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Abstract—The Internet is highly susceptible to routing at-
tacks and there is no universally deployed solution that ensures
that traffic is not hijacked by third parties. Individuals or
organizations wanting to protect themselves from sustained
attacks must therefore typically rely on measurements and
traffic monitoring to detect attacks. Motivated by the high
overhead costs of continuous active measurements, we argue that
passive monitoring combined with collaborative information
sharing and statistics can be used to provide alerts about traffic
anomalies that may require further investigation. In this paper
we present and evaluate a user-centric crowd-based approach
in which users passively monitor their network traffic, share
information about potential anomalies, and apply combined
collaborative statistics to identify potential routing anomalies.
The approach uses only passively collected round-trip time
(RTT) measurements, is shown to have low overhead, regardless
if a central or distributed architecture is used, and provides an
attractive tradeoff between attack detection rates (when there
is an attack) and false alert rates (needing further investiga-
tion) under normal conditions. Our data-driven analysis using
longitudinal and distributed RTT measurements also provides
insights into detector selection and the relative weight that
should be given to candidate detectors at different distances
from the potential victim node.

Keywords—Crowd-based detection, Collaboration, Routing
anomalies, Interception attacks, Imposture attacks

I. INTRODUCTION

Despite being one of the most important infrastructures in
today’s society, the Internet is highly susceptible to routing
attacks that allow an attacker to attract traffic that was not
intended to reach the attacker [1], [2]. Recently there have
been increasing occurrences of routing attacks. Some of
these attacks have been performed to gain access to sensi-
tive or valuable information, or to circumvent constitutional
and statutory safeguards against surveillance of a country’s
citizen, while others have been accidental or tried to deny
users access to certain services (for censorship purposes) [2]–
[5]. With many of these attacks affecting regular end users,
routing path integrity is becoming increasingly important not
only for operators, but also for end users.

While black-holing attacks (e.g., as used in some cen-
sorship attacks) are relatively easy to detect, as the traffic is
terminated at the attacker and the traffic source may not obtain
expected end-to-end responses, attacks where the attacker also
impersonates the destination (imposture attacks) or re-routes

the traffic to the destination (interception attacks) are much
more difficult to detect.

Although this is a globally important problem and several
crypto-based efforts to secure internet routing have been
proposed [6]–[8], deployment have been hampered by high
deployment costs and failure to incentivize network operators
to deploy these solutions [1], [2]. Instead, operators and
other organizations running their own Autonomous Systems
(AS) are typically limited to monitoring path announcements
made by other ASes and/or the data paths taken by the
data packets themselves [9], [10]. However, these detection-
based approaches are typically limited by the number of
BGP vantage points contributing BGP updates, the limited
view these provide, or the high overhead associated with
continuous monitoring using active measurement techniques
such as traceroutes.

As an effort to help detect routing anomalies and to push
operators to implement secure mechanisms, we foresee a
user-driven approach in which concerned citizens collabora-
tively detect and report potential traffic hijacks to operators
and other organizations that can help enforce route security.
To reduce the number of active measurements needed we
argue that clients could use passive monitoring of their
day-to-day network traffic to identify prefixes (range of IP
addresses) that may be under attack.

In this paper we present and analyze a user-centric crowd-
based approach in which clients (i) passively monitor the
round-trip times (RTT) associated with their users’ day-to-
day Internet usage, (ii) share information about potential
anomalies in RTT measurements, and (iii) collaboratively
help identify routing anomalies that may require further
investigation. The use of passive measurements ensures zero
measurement bandwidth overhead, helps distribute the moni-
toring responsibility of prefixes based on the users’ interaction
with services provided within each prefix, and ensures timely
initial detection of potential routing anomalies as seen by the
users themselves. The use of crowd-based sharing of potential
anomalies allows the number of alerts that need further
investigation to be reduced during normal circumstances and
the attack detection rates to be increased during attacks.

This paper makes three main contributions. First, we use
longitudinal RTT measurements from a wide range of loca-
tions to evaluate the anomaly detection tradeoffs associated
with crowd-based detection approaches that use RTT informa-
tion (Section III). Considering two different types of stealthy
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and hard-to-detect attacks (interception attacks and imposture
attacks), we provide insights into the tradeoff between attack
detection rates (when there is an attack) and false alert rates
needing further investigation under normal circumstances
(when there is no attack), and how this tradeoff depends on
different system parameters such as system scale, participa-
tion, and the relative distances between detectors, attackers,
and victims. Second, using a simple system model and trace-
driven simulations, we evaluate the set of detector nodes
that provides the best detection rates for a candidate victim
(Section IV). Of particular interest is the relative weight that
should be given to candidate detectors at different distance
from the victim node. Finally, we provide a discussion and
analysis of the overhead associated with different candidate
architectures, including both central directory approaches and
fully distributed solutions (Section V). Regardless of the
implementation approach, the system is shown to operate with
relatively low overhead and simple heuristics can be used to
identify sets of nodes that are well-suited for collaborative
detection of individual prefixes.

