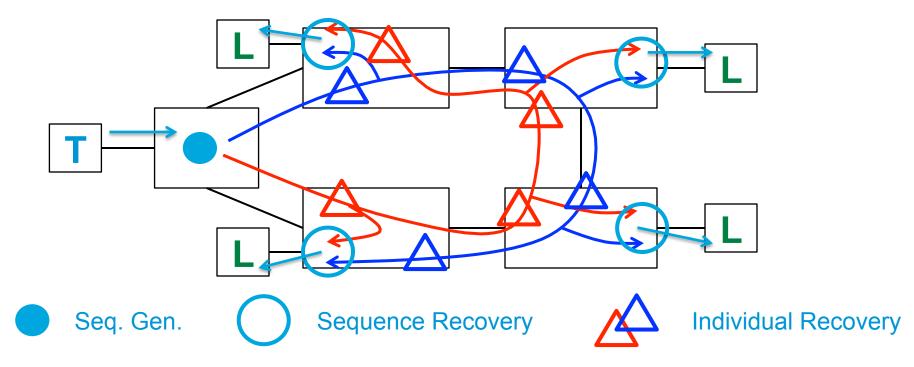


Simplifying Seamless Redundancy

Norman Finn Cisco Systems


Version 02

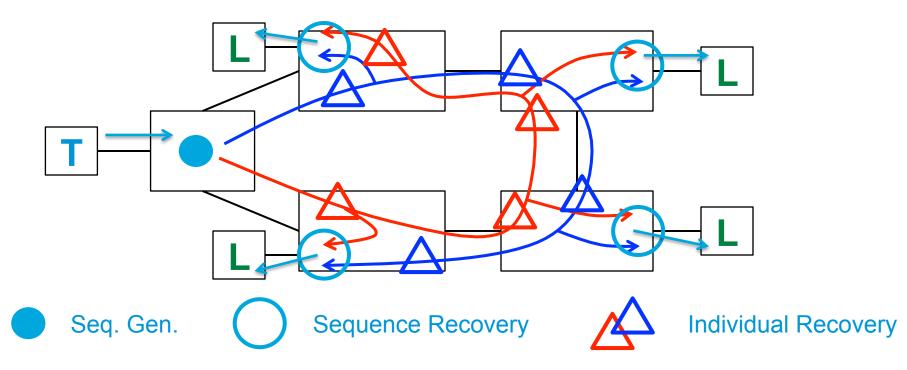
January 19, 2016

Problem

- This document supports a ballot comment on P802.1CB D2.1.
- At present, configuring P802.1CB requires a massive amount of configuration.
 - Every single Stream's identification (typically {VLAN, MAC address} pair must be configured on every port on which it might be received on every bridge in the network.
 - Every port on which each Stream might be output twice has to be configured with a sequence recovery function and its parameters (e.g. timeout value).
 - Every bridge through which the Stream passes should be configured with an Individual recovery function, requiring the configuration of Stream Identification and the IRF.
- This is a real problem it will make bringing up a new Stream take too long to meet many needs. The volume of configuration information, itself, will be an impediment to adoption by users.

What we want:

 Each Listener gets only one copy. Packets are not discarded until just before output to the Listeners, so that latent errors can be detected.


What we want

- We would like Sequence Recovery and Individual Recovery to auto-configure themselves.
- This means that an instance of one or both of these state machines pops into existence whenever a new Stream (for Individual recovery) or a new Seamless Stream (for Sequence recovery) is seen, using default parameters specified by (a little bit of) configuration.
- When the timeout expires, sending a state machine into "accept any" mode, the state machine can be destroyed.
- We must identify the Seamless Stream to auto-configure Sequence Recovery functions, and we must identify the individual Stream for Individual Recovery functions.
- We must also distinguish (as we will see) on which ports recovery functions are to be applied.

Problem 1: On what do you base autoconfiguration of Sequence and Individual Recovery?

Which streams are paired?

 There are > 2 streams in the network! How do you know that red and blue are a pair (belong to the same Seamless Stream)?

