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Background

• What is LSVR?
• IETF Working Group doing Link State Vector Routing, combining link-state and path-

vector routing mechanisms (i.e. BGP-SPF) for massive scale data centers.
• https://datatracker.ietf.org/wg/lsvr/about/

• LSVR needs a topology discovery and liveness protocol for BGP-SPF with 
ability to exchange more data than can fit into a single PDU

• LSVR recently adopted LSoE as a Working Group document to define such a 
protocol
• https://datatracker.ietf.org/doc/draft-ietf-lsvr-lsoe/

• This presentation attempts to summarize the requirements document and 
information exchanged by LSoE to see if the proposed LLDPv2 could 
support the needs.
• https://tools.ietf.org/html/draft-ymbk-lsvr-discovery-req-01
• https://mentor.ieee.org/802.1/dcn/18/1-18-0071-02-ICne-ieee802-ietf-workshop-

network-discovery.pdf

https://datatracker.ietf.org/wg/lsvr/about/
https://datatracker.ietf.org/doc/draft-ietf-lsvr-lsoe/
https://tools.ietf.org/html/draft-ymbk-lsvr-discovery-req-01
https://mentor.ieee.org/802.1/dcn/18/1-18-0071-02-ICne-ieee802-ietf-workshop-network-discovery.pdf


Brief Review of LLDPv2 Proposal

• Initially presented on 1/7/2019 at TSN call: 
http://www.ieee802.org/1/files/public/docs2019/new-congdon-lldpv2-
consideration-0119-v01.pdf

• Why do we need to update LLDP?
• LLDP is widely deployed in many environments
• The number of TLVs sent in LLDPDUs continues to grow

• New standards continue to defined new objects
• A large number of Vendor Specific TLVs

• Alternative protocols are being proposed to get around the single PDU size limit
• Relying on Jumbo frames to support more TLVs is problematic in many environments
• Summary: We need to be able to exchange more TLVs.  - LSVR requirements are just 

one example use case where this is needed.

http://www.ieee802.org/1/files/public/docs2019/new-congdon-lldpv2-consideration-0119-v01.pdf


Objectives for a new version

• Support the ability to send more than 1 PDUs worth of TLVs

• Support the ability to communicate with an LLDPv1 implementation 
(only the first PDUs worth of TLVs).

• Ensure the integrity of the full set of TLVs is received by partner
• NOTE: This can be useful in v1 implementations as well

• Consider if there are other optimizations to address
• E.g. Less frequent updates

• E.g. New reachability addresses (Nearest-station or Nearest-Router)

• E.g. allow larger TLVs and/or the ability of the contents to span multiple 
extension PDUs
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NOTE: Think of the Remote and Local MIBs as a database that must fit into a single PDU
Replace all values of the Remote MIB with contents of LLDPDU when something changes



Proposal
• Define a new mandatory (for v2 implementations) TLV that appears just after the current mandatory set of 3 TLVs.

• ChassisID TLV + PortID TLV + TTL TLV + (new) ExtensionPDU TLV

• In the new TLV, define a vector that specifies:
• The number of extension PDUs to be sent

• An identity of each PDU (e.g. hash, checksum, version number or PDU number)

• Acknowledges the receipt of partner extension PDUs

• The first v2 PDU looks like a standard v1 PDU with the extra ExtensionPDU TLV (i.e. will be received by v1 implementations).

• The new extension PDUs need to be ignored by v1 LLDP in a non-intrusive way.  Options:
• Force an error in the v2 PDUs – will cause error counters to increment

• Use a new Ethertype for v2 extension PDUs - preferred

• The new PDUs need to have a mandatory format as well: 
• Includes at least the first two mandatory TLVs of a v1 PDU (ChassisID + PortID)

• Includes new TLV that identifies the extension PDU.

• Optimizations:

• There is no need to resend extension PDUs if nothing has changed, unless a previous extension PDU was not correctly received.

• Only periodically send the 1st PDU.  

• TTL in 1st PDU relates to all extension PDUs.

• NOTE: The maximum size of a TLV defines the maximum number of extension PDUs that can be included.  (depends on identity 
field)
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Discovery and Liveness Protocol
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Things LSVR needs to discovery and exchange

• From https://tools.ietf.org/html/draft-ymbk-lsvr-discovery-req-01
• Node Identity

• Link Identity

• L2 Liveness

• Encapsulations

• Addresses

• Additional information exchanged by LSoE from 
https://datatracker.ietf.org/doc/draft-ietf-lsvr-lsoe/
• Neighbor MAC address

• Node Attributes

• Authentication Data

https://tools.ietf.org/html/draft-ymbk-lsvr-discovery-req-01
https://datatracker.ietf.org/doc/draft-ietf-lsvr-lsoe/


Requirement – Node Identity

• Each node in the topology must have an identity/identifier which 
must be unique in the topology. 