The paper is organized as follows. Section II provides
background on routing attacks and the techniques typically
used to detect and secure against these attacks. Sections III-V
present each of our three main contributions (outlined above).
Finally, Section VI presents related work, before Section VII
concludes the paper.

II. BACKGROUND

A. Routing Attacks

Internet packets are highly vulnerable to routing attacks.
This is in part due to the complex nature of Internet routing
and in part due to the lack of globally deployed security
mechanisms. A typical Internet packet traverses many routers
operated by different operators and Autonomous Systems
(AS), each with a separate administrative domain and its own
policies, and the packet’s wide-area (interdomain) route is
determined by the Border Gateway Protocol (BGP).

While many routing incidents go undetected, there have
recently been some bigger incidents that have drawn global
attention, including a small Indonesian ISP taking Google
offline in parts of Asia, Pakistan Telecom taking YouTube
offline for most of the Internet, China Telecom attracting and
re-routing a large fraction of the world’s Internet traffic, and
highly targeted traffic interceptions by networks in Iceland
and Belarus [2], [3], [11]. Although not all of these incidents
were intentional, or can be proven intentional, it is important
to be able to effectively detect them when they happen.

One of the biggest vulnerabilities with BGP is its inability
to confirm the allocation of prefixes to corresponding ASes.
This allows malicious entities to perform a prefix hijack
attack in which the attacker announces one or more prefixes
allocated to other networks. The effectiveness of this type of
attack is typically determined by the route announcements
made by the different ASes announcing the same prefix and
the routing policies of the ASes that must select which of
the alternative paths to use. Since forwarding routers always
select more specific subprefix, a more effective attack is a

subprefix hijack attack in which the attacker announces one or
more subprefixes of the prefix allocated to the victim network.

These attacks can be further classified by the actions
taken by the attacker. In black-holing attacks the traffic is
terminated at the attacker and the originator of the packet will
not see a proper response. Although some investigation may
be needed to determine the cause, in general, these attacks
are relatively easy to detect. In contrast, it is more difficult
to detect attacks in which the attacker relays the attracted
traffic to the intended destination (allowing proper end-to-
end communication), or where the attacker impersonates the
intended destination. These two types of attacks are typically
referred to as interception attacks and imposture attacks,
respectively, and will be the focus of this paper.

B. BGP Security and Monitoring

Many techniques have been proposed to protect against
routing incidents and attacks such as those described above.
These techniques typically either use prefix filtering or
cryptography-based techniques. With prefix filtering, a re-
sponsible organization (AS) can use whitelists to protect the
rest of the Internet from potential attacks performed by its
customer networks (i.e., ASes that pay the provider AS to
send and receive data through its network). Resource Public
Key Infrastructure (RPKI) [6] and other cryptographic origin
validation techniques typically build a trusted and formally
verifiable database of prefix-to-AS pairings between the IP
prefixes and the ASes that are allowed to originate them.
Using protocols such as BGPsec [12], for example, RPKI
can be used to protect the AS path attribute of BGP update
messages. Recently, DNSSEC-based [13] approaches such
as ROVER [14] have been proposed to cryptographically
securing and authorizing BGP route origins.

Unfortunately, deployment of these solutions has been
slow and the solutions do not work well unless a large number
of networks deploy them [1], [2]. The main reasons for
slow deployment have been limited incentive for independent
organizations, and because there is no single centralized
authority that can mandate the deployment of a (common)
security solution. Deployment may also have been hampered
by political and business implications from hierarchal RPKI
management giving some entities (e.g., RIRs) significant
control over global Internet routing [15].

Without large-scale deployment of crypto-based solu-
tions [1], organizations often instead rely on centralized and
decentralized monitoring solutions for anomaly detection in
BGP. For example, BGPMon1 and Team Cymru2 centrally
collect routing information from distributed monitors, and
create alerts/summary reports about routing anomalies to
which organizations can subscribe. PrefiSec [16] and NetRe-
view [17] provide distributed and/or collaborative alternatives.

