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Optimal Mechanism Design

Basic Question: how should a resource provider service consumers to
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Optimal Mechanism Design

Basic Question: how should a resource provider service consumers to
maximize profit?

• Obstacle: provider does not know consumer preferences.

• Approach: design mechanism with incentive for consumers to
reveal true preferences.

Priors: known distributional information on consumer preferences.
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Outline

Part I: Optimal Mechanism Design with Priors.
(game theory basics, truthful characterization, Myerson’s optimal
mechanism)

Part II: The Market Analysis Metaphor.
(emperical distributions, consistency issues, random sampling,
machine learning, pricing algorithms)

Part III: Optimal Mechanism Design in Worst-case.
(competitive analysis, lower bounds, upper bounds, reduction to
decision problem)

Part IV: Removal of Standard Assumptions.
(online auctions, collusion, asymmetric auctions, asymmetric settings)
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Optimal Mechanism Design without Priors

Part I

Optimal Mechanism Design with Priors



Example Problem: Single-item Auction

Setting:

• Seller with one item.

• Bidders with private valuations: v1, . . . , vn.

Design Goal:

• Single-round auction: bidders submit bids, seller decides winner
and price.

• Truthful auction: bidders have incentive to bid true values.

• Optimal auction: seller gets optimal profit.
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Economics Approach

Economics Approach to profit maximization:

1. Assume bidders’ valuations are random.

2. Characterize class of truthful mechanisms.

3. Find optimal mechanism from class for distribution.
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Step 1: Valuations are Random

Step 1: Assume bidders’ valuations are random.

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
7



Step 1: Valuations are Random

Step 1: Assume bidders’ valuations are random.

The Independent Private Value (IPV) model:

1. Bidder i has valuation vi ∈ [0, h] distributed as Fi.

Cumulative distribution function: Fi(b) = Pr[vi ≥ b].
Probability density function: fi(b) = F ′

i (b).

2. Bidder’s values are independent:

Joint density function: f(b) =
∏

i fi(bi)

Definition: f is the prior distribution, known to seller.
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Step 2: Charactarization

Step 2: Characterize class of truthful mechanisms.
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Step 2: Charactarization

Step 2: Characterize class of truthful mechanisms.

Recall Example: single-item auction.

1-item Vickrey Auction [Vickrey 1961]

“Sell to highest bidder at price equal to the second
highest bid value.”
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Step 2: Charactarization

Step 2: Characterize class of truthful mechanisms.

Recall Example: single-item auction.

1-item Vickrey Auction [Vickrey 1961]

“Sell to highest bidder at price equal to the second
highest bid value.”

Example:

• Input: b = (1, 3, 6, 2, 4).

• Output: the 6 bid wins and pays 4.
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Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]

“Sell to highest bidder at price equal to the second
highest bid value.”

How should bidder i bid?

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
9



Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]

“Sell to highest bidder at price equal to the second
highest bid value.”

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.
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Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]

“Sell to highest bidder at price equal to the second
highest bid value.”

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti
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Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]

“Sell to highest bidder at price equal to the second
highest bid value.”

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti vi

U
til

ity

Bid Value

0

vi−ti

tivi
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Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]

“Sell to highest bidder at price equal to the second
highest bid value.”

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti vi

U
til

ity

Bid Value

0

vi−ti

tivi

Result: In either case, bidder i’s best strategy is to bid bi = vi!
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Bid-Independence

Definition: Bids with bidder i removed:

b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn)
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Bid-Independence

Definition: Bids with bidder i removed:

b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn)

Bid-Independent Auction: BIg

On input b, for each bidder i:

1. ti ← g(b−i).

2. If ti < bi, sell to bidder i at price ti.

3. If ti > bi, reject bidder i.
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Bid-Independence

Definition: Bids with bidder i removed:

b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn)

Bid-Independent Auction: BIg

On input b, for each bidder i:

1. ti ← g(b−i).

2. If ti < bi, sell to bidder i at price ti.

3. If ti > bi, reject bidder i.

Theorem: A (deterministic) auction is truthful iff it is bid-independent.
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Notational Interlude

Notation: for input, b,

• x = (x1, . . . , xn): xi is indicator for bidder i getting the item.

• p = (p1, . . . , pn): pi is bidder i’s payment .
(assume: pi = 0 if xi = 0)

• c(x): seller’s cost.
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Notation: for input, b,

• x = (x1, . . . , xn): xi is indicator for bidder i getting the item.

• p = (p1, . . . , pn): pi is bidder i’s payment .
(assume: pi = 0 if xi = 0)

• c(x): seller’s cost.

Recall Example: single-item auction.

c(x) =

{
0 if

∑

i xi ≤ 1

∞ otherwise.
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Notational Interlude

Notation: for input, b,

• x = (x1, . . . , xn): xi is indicator for bidder i getting the item.

• p = (p1, . . . , pn): pi is bidder i’s payment .
(assume: pi = 0 if xi = 0)

• c(x): seller’s cost.

Recall Example: single-item auction.

c(x) =

{
0 if

∑

i xi ≤ 1

∞ otherwise.

Note: Output of mechanism, (x,p), is function of b.

• Explicitly: x(b), xi(b), xi(bi,b i), and p(b), etc.

• With b i implicit: xi(bi) and pi(bi).
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Step 3: Find Optimal Mechanism

Step 3: Find Optimal Mechanism from class for distribution.

Maximize Auction’s Profit: Eb[
∑

i pi(b)− c(x(b))].

Subject to truthfulness:

1. bidder i wins if bi > ti⇔ xi(bi) is a step function.

2. bidder i pays tixi(bi)⇔ pi(bi) = xi(bi)bi −
∫ bi

0
xi(b)db.
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Step 3: Find Optimal Mechanism

Step 3: Find Optimal Mechanism from class for distribution.

Maximize Auction’s Profit: Eb[
∑

i pi(b)− c(x(b))].

Subject to truthfulness:

1. bidder i wins if bi > ti⇔ xi(bi) is a step function.

2. bidder i pays tixi(bi)⇔ pi(bi) = xi(bi)bi −
∫ bi

0
xi(b)db.

