
Dealing with fragile bridge implementations
Dealing with fragile bridge implementations

Mick Seaman

This note describes modifications to RSTP and MSTP to deal with fragile bridge
implementations whose control plane spanning tree protocol operation (including BPDU
transmission) can stop while their data planes continue to relay frames. At present such
brainless bridges can cause frame forwarding loops, as other bridges naturally transition
their own ports to Forwarding.

The problem can be addressed in a number of quite different ways, independently of xSTP,
each with its own disadvantages. MAC Security (IEEE Std 802.1AE, P802.1X-rev) will
provide a first class defence against unauthorized snooping, ensuring that silent bridges will
not acquire the necessary cryptographic keys to forward frames around a loop that includes
a secured bridge. However we need a solution for bridges that are already deployed. Early
loop detection protocols were initially retained as a backstop to STP operation, but are
unattractive in today’s more complex networks as loop detect frames would have to be sent
by each Bridge Port on each and every VLAN. Some early bridges were capable of
monitoring repeated and rapid movement, from port to port, of learnt addresses—behaviour
that is usually associated with a loop—but this functionality may not be possible for a given
high speed design. This note therefore limits itself to RSTP/MSTP enhancements.

At present RSTP (802.1D-2004) and MSTP (802.1Q-2005) can use the absence of BPDUs
from another bridge on a LAN to conclude that the attached Bridge Port is an Edge Port
(i.e. only attached to end stations1) thus allowing rapid transitions to Forwarding. This
plug-and-play functionality is important in a number of deployment scenarios and has to be
retained, though it can be overridden by manual configuration. Equally it is now desired
that a Bridge Port that is known not to be an Edge Port automatically transition to
Discarding if the other bridge attached to the same LAN does not continue to transmit
BPDUs2 to show that it has not become brainless.

RSTP and MSTP do not normally transmit BPDUs periodically through Root or Alternate
Ports. It is highly desirable that new bridges be able to deal with existing fragile bridges:
(a) without requiring coordinate configuration (always error prone) of several bridges; and
(b) without requiring an upgrade to the fragile bridge’s software. Instead the Designated
Bridge Port that requires regular BPDU receipt to hold off a transition to Discarding can
solicit those BPDUs by setting the Proposal flag for the CIST. Existing RSTP/MSTP
Bridges already respond to Proposals—this is behavior is essential for rapid healing of
temporary cuts in the active topology—and the fact that they do so is used to make rapid
determination of operEdge reliable.

Brainless bridge detection can be configured using the existing Admin Edge and Auto Edge
controls, as setting both False for a port specifies that it can never be operEdge. One new
per port variable is required. This note specifies the necessary enhancements to the RSTP/
MSTP state machines3,4 and provides state diagrams for the relevant machines.

1End stations from the point of view of the MAC Service. These may include stations supporting router interfaces.
2Some other type of frame might be used, but using a BPDU provides a greater assurance of continued spanning tree protocol operation.
3It is not possible to provide a BPDU based capability to protect against fragile bridges that only implement the original STP.
4The capability is intentionally limited to point-to-point connections to fragile bridges. Defending against brainless bridges on shared media would require
something so similar to the MAC Security protocols that it is not worth providing an alternative.
Revision 0.1 September 19th, 2008 Mick Seaman 1

Dealing with fragile bridge implementations
1. Summary

This note begins (2) by reviewing the current
AdminEdge, AutoEdge, operEdge functionality in
some detail. This due diligence is necessary to make
sure that we are not about to break something.

The desired functionality is then described (3),
together with details of variable use and state machine
changes to realize that functionality. A full set of state
machine changes is provided (5).

While working on this note I encountered a number of
editorial problems with the existing 802.1Q and some
serious technical problems with the 802.1ah
specification (4). To the extend they impinge upon our
ability to maintain the standard in general and to make
the changes proposed by this note I have suggested
corrections, and incorporate these in the detailed state
machines.