Data-plane based [9], [18], control-plane based [10], [19],
and hybrid techniques [16], [20], [21] have been proposed

1BGPMon, http://www.bgpmon.net/, May 2014.
2Team Cymru, http://www.team-cymru.org, May 2014.



to detect routing anomalies. Typically data-plane based tech-
niques use active traceroute measurements by different orga-
nizations and control-plane techniques rely on the AS-PATH
in different BGP route announcements. Rather than relying
on active measurements or sharing of BGP announcements
between organizations, this paper considers an alternative
approach in which we leverage passive measurements at
the clients to detect suspicious RTT deviations caused by
underlying attacks. This allows any concerned citizen to
help detect anomalous routes, which then can be analyzed
more closely using active measurements and complimentary
control-plane information.

III. SYSTEM MODEL AND DETECTION TRADEOFFS

We consider a general system framework, which we call
CrowdSec, in which stationary end-user clients passively
monitor the RTTs to the prefixes (range of IP addresses) with
which the client applications (e.g. a web browser) are inter-
acting. Leveraging such measurements has many advantages.
First, passive measurements does not add any measurement
traffic to the network and hence does not affect the bandwidth
share given to the user applications. Second, the high skew
in service accesses [22] ensures repeated measurements (over
time) to many prefixes.

Each CrowdSec client passively monitors the RTTs as-
sociated with their users’ day-to-day Internet usage. Using
Grubb’s test [23], each client individually identifies anomalies
in the RTTs and shares information about these anomalies
through the CrowdSec system, including statistics about how
unlikely such an RTT deviation (or more extreme) are,
given past observations. Using binomial testing (or alternative
tests) these shared statistics are then combined into refined
statistical measures that capture how unlikely the combination
of observations would be under normal conditions, allowing
for collaborative detection of routing anomalies.

As RTT-based measures include less information than full
traceroutes and other active measurement techniques might
provide, CrowdSec and other purely RTT-based approaches
should not be used as primary evidence for routing attacks.
Instead, further investigation is typically needed to distinguish
temporary increases in RTTs due to bufferbloat and other tem-
poral congestion events, for example, from routing anomalies.
Yet, as active traceroute-driven approaches that capture the
data path come at much higher overhead and can be forged
by the attacker, the use of passively collected longitudinal
RTT measurements can be used to identify opportune times
to perform such active measurements and to sanity check the
claimed data paths. In the following we describe and evaluate
the CrowdSec approach and how well such systems are able
to detect attacks (when attacks occur), while maintaining low
alert rates under normal conditions (when there is no attack).

A. System model and evaluation framework

We consider a simple model with a set of detectors (D),
attackers (A), and victims (V). In the case of a successful
interception attack, we assume that an attacker a ∈ A
successfully re-routes the traffic on its way from a detector
d ∈ D to a victim v ∈ V (that would normally take the route

TABLE I. SUMMARY OF DATASETS ANALYZED IN PAPER.

Simulated attack scenarios

Year Nodes (ave) Traceroutes Interception Imposture

2014 113 278,690 15,279 62,576

2015 169 368,887 18,233 –

d→v→d) such that it instead takes the route d→a→v→d.
The hijacked path in this example is illustrated in Figure 1(a).
Similarly, in the case of a successful imposture attack (Fig-
ure 1(b)), we assume that the attacker a intercepts the traffic
between the detector d and victim v, and responds directly
to the detector d, such that the end-to-end traffic (including
the replies) takes the route d→a→d instead of the intended
route d→v→d.

Under the above assumptions, the RTT effects of any
successful interception and imposture attack can be estimated
based on observed individual RTTs. For example, in the case
of a successful interception attack by a on d and v, we
compare the new RTT (estimated as 1

2
(RTTd,a +RTTa,v +

RTTd,v) during the attack) with the previously measured
RTTd,v of the original path (over some prior time period).
Here, we use RTTx,y to denote the RTT between a source-
destination pair (x, y) in our measurements. Similarly, for
the imposture attack, we compare the new RTT (estimated
as RTTd,a during the attack) with the previously measured
RTTd,v of the original path (over prior time period). Finally,
we also evaluate the system during an example day with-
out attack, when comparing with the previously measured
RTTd,v of the original path (over prior time period).

