Pascal SeSSion Chairman: Jacques Cohen

Discussant: Andrew B. Mikel

RECOLLECTIONS ABOUT THE DEVELOPMENT OF PASCAL
N. Wirth

Institut far Computersysteme, ETH Zurich
CH-8092 Zurich

ABSTRACT

Pascal was defined in 1970 and, after a slow start, became one of the most widely used languages in
introductory programming courses. This article first summarizes the events leading to Pascal’s design and
implementation, and then proceeds with a discussion of some of the language’s merits and deficiencies.
In the last part, developments that followed its release are recounted. Its influence chiefly derived from
its being a vehicle for structured programming and a basis for further development of languages and for
experiments in program verification.

CONTENTS

3.1 Early History

3.2 The Language

3.3 Later Developments
3.4 InRetrospect
Acknowledgments
References

3.1 EARLY HISTORY

The programming language Pascal was designed in the years 1968-1969, and I named it after the
French philosopher and mathematician, who in 1642 designed one of the first gadgets that might truly
be called a digital calculator. The first compiler for Pascal was operational in early 1970, at which
time the language definition also was published [Wirth 1970].

These facts apparently constitute the anchor points of the history of Pascal. However, its genuine
beginnings date much further back. It is perhaps equally interesting to shed some light on the events
and trends of the times preceding its birth, as it is to recount the steps that led to its widespread use.
I shall therefore start with a more or less chronological narrative of the early history of Pascal.

In the early 1960s, there existed two principal scientific languages: FORTRAN and ALGOL 60
[Naur 1963]. The former was already in wide use and supported by large computer manufacturers.
The latter—designed by an international committee of computing experts—lacked such support, but

97

NIKLAUS WIRTH

attracted attention by its systematic structure and its concise, formalized definition. It was obvious
that ALGOL deserved more attention and a wider field of applications. In order to achieve it, ALGOL
needed additional constructs to make it suitable for purposes other than numerical computation. To
this end, IFIP established a Working Group with the charter of defining a successor to ALGOL. There
was hope that the undesirable canyon between scientific and commercial programming, by the
mid-1960s epitomized as the FORTRAN and COBOL worlds, could be bridged. T had the privilege
of joining Working Group 2.1 in 1964. Several meetings with seemingly endless discussions about
general philosophies of language design, about formal definition methods, about syntactic details,
character sets, and the whole spectrum of topics connected with programming revealed a discouraging
lack of consensus about the approach to be taken. However, the wealth of ideas and experience
presented also provided encouragement to coalesce them into a powerful ensemble.

As the number of meetings grew, it became evident that two main factions emerged from the
roughly two dozen members of the Working Group. One party consisted of the ambitious members,
unwilling to build upon the framework of ALGOL 60 and unafraid of constructing features that were
largely untried and whose consequences for implementors remained a matter of speculation, who
were eager to erect another milestone similar to the one set by ALGOL 60. The opponents were more
pragmatic. They were anxious to retain the body of ALGOL 60 and to extend it with well-understood
features, widening the area of applications for the envisaged successor language, but retaining the
orderly structure of its ancestor. In this spirit, the addition of basic data types for double precision real
numbers and for complex numbers was proposed, as well as the record structure known from COBOL,
the replacement of ALGOL'’s call-by-name with a call-by-reference parameter, and the replacement
of ALGOL's overly general for-statement by a restricted but more efficient version. They hesitated
to incorporate novel, untested ideas into an official language, well aware that otherwise a milestone
might easily turn into a millstone.

In 1965, I was commissioned to submit a proposal to the WG, which reflected the views of the
pragmatists. In a meeting in October of the same year, however, a majority of the members favored a
competing proposal submitted by A. van Wijngaarden, former member of the ALGOL 60 team, and
decided to select it as the basis for ALGOL X in a meeting in Warsaw in the fall of 1966 [van
Wijngaarden, 1969]. Unfortunately, but as foreseen by many, the complexity of ALGOL 68 caused
many delays, with the consequence that, at the time of its implementation in the early 1970s, many
users of ALGOL 60 had already adopted other languages [Hoare 1980].

I proceeded to implement my own proposal in spite of its rejection, and to incorporate the concept
of dynamic data structures and pointer binding suggested by C. A. R. Hoare. The implementation was
made at Stanford University for the new IBM 360 computer. The project was supported by a grant
from the U.S. National Science Foundation. The outcome was published and became known as
ALGOL W [Wirth 1966]. The system was adopted at many universities for teaching programming
courses, but the language remained confined to IBM 360/370 computers.

Essentially, ALGOL W had extended ALGOL 60 with new data types representing double
precision floating-point and complex numbers, with bit strings and with dynamic data structures
linked by pointers. In spite of pragmatic precautions, the implementation turned out to be rather
complex, requiring a run-time support package. It failed to be an adequate tool for systems program-
ming, partly because it was burdened with features unnecessary for systems programming tasks, and
partly because it lacked adequately flexible data structuring facilities. I therefore decided to pursue
my original goal of designing a general-purpose language without the heavy constraints imposed by
the necessity of finding a consensus among two dozen experts about each and every little detail. Past
experience had given me a life-long mistrust in the products of committees, where many participate
in debating and decision making, and few perform the actual work—made difficult by the many. In

98 CHAPTER i

PAPER: RECOLLECTIONS ABOUT THE DEVELOPMENT OF PASCAL

1968, 1 assumed a professorship at the Federal Institute of Technology in Zurich (ETH), where
ALGOL 60 had been the language of choice among researchers in numeric computation. The
acquisition of CDC computers in 1965 (and even more so in 1970), made this preference hard to
justify, because ALGOL compilers for these computers were rather poorly designed and could not
compete with their FORTRAN counterparts. Furthermore, the task of teaching programming—
in particular, systems programming—appeared highly unattractive, given the choice between
FORTRAN and assembler code as the only available tools. After all, it was high time to not only
preach the virtues of structured programming, but to make them applicable in actual practice by
providing a language and compilers offering appropriate constructs. The discipline of structured
programming had been outlined by E. W. Dijkstra [Dijkstra 1966] and represented a major step
forward in the battle against what became known as the “Software Crisis.” It was felt that the discipline
was to be taught at the level of introductory programming courses, rather than as an afterthought while
trying to retrain old hands. This insight is still valid today. Structured programming and stepwise
refinement [Wirth 1971a] marked the beginnings of a methodology of programming, and became a
cornerstone in helping program design become a subject of intellectual respectability.

Hence, the definition of a new language and the development of its compiler were not a mere
research project in language design, but rather a blunt necessity. The situation was to recur several
times in the following decades, when the best advice was: Lacking adequate tools, build your own!
In 1968, the goals were twofold: The language was to be suitable for expressing the fundamental
constructs known at the time in a concise and logical way, and its implementation was to be efficient
and competitive with existing FORTRAN compilers.

The latter requirement turned out to be rather demanding, given a computer (the CDC 6000) that
was designed very much with FORTRAN in mind. In particular, dynamic arrays and recursive
procedures appeared as formidable obstacles, and were therefore excluded from an initial draft of the
language. The prohibition of recursion was a mistake and was soon to be rectified, in due recognition
that it is unwise to be influenced severely by an inadequate tool of a transitory nature.

The task of writing the compiler was assigned to a single graduate student (E. Marmier) in 1969.
As his programming experience was restricted to FORTRAN, the compiler was to be expressed in
FORTRAN, with its translation into Pascal and subsequent self-compilation planned after its com-
pletion. This, as it turned out, was another grave mistake. The inadequacy of FORTRAN to express
the complex data structures of a compiler caused the program to become contorted and its translation
amounted to a redesign, because the structures inherent in the problem had become invisible in the
FORTRAN formulation. The compiler relied on syntax analysis based on the table-driven bottom-up
(LR) scheme adopted from the ALGOL W compiler. Sophistication in syntax analysis was very much
in style in the 1960s, allegedly because of the power and flexibility required to process high-level
languages. It occurred to me then that a much simpler and more perspicuous method could well be
used, if the syntax of a language was chosen with the process of its analysis in mind.

The second attempt at building a compiler therefore began with its formulation in the source
language itself, which by that time had evolved into what was published as Pascal in 1970 [Wirth
1970]. The compiler was to be a single-pass system based on the proven top-down, recursive-descent
principle for syntax analysis. We note here that this method was eligible because the ban against
recursion had been lifted: recursivity of procedures was to be the normal case. The team of
implementors consisted of U. Ammann, E. Marmier, and R. Schild. After the program was com-
pleted—a healthy experience in programming in an unimplemented language!—Schild was banished
to his home for two weeks, the time it took him to translate the program into an auxiliary, low-level
language available on the CDC computer. Thereafter, the bootstrapping process could begin [Wirth
1971b).

PASCAL SESSION 99

NIKLAUS WIRTH

This compiler was completed by mid-1970, and at this time the language definition was published.
With the exception of some slight revisions in 1972, it remained stable thereafter. We began using
Pascal in introductory programming courses in late 1971. As ETH did not offer a computer science
program until ten years later, the use of Pascal for teaching programming to engineers and physicists
caused a certain amount of controversy. My argument was that the request to teach the methods used
in industry, combined with the fact that industry uses the methods taught at universities, constitutes
avicious circle barring progress. But it was probably my stubborn persistence rather than any reasoned
argument that kept Pascal in use. Ten years later, nobody minded.