• The identity might be 
• an ASN with high order bits zero

• a classic RouterID with high order bits zero

• a catenation of the two

• a 80-bit ISO System-ID

• or any other identifier unique to a single device in the current routing space

• Exchanged in Open message of LSoE



Requirement – Link Identity

• A link is between two nodes.  Each end of a link is a node/device 
interface.  Each link in the topology must be uniquely identified and 
the identities of the nodes on the link must be identified.

• A link is identified when two peer devices have compatible 
Encapsulations and addresses, i.e. the same AFI/SAFI and the same 
subnet.

• LSoE link discovery is derived from Encapsulation and Address 
discovery in LSoE Address Announcement TLVs.



Requirement – L2 Liveness

• Because adjacencies and topology changes must be quickly detected, 
Layer-2 stability of each link should be monitored and reported.  
NOTE: this is in addition to L3 liveness via BFD

• LSoE maintains liveness via the periodic KEEPALIVE message.  Default 
frequency is 1 second

• NOTE: May not be a good fit for LLDP



Requirement - Encapsulations

• The encapsulation(s) (IPv4, IPv6, ...) on each link must be known.  One 
or more of the common AFI/SAFIs must be supported on each link, 
IPv4, IPv6, MPLS, etc.  NOTE:  It is assumed that the set of 
encapsulations is the same across the entire topology.

• LSoE exchanges Encapsulation Addresses in IPv4 Announcement, IPv6 
Announcement, MPLS IPv4 Announcement and MPLS IPv6 
Announcement TLVs



Requirement - Addresses

• The available addresses on the node interfaces for each encapsulation 
must be known.  More than one address for an encapsulation must 
be supported.

• LSoE exchanges Encapsulation Addresses in IPv4 Announcement, IPv6 
Announcement, MPLS IPv4 Announcement and MPLS IPv6 
Announcement TLVs



Additional info exchanged by LSoE

• Peer MAC address
• Exchanged in LSoE Hello message

• Node Attributes
• Byte array of locally defined attributes such as role or position in the topology 

(up to the Operator, i.e. no global registry).
• Exchanged in LSoE Open message.

• Authentication Data
• Work in progress
• Currently defined as locally specific to Operator environment
• Likely to evolve into some signed blob to authenticate peer.
• NOTE: May be larger than what can fit in a single LLDP TLV



Summary of ability to use LLDP for LSoE exchange

Information Exchanged Supportable by an 
LLDP TLV and Protocol

Comments

MyMac Address

Local ID / Remote ID

Attribute List

Authentication Data May exceed current LLDP TLV length restrictions

Encapsulation & Addresses Must be split across multiple TLVs & PDUs (as with LSoE)

Keepalives Frequency may not be appropriate for existing LLDP

Acks Implicit part of LLDPv2 proposal

?
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Example Extension TLV
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TLV 
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string length 
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Number of Tx 
extension 

PDUs 
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Number of Rx 
extension 
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n checksums of Tx extension 
PDUs

(0 <= n < 16)

m checksums of Rx extension 
PDUs

(0 <= m < 16)

TLV header TLV information string

1                            2                           3                                                             4     (n+m)*16 + 3

• TLV Type
• probably use the next reserved type (i.e. 9)

• Number of Tx and Rx extension PDUs
• If using Checksum of 16 bytes, can only pack 30 sums into a TLV

• Checksums
• Should cover the entire extension LLDPDU 



Example Extension PDU
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Ethernet header LLDP Extension PDU

• LLDP Extension Ethertype
• New Ethertype allows LLDPv1 implementations to ignore these frames

• Chassis ID + Port ID are mandatory
• Note TTL from 1st PDU should apply and is not needed here

• Extension Description TLV
• Numbers the extension PDU in the sequence of all extension PDUs

M                M M



Example Extension Description TLV

TLV type = Y 
(7 bits)

TLV 
information 
string length 

(9 bits)

PDU
Number 
(4 bits)

Max PDU 
Number
(4 bits)

TLV header TLV information string

1                            2                           3                                                             4

• TLV Type
• Another new base TLV type (i.e. 10)

• PDU Number and Max PDU Number
• For example PDU 1 of 5



Questions / comments / TBDs

• How to define the extension PDU TLV?
• It needs to contain a vector of information for all extension PDUs 
• It needs to acknowledge received extension PDUs.
• The smaller the identity field, the more extension PDUs that can be supported (e.g. 

CRC-16 or SHA-256 Hash?)
• We could define two extension TLVs – one for Tx and one for Rx to support more 

extension PDUs
• Should the SHA-256 Hash cover all PDUs or individual?
• Should we allow a single TLV to span multiple PDUs (e.g. like IP fragments)?

• When to send the 1st PDU as an ACK of received extension PDUs?
• Need a final bit in the extension PDUs or a PDU number scheme?
• Define another End of LLDPDU TLV?

• Retransmission strategy?  SACK or just retransmit the entire sequence?