For our evaluation, we leverage traceroute measurements
recorded by PlanetLab nodes as part of the iPlane [24] project.
In particular, we use daily RTT measurements from more
than 100 globally distributed PlanetLab nodes to other planet
lab nodes. We use a month’s worth of training data (e.g.,
278,690 successful traceroutes during July 2014) and evaluate
the performance of different detection techniques for the
following week, during which we simulate different attack
combinations. Table I summarizes the datasets and simulated
attacks analyzed in this paper. The lower number of sim-
ulated interception attack scenarios (compared to imposture
scenarios) are due to both RTTd,a and RTTa,v needing to
be present for the day of the attack, in addition to sufficient
history of RTTd,v values during the earlier (training) period.

B. Single node detection

We envision that clients monitor their RTTs with different
candidate victim IP addresses (or prefixes) and raise alarms
when the measured RTTs deviate significantly from previ-
ously observed RTTs. For this analysis we apply Grubbs’
test for anomaly detection [23]. We use an initial warmup
period of at least N measurements, during which we assume
that there are no anomalies, and then apply the Grubbs’ test
one measurement at a time. To minimize the effect of RTT
variations, each “daily” RTT measurement considered here
in fact is generated by taking the minimum RTT over three
tracerouts performed each day.

We have applied both one-sided and two-sided hypothesis
tests in each step. One-sided tests are natural for interception
attacks, as the re-routing typically will not reduce the RTT.
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Fig. 1. Evaluation scenarios for example interception and imposture attacks.
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Fig. 2. Tradeoff between the alert rates of individual
clients during attack and normal circumstances.

Although imposture attacks can result in both increases and
decreases of the RTTs, it is important to note that the
impersonator can easily hide such RTT reduction by adding
additional delays. Unless otherwise stated, in the following
we will show results for one-sided tests.

For our evaluation we use a 31 day warmup period (July
2014 or Jan. 2015) and evaluate the alert rates when there
is an attack and when there is no attack, respectively, during
the following week (first week of Aug. 2014 and Feb. 2015).
Figure 2 shows the tradeoff between alerts raised by a single
client during an attack and the (false) alerts raised by the
client during normal circumstances for different thresholds
N of the minimum measurements needed before raising
alerts. For each threshold N , we varied the decision variable
p∗ind and counted the fraction of simulated attack (and non-
attack) cases in which the observed RTT (with probability p)
was considered an outlier (i.e., cases for which p ≤ p∗ind)
and plotted the measured fractions during attack and non-
attack conditions on the y-axis and x-axis respectively, while
keeping p∗ind as a hidden variable.

We note that the detection accuracy significantly depends
on the number of measurements prior to detection, and that
there are substantial improvements with increasing N . This
is seen by the tradeoff curves for larger N being shifted more
and more towards the top-left corner. Furthermore, we see that
with a single node, the detection rate is consistently at least
an order of magnitude higher than the alert rate during normal
circumstances and can be more than 50 times higher for some
thresholds. For example, with just N = 25 measurements a
single node can achieve an alert rate of approximately 50%
during attacks at the cost of less than 1% alerts (that may
need further investigation) under normal conditions.

Given the high number of packets and high skew in the
services that modern clients communicate with [22], most
clients will quickly build up a significant sample history for
many prefixes. For these services, N may therefore be much
greater than 25, allowing for an even more advantageous
tradeoff than illustrated here. Next, we look more closely at
how these alert tradeoffs can be improved through collabora-
tive information sharing, regardless of the individual clients’
alert rate tradeoff.

C. Collaborative detection

As routing anomalies typically affect many users, Crowd-
Sec can leverage the observations from different clients to

refine the alert rate tradeoffs, and identify the extent of the
anomaly (e.g., by measuring how many clients are affected).
With CrowdSec, the users that detect an anomaly share the
information with each other, allowing alerts about a particular
prefix to be based on the combined anomaly information
from multiple observers. In the following, we first describe
a general collaboration analysis framework, before briefly
discussing different statistical techniques.

We assume that clients always report their significant p-
values (smaller than p∗ind) and only report non-significant
p-values with a small tunable probability. Here, a p-value
represents an estimate of the probability that a client sees
the observed RTT value given a history of RTT values,
as estimated using Grubbs’ test, for example. Given these
two sets of p-values and knowledge of the tunable reporting
probability, we can estimate both the number of non-reporting
clients and the p-value distribution of the clients, allowing us
to place the significant p-values in context, while keeping the
communication overhead at a (tunable) minimum.

We use hypothesis testing to determine which prefixes
and events to flag as potential anomalies. As for the single
node case, our null hypothesis is that there is no significant
RTT deviations from normal conditions. However, in these
collaborative tests we can use all reported p-values. For our
evaluation, we have tried three alternatives: the Binomial test,
Fisher’s test, and Stouffer’s test. With the binomial test, a
combined probability is calculated based on the binomial
distributed probability of observing k or more “significant”
p-values out of a total of n, given a probability threshold p∗bin.
With Fisher’s and Stouffer’s test, respectively, corresponding
Chi-square and Z-score based metrics are calculated.

