

Generalized Shortest Path Bridging

János Farkas

January 22, 2014

specifies two operation modes for SPB:

- > SPBM: SPB MAC
 - Bound to PBB data plane
 - B-MAC identified SPTs
 - Source specific Group MAC = SPSourceID + I-SID
 - No B-MAC learning
 - > unknown is dropped
- More on SPB e.g.:

> SPBV: SPB VID

- Although, not bound to a specific data plane, envisioned for non-PBBN
- VID identified SPTs
- Source specific VID = SPVID
- MAC learning
- http://standards.ieee.org/getieee802/download/802.1aq-2012.pdf
- http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118148665.html

The IEEE 802.1aq Shortest Path Bridging (SPB) standard

- http://en.wikipedia.org/wiki/IEEE 802.1aq

Background

Disclaimer

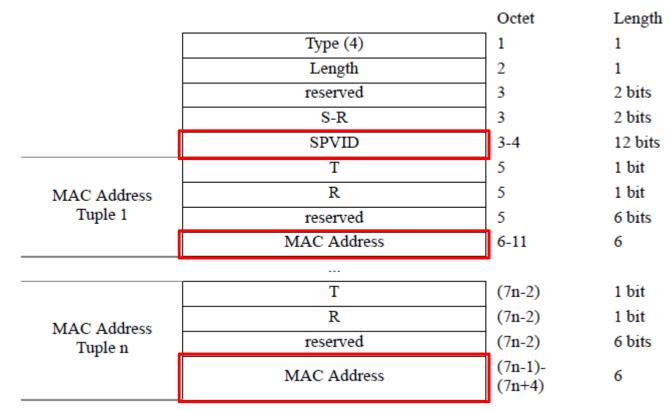
- From now on, this presentation is only a mental exercise of the author
- The operation investigated here is based on IEEE 802.1aq;
- However, this operation is not part either of the 802.1Q-REV drafts or the 802.1aq standard
- Generalization to 802.1aq are indicated by blue as much as possible

A Generic Approach

- $\,$ The VID \rightarrow MSTID allocation determines the control mode for the VID
- 1. IS-IS control
 - If a VID is allocated either to the SPBM MSTID or to the SPBV MSTID, then the VID is under IS-IS control
- 2. SPBV MSTID (0xFFD)
 - If a VID is allocated to the SPBV MSTID, then it is a learning VID, i.e. MAC addresses are learnt from the data frames
 - \rightarrow consequently, forwarding is based on VID (until station location is learnt)
- 3. SPBM MSTID (0xFFC)
 - If a VID is allocated to the SPBM MSTID, then it is a non-learning VID, i.e. MAC addresses are not learnt from the data frames
 - \rightarrow consequently, forwarding is based on MAC (within the VLAN's scope)
- > AND THAT IS ALL, no restriction on data plane
 - Note that items 1 3 are all valid for 802.1aq, which however makes further restrictions
- In other words, SPBM is not bound to PBB
 - In fact we are talking about a generalization of SPBM

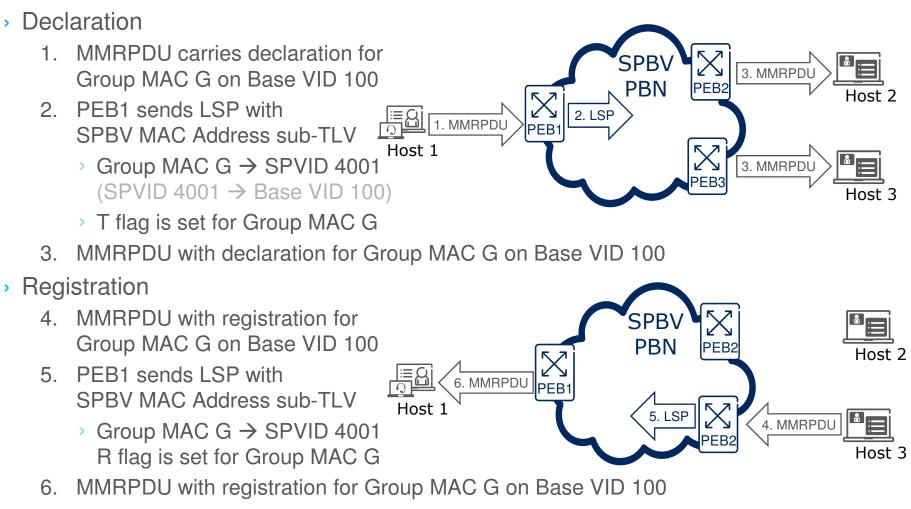
Use of ISIS-SPB TLVs

- The good news is that the TLVs specified by 802.1aq cover the generalized approach too
- No change or renaming of TLVs or TLV fields is proposed here!
- All that considered is a more generic use than described in 802.1aq
 - The terms used may be less straightforward though
 - Or unnecessary fields are carried around
- > Key question: Which sub-TLV to use in order to propagate MAC for non-learning VIDs, i.e. VIDs allocated to the SPBM MSTID in a non-PBBN?
- Let's see the options



