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HE FORTRAN project was begun in the sum- 
mer of 1954. I ts  purpose was to reduce by a large 
factor the task of preparing scientific problems for 

IBM's next large computer, the 704. If i t  were possible 
for the 704 to  code problems for itself and produce as 
good programs as human coders (but without the 
errors), i t  was clear that  large benefits could be achieved. 
For i t  was known that  about two-thirds of the cost of 
solving most scientific and engineering problems on 
large computers was that  of problem preparation. 
Furthermore, more than 90 per cent of the elapsed time 
for a problem was usually devoted to  planning, writing, 
and debugging the program. In many cases the de- 
velopment of a general plan for solving a problem was 
a small job in comparison to  the task of devising and 
coding machine procedures to  carry out the plan. The 
goal of the FORTRAN project was to  enable the pro- 
grammer to specify a numerical procedure using a con- 
cise language like that  of mathematics and obtain 
automatically from this specification an efficient 704 
program to  carry out the procedure. I t  was expected 
that  such a system would reduce the coding and de- 
bugging task to less than one-fifth of the job it  had been. 

Two and one-half years and 18 man years have elapsed 
since the beginning of the project. The FORTRAN 
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system is now copplete. I t  has two components: the 
FORTRAN language, in which programs are written, 
and the translator or executive routine for the 704 
which effects the translation of FORTRAN language 
programs into 704 programs. Descriptions of the FOR- 
TRAN language and the translator form the principal 
sections of this paper. 

The experience of the FORTRAN group in using the 
system has confirmed the original expectations con- 
cerning reduction of the task of problem preparation 

1 

and the efficiency of output programs. A brief case 
history of one job done with a system seldom gives a 
good measure of its usefulness, particularly when the 
selection is made by the authors of the system. 
Nevertheless, here are the facts about a rather simple 
but sizable job. The programmer attended a one-day 
course on FORTRAN and spent some more time re- 
ferring to  the manual. He then programmed the job 
in four hours, using 47 FORTRAN statements. These 
were compiled by the 704 in six minutes, producing 
about 1000 instructions. He ran the program and found 
the output incorrect. He studied the output (no tracing 
or memory dumps were used) and was able to localize 
his error in a FORTRAN statement he had written. 
He rewrote the offending statement, recompiled, and 
found that  the resulting program was correct. He esti- 
mated that  i t  might have taken three days to code this 
job by hand, plus an unknown time to  debug it ,  and 
that  no appreciable increase in speed of execution would 
have been achieved thereby. 
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THE FORTRAN LANGUAGE 
The FORTRAN language is most easily described 

by reviewing some examples. 

Arithmetic Statements 

Example 1 : Compute : 

- (B/2) 4- d(B/2) - AC . 
root = 

FORTRAN Program : 

ROOT 
= ( - (B/2.0) + SQRTF((B/2.0) * * 2 - A * C))/A. 

Notice that  the desired erogram is a single FOR- 
TRAN statement, an arithmetic formula. I ts  meaning 
is: "Evaluate the expression on the right of the = sign 
and make this the value of the variable on the left.?' 
The symbol * denotes multiplication and * * denotes 
exponentiation (i.e., A * * B means AB). The program 
which is generated from this statement effects the 
computation in floating point arithmetic, avoids com- 
puting (B/2.0) twice and computes (B/2.0) * * 2 by a 
multiplication rather than by an exponentiation routine. 
[Had (B/2.O) * * 2.01 appeared instead, an exponentia- 
tion routine would necessarily be used, requiring more 
time than the multiplication.] 

The programmer can refer to  quantities in both 
floating point and integer form. Integer quantities 

\ a re  somewhat restricted in their use and serve primarily 
a s  subscripts or exponents. Integer constants are written 
without a decimal point. Example: 2 (integer form) vs 
2.0 (floating point form). Integer variables begin with 
I ,  J, K, L, M, or N. Any meaningful arithmetic expres- 
sion may appear on the right-hand side of an arithmetic 
statement, provided the following restriction is ob- 
served: an  integer quantity can appear in a floating- 
point expression only as a subscript or as  an exponent 
or as  the argument of certain functions. The functions 
which the programmer may refer to  are limited only 
by  those available on the library tape a t  the time, such 
a s  SQRTF, plus those simple functions which he has 
defined for the given problem by means of function 
statements. An example will serve to  describe the latter. 

Function Statements 

Example 2:  Define a function of three variables to be 
used throughout a given problem, as follows: f 

Function statements must precede the rest of the pro- 
gram. They are composed of tho desired function name 
(ending in F) followed by any desired arguments which 
appear in the arithmetic expression on the right of the 
= sign. The definition of a function may employ any 

previously defined functions. Having defined ROOTF 
as above, the programmer may apply i t  to  any set of 
arguments in any subsequent arithmetic statements. For 
example, a later arithmetic statement might be 

THETA = 1.0 + GAMMA * ROOTF(P1, 3.2 * Y + 14.0, 7.63). 

DO Statements, DIMENSION Statements, and Sub- 
scripted Variables 

Examgle 3: Set Qm,, equal to  the largest quantity 
P(ai+bi)/P(ai- bi) for some i between 1 and 1000 
.where P(x) = C ~ + ~ ~ X + C ~ X ~ + C ~ X ~ .  

FORTRAN Program: 

1) POLYF(X) =CO+X * ( C l + X  * (C2+X * C3)). 
2) DIMENSION A(1000), B(1000). 
3) QMAX = - 1.0 E20. 
4) DO 5 I =1, 1000. 
5) QMAX = MAXF(QMAX, POLYF(A(1) 

+B(I))/POLYF(A(I) -B(I))). 
6 )  STOP. 