While Fisher’s and Stouffer’s tests theoretically should be
able to make better use of the information in the individual p-
values, both these tests runs into numerical problems for the
type of values reported in our context (typically resulting in
combined p-scores of either 0 or 1). Of these three methods,
only the Binomial test therefore seems applicable to our
context. In the following we therefore apply the Binomial test,
with a normal distribution approximation when applicable.

D. Evaluation results

We next take a closer look at the attack detection rate
during example attacks and (false) alert rate during normal
circumstances when applying the Binomial test. Figure 3
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shows the alert rates as a function of the probability threshold
p∗bin used in the binomial test for the cases when (i) there is no
attack (normal circumstances), (ii) interception attacks occur,
and (iii) imposture attacks occur. For the attacks, we include
results for both single-sided and two-sided tests. As expected,
for the interception attacks there is almost no difference
between the one-sided and two-sided tests and the imposture
attacks generally have lower detection rates (especially in the
case where only the one-sided test can be applied).

While the alert rates are closely coupled with the selected
probability threshold, it is important to note that there are very
large differences in the alert rates during an attack (regardless
of the type of attack) and during normal circumstances. This
is very encouraging, as it shows that a high alert detection rate
(during attacks) can be achieved, while maintaining a small
(false) alert rate during normal circumstances. For example,
in this case, a threshold p∗bin = 10−20 can detect the majority
of the interception attacks, without resulting in a single false
alert during normal circumstances.

As expected, the absolute alert tradeoffs are highly de-
pendent on the Binomial threshold p∗bin values. For example,
both the attack detection (Figures 4(a)) and alerts during
normal circumstances (Figures 4(b)) decrease substantially
with decreasing p∗bin values. For these and the remaining
experiments we have extended our evaluation model to take
into account that not all nodes will be affected by the
routing anomaly. Here, we have used individual threshold
p∗ind = 10−6 and assumed that 50% of the nodes are effected.
This choice is based on the work of Ballani et al. [20],
which suggests that the fraction of ASes whose traffic can
be hijacked by any AS varies between 38% and 63% for
imposture attacks, between 29% and 48% for interception
attacks, and the fraction increases to 52-79% for tier-1 ASes.
Figure 4(c) shows the impact of the percent of affected nodes
(with 40 detector nodes). Note that the alert rates for normal
conditions here are the same as for the case when none of the
detectors are affected; i.e., the right-most curve in Figure 4(c).

In all of the above cases, there is a substantial region
of p∗bin values for which we observe significant differences
between the attack detection rates and the alert rates under
normal conditions (for that same p∗bin value). Figure 5 better
illustrates these differences for the case of interception at-
tacks. (The results for imposture attacks are similar, and have

been omitted due to lack of space.) Here, we plot the fraction
of successfully detected attacks during interception attacks as
a function of the alert rate during normal circumstances, with
the threshold value p∗bin as a hidden variable. For example,
Figure 5(a) simply combines the information in Figures 4(a)
and Figures 4(b) into a more effective representation of the
tradeoffs when there are different numbers of detectors.

We note that there are substantial improvements when
using additional detectors (Figure 5(a)). For example, with
60 detectors (50% of which are affected) we can achieve a
detection rate of 50% while maintaining an alert rate (under
normal conditions) below 10−4. This is more than two orders
of magnitude better than with a single node (Figure 2), illus-
trating the power of the information sharing and distributed
detection achieved with the CrowdSec approach.

Figure 5(b) shows the tradeoffs for different fractions of
affected nodes. Here, 0% affected nodes corresponds to the
case when no detector nodes are affected and the 100% case
is when all nodes are affected. As expected, the best tradeoffs
are achieved when many nodes are affected. However, with
as little as 30% affected nodes, substantial improvements in
the detection tradeoff curve are possible (difference between
0% and 30% curves) and an attack detection rate of 50% can
be achieved with an alert rate of less than 10−2.

Overall, the low false positive rates (note x-axis on log
scale) combined with high detection rates (y-axis on linear
scale) suggests that the CrowdSec approach provides an
attractive tradeoff as long as there is a reasonable number
of affected detectors. Of course, careful data path measure-
ments would always be needed to validate and diagnose the
underlying causes behind any detected route anomaly.