2. Current functionality

At present (802.1Q–2008) rapid detection of ‘Edge
Ports’ i.e. Bridge Ports that are believed to be attached
to LANs that have no other attached bridges is
facilitated by the following variables, timers, and state
machine transitions/actions/procedures.

Variables:

— AdminEdge (default False): The initial value of
operEdge when the port is first enabled.

— AutoEdge (default True): True if BDM (the Bridge
Detection state Machine) is allowed to set
operEdge = True.

— operEdge: Initialized to the value of AdminEdge
by BDM, set True by BDM if AutoEdge is True and
edgeDelayWhile expires while proposing and
sendRstp are True. Note that we should not
overload operEdge since it is used for various
purposes, including the TCN machine.

— proposing: Set in PRT:DESIGNATED_PROPOSE,
(and nowhere else) and used to determine the
value of the Proposal flag in transmitted BPDUs.
Reset whenever the Port Role will no longer be
Designated (receipt of superior information in
PIM, the Port Information state Machine).

— proposed: Set by PIM (the Port Information
Machine) by recordProposal() in
PIM:SUPERIOR_DESIGNATED and

PIM:REPEATED_DESIGNATED when a Proposal
flag is received (for the relevant tree). If the
receiving port is a Root or Alternate Port then
proposed will result in a BPDU transmission,
possibly delayed if ports need to be blocked to
sync the tree (see PRT:ROOT_PROPOSED,
PRT:ROOT_AGREED,
PRT:ALTERNATE_PROPOSED,
PRT:ALTERNATE_AGREED. Note that this
solicitation works even if the Bridge Port’s are
attached to shared media. It is only use of the
returned Agreement that is affected by shared
media.

Timers and timeout values:

— edgeDelayWhile: The delay before BDM makes a
port operEdge.

— EdgeDelay: A conditional variable in 802.1D,
returning MigrateTime if operPointToPointMAC is
True and MaxAge otherwise. Only used in
PRT:DESIGNATED_PROPOSE.

— MigrateTime: A fixed value (3 seconds). Used for
various purposes, but principally for migration/
interoperability between RSTP/MSTP and the
original STP. Used as the initial value of
edgeDelayWhile in PRX, and in L2GPRX (layer 2
Gateway Port Receive1) state machine.

State Machines:

— BDM (Bridge Detection state Machine): Sets the
initial value of operEdge to AdminEdge, and
allows operEdge to transition True if the
edgeDelayWhile timer runs from its initial value
to expiry while both proposing and sendRstp are
continuously True. Note that proposing is only
ever True for a Designated Port.

— PRX (Port Receive state machine): Sets operEdge
False and restarts edgeDelayWhile (with its initial
value of MigrateTime) whenever a BPDU is
received.

— PRT (Port Role Transitions state machine): Sets
edgeDelayWhile = EdgeDelay in
PRT:DESIGNATED_PROPOSE, and uses operEdge
as one of the conditions that allows rapid
transitions to Learning and Forwarding.

1Note—In the light of some problems with the 802.1ah documentation of L2GP I am suggesting a change of name for the Port Receive Pseudo-Information
machine. The new name is (I believe) a more accurate description, but the real reason for suggesting the change is that there is a significant bug in a procedure
used by the current machine and the name change might successfully distinguish implementations before and after the bug fix.
Revision 0.1 September 19th, 2008 Mick Seaman 2

Dealing with fragile bridge implementations
The functionality provided can be summarized as
follows:

a) If no other bridges are transmitting or responding to
proposals the Bridge Port will (by default) conclude
that there are no other bridges attached to its LAN,
and hence assert operEdge and transition to
Forwarding, some time after it becomes a Designated
Port (provided it is not Forwarding already, due to
previously being Root Port).

b) That time can be short (MigrateTime—3 seconds) for
point-to-point media, but can be much longer for
shared media. The reason for the latter is that on
shared media a previous, and superior, Designated
Bridge could have just died (or been silently
disconnected from the shared media) as our Bridge
Port is added. As a result the bridges will have
continued to believe that bridge is Designated and
ignore our Proposals.

c) The initial setting of edgeDelayWhile to MigrateTime
can be something of a red herring: any non-zero
value would have done.

d) When the port is disabled and re-enabled operEdge
is set back to AdminEdge.

e) The Bridge Port will not set operEdge if it was a
Root Port and then becomes Designated without
transitioning from Discarding.

