Optimal Mechanism Design

(without Priors)

Jason D. Hartline

Microsoft Research - Silicon Valley
June 5, 2005

Also at EC

Sunday 2:00: G. Aggarwal, J. Hartline, Knapsack Auctions.

Sunday 2:30: M.-F. Balcan, A. Blum, J. Hartline, Y. Mansour, Sponsored Search Auction Design via Machine Learning.

Monday 8:55: M. Saks, L. Yu, Weak monotonicity suffices for truthfulness on convex domains.

Monday 3:30: A. Ronen, D. Lehmann, Nearly Optimal Multi Attribute Auctions.

Monday 3:55: E. David, A. Rogers, N. Jennings, J. Schiff, S. Kraus, Optimal Design of English Auctions with Discrete Bid Levels.

Monday 4:45: M. Hajiaghayi, R. Kleinberg, M. Mahdian, D. Parkes, Online Auctions with Re-usable Goods.

Tuesday 8:55: R. McGrew, J. Hartline, From Optimal Limited to Unlimited Supply Auctions.

Tuesday 9:45: C. Borgs, J. Chayes, N. Immorlica, M. Mahdian, A. Saberi, Multi-unit auctions with budget-constrained bidders.

Optimal Mechanism Design

Basic Question: how should a resource provider service consumers to maximize profit?

Optimal Mechanism Design

Basic Question: how should a resource provider service consumers to maximize profit?

- Obstacle: provider does not know consumer preferences.

Optimal Mechanism Design

Basic Question: how should a resource provider service consumers to maximize profit?

- Obstacle: provider does not know consumer preferences.
- Approach: design mechanism with incentive for consumers to reveal true preferences.

Optimal Mechanism Design

Basic Question: how should a resource provider service consumers to maximize profit?

- Obstacle: provider does not know consumer preferences.
- Approach: design mechanism with incentive for consumers to reveal true preferences.

Priors: known distributional information on consumer preferences.

Outline

Part I: Optimal Mechanism Design with Priors.
(game theory basics, truthful characterization, Myerson's optimal mechanism)

Part II: The Market Analysis Metaphor. (emperical distributions, consistency issues, random sampling, machine learning, pricing algorithms)

Part III: Optimal Mechanism Design in Worst-case. (competitive analysis, lower bounds, upper bounds, reduction to decision problem)

Part IV: Removal of Standard Assumptions.
(online auctions, collusion, asymmetric auctions, asymmetric settings)

Optimal Mechanism Design without Priors

Part I

Optimal Mechanism Design with Priors

Example Problem: Single-item Auction

Setting:

- Seller with one item.
- Bidders with private valuations: v_{1}, \ldots, v_{n}.

Design Goal:

- Single-round auction: bidders submit bids, seller decides winner and price.
- Truthful auction: bidders have incentive to bid true values.
- Optimal auction: seller gets optimal profit.

Economics Approach

Economics Approach to profit maximization:

1. Assume bidders' valuations are random.
2. Characterize class of truthful mechanisms.
3. Find optimal mechanism from class for distribution.

Step 1: Valuations are Random

Step 1: Assume bidders' valuations are random.

Step 1: Valuations are Random

Step 1: Assume bidders' valuations are random.
The Independent Private Value (IPV) model:

1. Bidder i has valuation $v_{i} \in[0, h]$ distributed as F_{i}. Cumulative distribution function: $F_{i}(b)=\operatorname{Pr}\left[v_{i} \geq b\right]$. Probability density function: $f_{i}(b)=F_{i}^{\prime}(b)$.
2. Bidder's values are independent: Joint density function: $f(\mathbf{b})=\prod_{i} f_{i}\left(b_{i}\right)$

Definition: f is the prior distribution, known to seller.

Step 2: Charactarization

Step 2: Characterize class of truthful mechanisms.

Step 2: Charactarization

Step 2: Characterize class of truthful mechanisms.
Recall Example: single-item auction.

1-item Vickrey Auction [Vickrey 1961]
"Sell to highest bidder at price equal to the second highest bid value."

Step 2: Charactarization

Step 2: Characterize class of truthful mechanisms.
Recall Example: single-item auction.
1-item Vickrey Auction [Vickrey 1961]
"Sell to highest bidder at price equal to the second highest bid value."

Example:

- Input: $\mathbf{b}=(1,3,6,2,4)$.
- Output: the 6 bid wins and pays 4 .

Vickrey Auction Analysis

How should bidder i bid?

Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]
"Sell to highest bidder at price equal to the second highest bid value."

How should bidder i bid?

- Let $t_{i}=\max _{j \neq i} b_{j}$.
- If $b_{i}>t_{i}$, bidder i wins and pays t_{i}; otherwise loses.

Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]
"Sell to highest bidder at price equal to the second highest bid value."

How should bidder i bid?

- Let $t_{i}=\max _{j \neq i} b_{j}$.
- If $b_{i}>t_{i}$, bidder i wins and pays t_{i}; otherwise loses.
Case 1: $v_{i}>t_{i}$
Case 2: $v_{i}<t_{i}$

Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]

"Sell to highest bidder at price equal to the second highest bid value."

How should bidder i bid?

- Let $t_{i}=\max _{j \neq i} b_{j}$.
- If $b_{i}>t_{i}$, bidder i wins and pays t_{i}; otherwise loses.

Case 1: $v_{i}>t_{i}$

Bid Value

Case 2: $v_{i}<t_{i}$

Bid Value

Vickrey Auction Analysis

1-item Vickrey Auction [Vickrey 1961]

"Sell to highest bidder at price equal to the second highest bid value."

How should bidder i bid?

- Let $t_{i}=\max _{j \neq i} b_{j}$.
- If $b_{i}>t_{i}$, bidder i wins and pays t_{i}; otherwise loses.

Case 1: $v_{i}>t_{i}$

Bid Value

Case 2: $v_{i}<t_{i}$

Bid Value

Result: In either case, bidder i 's best strategy is to bid $b_{i}=v_{i}$!