In order to assist in the teaching effort, Kathy Jensen started to write a tutorial text explaining the
primary programming concepts of Pascal by means of many examples. This text was first printed as
a technical report and thereafter appeared in Springer-Verlag’s Lecture Notes Series [Jensen 1974].

3.2 THE LANGUAGE

The principal role of a language designer is that of a judicious collector of features or concepts. Once
these concepts are selected, forms of expressing them must be found, that is, a syntax must be defined.
The forms expressing individual concepts must be carefully molded into a whole. This is most
important, as otherwise the language will appear as incoherent, as a skeleton onto which individual
constructs were grafted, perhaps as afterthoughts. Sufficient time had elapsed that the main flaws of
ALGOL were known and could be eliminated. For example, the importance of avoiding ambiguities
had been recognized. In many instances, a decision had to be taken whether to solve a case in a clear-cut
fashion, or to remain compatible with ALGOL.. These options sometimes were mutually exclusive.
In retrospect, the decisions in favor of compatibility were unfortunate, as they kept inadequacies of
the past alive. The importance of compatibility was overestimated, just as the relevance and size of
the ALGOL 60 community had been. Examples of such cases are the syntactic form of structured
statements without closing symbol, the way in which the result of a function procedure is specified
(assignment to the function identifier), and the incomplete specification of parameters of formal
procedures. All these deficiencies were later corrected in Pascal’s successor language, Modula-2
[Wirth 1982]. For example, ALGOL’s ambiguous conditional statement was retained. Consider

IF p THEN IF q THEN A ELSE B

which can, according to the specified syntax, be interpreted in the following two ways:

IF p THEN [IF q THEN A ELSE B]
IF p THEN [IF q THEN A] ELSE B

Pascal retained this syntactic ambiguity, selecting, however, the interpretation that every ELSE be
associated with the closest THEN at its left. The remedy, known but rejected at the time, consists of
requiring an explicit closing symbol for each structured statement, resulting in the two distinct forms
for the two cases as shown below:

IF p THEN IF p THEN
IF q THEN A ELSE B END IF q THEN A END
END ELSE B
END

Pascal also retained the incomplete specification of parameter types of a formal procedure, leaving
open a dangerous loophole for breaching type checks. Consider the declarations

100 CHAPTER Il

PAPER: RECOLLECTIONS ABOUT THE DEVELOPMENT OF PASCAL

PROCEDURE P (PROCEDURE q);
BEGIN q(x, y) END ;

PROCEDURE Q (x: REAL);
BEGIN ... END ;

and the call P(Q). Then q is called with the wrong number of parameters, which cannot in general be
detected at the time of compilation.

In contrast to such concessions to tradition stood the elimination of conditional expressions.
Thereby the symbol IF clearly becomes a marker of the beginning of a statement, and bewildering
constructs of the form

IF p THEN x := IF ¢ THEN y ELSE z ELSE w

are banished from the language.

The baroque for-statement of ALGOL was replaced by a tamed version, which is efficiently
implementable, restricting the control variable to be a simple variable and the limit to be evaluated
only once instead of before each repetition. For more general cases of repetitions, the while statement
was introduced. Thus it became impossible to formulate misleading, nonterminating statements, as,
for example

FOR I := 0 STEP 1 UNTIL I DO S

and the rather obscure formulation

FOR I := n-1, I-1 WHILEI > 0 DO S

could be expressed more clearly by

I := n;
WHILE I > O DO BEGIN I := I-1; S END

The primary innovation of Pascal was to incorporate a variety of data types and data structures,
similar to ALGOL’s introduction of a variety of statement structures. ALGOL offered only three basic
data types: integers, real numbers, and truth values, and the array structure; Pascal introduced
additional basic types and the possibility to define new basic types (enumerations, subranges), as well
as new forms of structuring: record, set, and file (sequence), several of which had been present in
COBOL. Most important was of course the recursivity of structural definitions and the consequent
possibility to combine and nest structures freely.

Along with programmer-defined data types came the clear distinction between type definition and
variable declaration, variables being instances of a type. The concept of strong typing—already
present in ALGOL—emerged as an important catalyst for secure programming. A type was to be
understood as a template for variables specifying all properties that remain fixed during the time span
of a variable’s existence. Whereas its value changes (through assignments), its range of possible values
remains fixed, as well as its structure. This explicitness of static properties allows compilers to verify
whether rules governing types are respected. The binding of properties to variables in the program
text is called early binding and is the hallmark of high-level languages, because it gives clear
expression to the intention of the programmer, unobscured by the dynamics of program execution.

However, the strict adherence to the notion of (static) type led to some less fortunate consequences.
We refer here to the absence of dynamic arrays. These can be understood as static arrays with the
number of elements (or the bounding index values) as a parameter, Pascal did not include parameter-

PASCAL SESSION 101

NIKLAUS WIRTH

ized types, primarily for reasons of implementation, although the concept was well understood.
Whereas the lack of dynamic array variables may perhaps not have been too serious, the lack of
dynamic array parameters is clearly recognized as a defect, if not in the view of the compiler-designer,
then certainly in the view of the programmer of numerical algorithms. For example, the following
declarations do not permit procedure P to be called with x as its actual parameter:

TYPE A0 = ARRAY [1 .. 100] OF REAL;
Al = ARRAY [0 .. 999] OF REAL;

VAR x: Al;

PROCEDURE P(x: AO); BEGIN ... END

Another important contribution of Pascal was the clear conceptual and denotational separation of
the notions of structure and access method. Whereas in ALGOL W, arrays could only be declared as
static variables and hence could only be accessed directly, record structured variables could only be
accessed via references (pointers), that is, indirectly. In Pascal, all structures can be either accessed
directly or via pointers, indirection being specified by an explicit dereferencing operator. This
separation of concerns was known as “orthogonal design,” and was pursued (perhaps to extreme) in
ALGOL 68. The introduction of explicit pointers, that is, variables of pointer type, was the key to a
significant widening of the scope of application. Using pointers, dynamic data structures can be built,
as in list-processing languages. It is remarkable that the flexibility in data structuring was made
possible without sacrificing strict static type checking. This was due to the concept of pointer binding,
that is, of declaring each pointer type as being bound to the type of the referenced objects, as proposed
by [Hoare 1972]. Consider, for instance, the declarations

TYPE Pt = T Rec;
Rec = RECORD x, y: REAL END ;
VAR p, q: Pt;

Then p and q, provided they had been properly initialized, are guaranteed to hold either values
referring to a record of type Rec, or the constant NIL. A statement of the form

pT.x t= pT.y + qlT.x

turns out to be as type-safe as the simple x :=x +y.

Indeed, pointers and dynamic structures were considerably more important than dynamic arrays
in all applications except numeric computation. Intricately connected to pointers is the mechanism of
storage allocation. As Pascal was to be suitable as a system-building language, it tried not to rely on
a built-in run-time garbage collection mechanism, as had been necessary for ALGOL W. The solution
adopted was to provide an intrinsic procedure NEW for allocating a variable in a storage area called
“the heap,” and a complementary one for deallocation (DISPOSE). NEW is easy to implement, and
DISPOSE can be ignored, and indeed it turned out to be wise to do so, because system procedures
depending on programmer’s information are inherently unsafe. The idea of providing a garbage
collection scheme was not considered in view of its complexity. After all, the presence of local
variables and of programmer-defined data types and structures requires a rather sophisticated and
complex scheme, crucially depending on system integrity. A collector must be able to rely on
information about all variables and their types. This information must be generated by the compiler
and, moreover, it must be impossible to invalidate it during program execution. The subject of
parameter-passing methods had already been a source of endless debates and hassles in the days of
the search for a successor to ALGOL 60. The impracticality of its name parameter had been clearly
established, and the indispensability of the value parameter was generally accepted. Yet there were

102 CHAPTER il

PAPER: RECOLLECTIONS ABOUT THE DEVELOPMENT OF PASCAL

valid arguments for a reference parameter, in particular for structured operands on the one hand, and
good reasons for result parameters on the other. In the former case the formal parameter constitutes
a hidden pointer to the actual variable; in the latter the formal parameter is a local variable to be
assigned to the actual variable upon termination of the procedure. The choice of the reference
parameter (in Pascal called VAR-parameter) as the only alternative to the value parameter turned out
to be simple, appropriate, and successful.

And last but not least, Pascal included statements for input and output, whose omission from
ALGOL had been a source of continuing criticism. Particularly with regard to Pascal’s role as a
language for instruction, a simple form of such statements was chosen. Their first parameter designates
afile and, if omitted, causes the data to be read from or written to the default medium, such as keyboard
and printer. The reason for including a special statement for this purpose in the language definition,
rather than postulating special, standard procedures, was the desire to allow for a variable number and
different types of parameters:

Read(x, y); ... ; Write(x, y, 2z)

As mentioned before, a language designer collects frequently used programming constructs from
his or her own experience, from the literature, or from other languages, and molds them into syntactic
forms in such a way that they together form an integrated language. Whereas the basic framework of
Pascal stems from ALGOL W, many of the new features emerged from suggestions made by C. A.R.
Hoare, including enumeration, subrange, set, and file types. The form of COBOL-like record types
was due to Hoare, as well as the idea to represent a computer’s “logical words” by a well-known
abstraction—namely, sets (of small integers). These “bits and pieces” were typically presented and
discussed during meetings of the IFIP Working Group 2.1 (ALGOL), and thereafter appeared as
communications in the ALGOL Bulletin. They were collected in Hoare’s Notes on Data Structuring
[Hoare 1972].