3. Desired functionality

The most often described concern with potentially
brainless bridges is that one of the bridge’s ports
becomes Designated, then stops sending BPDUs while
remaining Forwarding. Because this first port stops
sending BPDUs, a second port, on another bridge
previously Discarding, and attached to the same LAN
as the first becomes Designated and eventually
Forwarding, thus creating a loop. To address this
scenario without losing the spanning tree
reconfiguration capability, the second port needs to be
able to distinguish it from one in which the first port
loses connectivity to the Root and simply becomes a
Root Port.

Other brain death scenarios can also occur, starting
with the brainless bridge’s port becoming Forwarding
without ever sending a BPDU. Brain death could have
more subtle manifestations, but all have the following
in common. A bridge that seeks to protect against a
fragile, potentially brainless neighbour, needs some
assurance that neighbour is indeed receiving its
BPDUs, is capable of processing them, and is capable
of sending BPDUs on its own account. Otherwise the
bridge that requires that assurance will not transition

to Forwarding, and indeed will transition from
Forwarding. The latter is required because although
the now brainless bridge’s port may have been a Root
Port when fit and well it is quite possible that
additional loop creating connectivity has been created
on its far side.

To get this coverage requires configuration, possibly
with different shipping configuration defaults on
different types of bridge ports, to distinguish between
a LAN internal to the network (where lack of BPDUs
indicates a brainless bridge) and a LAN at the edge of
the network (where lack of BPDUs serves to confirm
that only edge ports are present). The Proposal
Agreement mechanism is an existing method, already
supported in all RSTP/MSTP conformant bridges, by
which a Designated Port can solicit a BPDU from
another bridge (if a break in connectivity is not forced
due a dispute, which would happen if there was one-
way connectivity).

While preserving the current functionality, for ports
that are likely to be Edge Ports, we would also like the
lack of response to Proposals to be interpreted as
symptomatic of a brain-death. Since current RSTP
capable bridges already respond, this allows brain-
death detection by configuring just the bridge that
sends the Proposals. Since a fragile implementation is
assumed to be capable of brain-death at any time we
would like to configure the detecting ports to make
each and every BPDU sent by a Designated Port a
Proposal. It is however desirable to make an exception
in the case of shared media, where continuous
Proposals could result in an unpleasantly large number
of BPDUs, and it would be difficult to detect one
brainless bridge amongst many without a protocol
mechanism aimed at explicitly identifying each
participating system. Brainless bridge detection for
shared media is best left to scenarios where MAC
Security is to be deployed.

As well as retaining the current functionality, it is also
desirable to introduce the new functionality with the
minimum change or addition to management
variables. There appears to be no downside to
interpreting AdminEdge == False, AutoEdge == False as
indicating that the Bridge Port will never be at the
edge of the network and therefore always connected to
at least one other bridge.

Note that we have to deal with the case where a peer
Bridge Port is already brainless when the port is
enabled, so we cannot simply rely on an initial period
when the fragile bridge responds to Proposals to
identify the LAN as being internal to the network.
Moreover we would like the Bridge Port not to
Revision 0.1 September 19th, 2008 Mick Seaman 3

Dealing with fragile bridge implementations
automagically acquire a persistent memory of events
that occurred prior to it last being enabled, as such a
memory can make an error condition persistent and
very hard to diagnose. The proposed AdminEdge,
AutoEdge setting makes management configuration of
the Bridge Port as being persistently internal to the
network explicit. If an administrator wants persistent
behavior after operEdge has been automatically cleared
then he can change the AutoEdge setting at that time.
The following additional and changed variables, timer,
and state machine transitions/actions/procedures are
suggested.
Variables:
— isolate: (per port variable, initial value, following

portEnabled False) True if the Port State is to be
kept Discarding because no other bridge appears
to be present, RSTP or MSTP is in use, and
AdminEdge and AutoEdge are both False.

