

Culley et. al. [Page 1]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 P. Culley
draft-culley-iwarp-mpa-v1.0 Hewlett-Packard Company
 U. Elzur
 Broadcom Corporation
 R. Recio
 IBM Corpration
 S. Bailey
 Sandburst Corporation
 et. al.

 October 25, 2002

Marker PDU Aligned Framing for TCP Specification (Version 1.0)

1 Status of this Memo

This document is a Release Specification of the RDMA Consortium.
Copies of this document and associated errata may be found at
http://www.rdmaconsortium.org.

2 Abstract

A framing protocol is defined for TCP that is fully compliant with
applicable TCP RFCs and fully interoperable with existing TCP
implementations. The framing mechanism is designed to work as a
"shim" between TCP and higher-level protocols, preserving the
reliable, in-order delivery of TCP while adding the preservation of
higher-level protocol record boundaries.

http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
http://www.rdmaconsortium.org/

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 2]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Table of Contents

1 Status of this Memo..1
2 Abstract...1
3 Introduction...3
3.1 Motivation...3
3.2 Protocol Overview..4
4 Glossary...6
5 LLP and ULP requirements.....................................7
5.1 TCP implementation Requirements to support MPA...............7
5.2 MPA's interactions with the ULP..............................8
6 FPDU Formats..10
6.1 Marker Format...11
7 Data Transfer Semantics.....................................12
7.1 MPA Markers...12
7.2 CRC Calculation...13
7.3 MPA on TCP Sender Segmentation..............................16
7.3.1 FPDU Size Considerations....................................16
7.4 MPA Receiver FPDU Identification............................17
7.4.1 Re-segmenting Middle boxes and non-conforming senders.......18
8 Connection Semantics..19
8.1 Connection setup..19
8.2 Normal Connection Teardown..................................19
9 Error Semantics...20
10 Security Considerations.....................................21
10.1 Protocol-specific Security Considerations...................21
10.2 Using IPSec With MPA..21
11 IANA Considerations...22
12 References..23
12.1 Normative References..23
12.2 Informative References......................................23
13 Appendix..25
13.1 Receiver implementation.....................................25
13.1.1 Transport & Network Layer Reassembly Buffers25
14 Author's Addresses..28
15 Acknowledgments...29
16 Full Copyright Statement....................................32

Table of Figures

Figure 1 ULP MPA TCP Layering.......................................4
Figure 2 FPDU Format...10
Figure 3 Marker Format...11
Figure 4 Example FPDU Format with Marker...........................13
Figure 5 Annotated Hex Dump of an FPDU.............................15
Figure 6 Annotated Hex Dump of an FPDU with Marker.................15

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 3]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

3 Introduction

This section discusses the reason for creating MPA on TCP and a
general overview of the protocol. Later sections show the MPA
headers (see section 6 on page 10), and detailed protocol
requirements and characteristics (see section 7 on page 12), as well
as Connection Semantics (section 8 on page 19), Error Semantics
(section 9 on page 20), and Security Considerations (section 10 on
page 21).

3.1 Motivation

A generalized framing mechanism for the TCP transport protocol [TCP]
is desirable to some Upper Layer Protocols (ULP). One ULP that can
benefit from the framing mechanism is Direct Data Placement (DDP).
The ability to locate the Upper Layer Protocol Data Unit (ULPDU)
boundary is useful to a hardware network adapter that uses DDP to
directly place the data in the application buffer based on the
control information carried in the ULPDU header. This may be done
without requiring that the packets arrive in order. One potential
benefit of this capability is the avoidance of the memory copy
overhead. Another potential benefit is the smaller memory
requirement for handling out of order packets and dropped packets.

MPA is intended for ULPs that are specifically designed to utilize
"records" (ULPDUSs) rather than a stream of octets.

Many approaches have been proposed for the generalized framing
mechanism. Some are probabilistic in nature and others are
deterministic. A probabilistic approach is characterized by a
detectable value embedded in the byte stream. It is probabilistic
because under some conditions the receiver may incorrectly interpret
application data as the detectable value. Under these conditions,
the protocol may fail with unacceptable frequency. A deterministic
approach is characterized by embedded controls at known locations in
the byte stream. Because the receiver can guarantee it will only
examine the data stream at locations that are known to contain the
embedded control, the protocol can never misinterpret application
data as being embedded control data. For unambiguous handling of an
out of order packet, the deterministic approach is preferred.

The MPA protocol provides a generalized framing mechanism for TCP
using the deterministic approach. It allows the location of the
ULPDU to be determined in the TCP stream even if the TCP segments
arrive out of order.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 4]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

3.2 Protocol Overview

MPA is described as a extra layer above TCP and below the ULP. The
end-to-end data flow is:

1. The ULP negotiates the use of MPA at both ends of a connection.

2. The ULP hands data records (ULPDUs) to MPA at the sender.

3. MPA creates a Framed Protocol Data Unit (FPDU) by pre-pending a
header, inserting markers, and appending a CRC after the ULPDU
and PAD (if any). MPA delivers the FPDU to TCP.

4. The MPA-aware TCP sender puts the FPDUs into the TCP stream. It
segments the TCP stream in such a way that each TCP segment
contains a single FPDU. TCP then passes each segment to the IP
layer for transmission.

5. The TCP receiver may be MPA-aware or may not be MPA-aware. If it
is MPA-aware, it may separate passing the TCP payload to MPA from
passing the TCP payload ordering information to MPA. In either
case, RFC compliant TCP wire behavior is observed at both the
sender and receiver.

6. The MPA receiver locates and assembles complete FPDUs within the
stream, verifies their integrity, and removes MPA markers,
ULPDU_Length, PAD and CRC.

