

Description of Explicit Topologies

János Farkas janos.farkas@ericsson.com

Notes

- This document is Version 02:
 http://www.ieee802.org/1/files/public/docs2014/ca-farkas-topology-description-0314-v02.pdf
- Changes compared to Version 01:
 - Updates in the *size* of the topology descriptors
 - 2 Bytes have been added for each Hop
 - Type field: 1 Byte
 - Length field: 1 Byte
 - Mixing strict and loose hops (pages 14-16)
 - As per the resolution of comment #55 on P802.1Qca D0.6, the option of mixing strict and loose hops in the same explicit tree will be removed from the next draft (D0.7)

Format A: Port ID Based

- > This is the format of 802.1Qca D0.6
- Format A is based on listing Bridge Ports that are part of the topology, where a Bridge Port is identified by an IS-IS System ID, Circuit ID tuple
- The connectivity provided by a Bridge Port is included in the topology if the Port ID is included; therefore, each bridge or station connected to the same LAN is also included in the topology
- Format A only requires ordering for a loose hop of a p2p path that mixes loose and strict hops
 - Ordering is not required either in fully specified or in completely loose cases
 - A tree (mp2mp) is always either fully specified or completely loose
- Otherwise, Format A does not require any particular ordering of the hops, but ordering is allowed in case of p2p paths
- > Tie-breaking for a link: use the numerically lower System ID

Format B: Order Based

- Format B is based on the ordered list of Nodal IDs for describing all kinds of topologies
- A chain (or ear) out of the topology is described by an ordered list
 - A p2p path is a single chain
 - The smallest chain is a single link
- Arbitrary order between chains
- Each node involved in the topology appears at least once in the descriptor
- The System ID is the Nodal ID for IS-IS

Parallel Links

- Port ID has to be also supported in case of Format B in order to be able to distinguish parallel links between a pair of bridges
- Therefore, the same TLV structure can be used for both formats

Descriptor

Example Network

A Fully Specified Spanning Tree

Format A

arbitrary order

11, 2; Circuit, End

11, 3; Circuit, End

44, 3; Circuit, End

55, 1; Circuit, End

88, 1; Circuit, End

33, 4; Circuit

66, 4; Circuit

91 bytes

Format B

exact order for each chain

22
11; End
33
66
44; End
33
55; End
66, 4; Circuit
77
66
88; End
100 by too

103 bytes

A Fully Specified Spanning Tree Format **A** Peculiarities

Format A

arbitrary order

11, 2; Circuit, End

11, 3; Circuit, End

44, 3; Circuit, End

55, 1; Circuit, End

88, 1; Circuit, End

33, 4; Circuit

66, 4; Circuit

91 bytes

A Fully Specified Spanning Tree Format A Peculiarities – cont'd

Format A arbitrary order

11, 2; Circuit, End
11, 3; Circuit, End
44, 3; Circuit, End
55, 1; Circuit, End
88, 1; Circuit, End
33, 4; Circuit

91 bytes

66, 4; Circuit

Format A

arbitrary order

11, 2; Circuit, End
11, 3; Circuit, End
44, 3; Circuit, End
55, 1; Circuit, End
88, 1; Circuit, End
22, 1; Circuit
33, 4; Circuit
66, 4; Circuit
77, 2; Circuit

117 bytes

²**22**3 333^{L2} **244 55**2 31**66**14 88

- Each bridge can be listed if that is preferred
- Redundant items do not cause any issue

A Fully Specified Spanning Trees Format **B** Peculiarities

Arbitrary order between chains

It is the task of the entity describing the tree to figure out the chains

> - e.g. longest possible chains for least bytes descriptor

Beginning of new chain is indicated by a System ID that already

Format B

A Completely Loose Tree

Format A

11; Loose, End

44; Loose, End

88; Loose, End

66; Loose, Root

36 bytes

Note that order does not matter in either format

Format B

11; Loose, End

44; Loose, End

66; Loose, Root

88; Loose, End

36 bytes

have to compute.

A Fully Specified P2P Path

Format A

in arbitrary order

11, 2; Circuit, End

88, 2; Circuit, End

22, 3; Circuit

33, 4; Circuit

66, 6; Circuit

65 bytes

77 lost Circuit ID tiebreak against 66 for the 66-77 link

Format A in exact order

11; End
22
33
66, 6; Circuit
77
88; End

58 bytes

Format B exact order

11; End
22
33
66, 6; Circuit
77
88; End
58 bytes

Format A (802.1Qca D0.6) allows exact order of System IDs for p2p paths:

Exact order has to be followed if Circuit II

Exact order has to be followed if Circuit ID is not present

A Mixed P2P Path (Mixed Strict and Loose Hops) Will be removed from D0.7

Format A

exact order for loose hop arbitrary order otherwise

a loose hop is related to the previous hop; therefore, order matters!

topology description | 2014-03-27 | Page 14

Format B exact order

11; End
22
66, 6; Circuit, Loose
77
88; End
49 bytes

Circuit ID has to be used for parallel links in every case

A Mixed P2P Path Format A Peculiarities

Will be removed from D0.7

Format A

exact order for loose hop arbitrary order otherwise

11, 2; Circuit, End 66, 6; Circuit, Loose 88, 3; Circuit, End

39 bytes

11, 2; Circuit, End

88, 3; Circuit, End

22, 1; Circuit

66, 6; Circuit, Loose

77, 6; Circuit

65 bytes

a loose hop is related to the previous hop; therefore, order matters!