Definition: The virtual valuation of a bidder i with value vi ∼ Fi is

ψi(vi) = vi −
1−Fi(vi)

fi(vi)
.

Lemma: For xi(b) and bids b with joint densify function f :

Eb[pi(b)] =

∫

b

ψi(bi)xi(b)f(b)db.
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Proof of Lemma
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Myerson

Step 3: Find optimal mechanism.
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Myerson

Step 3: Find optimal mechanism.

Theorem: [Mye-81] Given allocation rule x and bids b with density
function f the expected profit is

∫

b

[∑

i
ψi(bi)xi(b)− c(x(b))

]

f(b)db.

Definition: Myerson’s optimal mechanism for distribution
F = F1 × . . .× Fn, is MyersionF(b) with

x(b) = argmaxx′

∑

i
ψi(bi)x

′
i − c(x

′).

Theorem: Myersion’s mechanism is optimal and truthful when the
ψi(·)s are monotone.

Note 1: This applies to any cost function c(x) (not just for single-item
auction).

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
21



Myerson

Note 2: For some c(x) non-monotone ψi(·) can be ironed to be
monotone.
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Myerson

Note 2: For some c(x) non-monotone ψi(·) can be ironed to be
monotone.
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Example: Basic Auction

The Basic Auction Problem:

Given:

• n identical items for sale.

• n bidders, bidder i willing to pay at most vi for an item.

Design: auction with maximal profit.
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Example

Recall Theorem: [Mye-81] Given allocation rule x and bids b with
density function f the expected profit is

∫

b

[∑

i
ψi(bi)xi(b)− c(x(b))

]

f(b)db.

Recall Example: single-item auction

c(x) =

{
0 if

∑

i xi ≤ 1

∞ otherwise.

Result:

• Winner: the bidder with highest ψi(bi) (such that ψi(bi) ≥ 0).

• Winner’s Payment: argminb{ψi(b) ≥ ψj(bj) & ψi(b) ≥ 0}
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Example

Recall Theorem: [Mye-81] Given allocation rule x and bids b with
density function f the expected profit is

∫

b

[∑

i
ψi(bi)xi(b)− c(x(b))

]

f(b)db.

Recall Example: single-item auction

c(x) =

{
0 if

∑

i xi ≤ 1

∞ otherwise.

Result:

• Winner: the bidder with highest ψi(bi) (such that ψi(bi) ≥ 0).

• Winner’s Payment: argminb{ψi(b) ≥ ψj(bj) & ψi(b) ≥ 0}

• Suppose bids are identical, Fi = Fj :
⇒max{bj : j 6= i} ∪ {ψ−1(0)}
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Example

• Interpretation: Optimal Auction = Vickrey w/reserve price ψ−1(0).
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Example

• Interpretation: Optimal Auction = Vickrey w/reserve price ψ−1(0).

Definition: opt(F ) = ψ−1(0)
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Example

• Interpretation: Optimal Auction = Vickrey w/reserve price ψ−1(0).

Definition: opt(F ) = ψ−1(0) = argmaxb b(1− F (b))
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Other Directions

1. General ironing procedure for arbitrary costs?

2. Agent’s with correlated values. [Ron-03].

3. Deficits. [CHRSU-04]

4. Iterative Mechanisms. [DRJSK-05]

5. Optimal Mechanism for multi-parameter agents?
(needs characterization like [SW-05], related to [RL-05])
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Optimal Mechanism Design without Priors

Part II

The Market Analysis Metaphor



Motivation

Where does known prior come from?

1. previous sales.

2. market analysis.
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Motivation

Where does known prior come from?

1. previous sales.

2. market analysis.

Issues:

1. incentive properties.

2. accuracy.
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Motivation

Where does known prior come from?

1. previous sales.

2. market analysis.

Issues:

1. incentive properties.

2. accuracy.

Argument 1: by assuming a known prior we ignore incentive and per-
formance issues from obtaining the prior.
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Motivation

Where does known prior come from?

1. previous sales.

2. market analysis.

Issues:

1. incentive properties.

2. accuracy.

Argument 1: by assuming a known prior we ignore incentive and per-
formance issues from obtaining the prior.

Argument 2: (Wilson Doctrine) Mechanisms should be independent of
details.
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Market Analysis

Market Analysis Approach:

1. Market Analysis⇒ distributional knowledge F = (F1, . . . , Fn)

2. Design mechanism for F: MyersionF

Recall Incentive Compatibility: for all i, xi(bi) is monotone in bi.

Can be arbitraty function of b i!

Insight: use b i for market analysis.
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Imperical Distributions

Definition: The imperical distribution for b is

F̂b(x) = |{i : bi<x}|
n

.

Recall: MyersionF ⇒ xF
i (b), pF

i (b)

Set xi(bi) be the allocation for bidder i in MyersionF̂b i
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Estimating Distributions

Recall: Myerson’s Optimal Auction for bids i.i.d. from F :

1. optimal price = argmaxp p(1− F (p)).

2. offer all bidders the optimal price.

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
31



Estimating Distributions

Recall: Myerson’s Optimal Auction for bids i.i.d. from F :

1. optimal price = argmaxp p(1− F (p)).

2. offer all bidders the optimal price.

Idea: For bidder i use empirical estimate of F from b i.
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Estimating Distributions

Recall: Myerson’s Optimal Auction for bids i.i.d. from F :

1. optimal price = argmaxp p(1− F (p)).

2. offer all bidders the optimal price.

Idea: For bidder i use empirical estimate of F from b i.

Definition: The empirical distribution b i is

F̂b i
(p) = “number of bids less than p”× 1

n−1 .
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Deterministic Optimal Price Auction

For basic auction problem:
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Deterministic Optimal Price Auction

For basic auction problem:

Deterministic Optimal Price Auction (DOP)
[GHW-01,BV-03,Seg-03]

On input b, for each bidder i:

1. p← opt(b i).

2. If p ≤ bi, sell to bidder i at price p.

3. Otherwise, reject bidder i.
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Deterministic Optimal Price Auction

For basic auction problem:

Deterministic Optimal Price Auction (DOP)
[GHW-01,BV-03,Seg-03]

On input b, for each bidder i:

1. p← opt(b i).

