
THE HISTORY OF FORTRAN I, II, AND III

John Backus

IBM Research Laboratory
San Jose, California

I. Early background and environment.

1.1 Attitudes about automatic programming
in the 1950's.

Before 1954 almost all programming was
done in machine language or assembly lan-
guage. Programmers rightly regarded their
work as a complex, creative art that re-
quired human inventiveness to produce an
efficient program. Much of their effort
was devoted to overcoming the difficulties
created by the computers of that era: the
lack of index registers, the lack of built-
in floating point operations, restricted
instruction sets (which might have AND but
not OR, for example), and primitive input-
output arrangements. Given the nature of
computers, the services which "automatic
programming" performed for the programmer
were concerned with overcoming the machine's
shortcomings. Thus the primary concern of
some "automatic programming" systems was to
allow the use of symbolic addresses and
decimal numbers (e.g., the MIDAC Input
Translation Program [Brown and Carr 1954]).

But most of the larger "automatic. pro-
gramming" systems (with the exception of
Laning and Zierler's algebraic system [Lan-
ing and Zierler 1954] and the A-2 compiler
[Remington Rand 1953; Moser 1954]) simply
provided a synthetic "computer" with an or-
der code different from that of the real
machine. This synthetic computer usually
had floating point instructions and index
registers and had improved input-output com-
mands; it was therefore much easier to pro-
gram than its real counterpart.

The A-2 compiler also came to be a syn-
thetic computer sometime after early 1954.
But in early 1954 its input had a much
cruder form; instead of "pseudo-instruc-
tions" its input was then a complex sequence
of "compiling instructions" that could take
a variety of forms ranging from machine code
itself to lengthy groups of words consti-
tuting rather clumsy calling sequences for
the desired floating point subroutine, to
"abbreviated form" instructions that were
converted by a "Translator" into ordinary
"compiling instructions" [Moser 1954].

After May 1954 the A-2 compiler acquired
a "pseudocode" which was similar to the or-
der codes for many floating point interpret-
ive systems that were already in operation
in 1953: e.g., the Los Alamos systems, DUAL
and SHACO [Bouricius 1953; Schlesinger 1953],
the MIT "Summer Session Computer" [Adams and
Laning 1954], a system for the ILLIAC de-
signed by D. J. Wheeler [Muller 1954], and
the SPEEDCODING system for the IBM 701
[Backus 1954].

The Laning and zierler system was quite
a different story: it was the world's first
operating algebraic compiler, a rather ele-
gant but simple one. Knuth and Pardo [1977]
assign this honor to Alick Glennie's AUTO-
CODE, but I, for one, am unable to recognize
the sample AUTOCODE program they give as
"algebraic", especially when it is compared
to the corresponding Laning and Zierler
program.

All of the early "automatic programming"
systems were costly to use, since they slow-
ed the machine down by a factor of five or
ten. The most common reason for the slow-
down was that these systems were spending
most of their time in floating point sub-
routines. Simulated indexing and other
"housekeeping" operations could be done with
simple inefficient techniques, since, slow
as they were, they took far less time than
the floating point work.

Experience with slow "automatic program-
ming" systems, plus their own experience
with the problems of organizing loops
and address modification, had convinced
programmers that efficient programming was
something that could not be automated. An-
other reason that "automatic programming"
was not taken seriously by the computing
community came from the energetic public
relations efforts of some visionaries to
spread the word that their "automatic pro-
gramming" systems had almost human abilities
to understand the language and needs of the
user; whereas closer inspection of these
same systems would often reveal a complex,
exception-ridden performer of clerical tasks
which was both difficult to use and ineffi-
cient. Whatever the reasons, it is diffi-
cult to convey to a reader in the late sev-

© 1978 Association for Computing Machinery, Inc. 1 6 5 ACM SlGPLAN Notices, VoI. 13, No. 8, August 1978

enties the strength of the skepticism about
"automatic programming" in general and about
its ability to produce efficient programs
in particular, as it existed in 1954.

(In the above discussion of attitudes
about "automatic programming" in 1954 I have
mentioned only those actual systems of which
my colleagues and I were aware at the time.
For a comprehensive treatment of early pro-
graining systems and languages I recommend
the article by Knuth and Pardo [1977] and
Sammet [1969].)

1.2 The economics of programming.

Another factor which influenced the de-
velopment of FORTRAN was the economics of
programming in 1954. The cost of program-
mers associated with a computer center was
usually at least as great as the cost of the
computer itself. (This fact follows from
the average salary-plus-overhead and number
of programmers at each center and from the
computer rental figures.) In addition, from
one quarter to one half of the computer's
time was spent in debugging. Thus p~ogram-
ming and debugging accounted for as much as
three quarters of the cost of operating a
computer; and obviously, as computers got
cheaper, this situation would get worse.

This economic factor was one of the prime
motivations which led me to propose the FOR-
TRAN project in a letter to my boss, Cuth-
bert Hurd, in late 1953 (the exact date is
not known but other facts suggest December
1953 as a likely date). I believe that the
economic need for a system like FORTRAN was
one reason why IBM and my successive bosses,
Hurd, Charles DeCarlo, and John McPherson,
provided for our constantly expanding needs
over the next five years without ever ask-
ing us to project or justify those needs in
a formal budget.

1.3 Programming systems in 1954.

It is difficult for a programmer of to-
day to comprehend what "automatic program-
ming" meant to programmers in 1954. To
many it then meant simply providing mnemon-
ic operation codes and symbolic addresses,
to others it meant the simple'process of
obtaining subroutines from a library and
inserting the addresses of operands into
each subroutine. Most "automatic program-
ming" systems were either assembly programs,
or subroutine-fixing programs, or, most
popularly, interpretive systems to provide
floating point and indexing operations.
My friends and I were aware of a number of
assembly programs and interpretive systems,
some of which have been mentioned above;
besides these there were primarily two
other systems of significance: the A-2
compiler [Remington Rand 1953; Moser 1954]
and the Laning and Zierler [1954] algebraic
compiler at MIT. As noted above, the A-2
compiler was at that time largely a sub-
routine-fixer (its other principal task was
to provide for "overlays"); but from the

standpoint of its input "programs" it pro-
vided fewer conveniences than most of the
then current interpretive systems mention-
ed earlier; it later adopted a "pseudo-
code" as input which was similar to the
input codes of these interpretive systems.

The Laning and Zierler system accepted
as input an elegant but rather simple alge-
braic language. It permitted single-letter
variables (identifiers) which could have a
single constant or variable subscript. The
repertoire of functions one could use were
denoted by "F" with an integer superscript
to indicate the "catalog number" of the de-
sired function. Algebraic expressions were
compiled into closed subroutines and placed
on a magnetic drum for subsequent use. The
system was originally designed for the
Whirlwind computer when it had 1,024 stor-
age cells, with the result that it caused
a slowdown in execution speed by a factor
of about ten [Adams and Laning 1954].

The effect of the Laning and Zierler
system on the development of FORTRAN is a
question which has been muddled by many
misstatements on my part. For many years
I believed that we had gotten the idea for
using algebraic notation in FORTRAN from
seeing a demonstration of the Laning and
Zierler system at MIT. In preparing a pa-
per [Backus 1976] for the International
Research Conference on the History of Com-
puting at Los Alamos (June 10-15, 1976),
I reviewed the matter with Irving Ziller
and obtained a copy of a 1954 letter [Backus
1954a] (which Dr. Laning kindly sent to me).
As a result the facts of the matter have
become clear. The letter in question is
one I sent to Dr. Laning asking for a
demonstration of his system. It makes clear
that we had learned of his work at the
Office of Naval Research Symposium on Auto-
matic Programming for Digital Computers,
May 13-14, 1954, and that the demonstration
took place on June 2, 1954. The letter
also makes clear that the FORTRAN project
was well under way when the letter was sent
(May 21, 1954) and included Harlan Herrick,
Robert A. Nelson, and Irving Ziller as well
as myself. Furthermore, an article in the
proceedings of that same ONR Symposium by
Herrick and myself [Backus and Herrick 1954]
shows clearly that we were already consid-

• b " ering input expressions like "Zaij jk

and "X÷Y". We went on to raise the ques-
tion "...can a machine translate a suffi-
ciently rich mathematical language into a
sufficiently economical program at a suf-
ficiently low cost to make the whole affair
feasible?"