7. MPA then provides the complete ULPDUs to the ULP. MPA may also
separate passing MPA payload to the ULP from passing the MPA
payload ordering information.

The layering of PDUs with MPA is shown in Figure 1.

 +------------------+
 | ULP client |
 +------------------+ <- ULPDUs
 | MPA |
 +------------------+ <- FPDUs (containing ULPDUs)
 | TCP* |
 +------------------+ <- TCP Segments (containing FPDUs)
 | IP etc. |
 +------------------+
 * TCP or MPA-aware TCP.

Figure 1 ULP MPA TCP Layering

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 5]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

MPA-aware TCP is a TCP layer which potentially contains some
additional semantics as defined in this document. MPA is implemented
as a data stream ULP for TCP and is therefore RFC compliant. MPA-
aware TCP is RFC compliant.

MPA with an MPA-aware TCP allows an implementation to recover ULPDUs
that may be received out of order. This enables an implementation
with an appropriate ULP at the receiver to save a significant amount
of intermediate storage by storing the ULPDUs in the right locations
in the ULP buffers when they arrive, rather than waiting until full
ordering can be restored.

MPA implementations that support recovery of out of order ULPDUs
should also support a mechanism to indicate the ordering of ULPDUs as
the sender transmitted them and indicate when missing intermediate
segments arrive. These mechanisms allow ULPs to reestablish record
ordering and report arrival of complete groups of records.

One last area that MPA addresses is data integrity. Many users of
TCP have noted that the TCP checksum is not as strong as could be
desired [CRCTCP]. Studies have shown that the TCP checksum indicates
segments in error at a much higher rate than the underlying link
characteristics would indicate. With these higher error rates, the
chance that an error will escape detection, when using only the TCP
checksum for data integrity, becomes a concern. A stronger integrity
check can reduce the chance of data errors being missed.

MPA includes a CRC check to increase the ULPDU data integrity to the
level provided by other modern protocols, such as SCTP [SCTP].

MPA combined with an MPA-aware TCP can only ensure FPDU Alignment
with the TCP Header if the FPDU is less than or equal to TCP's EMSS.
Thus if FPDU alignment is desired by the ULP, the ULP must cooperate
with MPA to ensure FPDUs lengths do not exceed the EMSS under normal
conditions.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 6]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4 Glossary

Delivery - (Delivered, Delivers) - For MPA, Delivery is defined as
the process of informing the ULP or consumer that a particular
PDU is ordered for use. This is specifically different from
"passing the PDU to the ULP", which may generally occur in any
order, while the order of "Delivery" is strictly defined.

EMSS - Effective Maximum Segment Size. EMSS is the smaller of the
TCP maximum segment size (MSS) as defined in RFC 793 [TCP], and
the current path Maximum Transfer Unit (MTU) [PathMTU].

FPDU - Framing Protocol Data Unit. The unit of data created by an
MPA sender.

FPDU Alignment - the property that a TCP segment begins with an FPDU.

PDU - protocol data unit

MPA - Marker-based ULP PDU Aligned Framing for TCP protocol. This
document defines the MPA protocol.

MULPDU - Maximum ULPDU. The current maximum size of the record that
is acceptable for the ULP to pass to MPA for transmission.

Node - A computing device attached to one or more links of a Network.
A Node in this context does not refer to a specific application
or protocol instantiation running on the computer. A Node may
consist of one or more MPA on TCP devices installed in a host
computer.

Remote Peer - The MPA protocol implementation on the opposite end of
the connection. Used to refer to the remote entity when
describing protocol exchanges or other interactions between two
Nodes.

ULP - Upper Layer Protocol. The protocol layer above the protocol
layer currently being referenced. The ULP for MPA is expected to
be DDP [DDP], or an OS, application, adaptation layer, or
proprietary protocol. This document does not specify a ULP - it
provides a set of semantics that allow a ULP to be designed to
utilize MPA.

ULPDU - Upper Layer Protocol Data Unit. The data record defined by
the layer above MPA.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 7]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

5 LLP and ULP requirements

5.1 TCP implementation Requirements to support MPA

To provide optimum performance, a transmit side TCP implementation
SHOULD:

* With an EMSS large enough to contain the FPDU, segment the
outgoing TCP stream such that the first octet of every FPDU is
aligned with the beginning of a TCP segment, and is entirely
contained in the TCP segment.

* Report the current EMSS to the MPA transmit layer.

When an MPA implementation supports handling out of order ULPDUs, the
receive side TCP implementation SHOULD:

* Pass incoming TCP segments to MPA as soon as they have been
received and validated, even if not received in order. The TCP
layer MUST have committed to keeping each segment before it can
be passed to the MPA. This means that the segment must have
passed the TCP, IP, and lower layer data integrity validation
(i.e., checksum), must be in the receive window, must not be a
duplicate, must be part of the same epoch (if timestamps are used
to verify this) and any other checks required by TCP RFCs. The
segment MUST NOT be passed to MPA more than once unless
explicitly requested (see Section 9).

This is not to imply that the data must be completely ordered
before use. An implementation may accept out of order segments,
SACK them [RFC2018], and pass them to the ULP when the reception
of the segments needed to fill in the gaps arrive. Such an
implementation can "commit" to the data early on, and will not
overwrite it even if (or when) duplicate data arrives. MPA
expects to utilize this "commit" to allow the passing of ULPDUs
to the ULP when they arrive, independent of ordering.

* Provide a mechanism to indicate the ordering of TCP segments as
the sender transmitted them. One possible mechanism might be
attaching the TCP sequence number to each segment.

