Seamless Redundancy Concept Refinement: Duplicate Elimination 2012-11-14 -v02 - IEEE 802.1 Meeting – San Antonio ### Editor: Franz-Josef Goetz, Siemens AG Markus Jochim, General Motors #### Contributor: Christian Boiger, University Deggendorf Oliver Kleineberg, Belden / Hirschmann ## **Objectives of this Presentation** - Seamless Redundancy concept was presented in San Diego: http://www.ieee802.org/1/files/public/docs2012/new-avb-kleineberg-jochim-seamless-redundancy-0712 - Joint effort (Industrial Control and Automotive) - Concept was then discussed in Santa Cruz. - Some open questions have been identified. - The group recommended to further refine the concept. - Intention of this presentation is to do exactly that! ## **Open Questions Addressed in this Presentation** - Where do we generate and eliminate duplicates? In bridges and in end stations. - How do we identify duplicates? Based on tagged frames. - What is the duplicate elimination mechanism? We will present a proposal that is based on a Duplicate Drop Database. ### Structure of this Presentation - 1. Brief Recap of the Seamless Redundancy Concept - 2. Topologies for Redundancy @ Industry & Automotive - 3. Mechanism for Seamless Redundancy (based on each other): - a) Generation and elimination of duplicates in End Stations - c) Generation and elimination of duplicates in Bridges - 4. Concept refinements: - a) Mechanism for duplicate elimination - b) Proposed extension of the frame format ## **Duplication of frame & Redundant paths** Red = 2-connected part of the network Orange = disconnecting links - ➤ Each bridge knows (by configuration or by protocol), which port is connected to a disconnecting link. - ➤ Within the 2-connected core of the network, each bridge "knows" two independent paths to each other bridge. - Only mission critical frames that enter a bridge via a disconnecting port will be duplicated and redundantly forwarded on two independent paths. - Selection of independent paths: - Required, but not part our work on a Seamless Redundancy Concept. - The problem is addressed by the Internetworking Group ## **Elimination of Duplicates** Bridge B2 "knows": - 1) that the link to B is a Disconnecting Link AND - 2) that F and F' are mission critical frames. - Therefore B2 will eliminate the duplicates and forward a single copy to B. - > B2 can forward the first copy (F or F') that arrives. - > B2 does not need to store the first copy that arrives until the other copy arrives! - > B2 just remembers: - "I have seen 1 of the 2 frames already! If I ever see the other one, I will throw it away!" - How long will B2 need to remember this? - - Answer: For $\Delta t =$ "Max. duration of transmission of F' from B4 to B2" minus "Min. transmission duration of F from B4 to B2" # Seamless Redundancy for Reserved and Scheduled Traffic only! - > We do not require Seamless Redundancy support for: - Best Effort Traffic (Strict Priority Scheduling) - We propose to provide Seamless Redundancy support for the following traffic classes: - Reserved Traffic (Credit based Shaper) - Scheduled Traffic - Of course it is NOT REQUIRED to send all reserved traffic or all scheduled traffic redundantly, but it is POSSIBLE. - Seamless redundancy can be used for streams that we classify to be mission critical! # Seamless Redundancy for Reserved and Scheduled Traffic only! For the rest of the presentation, keep in mind, that whenever we talk about "frames" or "streams" we will <u>exclusively</u> refer to those - > reserved traffic streams or - > scheduled traffic streams which have been classified to be mission critical and for which the seamless redundancy concept shall be applied. ## **Generation & Elimination of Duplicates** - So far this was just a brief summary of the concept that was presented in San Diego. - ➤ Note that so far, we exclusively talked about: - Generation of duplicates in bridges - Elimination of duplicates in bridges Within this presentation we will extend the concept to also allow generation and elimination in end stations! ### Structure of this Presentation - 1. Brief Recap of the Seamless Redundancy Concept - 2 Topologies for Redundancy @ Industry & Automotive - 3. Mechanism for Seamless Redundancy (based on each other): - a) Generation and elimination of duplicates in End Stations - c) Generation and elimination of duplicates in Bridges - 4. Concept refinements: - a) Mechanism for duplicate elimination - b) Proposed extension of the frame format ## Multiple industrial and automotive use cases have been shown in previous presentations - up to 10 axes per column - a segment can consist up to 10 column ## **Redundant Topologies @ Industry** ## **Redundant Topologies @ Industry** ## **Redundant Topologies @ Automotive** Ring Structures for robust backbones Parallel Networks for safety critical control applications 2 independent channels (Dual homing) ### Conclusions: - ➤ Similar topologies in automotive and industry - ➤ Typically larger number of nodes in industry. ### Structure of this Presentation - 1. Brief Recap of the Seamless Redundancy Concept - 2. Topologies for Redundancy @ Industry & Automotive - 3. Mechanism for Seamless Redundancy (based on each other): - a) Generation and elimination of duplicates in End Stations - c) Generation and elimination of duplicates in Bridges - 4. Concept refinements: - a) Mechanism for duplicate elimination - b) Proposed extension of the frame format ## How do we implement this? - > The communication path for Reserved- or Scheduled-Traffic is given by e.g. ISIS-SPB-PCR - Duplicate elimination requires the ability to identify redundant frames or "frame pairs" (F, F'). The table gives a high level overview about the information we propose to use for the purpose of identifying frame pairs: | Information | Purpose | |--------------------|---| | VLAN ID | F and F' are transmitted on independent paths on different VLANs. VLAN ID's are used to mark redundant path (Path A, Path B,) | | MAC Address | If F and F' have the same MAC Address, they belong to the same stream. A stream MAC address (destination) is unique for VLAN ID's used to mark the redundant path (A, B,). | | Sequence
Number | A Sequence Number in the frame will enable to identify individual frames within a stream. We are always looking for two frames with the same MAC Address and the same Sequence number that are transmitted on different VLANs. (This is our assumption, that we need to discuss with the Internetworking Group, since this group is working on multiple paths.) | ### **Generation of duplicates in End Station (Talker T)** For Reserved- or Scheduled Streams which shall be transmitted over multiple path End Stations we need to add: - 1. VLAN ID for path A or path B and - 2. Stream specific Sequence Number (Redundant streams have identical Sequence Number for path A and path B) ### T talker – dual/multiple homing ## Elimination of duplicates in End Station (Listener L) ### Duplicate Elimination is based on: - MAC address of Reserved- or Scheduled Streams - and Sequence Number Locations for duplicate elimination in end stations: ### **Single Homing:** - Network Interface - Network Device Driver ### **Single & Multiple Homing:** - Application - Duplicate Elimination Module ### L listener – dual/multiple homing ## **Two Examples for Duplicate Generation and Elimination in End Stations** - Reserved- or Scheduled Streams are transmitted over given redundant path (one common stream for multiple listener) - Each listener L receives Reserved- or Scheduled Streams twice ## Elimination of Duplicates in Bridges (edge port) ### Justification: - For simple End Stations e.g. sensors with limited computing power and low power consumption - Avoid bandwidth bottleneck on edge port - Simplify integration of legacy devices - Network Segment Protection (To handle one single point of failure in each network segment, this is very important which will be explained later) Frame path A received before frame path B #### When frame path A is correct - -> Forwarding frame path A (no waiting for frame path B) - -> Frame path B will be discarded ## Two Examples for Duplicate Generation in End Stations and Elimination in Bridges (edge port) ## **Generation of duplicates in Bridges (1)** ### **Justification:** - For simple End Stations e.g. sensors with limited computing power and low power consumption - Avoid bandwidth bottleneck on edge port - Simplify integration of legacy devices - Network Segment Protection (To handle one single point of failure in each network segment, this is very important which will be explained later) ## Generation