In Pascal, they were distilled into a coherent and consistent framework of syntax and semantics,
such that the structures were freely combinable. Pascal permits the definitions of arrays of records,
records of arrays, arrays of sets, and arrays of records with files, to name just a few possibilities.
Naturally, implementations would have to impose certain limits as to the depth of nesting due to finite
resources, and certain combinations, such as a file of files, might not be accepted at all. This case may
serve as an example of the distinction between the general concepts defined by the language, and
supplementary, restrictive rules governing specific implementations.

Although the wealth of data types and structuring forms was the principal asset of Pascal, not all
of the components were equally successful. We keep in mind that success is a subjective quality, and
opinions may differ widely. I therefore concentrate on an “evaluation” of a few constructs where
history has given a reasonably clear verdict. The most vociferous criticism came from Habermann,
who correctly pointed out that Pascal was not the last word on language design. Apart from taking
issue with types and structures being merged into a single concept, and with the lack of constructs
such as conditional expressions, the exponentiation operator, and local blocks, which were all present
in ALGOL 60, he reproached Pascal for retaining the much-cursed goto statement [Habermann 1973].
In hindsight, one cannot but agree; at the time, its absence would have deterred too many people from
trying to use Pascal. The bold step of proposing a goto-less language was taken ten years later by
Pascal’s successor Modula-2, which remedied many shortcomings and eliminated several remaining
compatibility concessions to ALGOL 60, particularly with regard to syntax [Wirth 1982]. A detailed
and well-judged reply to the critique by Habermann was written by Lecarme, who judged the merits
and deficiencies on the basis of his experience with Pascal in both teaching and compiler design

PASCAL SESSION 103

NIKLAUS WIRTH

[Lecarme 1975]. Another significant critique [Welsh 1977] discusses the issue of structural versus
name equivalence of data types, a distinction that had unfortunately been left open in the definition
of Pascal. It caused many debates until it was resolved by the standards committee.

Perhaps the single most unfortunate construct was the variant record. It was provided for the
purpose of constructing nonhomogeneous data structures. Both for array and for dynamic structures
in Pascal, the element types must be fixed by type declarations. The variant record allows variations
of the element types. The unfortunate aspect of the variant record of Pascal stems from the fact that
it provides more flexibility than required to achieve this legitimate goal. In a dynamic structure,
typically every element remains of the same type as defined by its creation. The variant record,
however, allows more than the construction of heterogeneous structures, that is, of structures with
elements of different, although related types. It allows the type of elements themselves to change at
any time. This additional flexibility has the regrettable property of requiring type checking at run-time
for each access to such a variable or to one of its components. Most implementors of Pascal decided
that this checking would be too expensive, enlarging code and deteriorating program efficiency. As a
consequence, the variant record became a favorite feature to breach the type system by all program-
mers in love with tricks, which usually turn into pitfalls and calamities. Variant records also became
a major hindrance to the notion of portability of programs. Consider, for example, the declaration

VAR R: RECORD maxspeed: INTEGER;
CASE v: Vehicle OF
truck: (nofwheels: INTEGER);
vessel: (homeport: String)
ENL)

Here, the designator R.nofwheels is applicable only if R.v has the value truck, and R.homeport
only if R.v = vessel. No compiler checks can safeguard against erroneous use of designators, which,
in the case of assignment, may be disastrous, because the variant facility is used by implementations
to save storage by overlaying the fields nofwheels and homeport.

With regard to input and output operations, Pascal separated the notions of data transfer (to or from
an external medium) and of representation conversion (binary to decimal and vice versa). External,
legible media were to be represented as files (sequences) of characters. Representation conversion
was expressed by special read and write statements that have the appearance of procedures but allowed
a variable number of parameters. Whereas the latter was essentially a concession to programmers used
to FORTRAN’s I/C statements, the notion of sequence as a structural form was fundamental. Perhaps
also in this case, providing sequences of any (even programmer-defined) element types was more than
what was genuinely needed in practice. The consequence was that, in contrast to all other data types,
files require a certain amount of support from built-in run-time routines, mechanisms not explicitly
visible from the program text. The successors of Pascal—Modula-2 and Oberon—Ilater retreated from
the notion of the file as a structural form at the same level as array and record. This became possible,
because implementations of sequencing mechanisms could be provided through modules (library
packages). In Pascal, however, the notion of modules was not yet present; Pascal programs were to
be regarded as single, monolithic texts. This view may be acceptable for teaching purposes where
exercises are reasonably compact, but it is not tenable for the construction of large systems.
Nevertheless and surprisingly, Pascal compilers could be written as single Pascal programs.

104 CHAPTER lI

- PAPER: RECOLLECTIONS ABOUT THE DEVELOPMENT OF PASCAL

3.3 LATER DEVELOPMENTS

Even though Pascal appeared to fulfill our expectations in regard to teaching, the compiler still failed
to satisfy the stated goals with regard to efficiency in two aspects: First, the compiler as a relatively
large stand-alone program resulted in fairly long *“turn-around times” for students. In order to alleviate
the problem, I designed a subset of the language containing those features that we believed were to
be covered in introductory courses, and a compiler/interpreter package that fitted into a 16K-word
block of store, which fell under the most-favored program status of the computation center. The Pascal
S package was published in a report, and was one of the early comprehensive systems made widely
available in source form [Wirth 1981].

Comparable FORTRAN programs were still substantially faster, an undeniable argument in the
hands of the Pascal adversaries. As we were of the opinion that structured programming, supported
by a structured language and efficiency of compilation and of produced code were not necessarily
mutually exclusive, a project for a third compiler was launched, which on the one hand was to
demonstrate the advantage of structured top-down design with step-wise refinement [Ammann 1974],
and on the other hand was to pay attention to generating high-quality code. This compiler was written
by U. Ammann and achieved both goals quite admirably. It was completed in 1976 [Ammann 1977].

Although the result was a sophisticated compiler of high quality and reliability, in hindsight we
must honestly confess that the effort invested was not commensurate with its effect. It did not win
over many engineers and even fewer physicists. The argument that FORTRAN programs “ran faster”
was simply replaced by “our programs are written in FORTRAN.” And what authorizes us to teach
structured, “better” programming to experts of ten years’ standing? Also, the code was generated for
the CDC 6000 computer which—with its 60-bit word and super-RISC structure—was simply not well
suited for the task. Much of Ammann’s efforts went into implementing the attribute packet of records.
Although semantically irrelevant, it was requested by considerations of storage economy on a
computer with very long words. Having had the freedom to design not only the language but also the
computer would have simplified the project considerably. In any event, the spread of Pascal came
from another front.

Not long after the publication of the Pascal definition, we received correspondence indicating
interest in that language and requesting assistance in compiler construction, mainly from people who
were not users of CDC computers. It was this stimulus that encouraged me to design a suitable
computer architecture. A version of Ammann’s compiler—easily derived from an early stage of the
sequence of refinements—would generate code for this “ideal” architecture, which was described in
the form of a Pascal program representing an interpreter. In 1973, the architecture became known as
the P-machine, the code as P-code, and the compiler as the P-compiler. The P-kit consisted of the
compiler in P-code and the interpreter as a Pascal source program [Nori 1981]. Recipients could
restrict their labor to coding the interpreter in their favorite assembler code, or proceed to modify the
source of the P-compiler and replace its code-generating routines. This P-system turned out to be the
key to Pascal’s spread onto many computers, but the reluctance of many to proceed beyond the
interpretive scheme also gave rise to Pascal’s classification as a “slow language,” restricted to use in
teaching.

Among the recipients of the P-kit was the team of K. Bowles at the University of California at San
Diego (UCSD) around 1975, He had the foresight to see that a Pascal compiler for an interpretive
system might well fit into the memory of a microcomputer, and he mustered the courage to try.
Moreover, the idea of P-code made it easy to port Pascal to a whole family of micros and to provide

PASCAL SESSION 105

NIKLAUS WIRTH

a common basis on all of them for teaching. Microcomputers had just started to emerge, using early
microprocessors such as Intel’s 8080, DEC’s LSI-11, and Rockwell’s 6502; in Europe, they were
hardly known at the time.