* Provide a mechanism to indicate when a given TCP segment (and the
prior TCP stream) is complete. One possible mechanism might be
to utilize the leading (left) edge of the TCP Receive Window.

MPA on TCP implementations that do not provide the semantics listed
above will interoperate with those that do, but may negate many of
the performance and resource advantages that ULPs designed for MPA
would expect.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 8]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

The LLP MUST inform MPA when the LLP connection is closed or has
begun closing the connection (e.g. received a FIN).

5.2 MPA's interactions with the ULP

ULPs require MPA to maintain ULP record boundaries from the sender to
the receiver. When using MPA on TCP to send data, the ULP provides
records (ULPDUs) to MPA. MPA will use the reliable transmission
abilities of TCP to transmit the data, and will insert appropriate
additional information into the TCP stream to allow the MPA receiver
to locate the record boundary information.

As such, MPA accepts complete records (ULPDUs) from the ULP at the
sender and returns them to the ULP at the receiver.

MPA provides information to the ULP on the current maximum size of
the record that is acceptable to send (MULPDU). The ULP SHOULD be
able to limit each record size to MULPDU. The range of MULPDU values
MUST be between 128 octets and 64768 octets, inclusive.

The sending ULP MUST NOT post a ULPDU larger than 64768 octets to
MPA. The ULP MAY post a ULPDU of any size between one and 64768
octets, however MPA is NOT REQUIRED to support a ULPDU length that is
greater than the current MULPDU.

While the maximum theoretical length supported by the MPA header
ULPDU_Length field is 65535, TCP over IP requires the IP datagram
maximum length to be 65535 octets. To enable MPA to support FPDU
Alignment, the maximum size of the ULP payload must fit within an IP
datagram. Thus the ULPDU limit of 64768 octets was derived by taking
the maximum IP datagram length, subtracting from it the maximum total
length of the sum of the IPv4 header, TCP header, IPv4 options, TCP
options, and the worst case MPA overhead, and then rounding the
result down to a 128 byte boundary.

On receive, MPA MUST pass each ULPDU with its length to the ULP when
it has been validated.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 9]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

If an MPA implementation supports passing out of order ULPDUs to the
ULP, the MPA implementation SHOULD:

* Pass each ULPDU with its length to the ULP as soon as it has been
fully received and validated.

* Provide a mechanism to indicate the ordering of ULPDUs as the
sender transmitted them. One possible mechanism might be
providing the TCP sequence number for each ULPDU.

* Provide a mechanism to indicate when a given ULPDU (and prior
ULPDUs) are complete. One possible mechanism might be to allow
the ULP to see the current outgoing TCP Ack sequence number.

* Provide an indication to the ULP that the LLP has closed or has
begun to close the connection (e.g. received a FIN).

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 10]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

6 FPDU Formats

MPA senders create FPDUs out of ULPDUs. The format of an FPDU shown
below MUST be used for all MPA FPDUs. For purposes of clarity,
markers are not shown in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ULPDU_Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ~ ~
 ~ ULPDU ~
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | PAD (0-3 octets) |
 +-+
 | CRC |
 +-+

Figure 2 FPDU Format

ULPDU_Length: 16 bits (unsigned integer). This is the number of
octets of the contained ULPDU. It does not include the length of the
FPDU header itself, the pad, the CRC, or of any markers that fall
within the ULPDU. The 16-bit ULPDU Length field is large enough to
support the largest IP datagrams for IPv4 or IPv6.

PAD: The PAD field trails the ULPDU and contains between zero and
three octets of data. The pad data MUST be set to zero by the sender
and ignored by the receiver (except for CRC checking). The length of
the pad is set so as to make the size of the FPDU an integral
multiple of four.

CRC: 32 bits, this CRC is used to verify the entire contents of the
FPDU, using CRC32c.

The FPDU adds a minimum of 6 octets to the length of the ULPDU. In
addition, the total length of the FPDU will include the length of any
markers and from 0 to 3 pad bytes added to round-up the ULPDU size.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 11]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

6.1 Marker Format

The format of a marker MUST be as specified in Figure 3:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | RESERVED | FPDUPTR |
 +-+

Figure 3 Marker Format

RESERVED: The Reserved field MUST be set to zero on transmit and
ignored on receive (except for CRC calculation).

FPDUPTR: The FPDU Pointer is a relative pointer, 16-bits long,
interpreted as an unsigned integer, that indicates the number of
octets in the TCP stream from the beginning of the FPDU to the first
octet of the entire marker.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 12]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

7 Data Transfer Semantics

This section discusses some characteristics and behavior of the MPA
protocol as well as implications of that protocol.

7.1 MPA Markers

MPA senders MUST insert a marker into the data stream at a 512 octet
periodic interval in the TCP Sequence Number Space. The marker
contains a 16 bit unsigned integer referred to as the FPDUPTR (FPDU
Pointer).

If the FPDUPTR's value is non-zero, the FPDU Pointer is a 16 bit
relative back-pointer. FPDUPTR MUST contain the number of octets in
the TCP stream from the beginning of the current FPDU to the first
octet of the marker, unless the marker falls between FPDUs. Thus the
location of the first byte of the previous FPDU header can be
determined by subtracting the value of the given marker from the
current byte-stream sequence number (e.g. TCP sequence number) of the
first byte of the marker. Note that this computation must take into
account that the TCP sequence number could have wrapped between the
marker and the header.

An FPDUPTR value of 0x0000 is a special case - it is used when the
marker falls exactly between FPDUs. In this case, the marker MUST be
placed in the following FPDU and viewed as being part of that FPDU
(e.g. for CRC calculation). Thus an FPDUPTR value of 0x0000 means
that immediately following the marker is an FPDU header.