These and other remarks in our paper
presented at the Symposium in May 1954 make
it clear that we were already considering
algebraic input considerably more sophis-
ticated than that of Laning and Zierler's
system when we first heard of their pioneer-
ing work. Thus, although Laning and Zierler
had already produced the world's first al-

166

gebraic compiler, our basic ideas for FOR-
TRAN had been developed independently; thus
it is difficult to know what, if any, new
ideas we got from seeing the demonstration
of their system.

Quasi-footnote: In response
to suggestions of the Program Committee
let me try to deal explicitly with
the question of what work might have in-
fluenced our early ideas for FORTRAN, al-
though it is mostly a matter of listing
work of which we were then unaware. I have
already discussed the work of Laning and
Zierler and the A-2 compiler. The work of
Heinz Rutishauser [1952] is discussed later
on. Like most of the world (except perhaps
Rutishauser and Corrado B6hm--who was the
first to describe a compiler in its own
language [B6hm 195~]) we were entirely un-
aware of the work of Konrad Zuse [1959;
1972]. Zuse's "Plankalk~l", which he com-
pleted in 1945, was, in some ways, a more
elegant and advanced programming language
than those that appeared ten and fifteen
years later.

We were also unaware of the work of
Mauchly et al. ("Short Code", 1950) , Burks
("Intermediate PL", 1950) , B6hm (1951) ,
Glennie ("AUTOCODE", 1952) as discussed in
Knuth and Pardo [1977]. We were aware of
but not influenced by the automatic program-
ming efforts which simulated a synthetic
computer (e.g., MIT "Summer Session Com-
puter", SHACO, DUAL, SPEEDCODING, and the
ILLIAC system), since their languages and
systems were so different from those of
FORTRAN. Nor were we influenced by alge-
braic systems which were designed after
our "Preliminary Report" [1954] but which
began operation before FORTRAN (e.g.,
BACAIC [Grems and Porter 1956], IT [Per-
lis, Smith and Van Zoeren 1957], MATH-
MATIC [Ash et al. 1957]). Although PACT
I [Baker 1956] was not an algebraic com-
piler, it deserves mention as a signifi-
cant development designed after the FOR-
TRAN language but in operation before
FORTRAN, which also did not influence our
work. (End of quasi-footnote.)

Our ONR Symposium article [Backus and
Herrick 195~] also makes clear that the
FORTRAN group was already aware that it
faced a new kind of problem in automatic
programming. The viability of most compil-
ers and interpreters prior to FORTRAN had
rested on the fact that most source language
operations were not machine operations.
Thus even large inefficiencies in perform-
ing both looping/testing operations and
computing addresses were masked by most op-
erating time being spent in floating point
subroutines. But the advent of the 70~ with
built in. floating point and indexing radi-
cally altered the situation. The 70~ pre-
sented a double challenge to those who
wanted to simplify programming; first it re-
moved the raison d'Etre of earlier systems
by providing in hardware the operations they

existed to provide; second, it increased the
problem of generating efficient programs by
an order of magnitude by speeding up float-
ing point operations by a factor of ten and
thereby leaving inefficiencies nowhere to
hide. In view of the widespread skepticism
about the possibility of producing efficient
programs with an automatic programming sys-
tem and the fact that inefficiencies could
no longer be hidden, we were convinced that
the kind of system we had in mind would be
widely used only if we could demonstrate
that it would produce programs almost as
efficient as hand coded ones and do so on
virtually every job.

It was our belief that if FORTRAN, dur-
ing its first months, were to translate any
reasonable "scientific" source program into
an object program only half as fast as its
hand coded counterpart, then acceptance of
our system would be in serious danger.
This belief caused us to regard the design
of the translator as the real challenge,
not the simple task of designing the lan-
guage. Our belief in the simplicity of
language design was partly confirmed by the
relative ease with which similar languages
had been independently developed by Rutis-
hauser [1952], Laning and Zierler [1954],
and ourselves; whereas we were alone in
seeking to produce really efficient object
programs.

To this day I believe that our emphasis
on object program efficiency rather than on
language design was basically correct. I
believe that had we failed to produce ef-
ficient programs, the widespread use of
languages like FORTRAN would have been se-
riously delayed. In fact, I believe that
we are in a similar, but unrecognized, sit-
uation today: in spite of all the fuss that
has been made over myriad language details,
current conventional languages are still
very weak programming aids, and far more
powerful languages would be in use today
if anyone had found a way to make them run
with adequate efficiency. In other words,
the next revolution in programming will
take place only when both of the following
requirements have been met: (a) a new kind
of programming language, far more powerful
than those of today, has been developed
and (b) a technique has been found for ex-
ecuting its programs at not much greater
cost than that of today's programs.

Because of our 1954 view that success in
producing efficient programs was more im-
portant than the design of the FORTRAN lan-
guage, I consider the history of the com-
piler construction and the work of its in-
ventors an integral part of the history of
the FORTRAN language; therefore a later
section deals with that subject.

2. The early stages of the FORTRAN project.

After Cuthbert Hurd approved my proposal
to develop a practical automatic program-
ming system for the 704 in December 1953 or

167

January 1954, Irving Ziller was assigned to
the project. We started work in one of the
many small offices the project was to oc-
cupy in the vicinity of IBM headquarters
at 590 Madison Avenue in New York; the
first of these was in the Jay Thorpe Build-
ing on Fifth Avenue. By May 1954 we had
been joined by Harlan Herrick and then by
a new employee who had been hired to do
technical typing, Robert A. Nelson (with
Ziller, he soon began designing one of the
most sophisticated sections of the compiler;
he is now an IBM Fellow). By about May we
had moved to the 19th floor of the annex of
590 Madison Avenue, next to the elevator
machinery; the ground floor of this build-
ing housed the 701 installation on which
customers tested their programs before the
arrival of their own machines. It was here
that most of the FORTRAN language was de-
signed, mostly by Herrick, Ziller and my-
self, except that most of the input-output
language and facilities were designed by
Roy Nutt, an employee of United Aircraft
Corp. who was soon to become a member of
the FORTRAN project.

After we had finished designing most of
the language we heard about Rutishauser's
proposals for a similar language [Rutis-
hauser 1952]. It was characteristic of the
unscholarly attitude of most programmers
then, and of ourselves in particular, that
we did not bother to carefully review the
sketchy translation of his proposals that
we finally obtained, since from their sym-
bolic content they did not appear to add
anything new to our proposed language.
Rutishauser's language had a for statement
and one-dimensional arrays, but no IF, GOTO,
nor I/O statements. Subscript variables
could not be used as ordinary variables and
operator precedence was ignored. His 1952
article described two compilers for this
language (for more details see [Knuth and
Pardo 1977]).

As far as we were aware, we simply made
up the language as we went along. We did
not regard language design as a difficult
problem, merely a simple prelude to the
real problem: designing a compiler which
could produce efficient programs. Of
course one of our goals was to design a
language which would make it possible for
engineers and scientists to write programs
themselves for the 704. We also wanted to
eliminate a lot of the bookkeeping and de-
tailed, repetitive planning which hand cod-
ing involved. Very early in our work we
had in mind the notions of assignment state-
ments, subscripted variables, and the DO
statement (which I believe was proposed by
Herrick). We felt that these provided a
good basis for achieving our goals for the
language, and whatever else was needed e-
merged as we tried to build a way of pro-
gramming on these basic ideas.

We certainly had no idea that languages
almost identical to the one we were working
on would be used for more than one IBM com-

puter, not to mention those of other manu-
facturers. (After all, there were very few
computers around then.) But we did expect
our system to have a big impact, in the
sense that it would make programming for
the 704 very much faster, cheaper, more re-
liable. We also expected that, if we were
successful in meeting our goals, other
groups and manufacturers would follow our
example in reducing the cost of programming
by providing similar systems with different
but similar languages [Preliminary Report
1954].