Conditions (of existing variables):
— operPointToPoint: Simply mentioned here because

it was not previously declared as a variable used
by the state machines.

Timers and timeout values:
— No new timers are required as edgeDelayWhile

will do for this functionality (operEdge cannot
occur with the proposed AdminEdge, AutoEdge
settings).

— However MigrateTime is really too short to set
isolate. Determination of operEdge when
AutoEdge is set is a rather different case (initial
transmissions by two ports). Define IsolateTime
with a default of 5 seconds to allow for two lost
messages.

— PRX needs a further modification (not included
elsewhere in this note yet) to use an initial value
of around 5 seconds when !AdminEdge &&
!AutoEdge.

State Machine Procedures:
— In recordAgreement() do not clear proposing for the

CIST if AdminEdge and AutoEdge are both False.

State Machines:
— PIM: In PIM:UPDATE remove proposing from

proposing = proposed = FALSE. Note that this
change should be entirely harmless so far as
other RSTP/MSTP functionality is concerned,

clearing proposing here appears to have been
quite unnecessary in the first place.

— PRT: In the transition conditions from
PRT:DESIGNATED_PORT to DESIGNATED_LEARN
and DESIGNATED:FORWARD add “&& !isolate”.
In the transition condition from
PRT:DESIGNATED_PORT to
DESIGNATED_DISCARD to add “|| isolate”
immediately after “|| disputed”.
In the PRT:DESIGNATED_PORT actions add “if
(cist) {proposing = proposing || (!AdminEdge &&
!AutoEdge && operPointToPoint);}”

— PRX: In the PRX:RECEIVE actions clear isolate,
and make the initial value of edgeDelayWhile
MigrateTime (as before) or IsolateTime (if
AdminEdge and AutoEdge both False).

— BDM: Add another state BDM:ISOLATED. Clear
operEdge and set isolate in this state.
In the current states BDM:EDGE and
BDM:NOT_EDGE clear isolate.
Add || (!AdminEdge && !AutoEdge) to the transition
condition from BDM:EDGE to BDM:NOT_EDGE.
This addition allows for a change to these
variables while the port is enabled.
Transition from BDM:NOT_EDGE to the new state
BDM:ISOLATED on the condition “(edgeDelayWhile
== 0) && (!AdminEdge && !AutoEdge) && sendRstp
&& proposing && operPointToPoint”
Transition from BDM:ISOLATED to
BDM:NOT_EDGE on the condition AdminEdge ||
AutoEdge || !isolate || !operPointToPoint.
Change the transition conditions from
BDM:NOT_EDGE to BDM:NOT_EDGE by replacing
“!portEnabled” with “(IportEnabled || !AutoEdge)”.

All these state machine changes are shown in the
figures in this note.

4. Current editorial issues

In reviewing the current functionality (see 2 above) I
have noticed a fair number of editorial issues1. The
most significant is the MSTP specification’s heavy
dependence on the RSTP specification of 802.1D-
2004. Casual use of references from 802.1Q to 802.1D
has obscured the fact that sometimes the referenced
material simply does not meet the obvious needs of the
reference. This is particularly true where references
have been truncated to point to the management

1I suspect that at least some of these are my fault, especially if acts of omission as well as commission are included.
Revision 0.1 September 19th, 2008 Mick Seaman 4

Dealing with fragile bridge implementations
chapter, which then says nothing apart from noting the
existence of the reference. Incorporating the material
from 802.1D that 802.1Q actually relies on will be
needed to produce an intelligible specification.