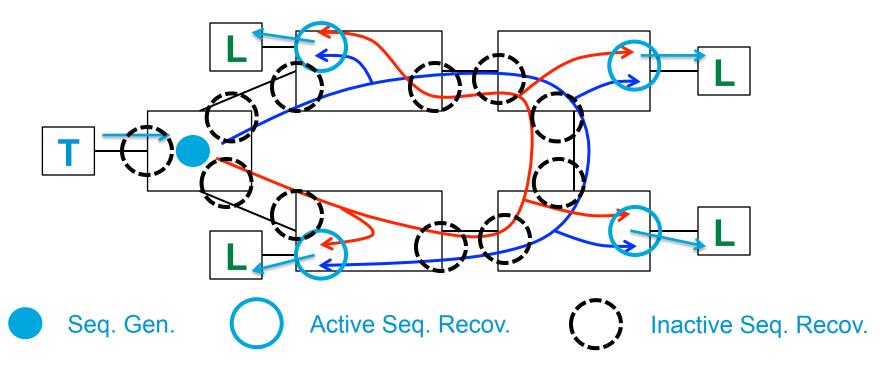
On what do we base auto-configuration?

	Sequence Recov. based on	Individual Recovery based on	Comments
1.	{VLAN, Dest}	{VLAN, Dest, Port}	Hard to debug. Can't use current topology protocols to set up paths; they're not trees.
2.	{VLAN, Dest}	{VLAN, Dest, A/B tag}	Not easy to debug. Can't use current topology protocols to set up paths; they're not trees.
3.	{Dest}	{VLAN, Dest}	I <i>think</i> that the number of VLANs are not an issue.
4.	{Source, VLAN}	{Source, VLAN, Dest}	Per-source sequencing, not per-Stream.
5.	{Source, VLAN}	{Source, VLAN, A/B tag}	Per-source sequencing, not per-Stream. Destination not used by auto-config.

- NOTES: Always, only frames with CB-tags are processed.
- "A/B tag" means HSR-like bit(s) in the sequence tag identifying the path taken.

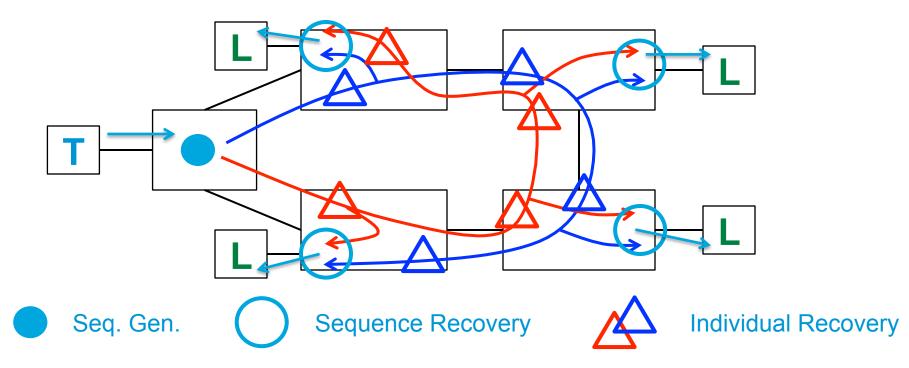
Choosing an auto-configuration solution

- In this author's opinion:
- 1 & 2 (almost identical packets) are not good, because they have identical (or identical except for the CB-tag) packets crisscrossing through the network. Among other difficulties, this is incompatible with reverse path checking for multicast pruning.
- 3 & 4 (DA identifies Stream within the group) conflates forwarding with stream identification. The DA must be a multicast if one Listener receives > 1 stream. While this is necessary for Bandwidth reservation, 802.1CB can be useful without bandwidth reservation. 3 seems best if per-Stream sequencing is required.
- 5. Author's favorite: Although this uses per-source sequencing, it allows multiple Streams per Listener without requiring a multicast DA, thus separating 802.1CB from MSRP.
- Summary on next slide.