By the fall of 1954 we had become the
"Programming Research Group" and I had be-
come its "manager". By November of that
year we had produced a paper: "Preliminary
Report, Specifications for the IBM Mathemat-
ical FORmula TRANslating System, FORTRAN"
[Preliminary Report 1954] dated November 10.
In its introduction we noted that "systems
which have sought to reduce the job of cod-
ing and debugging problems have offered the
choice of easy coding and slow execution or
laborious coding and fast execution." On
the basis more of faith than of knowledge,
we suggested that programs "will be executed
in about the same time that would be re-
quired had the problem been laboriously
hand coded." In what turned out to be a
true statement, we said that "FORTRAN may
apply complex, lengthy techniques in coding
a problem which the human coder would have
neither the time nor inclination to derive
or apply."

The language described in the "Prelimin-
ary Report" had variables of one or two
characters in length, function names of
three or more characters, recursively de-
fined "expressions", subscripted variables
with up to three subscripts, "arithmetic
formulas" (which turn out to be assignment
statements), and "DO-formulas". These lat-
ter formulas could specify both the first
and last statements to be controlled, thus
permitting a DO to control a distant se-
quence of statements, as well as specifying
a third statement to which control would
pass following the end of the iteration.
If only one statement was specified, the
"range" of the DO was the sequence of state-
ments following the DO down to the specified
statement.

Expressions in "arithmetic formulas"
could be "mixed": involve both "fixed point"
(integer) and "floating point" quantities.
The arithmetic used (all integer or all
floating point) to evaluate a mixed expres-
sion was determined by the type of the
variable on the left of the "=" sign. "IF-
formulas" employed an equality or inequal-
ity sign ("=" or ">" or ">=") between two
(restricted) expressions, followed by two
statement numbers, one for the "true" case,
the other for the "false" case.

A "Relabel formula" was designed to make
it easy to rotate, say, the indices of the
rows of a matrix so that the same computa-

168

tion would apply, after relabelling, even
though a new row had been read in and the
next computation was now to take place on
a different, rotated set of rows. Thus,
for example, if b is a 4 by 4 matrix, after
RELABEL b(3,1), a reference to b(1,j) has
the same meaning as b(3,j) before relabel-
ling; b(2,j) after = b(4,j) before; b(3,j)
after = b(1,j) before; and b(4,j) after =
b(2,j) before relabelling.

The input-output statements provided in-
cluded the basic notion of specifying the
sequence in which data was to be read in or
out, but did not include any "Format" state-
ments.

The Report also lists four kinds of
"specification sentences": (I) "dimension
sentences" for giving the dimensions of ar-
rays, (2) "equivalence sentences" for as-
signing the same storage locations to var-
iables, (3) "frequency sentences" for in-
dicating estimated relative frequency of
branch paths or loops to help the compiler
optimize the object program, and (4) "rel-
ative constant sentences" to indicate sub-
script variables which are expected to
change their values very infrequently.

Toward the end of the Report (pp. 26-27)
there is a section "Future additions to the
FORTRAN system". Its first item is: "a
variety of new input-output formulas which
would enable the programmer to specify var-
ious formats for cards, printing, input
tapes and output tapes" It is believed
that this item is a result of our early
consultations with Roy Nutt. This section
goes on to list other proposed facilities
to be added: complex and double precision
arithmetic, matrix arithmetic, sorting,
solving simultaneous equations, differential
equations, and linear programming problems.
It also describes function definition cap-
abilities similar to those which later ap-
peared in FORTRAN II; facilities for num-
erical integration; a summation operator;
and table lookup facilities.

The final section of the Report (pp 28-
29) discusses programming techniques to use
to help the system produce efficient pro-
grams. It discusses how to use parentheses
to help the system identify identical sub-
expressions within an expression and there-
by eliminate their duplicate calculation.
These parentheses had to be supplied only
when a recurring subexpression occurred as
part of a term (e.g., if a~b occurred in
several places, it would be better to write
the term a~b~c as (a~b)~c to avoid duplicate
calculation); otherwise the system would
identify duplicates without any assistance.
It also observes that the system would not
produce optimal code for loops constructed
without DO statements.

This final section of the Report also
notes that "no special provisions have been
included in the FORTRAN system for locating
errors in formulas". It suggests checking

a program "by independently recreating the
specifications for a problem from its FOR-
TRAN formulation [!]" It says nothing
about the system catching syntactic errors,
but notes that an error-finding program can
be written after some experience with errors
has been accumulated.

Unfortunately we were hopelessly opti-
mistic in 1954 about the problems of debug-
ging FORTRAN programs (thus we find on page
2 of the Report: "Since FORTRAN should vir-
tually eliminate coding and debugging...
[!]") and hence syntactic error checking
facilities in the first distribution of
FORTRAN I were weak. Better facilities
were added not long after distribution and
fairly good syntactic checking was provided
in FORTRAN II.

The FORTRAN language described in the
Programmer's Reference Manual dated October
15, 1956 [IBM 1956] differed in a few re-
spects from that of the Preliminary Report,
but, considering our ignorance in 1954 of
the problems we would later encounter in
producing the compiler, there were remark-
ably few deletions (the Relabel and Rela-
tive Constant statements), a few retreats,
some fortunate, some not (simplification of
DO statements, dropping inequalities from
IF statements--for lack of a ">" symbol,
and prohibiting most "mixed" expressions
and subscripted subscripts), and the recti-
fication of a few omissions (addition of
FORMAT, CONTINUE, computed and assigned GO-
TO statements, increasing the length of var-
iables to up to six characters, and general
improvement of input-output statements).

Since our entire attitude about language
design had always been a very casual one,
the changes which we felt to be desirable
during the course of writing the compiler
were made equally casually. We never felt
that any of them involved a real sacrifice
in convenience or power (with the possible
exception of the Relabel statement, whose
purpose was to coordinate input-output with
computations on arrays, but this was one
facility which we felt would have been
really difficult to implement). I believe
the simplification of the original DO state-
ment resulted from the realization that
(a) it would be hard to describe precisely,
(b) it was awkward to compile, and (c) it
provided little power beyond that of the
final version.

In our naive unawareness of language
design problems--of course we knew nothing
of many issues which were later thought to
be important, e.g., block structure, con-
ditional expressions, type declarations--
it seemed to us that once one had the no-
tions of the assignment statement, the sub-
scripted variable, and the DO statement in
hand (and these were among our earliest i-
deas), then the remaining problems of lan-
guage design were trivial: either their sol-
ution was thrust upon one by the need to
provide some machine facility such as read-

169

ing input, or by some programming task which
could not be done with existing structures
(e.g., skipping to the end of a DO loop
without skipping the indexing instructions
there: this gave rise to the CONTINUE state-
ment).

One much-criticized design choice in
FORTRAN concerns the use of spaces: blanks
were ignored, even blanks in the middle of
an identifier. Roy Nutt reminds me that
that choice was partly in recognition of a
problem widely known in SHARE, the 704 us-
ers' association. There was a common pro-
blem with keypunchers not recognizing or
properly counting blanks in handwritten
data, and this caused many errors. We also
regarded ignoring blanks as a device to en-
able programmers to arrange their programs
in a more readable form without altering
their meaning or introducing complex rules
for formatting statements.

Another debatable design choice was to
rule out "mixed" mode expressions involving
both integer and floating point quantities.
Although our Preliminary Report had included
such expressions, and rules for evaluating
them, we felt that if code for type conver-
sion were to be generated, the user should
be aware of that, and the best way to insure
that he was aware was to ask him to specify
them. I believe we were also doubtful of
the usefulness of the rules in our Report
for evaluating mixed expressions. In any
case, the most common sort of "mixtures"
was allowed: integer exponents and func-
tion arguments were allowed in a floating
point expression.

In late 1954 and early 1955, after com-
pleting the Preliminary Report, Harlan Her-
rick, Irving Ziller and I gave perhaps five
or six talks about our plans for FORTRAN to
various groups of IBM customers who had or-
dered a 704 (the 704 had been announced
about May 1954). At these talks we covered
the material in the Report and discussed our
plans for the compiler (which was to be com-
pleted within about six months [!] ; this
was to remain the interval-to-completion
until it actually was completed over two
years later, in April 1957). In addition
to informing customers about our plans, an-
other purpose of these talks was to assemble
a list of their objections and further re-
quirements. In this we were disappointed;
our listeners were mostly skeptical; I be-
lieve they had heard too many glowing des-
criptions of what turned out to be clumsy
systems to take us seriously. In those days
one was accustomed to finding lots of pecul-
iar but significant restrictions in a system
when it finally arrived that had not been
mentioned in its original description. Most
of all, our claims that we would produce ef-
ficient object programs were disbelieved.
Whatever thereasons, we received almost no
suggestions or feedback; our listeners had
done almost no thinking about the problems
we faced and had almost no suggestions or
criticisms. Thus we felt that our trips to

Washington (D.C.), Albuquerque, Pittsburgh,
Los Angeles, and one or two other places
were not very helpful.