Finally, Figure 5(c) shows the impact of the individual
threshold value p∗ind used to decide when a candidate anomaly
should be reported (and considered in the binomial test).
While there are some (smaller) benefits from using larger
individual threshold p∗ind values when trying to keep the
communication overhead at a minimum (left-most region),
we note that there are no major differences in the tradeoffs
achieved with different threshold values. Section V takes a
closer look at the communication overhead.

IV. DETECTOR SELECTION

This section looks closer at which nodes are the best
detectors and which detectors’ alerts are best combined.

Figure 6(a) and 6(b) show the attack detection rate (dur-
ing attacks) and alert rate during normal circumstances, as
reported by nodes at different distances, respectively, when
running all possible interception victim-attacker-detector at-
tack combinations within our dataset. Here, we groups triples
based on their detector-victim distance RTTd,v and detector-
attacker distance RTTd,a. Although these distances are most
applicable to imposture attacks (where the RTT on the y-
axis replaces the RTT on the x-axis), we note that the
detection rates during an interception attack (Figure 6(a))
also are high for all values above the diagonal, while none
of the buckets result in substantial alert rates under normal
conditions (Figure 6(b)). This is encouraging, as it suggests
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Fig. 6. Alert rates as function of the relative RTT distances between detector, attacker, and victim.

that it may be possible to use the same set of nodes as
detectors for both imposture attacks and interception attacks.

While the distance 1

2
(RTTd,a + RTTa,v) in most cases

(except when the triangle inequality is violated) is no less than
the original distance RTTd,v , we also include a heatmap for
the detection rate for these candidate distances in Figure 6(c).
As expected only points close to the diagonal (with similar
RTTs for the two cases) have intermediate detection rates.

Thus far, we have ignored the relative distances of the
affected nodes. We next take a closer look at how the set
of affected nodes impacts the best set of detector nodes to
combine. For this analysis, we extend our system model to
include a parameter β that determines the set of detector
nodes most likely to be affected by an attack. In particular, we
assume that a detector node d ∈ D is affected by an attacker a
of victim v with a probability proportional to 1

RTT
β

d,a

. When

β = 0 there are no biases and when β = 1 the probability
is inversely proportional to the RTT distance to the attacker.
This bias model is motivated by ASes close to the attacker
being most likely to be affected by the attack [20].

To assess the impact of node selection to protect candidate
victims v, we similarly consider candidate policies in which
sets of candidate detectors are selected based on their distance

to the victim v. We have considered both policies that skew
the probability according to a Zipf distribution (with prob-
ability proportional to 1

rα
, where r is the rank of the node,

after sorting them based on distance to the victim, with rank 1
being closest to the victim) and based on the relative distance
to the victim (with probabilities being assigned proportional
to 1

RTTα
d,v

). As the conclusions are the same for both policy

types, we only show results for the rank-based Zipf approach.

Figures 7(a) and 7(b) show the tradeoff in detection rates
as a function of the alert rates for different skew (β) in the
affected detectors and different Zipf parameters (α) for the
selection probabilities, respectively. In these figures we have
used β = 1 and α = 1 as our default values. Although
the tradeoff curves are better (with higher detection rates,
given the same alert rates) when the affected nodes are less
biased (small β), the bias (Figure 7(a)) has a relatively modest
impact on the tradeoff. This result suggests that our results
thus far are robust to which nodes are affected by the attacks.

However, referring to the impact of detector selection
(Figure 7(b)), it is interesting to see that there are some
additional tradeoffs to take into consideration when selecting
detectors for each candidate victim. For example, when low
false positives are desired, there are benefits to biasing the
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selection to intermediate skews. However, the results are
relatively insensitive to smaller variations in the chosen bias.
In fact, a fairly simple policy that picks detectors uniformly
at random (α = 0) achieves a relatively nice tradeoff even
when there is an underlying bias of which nodes are affected.

Whereas most of the results presented here have been for
interception attacks using the Jul/Aug. 2014 iPlane data, we
note that the results for imposture attacks are similar and that
the results are not limited only to that time period. Figure 8
summarizes our results for both imposture and interception
attacks, and for the Jan/Feb. 2015 time period. Here, we
show the attack detection rates for example scenarios where
we vary one factor at a time (both to a smaller and to a
larger value) relative to a default scenario when we fix the
alert rates during normal circumstances at 0.01. While the
imposture attacks are somewhat more difficult to detect, the
general tradeoffs otherwise remain the same for the different
parameters.