Since all FPDUs are integral multiples of 4 octets, the bottom two
bits of the FPDUPTR as calculated by the sender are zero. MPA
reserves these bits so they MUST be treated as zero for computation
at the receiver.

The MPA markers MUST be inserted immediately following MPA connection
establishment, and at every 512th octet of the TCP byte stream
thereafter. As a result, the first marker has an FPDUPTR value of
0x0000. If the first marker begins at byte sequence number SeqStart,
then markers are inserted such that the first byte of the marker is
at byte sequence number SeqNum if the remainder of (SeqNum -
SeqStart) mod 512 is zero. Note that SeqNum can wrap.

For example, if the TCP sequence number were used to calculate the
insertion point of the marker, the starting TCP sequence number is
unlikely to be zero, and 512 octet multiples are unlikely to fall on
a modulo 512 of zero. If the MPA connection is started at TCP
sequence number 11, then the 1st marker will begin at 11, and
subsequent markers will begin at 523, 1035, etc.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 13]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

If an FPDU is large enough to contain multiple markers, they MUST all
point to the same point in the TCP stream: the first octet of the
FPDU.

If a marker interval contains multiple FPDUs (the FPDUs are small),
the marker MUST point to the start of the FPDU containing the marker
unless the marker falls between FPDUs, in which case the marker MUST
be zero.

The following example shows an FPDU containing a marker.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ULPDU Length (0x0010) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 + +
 | ULPDU (octets 0-9) |
 +-+
 | (0x0000) | FPDU ptr (0x000C) |
 +-+
 | ULPDU (octets 10-15) |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | PAD (2 octets:0,0) |
 +-+
 | CRC |
 +-+

Figure 4 Example FPDU Format with Marker

MPA Receivers MUST preserve ULPDU boundaries when passing data to the
ULP. MPA Receivers MUST pass the ULPDU data and the ULPDU Length to
the ULP and not the markers, headers, and CRC.

7.2 CRC Calculation

When sending an FPDU, the sender MUST include a valid CRC field. The
CRC field in the MPA FPDU, MUST be computed in the manner described
in the iSCSI Protocol [iSCSI] document for Header and Data Digests.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 14]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

The fields which MUST be included in the CRC calculation when sending
an FPDU are as follows:

1) If the first octet of the FPDU is the "ULPDU Length" field, the
CRC-32c is calculated from the first octet of the "ULPDU Length"
header, through all ULP payload and markers (if present), to the
last octet of the PAD (if present), inclusive. If there is a
marker immediately following the PAD, the marker is included in
the CRC calculation for this FPDU.

2) If the first octet of the FPDU is a marker, (i.e. the marker fell
between FPDUs, and thus is required to be included in the second
FPDU), the CRC-32c is calculated from the first octet of the
marker, through the "ULPDU Length" header, through all ULP
payload and markers (if present), to the last octet of the PAD
(if present), inclusive.

3) After calculating the CRC-32c, the resultant value is placed into
the CRC field at the end of the FPDU.

When an FPDU is received, the receiver MUST first perform the
following:

1) Calculate the CRC of the incoming FPDU in the same fashion as
defined above.

2) Verify that the calculated CRC-32c value is the same as the
received CRC-32c value found in the FPDU CRC field. If not, the
receiver MUST treat the FPDU as an invalid FPDU.

The procedure for handling invalid FPDUs is covered in the Error
Section (see section 9 on page 20)

The following is an annotated hex dump of an example FPDU sent as the
first FPDU on the stream. As such, it starts with a marker. The FPDU
contains 24 octets of the contained ULPDU, which are all zeros. The
CRC32c has been correctly calculated and can be used as a reference.
See the [DDP] and [RDMA] specification for definitions of the DDP
Control field, Queue, MSN, MO, and Send Data.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 15]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 Octet Contents Annotation
 Count

 0000 00 00 Marker: Reserved
 0002 00 00 FPDUPTR
 0004 00 2a Length
 0006 40 03 DDP Control Field, Send with Last flag set
 0008 00 00 Reserved (STag position with no STag)
 000a 00 00
 000c 00 00 Queue = 0
 000e 00 00
 0010 00 00 MSN = 1
 0012 00 01
 0014 00 00 MO = 0
 0016 00 00
 0018 00 00
 Send Data (24 octets of zeros)
 002e 00 00
 0030 4C 86 CRC32c
 0032 B3 84

Figure 5 Annotated Hex Dump of an FPDU

The following is an example sent as the second FPDU of the stream
where the first FPDU (which is not shown here) had a length of 492
octets and was also a Send to Queue 0 with Last Flag set. This
example contains a marker.

 Octet Contents Annotation
 Count

 01ec 00 2a Length
 01ee 40 03 DDP Control Field: Send with Last Flag set
 01f0 00 00 Reserved (STag position with no STag)
 01f2 00 00
 01f4 00 00 Queue = 0
 01f6 00 00
 01f8 00 00 MSN = 2
 01fa 00 02
 01fc 00 00 MO = 0
 01fe 00 00
 0200 00 00 Marker: Reserved
 0202 00 14 FPDUPTR
 0204 00 00
 Send Data (24 octets of zeros)
 021a 00 00
 021c A1 9C CRC32c
 021e D1 03

Figure 6 Annotated Hex Dump of an FPDU with Marker

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 16]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

7.3 MPA on TCP Sender Segmentation

The various TCP RFCs allow considerable choice in segmenting a TCP
stream. In order to optimize FPDU recovery at the MPA receiver, MPA
specifies additional segmentation rules.