of duplicates in Bridges (2) Network Segments coupled with single Link Reminder: Bridges do no generate sequence number! Bridges have to provide functionality to change path A <-> B VLAN ID ## Generation of duplicates in Bridges (3) Network Segments coupled with redundant Links ## Generation of duplicates in Bridges (4) Network Segment Protection (1) #### Justification: A single point of failure within one network segment should not reduce the availability for Reserved- or Scheduled-Traffic in other network segments! ## Generation of duplicates in Bridges (5) Network Segment Protection (2) ### The Mechanism for segment protection guarantees connectivity! ### Structure of this Presentation - 1. Brief Recap of the Seamless Redundancy Concept - 2. Topologies for Redundancy @ Industry & Automotive - 3. Mechanism for Seamless Redundancy (based on each other): - a) Generation and elimination of duplicates in End Stations - c) Generation and elimination of duplicates in Bridges - 4. Concept refinements: - a) Mechanism for duplicate elimination - b) Proposed extension of the frame format ### L2 Duplicate Elimination Mechanism Model (1) ### **Repetition of our Assumptions:** - Seamless Redundancy only for Reserved- or Scheduled-Traffic (also called stream) - MAC address (destination address) of Stream is unique - MAC address & sequence numbers are used for duplicate elimination #### **Data structure:** - Duplicate-Drop-Window: The size for the window depends on: - Latency for path A - Latency for path B - Transmission period of Reserved- or Scheduled- Stream ### **Sequence Number** ## **Example for Duplicate Generation & Elimination in Bridges (1)** Duplicate elimination model for Reserved- or Scheduled- Traffic ## **Example for Duplicate Generation & Elimination in Bridges (2)** #### Duplicate elimination model for Reserved- or Scheduled- Traffic ## **Example for Duplicate Generation & Elimination in Bridges (3)** and functionality adding VLAN ID for path A or path B Duplicate elimination model for Reserved- or Scheduled- Traffic #### Filtering Data Base (FDB) #### **Duplicate Drop Data Base(DDD)** | FID | MAC-DA (6 Bytes) | Port(s) | Pos. DE | | Pos DE | ActSeqN | Sliding Duplicate Drop Window (sDDW) | | | | | | | | | | | | | | | | | |--|-------------------|---------|---------|-----|--------|---------|--------------------------------------|---|---|-----|-----|-----|-----|-----|------|----|-----|----|-----|----|-----|----|---| | VID = 4 | 91:E0:F0:00:00:00 | 1, 2 | 32 | J. | 1 | 773 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | | | VID = 5 | 91:E0:F0:00:00:00 | 1, 2 | 32 | IJ١ | | | | | | | | | | | | | | | | | | | J | | | | | | | | ••••• | ······ | | | | | | | | | | | | | | | | | | VID = 1 | 91:E0:F0:00:00:01 | | 255 | | 30 | 890 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | VID = 9 | 04:7A:CF:34:A0:01 | | 255 | | 31 | 54 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | | | VID = 2 | 04:7A:CF:34:A0:03 | | 255 | | 32 | 20 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | NEW! Sliding Duplicate Drop Window (sDDw) | ✓ Offset = 12 → | OLD 1 0 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | 1 | 1 - | 1 | | N | EW | | | | | | | | | | | | | | | | , | | | | | | | | | - | | | | | | | | | | | | | | | | | а | ctı | ıal | sec | lue | nce | e ni | ım | ber | (A | ctS | eq | N = | 20 |) | Page 31 2012-10-25 ctual sequence number (ActSeqN = 20) IEEE 802.1 AVB TG Meeting - San Antonio ## Proposed Solution: Encapsulation for Duplicate Elimination #### **Requirements:** - Duplicate elimination information shall be protocol neutral (support a wide range of protocols) - Duplicate elimination per stream (unique destination address) ### **Encapsulation for duplicate information:** TPID : Duplicate Elimination Tag • Sequence Number : Talker end station have to administrate sequence number stream specific ## **Discussion of our Proposals** ### **Overview of proposals:** - ➤ End Stations and Bridges should be able to generate duplicates. - ➤ End Stations and Bridges should be able to eliminate duplicates. - ➤ A frame format extension was proposed for duplicate identification. - ➤ A duplication elimination mechanism was proposed. (Keyword: Duplicate Drop Database) ### How are we going to proceed? ➤ We need to agree on a plan...