V. CANDIDATE ARCHITECTURES AND OVERHEAD

This paper describes a general crowd-based approach for
passive RTT monitoring and collaborative anomaly detection
to help identify routing anomalies. Although we envision that
the system would primarily be implemented at stationary end
hosts run by concerned citizens, the system could also easily
be operated at any node that can perform passive end-to-end
RTT measurements, including at operator operated proxies
and middle boxes. In this section we discuss the different
ways a general CrowdSec system could be implemented.

Monitoring: Host-based packet capture (pcap) tools for
network traffic monitoring and analysis is available for Unix-
based, Linux-based, and Windows systems. Many of these
tools use the libpcap/WinPcap libraries and allow RTT mea-
surements to be passively recorded. For example, generic
tools can be created based on the basic per-packet timing
information available in standard tools such as Wireshark3 or
tcpdump4. Intrusion detection systems such as Bro5, also
provide built-in functionality for a wide range of per-packet,
per-object, per-connection, or per-host analysis.

Alternatively, browser-based extensions such as Firebug6

and Fathom [25] could also be used to collect RTT measure-
ments and other connection information. While socket-based
methods typically incur lower delay overhead than HTTP-
based methods [26], it has been shown that Fathom is able to
eliminate most upper-layer RTT measurement overhead [25].
Such browser-based measurement techniques may therefore
be an attractive monitoring option, as they allow greater oper-
ating system flexibility and simplify ubiquitous deployment.

Architecture: The general CrowdSec approach is not
bound to a particular architecture and could be implemented
using both centralized and decentralized architectures. At one
end, a centralized directory service would allow clients to
report their outliers (and corresponding p-values) to a central
server that would then perform the “collaborative” outlier
detection and apply the Binomial test. This solution is both
simple and effective, but places a lot of responsibility at one
or more central nodes. At the other end of the spectrum,
Distributed Hash Tables (DHTs) such as Chord [27] and
Pastry [28] can be used to distribute the workload across
participating nodes. In this case, the reports are sent to a
“holder” node of a particular prefix, where holders can easily
be determined using a prefix-aware DHT [16].

For the collaborative detection calculations, the holder
(or server) responsible for each prefix must keep track of
outlier reports and maintain an estimate of the total number
of current detectors for the prefix. Such estimates can easily
be done through periodic or probabilistic detector reporting,
for example. Although it is possible to further offload the
holder nodes (or centralized directory servers) by moving
the collaborative detection calculations to a subset of the
detector nodes, these calculations can easily be done at very
low overhead on the holder nodes.

3Wireshark, https://www.wireshark.org//, May. 2015.
4tcpdump, http://www.tcpdump.org/, May. 2015.
5Bro, https://www.bro.org/, May. 2015.
6Firebug, http://getfirebug.com/, May. 2015.



Detector selection: In the case it is not feasible to
maintain reports from all detectors, a subset of detectors may
be selected. As we have seen here, there are some benefit
tradeoffs based on which detectors are used. Similar to in
our simulations, such detector selection could be performed
by assigning detector weights based on their relative distance
to the monitored prefix (candidate victim). Assuming that
detectors report their RTTs (as measured to the monitored
prefix), such weighting and/or selection could easily be done
at the holders or central servers.

Privacy: Only a subset of RTT measurements will need
to be shared by participants. Detectors would not be ex-
pected to reveal how often services/prefixes are accessed and
should have the option to opt in/out of monitoring selected
services/prefixes. This can easily be achieved by ensuring
that only the minimum necessary information is shared in the
outlier reports. For example, in particularly privacy concerned
systems the reports could report only whether a measurement
is an outlier or not (not the p-values themselves). Note that
as long as all detectors use the same individual threshold
p∗ind the Binomial tests applied here would still be directly
applicable.

Overhead: Without loss of generality, assume that each
detector node d ∈ D keeps track of a set Vd of prefixes (each
associated with a candidate victim). Furthermore, let D = |D|
denote the total number of detectors, Vd = 1

D

∑
d∈D

|Vd| the
average number of prefixes monitored per detector node, and
V = | ∪d∈D Vd| the total prefixes monitored.

Using this notation, a centralized directory would keep
track of V prefixes and in a decentralized setting each holder
node (assuming all detectors also act as holders) would be
responsible for on average V

D
prefixes. It is also easy to show

that the total number of individual outlier reports inserted into
the systems (either at the centralized directory or a holder
node, for example) is proportional to

∑
d∈D

|Vd| = DVd.
For example, in the case that the D detector nodes also act
as holder nodes, each holder node would see a reporting rate
equal to the average outlier rate observed by a single detector
node (such as itself), equal to Vd times the individual nodes’
per-prefix outlier alert rate.

