrip- 
tive document [Additions to FORTRAN II 
1958]. It became available on this limited 
scale in the winter of 1958-59 and was in 
operation until the early sixties, in part 
on the 709 using the compatibility feature 
(which made the 709 order code the same as 
that of the 704). 

6. FORTRAN after 1958; comments. 

By the end of 1958 or early 1959 the 
FORTRAN group (the Programming Research 
Department), while still helping with an 
occasional debugging problem with FORTRAN 
II, was primarily occupied with other re- 
search. Another IBM department had long 
since taken responsibility for the FORTRAN 
system and was revising it in the course of 
producing a translator for the 709 which 
used the same procedures as the 704 FORTRAN 
II translator. Since my friends and I no 
longer had responsibility for FORTRAN and 
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were busy thinking about other things by 
the end of 1958, that seems like a good 
point to break off this account. There 
remain only a few comments to be made about 
the subsequent development of FORTRAN. 

The most obvious defect in FORTRAN II 
for many of its users was the time spent in 
compiling. Even though the facilities of 
FORTRAN II permitted separate compilation 
of subroutines and hence eliminated the 
need to recompile an entire program at each 
step in debugging it, nevertheless compile 
times were long and, during debugging, the 
considerable time spent in optimizing was 
wasted. I repeatedly suggested to those 
who were in charge of FORTRAN that they 
should now develop a fast compiler and/or 
interpreter without any optimizing at all 
for use during debugging and for short-run 
jobs. Unfortunately the developers of 
FORTRAN IV thought they could have the best 
of both worlds in a single compiler, one 
which was both fast and produced optimized 
code. I was unsuccessful in convincing them 
that two compilers would have been far bet- 
ter than the compromise which became the 
original FORTRAN IV compiler. The latter 
was not nearly as fast as later compilers 
like WATFOR [Cress, Dirksen and Graham 1970] 
nor did it produce as good code as FORTRAN 
II. (For more discussion of later develop- 
ments with FORTRAN see [Backus and Heising 
196~] .) 

My own opinion as to the effect of FOR- 
TRAN on later languages and the collective 
impact of such languages on programming gen- 
erally is not a popular opinion. That 
viewpoint is the subject of a long paper 
[Backus 1978] which should appear soon in 
the Communications of the ACM. I now re- 
gard all conventional languages (e.g., the 
FORTRANs, the ALGOLs, their successors and 
derivatives) as increasingly complex elab- 
orations of the style of programming dic- 
tated by the von Neumann computer. These 
"von Neumann languages" create enormous, 
unnecessary intellectual roadblocks in 
thinking about programs and in creating the 
higher level combining forms required in a 
really powerful programming methodology. 
Von Neumann languages constantly keep our 
noses pressed in the dirt of address com- 
putation and the separate computation of 
single words, whereas we should be focusing 
on the form and content of the overall re- 
sult we are trying to produce. We have 
come to regard the DO, FOR, WHILE statements 
and the like as powerful tools, whereas 
they are in fact weak palliatives that are 
necessary to make the primitive von Neumann 
style of programming viable at all. 

By splitting programming into a world of 
expressions on the one hand and a world of 
statements on the other, von Neumann lan- 
guages prevent the effective use of higher 
level combining forms; the lack of the lat- 
ter makes the definitional capabilities of 
yon Neumann languages so weak that most of 
their important features cannot be defined-- 

starting with a small, elegant framework-- 
but must be built into the framework of the 
language at the outset. The Gargantuan size 
of recent von Neumann languages is eloquent 
proof of their inability to define new con- 
structs: for no one would build in so many 
complex features if they could be defined 
and would fit into the existing framework 
later on. 

The world of expressions has some elegant 
and useful mathematical properties whereas 
the world of statements is a disorderly one, 
without useful mathemetical properties. 
Structured programming can be viewed as a 
modest effort to introduce a small amount 
of order into the chaotic world of state- 
ments. The work of Hoare [1969], 
Dijkstra [1976] and others to axiom- 
atize the properties of the statement world 
can be viewed as a valiant and effective 
effort to be precise about those properties, 
ungainly as they may be. 

This is not the place for me to elaborate 
any further my views about von Neumann lan- 
guages. My point is this: while it was 
perhaps natural and inevitable that lan- 
guages like FORTRAN and its successors 
should have developed out of the concept of 
the von Neumann computer as they did, the 
fact that such languages have dominated our 
thinking for twenty years is unfortunate. 
It is unfortunate because their long-stand- 
ing familiarity will make it hard for us to 
understand and adopt new programming styles 
which one day will offer far greater intel- 
lectual and computational power. 
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