Other oddities include:

a) The Port Receive state machine in 802.1Q is said to
be identical to the Bridge Detection state machine
in 802.1D, but is not, and 802.1Q also includes the
Bridge Detection state machine from 802.1D (by
explicit reference. In fact the 802.1Q PRX is
identical to the 802.1D PRX (with the exception of
providing for multiple trees).

b) Because BDM is specified in 802.1D I am not sure
that it is clear that it uses proposing for the CIST as
opposed to any other tree.

c) AdminEdge is renamed AdminEdgePort (in some
places), adminEdgePort in others, and adminEdge
in others. The root of the problem seems to have
been changes introduced in the 802.1D
management clause without checking the rest of the
document. Since the state machines use
AdminEdge and much grief could result from
effectively ‘changing the code’ I suggest that we
change all to AdminEdge with the possible
exception of what is in the MIB, which needs to be
mapped to that variable name anyway.

d) The Port Receive Pseudo Information machine is
not referenced in Figure 13-10. Figure 13-23 does
not use the normal diagrammatic state machine
layout conventions (transitions enter a state from
the top, transitions exit from below, transition
conditions are above (not below) horizontal
transition arrows.

e) 802.1Q 13.38.1 (introduced by 802.1ad) states that
AdminEdge, AutoEdge, and operEdge are always
false, true, and false for a Provider Edge Port but
does not explain how operEdge is kept false in this
circumstance.

f) Cramming the Port Receive Pseudo Information
machine into a corner of Figure 13-9 has resulted in
two quite unnecessary jumps in other lines. The
variable list in the machine box duplicate those
elsewhere, and there are no connections from the
machine to any other machines.

g) Using the Port Receive Pseudo Information state
machine to clear rcvdBpdu when will produce
undefined results as the Port Receive state machine
is operating in parallel (perhaps, this is what the
specification says from a formal point of view but
the intent would seem to be otherwise) and might
equally consume rcvdBpdu first. Investigation of this

apparently glaring flaw has led me to the
observation that one of the changes that Francois
Tallet proposed to the transition condition to
PRX:RECEIVE actually got applied to the transition
to PIM:RECEIVE (i.e. to the wrong state machine
entirely).

5. Changes to 802.1Q

The functionality described here has already ben
mentioned, in general terms, as something that should
be done as part of P802.1aq. From the editor’s point of
view the changes would be much better carried out as
an integrated part of that project rather than as a
parallel activity with all the effort required for
reconciling edits and the attendant risks that a parallel
project would entail. A principle reason for writing
this note was to share information about what I believe
to be the best way of dealing with the brainless bridge
problem sooner rather later.

Most of the editorial issues already mentioned (see 4
above) should be dealt with by P802.1aq, though a few
minor points that have no possible impact on the rest
of P802.1aq could be left to P802.1Q-REV to avoid
scope arguments. The Q-REV PAR covers integrating
802.1D functionality into Q and the edits should have
that end goal in mind, though the task is too large to do
all at once. At the minimum it should be possible to
look at the new text and ascertain how to upgrade an
RSTP implementation previously based on 802.1D
Clause 17. It is clear that the MSTP specification
needs to be complete in and of itself, without having to
refer to variables, procedures, and state machines in
802.1D.

Other edits, additional to those introduced with the
desired functionality (see 4 above) include:

a) Add a point on brainless bridge detection to clause
13.1. A further point to cover the existing one way
connectivity detection should also be added.

b) Possible minor updates to 13.4.
c) Update Figure 13-9. In particular BDM sends isolate

to PRT.
d) Add an Informative Annex to draw attention to and

explain the detail of this new capability. Would be a
good idea to include one way connectivity detect as
well. General scope of the annex being recent or
unrecognized capabilities.

Figure 1 shows the proposed BDM.

Figure 2 and Figure 3 contain a corrected Port Receive
(PRX) machine and a suggested L2 Gateway Port
Receive (L2GPRX) machine as a replacement for the
Revision 0.1 September 19th, 2008 Mick Seaman 5

Dealing with fragile bridge implementations
existing Port Receive Pseudo Information state
machine. The latter does not change the main

functionality of the machine, but clears up some minor
issues1.