2. If p ≤ bi, sell to bidder i at price p.

3. Otherwise, reject bidder i.

Theorem: For b i.i.d. from F on range [1, h], profit of DOP
approaches optimal profit as n→∞. [BV-03,Seg-03]
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Deterministic Optimal Price Auction

For basic auction problem:

Deterministic Optimal Price Auction (DOP)
[GHW-01,BV-03,Seg-03]

On input b, for each bidder i:

1. p← opt(b i).

2. If p ≤ bi, sell to bidder i at price p.

3. Otherwise, reject bidder i.

Theorem: For b i.i.d. from F on range [1, h], profit of DOP
approaches optimal profit as n→∞. [BV-03,Seg-03]

Lemma: Worst-case profit is bad. [GHW-01]
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× + 90×
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid + 90× Revenue from 1 bid
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid + 90× Revenue from 1 bid

Revenue from 10 bid

What does DOP do for bi = 10?

opt(b i) = (

9 bidders
z }| {

10, . . . , 10 , 1, 1, . . . , 1
| {z }

99 bidders

)
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid + 90× Revenue from 1 bid

Revenue from 10 bid

What does DOP do for bi = 10?

opt(b i) = (

9 bidders
z }| {

10, . . . , 10 , 1, 1, . . . , 1
| {z }

99 bidders

)

Is opt(b i) = 1 or 10?

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
33



Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid + 90× Revenue from 1 bid

Revenue from 10 bid

What does DOP do for bi = 10?

opt(b i) = (

9 bidders
z }| {

10, . . . , 10 , 1, 1, . . . , 1
| {z }

99 bidders

)

Is opt(b i) = 1 or 10?

• Revenue10

= 10× 9 = 90.

• Revenue1

= 1× 99 = 99.
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid
︸ ︷︷ ︸

1

+ 90× Revenue from 1 bid

Revenue from 10 bid

What does DOP do for bi = 10?

opt(b i) = (

9 bidders
z }| {

10, . . . , 10 , 1, 1, . . . , 1
| {z }

99 bidders

)

Result: Bidder i buys item at price 1!

Is opt(b i) = 1 or 10?

• Revenue10

= 10× 9 = 90.

• Revenue1

= 1× 99 = 99.

• Thus, opt(b i) = 1.
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid
︸ ︷︷ ︸

1

+ 90× Revenue from 1 bid

Revenue from 10 bid

What does DOP do for bi = 10?

opt(b i) = (

9 bidders
z }| {

10, . . . , 10 , 1, 1, . . . , 1
| {z }

99 bidders

)

Result: Bidder i buys item at price 1!

Is opt(b i) = 1 or 10?

• Revenue10

= 10× 9 = 90.

• Revenue1

= 1× 99 = 99.

• Thus, opt(b i) = 1.

Revenue from 1 bid

What does DOP do for bi = 1?

opt(b i) = (

10 bidders
z }| {

10, 10, . . . , 10 , 1, . . . , 1
| {z }

99 bidders

)
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid
︸ ︷︷ ︸

1

+ 90× Revenue from 1 bid

Revenue from 10 bid

What does DOP do for bi = 10?

opt(b i) = (

9 bidders
z }| {

10, . . . , 10 , 1, 1, . . . , 1
| {z }

99 bidders

)

Result: Bidder i buys item at price 1!

Is opt(b i) = 1 or 10?

• Revenue10

= 10× 9 = 90.

• Revenue1

= 1× 99 = 99.

• Thus, opt(b i) = 1.

Revenue from 1 bid

What does DOP do for bi = 1?

opt(b i) = (

10 bidders
z }| {

10, 10, . . . , 10 , 1, . . . , 1
| {z }

99 bidders

)

Is opt(b i) = 1 or 10?
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid
︸ ︷︷ ︸

1

+ 90× Revenue from 1 bid

Revenue from 10 bid

What does DOP do for bi = 10?

opt(b i) = (

9 bidders
z }| {

10, . . . , 10 , 1, 1, . . . , 1
| {z }

99 bidders

)

Result: Bidder i buys item at price 1!

Is opt(b i) = 1 or 10?

• Revenue10

= 10× 9 = 90.

• Revenue1

= 1× 99 = 99.

• Thus, opt(b i) = 1.

Revenue from 1 bid

What does DOP do for bi = 1?

opt(b i) = (

10 bidders
z }| {

10, 10, . . . , 10 , 1, . . . , 1
| {z }

99 bidders

)

Is opt(b i) = 1 or 10?

• Revenue10

= 10× 10 = 100.

• Revenue1

= 1× 99 = 99.
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Worst Case Analysis of DOP

Example: for DOP and b = (

10 bidders
︷ ︸︸ ︷

10, 10, . . . , 10 , 1, 1, . . . , 1
︸ ︷︷ ︸

100 bidders

)

Profit: 10× Revenue from 10 bid
︸ ︷︷ ︸

1

+ 90× Revenue from 1 bid
︸ ︷︷ ︸

0

= 10

Revenue from 10 bid

What does DOP do for bi = 10?

opt(b i) = (

9 bidders
z }| {

10, . . . , 10 , 1, 1, . . . , 1
| {z }

99 bidders

)

Result: Bidder i buys item at price 1!

Is opt(b i) = 1 or 10?

• Revenue10

= 10× 9 = 90.

• Revenue1

= 1× 99 = 99.

• Thus, opt(b i) = 1.

Revenue from 1 bid

What does DOP do for bi = 1?

opt(b i) = (

10 bidders
z }| {

10, 10, . . . , 10 , 1, . . . , 1
| {z }

99 bidders

)

Result: Bidder i is rejected!

Is opt(b i) = 1 or 10?

• Revenue10

= 10× 10 = 100.

• Revenue1

= 1× 99 = 99.

• Thus, opt(b i) = 10.
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General Consistency Issue

Emperical Myerson Auction may be inconsistent

Double Auction Problem.
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Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: b′ and b′′.

2. Use p′ = opt(b′) as price for b′′.

b
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Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: b′ and b′′.

2. Use p′ = opt(b′) as price for b′′.

b
b′

b′′
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Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: b′ and b′′.

2. Use p′ = opt(b′) as price for b′′.

b
b′

b′′

p′ = opt(b′)
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Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: b′ and b′′.

