Correction of Peer Delay Measurement for Frequency Offset of Responder Relative to Requestor

Revision 2

Geoffrey M. Garner
Consultant

IEEE 802.1 AVB TG
2008.09.15
gmgarner@comcast.net

Introduction

-Comment \#24 of the initial 802.1AS D4.0 comments indicates that the multiplication by neighborRateRatio r should be a division in Eq. (11-2), given that r is defined as the ratio of the rate of the responder to that of the requester.

- Eq. (11-2) in D4.0 is:

$$
\text { mean - propagation }- \text { delay }=\frac{\left(t_{4}-t_{1}\right)-r \cdot\left(t_{3}-t_{2}\right)}{2}
$$

-According to comment \#24, this equation should read

$$
\text { mean }- \text { propagation }- \text { delay }=\frac{\left(t_{4}-t_{1}\right)-\left(t_{3}-t_{2}\right) / r}{2}
$$

The purpose of this presentation is to derive the correct form for this equation -The form given in the proposed resolution of comment \#24 (i.e., with the division by r) is a very good approximation
-The presentation derives an alternative good approximation, and also an exact for

DNote: the only difference between Revisions 1 and 2 is the correction of typos

Timing of Pdelay Message Send and Receive Events

Times of various events, relative to the Pdelay Requestor and Pdelay Responder

Derivation of Propagation Delay - 1

Dlnitially, assume the Pdelay Requestor time is exact, i.e., is the same as the grandmaster time (this assumption will be relaxed later)
\square The propagation delay is given by

$$
p=T_{2}-T_{1}=T_{4}-T_{3}
$$

-Then

$$
p=\frac{\left(T_{2}-T_{1}\right)+\left(T_{4}-T_{3}\right)}{2}=\frac{\left(T_{4}-T_{1}\right)-\left(T_{3}-T_{2}\right)}{2}
$$

\square The turnaround time D is given by

$$
D=T_{3}-T_{2}=\frac{T_{3}{ }^{\prime}-T_{2}{ }^{\prime}}{1+y}=\frac{T_{3}{ }^{\prime}-T_{2}{ }^{\prime}}{r}
$$

aThen

$$
D=\frac{\left(T_{4}-T_{1}\right)-\left(T_{3}^{\prime}-T_{2}^{\prime}\right) / r}{2}
$$

Derivation of Propagation Delay - 2

aThe final equation on the previous slide is the desired result
-With the notation of the figure of slide 3 , the primed quantities denote the time relative to the Pdelay responder

More Exact Result - 1

\square Next, assume that both the Pdelay requestor and responder are offset from grandmaster
\square Define

$$
\begin{aligned}
& r_{1}=\frac{\text { grandmaster frequency }}{\text { Pdelay Requestor Frequency }} \\
& r_{2}=\frac{\text { grandmaster frequency }}{\text { Pdelay Responder Frequency }}
\end{aligned}
$$

\square Then, with r defined as before (Pdelay responder frequency/Pdelay requestor frequency)

$$
r_{1}=r r_{2}
$$

More Exact Result - 2

\square Then the propagagtion delay relative to the grandmaster is given by

$$
\begin{aligned}
p & =\frac{\left(T_{4}-T_{1}\right) r_{1}-\left(T_{3}-T_{2}\right) r_{2}}{2} \\
& =\frac{\left(T_{4}-T_{1}\right) r r_{2}-\left(T_{3}-T_{2}\right) r_{2}}{2} \\
& =r r_{2}\left\{\frac{\left(T_{4}-T_{1}\right)-\left(T_{3}-T_{2}\right) / r}{2}\right\} \cong \frac{\left(T_{4}-T_{1}\right)-\left(T_{3}-T_{2}\right) / r}{2}
\end{aligned}
$$

\square But, we can also write

$$
\begin{aligned}
p & =\frac{\left(T_{4}-T_{1}\right) r_{1}-\left(T_{3}-T_{2}\right) r_{2}}{2} \\
& =\frac{\left(T_{4}-T_{1}\right) r r_{2}-\left(T_{3}-T_{2}\right) r_{2}}{2} \\
& =r_{2}\left\{\frac{\left(T_{4}-T_{1}\right) r-\left(T_{3}-T_{2}\right)}{2}\right\} \cong \frac{\left(T_{4}-T_{1}\right) r-\left(T_{3}-T_{2}\right)}{2}
\end{aligned}
$$

More Exact Result - 3

\square The exact result is

$$
p=r_{2}\left\{\frac{\left(T_{4}-T_{1}\right) r-\left(T_{3}-T_{2}\right)}{2}\right\}
$$

-On links where r_{2} is known (it is the cumulative rate ratio carried in Follow_Up, the exact result can be used. On other links (i.e., those not currently part of the synchronization spanning tree), one of the approximate forms can be used
-Note that the approximations are very good, as r_{2} differs from 1 by at most $\pm 100 \mathrm{ppm}= \pm 10^{-4}$, and r differs from 1 by at most ± 200 $\mathrm{ppm}= \pm 2 \times 10^{-4}$
-In addition, $r_{1}=r r_{2}$ differs from 1 by at most $\pm 100 \mathrm{ppm}= \pm 10^{-4}$
-This means the the error of each approximation is at most $\pm 10^{-4}$
-E.g., for propagation delay of 100 ns , the error is of order 10 ps