One trip to give our talk, probably in
January 1955, had an excellent payoff. This
talk, at United Aircraft Corp., resulted in
an agreement between our group and Walter
Ramshaw at United Aircraft that Roy Nutt
would become a regular part of our effort
(although remaining an employee of United
Aircraft) to contribute his expertise on
input-output and assembly routines. With a
few breaks due to his involvement in writing
various SHARE programs, he would thenceforth
come to New York two or three times a week
until early 1957.

It is difficult to assess the influence
the early work of the FORTRAN group had on
other projects. Certainly the discussion
of Laning and Zierler's algebraic compiler
at the ONR Symposium in May 1954 would have
been more likely to persuade someone to un-
dertake a similar line of effort than would
the brief discussion of the merits of using
"a fairly natural mathematical language"
that appeared there in the paper by Herrick
and myself [Backus and Herrick 1954]. But
it was our impression that our discussions
with various groups after that time, their
access to our Preliminary Report, and their
awareness of the extent and seriousness of
our efforts, that these factors either gave
the initial stimulus to some other projects
or at least caused them to be more active
than they might have been otherwise. It
was our impression, for example, that the
"IT" project [Perlis, Smith and Van Zoeren
1957] at Purdue and later at Carnegie-Mellon
began shortly after the distribution of our
Preliminary Report, as did the "MATH-MATIC"
project [Ash et al. 1957] at Sperry Rand.

It is not clear what influence, if any,
our Los Angeles talk and earlier contacts
with members of their group had on the PACT
I effort [Baker 1956], which I believe was
already in its formative stages when we got
to Los Angeles. It is clear, whatever in-
fluence the specifications for FORTRAN may
have had on other projects in 1954-55-56,
that our plans were well advanced and quite
firm by the end of 1954 and before we had
contact or knowledge of those other pro-
jects. Our specifications were not affected
by them in any significant way as far as I
am aware, even though some were operating
before FORTRAN was (since they were prima-
rily interested in providing an input lan-
guage rather than in optimization, their
task was considerably simpler than ours).

3. The construction of the compiler.

The FORTRAN compiler (or "translator" as
we called it then) was begun in early 1955,
although a lot of work on various schemes
which would be used in it had been done in
1954; e.g., Herrick had done a lot of trial
programming to test out our language and we
had worked out the basic sort of machine

170

programs which we wanted the compiler to
generate for various source language
phrases; Ziller and I had worked out a basic
scheme for translating arithmetic expres-
sions.

But the real work on the compiler got
under way in our third location on the fifth
floor of 15 East 56th Street. By the middle
of February three separate efforts were un-
derway. The first two of these concerned
sections I and 2 of the compiler, and the
third concerned the input, output and as-
sembly programs we were going to need (see
below). We believed then that these efforts
would produce most of the compiler.

(The entire project was carried on by a
loose cooperation between autonomous, sep-
arate groups of one, two, or three people;
each group was responsible for a "section"
of the compiler; each group gradually devel-
oped and agreed upon its own input and out-
put specifications with the groups for
neighboring sections; each group invented
and programmed the necessary techniques for
doing its assigned job.)

Section I was to read the entire source
program, compile what instructions it could,
and fi]e all the rest of the information
from the source program in appropriate
tables'. Thus the compiler was "one pass"
in the sense that it "saw" the source pro-
gram only once. Herrick was responsible
for creating most of the tables, Peter
Sheridan (who had recently joined us) com-
piled all the arithmetic expressions, and
Roy Nutt compiled and/or filed the I/O
statements. Herrick, Sheridan and Nutt got
some help later on from R. J. Beeber and H.
Stern, but they were the architects of sec-
tion I and wrote most of its code. Sheridan
devised and implemented a number of optimiz-
ing transformations on expressions [Sheridan
1959] which sometimes radically altered them
(of course without changing their meaning).
Nutt transformed the I/O "lists of quan-
tities" into nests of DO statements which
were then treated by the regular mechanisms
of the compiler. The rest of the I/O infor-
mation he filed for later treatment in sec-
tion 6, the assembler section. (For further
details about how the various sections of
the compiler worked see [Backus et al.
1957] .)

Using the information that was filed
in section I, section 2 faced a completely
new kind of problem; it was required to an-
alyze the entire structure of the program
in order to generate optimal code from DO
statements and references to subscripted
variables. The simplest way to effect a
reference to A(I,J) is to evaluate an ex-
pression involving the address of A(I,1),
I, and K×J, where K is the length of a col-
umn (when A is stored column-wise). But this
calculation, with its multiplication, is
much less efficient than the way most hand
coded programs effect a reference to A(I,J),
namely, by adding an appropriate constant to

the address of the preceding reference to
the array A whenever I and J are changing
linearly. To employ this far more efficient
method section 2 had to determine when the
surrounding program was changing I and J
linearly.

Thus one problem was that of distinguish-
ing between, on the one hand, references to
an array element which the translator might
treat by incrementing the ad4ress used for
a previous reference, and those array ref-
erences, on the other hand, which would re-
quire an address calculation starting from
scratch with the current values of the sub-
scripts.

It was decided that it was not practical
to track down and identify linear changes
in subscripts resulting from assignment
statements. Thus the sole criterion for
linear changes, and hence for efficient
handling of array references, was to be
that the subscripts involved were being
controlled by DO statements. Despite this
simplifying assumption, the number of cases
that section 2 had to analyze in order to
produce optimal or near-optimal code was
very large. (The number of such cases in-
creased exponentially with the number of
subscripts; this was a prime factor in our
decision to limit them to three; the fact
that the 704 had only three index registers
was not a factor.)

It is beyond the scope of this paper to
go into the details of the analysis which
section 2 carried out. It will suffice to
say that it produced code of such efficien-
cy that its output would startle the pro-
grammers who studied it. It moved code out
of loops where that was possible; it took
advantage of the differences between row-
wise and column-wise scans; it took note of
special cases to optimize even the exits
from loops. The degree of optimization
performed by section 2 in its treatment of
indexing, array references, and loops was
not equalled again until optimizing compil-
ers began to appear in the middle and late
sixties.

The architecture and all the techniques
employed in section 2 were invented by Rob-
ert A. Nelson and Irving Ziller. They plan-
ned and programmed the entire section. Orig-
inally it was their intention to produce
the complete code for their area, including
the choice of the index registers to be
used (the 704 had three index registers).
When they started looking at that problem
it rapidly became clear that it was not go-
ing to be easy to treat it optimally. At
that point I proposed that they should pro-
duce a program for a 704 with an unlimited
number of index registers, and that later
sections would analyze the frequency of ex-
ecution of various parts of the program
(by a Monte Carlo simulation of its execu-
tion) and then make index register assign-
ments so as to minimize the transfers of
items between the store and the index reg-

171

isters.

This proposal gave rise to two new sec-
tions of the compiler which we had not an-
ticipated, sections 4 and 5 (section 3 was
added still later to convert the output of
sections I and 2 to the form required for
sections 4, 5, and 6). In the fall of 1955
Lois Mitchell Haibt joined our group to
plan and program section 4, which was to
analyze the flow of a program produced by
sections I and 2, divide it into "basic
blocks" (which contained no branching), do
a Monte Carlo (statistical) analysis of the
expected frequency of execution of basic
blocks--by simulating the behavior of the
program and keeping counts of the use of
each block--using information from DO state-
ments and FREQUENCY statements, and collect
information about index register usage (for
more details see [Backus et al. 1957; Cocke
and Schwartz 1970 p.511]) . Section 5
would then do the actual transformation of
the program from one having an unlimited
number of index registers to one having only
three. Again, the section was entirely
planned and programmed by Haibt.