Bowles not only ported our compiler. His team built an entire system around the compiler, including
a program editor, a file system, and a debugger, thereby reducing the time needed for an edit-com-
pile-test step dramatically over any other system in educational use. Starting in 1978, this UCSD-Pas-
cal system spread Pascal very rapidly to a growing number of users {Bowles 1980; Clark 1982]. It
won more “Pascal friends” in a year than the systems used on large “mainframes” had won in the
previous decade. This phenomenal success had three sources: (1) a high-level language, which would
pervade educational institutions, was available on microcomputers; (2) Pascal became supported by
an integrated system instead of a “stand-alone” compiler; and (3), perhaps most importantly, Pascal
was offered to a large number of computer novices, that is, people who were not burdened by previous
programming habits. In order to adopt Pascal, they did not have to give up a large previous investment
in learning all the idiosyncracies of assembler or FORTRAN coding. The microcomputer made
programming a public activity, hitherto exclusively reserved to the high priests of computing centers,
and Pascal effectively beat FORTRAN on microcomputers. By 1978, there existed over 80 distinct
Pascal implementations on hosts ranging from the Intel 8080 microprocessor to the Cray-1 supercom-
puter. But Pascal’s usefulness was not restricted to educational institutions; by 1980, all four major
manufacturers of workstations (Three Rivers, HP, Apollo, Tektronix) were using Pascal for system
programming.

Besides being the major agent for the spread of Pascal implementations, the P-system was
significant in demonstrating how comprehensible, portable, and reliable a compiler and system
program could be made. Many programmers learned a great deal from the P-system, including
implementors who did not base their work on the P-system, and others who had never before been
able to study a compiler in detail. The fact that a compiler was available in source form caused the
P-system to become an influential vehicle of extracurricular education.

Several years earlier, attempts had been made to transport the Pascal compiler to other mainframe
computers. In these projects no interpreter or intermediate code was used; instead they required the
design of new generators of native code. The first of these projects was also the most successful. It
was undertaken by J. Welsh and C. Quinn from Queen’s University, Belfast [Welsh 1972]. The target
was the ICL 1900 computer. The project deserves special mention, because it should be considered
as one of the earliest, genuinely successful ventures that were later to be called software engineering
efforts.

As no CDC computer was available at Belfast, the goal was to employ a method that required as
little work on a CDC machine as possible. What remained unavoidable would be performed during
ashort visit to ETH in Zurich. Welsh and Quinn modified the CDC-Pascal compiler, written in Pascal,
by replacing all statements affecting code generation. In addition, they wrote a loader and an
interpreter of the ICL architecture, allowing some tests to be performed on the CDC computer. All
these components were programmed before the crucial visit, and were completed without any
possibility of testing. In Zurich, the programs were compiled and a few minor errors were corrected
within a week. Back in Belfast, the generated compiler code was executable directly by the
ICL-machine after correction of a single remaining error.

This achievement was due to a very careful programming and checking effort, and it substantiated
the claimed advantages to be gained by programming in a high-level language such as Pascal, which
provides full, static type checking. The feat was even more remarkable, because more than half of the
week had to be spent on finding a way to read the programs brought from Belfast. Aware of the
incompatibilities of character sets and tape formats of the two machines (seven- versus nine-track

106 CHAPTER il

PAPER: RECOLLECTIONS ABOUT THE DEVELOPMENT OF PASCAL

tapes), Welsh and Quinn decided to use punched cards as the data carrier. Yet, the obstacles
encountered were probably no less formidable. It turned out to be a tricky, if not downright impossible,
task to read cards punched by an ICL machine with the CDC reader. Not only did the machines use
different sets of characters and different encodings, but certain hole combinations were interpreted
directly by the reader as end of records. The manufacturers had done their utmost best to ensure
incompatibility! Apart from these perils, the travelers had failed to reckon with the thoroughness of
the Swiss customs officers. The two boxes filled with some four thousand cards surely had to arouse
their deep suspicion, particularly because these cards contained empty cubicles irregularly spaced by
punched holes. Nevertheless, after assurances that these valuable possessions were to be reexported
anyway, the two might-be smugglers were allowed to proceed to perform their mission. Upon their
return, the fact that now the holes were differently positioned luckily went unnoticed.

Other efforts to port the compiler followed; among them were those for the IBM 360 computers
at Grenoble, the PDP-11 at Twente [Bron 1976], and the PDP-10 at Hamburg [Grosse-Lindemann
1976].

By 1973, Pascal had started to become more widely known and was being used in classrooms as
well as for smaller software projects. An essential prerequisite for such acceptance was the availability
of a user manual including tutorial material in addition to the language definition. Kathy Jensen
embarked on providing the tutorial part, and by 1973 the booklet was published by Springer-Verlag,
first in their Lecture Notes Series, and, after selling very quickly, as an issue on its own [Jensen 1974].
It was soon to be accompanied by a growing number of introductory textbooks from authors from
many countries. The User Manual itself was later to be translated into many different languages, and
it became a bestseller.

A dedicated group of Pascal fans was located at the University of Minnesota’s computer center.
Under the leadership and with the enthusiasm of Andy Mickel, a Pascal Users’ Group (PUG) was
formed, whose vehicle of communication was the Pascal Newsletter, at first edited by G. H. Richmond
(University of Colorado) and later by Mickel. The first issue appeared in January 1974, It served as
a bulletin board for new Pascal implementations, for new experiences and—of course—for ideas of
improving and extending the language. Its most important contribution consisted in tracking all the
emerging implementations. This helped both consumers to find compilers for their computers and
implementors to coordinate their efforts.

At ETH Zurich, we had decided to move on towards other projects and to discontinue distribution
of the compiler, and the Minnesota group was ready to take over its maintenance and distribution.
Maintenance here refers to adaptation to continually changing operating system versions, as well as
to the advent of the Pascal standard.

Around 1977, a committee had been formed to define a standard. At the Southampton conference
on Pascal, A. M. Addyman asked for help in forming a standards committee under the British
Standards Institute (BSI). In 1978, representatives from industry met at a conference in San Diego
hosted by K. Bowles to define a number of extensions to Pascal. This hastened the formation of a
standards committee under the wings of IEEE and ANSI/X3. The formation of a Working Group
within ISO followed in late 1979, and finally the IEEE and ANSI/X3 committees were merged into
the single Joint Pascal Committee.

Significant conflicts arose between the U.S. committee and the British and ISO committees,
particularly over the issue of conformant array parameters (dynamic arrays). The latter became the
major difference between the original Pascal and the one adopted by ISO, the other being the
requirement of complete parameter specifications for parametric procedures and functions. The
conflict on the issue of dynamic arrays eventually led to a difference between the standards adopted
by ANSI on one hand, and BSI and ISO on the other. The unextended standard was adopted by IEEE

PASCAL SESSION 107

NIKLAUS WIRTH

in 1981 and by ANSI in 1982 [Cooper 1983; Ledgard 1984). The differing standard was published
by BSI in 1982 and approved by ISO in 1983 [ISO 1983; Jensen 1991].

In the meantime, several companies had implemented Pascal and added their own, supposedly
indispensable extensions. The standard was to bring them back under a single umbrella. If anything
might have had a chance to make this dream come true, it would have been the speedy action of
declaring the original language as the standard, perhaps with the addition of a few clarifications about
obscure points. Instead, several members of the group had fallen prey to the devil’s temptations: They
extended the language with their own favorite features. Most of these features I had already
contemplated in the original design, but dropped either because of difficulties in clear definition or
efficient implementation, or because of questionable benefit to the programmer [Wirth 1975]. As a
result, long debates started, requiring many meetings. When the committee finally submitted a
document, the language had almost found its way back to the original Pascal. However, a decade had
elapsed since publication of the report, during which individuals and companies had produced and
distributed compilers; and they were not keen to modify them in order to comply with the late standard,
and even less keen to give up their own extensions. An implementation of the standard was later
published in Welsh [1986].

Even before publication of the standard, however, a validation suite of programs was established
and played a significant role in promoting compatibility across various implementations [Wichmann,
1983]. Its role even increased after the adoption of the standard, and in the United States it made a
Federal Information Processing Standard for Pascal possible.

The early 1970s were the time when, in the aftermath of spectacular failures of large projects, terms
such as structured programming and software engineering were coined. They acted as symbols of
hope for the drowning, and too often were believed to be panaceas for all the troubles of the past. This
trend further raised interest in Pascal, which—after all—was exhibiting a lucid structure and had been
strongly influenced by E. W. Dijkstra’s teachings on structured design. The 1970s were also the years
when, in the same vein, it was believed that formal development of correctness proofs for programs
was the ultimate goal. C. A. R. Hoare had postulated axioms and rules of inference about programming
notations (it later became known as Hoare-logic). He and I undertook the task of defining Pascal’s
semantics formally using this logic. However, we had to concede that a number of features had to be
omitted from the formal definition (e.g., pointers) [Hoare 1973].

Pascal thereafter served as a vehicle for the realization of program validators in at least two places—
namely, Stanford University and ETH Zurich. E. Marmier had augmented the compiler to accept
assertions (in the form of marked comments) of relations among a program’s variables holding after
(or before) executable statements. The task of the assertion checker was to verify or refute the
consistency of assertions and statements according to Hoare-logic [Marmier, 1975]. His was one of
the earliest endeavors in this direction. Although it was able to establish correctness for various
reasonably simple programs, its main contribution was to dispel the simple-minded belief that
everything can be automated.