The program above is complete except for input and 
output statements which will be described later. The 
first statement is not executed; it  defines the desired 
polynomial (in factored form for efficient output pro- 
gram). Similarly, the second statement merely informs 
the executive routine that  the vectors A and B each have 
1000 elements. Statement 3 assigns a large negative 
initial value to  QMAX, - 1.0 X 1020, using a special 
concise form for writing floating-point constants. State- 
ment 4 says "DO the following sequence of statements 
down to and including the statement numbered 5 for 
successive values of I from 1 to  1000." In this case 
there is only one statement 5 to  be repeated. I t  is exe- 
cuted 1000 times; the first time reference is made to  
A(l) and B(1), the second time to  A(2) and B(2), etc. 
After the 1000th execution of statement 5, statement 
6-STOP-is finally encountered. In statement 5, 
the function MAXF appears. MAXF may have two 
or more arguments and its value, by definition, is the 
value of its largest argument. Thus on each repetition 
of statement 5 the old value of QMAX is replaced by 
itself or by the value of POLY F(A(1) +B (I)) /POLYF 
(A(1) - B (I)), whichever is larger. The value of QMAX 
after the 1000th repetition is therefore the desired 
maximum. 

Example 4: Multiply the n Xlr  matrix 520)  by 
its transpose, obtaining the product elements on or be- 
low the main diagonal by the relation 

cis j  = 5 a i . k e  a j , k  (for j < i) 
k-1 

and the remaining elements by the relation 
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FORTRAN Program: 
DIMENSION ~ ( 2 0 ,  20), C(20, 20) 
D O 2 1 = 1 , N  P 

STOP 

As in the preceding example, the DIMENSION 
statement says that  there are two matrices of maximum 
size 20 X20 named A and C. For explanatory purposes 
only, the three boxes around the program show the 
sequence of statements controlled by each DO state- 
ment. The first DO statement says that  procedure P, 
i.e., the following statements down to statement 2 (outer 
box) is fo be carried out for I = 1 then for I = 2 and so 
on up to  I =N.  The first statement of procedure 
P ( D 0  2 J = 1, I )  directs that  procedure Q be done for 
J = 1 to  J = I. And of course each execution of pro- 
cedure Q involves N executions of procedure R for 
K = l ,  2, . . , N. 

Consider procedure Q. Each time its last statement 
is completed the "index" J of its controlling DO 'state- 
ment is increased by 1 and control goes to  the first 
statement of Q, until finally its last statement is reached 
and J = 1. Since this is also the last statement of P and 
P has not been repeated until I = N, I will be increased 
and control will then pass to the first statement of P. 
This statement (DO 2 J = 1, I) causes the repetition 
of Q to  begin again. Finally, the last s t a t emen t~f  Q and 
P (statement 2) will be reached with J = I  and I = M, 
meaning that  both Q and P have been repeated the 
required number of times. Control will then go to the 
next statement, STOP. Each time R is executed a new 
term is added to a product element. Each time Q is 
executed a new product element and its mate are ob: 
tained. Each time P is executed a product row (over to 
the diagonal) and the corresponding column (down to 
the diagonal) are obtained. 
' The last example contains a "nest" of Jstate- 

ments, meaning that  the sequence of statements con- 
trolled by one DO statement contains other DO state- 
ments. Another example of such a nest is shown in the 
next column, on the left. Nests of the type shown on the 
right are not permitted, since they would usually be 
meaningless. 

Although not illustrated in the examples given, the 
programmer may also employ subscripted variables 
having three independent subscripts. 

READ, PRINT,  FORMAT, I F  and GO TO Statements 

Examplep 5: For each case, read from cards two vec- 
tors, ALPHA and RHO, and the number ARG. ALPHA 
and RHO each have 25 elements and ALPHA(1) 
LALPHA(I+I) ,  I = 1 to 24. Find the SUM of all the 
elements of ALPHA from the beginning to  the last 
one which is less than or equal to  ARG [assume 
ALPHA(1) 5 ARG <ALPHA(~S)  1. If this last element 
is the Nth, set VALUE = 3.14159 * RHO(N). Print a 
line for each case with ARG, SUM, and VALUE. 

FOR TRA N Program : 

DIMENSION ALPHA(25), RHO(25) 
1) FORMAT(SF12.4). 
2) READ 1, ALPHA, RHO, ARG 

SUM ~ 0 . 0  
DO 3 I==l ,  25 
I F  (ARG-ALPMA(1)) 4, 3, 3. 

3) SUM =SUM +ALPHA(I) 
4) VALUE = 3.14159 * RHO(I - 1) 

L PRINT 1, ARG, SUM, VALUE 
0 T O  2.  

The FORMAT statement mys that  numbers are to  
be found (or print&) 5 per card (or line), that  .each 
number is in fixed; point form, that  each number, oa- 
cupies a field 12 mlumns wide and that *thq; decimal 
point is lmated 4 digits h r n  the right, T b l F Q R M A T  
statemeat is not executed; i t  is referred Wbfr the READ 
and PRINT sgatements to  describe itbg W r e d  arrange- 
ment iof data in the external medh 

The READ statement says 'RE339.D eards in the 
card reader which are arranged acc&iTg' to FORMAT 
ej,tatement 1 and assign the suewsiwe nambers obtained 
as values of ALPHA(1) I =? 1, 2& aigd RBQ(1) I = 1, 25 
and ARG." Thus "ALPHA, RHO, ARC" is a descrip- 
tion of a list of 51 quantities( ( tb~ 's ize  of ALPHA and 
RHO being obtained fidrn' kf& ' ~ I M E N S I O N  state- 
ment), Reading of c a d e  ,'prxwmx!& until these SL,quarati- 
ties have been obtai~ed~hahh QWQ having five nlmibers, 
as  per the FORMAT: d ~ w i p t i a h ,  except the Ids* w&.ich 
has the value of sARG'ddyr ,8ine:ee ARG te~$niai tbd~the 
list, the remaining f~a>~g,fiiel$sla~ the. last G~W? imp not 
read. The PRINT statement is similar to READ except 
that  it  specifies a list of only three quantities. Thus  
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Ach execution of PRINT causes a single line to  be 
printed with ARG, SUM, VALUE printed in the first 
three of the five fields described by FORMAT state- 
ment 1. 

