A Theoretical Model for QCN

Mohammadreza Alizadeh, Balaji Prabhakar Stanford University

Overview

- The stability ("unit step response") of congestion control algorithms are analyzed theoretically in the following way
- Write down equations describing evolution of algorithm
- Usually, these are nonlinear delay-differential equations
- Analyze these equations for stability
- Usually, linearize equations around operating point and analyze linear system
- The reason QCN equations were hard to get were that the Fast Recovery cycle is different from the usual source behavior (there is usually no Target Rate--Current Rate)
- We show how the equations can be obtained
- And check their accuracy using simulations

Fluid Model for QCN

- We will model only the key features of the QCN protocol. Namely, we do not consider:
- Timer, HAI, extra fast recovery, window jittering, drift increase.
- Switch behavior is not too different from what we have seen for BCN => Easy to describe
- But source behavior appears to have a new 'memory' element in the Fast Recovery phase. It's not possible to model this with a single variable, namely the current rate at the source
- This motivates using two variables at the source: Current Rate, and Target Rate

Fluid Model for QCN

- Target Rate (TR) is the rate that the source tries to reach by successive phases of fast recovery
- Anytime the source sends 100 packets, and it receives no congestion signals, CR increases to halve the distance between $C R$ and TR, i.e.: CR $\leftarrow(C R+T R) / 2$
- Anytime the source receives a congestion signal, it multiplicatively decreases $C R$, i.e.: $C R \leftarrow\left(1-G_{d} F_{b}\right) C R$
- Upon receiving congestion signal, TR drops to CR, i.e.: TR $\leftarrow \mathrm{CR}$
- In Active Increase, after sending 100 packets and not receiving congestion signals: TR $\leftarrow \mathrm{TR}+\mathrm{a}$
- $\mathrm{a}=5 \mathrm{Mbps}$

Fluid Model for QCN

- Assume N flows pass through a single queue at a switch. State variables are $\mathrm{TR}_{\mathrm{i}}(\mathrm{t}), \mathrm{CR}_{\mathrm{i}}(\mathrm{t}), \mathrm{q}(\mathrm{t}), \mathrm{p}(\mathrm{t})$.

$$
\begin{aligned}
& \frac{d T R_{i}}{d t}=-\left(T R_{i}(t)-C R_{i}(t)\right) \times C R_{i}(t-\tau) p(t-\tau)+(1-p(t-\tau))^{500} \times \alpha \times \frac{C R_{i}(t-\tau)}{100} \\
& \frac{d C R_{i}}{d t}=-\left(G_{d} F_{b}(t-\tau) C R_{i}(t)\right) \times C R_{i}(t-\tau) p(t-\tau)+\frac{T R_{i}(t)-C_{i}(t)}{2} \times \frac{C R_{i}(t-\tau) p(t-\tau)}{1} \\
& \frac{1-p(t-\tau))^{100}}{}-1
\end{aligned}
$$

$$
\frac{d q}{d t}=\sum_{i=1}^{N} C R_{i}(t)-C
$$

$$
F_{b}(t)=q(t)-Q_{e q}+\frac{w}{C p(t)} \times\left(\sum_{i=1}^{N} C R_{i}(t)-C\right)
$$

$$
\frac{d p}{d t}=\left(\Phi\left(F_{b}(t)\right)-p(t)\right) \times 500
$$

10 sources, 100 us

10 sources with 100 us

10 sources, 300 us

10 sources, 500 us

10 sources, 1 ms

10 sources, 2 ms