MPA MUST encapsulate the ULPDU such that there is exactly one ULPDU
contained in one FPDU.

An MPA-aware TCP sender SHOULD segment the outbound TCP stream such
that there is exactly one FPDU per TCP segment.

An MPA-aware TCP sender SHOULD, with an EMSS large enough to contain
the FPDU, segment the outgoing TCP stream such that the first octet
of every FPDU is aligned with the beginning of a TCP segment, and is
entirely contained in the TCP segment.

Implementation note: To achieve the previous segmentation rule,
TCP's Nagle [NagleDAck] algorithm SHOULD be disabled.

There are exceptions to the above rule. Once an ULPDU is provided to
MPA, the MPA on TCP sender MUST transmit it or fail the connection;
it cannot be repudiated. As a result, during changes in MTU and
EMSS, or when TCP's Receive Window size (RWIN) becomes too small, it
may be necessary to send FPDUs that do not conform to the
segmentation rule above.

A possible, but less desirable, alternative is to use IP
fragmentation on accepted FPDUs to deal with MTU reductions or
extremely small EMSS.

The sender MUST still format the FPDU according to FPDU format as
shown in Figure 2.

On a retransmission, TCP does not necessarily preserve original TCP
segmentation boundaries. This can lead to the loss of FPDU alignment
and containment within a TCP segment during TCP retransmissions. An
MPA-Aware TCP SHOULD try to preserve original TCP segmentation
boundaries on a retransmission.

7.3.1 FPDU Size Considerations

MPA defines the Maximum Upper Layer Protocol Data Unit (MULPDU) as
the size of the largest ULPDU fitting in an EMSS-sized FPDU. MULPDU
is EMSS minus the FPDU overhead (6 octets) minus space for markers
and pad octets.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 17]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 The maximum ULPDU Length for a single ULPDU MUST be computed as:

MULPDU = EMSS - (6 + 4 * Ceiling(EMSS / 512) + EMSS mod 4)

The formula above accounts for the worst-case number of markers.

The ULP SHOULD provide ULPDUs that are as large as possible, but less
than or equal to MULPDU.

If the TCP implementation needs to adjust EMSS to support MTU
changes, the MULPDU value is changed accordingly.

In certain rare situations, the EMSS may shrink to very small sizes.
If this occurs, the MPA on TCP sender MUST not shrink the MULPDU
below 128 bytes and is not required to follow the segmentation rules
in Section 7.3 MPA on TCP Sender Segmentation on page 16. The value
128 is chosen as to allow ULP designers a reasonable amount of room
to implement their protocol. Typical WAN scenarios will not reduce
the EMSS below 512 octets.

7.4 MPA Receiver FPDU Identification

An MPA receiver MUST first verify the FPDU before passing the ULPDU
to the ULP. To do this, the receiver MUST:

* locate the start of the FPDU unambiguously,

* verify its CRC.

If the above conditions are true, the MPA receiver passes the ULPDU
to the ULP.

To detect the start of the FPDU unambiguously one of the following
MUST be used:

1: In an ordered TCP stream, the ULPDU Length field in the current
FPDU when FPDU has a valid CRC, can be used to identify the
beginning of the next FPDU.

2: A Marker can always be used to locate the beginning of an FPDU
(in FPDUs with valid CRCs). Since the location of the marker is
known in the octet stream (sequence number space), the marker can
always be found.

3: Having found an FPDU by means of a Marker, following contiguous
FPDUs can be found by using the ULPDU Lengths (from FPDUs with
valid CRCs) to establish the next FPDU boundary.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 18]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

The ULPDU Length field MUST be used to determine if the entire FPDU
is present before forwarding the ULPDU to the ULP.

CRC calculation is discussed in section 7.2 on page 13 above.

7.4.1 Re-segmenting Middle boxes and non-conforming senders

Since fully conforming MPA on TCP senders start FPDUs on TCP segment
boundaries, a receiving ULP on MPA on TCP implementation may be able
to optimize the reception of data in various ways.

However, MPA receivers MUST NOT depend on FPDU Alignment on TCP
segment boundaries.

Some MPA senders may be unable to conform to the sender requirements
because their implementation of TCP is not designed with MPA in mind.
Even if the sender is fully conformant, the network may contain
"middle boxes" which modify the TCP stream by changing the
segmentation. This is generally interoperable with TCP and its users
and MPA must be no exception.

The presence of markers in MPA allows an MPA receiver to recover the
FPDUs despite these obstacles, although it may be necessary to
utilize additional buffering at the receiver to do so.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 19]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

8 Connection Semantics

8.1 Connection setup

MPA requires that the ULP MUST activate the framing mode on a TCP
half connection at the same location in the octet stream at both the
sender and the receiver. This is required in order for the marker
scheme to correctly locate the markers.

MPA MAY be utilized separately in each direction, or enabled in both
directions at once; it is up to the ULP.

This can be accomplished several ways, and is left up to the ULP:

* The ULP MAY require MPA framing immediately after TCP connection
setup. This has the advantage that no additional negotiation is
needed (at least for MPA). In this case the marker MUST be the
first four octets sent (this marker has the special value 0x0000,
meaning it belongs to the FPDU that follows).

* The ULP MAY negotiate the start of MPA. The exchange establishes
that MPA (as well as other ULPs) will be used, and exactly
locates the point in the octet stream where MPA is to begin
operation. Again, the marker is the first four octets sent (this
marker has the special value 0x0000, meaning it belongs to the
FPDU that follows). Note that such a negotiation protocol is
outside the scope of this specification.

8.2 Normal Connection Teardown

Each half connection of MPA terminates when the ULP closes the
corresponding TCP half connection.