The IF' statement says " I f  A RG - A L P H A  (I)  is 
negative go tostatement 4, if it  3s zero go to  statement 
3, and if it  is' 'positive go to 3." Thus the repetition 
of the two Statements controlled by the DO consists 
normally of computing ARG - ALPHA(1) , finding i t  
zero or positive, and going to statement 3 followed by 
the next repetition. H~wever ,  when I has been in- 
creased to  the extent that  the first ALPHA exceeding 
ARG is encountered, control will pass to  statement 4: 
Note that  this statement does not belong to  the se- 
quence controlled by the DO. In such cases, the repeti- 
tion specified by the DO is terminated and the value of 
the index (in this ease I) is preserved. Thus if the first 
ALPHA exceeding ARG were ALPHA (20), then RHO 
(19) would be obtaihed in statement 4. 

The GO T O  statement, of course, passes control to 
statement 2,  which initiates reading the 11 cards for the 
next case. The process will continue until there are no 
more cards in the reader. The above program is entirely 
complete. When punched in cards as shown, and comd 
piled, the jcrandlator will produce a ready-to-run 704 
program which will perform the job specified. 

Other Types of F O R T R A N  Statements 

In  the above examples the following types of FOR- 
TRAN statements have been exhibited. 

Arithmetic statements 
Function statements 
DO statements 
I F  statements 
GO TO statements 
READ statements 
PRINT statements 
STOP' statements 
DIM ~ N S I O N  statements 
FORMAT statements. 

The explanations accompanying each example have 
attempted to  show some of the possible applications and 
variations of these statements. I t  is felt that  these 
examples give a representative picture of the FOR- 
TRAN language; however, many of its features have 
had to  be omitted. There are 23 other types of state- 
ments in the language, many of them completely 
analogous to  some of those described here. They pro- 
vide facilities for referring to  other input-output' and 
auxiliary storage devices (tapes, drums, and card 
punch), for specifying preset and computed branching 
of control, for detecting various conditions which may 
arise such as an  at tempt to  divide by zero, and for pro- 
viding various information about a program to the 
translator. A complete description of the language is to 
be found in Programmer's Reference Manual, the FOR- 
T R A  N Automatic Coding System for the IB M 704. 

Preparation of a Program for Translation 

The translator accepts statements punched one per 
card (continuation cards may be used for very long 
statements). There is a separate key on the keypunch- 
ing device for each character used in FORTRAN state- 
ments and each character is represented in the card by 
several holes in a single column of the card. Five 
columns are reserved for a statement number (if pres- 
ent) and 66 are available for the statement. Keyguhch- 
ing a FORTRAN program is therefore a prockss similar 

. , to that  of typing the program. 

Translation 

The deck of cards obtained by keypunching may 
then be put in the card reader of a 704 equipped'with 
the translator program. When the load buttori is Sressed 
one gets either 1) a list of input statements which fail 
to  conform to specifications of the FORTRAN language 
accompanied by remarks which indicate the type of 
error in each case; 2) a deck of binary cards representing 
the desired 704 program, 3) a binary tape of the program 
which can either be preserved or loaded and executed 
immediately after translation is complete, or 4) a tape 
containing the output program in symbolic form suitable 
for alteration and later assembly. (Some of these out- , 

puts may be unavailable a t  the time of publication.) 

THE FORTRAN TRANSLATOR 
General Organization of the System 

The FORTRAN translator consists of six successive 
sections, as follows. 

Sectiorc 1: Reads in and classifies statements. For 
arithmetic formulas, compiles the object (output) in- 
structions. For nonarithmetic statements including 
input-output, does a partial compilation, and records 
the remaining information in tables. All instructions 
compiled in this section are in the COMPAIL file. 

Section 2: Compiles the instructions associated with 
indexing, which result from DO statements and the oe- 
currence of subscripted variables, These instructions 
are placed in the COMPDO file, 

Section 3: Merges the COMPAIL and COMPDO 
files into a single file, meanwhile completing the compila- 
tion of nonarithmetic statements begun in Section 1. 
The object program is now complete, but assumes an 
object machine with a large number of index registers. 

Section 4: Carries out an  analysis of the flow of the 
object program, to  be used by Section 5. 

Section 9: Converts the object program to  one which 
involves only the three index registers of the 704. 

Section 6:  Assembles the object program, producing 
a relocatable binary program ready for running. Alsc 
on demand produces the object program in SHARE 
symbolic language. 

(Note: Section 3 is of internal importance only; Sec- . 
tion 6 is a fairly conventional assembly program. These 
sections will be treated only briefly in what follows.) 
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Within the translator, information is passed from 
section to  section in two principal forms: as  compiled 
instructions, and as tables. The compiled instructions 
(e.g., the COMPAIL and COMPDO files, and later their 
merged result) exist in a four-word format which con- 
tains all the elements of a symbolic 704 instruction; 
ie.,  symbolic location, three-letter operation code, sym- 
bolic address with relative absolute part, symbolic tag, 
and absolute decrement. (Instructions which refer to  
quantities given symbolic names by the programmer 
have those same names in their addresses.) This sym- 
bolic format is retained until section 6 .  Throughout, the 
order of the compiled instructions is maintained by 
means of the symbolic locations (internal statement 
numbers), which are assigned in sequential fashion by 
section 1 as each new statement is encountered. 