Pascal exerted a strong influence on the field of language design. It acted as a catalyst for new ideas
and as a vehicle to experiment with them, and in this capacity gave rise to several successor languages.
Perhaps the first was P. Brinch Hansen’s Concurrent Pascal [Brinch Hansen 1975]. It embedded the
concepts of concurrent processes and synchronization primitives within the sequential language
Pascal. A similar goal, but with emphasis on simulation of discrete event systems based on (quasi-)
concurrent processes, led to Pascal-Plus, developed by J. Welsh and J. Elder at Belfast [Welsh 1984].
A considerably larger language was the result of an ambitious project by Lampson et al., whose goal
was to cover all the needs of modern, large-scale software engineering. Although deviating in many

108 CHAPTER 1l

PAPER: RECOLLECTIONS ABOUT THE DEVELOPMENT OF PASCAL

details and also in syntax, this language, Mesa, had Pascal as its ancestor [Mitchell 1978]. It added
the revolutionary concept of modules with import and export relationships, that is, of information
hiding. Its compiler introduced the notion of separate—as distinct from independent—compilation
of modules or packages. This idea was adopted later in Modula-2 [Wirth 1982], a language that in
contrast to Mesa retained the principles of simplicity, economy of concepts, and compactness that had
led Pascal to success.

Another derivative of Pascal is the language Euclid [London 1978]. The definition of its semantics
is based on a formalism, just as the syntax of ALGOL 60 had been defined by the formalism BNF.
Euclid carefully omits features that were not formally definable. Object Pascal is an extension of
Pascal incorporating the notion of object-oriented programming, that is, of the abstract data type
binding data and operators together [Tesler 1985]. And last but not least, the language Ada [Barnes
1980] must be mentioned. Its design was started in 1977 and was distinctly influenced by Pascal. It
lacked, however, an economy of design without which definitions became cumbersome and imple-
mentations monstrous.

3.4 IN RETROSPECT

I'have been encouraged to state my assessment of the merits and weaknesses of Pascal, of the mistaken
decisions in its design, and of its prospects and place in the future. I prefer not to do so explicitly, and
instead to refer the reader to my own successive designs, the languages Modula-2 [Wirth 1982] and
Oberon [Wirth 1988]. Had I named them Pascal-2 and Pascal-3 instead, the questions might not have
been asked, because the evolutionary line of these languages would have been evident.

It is also fruitless to question and debate early design decisions; better solutions are often quite
obvious in hindsight. Perhaps the most important point was that someone did make decisions, in spite
of uncertainties. Basically, the principle to include features that were well understood, in particular
by implementors, and to leave out those that were still untried and unimplemented, proved to be the
most successful single guideline. The second important principle was to publish the language
definition after a complete implementation had been established. Publication of work done is always
more valuable than publication of work planned.

Although Pascal had no support from industry, professional societies, or government agencies, it
became widely used. The important reason for this success was that many people capable of
recognizing its potential actively engaged themselves in its promotion. As crucial as the existence of
good implementation is the availability of documentation. The conciseness of the original report made
it attractive for many teachers to expand it into valuable textbooks. Innumerable books appeared in
many languages between 1977 and 1985, effectively promoting Pascal to become the most widespread
language used in introductory programming courses. Good course material and implementations are
the indispensable prerequisites for such an evolution.

Pascal is still widely used in teaching at the time of this writing. It may appear that it undergoes
the same fate as FORTRAN, standing in the way of progress. A more benevolent view assigns Pascal
the role of paving the way for successors.

ACKNOWLEDGMENTS

I heartily thank the many contributors whose work played an indispensable role in making the Pascal effort a
success, and who thereby directly or indirectly helped to advance the discipline of program design. Particular
thanks go to C. A. R. Hoare for providing many enlightening ideas that flowed into Pascal’s design; to U.
Ammann, E. Marmier, and R. Schild for their valiant efforts to create an effective and robust compiler; to A.

PASCAL SESSION 109

NIKLAUS WIRTH

Mickel and his crew for their enthusiasm and untiring engagement in making Pascal widely known by establishing
a user group and a newsletter; and to K. Bowles for recognizing that our Pascal compiler was also suitable for
microcomputers and for acting on this insight. I also thank the innumerable authors of textbooks, without whose
introductory texts Pascal could not have received the acceptance that it did.

REFERENCES

[Ammann, 1974] Ammann, U., The Method of Structured Programming Applied to the Development of a Compiler, in
International Computing Symposium 1973, Amsterdam: North-Holland, 1974, pp. 93-99.

[Ammann, 1977] Ammann, U., On Code Generation in a Pascal Compiler, Software—Practice and Experience, Vol. 7, 1977,
pp. 391423,

[Barnes, 1980] Barnes, , An Overwiew of Ada, Software—Practice and Experience, Vol. 10, 1980, pp. 851-887.

[Bowles, 1980] Bowles, K. L., Problem Solving Using Pascal. Springer-Verlag, 1977.

[Brinch Hansen, 1975] Brinch Hansen, P, The Programming Language Concurrent Pascal, I[EEE Transactions on Software
Engineering, Vol. 1, No. 2, 1975, pp. 199-207.

[Bron, 1976] Bron, C., and W. de Vries, A Pascal Compiler for the PDP-11 Minicomputers, Sofiware—Practice and Experience,
Vol. 6, 1976, pp. 109-116.

[Clark, 1982] Clark, R., and S. Koehler, The UCSD Pascal Handbook, Englewood Cliffs, NJ: Prentice-Hall, 1982.

[Cooper, 1983] Cooper, D., Standard Pascal, User Reference Manual, Norton, 1983,

[Dijkstra, 1966] Dijkstra, E. W., Structured Programming, Technical Report, University of Eindhoven, 1966. Also in Dahl,
O.-). et al,. Structured Programming, London: Academic Press, 1972.

[Grosse-Lindemann, 1976] Grosse-Lindemann, C. O., and H. H. Nagel, Postlude to a Pascal-Compiler Bootstrap on a
DECSystem-10, Software—Practice and Experience, Vol. 6, 1976, pp. 29-42.

[Habermann, 1973] Habermann, A. N., Critical Comments on the Programming Language Pascal, Acta Informatica Vol. 3,
1973, pp. 47-57.

[Hoare, 1972] Hoare, C. A. R., Notes on Data Structuring, in Dahl, O.-J. et al., Structured Programming, London: Academic
Press, 1972.

[Hoare, 1973] Hoare, C. A. R. and N. Wirth, An Axiomatic Definition of the Programming Language Pascal, Acta Informatica,
Vol. 2, 1973, pp. 335-355.

[Hoare, 1980} Hoare, C. A. R., The Emperor’s Old Clothes. Communications of the ACM, Vol. 24, No. 2, Feb. 1980, pp. 75-83.

[1SO, 1983] International Organization for Standardization, Specification for Computer Programming Language Pascal, 1SO
7185, 1982.

[Jensen, 1974] Jensen, K., and N. Wirth, Pascal—User Manual and Report, Springer-Verlag, 1974.

[Jensen, 1991] Jensen, K., and N. Wirth, revised by A. B. Mickel and J. F. Miner, Puscal—User Manual and Report, 1SO Pascal
Standard, Springer- Verlag, 1991,

[Lecarme, 1975) Lecarme, O., and P. Desjardins, More Comments on the Programming Language Pascal, Acta Informatica,
Vol. 4, 1975, pp. 231-243.

[Ledgard, 1984] Ledgard, H., The American Pascal Stundard, Springer-Verlag, 1984,

[London, 1978] London, R. L., J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and G. J. Popek, Proof Rules for the
Programming Language Euclid, Acta Informatica, Vol. 10, 1978, pp. 1-26.

[Marmier, 1975] Marmier, E., Automatic Verification of Pascal Programs, ETH Dissertation No. 5629, Zurich, 1975.

[Mitchell, 1978] Mitchell, J. G., W. Maybury, R. Sweet, Mesa Language Manual, Xerox PARC Report CSL-78-1, 1978.

[Naur, 1963} Naur, P, Ed., Revised Report on the Algorithmic Language ALGOL 60, Communications of the ACM, Vol. 3,
1960, pp. 299~316; Communications of the ACM, Vol. 6, 1963, pp. 1-17.

[Nori, 1981] Nori, K.V. et al., The Pascal P-code Compiler: Implementation Notes, in Pascal-—The Language and Its
Implementation. D.W. Barron, ed., New York: John Wiley & Sons, 1981.

[Tesler, 1985} Tesler, L., Object Pascal Report,. Structured Programming (formerly Structured Language World), Vol. 9, No.
3, 1985, pp. 10--14.

[van Wijngaarden, 1969] van Wijngaarden, A., Ed., Report on the Algorithmic Language ALGOL 68, Numer. Math. Vol. 14,
1969, pp. 79-218.

[Welsh, 1972) Welsh, J., and C. Quinn, A Pascal Compiler for ICL 1900 Series Computers, Software—Practice and Experience,
Vol. 2, 1972, pp. 73-77.

[Welsh, 1977] Welsh, J., W. J. Sneeringer, and C. A. R. Hoare, Ambiguities and Insecurities in Pascal, Software—Practice and
Experience, Vol. 7, 1977, pp. 685-696. Also in D. W. Barron, Ed., Pascal—The Language and its Implementation, New
York: John Wiley & Sons, 1981.