Bid-Independence

Definition: Bids with bidder i removed:

$$
\mathbf{b}_{-i}=\left(b_{1}, \ldots, b_{i-1}, ?, b_{i+1}, \ldots, b_{n}\right)
$$

Bid-Independence

Definition: Bids with bidder i removed:

$$
\mathbf{b}_{-i}=\left(b_{1}, \ldots, b_{i-1}, ?, b_{i+1}, \ldots, b_{n}\right)
$$

```
Bid-Independent Auction: BI 
On input b, for each bidder i
    1. }\mp@subsup{t}{i}{}\leftarrowg(\mp@subsup{\mathbf{b}}{-i}{})
    2. If ti}<<\mp@subsup{b}{i}{}\mathrm{ , sell to bidder }i\mathrm{ at price }\mp@subsup{t}{i}{}\mathrm{ .
    3. If }\mp@subsup{t}{i}{}>\mp@subsup{b}{i}{}\mathrm{ , reject bidder }i\mathrm{ .
```


Bid-Independence

Definition: Bids with bidder i removed:

$$
\mathbf{b}_{-i}=\left(b_{1}, \ldots, b_{i-1}, ?, b_{i+1}, \ldots, b_{n}\right)
$$

```
Bid-Independent Auction: \(\mathrm{BI}_{g}\)
On input \(\mathbf{b}\), for each bidder \(i\) :
1. \(t_{i} \leftarrow g\left(\mathbf{b}_{-i}\right)\).
    2. If \(t_{i}<b_{i}\), sell to bidder \(i\) at price \(t_{i}\).
    3. If \(t_{i}>b_{i}\), reject bidder \(i\).
```

Theorem: A (deterministic) auction is truthful iff it is bid-independent.

Notational Interlude

Notation: for input, b,

- $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i}$ is indicator for bidder i getting the item.
- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right): p_{i}$ is bidder i 's payment. (assume: $p_{i}=0$ if $x_{i}=0$)
- $c(\mathbf{x})$: seller's cost.

Notational Interlude

Notation: for input, b,

- $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i}$ is indicator for bidder i getting the item.
- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right): p_{i}$ is bidder i 's payment. (assume: $p_{i}=0$ if $x_{i}=0$)
- $c(\mathbf{x})$: seller's cost.

Recall Example: single-item auction.

$$
c(\mathbf{x})= \begin{cases}0 & \text { if } \sum_{i} x_{i} \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

Notational Interlude

Notation: for input, b,

- $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i}$ is indicator for bidder i getting the item.
- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right): p_{i}$ is bidder i 's payment. (assume: $p_{i}=0$ if $x_{i}=0$)
- $c(\mathbf{x})$: seller's cost.

Recall Example: single-item auction.

$$
c(\mathbf{x})= \begin{cases}0 & \text { if } \sum_{i} x_{i} \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

Note: Output of mechanism, (\mathbf{x}, \mathbf{p}), is function of \mathbf{b}.

- Explicitly: $\mathbf{x}(\mathbf{b}), x_{i}(\mathbf{b}), x_{i}\left(b_{i}, \mathbf{b}_{-i}\right)$, and $\mathbf{p}(\mathbf{b})$, etc.
- With \mathbf{b}_{-i} implicit: $x_{i}\left(b_{i}\right)$ and $p_{i}\left(b_{i}\right)$.

Step 3: Find Optimal Mechanism

Step 3: Find Optimal Mechanism from class for distribution.
Maximize Auction's Profit: $\mathbf{E}_{\mathbf{b}}\left[\sum_{i} p_{i}(\mathbf{b})-c(\mathbf{x}(\mathbf{b}))\right]$.
Subject to truthfulness:

1. bidder i wins if $b_{i}>t_{i} \Leftrightarrow x_{i}\left(b_{i}\right)$ is a step function.
2. bidder i pays $t_{i} x_{i}\left(b_{i}\right) \Leftrightarrow p_{i}\left(b_{i}\right)=x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b$.

Step 3: Find Optimal Mechanism

Step 3: Find Optimal Mechanism from class for distribution.
Maximize Auction's Profit: $\mathbf{E}_{\mathbf{b}}\left[\sum_{i} p_{i}(\mathbf{b})-c(\mathbf{x}(\mathbf{b}))\right]$.
Subject to truthfulness:

1. bidder i wins if $b_{i}>t_{i} \Leftrightarrow x_{i}\left(b_{i}\right)$ is a step function.
2. bidder i pays $t_{i} x_{i}\left(b_{i}\right) \Leftrightarrow p_{i}\left(b_{i}\right)=x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b$.

Definition: The virtual valuation of a bidder i with value $v_{i} \sim F_{i}$ is

$$
\psi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)} .
$$

Lemma: For $x_{i}(\mathbf{b})$ and bids \mathbf{b} with joint densify function f :

$$
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right]=\int_{\mathbf{b}} \psi_{i}\left(b_{i}\right) x_{i}(\mathbf{b}) f(\mathbf{b}) d \mathbf{b}
$$

Proof of Lemma

$$
\begin{aligned}
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right] & =\int_{\mathbf{b}} p_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}} p_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b\right] f_{i}\left(b_{i}\right)\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b_{i}=0}^{h} \int_{b=0}^{b_{i}} x_{i}(b) f_{i}\left(b_{i}\right) d b d b_{i}\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} \int_{b_{i}=b}^{h} x_{i}(b) f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b) \int_{b_{i}=b}^{h} f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b)\left(1-F_{i}(b)\right) d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[b_{i}-\frac{1-F_{i}\left(b_{i}\right)}{f_{i}\left(b_{i}\right)}\right] x_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}^{2}} \psi_{i}\left(b_{i}\right) x_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b}
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right] & =\int_{\mathbf{b}} p_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}} p_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b\right] f_{i}\left(b_{i}\right)\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b_{i}=0}^{h} \int_{b=0}^{b_{i}} x_{i}(b) f_{i}\left(b_{i}\right) d b d b_{i}\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} \int_{b_{i}=b}^{h} x_{i}(b) f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b) \int_{b_{i}=b}^{h} f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b)\left(1-F_{i}(b)\right) d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[b_{i}-\frac{1-F_{i}\left(b_{i}\right)}{f_{i}\left(b_{i}\right)}\right] x_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}} \psi_{i}\left(b_{i}\right) x_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b}
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right] & =\int_{\mathbf{b}} p_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}} p_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b\right] f_{i}\left(b_{i}\right)\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b_{i}=0}^{h} \int_{b=0}^{b_{i}} x_{i}(b) f_{i}\left(b_{i}\right) d b d b_{i}\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} \int_{b_{i}=b}^{h} x_{i}(b) f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b) \int_{b_{i}=b}^{h} f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b)\left(1-F_{i}(b)\right) d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[b_{i}-\frac{1-F_{i}\left(b_{i}\right)}{f_{i}\left(b_{i}\right)}\right] x_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}} \psi_{i}\left(b_{i}\right) x_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b}
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right] & =\int_{\mathbf{b}} p_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}} p_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b\right] f_{i}\left(b_{i}\right)\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b_{i}=0}^{h} \int_{b=0}^{b_{i}} x_{i}(b) f_{i}\left(b_{i}\right) d b d b_{i}\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} \int_{b_{i}=b}^{h} x_{i}(b) f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b) \int_{b_{i}=b}^{h} f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b)\left(1-F_{i}(b)\right) d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[b_{i}-\frac{1-F_{i}\left(b_{i}\right)}{f_{i}\left(b_{i}\right)}\right] x_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}^{2}} \psi_{i}\left(b_{i}\right) x_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b}
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right] & =\int_{\mathbf{b}} p_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}} p_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b\right] f_{i}\left(b_{i}\right)\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b_{i}=0}^{h} \int_{b=0}^{b_{i}} x_{i}(b) f_{i}\left(b_{i}\right) d b d b_{i}\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} \int_{b_{i}=b}^{h} x_{i}(b) f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b) \int_{b_{i}=b}^{h} f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b)\left(1-F_{i}(b)\right) d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[b_{i}-\frac{1-F_{i}\left(b_{i}\right)}{f_{i}\left(b_{i}\right)}\right] x_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}^{2}} \psi_{i}\left(b_{i}\right) x_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b}
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right] & =\int_{\mathbf{b}} p_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}} p_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b\right] f_{i}\left(b_{i}\right)\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b_{i}=0}^{h} \int_{b=0}^{b_{i}} x_{i}(b) f_{i}\left(b_{i}\right) d b d b_{i}\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} \int_{b_{i}=b}^{h} x_{i}(b) f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b) \int_{b_{i}=b}^{h} f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b)\left(1-F_{i}(b)\right) d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[b_{i}-\frac{1-F_{i}\left(b_{i}\right)}{f_{i}\left(b_{i}\right)}\right] x_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}^{2}} \psi_{i}\left(b_{i}\right) x_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b}
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right] & =\int_{\mathbf{b}} p_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}} p_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b\right] f_{i}\left(b_{i}\right)\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b_{i}=0}^{h} \int_{b=0}^{b_{i}} x_{i}(b) f_{i}\left(b_{i}\right) d b d b_{i}\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} \int_{b_{i}=b}^{h} x_{i}(b) f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b) \int_{b_{i}=b}^{h} f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b)\left(1-F_{i}(b)\right) d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[b_{i}-\frac{1-F_{i}\left(b_{i}\right)}{f_{i}\left(b_{i}\right)}\right] x_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}} \psi_{i}\left(b_{i}\right) x_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b}
\end{aligned}
$$