The tables contain all information which cannot yet 
be embodied in compiled instructions. For this reason 
the translator requires only the single scan of the source 
program performed in section 1. 

A final observation should be made about the organ- 
ization of the system. Basically, i t  is simple, and most 
of the complexities which i t  does possess arise from the 
effort to  cause i t  to  produce object programs which 
can compete in efficiency with hand-written programs. 
S ~ m e  of these complexities will be found within the 
individual sections; but also, in the system as a whole, 
the sometimes complicated interplay between compiled 
instructions and tables is a consequence of the desire to  
postpone compiling until the analysis necessary to 
produce high object-program efficiency has been per- 
formed. 

Section 1 (Beeber, Herrick, Nutt, Sheridan, and Stern) 

The over-all flow of section 1 is 

which can be compiled are compiltd, and the remaining 
information is. extracted and placed in one or more of 
the appropriate tables. 

In contrast, arithmetic formulas are completely 
treated in section 1, except for open (built-in) sub- 
routines, which are added in section 3;  a complete set 
of compiled instructions is produced in the COMPAIL 
file. This compilation involves two principal tasks: 1) 
the generation of an appropriate sequence of arith- 
metic instructions to  carry out the computation speci- 
fied by the formula, and 2) the generation of (symbolic) 
tags for those arithmetic instructions which refer to  
subscripted variables (variables which denote arrays) 
which in combination with the indexing instructions to  
be compiled in section 2 will refer correctly to  the indi- 
vidual members of those arrays. Both these tasks are 
accomplished in the course of a single scan of the for- 
mula. 

Task 2) can be quickly disposed of. When a sub- 
scripted variable is encountered in the scan, its sub- 
script(~) are examined to  determine the symbols used 
in the subscripts, their multiplicative coefficients, and 
the dimensions of the array. These items of information 
are placed in tables where they will be available to  
section 2 ; also from them is generated a subscript com- 
bination name which is used as the symbolic tag of 
those instructions which refer to the subscripted vari- 
able. 

The difficulty i n  carrying out t a ~ k  1) is one of level; 
there is implicit in every arithmetic formula an  order of 
computation, which arises from the control over order- 
ing assigned by convention to the various symbols 
(parentheses, + , - , * , /, etc.) which can appear, and 
this implicit ordering must be made explicit before 
compilation of the instructions can be done. This ex- 
plicitness is achieved, during the formula scan, by 

Read and classify next source statemen associating with each operation required, by the formula 
and assign internal statement numbe a level number, such that  if the operations are carried 

Input-output Arithmetic out in the order of increasing level number the correct 

t 
sequence of arithmetic instructions will be obtained. The v, 

Treat statement I I Treat statement I I Treat statement sequence of level numbers is obtained b y  means of a 
i I $. '1 set of rules, which specify for each possible pair formed 

\section 2 1 of operation type and symbol type the increment to  be 
'added to or subtracted from the level number of the 

For an input-output statement, section 1 compiles the preceding pair. 
appropriate read or write select (RDS or WRS) in- In fact, the compilation is not carried out with the 
struction, and the necessary copy (CPY) instructions raw set of level numbers produced during the scan. 
(for binary operations) or transfer instructions to pre- After the scan, but before the compilation, the levels 
written input-output routines which perform conver- are examined for empty sections which can be deleted, 
sion between decimal and binary and govern format (for for permutations of operations on the same level, which 
decimal operations). When the list of the input-output will reduce the number of accesses to  memory, and for 
statement is repetitive, table entries are made which redundant computation (arising from the existence of 
will cause section 2 to  generate the indexing instructions common subexpressions) which can be eliminated. 
necessary to make the appropriate loops. An example will serve to  show (somewhat inaccurate- 

The treatment of state-ments which are neither input- ly) some of the principles employed in the level-analysis 
output nor arithmetic is similar; i.e., those instructions process. Consider the following arithmetic expression: 

< 
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In the level analysis of this expression parentheses 
are in effect inserted which define the proper order in 
which the operations are to  be performed. If only three 
implied levels are recognized (corresponding to  +, * 
and * * ) the expression obtains the following: a 

+(* ( *  *A))+(* ( *  * B *  *C)* [+(* ( *  *EN+(* ( *  * ~ ) ) l ) .  

The brackets represent the parentheses appearing in the 
original expression. (The level-analysis routine actually 
recognizes an additional level corresponding to  func- 
tions.) Given the above expression the level-analysis 
routine proceeds to  define a sequence of new dependent 
variables the first of which represents the value of the 
entire expression. Each new variable is generated when- 
ever a left parenthesis is encountered and its definition 
is entered on another line. In the single scan of the ex- 
pression i t  is often necessary to  begin the definition of 
one new variable before the definition of another has 
been completed. The subscripts of the u's in the follow- 
ing sets of definitions indicate the order in which they 
were defined. 

2-49 = * *F. 

This is the point reached a t  the end of the formula 
scan. What follows illustrates the further processing 
applied to  the set of levels. Notice that  ua, for example, 
is defined as * * F. Since there are not two or more 
operands to  be combined the * * serves only as a level 
indication and no further purpose is served by having 
defined us. The procedure therefore substitutes F for 
UQ wherever UQ appears and the line uo = * * F is deleted. 
Similarly, F is then substituted for us and us= * F is 
deleted. This elimination of "redundant" u's is carried 
to completion and results in the following: 

No = + A  + a3 

u3 = * u4 * ug 

These definitions, read up, describe a legitimate 
proc-cdure for obtaining the value of the original ex- 

pression. The number of u's remaining a t  this point 
(in this case four) determines the number of intermedi- 
ate quantities which may need to  be stored. However, 
further examination of this case reveals that  the result 
of 243 is in the accumulator, ready for uo; therefore the 
store and load instructions which would usually be 
compiled between u3 and uo are omitted. 

