A Theoretical Model for QCN

Mohammadreza Alizadeh, Balaji Prabhakar Stanford University

Overview

- The stability ("unit step response") of congestion control algorithms are analyzed theoretically in the following way
 - Write down equations describing evolution of algorithm
 - Usually, these are nonlinear delay-differential equations
 - Analyze these equations for stability
 - Usually, linearize equations around operating point and analyze linear system
- The reason QCN equations were hard to get were that the Fast Recovery cycle is different from the usual source behavior (there is usually no Target Rate--Current Rate)
 - We show how the equations can be obtained
 - And check their accuracy using simulations

Fluid Model for QCN

- We will model only the key features of the QCN protocol. Namely, we do not consider:
 - Timer, HAI, extra fast recovery, window jittering, drift increase.
- Switch behavior is not too different from what we have seen for BCN => Easy to describe
- But source behavior appears to have a new 'memory' element in the Fast Recovery phase. It's not possible to model this with a single variable, namely the current rate at the source
- This motivates using two variables at the source: Current Rate, and Target Rate

Fluid Model for QCN

- Target Rate (TR) is the rate that the source tries to reach by successive phases of fast recovery
 - Anytime the source sends 100 packets, and it receives no congestion signals, CR increases to halve the distance between CR and TR, i.e.: CR ← (CR + TR)/2
 - Anytime the source receives a congestion signal, it multiplicatively decreases CR, i.e.: CR ← (1-G_dF_b) CR
- Upon receiving congestion signal, TR drops to CR, i.e.:
 TR ← CR
- In Active Increase, after sending 100 packets and not receiving congestion signals: TR ← TR + α
 - $\alpha = 5 \text{ Mbps}$

Fluid Model for QCN

 Assume N flows pass through a single queue at a switch. State variables are TR_i(t), CR_i(t), q(t), p(t).

$$\begin{aligned} \frac{dTR_i}{dt} &= -(TR_i(t) - CR_i(t)) \times CR_i(t-\tau)p(t-\tau) + (1 - p(t-\tau))^{500} \times \alpha \times \frac{CR_i(t-\tau)}{100} \\ \frac{dCR_i}{dt} &= -(G_dF_b(t-\tau)CR_i(t)) \times CR_i(t-\tau)p(t-\tau) + \frac{TR_i(t) - C_i(t)}{2} \times \frac{CR_i(t-\tau)p(t-\tau)}{\frac{1}{(1 - p(t-\tau))^{100}} - 1} \end{aligned}$$

$$\frac{dq}{dt} = \sum_{i=1}^{N} CR_i(t) - C$$

$$F_b(t) = q(t) - Q_{eq} + \frac{W}{Cp(t)} \times (\sum_{i=1}^{N} CR_i(t) - C)$$

$$\frac{dp}{dt} = (\Phi(F_b(t)) - p(t)) \times 500$$

10 sources, 100 us

6

10 sources, 300 us

7

10 sources, 500 us

10 sources, 1 ms

10 sources, 2 ms