Proof of Lemma

$$
\begin{aligned}
\mathbf{E}_{\mathbf{b}}\left[p_{i}(\mathbf{b})\right] & =\int_{\mathbf{b}} p_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}} p_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[x_{i}\left(b_{i}\right) b_{i}-\int_{0}^{b_{i}} x_{i}(b) d b\right] f_{i}\left(b_{i}\right)\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b_{i}=0}^{h} \int_{b=0}^{b_{i}} x_{i}(b) f_{i}\left(b_{i}\right) d b d b_{i}\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} \int_{b_{i}=b}^{h} x_{i}(b) f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b) \int_{b_{i}=b}^{h} f_{i}\left(b_{i}\right) d b_{i} d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}}\left[\int_{b_{i}} x_{i}\left(b_{i}\right) b_{i} f_{i}\left(b_{i}\right) d b_{i}-\int_{b=0}^{h} x_{i}(b)\left(1-F_{i}(b)\right) d b\right] f\left(\mathbf{b}_{-i}\right) d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}_{-i}} \int_{b_{i}}\left[b_{i}-\frac{1-F_{i}\left(b_{i}\right)}{f_{i}\left(b_{i}\right)}\right] x_{i}\left(b_{i}\right) f_{i}\left(b_{i}\right) f\left(\mathbf{b}_{-i}\right) d b_{i} d \mathbf{b}_{-i} \\
& =\int_{\mathbf{b}^{2}} \psi_{i}\left(b_{i}\right) x_{i}\left(b_{i}\right) f(\mathbf{b}) d \mathbf{b}
\end{aligned}
$$

Myerson

Step 3: Find optimal mechanism.

Myerson

Step 3: Find optimal mechanism.
Theorem: [Mye-81] Given allocation rule \mathbf{x} and bids \mathbf{b} with density function f the expected profit is

$$
\int_{\mathbf{b}}\left[\sum_{i} \psi_{i}\left(b_{i}\right) x_{i}(\mathbf{b})-c(\mathbf{x}(\mathbf{b}))\right] f(\mathbf{b}) d \mathbf{b}
$$

Definition: Myerson's optimal mechanism for distribution $\mathbf{F}=F_{1} \times \ldots \times F_{n}$, is Myersion ${ }_{\mathbf{F}}(\mathbf{b})$ with

$$
\mathbf{x}(\mathbf{b})=\operatorname{argmax}_{\mathbf{x}^{\prime}} \sum_{i} \psi_{i}\left(b_{i}\right) x_{i}^{\prime}-c\left(\mathbf{x}^{\prime}\right)
$$

Theorem: Myersion's mechanism is optimal and truthful when the $\psi_{i}(\cdot)$ s are monotone.
Note 1: This applies to any cost function $c(\mathbf{x})$ (not just for single-item auction).

Note 2: For some $c(\mathbf{x})$ non-monotone $\psi_{i}(\cdot)$ can be ironed to be monotone.

Note 2: For some $c(\mathbf{x})$ non-monotone $\psi_{i}(\cdot)$ can be ironed to be monotone.

Example: Basic Auction

The Basic Auction Problem:

Given:

- n identical items for sale.
- n bidders, bidder i willing to pay at most v_{i} for an item.

Design: auction with maximal profit.

Example

Recall Theorem: [Mye-81] Given allocation rule \mathbf{x} and bids \mathbf{b} with density function f the expected profit is

$$
\int_{\mathbf{b}}\left[\sum_{i} \psi_{i}\left(b_{i}\right) x_{i}(\mathbf{b})-c(\mathbf{x}(\mathbf{b}))\right] f(\mathbf{b}) d \mathbf{b} .
$$

Recall Example: single-item auction

$$
c(\mathbf{x})= \begin{cases}0 & \text { if } \sum_{i} x_{i} \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

Result:

- Winner: the bidder with highest $\psi_{i}\left(b_{i}\right)$ (such that $\left.\psi_{i}\left(b_{i}\right) \geq 0\right)$.
- Winner's Payment: $\operatorname{argmin}_{b}\left\{\psi_{i}(b) \geq \psi_{j}\left(b_{j}\right) \& \psi_{i}(b) \geq 0\right\}$

Example

Recall Theorem: [Mye-81] Given allocation rule \mathbf{x} and bids \mathbf{b} with density function f the expected profit is

$$
\int_{\mathbf{b}}\left[\sum_{i} \psi_{i}\left(b_{i}\right) x_{i}(\mathbf{b})-c(\mathbf{x}(\mathbf{b}))\right] f(\mathbf{b}) d \mathbf{b} .
$$

Recall Example: single-item auction

$$
c(\mathbf{x})= \begin{cases}0 & \text { if } \sum_{i} x_{i} \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

Result:

- Winner: the bidder with highest $\psi_{i}\left(b_{i}\right)$ (such that $\left.\psi_{i}\left(b_{i}\right) \geq 0\right)$.
- Winner's Payment: $\operatorname{argmin}_{b}\left\{\psi_{i}(b) \geq \psi_{j}\left(b_{j}\right) \& \psi_{i}(b) \geq 0\right\}$
- Suppose bids are identical, $F_{i}=F_{j}$: $\Rightarrow \max \left\{b_{j}: j \neq i\right\} \cup\left\{\psi^{-1}(0)\right\}$

Example

- Interpretation: Optimal Auction = Vickrey w/reserve price $\psi^{-1}(0)$.