Section 2 (Nelson and Ziller) 

Throughout the object program will appear in- 
structions which refer to  subscripted variables. Each 
of these instructions will (until section 5) be tagged with 
a symbolic index register corresponding to  the particu- 
l b  subscript combination of the subscripts of the varia- 
ble [e.g., ( I ,  K ,  J) and (K, I ,  J) are two different sub- 
script combinations]. If the object program is to  work 
correctly, every symbolic index register must be so 
governed that  i t  will have the appropriate contents a t  
every instant that  it  is being used. I t  is the source pro- 
gram, of course, which determines what these appro- 
priate contents must be, primarily through its DO 
statements, but also through arithmetic formulas (e.g. 
I= N+1) which may define the values of variables ap- 
pearing in subscripts, or input formulas which may 
read such values in a t  object time. Moreover, in the 
case of DO statements, which are designed to  produce 
loops in the object program, it  is necessary to provide 
tests for loop exit. I t  is these two tasks, the governing 
of symbolic index registers and the testing of their 
contents, which section 2 must carry out. 

Much of the complexity of what follows arises from 
the wish to  carry out these tasks optimally; i.e., when 
a variable upon which many subscript combinations de- 
pend undergoes a change, to  alter only those index 
registers which really require changing in the light of 
the problem flow, and to handle exits correctly with 
a minimum number of tests. 

If the following subscripted variable appears in a 
FORTRAN program 

A(2* I + 1 , 4 *  J + 3 , 6 *  K + 5 ) ,  

the index quantity which must be in its symbolic index I 
register when this reference to  A is made is 

(cli - 1) 3, ( ~ 2  j - 1)di + (~3k - 1)didj + 1, 

where GI, h, and c3 in this case have the values 2, 4, and 
6;  i, j, and k are the values of I, J, and K a t  the moment, 
and di and d j  are the I and J dimensions of A .  The 
effect of the addends 1, 3, and 5 is incorporated in the 
address of the instruction which makes the reference. 

In general, the index quantity associated with a sub- 
I 

script combination as given above, once formed, is not 
recomputed. Rather, every time one of the variables in 
a subscript combination is incremented under control of 
a DO, the corresponding quantity is incremented by 
the appropriate amount. In the example given, if K 

I 

I 

I 

I 

i Y  
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is increased by n (under control of a DO), the index 
quantity is increased by cSdid,rt, giving the correct new 
value' The following paragraphs discuss in further detail 
the ways in which index quantities are computed and 
modified. 

Choosing the Indexing Instructions; Case of Subscrifits 
Controlled by DO'S 

We distinguish between two classes of subscript ; 
those which are in the range of a DO having that  sub- 
script as  its index symbol, and those subscripts which 
are not controlled by DO'S. 

The fundamental idea for subscripts controlled by 
DO'S is that  a sequence of indexing instruction groups 
can be selected to  answer the requirements, and that  
the choice of a particular instruction group depends 
mainly on the arrangement of the subscripts within the 
subscript combination and the order of the DO'S con- 
trolling each subscript. 

DO'S often exist in nests. A nest of PO'S consists of 
all the DO'S contained by some one DO which is itself 
not contained by any other. Within a nest, DO'S are 
assigned level numbers. Wherever the index symbol of a 
DO appears as a subscript within the range of that  DO, 
the level number of the DO is assigned to the subscript. 
The  relative values of the level numbers in a subscript 
combination produce a group number which, along with 
other information, determines which indexing instruc- 
tion group is to  be compiled. 

The source language, 

, 
The decrement parts of the FORTRAN indexing 

instructions are functions of the dimensions of arrays 
and of the parameters of DO's; that  is, of the initial 
value nl, the upper bound n ~ ,  and the increment n3 
appearing in the statement DO 1 i = n l ,  nz, n3. The 
general form of the function is [(nz - nl +m)/ns]fiag 
where g represents necessary coefficients and dimen- 
sions, and [x] denates the integral part of x. 

If all the parameters are constants, the decrement 
parts are computed during the execution of the FOR- 
TRAN executive program. If the parametel's are vari- 
able symbols, then instructions are compiled in the 
object program to compute the proper decrement val- 
ues. For object program efficiency, it  is desirable to 
associate these computing instructions with the outer- 
most DO of a nest, where possible, and not with the 
inner loops, even fhough these inner DO's may have 
variable parameters. Such a variable parameter (e.g., 
N in "DO 7 I= 1, N") may be assigned values by the 
programmer by any of a number of methods; i t  may be 
a value brought in by a READ statement, i t  'may be 
calculated by an arithmetic statement, i t  may take its 
value from a transfer exit from some other DO whose 
index symbol is the pertinent variable symbol, or i t  may 
be under the control of a DO in the nest. A search is 
made to determine the smallest level number in the 
nest within which the variable parameter is not assigned 
a new value. This level number determines the place 
a t  which computing instructions can best be compiled. 

Case of Subscripts not Controlled by DO'S 

The second of the twos classes of subscript symbols is 
that  of subscript symbols which are not under control 

5 . . . A(I, J, K )  . . . (some statement referring to of DO'S. Such a subscript can be given a value in a 1 

A (1, J, K)) : number of ways similar to  the defining of DO param- I 

produces the following DO structure and group combi- 
nations : 

rr level 1 

I rJ level 2 

level 3 

K ,  J ,  I - (3, 2, 1) - 1. 