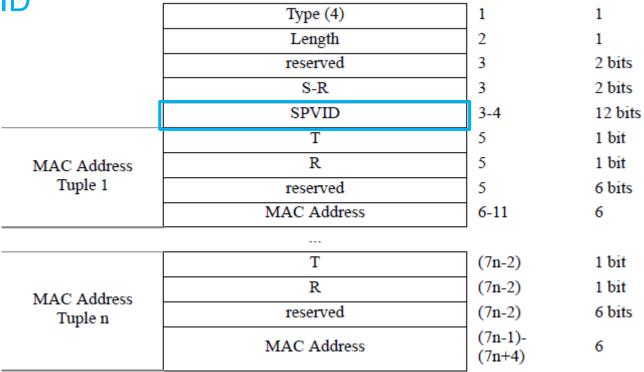
Option 1

SPBV MAC Address sub-TLV

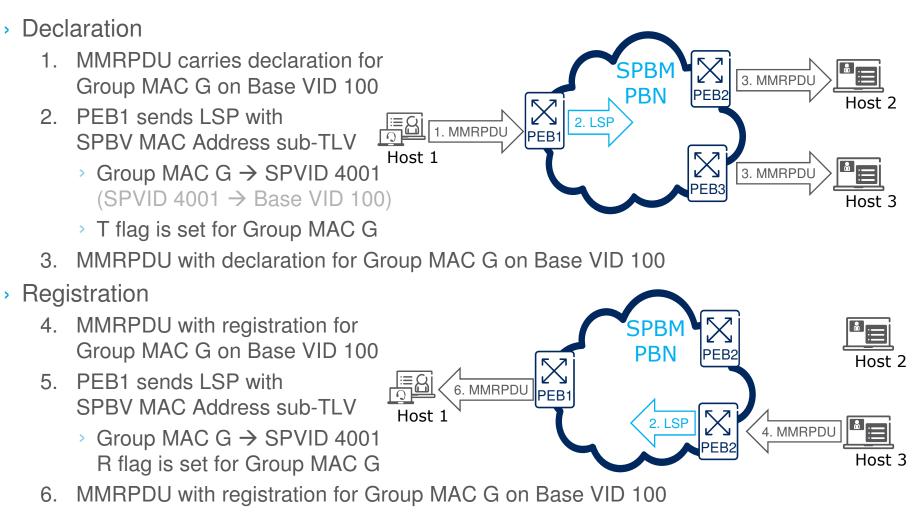

SPBV MAC Address sub-TLV

- Associates a MAC to an SPVID
- Prepared for MMRP ⇔ ISIS-SPB interworking

MAC Registration Example subclause 28.10



Generalized SPB | 2014-01-22 | Page 8


Generalized SPBV MAC Address sub-TLV

- > SPVID could be generalized to VID
- → It would be then a MAC → VID sub-TLV; generic to SPB; i.e. applicable to non-learning VIDs allocated to the SPBM MSTID Type (4) 1

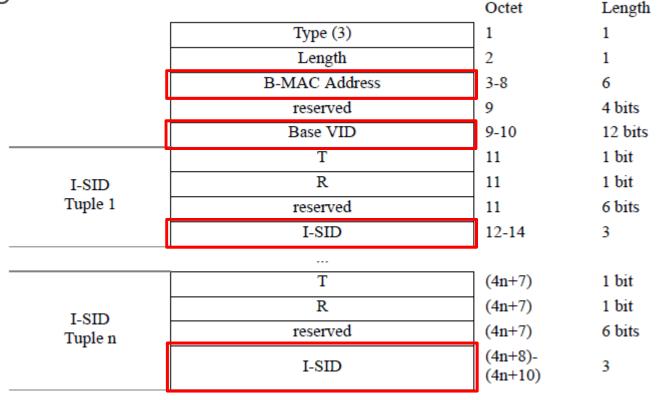
Length

Generalized MAC Registration Example

Option 1 – Summary

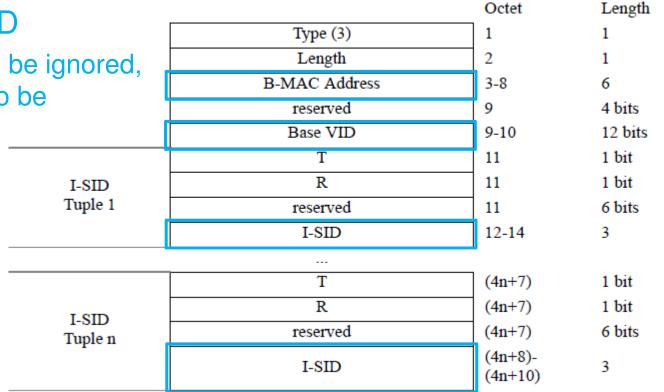
- SPBV MAC Address sub-TLV can be used for non-learning VLANs as is, with no additional specification
- That is, SPBV MAC Address sub-TLV can be used for VIDs allocated to the SPBM MSTID in non-PBB networks
- The operation for MMRP interworking is already specified (subclause 28.10)
- > The only downside is that naming may confuse people because:
 - A sub-TLV having SPBV in its name is used for a VID allocated to the SPBM MSTID
 - Octets 3-4 convey a non-learning VID, not an SPVID
- Note that the use of SPBV MAC Address sub-TLV for MAC → VID association in case of non-learning VIDs (VIDs allocated to the SPBM MSTID) is included in 45.1.3 of P802.1Qca D0.5