2. Use p′ = opt(b′) as price for b′′.

3. Use p′′ = opt(b′′) as price for b′ (optional).

b
b′

b′′

p′ = opt(b′)

p′′ = opt(b′′)
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Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: b′ and b′′.

2. Use p′ = opt(b′) as price for b′′.

3. Use p′′ = opt(b′′) as price for b′ (optional).

b
b′

b′′

p′ = opt(b′)

p′′ = opt(b′′)

Theorem: For b on range [1, h], profit of RSOP approaches optimal
profit as n→∞.
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Worst Case with Assumption

Recall Theorem: For b on range [1, h], profit of RSOP approaches
optimal profit as n→∞.
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Worst Case with Assumption

Recall Theorem: For b on range [1, h], profit of RSOP approaches
optimal profit as n→∞.

Implicit Assumption: optimal profit� h.
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Worst Case with Assumption

Recall Theorem: For b on range [1, h], profit of RSOP approaches
optimal profit as n→∞.

Implicit Assumption: optimal profit� h.

Implicit Definition: optimal profit = “optimal profit from single price
sale with bidders’ valuations.”
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Worst Case with Assumption

Recall Theorem: For b on range [1, h], profit of RSOP approaches
optimal profit as n→∞.

Implicit Assumption: optimal profit� h.

Implicit Definition: optimal profit = “optimal profit from single price
sale with bidders’ valuations.”

Fact: impossible to approximate optimal profit when it is optimal to sell
only one unit.
E.g., b = (1, 1, 1, 1, h, 1, 1)
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Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)
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Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)

Result: DOP generalization via Myerson-VCG construction fails.
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Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)

Result: DOP generalization via Myerson-VCG construction fails.

Recall: Myerson-VCG Construction:

1. Compute each player’s virtual valuation

φ(vi) = vi −
1− F (vi)

f(vi)
.

2. Run VCG on virtual valuations.
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Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)

Result: DOP generalization via Myerson-VCG construction fails.

Recall: Myerson-VCG Construction:

1. Compute each player’s virtual valuation

φ(vi) = vi −
1− F (vi)

f(vi)
.

2. Run VCG on virtual valuations.

Generalized DOP Technique: for each bidder i,

1. Compute virtual valuations using F̂b i
.

2. Compute outcome of VCG on virtual valuations for bidder i.
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Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)

Result: DOP generalization via Myerson-VCG construction fails.

Recall: Myerson-VCG Construction:

1. Compute each player’s virtual valuation

φ(vi) = vi −
1− F (vi)

f(vi)
.

2. Run VCG on virtual valuations.

Generalized DOP Technique: for each bidder i,

1. Compute virtual valuations using F̂b i
.

2. Compute outcome of VCG on virtual valuations for bidder i.

Different empirical distributions⇒ inconsistency.
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The Double Auction Problem

The Double Auction Problem:

Given:

• n sellers, seller i willing to sell a unit for at least si.

• n buyers, buyer i willing to buy a unit for at most bi.

Design: Double auction maximize profit of broker. [BV-03,DGHK-02]
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The Double Auction Problem

The Double Auction Problem:

Given:

• n sellers, seller i willing to sell a unit for at least si.

• n buyers, buyer i willing to buy a unit for at most bi.

Design: Double auction maximize profit of broker. [BV-03,DGHK-02]

Consistency Constraint: number of winning buyers = number of
winning sellers.
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The Double Auction Problem

The Double Auction Problem:

Given:

• n sellers, seller i willing to sell a unit for at least si.

• n buyers, buyer i willing to buy a unit for at most bi.

Design: Double auction maximize profit of broker. [BV-03,DGHK-02]

Consistency Constraint: number of winning buyers = number of
winning sellers.

Generalized DOP⇒ inconsistent.
Generalized RSOP⇒ consistent.
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Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: b′, s′ and b′′, s′′

2. Compute virtual valuations for b′ and s′ using F̂b′′ and F̂s′′ .

3. Run VCG on virtual valuations of b′ and s′.
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Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: b′, s′ and b′′, s′′

2. Compute virtual valuations for b′ and s′ using F̂b′′ and F̂s′′ .

3. Run VCG on virtual valuations of b′ and s′.

4. Vice versa.

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
39



Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: b′, s′ and b′′, s′′

2. Compute virtual valuations for b′ and s′ using F̂b′′ and F̂s′′ .

3. Run VCG on virtual valuations of b′ and s′.

4. Vice versa.

Consistency: because both partitions are consistent.
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Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: b′, s′ and b′′, s′′

2. Compute virtual valuations for b′ and s′ using F̂b′′ and F̂s′′ .

3. Run VCG on virtual valuations of b′ and s′.

4. Vice versa.

Consistency: because both partitions are consistent.

Theorem: [BV-03] The RSOP double auction approaches optimal profit
as n→∞.
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Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: b′, s′ and b′′, s′′

2. Compute virtual valuations for b′ and s′ using F̂b′′ and F̂s′′ .

3. Run VCG on virtual valuations of b′ and s′.

4. Vice versa.

Consistency: because both partitions are consistent.

Theorem: [BV-03] The RSOP double auction approaches optimal profit
as n→∞.

Subtlety: Must iron emperical distribution when it fails the monotone
hazard rate condition.
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Is consistency feasible?

Difficulty: Consistency, Truthfulness, and Profit Maximization.

Example:

• Basic Auction problem (n bidders, n units).

• Envy-freedom: all bidders are offered the same price.
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Is consistency feasible?

Difficulty: Consistency, Truthfulness, and Profit Maximization.

Example:

• Basic Auction problem (n bidders, n units).

• Envy-freedom: all bidders are offered the same price.

Theorem: [GH-03] No auction is truthful, envy-free, and approximates
the optimal profit better than o(log n/ log log n).

But. . .
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Difficulty: Consistency, Truthfulness, and Profit Maximization.

Example:

• Basic Auction problem (n bidders, n units).

• Envy-freedom: all bidders are offered the same price.

Theorem: [GH-03] No auction is truthful, envy-free, and approximates
the optimal profit better than o(log n/ log log n).

But. . .