A mechanism SHOULD be provided by MPA to the ULP for the ULP to be
made aware that a graceful close of the LLP connection has been
received by the LLP (e.g. FIN is received).

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 20]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

9 Error Semantics

The following errors MUST be detected by MPA and the codes SHOULD be
provided to the ULP:

Code Error

1 TCP connection closed, terminated or lost. This includes
lost by timeout, too many retries, RST received or FIN
received.

2 Received MPA CRC does not match the calculated value for the
FPDU.

3 In the event that the CRC is valid, received MPA marker and
'ULPDU Length' fields do not agree on the start of a FPDU.
If the FPDU start determined from previous ULPDU Length
fields does not match with the MPA marker position, MPA
SHOULD deliver an error to the ULP. It may not be possible
to make this check as a segment arrives, but the check
SHOULD be made when a gap creating an out of order sequence
is closed and any time a marker points to an already
identified FPDU. It is OPTIONAL for a receiver to check
each marker, if multiple markers are present in an FPDU, or
if the segment is received in order.

When conditions 2 or 3 above are detected, an MPA-aware TCP
implementation MAY choose to silently drop the TCP segment rather
than reporting the error to the ULP. In this case, the sending TCP
will retry the segment, usually correcting the error, unless the
problem was at the source. In that case, the source will usually
exceed the number of retries and terminate the connection.

Once MPA delivers an error of any type, it MUST not deliver any
additional FPDUs on that half connection.

MPA MUST NOT close the TCP connection following a reported error.
Closing the connection is the responsibility of the ULP.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 21]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

10 Security Considerations

This section discusses the security considerations for MPA.

10.1 Protocol-specific Security Considerations

The vulnerabilities of MPA to third-party attacks are no greater than
any other protocol running over TCP. A third party, by sending
packets into the network that are delivered to an MPA receiver, could
launch a variety of attacks that take advantage of how MPA operates.
For example, a third party could send random packets that are valid
for TCP, but contain no FPDU headers. An MPA receiver reports an
error to the ULP when any packet arrives that cannot be validated as
an FPDU when properly located on an FPDU boundary. This would have a
severe impact on performance. Communication security mechanisms such
as IPsec [IPSEC] or TLS [TLS] may be used to prevent such attacks.
Independent of how MPA operates, a third party could use ICMP packets
to reduce the path MTU to such a small size that performance would
likewise be severely impacted. Range checking on path MTU sizes in
ICMP packets may be used to prevent such attacks.

10.2 Using IPSec With MPA

IPsec can be used to protect against the packet injection attacks
outlined above. Because IPsec is designed to secure individual IP
packets, MPA can run above IPsec without change. IPsec packets are
processed (e.g., integrity checked and decrypted) in the order they
are received, and an MPA receiver will process the decrypted FPDUs
contained in these packets in the same manner as FPDUs contained in
unsecured IP packets.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 22]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

11 IANA Considerations

If a well-known port is chosen as the mechanism to identify a ULP on
MPA on TCP, the well-known port must be registered with IANA.
Because the use of the port is ULP specific, registration of the port
with IANA is left to the ULP.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 23]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

12 References

12.1 Normative References

[iSCSI] Satran, Julian, draft-ietf-iscsi-15.txt, July 30, 2002 (work
in progress)

[PathMTU] Mogul, J., and Deering, S., "Path MTU Discovery", RFC 1191,
November 1990.

[RFC2018] Mathis, M., ahdavi, J., Floyd, S., Romanow, A., "TCP
Selective Acknowledgment Options", RFC 2018, October 1996.

[RFC2026] Bradner, S., "The Internet Standards Process -- Revision
3", BCP 9, RFC 2026, October 1996.

[TCP] Postel, J., "Transmission Control Protocol - DARPA Internet
Program Protocol Specification", RFC 793, September 1981.

12.2 Informative References

[CRCTCP] Stone J., Partridge, C., "When the CRC and TCP checksum
disagree", ACM Sigcomm, Sept. 2000.

[DDP] H. Shah et al., "Direct Data Placement over Reliable
Transports", RDMA Consortium Draft Specification
draft-shah-iwarp-ddp-v1.0, October 2002
(see http://www.rdmaconsortium.org/)

[IPSEC] Atkinson, R., Kent, S., "Security Architecture for the
Internet Protocol", RFC 2401, November 1998.

[NagleDAck] Minshall G., Mogul, J., Saito, Y., Verghese, B.,
"Application performance pitfalls and TCP's Nagle algorithm",
Workshop on Internet Server Performance, May 1999.

[RDMA] R. Recio et al., "RDMA Protocol Specification", RDMA
Consortium Draft Specification
draft-recio-iwarp-rdmap-v1.0, October 2002
(see http://www.rdmaconsortium.org/)

[SCTP] R. Stewart et al., "Stream Control Transmission Protocol", RFC
2960, October 2000.

[STONE] Stone, J., "Checksums in the Internet", Doctoral dissertation
- August 2001

[TLS] Dierks, T. and others, "The TLS Protocol, Version 1.0", RFC
2246, January 1999.

http://www.rdmaconsortium.org/
http://www.rdmaconsortium.org/

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 24]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

[Williams93] Williams, R., "A PAINLESS GUIDE TO CRC ERROR DETECTION
ALGORITHMS" - Internet publication, August 1993,
http://www.geocities.com/SiliconValley/Pines/8659/crc.htm.

[RFC792] Internet Control Message Protocol. J. Postel. Sep-01-1981

[RFC1122] Requirements for Internet hosts - communication layers.
R.T. Braden. Oct-01-1989.

http://www.geocities.com/SiliconValley/Pines/8659/crc.htm

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 25]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

13 Appendix

This appendix is for information only and is NOT part of the
standard.