Section 5 was planned and programmed by
Sheldon Best, who was loaned to our group
by agreement with his employer, Charles W.
Adams, at the Digital Computer Laboratory
at MIT; during his stay with us Best was a
temporary IBM employee. Starting in the
early fall of 1955, he designed what turned
out to be, along with section 2, one of the
most intricate and complex sections of the
compiler, one which had perhaps more in-
fluence on the methods used in later com-
pilers than any other part of the FORTRAN
compiler. (For a discussion of his tech-
niques see [Cocke and Schwartz 1970 pp. 510-
515].) It is impossible to describe his
register allocation method here; it suffices
to say that it was to become the basis for
much subsequent work and produced code which
was very difficult to improve.

Although I believe that no provably
optimal register allocation algorithm is
known for general programs with loops, etc.,
empirically Best's 1955-56 procedure ap-
peared to be optimal. For straight-line
code Best's replacement policy was the same
as that used in Belady's MIN algorithm,
which Belady proved to be optimal [Belady
1965]. Although Best did not publish a
formal proof, he had convincing arguments
for the optimality of his policy in 1955.

Late in 1955 it was recognized that yet
another section, section 3, was needed.
This section merged the outputs of the pre-
ceding sections into a single uniform 704
program which could refer to any number of
index registers. It was planned and pro-
grammed by Richard Goldberg, a mathematician
who joined us in November 1955. Also, late
in 1956, after Best had returned to MIT and
during the debugging of the system, section
5 was taken over by Goldberg and David
Sayre (see below), who diagrammed it care-

fully and took charge of its final debug-
ging.

The final section of the compiler, sec-
tion 6, assembled the final program into
a relocatable binary program (it could also
produce a symbolic program in SAP, the
SHARE Assembly Program for the 704). It
produced a storage map of the program and
data that was a compact summary of the FOR-
TRAN output. Of course it also obtained
the necessary library programs for inclusion
in the object program, including those re-
quired to interpret FORMAT statements and
perform input-output operations. Taking
advantage of the special features of the
programs it assembled, this assembler was
about ten times faster than SAP. It was
designed and programmed by Roy Nutt, who
also wrote all the I/O programs and the re-
locating binary loader for loading object
programs.

By the summer of 1956 large parts of the
system were working. Sections I, 2, and 3
could produce workable code provided no
more than three index registers were needed.
A number of test programs were compiled and
run at this time. Nutt took part of the
system to United Aircraft (sections I, 2,
and 3 and the part of section 6 which pro-
duced SAP output). This part of the system
was productive there from the summer of
1956 until the complete system was available
in early 1957.

From late spring of 1956 to early 1957
the pace of debugging was intense; often we
would rent rooms in the Langdon Hotel (which
disappeared long ago) on 56th Street,
sleep there a little during the day and then
stay up all night to get as much use of the
computer (in the headquarters annex on 57th
Street) as possible.

It was an exciting period; when later on
we began to get fragments of compiled pro-
grams out of the system, we were often as-
tonished at the surprising transformations
in the indexing operations and in the ar-
rangement of the computation which the com-
piler made, changes which made the object
program efficient but which we would not
have thought to make as programmers our-
selves (even though, of course, Nelson or
Ziller could figure out how the indexing
worked, Sheridan could explain how an ex-
pression had been optimized beyond recog-
nition, and Goldberg or Sayre could tell us
how section 5 had generated additional in-
dexing operations). Transfers of control
appeared which corresponded to no source
statement, expressions were radically re-
arranged, and the same DO statement might
produce no instructions in the object pro-
gram in one context, and in another it
would produce many instructions in differ-
ent places in the program.

By the summer of 1956 what appeared to
be the imminent completion of the project
started us worrying (for perhaps the first

172

time) about documentation. David Sayre, a
crystallographer who had joined us in the
spring (he had earlier consulted with Best
on the design of section 5 and had later be-
gun serving as second-in-command of what was
now the '~Programming Research Department")
took up the task of writing the Programmer's
Reference Manual [IBM 1956]. It appeared
in a glossy cover, handsomely printed, with
the date October 15, 1956. It stood for
some time as a unique example of a manual
for a programming language (perhaps it still
does): it had wide margins, yet was only 51
pages long. Its description of the FORTRAN
language, exclusive of input-output state-
ments, was 21 pages; the I/O description
occupied another 11 pages; the rest of it
was examples and details about arithmetic,
tables, etc.. It gave an elegant recursive
definition of expressions (as given by Sher-
idan), and concise, clear descriptions, with
examples, of each statement type, of which
there were 32, mostly machine dependent i-
tems like SENSE LIGHT, IF DIVIDE CHECK,
PUNCH, READ DRUM, and so on. (For examples
of its style see figs. I, 2, and 3.)

One feature of FORTRAN I is missing from
the Programmer's Reference Manual, not from
an oversight of Sayre's, but because it was
added to the system after the manual was
written and before the system was distrib-
uted. This feature was the ability to de-
fine a function by a "function statement".
These statements had to precede the rest of
the program. They looked like assignment
statements, with the defined function and
dummy arguments on the left and an expres-
sion involving those arguments on the right.
They are described in the addenda to the
Programmer's Reference Manual [Addenda 1957]
which we sent on February 8, 1957 to John
Greenstadt, who was in charge of IBM's fac-
ility for distributing information to
SHARE. They are also described in all sub-
sequent material on FORTRAN I.

The next documentation task we set our-
selves was to write a paper describing the
FORTRAN language and the translator program.
The result was a paper entitled "The FOR-
TRAN automatic coding system" [Backus et al.
1957] which we presented at the Western
Joint Computer Conference in Los Angeles in
February 1957. I have mentioned all of the
thirteen authors of that paper in the pre-
ceding narrative except one: Robert A.
Hughes. He was employed by the Livermore
Radiation Laboratory; by arrangement with
Sidney Fernbach, he visited us for two or
three months in the summer of 1956 to help
us document the system. (The authors of
that paper were: J. W. Backus, R. J. Beeber,
S. Best, R. Goldberg, L. M. Haibt, H. L.
Herrick, R. A. Hughes, R. A. Nelson, R.
Nutt, D. Sayre, P. B. Sheridan, H. Stern,
I. Ziller.)

At about the time of the Western Joint
Computer Conference we spent some time in
Los Angeles still frantically debugging the
system. North American Aviation gave us

time at night on their 704 to help us in
our mad rush to distribute the system. Up
to this point there had been relatively
little interest from 704 instablations (with
the exception of Ramshaw's United Aircraft
shop, Harry Cantrell's GE installation in
Schenectady, and Sidney Fernbach's Liver-
more operation), but now that the full sys-
tem was beginning to generate object pro-
grams, interest picked up in a number of
places.

Sometime in early April 1957 we felt the
system was sufficiently bug-free to distrib-
ute to all 704 installations. Sayre and
Grace Mitchell (see below) started to punch
out the binary decks of the system, each of
about 2,000 cards, with the intention to
make 30 or 40 decks for distribution. This
process was so error-prone that they had to
give up after spending an entire night in
producing only one or two decks.

(Apparently one of those decks was sent,
without any identification or directions,
to the Westinghouse Bettis installation,
where a puzzled group headed by Herbert S.
Bright, suspecting that it might be the
long-awaited FORTRAN deck, proceeded, en-
tirely by guesswork, to get it to compile
a test program--after a diagnostic print-
out noting that a comma was missing
in a specific statement! This program then
printed 28 pages of correct results--with a
few FORMAT errors. The date: April 20,
1957. An amusing account of this incident
by Bright is in Computers and Automation
[Bright 1971].)

After failing to produce binary decks,
Sayre devised and programmed the simple
editor and loader that made it possible to
distribute and update the system from mag-
netic tapes; this arrangement served as the
mechanism for creating new system tapes
from a master tape and the binary correction
cards which our group would generate in
large numbers during the long field debug-
ging and maintenance period which followed
distribution.

