
802.1AS Slave Clock
Interface Proposal (revised)

10 July 07
Chuck Harrison

cfharr@erols.com

Notice of copyright release
•Notice:
– This document has been prepared to assist the work of the IEEE 802
Working Group. It is offered as a basis for discussion
and is not binding on the contributing individual(s) or organization(s).
The material in this document is subject to change in form and content
after further study. The contributor(s) reserve(s) the right to add, amend
or withdraw material contained herein.
•Copyright Release to IEEE:
– The contributor grants a free, irrevocable license to the IEEE to
incorporate material contained in this contribution, and any
modifications thereof, in the creation of an IEEE Standards publication;
to copyright in the IEEE’s name any IEEE Standards publication even
though it may include portions of this contribution; and at the IEEE’s
sole discretion to permit others to reproduce in whole or in part the
resulting IEEE Standards publication. The contributor also
acknowledges and accepts that this contribution may be made public by
the IEEE 802 Working Group.

Slave Clock behaviors

• “Capture”timing behaviors
– Event timestamp
– Cross timestamp to another timescale

• “Generate”timing behaviors
– Clock gen (e.g. 1PPS, 44.1kHz, 24.576MHz)
– Single trigger out at specified time

• “Status”behavior
– Warn client of timescale discontinuity

Clock timing behavior abstract logic

• Fundamental capabilities: application
independent
– Event capture
– Trigger generation
– Both require only two very simple primitives:

• Event (in or out): zero parameters
• Global time (out or in): one parameter

• Derived capabilities: more application specific,
perhaps more directly useful
– Cross timestamp
– Clock gen
– Both require more complex primitives

Proposal: Five Easy Pieces

• Define 5 interfaces in 802.1AS for slave clocks:
– Event Capture
– Trigger Generate
– Cross Timestamp
– Clock Generate
– Discontinuity

• Cross Timestamp is defined as state machine
relying on the Event Capture interface

• All five interfaces are Optional in PICS
– If implemented, each has mandatory & optional prims.

Fundamental Interfaces
EVENT_CAP.request { // mandatory

// No parameters
}

EVENT_CAP.response { // mandatory
grandTime // Time when request received

}

TRIG_GEN.request { // mandatory
grandTime // Time when trig to be generated

}
TRIG_GEN.indication { // mandatory

// No parameters
}

Event Capture service interface

EVENT_CAP.request

EVENT_CAP.response
7654680.238402 sec

Time synchronization service

EVENT_CAP.request
EVENT_CAP.response

Time client

TRIG_GEN state machine

Start

Wait

(now() == T) && T != 0.

issue(TRIG_GEN.indication);
T = 0.;

(TGRptr=dequeue(TGRQ)) != NULL

T = TGRptr->grandTime;

Note: the conditional for this transition is TRUE only instantaneously.
This is considered acceptable for an abstract Mealy state machine.

T = 0.;

Clock Generator Interface
CLK_RATE.request { // mandatory

clockRate, // cycles per second (0 = never)
grandTimePhase // CLK_GEN phase specification

}
CLK_GEN.indication { // mandatory

grandTime // Time of this event (optionally
// NULL)

}

Behavior of this interface:
A CLK_GEN.indication is generated for every time t at which
(t – grandTimePhase) = n * 1/clockRate for some integer n

CLK_GEN state machine

Start

Wait

(frac((now()-Tphase)*Rate) == 0.) && (Rate != 0.)

issue(CLK_GEN.indication)

Note: the conditional for this transition is TRUE only instantaneously.
This is considered acceptable for an abstract Mealy state machine.

(CRRptr=dequeue(CRRQ)) != NULL

Rate = CRRptr->clockRate;
Tphase = CRRptr->grandTimePhase;

Rate = 0.;

Cross Timestamp Interface
XTS_EVENT.request { // optional

// No parameters }
XTS_JAM.request { // optional

newCount // Value to jam into event counter
}

XTS_POLL.request { // mandatory
// No parameters }

XTS_POLL.response { // mandatory
grandTime, // Timestamp of eventNumber’th

// XTS_EVENT.request
eventNumber // value of event counter at time of

// XTS_POLL.request
}

Behavior of this interface is defined by an adaptation layer
state machine which passes each XTS_EVENT.request
primitive to the underlying layer as an EVENT_CAP.request
while also counting the requests.

Example: Media clock cross-stamp
Event

counter

Global clock

eventNumber

grandTime

D

D

Q

Q

CK

CK

CKMedia clock
= XTS_EVENT.request

XTS_POLL.request

Data returned by
XTS_POLL.response

eventNumber
186

Event counter 184183

Media clock

7654680.238402 sec
grandTime

185 186 187 188

Invoke XTS_POLL.request

= Media timescale

Clock latchD Q

CK

Cross Timestamp Interface II
• If XTS_EVENT.request is driven by a media clock,

eventNumber : grandTime is the cross-timestamp
required for many synchronization algorithms (e.g. RTP).
– XTS_EVENT and XTS_JAM are optional, as the interface remains

very useful even when the underlying media clock is maintained
by another application interface.

• The so-called “underlying media clock”may be a
precision low-jitter (i.e. PLL filtered) time-of-day clock

• The “underlying media clock”may also be the
stationTime of dvj presos, or 61883 SYT clock

• If XTS_EVENT.request is driven by individual arbitrary
events, this interface provides the integrity check
offerred in earlier dvj and ch proposals by the
frameCount field.

Discontinuity Interface
TIME_DISC.indication { // mandatory

disruption // boolean
}

This primitive is generated whenever there is a change in
the value of the disruption parameter.

The disruption parameter is set to TRUE if
• an event (e.g. change of GrandMaster ID) occurs which

constitutes a potential timescale discontinuity, or
• the 802.1AS layer detects a nonuniformity in the

progression of time greater than a <TBD> threshold (e.g.
the currently active GrandMaster is manually set or newly
acquires lock to an external reference)

The disruption parameter is set to FALSE otherwise.

Optional/Mandatory recap
• All five interfaces are optional

– Example: a device may expose time only as programmatic
availability of a stationTime : grandTime cross-stamp.

– Example: a device may expose time only as the availability of a
1 kHz squarewave.

– Standardizing the fundamental interfaces (Event Capture and
Trigger Generate) is useful for defining the behavior of the
derived interfaces even if the fundamental interfaces are not
exposed.

• Within each interface specification there are primitives
which are mandatory if claiming PICS compliance with
that interface spec.

• All five interfaces are abstract.
• Why define interfaces if they are all optional & abstract?

– Reduce the probability of “stupid”implementations by newbies =
increase the chance of successful early deployment of AVB.

Task Status: Slave Clock Interface
• Event Capture interface

– Well understood, has consensus, editorial only
• Cross Timestamp interface

– New, needs socialization
– Needs adaptation State Machine and text

• Trigger Generation interface
– New, needs socialization
– Needs behavioral text

• Clock Generation interface
– Consensus in principle, verify details of primitives
– Needs behavioral text

• Discontinuity interface
– Consensus in principle, verify details of semantics
– Nonuniformity detection needs review
– Needs State Machine and text