Theorem: Exists approximately optimal auctions that are

• truthful with high probability and envy-free, or

• envy-free with high probability and truthful.
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Optimal Mechanism Design without Priors

Part III

The Worst Case



Analysis Framework

Recall Goal: Truthful profit maximizing basic auction.
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Analysis Framework

Recall Goal: Truthful profit maximizing basic auction.

Fact: There is no “best” truthful auction.

Competitive Analysis:

Compare auction profit to optimal public value profit, OPT.

Definition: An auction is β-competitive if its expected profit is at least
OPT/β on any input.
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Analysis Framework

Recall Goal: Truthful profit maximizing basic auction.

Fact: There is no “best” truthful auction.

Competitive Analysis:

Compare auction profit to optimal public value profit, OPT.

Definition: An auction is β-competitive if its expected profit is at least
OPT/β on any input.

What is optimal public value auction?
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Optimal Public Value Auction

Optimal Single-Price Mechanism with Two Winners: F (2)

1. Compute best single sale price, p, for two or more
items.

2. If bi ≥ p sell to bidder i at price p.

3. Otherwise, reject bidder i.
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Optimal Public Value Auction

Optimal Single-Price Mechanism with Two Winners: F (2)

1. Compute best single sale price, p, for two or more
items.

2. If bi ≥ p sell to bidder i at price p.

3. Otherwise, reject bidder i.

Example:

• Input: b = (200, 11, 10, 2, 1).
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Optimal Public Value Auction

Optimal Single-Price Mechanism with Two Winners: F (2)

1. Compute best single sale price, p, for two or more
items.

2. If bi ≥ p sell to bidder i at price p.

3. Otherwise, reject bidder i.

Example:

• Input: b = (200, 11, 10, 2, 1).

• Output: the 200, 11, and 10 bids win at price 10.

• Revenue: 30.
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Worst Case Competitive Auctions

Definition: A randomized auction is β-competitive in worst case if its

expected profit is at least F (2)/β for any input.
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Worst Case Competitive Auctions

Definition: A randomized auction is β-competitive in worst case if its

expected profit is at least F (2)/β for any input.

Prior Results:

1. No deterministic Auction is competitive.
[Goldberg, Hartline, Wright 2001]

2. 3.39-competitive randomized auction. [Goldberg, Hartline 2003]

3. No auction better than 2-competitive.
[Fiat, Goldberg, Hartline, Karlin 2002]
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Worst Case Competitive Auctions

Definition: A randomized auction is β-competitive in worst case if its

expected profit is at least F (2)/β for any input.

Prior Results:

1. No deterministic Auction is competitive.
[Goldberg, Hartline, Wright 2001]

2. 3.39-competitive randomized auction. [Goldberg, Hartline 2003]

3. No auction better than 2-competitive.
[Fiat, Goldberg, Hartline, Karlin 2002]

Open Question: What is the optimal competitive ratio?

Main Theorem: No auction is better than 2.42-competitive.
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Classical Reduction

Optimization problem: “What is the maximum value of a feasible sol
ution?”

Decision problem: “Is there a feasible solution with value at least V ?”

Classical reduction: Search for optimal value using repeated calls to
decision problem solution.
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Classical Reduction

Optimization problem: “What is the maximum value of a feasible sol
ution?”

Decision problem: “Is there a feasible solution with value at least V ?”

Classical reduction: Search for optimal value using repeated calls to
decision problem solution.

Note: This reduction does not work for private value problems.
(Simulating several truthful mechanisms and using the outcome of the
best one is not truthful)
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Basic Auction Decision Problem

The Decision Problem for the Basic Auction:

Given:

• n identical items for sale.

• n bidders, bidder i willing to pay at most vi for an item.

• Target profit R.

Design: auction mechanism that obtains profit R if R ≤ OPT.
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Basic Auction Decision Problem

The Decision Problem for the Basic Auction:

Given:

• n identical items for sale.

• n bidders, bidder i willing to pay at most vi for an item.

• Target profit R.

Design: auction mechanism that obtains profit R if R ≤ OPT.

Definition: Profit extractor is solution to private value decision problem.
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Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.
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Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

Example:

• R = 9.

• b = (8, 7, 4, 1, 1).

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
47



Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

Example:

• R = 9.

• b = (8, 7, 4, 1, 1).

Properties:

• Truthful.
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Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

Example:

• R = 9.

• b = (8, 7, 4, 1, 1).

Properties:

• Truthful.

• Revenue R if R < OPT, and 0 otherwise.
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Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

Example:

• R = 9.

• b = (8, 7, 4, 1, 1).

Properties:

• Truthful.

• Revenue R if R < OPT, and 0 otherwise.

• envy-free!
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Sketch of Lower Bound

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:
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New Notation: random bid, Bi, random bid vector B.
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Sketch of Lower Bound

New Notation: random bid, Bi, random bid vector B.

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:

Choose B with Bi ∈ [1,∞) i.i.d. as Pr[Bi > z] = 1/z.
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Sketch of Lower Bound

New Notation: random bid, Bi, random bid vector B.

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:

Choose B with Bi ∈ [1,∞) i.i.d. as Pr[Bi > z] = 1/z.

Analysis:

• Recall: Truthful auctionA is bid-independent.

• AuctionA offers bidder i price p ≥ 1.

• Expected revenue from i is p× Pr[Bi > p] = 1.

• For n bidders, E[A(B)] = n.
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Sketch of Lower Bound

New Notation: random bid, Bi, random bid vector B.

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:

Choose B with Bi ∈ [1,∞) i.i.d. as Pr[Bi > z] = 1/z.

Analysis:

• Recall: Truthful auctionA is bid-independent.

• AuctionA offers bidder i price p ≥ 1.

• Expected revenue from i is p× Pr[Bi > p] = 1.

• For n bidders, E[A(B)] = n.

2. Bound E
[
F (2)(B)

]
.
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Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for n = 2?

Lemma: No auction is better than 2-competitive.
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Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for n = 2?

Lemma: No auction is better than 2-competitive.

Goal: calculate E
[
F (2)(B)

]
(for B with Pr[Bi > z] = 1/z).
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Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for n = 2?

Lemma: No auction is better than 2-competitive.