Furthermore, the total number of active measurements
(e.g., traceroutes) needed to further investigate if the data
path had in fact been compromised is equal to the product of
the the number of detectors per prefix (DVd

V
) times the total

collaborative alert rate (equal to V times the collaborative
per-prefix alert rate). After cancelation of the V terms, we
note that the number of active measurements triggered by
the system would be proportional to DVd, but this time with
a smaller proportionality constant (equal to the collaborative
per-prefix alert rate). Spread over D detector nodes, such
measurement effort is very low, especially given the relatively
low (compared to a non-collaborative system, for example)
collaborative per-prefix alert rates observed with the help of
the collaborative techniques discussed in this paper.

VI. RELATED WORK

This section complements the related works discussed in
Section II with a discussion of the work in a broader context.

Passive and active end-to-end measurements: Network
level end-to-end measurements have been used for a wide
range of purposes, including identifying and troubleshooting
disruptions on the Internet. For example, NetDiagnoser [29]
leverage the end-to-end measurements between sensors and
knowledge of the sensor topography to provide a trou-
bleshooting tool that allows ISPs to detect the location of
network failures. Others have used active probing techniques
to detect Internet outages [30] and other network reachability
issues [31]. Passive network measurement data have been
used to characterize censorship by nation-states or the effects
of natural disasters such as earth-quakes on communica-
tion [32]. In contrast, we focus on detecting interception and
imposture attacks, which generally are difficult to detect since
these attacks do not lead to service outages or interruptions.

Crowd-based techniques: Client-side measurement tools
and browser extensions have been designed to measure
a wide range performance and security issues, including
website performance, port filtering, IPv6 support, and DNS
manipulations [25], [33]. Passive monitoring from a large
number of users has also been used to characterize geographic
differences in the web infrastructure [34], to build location-
based services [35], to build AS-level graph [36], and to
detect outages and other network events [37]. None of these
works consider crowd-based detection of routing anomalies
caused by stealthy routing attacks such as interception and
imposture attacks.

BGP attack detection: Section II described several data-
plane based, control-plane based, and hybrid techniques.
Perhaps most closely to our work is the works by Zheng
el al. [18] and Shi et al. [21]. Similar to us, Zheng et
al. [18] use measurements to detect imposture and inter-
ception attacks. However, in contrast to our passive RTT
measurements, their framework requires combined control-
plane data (route announcement information) and significant
active (traceroute) measurements. Shi et al. [21] shows the
value of using distributed diagnosis nodes when detecting
black-holing attacks. In contrast to these works, we show that
seemingly simple measurement data such as RTT collected
passively can be effectively used to raise alerts for possible
interception and imposture attacks.

VII. CONCLUSIONS

In this paper we have presented and evaluated a user-
centric crowd-based approach in which users passively mon-
itors their RTTs, share information about potential anomalies,
and apply combined collaborative statistics such as the Bino-
mial test to identify potential routing anomalies. We have
shown that the approach has low overhead, and provides an
attractive tradeoff between attack detection rates (when there
is an attack) and alert rates (needing further investigation) un-
der normal conditions. Detection-alert tradeoffs and weighted
detector selection, based on candidate detectors’ distance
from the potential victim nodes, have been evaluated using
longitudinal RTT measurements from a wide range of loca-
tions. We have shown that there are significant advantages to
collaboration (e.g., as shown by the high attack detection rates
that can be achieved without adding many additional alerts



during normal circumstances), that there are benefits from
introducing a slight bias towards selecting nearby detectors,
and that these systems can be effectively implemented using
relatively simple monitoring (e.g., on client machines) and
data sharing over both central and distributed architectures at
a low overhead.

We believe that this type of system can allow concerned
citizens to take a greater role in protecting the integrity of
their own and others’ data paths. Given the slow deployment
of operator-driven solutions (typically cryptographic and re-
quiring significant adaptations to work properly), this type of
passive crowd-based monitoring provides an effective way to
bring traffic anomalies (due to attacks, router misconfigura-
tions, or other valid reasons) to the forefront. As such, this
type of crowd-based system can push more operators to take
actions to provide better protection for the data traffic paths
of their customers and others. Future work includes analyzing
the interaction between active and passive measurements
to diagnose traffic anomalies. Interesting research questions
include determining the best way to combine longitudinal pas-
sively collected information (e.g., as collected and analyzed
here) with targeted traceroutes and other complementary
information (such as topology information) to determine the
chain of events that allowed the anomaly to take place.
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