110 CHAPTER I

TRANSCRIPT OF DISSCUSSANT'S REMARKS

[Welsh, 1984] Welsh, J., and D. Bustard, Sequential Program Structures, Englewood Cliffs, NJ: Prentice-Hall, 1984.

[Welsh, 1986] Welsh, J., and A. Hay, A Model Implementation of Standard Pascal. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[Wichmann, 1983] Wichmann, B., and Ciechanowicz, Pascal Compiler Validation, New York: John Wiley & Sons, 1983.

{Wirth, 1966] Wirth, N. and C. A. R. Hoare, A Contribution to the Development of ALGOL, Communications of the ACM,
Vol. 9, No. 6, June 1966, pp. 413—432.

{Wirth, 1970] Wirth, N., The Programming Language Pascal, Techical Report 1, Fachgruppe Computer-Wissenschaften, ETH,
Nov. 1970; Acta Informatica, Vol. 1,1971, pp. 35-63.

[Wirth, 1971a] Wirth, N., Program Development by Step-wise Refinement, Commnications of the ACM, Vol. 14, No. 4, Apr.
1977, pp. 221-227.

[Wirth, 1971b] Wirth, N., The Design of a Pascal Compiler, Software—Practice and Experience, Vol. 1, 1971, pp. 309-333.

[Wirth, 1975] Wirth, N. An assessment of the programming language Pascal. /EEE Transactions on Software Engineering, Vol.
1, No. 2, June 1975, pp. 192-198.

[Wirth, 1981] Wirth, N_, Pascal-S: A Subset and its Implementation, in Pascal—The Language and its Implementation, D. W.
Barron, Ed., New York: John Wiley & Sons, 1981,

[Wirth, 1982] Wirth, N., Programming in Modula-2, Springer-Verlag, 1982.

[Wirth, 1988] Wirth, N., The Programming Language Oberon, Software—Practice and Experience, Vol. 18, No. 7, July 1988,
pp. 671-690.

TRANSCRIPT OF PRESENTATION

Editor’s note: Niklaus Wirth’s presentation closely followed his paper and we have omitted it with
his permission.

TRANSCRIPT OF DISSCUSSANT’S REMARKS

SESSION CHAIR JACQUES COHEN: The discussant is Andy Mickel, who is the Computer Center
Director at the Minneapolis College of Art and Design. Prior to his current position, he worked for
ten years at the University of Minnesota Computer Center, where he managed the language processor’s
group supporting micros through CDC and VAX mainframes, up to the Cray-1. He cofounded the
Pascal Users Group at ACM 75, and assumed editorship of the Pascal Newsletter in the summer of
1976. Through 1979, he coordinated the Users Group and edited the quarterly, Pascal News.
Beginning with the Southampton Pascal Conference in 1977, he facilitated the international effort to
standardize and promote the use of Pascal. After the standard was complete in 1983, he and his
colleague, Jim Miner, revised the popular tutorial, Pascal User Manual and Report, in a third edition
to conform to the standard. From 1983 to 1989, he worked at Apollo Computer, where in 1986 he led
the project to develop the first commercial, two-pass Modula-2 compiler.

ANDREW B. MIKEL: My talk is on the origins of the Pascal Users Group and its effect on the use
and dissemination of Pascal. I was introduced to programming languages by Daniel Friedman (who
is here today), in my senior year at the University of Texas at Austin, 1971. He taught me language
definition and programming language semantics. I went on to grad school at the University of
Minnesota, where I got a job at the Computer Center and became interested in promoting the use of
good, practical, general-purpose programming languages, but we had a Control Data machine. And
that was a good thing, but along came Pascal and my efforts to promote it were met with resistance
from FORTRAN users and other skeptics. So, my goal became to make the world safe for alanguage,
that 1, a nonguru, mortal programmer enjoyed using.

(SLIDE 1) I have a slide here where I have listed the sort of situation we found ourselves in 1970.
Even though there were some Pascal compilers coming into use, there was a reluctance, particularly
by American computer science departments, to teach Pascal. Along came George Richmond, from
the University of Colorado, who started the Pascal Newsletter and created some momentum in our

PASCAL SESSION 111

ANDREW B. MIKEL

Origins: Pascal User’s Group

Situation, 1972, first compilers widespread. T
1972-1976 reluctance by CS Depts to teach Pascal. l ‘ s&_z s G
Early 1975—good momentum—3 newsletiers/13 2 O U P

months.

Early 1976—losing momentum.
1. Habermann's spiteful article touted as truth. w ED. 9:%0 A, M.

2. No newsletters for over a year.

3. Pagcal-P4 compller writers duplicating efforts. 2 M s ‘ "‘
L]

O owm>»

Muapts pinhs acr'ts

SLIDE 1 SLIDE 2

eyes by producing three newsletters in 13 months. But, then the newsletters stopped and people were
quoting Habermann’s article as if they had read it and had not studied Pascal. A lot of people using
Pascal-P4 to build compilers were duplicating each others’ efforts.

(SLIDE 2) We have a photocopy of the original sign used by Richard Cichelli at ACM °75 in
Minneapolis, announcing a Pascal Users Group. I had never heard of this before. But I went. Bob
Johnson, his friend from Saint Cloud State (Richard was from Lehigh University), Charles Fischer
and Richard LeBlanc (who is here) from the University of Wisconsin, and 31 other people showed
up in a hotel room. We talked about what to do. A lot of us were pretty angry.

(SLIDE 3) We formed a strategy. We decided to follow William Waite's advice in the Soft-
ware—Practice and Experience article editorial about programming languages as organisms in an
ecosystem. And if FORTRAN was a tough weed, we needed to grow a successful competing organism
and starve FORTRAN at the roots. So we talked about forming little clubs like Society to Help Abolish
FORTRAN Teaching (that’s SHAFT), or the American COBOL Society “dedicated to the elimination
of COBOL in our lifetime” (like the American Cancer Society). I was fresh from working at George
McGovern’s political campaign and you have to remember that the early seventies was the era of
Watergate and the truth, integrity and full disclosure. So, in 1976, I decided to pro-actively mail
directly to every college with a math department a notice that we had a Pascal Users Group. We rapidly
built a large mailing list. We used the newsletter as a means to organize this whole activity. It was

Origins: Pascat User's Group
A. Solution: Follow William Waite's ecosystem analogy. g"h \< . A"@ i,,9
B. Found S.H.A.F.T and A.C.S. 'di /@ o
C. Use political-organizing skills developed in % / gra
McGovem'’s campaign. of p,.o
D. Organize and nelwork supports via stronger r‘z. al
Newsletter. o
E. Add structure to Pascal Newsletter:
1. Here and There with Pascal (includes roster),
2. Open Forum/Articles/implementation Notes. P8
SLIDE 3 SLIDE 4

112 CHAPTER Il

much like the language supplements to SIG-
PLAN Notices. The average size was 150 pages.

(SLIDE 4) We didn’t take ourselves too se-
riously. Here is what the guardian of rational
programming, the PUG mascot looked like. It
is sort of a weakling looking dog, a pug dog.

(SLIDE 5) We started getting things back on
track. We had an aggressive attitude. In the 90s
we would say we were a User Group with “an
attitude.” We indulged in self-fulfilling prophe-
sies. We tried to make it look like there was a
lot going on around Pascal by publishing every-
thing that we could find on it. And lo and behold,
there was a lot going on with Pascal because
some of the neutral bystanders became less
afraid and started joining in. David Barron in
Southampton scheduled the first Pascal Confer-
ence. One hundred and forty people attended.
At that conference, Tony Addyman teased peo-
ple with the idea of starting a formal standards
effort. That was the beginning of standards,
which took place in Europe, something a little
different from what most American computer
manufacturers were used to. Some of the early
influences at that time were Wilhelm Burger at
the University of Texas at Austin; John Strait,
Jim Miner, and John Easton at Minnesota; Judy
Bishop with David Barron at Southampton; Ar-
thur H. J. Sale at the University of Tasmania in
Australia; and Helmet Weber at the Bavarian
University of Munich.

(SLIDE 6) This is an sample cover of Pascal
News, which sort of illustrates its use of a self-
organizing tool. The newsletters contain infor-
mation about users, compilers, standards, ven-
dors, applications, teaching, textbooks, and
even the roster of all the members. My plan was
if my Computer Center jerked the support out
from under me, anybody could pick up the User
Group and keep going.

(SLIDE 7) So, we were finally on aroll. The
American committee starts, we get them coop-
erating without trying to dominate the standards
process—we argued that it was a European
Language being standardized by Europeans. We
derailed the UCSD conference and “extensions-
with-Pascal” people. The people at UCSD (the

PASCAL SESSION

TRANSCRIPT OF DISSCUSSANT'S REMARKS

PUG Effects

A. Newsletters: July 76, Sept 76, Nov 78.

B. ala 90's: “a user group with an Attitude!”

C. Roberto Minio at Springer: lower price of PUM&R.
D. Start standards effort without the powerful vendors.

E. Create self-fulfilling prophesy of explosion of activity.

F. Southhampton Conference, Feb 77, 140 people.
G. Tony Addyman, U of Manchester, UK, BSI
Standards.

SLIDE 5

R

Fornckit Paseal: Huriivit

BOUT THE PROGRAMNING: LANSUNEE' PASCAL aYPACALERY . -

JWE, ‘1978

TasiLe oF Co-v:urs
YMMLIIMPW ané Letier-riting lﬂ'!‘lt

EGITOR'S TOSTRINUTION. .