Producing the Decrement Parts of Indexing Instructions 

The part of the TO4 instruction used to  change or test 
the contents of an index register is called the decrement 
part  of the instruction. 

eters: a value may be read in by a READ statement, 
i t  may be calculated by an arithmetic statement, or i t  
may be defined by an exit made from a DO &h tha t  
index symbol. 

I 

For subscript combinations with no subsc(ipt under 
the control of a DO, the basic technique use$ to  intro- 
duce the proper values into a symbolic in&x register is 

i 

that  of determining where such definitipns occur, and, 
a t  the point of definition, using a subroutine to  compute \ 

the new index quantity. These subrou$~es are generated 
I 

a t  executive time, if i t  is determined tha t  they are I 

necessary. 
If the index quantity exists in a DO nest a t  the time 

of a transfer exit, then no  cubr routine calculations are 
necessary since the exit values are precisely the desired 
values. 

I 

Mixed Cases 

In cases in which some subscripts in a subscript com- I 

bination are controlled by DO'S, andmxne are not, 
instructions are compiled to  compute the initial value 

I 

I 1 

I 
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of the subscript combination a t  the beginning of the 
outside loop. If the non-DO-controlled subscript sym- 
bol is then defined inside the loop (that is, after the 
computing of the load quantity) the procedure of using 
a subroutine a t  the point,of subscript definition will 
bring the new value into the index register. 

An exception to  the use of a subroutine is made when 
the subscript is defined by a transfer exit from a DO, 
and that  DO is within the range of a DO controlling 
some other subscript in the subscript combination. 
In such instances, if the index quantity is used in the 
inner DO, no calculation is necessary; the exit values 
are used. If the index quantity is not used, instructions 
are compiled to simulate this use, so that  in either case 
the transfer exit leaves the correct function value in 
the index register. 

Modification and O@timization 

Initializing and computing instructions correspond- 
ing to  a given DO are placed in the object program a t  a 
point corresponding to  the lowest possible (outermost) 
DO level rather than a t  the point corresponding to  the 
given DO. This technique results in the desired removal 
of certain instructions from the most frequent inner- 
most loops of the object program. However, it  necessi- 
tates the consideration of some complex questions when 
the flow within a nest of DO'S is complicated by the 
occurrence of transfer escapes from DO-type repetition 
and by other IF and GO TO flow paths. Consider a 
simple example, a nest having a DO on I containing a 
DO on J ,  where the subscript combination (I ,  J )  appears 
only in the inner loop. If the object program corre- 
sponded precisely to the FORTRAN language pro- 
gram, there would be instructions a t  the entrance point 
of the inner loop to  set the value of J in (I ,  J )  to the 
initial value specified by the inner DO. Usually, how- 
ever, it  is more efficient to reset the value of J in (I,  J) 
a t  the end of the inner loop upon leaving it, and the ob- 
ject program is so constructed. In this case it  becomes 
necessary to compile instructions which follow every 
transfer exit from the inner loop into the outer loop (if 
there are any such exits) which will also reset the value 
of J in ( I ,  J )  to  the initial value i t  should have a t  the 
entrance of the inner loop. These instructions, plus the 
initialization of both I and J in ( I ,  J )  a t  the entrance 
of the outer loop (on I ) ,  insure that  J always has its 
proper initial value a t  the entrance of the inner loop 
even though no instructions appear a t  that  point which 
change J. The situation becomes considerably more 
complicated if the subscript combination (I ,  J) also ap- 
pears in the outer loop. In this case two independent 
index quantities are created, one corresponding to 
(I,  J )  in the inner loop, the other to  ( I ,  J )  in the outer 
loop. 

Optimizing features play an important role in the 
modification of the procedures and techniques outlined 
above. I t  may be the case that  the DO structure and 

subscript combinations of a nest describe the scanning 
of a two- or three-dimensional array which is the equiva- 
lent of a sequential scan of a vector; i.e., a reference 
to each of a set of memory locations in descending order. 
Such an equivalent procedure is discovered, and where 
the flow of a nest permits, is used in place of more com- 
plicated indexing. This substitution is not of an empiri- 
cal nature, but is instead the logical result of a general- 
ized analysis. 

Other optimizing techniques concern, for example, 
the computing instructions compiled to evaluate the 
functions (governing index values and decrements) men- 
fioned previously. When some of the parameters are 
constant, the functions are reduced a t  executive time, 
and a frequent result is th2 compilation of only one 
instruction, a reference to a variable, to obtain a proper 
initializing value. 

In choosing the symbolic index register in which to  
test the value of a subscript for exit purposes, those 
index registers are avoided which would require the 
compilation of instructions to modify the test instruc- 
tion decrement. 

Section 4 (Haibt) pnd Section 5 (Best) 

The result of section 3 is a complete program, but one 
in which tagged instructions are tagged only sym- 
bolically, and which assumes that  there will be a real 
index register available for every symbolic one. I t  is the 
task of sections 4 and 5 to convert this program to  one 
involving only the three real index registers of the 704. 
Generally, this requires the setting up, for each symbolic 
index register, of a storage cell which will act as  an  
index cell, and the addition of instructions to load the 
real index registers from, and store them into, the index 
cells. This is done in section 5 (tag analysis) on the basis 
of information about the pattern and frequency of flow 
provided by section 4 (flow analysis) in such a way 
that  the time spent in loading and storing index registers 
will be nearly minimum. 