With the distribution of the system
tapes went a "Preliminary Operator's Man-
ual" [Operator's Manual 1957] dated April 8,
1957. It describes how to use the tape ed-
itor and how to maintain the library of
functions. Five pages of such general in-
structions are followed by 32 pages of er-
ror stops; many of these say "source
program error, get off machine, correct for-
mula in question and restart problem" and
then, for example (stop 3624) "non-zero
level reduction due to insufficient or re-
dundant parentheses in arithmetic or IF-
type formula". Shortly after the distrib-
ution of the system we distributed--one
copy per installation--what was fondly
known as the "Tome", the complete symbolic
listing of the entire compiler plus other
system and diagnostic information, an 11"
by 15" volume about four or five inches
thick.

173

Subscripts.

G E N E R A L F O R M E X A M P L E S

Let v represent any fixed point variable

and c (or c') any-unsigned fixed point

constant. Then a subscript is

an expression of one of the forms: V

C

V+C or V--C

c *v

c* V+C' or c*v--c '

I

3

MU+2

MU-2

5 * J

5 " J + 2

5 " J - 2

The symbol • denotes multiplication. The variable v must not itself be sub-

scripted.

Subscripted Variables.

G E N E R A L F O R M E X A M P L E S

A fixed or floating point variable

followed, by parentheses enclosing 1, 2, or 3

subscripts separated by commas.

A(I)

K(3)
BEIA(5*.I-2, K + 2,L)

For each wlriable that appears in subscripted form the size of the array (i.e. the

maxinuun wdues which its subscripts can at tain) must be stated in a D I M E N -

SION sta tement (see Chapte r 6) preceding the first appearance of the variable.

The min imum value which a subscript may assume in the object p rogram is + 1.

A rrangement o / A rrays in Storage.

A 2-dimensional array A will, in the object p rogram, be stored sequentially in

the order A1,1, A2.1, • Am,l, A],z, A2,2, • Am,2, • Am,,. Thus

it is stored "columnwise" , with the first of its subscripts varying most rapidly,

and the last varying least rapidly. The same is true of 3-dimensional arrays.

l -d imensional arrays are of course simply stored sequentially. All ar rays are

stored backwards in storage; i.e. the above sequence is in the order of decreas-

ing absolute location.

II

Figure I: Original FORTRAN Manual, Page 11

174

Any such routine will be compiled into the object program as a closed subrou-

tine. In the section on Writing Subroutines for the Master Tape in Chapter 7

are given the specifications which any such routine must meet.

Expressions An expression is any sequence of constants, w~riables (subscripted or not sub-

scripted), and functions, separated by operation symbols, commas, and paren-

theses so as to form a meaningful mattmmatical expression.

However, one special restriction does exist. A FORTRAN expression may

be either a fixed or a lloating point expression, but it must not be a mixed

expression. This does not mean that a floating point quant i ty can not appear

in a fixed point expression, or vice versa, but rather that a quanti ty of one

mode can appear in an expression of the other mode only in certain ways.

Brielty, a floating point quanti ty can appear in a fixed point expression only

as an argument of a function; a fixed point quanti ty can appear in a floating

point expression only as an argument of a function, or as a subscript, or as

an exponent.

Formal Rules /or Forming Expressions. By repeated use of the following

rules, all permissible expressions may be derived.

1. Any fixed point (floating point) constant, variable, or subscripted variable
is an expression of the same mode. Thus 3 and I are fixed point expressions,
and AI.I 'HA and A(I,J,K) are tloating point exprcssi~ms.

2. If SOMEF is some function of n wLriahles, and if E, F H are a set
of n expressions of the correct modes for SOMEF, then SONIEF (E, F,

. . . . , H) is an expression of the same mode as SOMEF.

3. If E is an expression, and if its lirst character is not -t or --, then t- E and

--E are expressions of the same mode as E. Thus - A is an expression, but
-k-A is not.

4. If E is an expression, then (E) is an expression of the same mode as E.
Thus (A), ((A)) , (((A))) , . c t c . are expressions.

5. If E and F are expressions of the same mode, and if the first character of
F is not + o r - - , then

E + F

E - F
E * F

[/ F

are expressions of the same mode. Thus A--+ B and A / 4 B are not expres-
sions. The characters + , - , *, and / denote addition, subtraction, multi-
plication, and division.

14

Figure 2: Original FORTRAN Manual, Page 14

175

S T O P
GENERAL FORM EXAMPLES

"STOP" or "STOP n" where n is an STOP
unsigned octal fixed point constant. STOP 77777

This s ta tement causes the machine to H A L T in such a way that pressing the

S T A R T but ton has no effect. Therefore , in cont ras t to the P A U S E , it is used

where a ge t -o i l - the -machine stop, ra ther than a t empora ry stop, is desired. The

octal number n is d i sp layed on the 704 console in the address field of the

storage register. (I f n is not s tated it is taken to be 0 .)

D O
G E N E R A L F O R M E X A M P L E S

"DO n i = m,, m2" or "DO n i = m,, m2, m3"

where n is a statement number, i is a

non-subscripted fixed point variable, and

m,, m2, ma are each either an unsigned fixed point

constant or a non-subscripted fixed point variable.

If ma is not stated it is taken to be 1.

DO 301 = 1,10

DO301 = 1, M, 3

The D O s ta tement is a c o m m a n d to " D O the s ta tements which follow, to and

including the s ta tement with s ta tement number n, repeatedly , the first t ime with

i = m~ and with i increased by mz for each succeeding t ime; after they have

been done with i equal to the highest of this sequence of values which does not

exceed m., let control reach the s ta tement fol lowing the s ta tement with state-

mcnt number n".

The range of a DO is the set of s ta tements which will be executed re-

pea tedly ; it is the sequence of consecut ive s ta tements immedia te ly following

the DO, to and including the s ta tement n u m b e r e d n.

The index of a DO is the fixed po in t var iable i, which is con t ro l led by the

DO in such a way that its value begins at ml and is increased each t ime by

ma until it is about to exceed m> Throughou t the range it is avai lable for com-

puta t ion , e i ther as an o rd inary fixed poin t var iable or as the var iable of a

subscript . Dur ing the last execut ion of the range, the DO is said to be satisfied.

Suppose, for example , that cont ro l has reached s ta tement 10 of the

p rogram
10 DO 11 I = 1, 10

11 A(I) = I*N(I)

12

20

Figure 3: Original FORTRAN Manual, Page 20

176

The proprietors of the six sections were
kept busy tracking down bugs elicited by
our customers' use of FORTRAN until the late
summer of 1957. Hal Stern served as the co-
ordinator of the field debugging and main-
tenance effort; he received a stream of
telegrams, mail and phone calls from all
over the country and distributed the in-
coming problems to the appropriate members
of our group to track down the errors and
generate correction cards, which he then
distributed to every installation.

In the spring of 1957 Grace E. Mitchell
joined our group to write the Programmer's
Primer [IBM 1957] for FORTRAN. The Primer
was divided into three sections; each des-
cribed successively larger subsets of the
language accompanied by many example pro-
grams. The first edition of the Primer was
issued in the late fall or winter of 1957;
a slightly revised edition appeared in

March 1958. Mitchell planned and wrote the
64-page Primer with some consultation with
the rest of the group; she later programmed
most of the extensive changes in the system
which resulted in FORTRAN II (see below).

The Primer had an important influence on
the subsequent growth in the use of the sys-
tem. I believe it was the only available
simplified instruction manual (other than
reference manuals) until the later appear-
ance of books such as [McCracken 1961],
[Organick 1963] and many others.

A report on FORTRAN usage in November
1958 [Backus 1958] says that "a survey in
April [1958] of twenty-six 704 installations
indicates that over half of them use FORTRAN
[I] for more than half of their problems.
Many use it for 80~ or more of their work...
and almost all use it for some of their
work." By the fall of 1958 there were some
60 installations with about 66 704s,
and "... more than half the machine instruc-
tions for these machines are being produced
by FORTRAN. SHARE recently designated FOR-
TRAN as the second official medium for
transmittal of programs [SAP was the first]
., ."