N(I AND h(l!ll ﬁl;ﬂ FMU;L
308

.+ FrenchiEnglish - Engitsh/Frestch Paseal Idm"ltrl ey

. Pascal (n m e .

" Confaren .
., Books Ind Aruchs
armm Nanted *
Roster Inc t

k 7. Arracations

Al gorithns
Software Tools
Progrem

- AITICI(S
- mhns u rnul for s.ﬂrnu C-ai'lulu-
Richard J. LeBlanc
aseh s, 0"!9« Goals?" !
- - Robert. 0 Yavra

I ne-Depandent tupl even:
tndex ta-Inplementation %o
tv‘ muv qu a5 lm

SLIDE 6

113

ANDREW B. MIKEL

PUG Effects
R

A. U of Colorado, Boulder, ANSVIEEE (JPC) Apr 78.

B. UCSD Conference on Extension, July 78.
C. Pascal News Issiues: Feb, May, Sep 77: circ. 1500.
D. Move to canonical compiler development

1. Tracking 84 different implementations.

2. From Intel 8030 to Cray-1.
E. Develop Suite of Software Tools/Validation Suite.
F. Develop Subprogram Libraries and Applications.

14

SLIDE 7

SLIDE 8

bad guys) were confusing the language defini-
tion with its implementation. Circulation of
Pascal News increased. We also sorted out a lot
of duplicated efforts among the PDP-11 and
IBM 370 implementations: There were 20 dif-
ferent compiler efforts. That is not counted in
the total of 84; that is just the ones that weren’t
canonical. There was a lot of software written
in Pascal becoming available.

(SLIDE 8) Then all hell broke loose. This
article appeared in ComputerWorld in April
1978 and down here it says, “You can join the
two thousand members of the Pascal Under-
ground by sending four dollars to the Pascal
Users Group.” My mail went from 15 pieces a
day to 80-something pieces a day.

(SLIDE 9) This is a picture of me up against
a wall pasted with copies of all the articles on
Pascal out of the industry journals.

(SLIDE 10) This is sample of what kind of
coverage we were starting to get in the industry
press in 1978: ComputerWorld, Byte, Electron-
ics Magazine, IEEE Computer, and Datama-
tion. By the next year, our circulation was up to
4,600 in 43 countries.

(SLIDE 11) So we were riding high. Arthur
Sale produced a little cartoon, “Pascal Riding
on the Microwave.”

(SLIDE 12) From an American point of
view, industry led over academia, and here are
some of the projects. A lot of them were internal
to the companies over here that nobody really
knew about. It was only in 1981, that the com-
mercial versions of UCSD Pascal started to
appear. I want to point out that Three Rivers
PERQ, Tektronix, and the Hewlett-Packard
9000 are workstations.

(SLIDE 13) This may be controversial, too.
It may be fortuitous that the first compiler was
on Control Data equipment because at that time
in the seventies, CDC had a disproportionately
large installed base at universities. For example,
the size of the student body at Minnesota was
55,000, at UT Austin it was 40,000, 45,000 at
UC Berkeley, and all had Control Data equip-

CHAPTER 1lI

SLIDE 9

TRANSCRIPT OF DISSCUSSANT'S REMARKS

PUG Effects - Pross

A. Industry Pross aricles.
1. ComputerWorld, page 24, 1 page, April, 1978.
2. Byte: cover story, August, 1978.
3. Electronics: cover mention, October, 1978.
4, IEEE Computer: cover mention, April, 1979.
5. Datamation: cover mention, July 1979,

B. Pascal News: Jan, Sep, Oct 79: circ 4600 in 43
countries.

SLIDE 10

PascaL
-Rioing on THE MicroWave

PUG Effects - Indusitry over Academe

A. Control Data 1700, 1975.

B. Texas Instruments, ASC, 990 and 9900, 1976.
C. Control Data/NCR Joint Project, 1979.

D. Three Rivers PERQ, 1978.

E. Tekironix, 1978.

F. Apollo DOMAIN, 1980.

G. Apple Apple [, 1981.

H. Hewlett Packard 9000, 1981.

SLIDE 11

SLIDE 12

PUG Effects — Industry over Academe

s

A. CDC 6000/7000/Cyber sites at large universities in
USA.

1. U of Minnesota, 55,000.

2. U of Texas at Austin, 40,000.

3. U of California, Barkeley, 35,000.
B. Last to teach Pascal.

1. MIT.

2. Stanford U.

3. Carnegle-Mellon U,

Froquescy of Use of Most Popular Language Processors

03

M 78IS TaTT 7R TS W80 8 I 9
YeAR

SLIDE 13

PASCAL SESSION

SLIDE 14

115

ANDREW B. MIKEL

PUG Accomplishmernts

Does Not Compute

I think, Briun, you'd be of greater service, ut least for a while, bussing
tables, eating crayfish, anything bul reviewing film & people in so many

A. No bureaucracy, simply vast bulletin board. words, 1 see the outline:
B. Pascal News géve harmless outlet to frustrated Procedure Lamben Write;
designers. Hegin

o

Rick Shaw, Mar/May/Sep/Dec, 80; Apr/Sep, 81,
Oct 82.

Chartie Gaffney, Jan/Apr/Jul/Nov 83.
Users organized before standards process began.
Portable Software Tools, Validation Suite.

Contract the Focal Point (fitm/person)

vs, Industry; *a distressingly pinstriped

buttondown industry’

ReadYearhook; ‘Leafing through the yearhook®
AddAdjectives; *disiressingly pinstriped’

*fascinating trivia bits’ *deceplively unimposing’
Cieneralize; ‘It is my experience thal mosi jegends are an

emmop

wnticlimax in person. It is their creations which refiect greatness,”
Print;
Lind; (* of Procedure LambenWrite *)

In 1980’s Pascal used to teach programming at U's.

SLIDE 15 SLIDE 16

ment exceeding those small, more elite schools. I was chagrined that the last universities in the United
States to use Pascal as a teaching language were MIT, Stanford, and Carnegie Mellon.

(SLIDE 14) This is an example of the usage at the University of Minnesota and of the number of
compilations by language from 1974 to 1983. If we just take 1975 as a baseline, there were 900,000
FORTRAN compilations to 100,000 to Pascal. And by 1983, it was 1.3 million FORTRAN to 1.4
million Pascal—that is, not including all the compiles that were done on TERAK (which were
LSI-11’s and Apple I’s running UCSD Pascal).

(SLIDE 15) So, what were our accomplishments? This is sort of a summary. The Users Group was
not a bureaucracy. We could fold it up at any time. It was simply a vast bulletin board. I hope I can
reassure Niklaus that the Pascal News articles provided a harmless outlet to frustrated language
designers who wanted to extend Pascal. It dissipated their energy harmlessly. My successors were
Rick Shaw (not a transportation vehicle) and Charlie Gaffney. One of the important things about the
standards process is that the users were organized before the standards process began.

(SLIDE 16) This is a letter to the editor of a mainstream newspaper in the Twin Cities that is in
the form of a Pascal program—so that by 1983, Pascal had even leaked out into the common culture.
It’s a critique of a movie or film critic.

Post-PUG—Pascal Today

Seamless transition to MODUS Quarterty, Jan 85.
Borland Turbo Pascal on DOS-PC’s.

. Think Pascal on Apple Macintosh,

HP/Apollo, Silicon Graphics, DEC, SUN
workstations.

U of Minnesota Intemet Gopher, 1992,

1. Internet public server browser.

2. Macintosh, DOS-PC, VAX, VM all in Pascall

3. NeXT and other UNiX, NOT!

oowp

m

SLIDE 17

116 CHAPTER Il

TRANSCRIPT OF QUESTION AND ANSWER SESSION

(SLIDE 17) It turns out that Pascal News may have stopped publishing in 84 but there was a
seamless transition to MODUS Quarterly, the Modula-2 Users Society. Here is the list of the current
Pascal compilers, and the most famous application newly written in Pascal: the University of
Minnesota Internet Gopher. And the versions for clients for Macintosh, DOS PC, VAX, and IBM VM
are all in Pascal, but none of the UNIX boxes.

TRANSCRIPT OF QUESTION AND ANSWER SESSION

ANDREW BLACK (Digital Cambridge Research Laboratory): The omission of dynamic arrays
from Pascal was as much a mistake as the omission of recursion. True or False?

WIRTH: In hindsight, true. You have to recall that T had not only to make language design decisions
but also to implement them. Under these circumstances it is a question of whether to include more
features, or to get ahead first with those needed to implement the compiler. In principle, you are right:
Dynamic arrays should have been included. (Note: Recursion was excluded in a preliminary version
only.)

HERBERT KLAEREN (University of Tubingen): The current ISO draft of Modula-2 contains a full
formal semantics. Do you consider this useful?

WIRTH: Not really. It makes the report too voluminous for the reader. The Modula-2 report is 45
pages and the formal standardization document is about one thousand pages long. The definition of
the empty statement alone takes a full page. The difference is intolerable.