The fundamental unit of program is the basic block; a 
basic block is a stretch of program which has a single 
entry point and a single exit point. The purpose of sec- 
tion 4 is to prepare for section 5 a table of predecessors 
(PRED table) which enumerates the basic blocks and 
lists for every basic block each of the basic blocks which 
can be its immediate predecessor in flow, together with 
the absolute frequency of each such basic block link. 
This table is obtained by an actual "execution" of the 
program in Monte-Carlo fashion, in which the outcome 
of conditional transfers arising out of IF-type state- 
ments and computed GO TO'S is determined by a ran- 
dom number generator suitably weighted according 
to whatever FREQUENCY statements have been pro- 
vided. 1 

Section 5 is divided into four parts, of which par t , l  is 
the most important. I t  makes all the major decisions 
concerning the handling of index registers, but records 

1 0 1  
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them simply as bits in the PRED table and a table of 
all tagged instructions, the STAG table. Part  2 merely 
reorganizes those tables; part 3 adds a slight further 
treatment to  basic blocks which are terminated by an 
assigned GO TO;  and finally part 4 compiles the finished 
program under the direction of the bits in the PRED and 
STAG tables. Since part 1 does the real work involved 
in handling the index registers, attention will be con- 
fined to  this part in the sequel. 

The basic flow of part 1 of sectipn 5 is, 

Yes 

Consider a moment partway through the execution 
of part 1, when a new region has just been treated. The 
less frequent basic blocks have not yet been encoun- 
tered; each basic block that  has been treated is a mem- 
ber of some region. The existing regions are of two 
types: transparent, in which there is a t  least one real 
index register which has not beeq used in any of the 
member basic blocks, and opaque. Bits have been en- 
tered in the STAG table, calling where necessary for 
an  LXD (load index register from index cell) instruc- 
tion preceding, or an S X D  (store index register in index 
cell) instruction following-, the tagged instructions of the 
basic blocks that  have been treated. For each basic 
block that  has been treated is recorded the required 
contents of each of the three real index registers for 
entrance into the block, and the contents upon exit. 
In  the P R E D  table, entries that  have been considered 
may contain bits calling for interblock LXD's and 
SXD's, when the exit and entrance conditions across the 
link do not match. 

Now the PRED table is scanned for the highest- 
frequency link not yet considered. The new region is 
formed by working both forward over successors and 
backward over predecessors from this point, always 
choosing the most frequent remaining path of control. 
The  marking out of a new region is terminated by en- 
countering 1) a basic block which belongs to an opaque 
region, 2) a basic block which has no remaining links 
into it (when working backward) or from i t  (when 
working forward), or which belongs to a transparent 
region with no such links remaining, or 3) a basic block 
which closes a loop. Thus the new region generally 
includes both basic blocks not hitherto encountered, and 
entire regions of basic blocks which have already been 
treated. 

The  treatment of hitherto untreated basic blocks in 
the new region is carried out by simulating the action 
of the program. Three cells are set aside to  represent the 
object machine index registers. As each new tagged in- 
struction is encountered these cells are examined to  see 

I Any PRED entries not yet considered? Form new region I 
4 + 

if one of them contains the required tag; if not, the 
program is searched ahead to determine which oS/ the 
three index registers is the least undesirable to  replace, 
and a bit is entered in the STAG table calling for an  
LXD instruction to that  index register. When the 
simulation of a new basic block is finished, the en- 
trance and exit conditions are recorded, and the next 
item in the new region is considered. If i t  is a new basic 
block, the simulation continues; if i t  is a region, the 
index register assignment throdghout the region is 
examined to  see if a permutation of the index registers 
would not make i t  match better, and any remaining mis- 
match is taken care of by entries in P R E D  calling for 
interblock LXD's. 

A final concept is that  of index register activity. 
When a symbolic index register is initialized, or when 
its contents are altered by an  indexing instruction, the 
value of the corresponding index cell falls out of date, 

No 
+ 

and a subsequent LXD will be incorrect without an  

Treat new region 
I 

intervening SXD. This problem is handled by activity 
bits, which indicate when the index cell is out of date; 
when an LXD is required the activity bit is interrogated, 
and if i t  is on an SXD is called for immediately after the 
initializing or indexing instruction responsible for the 
activity, or in the interblock link from the region con- . 
taining that  instruction, depending upon whether the 
basic block containing that  instruction was a new basic 
block or one in a .region already treated. 

When the new region has been treated, all of the 
old regions yhich belonged to  i t  simply lose their iden- 
tity; their basic blocks and the hitherto untreated basic 
blocks become the basic blocks of the new region. Thus 
a t  the end of part 1 there is but one single region, and 
it  is the entire program. The high-frequency parts of the 
program were treated early; the entrance and exit con- 
ditions and indeed the whole handling of the index 
registers reflect primarily the efficiency needs of these 
high-frequency paths. The loading and unloading of the 
index registers is therefore as much as possible placed 
in the low-frequency paths, and the object program 
time consumed in these qera t ions  is thus brought near 
to a minimum. 

Part 2 

The preceding sections of this paper have described 
the language and the translator program of the FOR- 
TRAN system. Following are some comments on the 
system aqd its application. 

Scope of A pfilicability 

The language of the system is intended to be capable 1 
of expressing virtually any numerical procedure. Some 
problems programmed in FORTRAN language to  date 
include: reactor shielding, matrix inversion, numerical 
integration, tray-to-tray distillation, microwave propa- 
gation, radome design, numerical weather prediction, 
plotting and root location of a quartic, a pracedure for 
playing the game "nim," helicopter design, and a number 
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of others. The sizes of these first programs range from 
about 10 FORTRAN statements to  well over 1000, or 
in terms of machine instructions, from about 100 to  
7500. 

Conciseness and Convenience 

The statement of a program in FORTRAN lan- 
guage rather than in machine language or assembly 
program language is intended to result in a considerable 
reduction in the amount of thinking, bookkeeping, 
writing, and time required. In the problems mentioned 
in the preceding paragraph, the ratio of the number of 
output machine instructions to  the number of input 
FORTRAN statements for each problem varied be- 
tween about 4 and 20. (The number of machine instruc- 
tions does no t  include any library subroutines and thus 
represents approximately the number which would need 
to  be hand coded, since FORTRAN does not normally 
produce programs appreciably longer than correspond- 
ing hand-coded ones.) The ratio tends to be high, of 
course, for problems with many long arithmetic expres- 
sions or with complex loop structure and subscript ma- 
nipulation. The ratio is a rough measure of the concise- 
ness of the language. 