13.1 Receiver implementation

13.1.1 Transport & Network Layer Reassembly Buffers

The use of reassembly buffers (either TCP reassembly buffers or IP
fragmentation reassembly buffers) is implementation dependent. When
MPA is enabled, reassembly buffers are needed if FPDU Alignment is
lost or if IP fragmentation occurs. This is because the incoming out
of order segment may not contain enough information for MPA to
process all of the FPDU. In the usual case this should be a transient
condition due to a reduction in the path MTU, so a solution does not
need to be high performance. For cases where a re-segmenting middle
box is present, the presence of markers significantly reduces the
amount of buffering needed.

Recovery from IP Fragmentation must be transparent to the MPA
Consumers.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 26]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

13.1.1.1 Network Layer Reassembly Buffers

Most IP implementations set the IP Don't Fragment bit. Thus upon a
path MTU change, intermediate devices drop the IP datagram if it is
too large and reply with an ICMP message which tells the source TCP
that the path MTU has changed. This causes TCP to emit segments
conformant with the new path MTU size. Thus IP fragments under most
conditions should never occur at the receiver. But it is possible.

There are several options for implementation of network layer
reassembly buffers:

1. drop any IP fragments, and reply with an ICMP message according
to [RFC792] (fragmentation needed and DF set) to tell the Remote
Peer to resize its TCP segment

2. support an IP reassembly buffer, but have it of limited size
(possibly the same size as the local link's MTU). The end Node
would normally never advertise a path MTU larger than the local
link MTU. It is recommended that a dropped IP fragment cause an
ICMP message to be generated according to RFC792.

3. multiple IP reassembly buffers, of effectively unlimited size.

4. support an IP reassembly buffer for the largest IP datagram (64
KB).

5. support for a large IP reassembly buffer which could span
multiple IP datagrams.

An implementation should support at least 2 or 3 above, to avoid
dropping packets that have traversed the entire fabric.

There is no end-to-end ACK for IP reassembly buffers, so there is no
flow control on the buffer. The only end-to-end ACK is a TCP ACK,
which can only occur when a complete IP datagram is delivered to TCP.
Because of this, under worst case, pathological scenarios, the
largest IP reassembly buffer is the TCP receive window (to buffer
multiple IP datagrams that have all been fragmented).

Note that if the Remote Peer does not implement re-segmentation of
the data stream upon receiving the ICMP reply updating the path MTU,
it is possible to halt forward progress because the opposite peer
would continue to retransmit using a transport segment size that is
too large. This deadlock scenario is no different than if the fabric
MTU (not last hop MTU) was reduced after connection setup, and the
remote Node's behavior is not compliant with [RFC1122].

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 27]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

13.1.1.2 TCP Reassembly buffers

A TCP reassembly buffer is also needed. TCP reassembly buffers are
needed if FPDU Alignment is lost when using TCP with MPA or when the
MPA FPDU spans multiple TCP segments (which is an exceptional case).
This is a transient condition that only occurs when a path MTU has
been reduced, unless there is a middle-box in the fabric that is re-
segmenting the TCP stream.

Since lost FPDU Alignment often means that FPDUs are incomplete, an
MPA on TCP implementation must have a reassembly buffer large enough
to recover an FPDU that is less than or equal to the MTU of the
locally attached link (this should be the largest possible advertised
TCP path MTU). If the MTU is smaller than 140 octets, the buffer MUST
be at least 140 octets long to support the minimum FPDU size. The
140 octets allows for the minimum MULPDU of 128, 2 octets of pad, 2
of ULPDU_Length, 4 of CRC, and space for a possible marker. As usual,
additional buffering may provide better performance.

Note that if the TCP segment were not stored, it is possible to
deadlock the MPA algorithm. If the path MTU is reduced, FPDU
Alignment requires the source TCP to re-segment the data stream to
the new path MTU. The source MPA will detect this condition and
reduce the MPA segment size, but any FPDUs already posted to the
source TCP will be re-segmented and lose FPDU Alignment. If the
destination does not support a TCP reassembly buffer, these segments
can never be successfully transmitted and the protocol deadlocks.

When a complete FPDU is received, processing continues normally.

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 28]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 Author's Addresses

Stephen Bailey
Sandburst Corporation
600 Federal Street
Andover, MA 01810 USA
Phone: +1 978 689 1614
Email: steph@sandburst.com

Paul R. Culley
Hewlett-Packard Company
20555 SH 249
Houston, Tx. USA 77070-2698
Phone: 281-514-5543
Email: paul.culley@hp.com

Uri Elzur
Broadcom
16215 Alton Parkway
CA, 92618
Phone: 949.585.6432
Email: uri@broadcom.com

Renato J Recio
IBM
Internal Zip 9043
11400 Burnett Road
Austin, Texas 78759
Phone: 512-838-3685
Email: recio@us.ibm.com

John Carrier
Adaptec Inc.
691 South Milpitas Blvd.
Milpitas, CA 95035
Phone: 360-378-8526
Email: John_Carrier@adaptec.com

mailto:steph@sandburst.com
mailto:paul.culley@hp.com
mailto:uri@broadcom.com
mailto:recio@us.ibm.com
mailto:John_Carrier@adaptec.com

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 29]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

15 Acknowledgments

Dwight Barron
Hewlett-Packard Company
20555 SH 249
Houston, Tx. USA 77070-2698
Phone: 281-514-2769
Email: dwight.barron@hp.com

Jeff Chase
Department of Computer Science
Duke University
Durham, NC 27708-0129 USA
Phone: +1 919 660 6559
Email: chase@cs.duke.edu