Example

- Interpretation: Optimal Auction = Vickrey w/reserve price $\psi^{-1}(0)$.

Example

- Interpretation: Optimal Auction = Vickrey w/reserve price $\psi^{-1}(0)$. Definition: $\operatorname{opt}(F)=\psi^{-1}(0)$

Example

- Interpretation: Optimal Auction = Vickrey w/reserve price $\psi^{-1}(0)$. Definition: $\operatorname{opt}(F)=\psi^{-1}(0)=\operatorname{argmax}_{b} b(1-F(b))$

Other Directions

1. General ironing procedure for arbitrary costs?
2. Agent's with correlated values. [Ron-03].
3. Deficits. [CHRSU-04]
4. Iterative Mechanisms. [DRJSK-05]
5. Optimal Mechanism for multi-parameter agents? (needs characterization like [SW-05], related to [RL-05])

Optimal Mechanism Design without Priors

Part II

The Market Analysis Metaphor

Motivation

Where does known prior come from?

1. previous sales.
2. market analysis.

Motivation

Where does known prior come from?

1. previous sales.
2. market analysis.

Issues:

1. incentive properties.
2. accuracy.

Motivation

Where does known prior come from?

1. previous sales.
2. market analysis.

Issues:

1. incentive properties.
2. accuracy.

Argument 1: by assuming a known prior we ignore incentive and performance issues from obtaining the prior.

Motivation

Where does known prior come from?

1. previous sales.
2. market analysis.

Issues:

1. incentive properties.
2. accuracy.

Argument 1: by assuming a known prior we ignore incentive and performance issues from obtaining the prior.

Argument 2: (Wilson Doctrine) Mechanisms should be independent of details.

Market Analysis

Market Analysis Approach:

1. Market Analysis \Rightarrow distributional knowledge $\mathbf{F}=\left(F_{1}, \ldots, F_{n}\right)$
2. Design mechanism for \mathbf{F} : Myersion ${ }_{\mathbf{F}}$

Recall Incentive Compatibility: for all $i, x_{i}\left(b_{i}\right)$ is monotone in b_{i}.
Can be arbitraty function of \mathbf{b}_{-i} !
Insight: use \mathbf{b}_{-i} for market analysis.

Definition: The imperical distribution for \mathbf{b} is

$$
\hat{F}_{\mathbf{b}}(x)=\frac{\left|\left\{i: b_{i}<x\right\}\right|}{n}
$$

Recall: Myersion ${ }_{F} \Rightarrow x_{i}^{F}(\mathbf{b}), p_{i}^{F}(\mathbf{b})$
Set $x_{i}\left(b_{i}\right)$ be the allocation for bidder i in Myersion $\hat{F}_{\mathbf{b}_{-i}}$

Estimating Distributions

Recall: Myerson's Optimal Auction for bids i.i.d. from F :

1. optimal price $=\operatorname{argmax}_{p} p(1-F(p))$.
2. offer all bidders the optimal price.

Estimating Distributions

Recall: Myerson's Optimal Auction for bids i.i.d. from F :

1. optimal price $=\operatorname{argmax}_{p} p(1-F(p))$.
2. offer all bidders the optimal price.

Idea: For bidder i use empirical estimate of F from \mathbf{b}_{-i}.

Estimating Distributions

Recall: Myerson's Optimal Auction for bids i.i.d. from F :

1. optimal price $=\operatorname{argmax}_{p} p(1-F(p))$.
2. offer all bidders the optimal price.

Idea: For bidder i use empirical estimate of F from \mathbf{b}_{-i}.
Definition: The empirical distribution \mathbf{b}_{-i} is

$$
\hat{F}_{\mathbf{b}_{-i}}(p)=\text { "number of bids less than } p " \times \frac{1}{n-1} .
$$

For basic auction problem:

Deterministic Optimal Price Auction

For basic auction problem:
Deterministic Optimal Price Auction (DOP) [GHW-01,BV-03,Seg-03]

On input \mathbf{b}, for each bidder i :

1. $p \leftarrow \operatorname{opt}\left(\mathbf{b}_{-i}\right)$.
2. If $p \leq b_{i}$, sell to bidder i at price p.
3. Otherwise, reject bidder i.

Deterministic Optimal Price Auction

For basic auction problem:
Deterministic Optimal Price Auction (DOP) [GHW-01,BV-03,Seg-03]

On input \mathbf{b}, for each bidder i :

1. $p \leftarrow \operatorname{opt}\left(\mathbf{b}_{-i}\right)$.
2. If $p \leq b_{i}$, sell to bidder i at price p.
3. Otherwise, reject bidder i.

Theorem: For \mathbf{b} i.i.d. from F on range $[1, h]$, profit of DOP approaches optimal profit as $n \rightarrow \infty$. [BV-03,Seg-03]

Deterministic Optimal Price Auction

For basic auction problem:

Deterministic Optimal Price Auction (DOP) [GHW-01,BV-03,Seg-03]

On input \mathbf{b}, for each bidder i :

1. $p \leftarrow \operatorname{opt}\left(\mathbf{b}_{-i}\right)$.
2. If $p \leq b_{i}$, sell to bidder i at price p.
3. Otherwise, reject bidder i.