The convenience of using FORTRAN language is 
necessarily more difficult t o  measure than its concise- 
ness. However the ratio of coding times, assembly pro- 
gram language vs FORTRAN language, gives some in- 
dication of the reduction in thinking and bookkeeping 
as well as  in writing. This time reduction ratio appears 
to  range also from about 4 to  20 although i t  is difficult 
to  estimate accurately. The largest ratios are usually 
obtained by those problems with complex loops and 
subscript manipulation as a result of the planning of 
indexing and bookkeeping procedures by the translator 
rather than by the programmer. 

Education 

I t  is considerably easier to  teach people untrained in 
the use of computers how to write programs in 
FORTRAN language than i t  is to teach them machine 
language. A FORTRAN manual specifically designed 
as a teaching tool will be available soon. Despite the 
unavailability of this manual, a number of successful 
courses for nonprogrammers, ranging from one to  three 
days, have been completed using only the present ref- 
erence manual. 

Debugging 

The structure of FORTRAN statements is such that  
the translator can detect and indicate many errors 
which may occur in a FORTRAN-language program. 
Furthermore, the nature of the language makes it  possi- 
ble to  write programs with far fewer errors than are to 
be expected in machine-language programs. 

Of course, it  is only necessary to  obtain a correct 
FORTRAN-language program for a problem, therefore 
all debugging efforts are directed toward this end. Any 

errors in the translator program or any machine mal- 
function during the process of translation will be de- 
tected and corrected by procedures distinct from the 
process of debugging a particular FORTRAN program. 

In order to  produce a program with built-in debugging 
facilities, i t  is a simple matter for the programmer to  
write various PRINT statements, which cause "snap- 
shots" of pertinent information to  be taken a t  appropri- 
ate points in his procedure, and insert these in the deck 
of cards comprising his original FORTRAN program. 
After compiling this program, running the resulting 
machine program, and comparing the resulting snap- 
shots with hand-calculated or known values, the pro- 
grammer can localize the specific area in his FORTRAN 
program which is causing the difficulty. After making 
the appropriate corrections in the FORTRAN program 
he mky remove the snapshot cards and recompile the 
final program or leave them in and recompile if the prod 
gram is not yet fully checked. 

Experience in debugging, FORTRAN programs t o  
date has been somewhat clouded by the simultaneous 
process of debugging the translator program. However, 
i t  becomes clear that  most errors in FORTRAN pro- 
grams are detected in the process of translation. So far, 
those programs having errors undetected by the trans- 
lator have been corrected with ease by examining the 
FORTRAN program and the data output of the ma- 
chine program. 

Method of Translation 

In general the translation of a FORTRAN program 
to  a machine-language program is characterized by the 
fact that  each piece of the output program has been 
constructed, instruction by instruction, so as not only 
to produce an efficient piece locally but also to  fit effi- 
ciently into its context as a result of many consideratjons 
of the structure of its neighboring pieces and of the 
entire program. With the exception of subroutines (cor- 
responding to various functions and input-output 
statements appearing in the FORTRAN program), the 
output program does not contain long precoded instruc- 
tion sequences with parameters inserted during trans- 
lation. Such instruction sequences must be designed to  
do a variety of related tasks and are often not efficient 
in particular cases to which they are applied. 
FORTRAN-written programs seldom contain sequences 
of even three instructions whose operation parts alone 
could be considered a precoded "skeleton." 

There are a number of interesting observations con- 
cerning FORTRAN-written programs which may throw 
some light on the nature of the translation process. 
Many object programs, for example, contain a large 
number of instructions which are not attributable to  
any particular statement in the original FORTRAN 
program. Even transfers of control will appear which 
do not correspond to any control statement (e.g., DO, 
IF,  GO TO) in the original program. The instructions 
arising from an arithmetic expression are optimally 



1957 WESTERN COMPUTER PROCEEDINGS 

arranged, often in asurprisingly different sequence than 
the expression would lead one to expect. Depending 
on its context, the same DO statement may give rise to 
no instructions or to several complicated groups of in- 
structions located a t  different points in the program. 

While i t  is felt that the.ability of the system to trana- 
late algebraic expressions provides an important and 
necessary convenience, its ability to treat subscripted 
variables, DO statements, and the various input-output 
and FORMAT statements often provides even more 
significant conveniences. 

In any case, the major part of the translator program 
is devoted to handling these last mentioned facilities 
rather than to translating arithmetic expressions. (The 
near-optimal treatment of arithmetic expressions is sim- 
ply not as complex a task as a similar treatment of 
"housekeepingn operations.) A list of the approximate 
number of instructions in each of the six sections of the 
translator will give a crude picture of the effort expend- 
ed in each area. (Recall that Section 1 completely treats 

arithmetic statements in addition to performing a num- 
ber of other tasks.) 

Sectdole s umber Number of Irtstructians 
1 5500 
2 6000 
3 2500 
4 3000 
5 5000 
6 .  2000 

The generality and complexity of some of the tech- 
niques employed to achieve efficient output programs 
may often be superfluous in many common applications. 
However the use af such techniques should enable the 
EQRTRAN system to produce efficient programs for . 
important problems which involve complex and unusual 
procedures. In any case the intellectual satisfaction of 
having formulated and solved some difficult problems 
of translation and the knowledge and experience ac- 
quired in the process are themselves almost a sufficient 
reward for the long effort expended on the FORTRAN 
project. 