Goal: calculate E
[
F (2)(B)

]
(for B with Pr[Bi > z] = 1/z).

For B = (B1, B2), F (2)(B) = 2min(B1, B2).
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Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for n = 2?

Lemma: No auction is better than 2-competitive.

Goal: calculate E
[
F (2)(B)

]
(for B with Pr[Bi > z] = 1/z).

For B = (B1, B2), F (2)(B) = 2min(B1, B2).

Pr
[
F (2)(B) > z

]
= Pr[B1 > z/2 ∧B2 > z/2] = 4/z2.
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Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for n = 2?

Lemma: No auction is better than 2-competitive.

Goal: calculate E
[
F (2)(B)

]
(for B with Pr[Bi > z] = 1/z).

For B = (B1, B2), F (2)(B) = 2min(B1, B2).

Pr
[
F (2)(B) > z

]
= Pr[B1 > z/2 ∧B2 > z/2] = 4/z2.

Definition of Expectation: E[X] =
∫ ∞

0
Pr[X > x] dx.
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Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for n = 2?

Lemma: No auction is better than 2-competitive.

Goal: calculate E
[
F (2)(B)

]
(for B with Pr[Bi > z] = 1/z).

For B = (B1, B2), F (2)(B) = 2min(B1, B2).

Pr
[
F (2)(B) > z

]
= Pr[B1 > z/2 ∧B2 > z/2] = 4/z2.

Definition of Expectation: E[X] =
∫ ∞

0
Pr[X > x] dx.

E
[
F (2)(B)

]
= 2 +

∫ ∞

2
4/z2
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Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for n = 2?

Lemma: No auction is better than 2-competitive.

Goal: calculate E
[
F (2)(B)

]
(for B with Pr[Bi > z] = 1/z).

For B = (B1, B2), F (2)(B) = 2min(B1, B2).

Pr
[
F (2)(B) > z

]
= Pr[B1 > z/2 ∧B2 > z/2] = 4/z2.

Definition of Expectation: E[X] =
∫ ∞

0
Pr[X > x] dx.

E
[
F (2)(B)

]
= 2 +

∫ ∞

2
4/z2 = 4

Recall: E[A(B)] = 2, therefore competitive ratio is 2.
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Two Bidder Case: Upper Bound

Lemma: For n = 2, the Vickrey auction is 2-competitive.
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Two Bidder Case: Upper Bound

Lemma: For n = 2, the Vickrey auction is 2-competitive.

Recall:

• For b = (b1, b2), F (2)(b) = 2min(b1, b2).

• Vickrey Revenue = min(b1, b2).
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Three Bidder Case

Lemma: No 3-bidder auction is better than 13/6-competitive.
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Three Bidder Case

Lemma: No 3-bidder auction is better than 13/6-competitive.

Open Question: What is best auction for three bidders?
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Three Bidder Case

Lemma: No 3-bidder auction is better than 13/6-competitive.

Open Question: What is best auction for three bidders?

What is known:

• 2.3-competitive auction (note: 13/6 ≈ 2.166).

• Optimal auction uses prices 6= bid values.
(for prices = bid values, optimal auction is 2.5-competitive)
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General Lower Bound

Theorem: The competitive ratio of any auction is at least

1−
n∑

i=2

(
−1

n

)i−1
i

i− 1

(
n− 1

i− 1

)

≥ 2.42.
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General Lower Bound

Theorem: The competitive ratio of any auction is at least

1−
n∑

i=2

(
−1

n

)i−1
i

i− 1

(
n− 1

i− 1

)

≥ 2.42.

Proof Outline:

1. Compute E
[
F (2)(B)

]
.

(a) Compute Pr
[
F (2)(B)

]
≥ z.

(b) Integrate.

2. Divide by E[A(B)] = n.

3. Take limit.
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Compute Pr
[
F (2)(B) ≥ z

]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.
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Compute Pr
[
F (2)(B) ≥ z

]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids.
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Compute Pr
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Lemma: Pr
[
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= n
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(
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z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids. (E.g., B(3) = (2, 1, 1), F3,2 = 6)
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Compute Pr
[
F (2)(B) ≥ z

]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids. (E.g., B(3) = (2, 1, 1), F3,2 = 6)

Proof: (high level)

1. Consider Pr[Fn,k > z]. (Fix n, k, z)
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Compute Pr
[
F (2)(B) ≥ z

]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids. (E.g., B(3) = (2, 1, 1), F3,2 = 6)

Proof: (high level)

1. Consider Pr[Fn,k > z]. (Fix n, k, z)

2. Event Hi:
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Compute Pr
[
F (2)(B) ≥ z

]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids. (E.g., B(3) = (2, 1, 1), F3,2 = 6)

Proof: (high level)

1. Consider Pr[Fn,k > z]. (Fix n, k, z)

2. Event Hi: “i bidders bid > (k + i)/z and no j > i bidders bid
> (k + j)/z”.
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Compute Pr
[
F (2)(B) ≥ z

]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids. (E.g., B(3) = (2, 1, 1), F3,2 = 6)

Proof: (high level)

1. Consider Pr[Fn,k > z]. (Fix n, k, z)

2. Event Hi: “i bidders bid > (k + i)/z and no j > i bidders bid
> (k + j)/z”.

3. Hi =
(
n
i

) (
k+i
z

)i
Pr[Fn−i,k+i < z] .
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Compute Pr
[
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]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids. (E.g., B(3) = (2, 1, 1), F3,2 = 6)

Proof: (high level)

1. Consider Pr[Fn,k > z]. (Fix n, k, z)

2. Event Hi: “i bidders bid > (k + i)/z and no j > i bidders bid
> (k + j)/z”.

3. Hi =
(
n
i

) (
k+i
z

)i
Pr[Fn−i,k+i < z] .

4. Pr[Fn,k > z] =
∑n

i=1Hi.
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Compute Pr
[
F (2)(B) ≥ z

]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids. (E.g., B(3) = (2, 1, 1), F3,2 = 6)

Proof: (high level)

1. Consider Pr[Fn,k > z]. (Fix n, k, z)

2. Event Hi: “i bidders bid > (k + i)/z and no j > i bidders bid
> (k + j)/z”.

3. Hi =
(
n
i

) (
k+i
z

)i
Pr[Fn−i,k+i < z] .