Ted Compton
EMC Corporation
Research Triangle Park, NC 27709, USA
Phone: 919-248-6075
Email: compton_ted@emc.com

Dave Garcia
Hewlett-Packard Company
19333 Vallco Parkway
Cupertino, Ca. USA 95014
Phone: 408.285.6116
Email: dave.garcia@hp.com

Hari Ghadia
Adaptec, Inc.
691 S. Milpitas Blvd.,
Milpitas, CA 95035 USA
Phone: +1 (408) 957-5608
Email: hari_ghadia@adaptec.com

Howard C. Herbert
Intel Corporation
MS CH7-404
5000 West Chandler Blvd.
Chandler, Arizona 85226
Phone: 480-554-3116
Email: howard.c.herbert@intel.com

mailto:dwight.barron@hp.com
mailto:chase@cs.duke.edu
mailto:compton_ted@emc.com
mailto:dave.garcia@hp.com
mailto:hari_ghadia@adaptec.com
mailto:howard.c.herbert@intel.com

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 30]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Jeff Hilland
Hewlett-Packard Company
20555 SH 249
Houston, Tx. USA 77070-2698
Phone: 281-514-9489
Email: jeff.hilland@hp.com

Mike Ko
IBM
650 Harry Rd.
San Jose, CA 95120
Phone: (408) 927-2085
Email: mako@us.ibm.com

Mike Krause
Hewlett-Packard Corporation, 43LN
19410 Homestead Road
Cupertino, CA 95014 USA
Phone: +1 (408) 447-3191
Email: krause@cup.hp.com

Dave Minturn
Intel Corporation
MS JF1-210
5200 North East Elam Young Parkway
Hillsboro, Oregon 97124
Phone: 503-712-4106
Email: dave.b.minturn@intel.com

Jim Pinkerton
Microsoft, Inc.
One Microsoft Way
Redmond, WA, USA 98052
Email: jpink@microsoft.com

Hemal Shah
Intel Corporation
MS PTL1
1501 South Mopac Expressway, #400
Austin, Texas 78746
Phone: 512-732-3963
Email: hemal.shah@intel.com

Allyn Romanow
Cisco Systems
170 W Tasman Drive
San Jose, CA 95134 USA
Phone: +1 408 525 8836
Email: allyn@cisco.com

mailto:jeff.hilland@hp.com
mailto:mako@us.ibm.com
mailto:krause@cup.hp.com
mailto:dave.b.minturn@intel.com
mailto:jpink@microsoft.com
mailto:hemal.shah@intel.com
mailto:allyn@cisco.com

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 31]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Tom Talpey
Network Appliance
375 Totten Pond Road
Waltham, MA 02451 USA
Phone: +1 (781) 768-5329
EMail: thomas.talpey@netapp.com

Patricia Thaler
Agilent Technologies, Inc.
1101 Creekside Ridge Drive, #100
M/S-RG10
Roseville, CA 95678
Phone: +1-916-788-5662
email: pat_thaler@agilent.com

Jim Wendt
Hewlett Packard Corporation
8000 Foothills Boulevard MS 5668
Roseville, CA 95747-5668 USA
Phone: +1 916 785 5198
Email: jim_wendt@hp.com

Jim Williams
Emulex Corporation
580 Main Street
Bolton, MA 01740 USA
Phone: +1 978 779 7224
Email: jim.williams@emulex.com

mailto:thomas.talpey@netapp.com
mailto:pat_thaler@agilent.com
mailto:jim_wendt@hp.com
mailto:jim.williams@emulex.com

 MPA Framing for TCP 25 October 2002

P. Culley et. al. [Page 32]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

16 Full Copyright Statement

This document and the information contained herein is provided on an
"AS IS" basis and ADAPTEC INC., AGILENT TECHNOLOGIES INC., BROADCOM
CORPORATION, CISCO SYSTEMS INC., DUKE UNIVERSITY, EMC CORPORATION,
EMULEX CORPORATION, HEWLETT-PACKARD COMPANY, INTERNATIONAL BUSINESS
MACHINES CORPORATION, INTEL CORPORATION, MICROSOFT CORPORATION,
NETWORK APPLIANCE INC., AND SANDBURST CORPORATION DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Copyright (c) 2002 ADAPTEC INC., BROADCOM CORPORATION, CISCO SYSTEMS
INC., EMC CORPORATION, HEWLETT-PACKARD COMPANY, INTERNATIONAL
BUSINESS MACHINES CORPORATION, INTEL CORPORATION, MICROSOFT
CORPORATION, AND NETWORK APPLIANCE INC., All Rights Reserved

	Status of this Memo
	Abstract
	Introduction
	Motivation
	Protocol Overview

	Glossary
	LLP and ULP requirements
	TCP implementation Requirements to support MPA
	MPA's interactions with the ULP

	FPDU Formats
	Marker Format

	Data Transfer Semantics
	MPA Markers
	CRC Calculation
	MPA on TCP Sender Segmentation
	FPDU Size Considerations

	MPA Receiver FPDU Identification
	Re-segmenting Middle boxes and non-conforming senders

	Connection Semantics
	Connection setup
	Normal Connection Teardown

	Error Semantics
	Security Considerations
	Protocol-specific Security Considerations
	Using IPSec With MPA

	IANA Considerations
	References
	Normative References
	Informative References

	Appendix
	Receiver implementation
	Transport & Network Layer Reassembly Buffers
	Network Layer Reassembly Buffers
	TCP Reassembly buffers

	Author's Addresses
	Acknowledgments
	Full Copyright Statement