Theorem: For \mathbf{b} i.i.d. from F on range $[1, h]$, profit of DOP approaches optimal profit as $n \rightarrow \infty$. [BV-03,Seg-03]

Lemma: Worst-case profit is bad. [GHW-01]

Worst Case Analysis of DOP

10 bidders
Example: for DOP and $\mathbf{b}=(\overbrace{(\overbrace{10,10, \ldots, 10}, 1,1, \ldots, 1})$
100 bidders
Profit: $10 \times$
$+90 \times$

Worst Case Analysis of DOP

Profit: $10 \times$ Revenue from 10 bid $+90 \times$ Revenue from 1 bid

Worst Case Analysis of DOP

10 bidders

Example: for DOP and $\mathbf{b}=(\overbrace{10,10, \ldots, 10}, 1,1, \ldots, 1)$
100 bidders
Profit: $10 \times$ Revenue from 10 bid $+90 \times$ Revenue from 1 bid

```
Revenue from 10 bid
What does DOP do for \(b_{i}=10\) ?
    9 bidders
\(\operatorname{opt}\left(\mathbf{b}_{-i}\right)=(\underbrace{10, \ldots, 10}, 1,1, \ldots, 1)\)
    99 bidders
```


Worst Case Analysis of DOP

10 bidders

Example: for DOP and $\mathbf{b}=(\overbrace{10,10, \ldots, 10}, 1,1, \ldots, 1)$
100 bidders
Profit: $10 \times$ Revenue from 10 bid $+90 \times$ Revenue from 1 bid

Revenue from 10 bid

Is $\operatorname{opt}\left(\mathbf{b}_{-i}\right)=1$ or 10 ?

What does DOP do for $b_{i}=10$?

Worst Case Analysis of DOP

10 bidders

Example: for DOP and $\mathbf{b}=(\underbrace{10,10, \ldots, 10}, 1,1, \ldots, 1)$
100 bidders
Profit: $10 \times$ Revenue from 10 bid $+90 \times$ Revenue from 1 bid

Revenue from 10 bid

What does DOP do for $b_{i}=10$?
9 bidders
$\operatorname{opt}\left(\mathbf{b}_{-i}\right)=(\underbrace{10, \ldots, 10}, 1,1, \ldots, 1)$
99 bidders

Is $\operatorname{opt}\left(\mathbf{b}_{-i}\right)=1$ or 10 ?

- Revenue 10

$$
=10 \times 9=90 .
$$

- Revenue ${ }_{1}$

$$
=1 \times 99=99 .
$$

Worst Case Analysis of DOP

10 bidders
Example: for DOP and $\mathbf{b}=(\underbrace{\overbrace{10,10, \ldots, 10}, 1,1, \ldots, 1}_{100 \text { bidders }})$
Profit: $10 \times \underbrace{\text { Revenue from } 10 \text { bid }}+90 \times$ Revenue from 1 bid 1

Revenue from 10 bid

What does DOP do for $b_{i}=10$?
9 bidders
$\operatorname{opt}\left(\mathbf{b}_{-i}\right)=(\underbrace{10, \ldots, 10}, 1,1, \ldots, 1)$
99 bidders
Result: Bidder i buys item at price 1!

Is $\operatorname{opt}\left(\mathbf{b}_{-i}\right)=1$ or 10 ?

- Revenue ${ }_{10}$

$$
=10 \times 9=90 .
$$

- Revenue ${ }_{1}$ $=1 \times 99=99$.
- Thus, opt $\left(\mathbf{b}_{-i}\right)=1$.

Worst Case Analysis of DOP

10 bidders

Example: for DOP and $\mathbf{b}=(\underbrace{\overbrace{10,10, \ldots, 10}, 1,1, \ldots, 1}_{100 \text { bidders }})$
Profit: $10 \times \underbrace{\text { Revenue from } 10 \text { bid }}+90 \times$ Revenue from 1 bid 1

Revenue from 1 bid

What does DOP do for $b_{i}=1$?
10 bidders
$\operatorname{opt}\left(\mathbf{b}_{-i}\right)=(10,10, \ldots, 10,1, \ldots, 1)$
99 bidders

Worst Case Analysis of DOP

10 bidders

Example: for DOP and $\mathbf{b}=(\underbrace{\overbrace{10,10, \ldots, 10}, 1,1, \ldots, 1}_{100 \text { bidders }})$
Profit: $10 \times \underbrace{\text { Revenue from } 10 \text { bid }}+90 \times$ Revenue from 1 bid 1

Revenue from 1 bid

Is $\operatorname{opt}\left(\mathbf{b}_{-i}\right)=1$ or 10 ?

What does DOP do for $b_{i}=1$?
10 bidders
$\operatorname{opt}\left(\mathbf{b}_{-i}\right)=(\underbrace{10,10, \ldots, 10}, 1, \ldots, 1)$
99 bidders

Worst Case Analysis of DOP

10 bidders

Example: for DOP and $\mathbf{b}=(\underbrace{10,10, \ldots, 10}, 1,1, \ldots, 1)$
100 bidders
Profit: $10 \times \underbrace{\text { Revenue from } 10 \text { bid }}+90 \times$ Revenue from 1 bid 1

Revenue from 1 bid

What does DOP do for $b_{i}=1$?
10 bidders
$\operatorname{opt}\left(\mathbf{b}_{-i}\right)=(10,10, \ldots, 10,1, \ldots, 1)$

Is $\operatorname{opt}\left(\mathbf{b}_{-i}\right)=1$ or 10 ?

- Revenue 10

$$
=10 \times 10=100 .
$$

- Revenue ${ }_{1}$

$$
=1 \times 99=99 .
$$

Worst Case Analysis of DOP

10 bidders

Example: for DOP and $\mathbf{b}=(\underbrace{\overbrace{10,10, \ldots, 10}, 1,1, \ldots, 1}_{100 \text { bidders }})$
Profit: $10 \times \underbrace{\text { Revenue from } 10 \text { bid }}_{1}+90 \times \underbrace{\text { Revenue from } 1 \text { bid }}_{0}=10$

Revenue from 1 bid

What does DOP do for $b_{i}=1$?
10 bidders
$\operatorname{opt}\left(\mathbf{b}_{-i}\right)=(10,10, \ldots, 10,1, \ldots, 1)$
99 bidders
Result: Bidder i is rejected!

Is $\operatorname{opt}\left(\mathbf{b}_{-i}\right)=1$ or 10 ?

- Revenue 10

$$
=10 \times 10=100 .
$$

- Revenue ${ }_{1}$

$$
=1 \times 99=99
$$

- Thus, opt $\left(\mathbf{b}_{-i}\right)=10$.

General Consistency Issue

Emperical Myerson Auction may be inconsistent
Double Auction Problem.

Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: \mathbf{b}^{\prime} and $\mathbf{b}^{\prime \prime}$.
2. Use $p^{\prime}=\operatorname{opt}\left(\mathbf{b}^{\prime}\right)$ as price for $\mathbf{b}^{\prime \prime}$.

Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: \mathbf{b}^{\prime} and $\mathbf{b}^{\prime \prime}$.
2. Use $p^{\prime}=\operatorname{opt}\left(\mathbf{b}^{\prime}\right)$ as price for $\mathbf{b}^{\prime \prime}$.

Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: \mathbf{b}^{\prime} and $\mathbf{b}^{\prime \prime}$.
2. Use $p^{\prime}=\operatorname{opt}\left(\mathbf{b}^{\prime}\right)$ as price for $\mathbf{b}^{\prime \prime}$.

Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: \mathbf{b}^{\prime} and $\mathbf{b}^{\prime \prime}$.
2. Use $p^{\prime}=\operatorname{opt}\left(\mathbf{b}^{\prime}\right)$ as price for $\mathbf{b}^{\prime \prime}$.
3. Use $p^{\prime \prime}=\operatorname{opt}\left(\mathbf{b}^{\prime \prime}\right)$ as price for \mathbf{b}^{\prime} (optional).

Approximation via Random Sampling

Random Sampling Optimal Price Auction, RSOP

1. Randomly partition bids into two sets: \mathbf{b}^{\prime} and $\mathbf{b}^{\prime \prime}$.
2. Use $p^{\prime}=\operatorname{opt}\left(\mathbf{b}^{\prime}\right)$ as price for $\mathbf{b}^{\prime \prime}$.
3. Use $p^{\prime \prime}=\operatorname{opt}\left(\mathbf{b}^{\prime \prime}\right)$ as price for \mathbf{b}^{\prime} (optional).

Theorem: For \mathbf{b} on range $[1, h]$, profit of RSOP approaches optimal profit as $n \rightarrow \infty$.

Worst Case with Assumption

Recall Theorem: For \mathbf{b} on range $[1, h]$, profit of RSOP approaches optimal profit as $n \rightarrow \infty$.

Worst Case with Assumption

Recall Theorem: For \mathbf{b} on range $[1, h]$, profit of RSOP approaches optimal profit as $n \rightarrow \infty$.

Implicit Assumption: optimal profit $\gg h$.

Worst Case with Assumption

Recall Theorem: For \mathbf{b} on range $[1, h]$, profit of RSOP approaches optimal profit as $n \rightarrow \infty$.

Implicit Assumption: optimal profit $\gg h$.
Implicit Definition: optimal profit = "optimal profit from single price sale with bidders' valuations."

Worst Case with Assumption

Recall Theorem: For \mathbf{b} on range $[1, h]$, profit of RSOP approaches optimal profit as $n \rightarrow \infty$.

Implicit Assumption: optimal profit $\gg h$.
Implicit Definition: optimal profit = "optimal profit from single price sale with bidders' valuations."

Fact: impossible to approximate optimal profit when it is optimal to sell only one unit.
E.g., $\mathbf{b}=(1,1,1,1, h, 1,1)$

Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)

Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)
Result: DOP generalization via Myerson-VCG construction fails.

Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)
Result: DOP generalization via Myerson-VCG construction fails.
Recall: Myerson-VCG Construction:

1. Compute each player's virtual valuation

$$
\phi\left(v_{i}\right)=v_{i}-\frac{1-F\left(v_{i}\right)}{f\left(v_{i}\right)} .
$$

2. Run VCG on virtual valuations.

Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)
Result: DOP generalization via Myerson-VCG construction fails.
Recall: Myerson-VCG Construction:

1. Compute each player's virtual valuation

$$
\phi\left(v_{i}\right)=v_{i}-\frac{1-F\left(v_{i}\right)}{f\left(v_{i}\right)} .
$$

2. Run VCG on virtual valuations.

Generalized DOP Technique: for each bidder i,

1. Compute virtual valuations using $\hat{F}_{\mathbf{b}_{-i}}$.
2. Compute outcome of VCG on virtual valuations for bidder i.

Consistency

Concern: lack of consistency?
(bidders offered optimal prices from different empirical distributions)
Result: DOP generalization via Myerson-VCG construction fails.

Recall: Myerson-VCG Construction:

1. Compute each player's virtual valuation

$$
\phi\left(v_{i}\right)=v_{i}-\frac{1-F\left(v_{i}\right)}{f\left(v_{i}\right)} .
$$

2. Run VCG on virtual valuations.

Generalized DOP Technique: for each bidder i,

1. Compute virtual valuations using $\hat{F}_{\mathbf{b}_{-i}}$.
2. Compute outcome of VCG on virtual valuations for bidder i.

Different empirical distributions \Rightarrow inconsistency.

The Double Auction Problem

The Double Auction Problem:

Given:

- n sellers, seller i willing to sell a unit for at least s_{i}.
- n buyers, buyer i willing to buy a unit for at most b_{i}.

Design: Double auction maximize profit of broker. [BV-03,DGHK-02]

The Double Auction Problem

The Double Auction Problem:

Given:

- n sellers, seller i willing to sell a unit for at least s_{i}.
- n buyers, buyer i willing to buy a unit for at most b_{i}.

Design: Double auction maximize profit of broker. [BV-03,DGHK-02]
Consistency Constraint: number of winning buyers = number of winning sellers.

The Double Auction Problem

The Double Auction Problem:

Given:

- n sellers, seller i willing to sell a unit for at least s_{i}.
- n buyers, buyer i willing to buy a unit for at most b_{i}.

Design: Double auction maximize profit of broker. [BV-03,DGHK-02]
Consistency Constraint: number of winning buyers = number of winning sellers.

Generalized DOP \Rightarrow inconsistent.
Generalized RSOP \Rightarrow consistent.

Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: $\mathbf{b}^{\prime}, \mathbf{s}^{\prime}$ and $\mathbf{b}^{\prime \prime}, \mathbf{s}^{\prime \prime}$
2. Compute virtual valuations for \mathbf{b}^{\prime} and \mathbf{s}^{\prime} using $\hat{F}_{\mathbf{b}^{\prime \prime}}$ and $\hat{F}_{\mathbf{s}^{\prime \prime}}$.
3. Run VCG on virtual valuations of \mathbf{b}^{\prime} and \mathbf{s}^{\prime}.

Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: $\mathbf{b}^{\prime}, \mathbf{s}^{\prime}$ and $\mathbf{b}^{\prime \prime}, \mathbf{s}^{\prime \prime}$
2. Compute virtual valuations for \mathbf{b}^{\prime} and \mathbf{s}^{\prime} using $\hat{F}_{\mathbf{b}^{\prime \prime}}$ and $\hat{F}_{\mathbf{s}^{\prime \prime}}$.
3. Run VCG on virtual valuations of \mathbf{b}^{\prime} and \mathbf{s}^{\prime}.
4. Vice versa.

Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: $\mathbf{b}^{\prime}, \mathbf{s}^{\prime}$ and $\mathbf{b}^{\prime \prime}, \mathbf{s}^{\prime \prime}$
2. Compute virtual valuations for \mathbf{b}^{\prime} and \mathbf{s}^{\prime} using $\hat{F}_{\mathbf{b}^{\prime \prime}}$ and $\hat{F}_{\mathbf{s}^{\prime \prime}}$.
3. Run VCG on virtual valuations of \mathbf{b}^{\prime} and \mathbf{s}^{\prime}.
4. Vice versa.

Consistency: because both partitions are consistent.

Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: $\mathbf{b}^{\prime}, \mathbf{s}^{\prime}$ and $\mathbf{b}^{\prime \prime}, \mathbf{s}^{\prime \prime}$
2. Compute virtual valuations for \mathbf{b}^{\prime} and \mathbf{s}^{\prime} using $\hat{F}_{\mathbf{b}^{\prime \prime}}$ and $\hat{F}_{\mathbf{s}^{\prime \prime}}$.
3. Run VCG on virtual valuations of \mathbf{b}^{\prime} and \mathbf{s}^{\prime}.
4. Vice versa.

Consistency: because both partitions are consistent.
Theorem: [BV-03] The RSOP double auction approaches optimal profit as $n \rightarrow \infty$.

Generalizing RSOP

Random Sampling Optimal Price Double Auction, RSOP

1. Randomly partition bids into two sets: $\mathbf{b}^{\prime}, \mathbf{s}^{\prime}$ and $\mathbf{b}^{\prime \prime}, \mathbf{s}^{\prime \prime}$
2. Compute virtual valuations for \mathbf{b}^{\prime} and \mathbf{s}^{\prime} using $\hat{F}_{\mathbf{b}^{\prime \prime}}$ and $\hat{F}_{\mathbf{s}^{\prime \prime}}$.
3. Run VCG on virtual valuations of \mathbf{b}^{\prime} and \mathbf{s}^{\prime}.
4. Vice versa.

Consistency: because both partitions are consistent.
Theorem: [BV-03] The RSOP double auction approaches optimal profit as $n \rightarrow \infty$.

Subtlety: Must iron emperical distribution when it fails the monotone hazard rate condition.

Is consistency feasible?

Difficulty: Consistency, Truthfulness, and Profit Maximization.

Example:

- Basic Auction problem (n bidders, n units).
- Envy-freedom: all bidders are offered the same price.

Is consistency feasible?

Difficulty: Consistency, Truthfulness, and Profit Maximization.

Example:

- Basic Auction problem (n bidders, n units).
- Envy-freedom: all bidders are offered the same price.

Theorem: [GH-03] No auction is truthful, envy-free, and approximates the optimal profit better than $o(\log n / \log \log n)$.

But. . .

Is consistency feasible?

Difficulty: Consistency, Truthfulness, and Profit Maximization.

Example:

- Basic Auction problem (n bidders, n units).
- Envy-freedom: all bidders are offered the same price.

Theorem: [GH-03] No auction is truthful, envy-free, and approximates the optimal profit better than $o(\log n / \log \log n)$.

But. . .
Theorem: Exists approximately optimal auctions that are

- truthful with high probability and envy-free, or
- envy-free with high probability and truthful.

Optimal Mechanism Design without Priors

Part III

The Worst Case

Analysis Framework

Recall Goal: Truthful profit maximizing basic auction.

Analysis Framework

Recall Goal: Truthful profit maximizing basic auction.

Fact: There is no "best" truthful auction.

Analysis Framework

Recall Goal: Truthful profit maximizing basic auction.

Fact: There is no "best" truthful auction.

Competitive Analysis:

Compare auction profit to optimal public value profit, OPT.

Analysis Framework

Recall Goal: Truthful profit maximizing basic auction.

Fact: There is no "best" truthful auction.

Competitive Analysis:

Compare auction profit to optimal public value profit, OPT.

Definition: An auction is β-competitive if its expected profit is at least OPT / β on any input.

Analysis Framework

Recall Goal: Truthful profit maximizing basic auction.

Fact: There is no "best" truthful auction.

Competitive Analysis:

Compare auction profit to optimal public value profit, OPT.
Definition: An auction is β-competitive if its expected profit is at least OPT / β on any input.

What is optimal public value auction?

Optimal Public Value Auction

Optimal Single-Price Mechanism with Two Winners: $\mathcal{F}^{(2)}$

1. Compute best single sale price, p, for two or more items.
2. If $b_{i} \geq p$ sell to bidder i at price p.
3. Otherwise, reject bidder i.

Optimal Public Value Auction

Optimal Single-Price Mechanism with Two Winners: $\mathcal{F}^{(2)}$

1. Compute best single sale price, p, for two or more items.
2. If $b_{i} \geq p$ sell to bidder i at price p.
3. Otherwise, reject bidder i.

Example:

- Input: $\mathbf{b}=(200,11,10,2,1)$.

Optimal Public Value Auction

Optimal Single-Price Mechanism with Two Winners: $\mathcal{F}^{(2)}$

1. Compute best single sale price, p, for two or more items.
2. If $b_{i} \geq p$ sell to bidder i at price p.
3. Otherwise, reject bidder i.

Example:

- Input: $\mathbf{b}=(200,11,10,2,1)$.
- Output: the 200, 11, and 10 bids win at price 10.
- Revenue: 30.

Worst Case Competitive Auctions

Definition: A randomized auction is β-competitive in worst case if its expected profit is at least $\mathcal{F}^{(2)} / \beta$ for any input.

Worst Case Competitive Auctions

Definition: A randomized auction is β-competitive in worst case if its expected profit is at least $\mathcal{F}^{(2)} / \beta$ for any input.

Prior Results:

1. No deterministic Auction is competitive.
[Goldberg, Hartline, Wright 2001]
2. 3.39-competitive randomized auction.
[Goldberg, Hartline 2003]
3. No auction better than 2-competitive.
[Fiat, Goldberg, Hartline, Karlin 2002]

Worst Case Competitive Auctions

Definition: A randomized auction is β-competitive in worst case if its expected profit is at least $\mathcal{F}^{(2)} / \beta$ for any input.

Prior Results:

1. No deterministic Auction is competitive.
2. 3.39-competitive randomized auction.
3. No auction better than 2-competitive.
[Fiat, Goldberg, Hartline, Karlin 2002]
Open Question: What is the optimal competitive ratio?

Worst Case Competitive Auctions

Definition: A randomized auction is β-competitive in worst case if its expected profit is at least $\mathcal{F}^{(2)} / \beta$ for any input.

Prior Results:

1. No deterministic Auction is competitive.
2. 3.39-competitive randomized auction.
[Goldberg, Hartline 2003]
3. No auction better than 2-competitive.
[Fiat, Goldberg, Hartline, Karlin 2002]
Open Question: What is the optimal competitive ratio?
Main Theorem: No auction is better than 2.42-competitive.