Figure 4 is an updated PIM, based on the 802.1Q-2006
state machine (i.e. without the incorrect 802.1ah
change).

Figure 5 is an updated PRT (Designated Port states
only), based on the 802.1Q-2008 Edition in
preparation state machine, which I don’t believe has
changed from the 802.1Q-2006 edition.

Figure 1—Replacement Bridge Detection state machine

EDGE

BEGIN && AdminEdge

((!portEnabled || !AutoEdge) && !AdminEdge) || !operEdge

ISOLATED
(edgeDelayWhile == 0) && !AdminEdge && !AutoEdge && sendRstp && proposing &&operPointToPoint

AdminEdge || AutoEdge || !isolate || !operPointToPoint

NOT_EDGE

operEdge = FALSE; isolate = FALSE;

(!portEnabled && AdminEdge) ||
((edgeDelayWhile == 0) && AutoEdge &&sendRstp && proposing)

BEGIN && !AdminEdge

operEdge = TRUE; isolate = FALSE;

operEdge = FALSE; isolate = TRUE;

Mick : Updated 28SEPT08

1Which should be the subject of a separate explanation.

Figure 2—Changed Port Receive state machine based on correction to 802.1ah

updtBPDUVersion(); rcvdInternal = fromSameRegion();
setRcvdMsgs();

operEdge = isolate = rcvdBpdu = FALSE;
edgeDelayWhile = (!AdminEdge && !AutoEdge)? IsolateTime : MigrateTime;

RECEIVE

rcvdBpdu = rcvdRSTP = rcvdSTP = FALSE;
clearAllRcvdMsgs();

edgeDelayWhile = (!AdminEdge && !AutoEdge)? IsolateTime : MigrateTime;

BEGIN || ((rcvdBpdu || (edgeDelayWhile != MigrateTime)) && !portEnabled)

DISCARD

 rcvdBpdu && portEnabled && enableBPDUrx && !isL2gp

 rcvdBpdu && portEnabled && !rcvdAnyMsgMick : Updated 28SEPT08
Revision 0.1 September 19th, 2008 Mick Seaman 6

Dealing with fragile bridge implementations
Figure 3—L2 Gateway Port Receive state machine

L2GP

BEGIN || !isL2gp

UCT

CHECK

checkL2gpDispute(); rcvdBpdu = False;

DISCARD

 rcvdBpdu = False;

PSEUDO_RECEIVE

preparePseudoInfo(); rcvdInternal = TRUE; setRcvdMsgs();
edgeDelayWhile = MigrateTime;

pseudoInfoHelloWhen = HelloTime;;

UCT

UCT

INIT
rcvdSTP = FALSE; rcvdRSTP = TRUE;

pseudoInfoHelloWhen = 0;

UCT

!enableBPDUrx && rcvdBpdu
enableBPDUrx && rcvdBpdu

pseudoInfoHelloWhen ==0u

Figure 5—Changed Port Role Transitions state machine (change from 802.1Q-2006/2008)

role = DesignatedPort; if (cist) { proposing = proposing || (!AdminEdge && !AutoEdge && operPointToPoint); }

DESIGNATED_PORT

 learn = TRUE;
fdWhile= forwardDelay;

DESIGNATED_LEARN

UCT

forward = TRUE; fdWhile = 0;
agreed = sendRSTP;

DESIGNATED_FORWARD

DESIGNATED_PROPOSE

proposing = TRUE;
if (cist) { edgeDelayWhile = EdgeDelay; }

newInfoXst = TRUE;

UCT

(selectedRole == DesignatedPort)
&& (role != selectedRole)

learn = forward = disputed = FALSE;
fdWhile = forwardDelay;

DESIGNATED_DISCARD

UCT

reRoot = FALSE;
DESIGNATED_RETIRED

UCT
reRoot && (rrWhile == 0)

rrWhile = 0; synced = TRUE;
sync = FALSE;