4. FORTRAN II

During the field debugging period some
shortcomings of the system design, which we
had been aware of earlier but had no time
to deal with, were constantly coming to our
attention. In the early fall of 1957 we
started to plan ways of correcting these
shortcomings; a document dated September
25, 1957 [Proposed Specifications 1957]
characterizes them as (a) a need for better
diagnostics, clearer comments about the
nature of source program errors, and (b)
the need for subroutine definition capabil-
ities. "(Although one FORTRAN I diagnostic
would pinpoint, in a printout, a missing
comma in a particular statement, others
could be very cryptic.) This document is
titled "Proposed Specifications for FORTRAN
II for the 704"; it sketches a more general

diagnostic system and describes the new
"subroutine definition" and END statements,
plus some others which were not implemented.
It describes how symbolic information is
retained in the relocatable binary form of
a subroutine so that the "binary symbolic
subroutine [BSS] loader" can implement ref-
erences to separately compiled subroutines.
It describes new prologues for these sub-
routines and points out that mixtures of
FORTRAN-coded and assembly-coded relocat-
able binary programs could be loaded and
run together. It does not discuss the FUNC-
TION statement that was also available in
FORTRAN II. FORTRAN II was designed mostly
by Nelson, Ziller, and myself. Mitchell
programmed the majority of new code for
FORTRAN II (with the most unusual feature
that she delivered it ahead of schedule).
She was aided in this by Bernyce Brady and
LeRoy May. Sheridan planned and made the
necessary changes in his part of section I;
Nutt did the same for section 6. FORTRAN
II was distributed in the spring of 1958.

5. FORTRAN III

While FORTRAN II was being developed,
Ziller was designing an even more advanced
system that he called FORTRAN III. It al-
lowed one to write intermixed symbolic in-
structions and FORTRAN statements. The sym-
bolic (704) instructions could have FORTRAN
variables (with or without subscripts) as
"addresses". In addition to this machine
dependent feature (which assured the demise
of FORTRAN III along with that of the 704),
it contained early versions of a number of
improvements that were later to appear in
FORTRAN IV. It had "Boolean" expressions,
function and subroutine names could be
passed as arguments, and it had facilities
for handling alphanumeric data, including
a new FO~4AT code "A" similar to codes "I"
and "E". This system was planned and pro-
grammed by Ziller with some help from Nelson
and Nutt. Ziller maintained it and made it
available to about 20 (mostly IBM) instal-
lations. It was never distributed general-
ly. It was accompanied by a brief descrip-
tive document [Additions to FORTRAN II
1958]. It became available on this limited
scale in the winter of 1958-59 and was in
operation until the early sixties, in part
on the 709 using the compatibility feature
(which made the 709 order code the same as
that of the 704).

6. FORTRAN after 1958; comments.

By the end of 1958 or early 1959 the
FORTRAN group (the Programming Research
Department), while still helping with an
occasional debugging problem with FORTRAN
II, was primarily occupied with other re-
search. Another IBM department had long
since taken responsibility for the FORTRAN
system and was revising it in the course of
producing a translator for the 709 which
used the same procedures as the 704 FORTRAN
II translator. Since my friends and I no
longer had responsibility for FORTRAN and

177

were busy thinking about other things by
the end of 1958, that seems like a good
point to break off this account. There
remain only a few comments to be made about
the subsequent development of FORTRAN.

The most obvious defect in FORTRAN II
for many of its users was the time spent in
compiling. Even though the facilities of
FORTRAN II permitted separate compilation
of subroutines and hence eliminated the
need to recompile an entire program at each
step in debugging it, nevertheless compile
times were long and, during debugging, the
considerable time spent in optimizing was
wasted. I repeatedly suggested to those
who were in charge of FORTRAN that they
should now develop a fast compiler and/or
interpreter without any optimizing at all
for use during debugging and for short-run
jobs. Unfortunately the developers of
FORTRAN IV thought they could have the best
of both worlds in a single compiler, one
which was both fast and produced optimized
code. I was unsuccessful in convincing them
that two compilers would have been far bet-
ter than the compromise which became the
original FORTRAN IV compiler. The latter
was not nearly as fast as later compilers
like WATFOR [Cress, Dirksen and Graham 1970]
nor did it produce as good code as FORTRAN
II. (For more discussion of later develop-
ments with FORTRAN see [Backus and Heising
196~] .)

My own opinion as to the effect of FOR-
TRAN on later languages and the collective
impact of such languages on programming gen-
erally is not a popular opinion. That
viewpoint is the subject of a long paper
[Backus 1978] which should appear soon in
the Communications of the ACM. I now re-
gard all conventional languages (e.g., the
FORTRANs, the ALGOLs, their successors and
derivatives) as increasingly complex elab-
orations of the style of programming dic-
tated by the von Neumann computer. These
"von Neumann languages" create enormous,
unnecessary intellectual roadblocks in
thinking about programs and in creating the
higher level combining forms required in a
really powerful programming methodology.
Von Neumann languages constantly keep our
noses pressed in the dirt of address com-
putation and the separate computation of
single words, whereas we should be focusing
on the form and content of the overall re-
sult we are trying to produce. We have
come to regard the DO, FOR, WHILE statements
and the like as powerful tools, whereas
they are in fact weak palliatives that are
necessary to make the primitive von Neumann
style of programming viable at all.

By splitting programming into a world of
expressions on the one hand and a world of
statements on the other, von Neumann lan-
guages prevent the effective use of higher
level combining forms; the lack of the lat-
ter makes the definitional capabilities of
yon Neumann languages so weak that most of
their important features cannot be defined--

starting with a small, elegant framework--
but must be built into the framework of the
language at the outset. The Gargantuan size
of recent von Neumann languages is eloquent
proof of their inability to define new con-
structs: for no one would build in so many
complex features if they could be defined
and would fit into the existing framework
later on.

The world of expressions has some elegant
and useful mathematical properties whereas
the world of statements is a disorderly one,
without useful mathemetical properties.
Structured programming can be viewed as a
modest effort to introduce a small amount
of order into the chaotic world of state-
ments. The work of Hoare [1969],
Dijkstra [1976] and others to axiom-
atize the properties of the statement world
can be viewed as a valiant and effective
effort to be precise about those properties,
ungainly as they may be.

This is not the place for me to elaborate
any further my views about von Neumann lan-
guages. My point is this: while it was
perhaps natural and inevitable that lan-
guages like FORTRAN and its successors
should have developed out of the concept of
the von Neumann computer as they did, the
fact that such languages have dominated our
thinking for twenty years is unfortunate.
It is unfortunate because their long-stand-
ing familiarity will make it hard for us to
understand and adopt new programming styles
which one day will offer far greater intel-
lectual and computational power.

Acknowledgments

My greatest debt in connection with this
paper is to my old friends and colleagues
whose creativity, hard work and invention
made FORTRAN possible. It is a pleasure to
acknowledge my gratitude to them for their
contributions to the project, for making
our work together so long ago such a con-
genial and memorable experience, and, more
recently, for providing me with a great
amount of information and helpful material
in preparing this paper and for their care-
ful reviews of an earlier draft. For all
this I thank all those who were associated
with the FORTRAN project but who are too
numerous to list here. In particular I
want to thank those who were the principal
movers in making FORTRAN a reality: Sheldon
Best, Richard Goldberg, Lois Haibt, Harlan
Herrick, Grace Mitchell, Robert Nelson, Roy
Nutt, David Sayre, Peter Sheridan, and
Irving Ziller.

I also wish to thank Bernard Galler,
J. A. N. Lee, and Henry Tropp for their am-
iable, extensive and invaluable suggestions
for improving the first draft of this paper.
I am grateful too for all the work of the
program committee in preparing helpful ques-
tions that suggested a number of topics in
the paper.

178

REFERENCES
Most of the items listed below have dates

in the fifties, thus many that appeared in
the open literature will be obtainable only
in the largest and oldest collections. The
items with an asterisk were either not pub-
lished or were of such a nature as to make
their availability even less likely than
that of the other items.

Adams, Charles W. and Laning, J. H., Jr.
195~ May. The MIT systems of automatic
coding: Comprehensive, Summer Session,
and Algebraic. In Proc. Symp. on Auto-
matic Programming for Digital Computers.
Washington DC: The Office of Naval Re-
search.

•Addenda to the FORTRAN Programmer's Ref-
erence Manual. 1957 February 8. (Trans-
mitted to Dr. John Greenstadt, Special
Programs Group, Applied Science Division,
IBM, for distribution to SHARE members,
by letter from John W. Backus, Program-
ming Research Dept. IBM. 5 pages.)