Each bridge can be listed if that is preferred

A Mixed P2P Path Format A Peculiarities — cont'd Will be removed from D0.7

Format A exact order

11; End
22
66, 6; Circuit, Loose
77
88; End
49 bytes

88

Format A (802.1Qca D0.6) allows exact order of System IDs for p2p paths:

Exact order has to be followed if Circuit ID is not present

A GADAG Example

GADAG Description

Format A

arbitrary order

-
11, 2; Circuit,
GADAG Root
22, 2; Circuit
22, 3; Circuit
22, 4; Circuit
33, 1; Circuit
44, 3; Circuit
55, 1; Circuit
66, 2; Circuit
66, 4; Circuit
66, 5; Circuit
77, 1; Circuit
77, 3; Circuit
88, 2; Circuit

169 bytes

Format B specific order

11; GADAG Root
22
33
11; GADAG Root
22
44
66
77
55
33
66
88
77
22
66
66
33
33 77
33

GADAG Description Format A Peculiarities

Format A

1 Office / t
11, 2; Circuit,
GADAG Root
22, 2; Circuit
22, 3; Circuit
22, 4; Circuit
33, 1; Circuit
44, 3; Circuit
55, 1; Circuit
66, 2; Circuit
66, 4; Circuit
66, 5; Circuit
77, 1; Circuit
77, 3; Circuit
88, 2; Circuit

Bridge, Port order

Format A

11, 2; Circuit,
GADAG Root
22, 3; Circuit
33, 1; Circuit
22, 2; Circuit
44, 3; Circuit
66, 4; Circuit
77, 3; Circuit
55, 1; Circuit
66, 5; Circuit
88, 2; Circuit
22, 4; Circuit
66, 2; Circuit
77, 1; Circuit

> Each edge of the graph is specified by the outbound port

ear order

- Arbitrary order can be applied; therefore,
- > The graph can be described bridge by bridge and port by port topology description | 2014-03-27 | Page 19

GADAG Description Format **B** Peculiarities

244

Format B specific order

11. CADAC Doot [

Specific order required

 Each ear of the GADAG is described by an ordered list of System IDs

Arbitrary order among ears (e.g. comp order)

 A new ear begins and ends with a System ID that is already in the list

11; GADAG Root	
22	
33	Ear 1
11; GADAG Root	
22	
44	
66	Ear 2
77	Еа
55	
33	
66	_{ا س}
88	Ear 3
77] "
22	Ear 4
66	
66	Ear 5
33 77	Га
77	Ear 6
33	Ea
	-

Shared Media LAN Example

Format A

arbitrary order

Format B

exact order for each chain

11; End
33
22, 4; Circuit
66
44; End
33
55; End
22, 4; Circuit
77
66
88; End

107 bytes

Shared Media LAN Example Format **A** Peculiarities

Format A

arbitrary order

11, 3; Circuit, End

44, 3; Circuit, End

55, 1; Circuit, End

88, 1; Circuit, End

22, 4; Circuit

65 bytes

part of an explicit tree, then each bridge connected by that particular LAN is also part of the tree.

333^[2]

ISO 10589: A shared media

LAN is identified by the System ID

of the Designated Intermediate System
(DIS) and by a Pseudonode ID, which

Pseudonode ID.

244

11 2 88 Not listed because added by the inclusion of the shared media LAN

55²

topology description | 2014-03-27 | Page 22

is a Circuit ID local to the DIS.

Shared Media LAN Example Format **B** Peculiarities

Exact order for each chain

Arbitrary order between chains Beginning of new chain is Chain DIS indicated by a System ID that already Pseudonode IDappears in a former chain 244 **55**² Circuit ID to be 1 used for Pseudonode 31**66**14 Taking part in a chain via the shared media LAN is described by being 2 88 connected to the Pseudonode

Format B exact order for each chain

Note

- > 802.1Qca is not about p2p paths
- Mixing strict and loose hops in an explicit tree makes it too complicated
- Mixing strict and loose hops in a p2p path may be not that useful
- Order is only mandatory for a loose hop, because it is related to the preceding hop
- Ordering is unnecessary if it is not allowed to mix strict and loose hops

Programming

Format A

- Easy
- > PCE
 - e.g. go through the topology sequentially per bridge per port
- > Bridge
 - Just include the hops to the topology

Format B

- More complex
- > PCE
 - Longest possible chains to be find
 - Encode the chain as ordered list
- > Bridge
 - It has to be detected when a chain begins and ends
 - Worst case: each link is an individual chain

Summary

- The original intention determines the pros and cons
 - Format A: describe a generic graph, network topology
 - Format B: describe a p2p path
- Format A
- Easier to program
- Shared media LAN
 - Simple, in-line with IS-IS
- Size
 - Can be 2 bytes smaller per hop

- Format B
- Easier to read by human
- Shared media LAN
 - Messy
- Size
 - 2 bytes larger in worst case (single hop chain)
- Same TLV structure can be used for the two formats