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Slave Clock behaviors

• “Capture”timing behaviors
– Event timestamp
– Cross timestamp to another timescale

• “Generate”timing behaviors
– Clock gen (e.g. 1PPS, 44.1kHz, 24.576MHz)
– Single trigger out at specified time

• “Status”behavior
– Warn client of timescale discontinuity



Clock timing behavior abstract logic

• Fundamental capabilities: application 
independent
– Event capture
– Trigger generation
– Both require only two very simple primitives:

• Event (in or out): zero parameters
• Global time (out or in): one parameter

• Derived capabilities: more application specific, 
perhaps more directly useful
– Cross timestamp
– Clock gen
– Both require more complex primitives



Proposal: Five Easy Pieces

• Define 5 interfaces in 802.1AS for slave clocks:
– Event Capture
– Trigger Generate
– Cross Timestamp
– Clock Generate
– Discontinuity

• Cross Timestamp is defined as state machine 
relying on the Event Capture interface

• All five interfaces are Optional in PICS
– If implemented, each has mandatory & optional prims.



Fundamental Interfaces
EVENT_CAP.request {  // mandatory

// No parameters
}

EVENT_CAP.response {  // mandatory
grandTime // Time when request received

}

TRIG_GEN.request {  // mandatory
grandTime // Time when trig to be generated

}
TRIG_GEN.indication {  // mandatory

// No parameters
}



Event Capture service interface

EVENT_CAP.request

EVENT_CAP.response
7654680.238402 sec

Time synchronization service

EVENT_CAP.request
EVENT_CAP.response

Time client



TRIG_GEN state machine

Start

Wait

(now() == T) && T != 0.

issue(TRIG_GEN.indication);
T = 0.; 

(TGRptr=dequeue(TGRQ)) != NULL

T = TGRptr->grandTime;

Note: the conditional for this transition is TRUE only instantaneously.
This is considered acceptable for an abstract Mealy state machine.

T = 0.; 



Clock Generator Interface
CLK_RATE.request {  // mandatory

clockRate,  // cycles per second (0 = never)
grandTimePhase // CLK_GEN phase specification

}
CLK_GEN.indication {  // mandatory

grandTime // Time of this event (optionally
// NULL)

}

Behavior of this interface:
A CLK_GEN.indication is generated for every time t at which
(t – grandTimePhase) = n * 1/clockRate for some integer n



CLK_GEN state machine

Start

Wait

(frac( (now()-Tphase)*Rate ) == 0.) && (Rate != 0.)

issue(CLK_GEN.indication)

Note: the conditional for this transition is TRUE only instantaneously.
This is considered acceptable for an abstract Mealy state machine.

(CRRptr=dequeue(CRRQ)) != NULL

Rate = CRRptr->clockRate;
Tphase = CRRptr->grandTimePhase;

Rate = 0.; 



Cross Timestamp Interface
XTS_EVENT.request {  // optional

// No parameters }
XTS_JAM.request {  // optional

newCount // Value to jam into event counter
}

XTS_POLL.request {  // mandatory
// No parameters }

XTS_POLL.response {  // mandatory
grandTime, // Timestamp of eventNumber’th

//   XTS_EVENT.request
eventNumber // value of event counter at time of

//   XTS_POLL.request
}

Behavior of this interface is defined by an adaptation layer 
state machine which passes each XTS_EVENT.request
primitive to the underlying layer as an EVENT_CAP.request
while also counting the requests.



Example: Media clock cross-stamp
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Cross Timestamp Interface II
• If XTS_EVENT.request is driven by a media clock, 

eventNumber : grandTime is the cross-timestamp 
required for many synchronization algorithms (e.g. RTP).
– XTS_EVENT and XTS_JAM are optional, as the interface remains 

very useful even when the underlying media clock is maintained 
by another application interface.

• The so-called “underlying media clock”may be a 
precision low-jitter (i.e. PLL filtered) time-of-day clock

• The “underlying media clock”may also be the 
stationTime of dvj presos, or 61883 SYT clock

• If XTS_EVENT.request is driven by individual arbitrary 
events, this interface provides the integrity check 
offerred in earlier dvj and ch proposals by the 
frameCount field.



Discontinuity Interface
TIME_DISC.indication {  // mandatory

disruption // boolean
}

This primitive is generated whenever there is a change in 
the value of the disruption parameter.

The disruption parameter is set to TRUE if
• an event (e.g. change of GrandMaster ID) occurs which 

constitutes a potential timescale discontinuity, or
• the 802.1AS layer detects a nonuniformity in the 

progression of time greater than a <TBD> threshold (e.g. 
the currently active GrandMaster is manually set or newly 
acquires lock to an external reference)

The disruption parameter is set to FALSE otherwise.



Optional/Mandatory recap
• All five interfaces are optional

– Example: a device may expose time only as programmatic 
availability of a stationTime : grandTime cross-stamp.

– Example: a device may expose time only as the availability of a 
1 kHz squarewave.

– Standardizing the fundamental interfaces (Event Capture and 
Trigger Generate) is useful for defining the behavior of the 
derived interfaces even if the fundamental interfaces are not 
exposed.

• Within each interface specification there are primitives 
which are mandatory if claiming PICS compliance with 
that interface spec.

• All five interfaces are abstract.
• Why define interfaces if they are all optional & abstract?

– Reduce the probability of “stupid”implementations by newbies = 
increase the chance of successful early deployment of AVB. 



Task Status: Slave Clock Interface
• Event Capture interface

– Well understood, has consensus, editorial only
• Cross Timestamp interface

– New, needs socialization
– Needs adaptation State Machine and text

• Trigger Generation interface
– New, needs socialization
– Needs behavioral text

• Clock Generation interface
– Consensus in principle, verify details of primitives
– Needs behavioral text

• Discontinuity interface
– Consensus in principle, verify details of semantics
– Nonuniformity detection needs review
– Needs State Machine and text