Option 2


SPBM Service Identifier and Unicast Address sub-TLV

SPBM Service Identifier and Unicast Address sub-TLV

> Associations provided


- -I-SID → B-VID
- -B-MAC → I-SID

SPBM Service Identifier and Unicast Address sub-TLV for a non-B-VID

- Base VID is not a B-VID
- Octets 3-8 convey a C-MAC not a B-MAC, which is not necessarily a unicast address
- > There is no I-SID
 - An I-SID should be ignored, a value needs to be defined for that

Option 2 – Summary

- SPBM Service Identifier and Unicast Address sub-TLV can be used in a non-PBBN too
- The name of the TLV does not cause confusion as the VID is allocated to the SPBM MSTID

> BUT

- There may be naming confusion here too
 - The Base VID is not a B-VID
 - The MAC is not a B-MAC (it may be a Group MAC, not unicast)

> Above all,

- There is no I-SID (no service identifier)
- It is a 3-byte unnecessary overhead
- An I-SID value encoding "ignore" is to be specified
- The interworking with MMRP based on the SPBM Service Identifier and Unicast Address sub-TLV is to be specified

Generalized SPB | 2014-01-22 | Page 15

An Observation Valid for Both Options

A's tree

B's tree

- Source specific multicast (S,G) has to be used in an SPB network as each source uses its own SPT
 - Let's assume that A and B are Sources in the same Group
 - C should ONLY forward B's frames to D but NOT A's frames
 - (*,G) does not work, (S,G) is needed
 - (S,G) of SPBM in a PBBN is implemented by source specific Group MAC = SPSourceID + I-SID (subclause 27.15)

R– –

- Multicast for SPBM in a non-PBB network
 - It has to be still ensured that there is a single multicast source for each Group MAC, VID tuple
 - For example, have a single source within a VID for a Universally Administered Group MAC

Further Generalization Possibilities

SPBM Service Identifier and Unicast Address sub-TLV

- B-MAC can be generalized allowing Group MAC for shared trees
- > It has been included in P802.1Qca D0.5, see e.g.

-28.12.10			Octet	Length
- 20.12.10		Type (3)	1	1
- 45.1.3		Length	2	1
		B-MAC Address	3-8	6
	–	reserved	9	4 bits
		Base VID	9-10	12 bits
- - - - - - - - - - - - - - - - - - -	I-SID Tuple 1	Т	11	1 bit
		R	11	1 bit
		reserved	11	6 bits
		I-SID	12-14	3
		Т	(4n+7)	1 bit
	I-SID Tuple n	R	(4n+7)	1 bit
		reserved	(4n+7)	6 bits
		I-SID	(4n+8)- (4n+10)	3

SPB Instance sub-TLV

			Octet	Length
		Type (1)	1	1
> Provides bridge	Length	2	1	
0	CIST Root Identifier	3-10	8	
parameters, e.g.	CIST External Root Path Cost	11-14	4	
	Bridge Priority	15-16	2	
– SPSourceID	reserved	17-18	11 bits	
	V	18	1 bit	
Associations provided:	SPSourceID	18-20	20 bits	
	Number of Trees	21	1	
- Base VID \rightarrow ECT Algorithm	VLAN ID Tuple 1	U	22	1 bit
9		М	22	1 bit
$-$ SPVID \rightarrow Base VID		A	22	1 bit
		reserved	22	5 bits
This could be generalized		ECT Algorithm	23-26	4
to VID → Base VID		Base VID	27-28	12 bits
		SPVID	28-29	12 bits
to cover cases when it is –				
	VLAN ID Tuple n	U	8n+14	1 bit
another type of VID, not		M	8n+14	1 bit
an SPVID to be associated		A	8n+14	1 bit
		reserved	8n+14	5 bits
with the Base VID		ECT Algorithm	(8n+15)- (8n+18)	4
		Base VID	(8n+19)- (8n+20)	12 bits
Generalized SPB 2014-01-22 Page 19		SPVID	(8n+20)- (8n+21)	12 bits

Generalized SPB | 2014-01-22 | Page 20

Summary

- The standard 802.1aq TLVs support a more generic approach than described in 802.1aq
- The simplest way forward seems to
 - Keep the TLV formats and names as specified by 802.1aq
 - Leverage the operations already specified
 - Allow a more generic use than the name of some sub-TLVs and fields suggest, which has to be clearly documented when used that way

What we get is

- SPBM for non-PBB networks
- Tools for explicit trees/paths