4. Pr[Fn,k > z] =
∑n

i=1Hi.

5. Solve Recurrence.
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Compute Pr
[
F (2)(B) ≥ z

]

Lemma: Pr
[
F (2)(B) ≥ z

]
= n

∑n
i=2

(
−1
z

)i
i
(
n−1
i−1

)
.

• B(n): n bids i.i.d. as Pr[Bi > z] = 1/z.

• Fn,k: random variable for optimal single price profit on B(n) and

additional k high bids. (E.g., B(3) = (2, 1, 1), F3,2 = 6)

Proof: (high level)

1. Consider Pr[Fn,k > z]. (Fix n, k, z)

2. Event Hi: “i bidders bid > (k + i)/z and no j > i bidders bid
> (k + j)/z”.

3. Hi =
(
n
i

) (
k+i
z

)i
Pr[Fn−i,k+i < z] .

4. Pr[Fn,k > z] =
∑n

i=1Hi.

5. Solve Recurrence.

6. Pr
[
F (2)(b(n)) > z

]
= Pr[Fn,0 > z]− Pr[H1].
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Conclusions

General:

• Upper Bound: 3.25. [HM-05]

• Lower Bound: 2.42. [GHKS-04]

• Open: optimal auction?

Limited Supply:

• 2-items: optimal competitive ratio = 2. [FGHK-02]

• 3-items: optimal competitive ratio = 13/6 ≈ 2.17.
[GHKS-04,HM-05]

• 4-items: lower bound: 215/96 ≈ 2.24. [GHKS-04]
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Optimal Mechanism Design without Priors

Part IV

The Technique of Consensus Estimates



Models

Analysis Models:

• Average Case.

• Worst Case.

– Approximation with assumption.

– Competitive analysis.

Design Techniques:

• Market analysis metaphor.

• Other techniques.

Incentive Properties:

• Truthful.

• Truthful with high probability.
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Solution Approach

Consider definitions:

• A summary value does not change much when any bidder lowers
their bids.

E.g., #p(b) = “number of bidders above p”
OPT(b) = “optimal profit from a single price”

• A summary consensus estimate is a random estimate of summary
value that with high probability cannot be manipulated by a bidder
lowering their bid.

• A summary mechanism,MS1,...,Sk is a consistent mechanism
that approximates profit when parameterized by (an) approximate
summary value(s).
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Classical Reduction

Optimization problem: “What is the maximum value of a feasible sol
ution?”

Decision problem: “Is there a feasible solution with value at least V ?”

Classical reduction: Search for optimal value using repeated calls to
decision problem solution.
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Classical Reduction

Optimization problem: “What is the maximum value of a feasible sol
ution?”

Decision problem: “Is there a feasible solution with value at least V ?”

Classical reduction: Search for optimal value using repeated calls to
decision problem solution.

Note: This reduction does not work for private value problems.
(Simulating several truthful mechanisms and using the outcome of the
best one is not truthful)
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Basic Auction Decision Problem

The Decision Problem for the Basic Auction:

Given:

• n identical items for sale.

• n bidders, bidder i willing to pay at most vi for an item.

• Target profit R.

Design: auction mechanism that obtains profit R if R ≤ OPT.
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Basic Auction Decision Problem

The Decision Problem for the Basic Auction:

Given:

• n identical items for sale.

• n bidders, bidder i willing to pay at most vi for an item.

• Target profit R.

Design: auction mechanism that obtains profit R if R ≤ OPT.

Definition: Profit extractor is solution to private value decision problem.

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
59



Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
60



Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

Example:

• R = 9.

• b = (8, 7, 4, 1, 1).
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Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

Example:

• R = 9.

• b = (8, 7, 4, 1, 1).

Properties:

• Truthful.
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Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

Example:

• R = 9.

• b = (8, 7, 4, 1, 1).

Properties:

• Truthful.

• Revenue R if R < OPT, and 0 otherwise.
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Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

ProfitExtractR

1. Find largest k s.t. k bidders have bi ≥ R/k.

2. Sell at price R/k.

3. Reject lower bidders.

Example:

• R = 9.

• b = (8, 7, 4, 1, 1).

Properties:

• Truthful.

• Revenue R if R < OPT, and 0 otherwise.

• envy-free!
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Summary Consensus Estimates

Fact: If OPT sells at least k units,
k−1

k
OPT(b) ≤ OPT(b i) ≤ OPT(b)
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Summary Consensus Estimates

Fact: If OPT sells at least k units,
k−1

k
OPT(b) ≤ OPT(b i) ≤ OPT(b)

Consider summary consensus estimate:

“OPT(b) rounded down to nearest power of 2”
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Summary Consensus Estimates

Fact: If OPT sells at least k units,
k−1

k
OPT(b) ≤ OPT(b i) ≤ OPT(b)

Consider summary consensus estimate:

“OPT(b) rounded down to nearest power of 2”

Analysis:

Case 1:

2i−1 2i6OPT(b)
ρ

6OPT(b)
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Summary Consensus Estimates

Fact: If OPT sells at least k units,
k−1

k
OPT(b) ≤ OPT(b i) ≤ OPT(b)

Consider summary consensus estimate:

“OPT(b) rounded down to nearest power of 2”

Analysis:

Case 1: Consensus!

2i−1 2i6OPT(b)
ρ

6OPT(b)
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Summary Consensus Estimates

Fact: If OPT sells at least k units,
k−1

k
OPT(b) ≤ OPT(b i) ≤ OPT(b)

Consider summary consensus estimate:

“OPT(b) rounded down to nearest power of 2”

Analysis:

Case 1: Consensus!

2i−1 2i6OPT(b)
ρ

6OPT(b)

Case 2:

2i−1 2i6OPT(b)
ρ

6OPT(b)
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Summary Consensus Estimates

Fact: If OPT sells at least k units,
k−1

k
OPT(b) ≤ OPT(b i) ≤ OPT(b)

Consider summary consensus estimate:

“OPT(b) rounded down to nearest power of 2”

Analysis:

Case 1: Consensus!

2i−1 2i6OPT(b)
ρ

6OPT(b)

Case 2: No Consensus!

