Correction of Peer Delay Measurement for Frequency Offset of Responder Relative to Requestor

Geoffrey M. Garner
Consultant

/EEE 802.1 AVB TG
2008.09.15
gmgarner@comcast.net

Introduction

-Comment \#24 of the initial 802.1AS D4.0 comments indicates that the multiplication by neighborRateRatio r should be a division in Eq. (11-2), given that r is defined as the ratio of the rate of the responder to that of the requester.

- Eq. (11-2) in D4.0 is:

$$
\text { mean - propagation }- \text { delay }=\frac{\left(t_{4}-t_{1}\right)-r \cdot\left(t_{3}-t_{2}\right)}{2}
$$

-According to comment \#24, this equation should read

$$
\text { mean }- \text { propagation }- \text { delay }=\frac{\left(t_{4}-t_{1}\right)-\left(t_{3}-t_{2}\right) / r}{2}
$$

-The purpose of this presentation is to derive the correct form for this equation (i.e., with the division by r)

Timing of Pdelay Message Send and Receive Events

Times of various events, relative to the Pdelay Requestor and Pdelay Responder

Derivation of Propagation Delay - 1

\square The propagation delay is given by

$$
p=T_{2}-T_{1}=T_{4}-T_{3}
$$

-Then

$$
p=\frac{\left(T_{2}-T\right)_{1}+\left(T_{4}-T_{3}\right)}{2}=\frac{\left(T_{4}-T_{1}\right)-\left(T_{3}-T_{2}\right)}{2}
$$

\square The turnaround time D is given by

$$
D=T_{3}-T_{2}=\frac{T_{3}{ }^{\prime}-T_{2}{ }^{\prime}}{1+y}=\frac{T_{3}{ }^{\prime}-T_{2}{ }^{\prime}}{r}
$$

-Then

$$
D=\frac{\left(T_{4}-T_{1}\right)-\left(T_{3}^{\prime}-T_{2}{ }^{\prime}\right) / r}{2}
$$

Derivation of Propagation Delay - 2

aThe final equation on the previous slide is the desired result
-With the notation of the figure of slide 3 , the primed quantities denote the time relative to the Pdelay responder