DESIGNATED_SYNCED

UCT

UCT

(!learning && !forwarding && !synced) ||
(agreed && !synced) ||
(operEdge && !synced) || (sync && synced)

!forward && !agreed && !proposing && !operEdge

((fdWhile == 0) || agreed || operEdge) && ((rrWhile ==0) || !reRoot) && !sync && !learn && !isolate
((sync && !synced) || (reRoot && (rrWhile != 0)) || disputed || isolate) && !operEdge && (learn || forward)

((fdWhile == 0) || agreed || operEdge) && ((rrWhile ==0) || !reRoot) && !sync && (learn && !forward) && !isolate

All transitions, except UCT, are qualified by "&& selected && !updtInfo".

proposed = sync = FALSE;
agree = TRUE;

newInfoXst = TRUE;

DESIGNATED_AGREED

UCT

allSynced && (proposed || !agree)

Mick : Updated 28SEPT08 from Q2008 figure
Revision 0.1 September 19th, 2008 Mick Seaman 7

Dealing with fragile bridge implementations
Figure 4—Changed Port Information state machine (change from 802.1Q-2006)

infoIs = Aged;
reselect = TRUE; selected = FALSE;

AGED

CURRENT

rcvdMsg = FALSE;
proposing = proposed = agree = agreed = FALSE;

rcvdInfoWhile = 0;
infoIs = Disabled; reselect = TRUE; selected = FALSE;

(!portEnabled && (infoIs != Disabled)) ||
BEGIN

DISABLED

rcvdMsg

portEnabled

proposing = proposed = FALSE;
agreed = agreed && betterorsameInfo(Mine);

synced = synced && agreed; portPriority = designatedPriority;
portTimes = designatedTimes;

updtInfo = FALSE; infoIs = Mine; newInfoXst = TRUE;

(selected && updtInfo)

UPDATE

(infoIs == Received) && (rcvdInfoWhile == 0) &&
!updtInfo && !rcvdXstMsg

UCT

infoInternal = rcvdInternal;
agreed = proposing = FALSE;

recordProposal(); setTcFlags();
agree = agree && betterorsameInfo(Received);

recordAgreement(); synced = synced && agreed;
recordPriority(); recordTimes();

updtRcvdInfoWhile();
infoIs = Received; reselect = TRUE; selected = FALSE;

rcvdMsg = FALSE;

rcvdInfo = rcvInfo();
recordMastered();

RECEIVE

(selected && updtInfo)
rcvdXstMsg && !updtXstInfo

 rcvdInfo == SuperiorDesignatedInfo

SUPERIOR_DESIGNATED

UCT

 rcvdInfo == OtherInfo

infoInternal = rcvdInternal;
recordProposal(); setTcFlags();

recordAgreement();
updtRcvdInfoWhile();
rcvdMsg = FALSE;

REPEATED_DESIGNATED

UCT

 rcvdInfo == RepeatedDesignatedInfo

recordAgreement(); setTcFlags();
rcvdMsg = FALSE;

NOT DESIGNATED

UCT

rcvdInfo == InferiorRootAlternateInfo

OTHER
rcvdMsg = FALSE

UCT

recordDispute();
rcvdMsg = FALSE;

INFERIOR_DESIGNATED

UCT

 rcvdInfo == InferiorDesignatedInfo

Mick : Updated 28SEPT08 from changed Q2008 figures
Revision 0.1 September 19th, 2008 Mick Seaman 8

	Dealing with fragile bridge implementations
	1. Summary
	2. Current functionality
	3. Desired functionality
	4. Current editorial issues
	5. Changes to 802.1Q
	Figure 1— Replacement Bridge Detection state machine
	Figure 2— Changed Port Receive state machine based on correction to 802.1ah
	Figure 3— L2 Gateway Port Receive state machine
	Figure 4— Changed Port Information state machine (change from 802.1Q-2006)
	Figure 5— Changed Port Role Transitions state machine (change from 802.1Q-2006/2008)