•Additions to FORTRAN II 1958. Description
of Source Language Additions to the FOR-
TRAN II System. New York: Programming
Research, IBM Corp. (Distributed to users
of FORTRAN III. 12 pages.)

•Ash, R.; Broadwin, E.; Della Valle, V.;
Katz, C.; Greene, M.; Jenny, A.; and Yu,
L. 1957. Preliminary Manual for MATH-
MATIC and AR!TH-MATIC Systems (for Alge-
braic Translation and Compilation for
UNIVAC I and II). Philadelphia Pa: Rem-
ington Rand UNIVAC.

Backus, J. W. 1954 January. The IBM 701
Speedcoding system. JACM I (I):4-6.

*Backus, John 1954 May 21. Letter to J. H.
Laning, Jr.

Backus, J. W. 1958 November. Automatic
programming: properties and performance
of FORTRAN systems I and II. In Proc.
S~mp. on the Mechanisation of Thought
Processes. Teddington, Middlesex, Eng-
land: The National Physical Laboratory.

Backus, John 1976 June 10-15. Programming
in America in the nineteen fifties--
some personal impressions. In Proc.
International Conf. on the History of
Computing, Los Alamos. (Publisher yet to
be selected.)

Backus, John 1978. The von Neumann style
as an obstacle to high level programming;
an alternative functional style and its
algebra of programs. (to appear CACM).

Backus, J. W. and Heising, W. P. 1964 Aug-
ust. "FORTRAN. In IEEE Transactions on
Electronic Computers. Vol EC-13 (4):
382-385.

Backus, John W. and Herrick, Harlan 1954
May. IBM 701 Speedcoding and other auto-

matic programming systems. In Proc.
Symp. on Automatic Programming for Digi-
tal Computers. Washington DC: The Office
of Naval Research.

Backus, J. W.; Beeber, R. J.; Best, S.;
Goldberg, R.; Haibt, L. M.; Herrick,
H. L.; Nelson, R. A.; Sayre, D.; Sheri-
dan, P. B.; Stern, H.; Ziller, I.;
Hughes, R. A.; and Nutt, R. 1957 Feb-
ruary. The FORTRAN automatic coding
system. In Proc. Western Joint Computer
Conf. Los Angeles.

Baker, Charles L. 1956 October. The PACT
I coding system for the IBM Type 701.
JACM 3 (4): 272-278.

Belady, L.A. 1965 June 15. Measurements
on programs: one level store simulation.
Yorktown Heights NY: IBM Thomas J. Watson
Research Center. Report RC 1420.

B6hm, Corrado 1954. Calculatrices digi-
tales: Du d~chiffrage de formules logi-
co-math~matiques par la machine m~me dans
la conception du programme. In Annali
di Matematica Pura ed Applicata 37 (4):
175-217.

Bouricius, Willard G. 1953 December. Op-
erating experience with the Los Alamos
701. In Proc. Eastern Joint_Computer
Conf. Washington DC.

Bright, Herbert S. 1971 November. FORTRAN
comes to Westinghouse-Bettis, 1957. In
Computers and Automation.

Brown, J. H. and Carr, John W., III 1954
May. Automatic programming and its de-
velopment on MIDAC. In Proc. Symp. on
Automatic Programming for Digital Com-
puters. Washington DC: The Office of
Naval Research.

Cocke, John and Schwartz, J. T. 1970 April.
Programming Languages and their Compil-
ers. (Preliminary Notes, Second Revised
Version, April 1970) New York: New York
University, The Courant Institute of
Mathematical Sciences.

Cress, Paul; Dirksen, Paul; and Graham, J.
Wesley 1970. FORTRAN IV with WATFOR
and WATFIV. Englewood Cliffs NJ: Pren-
tice-Hall.

Dijkstra, Edsger W. 1976. A Discipline of
Programming. Englewood Cliffs NJ: Pren-
tice-Hall.

Grems, Mandalay and Porter, R. E. 1956.
A truly automatic programming system.
In Proc. Western Joint Computer Conf.
10-21.

Hoare, C. A. R. 1969 October. An axiomatic
basis for computer programming. CACM
12 (10): 576-580, 583.

179

• IBM 1956 October 15. Programmer's Refer-
ence Manual, The FORTRAN Automatic Cod-
ing System for the IBM 704 EDPM. New
York: IBM Corp. (Applied Science Division
and Programming Research Dept., Working
Committee: J. W. Backus, R. J. Beeber,
S. Best, R. Goldberg, H. L. Herrick, R.
A. Hughes [Univ. of calif. Radiation Lab.
Livermore, Calif.], L. B. Mitchell, R. A.
Nelson, R. Nutt [United Aircraft Corp.,
East Hartford, Conn.], D. Sayre, P. B.
Sheridan, H. Stern, I. Ziller).

• IBM 1957. Progra~nmer's Primer for FORTRAN
Automatic Coding System for the IBM 704.
New York: IBM Corp. Form No. 32-0306.

Knuth, Donald E. and Pardo, Luis Trabb
1977. Early development of programming
languages. In Encyclopedia of Computer
Science and Technology. Vol 7:419-493.
New York: Marcel Dekker.

• Laning, J. H. and Zierler, N. 1954 Jan-
uary. A program for translation of math-
ematical equations for Whirlwind I.
Cambridge Mass.: MIT Instrumentation Lab.
Engineering Memorandum E-364.

McCracken, Daniel D. 1961. A Guide to
FORTRAN Programming. New York: Wiley.

Moser, Nora B. 1954 May. Compiler method
of automatic programming. In Proc. Symp.
on Automatic Programming for Digital
Computers. Washington DC: The Office of
Naval Research.

Muller, David E. 1954 May. Interpretive
routines in the ILLIAC library. In
Proc. Symp. on Automatic Programming for
Digital Computers. Washington DC: The
Office of Naval Research.

• Operator's Manual 1957 April 8. Prelim-
inary Operator's Manual for the FORTRAN
Automatic Coding System for the IBM 704
EDPM. New York: IBM Corp. Programming
Research Dept.

Organick, Elliot I. 1963. A FORTRAN Prim-
er. Reading Mass.: Addison-Wesley.

• Perlis, A. J.; Smith, J. W.; and Van Zoer-
en, H. R. 1957 March. Internal Trans-
lator (IT): a compiler for the 650.
Pittsburgh: Carnegie Institute of Tech.

• Preliminary Report 1954 November 10.
Specifications for the IBM mathematical
FORmula TRANslating system, FORTRAN.
New York: IBM Corp. (Report by Program-
ming Research Group, Applied Science Div-
ision, IBM. Distributed to prospective
704 customers and other interested par-
ties. 29 pages.)

• Proposed Specifications 1957 September 25.
Proposed Specifications for FORTRAN II
for the 704. (Unpublished memorandum,
Programming Research Dept. IBM.)

*Remington Rand, Inc. 1953 November 15.
The A-2 compiler system operations man-
ual. Prepared by Richard K. Ridgway and
Margaret H. Harper under the direction
of Grace M. Hopper.

Rutishauser, Heinz 1952. Automatische
Rechenplanfertigung bei progran~ges-
teuerten Rechenmaschinen. In Mitteilung-
en aus dem Inst. fur angew. Math. an der
E. T. H. ZUrich. Nr. 3. Basel: Birk-
h~user.

Sammet, Jean E. 1969. Progranuaing Lan-
guages: History and Fundamentals.
Englewood Cliffs NJ: Prentice Hall.

Sheridan, Peter B. 1959 February. The
arithmetic translator-compiler of the
IBM FORTRAN automatic coding system.
CACM 2 (2) :9-21.

• Schlesinger, S. I. 1953 July. Dual cod-
ing system. Los Alamos NM: Los Alamos
Scientific Lab. Los Alamos Report LA
1573.

Zuse, K. 1959. Dber den PlankalkUl. In
Elektron. Rechenanl. 1:68-71.

Zuse, K. 1972. Der Plankalkul. In Ber-
ichte der Gesellschaft fur Mathematik
und Datenverarbeitung. 63, part 3. Bonn.
(Manuscript prepared in 1945.)

180