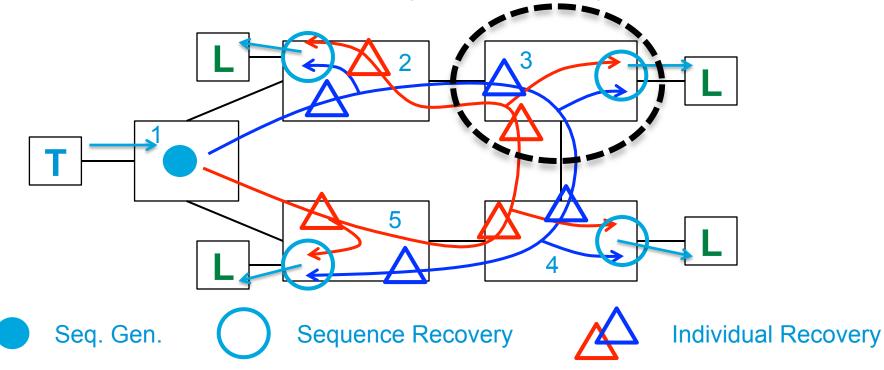

Author's opinion

•	Sequence Recov. based on	Individual Recovery based on	Comments
1.	{VLAN, Dest}	{VLAN, Dest, Port}	Non-starter. Identical packets are criss- crossing through the network.
2.	{VLAN, Dest}	{VLAN, Dest, A/B tag}	Non-starter. Almost-identical packets are criss-crossing through the network. (The A/B bits in the tag are not used by forwarding.)
3.	{Dest}	{VLAN, Dest}	→ contender. SR cannot be used except on multicast streams, and multicast DAs are required (now) only for bandwidth reservation.
4.	{Source, VLAN}	{Source, VLAN, Dest}	No. Requires multicast DAs without gaining advantages of per-Stream sequencing.
5.	{Source, VLAN}	{Source, VLAN, A/B tag}	→ Compatible with HSR/PRP. Seamless Redundancy not locked to MSRP.

Problem 2: On which ports do you perform Sequence Recovery?


Which ports are sequence filtered?

You can auto-configure Sequence Recovery on every port!


• The dotted circles are functional, but never discard a packet, because the two streams **do not both egress** on those ports.

Which ports are sequence filtered?

- You can auto-configure an Individual Recovery function in every forwarding function, separate from any particular port.
- IF identical packets entering different ports are the same Stream.

Sequence Recovery on every port **≠** Sequence Recovery in Relay Function

- We do want to filter packets going to the Listener.
- We do not want to filter packets on the ring that can lead to latent errors.

Sequence Recovery on every port **≠** Sequence Recovery in Relay Function

- In the previous slide, in bridge 3, you
 - > **Do** want to discard duplicates sent to the Listener.
 - Do not want to discard duplicates on the ports to Bridges 2 and 4.
- A single Sequence Recovery function in the bridge 3 relay function that does not pay attention to individual ports **could**:
 - 1. Receive red packet #10 from bridge 4, and relay it to L and bridge 2.
 - 2. Receive blue packet #10 from bridge 2, discard it as a duplicate, and not send it either to L or to bridge 4.
- In one sense, this is no problem, because we know that bridge 4 has already received packet #10. It also makes more bandwidth available for best-effort traffic.
- But, if link 1—5 fails, we don't know for sure that packet #11 will reach bridge 5; there may be a "latent error", e.g. a misconfiguration that blocks blue packets on link 4—5.

Problem 3: Do we need Stream Confluence?

The (non-)need for Stream Confluence

- At present, there is no requirement for a Bridge to configure a Stream Merge function. (Draft 2.1 Table 8-1.)
- The only reason for a Bridge to configure a Stream Split function is to satisfy Comment #7 on Draft 2.0 (see cb-nfinn-seamlessissues-1015-v02.pdf). If that problem is ignored and we reverse that decision, then we can eliminate the Stream Confluence sublayer entirely from P802.1CB.
- Note that the issue of Draft 2.0 Comment #7 is the inability (without Stream Splitting) to take in one packet from an end station and generate two copies of that packet on one output port with two different encapsulations.

The (non-)need for Stream Confluence

 Some text will still be required in Annex E, to show that it will be commonly the case that the Streams comprising a Seamless Stream will be all fed through a single instance of the Sequence Recovery function on an output port, after which some or all of the Streams' encapsulations will be changed in order that a single Stream is output on that port for the Seamless Stream.

Suggested Remedy

Suggested remedy

- Put managed objects into Clause 9 to support auto-configuration:
 - Administrator selects a Default Stream/Seamless Stream identification and Default sequence number encapsulation plan for the relay system.
 - Sequence Recovery is then auto-configured on all ports as shown in Figure 8-1. (This can still be represented as a function inside the relay as in Figure 8-2. It just means that that the in-the-relay function has to pay attention to the entry and exit ports.)
 - Individual recovery is also auto-configured for all streams, without regard to port. Note that this function can ignore entry vs. exit port.
 - Support for plan 5 (above) using the HSR tag is required. Plan 3 using the CB tag is optional.
- An implementation may (optionally) support the detailed per-Stream configuration of the current Clause 9, with auto-configuration, if turned on, handling the Streams that miss the detailed configuration.
- Eliminate the Stream Confluence sublayer, making it an option to have the ability to output multiple copies of a packet with different encapsulations.

Thank you.

#