MARTIN CAMPBELL-KELLY (University of Warwick): If, on a scale of excellence in program-
ming language design, FORTRAN was awarded two, and Pascal was awarded five, what score would
Modula-2 deserve?

WIRTH: Six. (In the Swiss school system, one is the worst and six is the best grade.)

BRENT HAILPERN (IBM Research): Did you foresee the type “abuse” resulting from variant
records? If not, what crossed your mind when the loophole was discovered?

WIRTH: 1did not foresee it, but I was told so by Tony Hoare. The reason for including the variant
record was simply the need for it, and the lack of knowledge of how to do better. In the compiler itself
several variants of records occur in the symbol table. For reasons of storage economy, variants are
needed in order to avoid unused record fields. With memory having become available in abundance,
the facility is now less important. Furthermore, better, type-safe constructs are known, such as type
extensions (in Oberon).

RANDY HUDSON (Infometrics): What relationship do you see between the design of Pascal and the
design of Ada?

WIRTH: Ibelieve Ada did inherit a few ideas from Pascal, such as structures, concepts, and perhaps
philosophy. I think the main differences stem from the fact that 1, as an individual, could pick the
prime areas of application, namely teaching and the design of systems of moderate complexity. Ada
was devised according to a large document of requirements that the designers could not control. These
requirements were difficult, extensive, partly inconsistent, and some were even contradictory. As a
result, its complexity grew beyond what I considered acceptable.

BoB ROSIN: Was the P-code concept inspired by earlier work? For example, the Snobol-4 imple-
mentation?

PASCAL SESSION 117

TRANSCRIPT OF QUESTION AND ANSWER SESSION

WIRTH: It wasn’t particularly the Snobol-4 implementation. The technique of interpreters was well
known at the time.

ALLEN KAy (Apple Computers): Your thesis and Euler were going in a pretty interesting direction.
Why did you go back to more static languages?

WIRTH: For a thesis topic you have to do something that is new and original, you are expected to
explore new ways. Afterwards, as an engineer, I felt the need for creating something that is pragmatic
and useful.

Ross HAMILTON (University Of Warwick): Why did Pascal not allow source code to be split
across multiple files (as in FORTRAN II)? :

WIRTH: We didn’t perceive a need to provide such a facility. It is an implementation consideration,
but not one of lariguage design.

ELLEN SPERTUS (MIT): You discussed the IEEE/ANSI standard for Pascal. There is also the de
facto Borland Turbo Pascal definition. Could you comment on the differences, in effect and content,
of standards from democratic committees and from single companies?

WIRTH: I think that would take too much time here. But the point is well taken that the actual
standard for Pascal has been defined by Borland, just by producing a compiler and distributing it
cheaply and widely. If you talk to anyone about Pascal today, probably Turbol Pascal from Borland
is meant.

Borland extended Pascal over the years, and some of these extensions were not as well integrated
into the language as I would have wished. I was less compromising with my extensions and therefore
gave the new design a new name. For example, what Borland calls Units we call Modules. However,
Units are inclusions in the form of source code, whereas Modules are separate units of compilation,
fully type checked and linked at load time.

JEAN SAMMET (Programming Language Consultant): You mentioned COBOL twice— once in
connection with control structures and once in connection with records. Please clarify whether
COBOL had any influence on Pascal and if so, in what way?

WIRTH: Pascal inherited from COBOL the record structure, in fact indirectly via Tony Hoare’s
proposal included in Pascal’s predecessor, ALGOL W.

DANIEL J. SALOMON (University of Manitoba): Although the pragmatic members of the ALGOL
68 Working Group have been shown, by time, to be correct, has not the ALGOL 68 report been
valuable, flaws and all?

WIRTH: It has fostered a method of defining languages with precision and without reference to
implementations. Its failure was probably due to driving certain ideas, such as “orthogonality” (mutual
independence of properties) to extremes. The design was too dogmatic to be practical.

STAVROS MACRAKIS (OSF Research Institute): The original Pascal was small, limited in func-
tion, and completely defined. ISO’s Pascal is large, comprehensive, and presumably well defined.
What happened? Is it fair to consider ISO Pascal a diagnosis of Pascal’s failings?

WIRTH: [rather consider the standard as the belated result of a long-winded effort to make the
definition more precise, and at the same time, of extending the language.

118 CHAPTER 1l

BIOGRAPHY OF NIKLAUS WIRTH

HERBERT KLAEREN (University of Tubingen): I always wondered why Pascal’s dynamic data
structures did not turn recursive data structures into “first class citizens.” Instead of having the
programmer himself handle explicit pointers (and doing all kinds of mischief with them), the compiler
could have detected the need of introducing implicit pointers automatically (and transparently). Did
this idea ever come up and if so, why did you reject it?

WIRTH: We did not see a way to incorporate recursive structures in a way that was as flexible and
as effective as explicit pointers. I could not wait until a solution appeared; time was precious and the
need for an implementation language pressing.

HERBERT KLAEREN (University of Tubingen): Given your comments on the Pascal stan-
dardization, what are your feelings about the ongoing ISO standardization of Modula-2? Wouldn’t it
be a good idea if the creator of a programming language gave, along with its definition, a list of the
features contemplated, but dropped, along with the reasons for dropping them?

WIRTH: I am sure this would be a good idea, preventing later designers from having to repeat the
same considerations.

ADAM RIFKIN (California Institute of Technology): Why do you think the minority report signed
in Munich (December 1968) had so many followers? Can you cite one main reason?

WIRTH: The Working Group 2.1 had been divided since the advent of A. van Wijngaarden’s initial
draft design in late 1965. The decision to pursue his draft rather than mine was taken in Warsaw in
late 1966. The principal difference was that I had followed the goal of creating a successor to ALGOL
60 by essentially building upon ALGOL 60 and widening its range of application by adding data
structures. Van Wijngaarden wanted to create an entirely new design, in fact another milestone (not
millstone) in language design. The faction of “pragmatists” foresaw that it would take a long time to
implement van Wijngaarden’s proposal, and that by the time of its completion the majority of ALGOL
users would have chosen another language already. (Note that ALGOL 68 compilers did not become
available before 1972.)

Question is to ANDY MICKEL: The speaker mentioned an early anti-Pascal letter. Could you say
more about that?

MIKEL: That was an article that appeared in Acta Informatica by A. N. Habermann, who wrote the
paper called “Critical Comments on the Programming Language in Pascal” that Niklaus Wirth cited
in his talk. It was countered by a reply from Oliver Lacarme and Pierre Dejardins. A lot of the self
appointed experts at the University of Minnesota Computer Science Department preferred to beat us
up in Computer Center about how Pascal should not have been taught, based on Habermann’s paper,
rather than even trying to use Pascal and see for themselves.

BIOGRAPHY OF NIKLAUS WIRTH

Niklaus Wirth received the degree of Electronics Engineer from the Swiss Federal Institute of
Technology (ETH) in Zurich in 1958. Thereafter he studied at Laval University in Quebec, Canada,
and received the M.Sc. degree in 1960. At the University of California at Berkeley he pursued his
studies, leading to the Ph.D. degree in 1963. Until 1967, he was Assistant Professor at the newly
created Computer Science Department at Stanford University, where he designed the programming
languages PL360 and—in conjunction with the IFIP Working Group 2.1 —ALGOL W. In 1967, he

PASCAL SESSION 119

BIOGRAPHY OF NIKLAUS WIRTH

became Assistant Professor at the University of Zurich, and in 1968 he joined ETH Zurich, where he
developed the languages Pascal between 1968 and 1970 and Modula-2 between 1979 and 1981.

Further projects include the design and development of the Personal Computer Lilith, a high-per-
formance workstation, in conjunction with the programming language Modula-2 (1978-1982), and
the 32-bit workstation computer Ceres (1984-1986). His most recent works produced the language
Oberon, a descendant of Modula-2, which served to design the operating system with the same name
(1986-1989). He was Chairman of the Division of Computer Science (Informatik) of ETH from 1982
until 1984, and again from 1988 until 1990. Since 1990, he has been head of the Institute of Computer
Systems of ETH.

In 1978, Professor Wirth received Honorary Doctorates from York University, England, and the
Federal Institute of Technology at Lausanne, Switzerland, in recognition of his work in the fields of
programming languages and methodology. In 1983, he was awarded the Emanuel Priore prize by the
IEEE, in 1984 the A. M. Turing prize by the ACM, and in 1987 the award for Outstanding
Contributions to Computer Science Education by ACM. In 1987, he was awarded an Honorary
Doctorate by the Universite Laval, Canada, and in 1993 by the Johannes Kepler Universitat in Linz,
Austria. In 1988, he was named a Computer Pioneer by the IEEE Computer Society. In 1989, Professor
Wirth was awarded the Max Petitpierre Prize for outstanding contributions made by Swiss noted
abroad, and he received the Science and Technology Prize from IBM Europe. He was awarded the
Marcel Benoist Prize in 1990. In 1992, he was honored as a Distinguished Alumnus of the University
of California at Berkeley. He is a member of the Swiss Academy of Technical Sciences and a Foreign
Associate of the U.S. Academy of Engineering.

120 CHAPTER il