2i−1 2i6OPT(b)
ρ

6OPT(b)
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Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0, 1],

OPT(b) rounded down to nearest 2j+y (for j integer).
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Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0, 1],

OPT(b) rounded down to nearest 2j+y (for j integer).

Lemma: Probability of Consensus:

1− log ρ
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Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0, 1],

OPT(b) rounded down to nearest 2j+y (for j integer).

Lemma: Probability of Consensus: (recall: 1/ρ =
(
1− 1

k

)
)

1− log ρ
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Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0, 1],

OPT(b) rounded down to nearest 2j+y (for j integer).

Lemma: Probability of Consensus: (recall: 1/ρ =
(
1− 1

k

)
)

1− log ρ = 1 + log
(
1− 1

k

)
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Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0, 1],

OPT(b) rounded down to nearest 2j+y (for j integer).

Lemma: Probability of Consensus: (recall: 1/ρ =
(
1− 1

k

)
)

1− log ρ = 1 + log
(
1− 1

k

)

= 1−O(1/k)
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Final Solution

Consensus and Profit Extraction Auction, CoPE

On input b,

1. Draw y uniform [0, 1].

2. Compute R = OPT(b) rounded down to
nearest 2j+y for j ∈ Z.

3. Run ProfitExtractR on b.
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Final Solution

Consensus and Profit Extraction Auction, CoPE

On input b,

1. Draw y uniform [0, 1].

2. Compute R = OPT(b) rounded down to
nearest 2j+y for j ∈ Z.

3. Run ProfitExtractR on b.

From [GH-03]:

Theorem: CoPE auction is truthful with high probability.

Theorem: CoPE auction is envy-free.

Theorem: CoPE auction approximates the optimal profit.
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Notes on CoPE

Motivates Search for Profit Extractors.

• Exists (approximate) profit extractor for double auciton.

• Exists profit extractor for decreasing marginal costs.

• Open: profit extractors for other constrained optimizations?
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Models

Analysis Models:

• Average Case.

• Worst Case.

– Approximation with assumption.

– Competitive analysis.

Design Techniques:

• Market analysis metaphor.

• Other techniques.

Incentive Properties:

• Truthful.

• Truthful with high probability.
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Competitive Analysis of Auctions

What about auctions that perform well in worst case without
assumptions???
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Competitive Analysis of Auctions

What about auctions that perform well in worst case without
assumptions???

Definition: AuctionA is β-competitive with benchmark G if for all b.

E[A(b)] ≥ G(b)/β.
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Competitive Analysis of Auctions

What about auctions that perform well in worst case without
assumptions???

Definition: AuctionA is β-competitive with benchmark G if for all b.

E[A(b)] ≥ G(b)/β.

Definition: The optimal auction for G is β-competitive with minimal β.
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Competitive Analysis of Auctions

What about auctions that perform well in worst case without
assumptions???

Definition: AuctionA is β-competitive with benchmark G if for all b.

E[A(b)] ≥ G(b)/β.

Definition: The optimal auction for G is β-competitive with minimal β.

Notes:

• Precise mathematical framework to search for optimal auction.

• What about choice of G?
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Competitive Analysis of Auctions

What about auctions that perform well in worst case without
assumptions???

Definition: AuctionA is β-competitive with benchmark G if for all b.

E[A(b)] ≥ G(b)/β.

Definition: The optimal auction for G is β-competitive with minimal β.

Notes:

• Precise mathematical framework to search for optimal auction.

• What about choice of G?

– Recall: cannot approximate optimal when only one unit is sold.

– Our Choice: optimal single price sale of at least two units.
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Competitive Analysis of Auctions

What about auctions that perform well in worst case without
assumptions???

Definition: AuctionA is β-competitive with benchmark G if for all b.

E[A(b)] ≥ G(b)/β.

Definition: The optimal auction for G is β-competitive with minimal β.

Notes:

• Precise mathematical framework to search for optimal auction.

• What about choice of G?

– Recall: cannot approximate optimal when only one unit is sold.

– Our Choice: optimal single price sale of at least two units.

– Choise of G is mostly irrelevant. [HM-05]
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Conclusions

1. Different in Analysis Frameworks:
i.i.d. bids vs. worst case with assumption vs. competitive analysis.
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Conclusions

1. Different in Analysis Frameworks:
i.i.d. bids vs. worst case with assumption vs. competitive analysis.

2. Similar Issues:

• estimate empirical distribution from b i.

• consistency.

• bounds improve with information smallness of bidders.

PRIOR-FREE MECHANISM DESIGN – JUNE 5, 2005
67



Conclusions

1. Different in Analysis Frameworks:
i.i.d. bids vs. worst case with assumption vs. competitive analysis.

2. Similar Issues:

• estimate empirical distribution from b i.

• consistency.

• bounds improve with information smallness of bidders.

3. Future Directions:

• Approximating general optimization problems.
(with cost functions or constrained feasible outcomes)

• Asymmetric optimizations.
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Followup to Wilson

“Game theory has a great advantage in explicitly analyzing the consequences of
trading rules that presumably are really common knowledge, it is deficient to the
extent it assumes other features to be common knowledge, such as one player’s
probability assessment about another’s preferences or information.

“I forsee the progress of game theory as depending on successive reductions in
the base of common knowledge required to conduct useful analysis of practical
problems. Only be repeated weakening of common knowledge assumptions will
the theory approximate reality.”

– Robert Wilson, 1987.

Challenges for Mechanism Design:

• common prior (or known prior).

• no collusion.

• no externalities.

• single-shot games.
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Followup to Wilson

“Game theory has a great advantage in explicitly analyzing the consequences of
trading rules that presumably are really common knowledge, it is deficient to the
extent it assumes other features to be common knowledge, such as one player’s
probability assessment about another’s preferences or information.

“I forsee the progress of game theory as depending on successive reductions in
the base of common knowledge required to conduct useful analysis of practical
problems. Only be repeated weakening of common knowledge assumptions will
the theory approximate reality.”

– Robert Wilson, 1987.

Challenges for Mechanism Design:

• common prior (or known prior).

• no collusion. [GH-05]

• no externalities.

• single-shot games.
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