Classical Reduction

Optimization problem: "What is the maximum value of a feasible sol ution?"

Decision problem: "Is there a feasible solution with value at least V ?"
Classical reduction: Search for optimal value using repeated calls to decision problem solution.

Classical Reduction

Optimization problem: "What is the maximum value of a feasible sol ution?"

Decision problem: "Is there a feasible solution with value at least V ?"
Classical reduction: Search for optimal value using repeated calls to decision problem solution.

Note: This reduction does not work for private value problems. (Simulating several truthful mechanisms and using the outcome of the best one is not truthful)

Basic Auction Decision Problem

The Decision Problem for the Basic Auction:

Given:

- n identical items for sale.
- n bidders, bidder i willing to pay at most v_{i} for an item.
- Target profit R.

Design: auction mechanism that obtains profit R if $R \leq$ OPT.

Basic Auction Decision Problem

The Decision Problem for the Basic Auction:

Given:

- n identical items for sale.
- n bidders, bidder i willing to pay at most v_{i} for an item.
- Target profit R.

Design: auction mechanism that obtains profit R if $R \leq$ OPT.

Definition: Profit extractor is solution to private value decision problem.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

$$
\begin{aligned}
& \text { ProfitExtract }_{R} \\
& \text { 1. Find largest } k \text { s.t. } k \text { bidders have } b_{i} \geq R / k \text {. } \\
& \text { 2. Sell at price } R / k \text {. } \\
& \text { 3. Reject lower bidders. }
\end{aligned}
$$

Example:

- $R=9$.
- $\mathbf{b}=(8,7,4,1,1)$.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

$$
\begin{aligned}
& \text { ProfitExtract }_{R} \\
& \text { 1. Find largest } k \text { s.t. } k \text { bidders have } b_{i} \geq R / k \text {. } \\
& \text { 2. Sell at price } R / k \text {. } \\
& \text { 3. Reject lower bidders. }
\end{aligned}
$$

Example:

- $R=9$.
- $\mathbf{b}=(8,7,4,1,1)$.

Properties:

- Truthful.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

$$
\begin{aligned}
& \text { ProfitExtract } R \\
& \text { 1. Find largest } k \text { s.t. } k \text { bidders have } b_{i} \geq R / k \text {. } \\
& \text { 2. Sell at price } R / k \text {. } \\
& \text { 3. Reject lower bidders. }
\end{aligned}
$$

Example:

- $R=9$.
- $\mathbf{b}=(8,7,4,1,1)$.

Properties:

- Truthful.
- Revenue R if $R<$ OPT, and 0 otherwise.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

$$
\begin{aligned}
& \text { ProfitExtract } R \\
& \text { 1. Find largest } k \text { s.t. } k \text { bidders have } b_{i} \geq R / k \text {. } \\
& \text { 2. Sell at price } R / k \text {. } \\
& \text { 3. Reject lower bidders. }
\end{aligned}
$$

Example:

- $R=9$.
- $\mathbf{b}=(8,7,4,1,1)$.

Properties:

- Truthful.
- Revenue R if $R<\mathrm{OPT}$, and 0 otherwise.
- envy-free!

Sketch of Lower Bound

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:

Sketch of Lower Bound

New Notation: random bid, B_{i}, random bid vector B .

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:

Sketch of Lower Bound

New Notation: random bid, B_{i}, random bid vector \mathbf{B}.

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:

Choose B with $B_{i} \in[1, \infty)$ i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.

Sketch of Lower Bound

New Notation: random bid, B_{i}, random bid vector B.

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:

Choose \mathbf{B} with $B_{i} \in[1, \infty)$ i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
Analysis:

- Recall: Truthful auction \mathcal{A} is bid-independent.
- Auction \mathcal{A} offers bidder i price $p \geq 1$.
- Expected revenue from i is $p \times \operatorname{Pr}\left[B_{i}>p\right]=1$.
- For n bidders, $\mathbf{E}[\mathcal{A}(\mathbf{B})]=n$.

Sketch of Lower Bound

New Notation: random bid, B_{i}, random bid vector \mathbf{B}.

Sketch of Lower Bound:

1. Bid distribution where every auction gets same revenue:

Choose \mathbf{B} with $B_{i} \in[1, \infty)$ i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
Analysis:

- Recall: Truthful auction \mathcal{A} is bid-independent.
- Auction \mathcal{A} offers bidder i price $p \geq 1$.
- Expected revenue from i is $p \times \operatorname{Pr}\left[B_{i}>p\right]=1$.
- For n bidders, $\mathbf{E}[\mathcal{A}(\mathbf{B})]=n$.

2. Bound $\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]$.

Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for $n=2$?
Lemma: No auction is better than 2-competitive.

Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for $n=2$?
Lemma: No auction is better than 2-competitive.
Goal: calculate $\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]$ (for \mathbf{B} with $\left.\operatorname{Pr}\left[B_{i}>z\right]=1 / z\right)$.

Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for $n=2$?
Lemma: No auction is better than 2-competitive.
Goal: calculate $\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]$ (for \mathbf{B} with $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$).
For $\mathbf{B}=\left(B_{1}, B_{2}\right), \mathcal{F}^{(2)}(\mathbf{B})=2 \min \left(B_{1}, B_{2}\right)$.

Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for $n=2$?
Lemma: No auction is better than 2-competitive.

$$
\begin{aligned}
& \text { Goal: calculate } \left.\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right] \text { (for } \mathbf{B} \text { with } \operatorname{Pr}\left[B_{i}>z\right]=1 / z\right) \text {. } \\
& \text { For } \mathbf{B}=\left(B_{1}, B_{2}\right), \mathcal{F}^{(2)}(\mathbf{B})=2 \min \left(B_{1}, B_{2}\right) . \\
& \operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B})>z\right]=\operatorname{Pr}\left[B_{1}>z / 2 \wedge B_{2}>z / 2\right]=4 / z^{2} .
\end{aligned}
$$

Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for $n=2$?
Lemma: No auction is better than 2-competitive.

> Goal: calculate $\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]$ (for \mathbf{B} with $\left.\operatorname{Pr}\left[B_{i}>z\right]=1 / z\right)$.
> For $\mathbf{B}=\left(B_{1}, B_{2}\right), \mathcal{F}^{(2)}(\mathbf{B})=2 \min \left(B_{1}, B_{2}\right)$.
> $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B})>z\right]=\operatorname{Pr}\left[B_{1}>z / 2 \wedge B_{2}>z / 2\right]=4 / z^{2}$.

Definition of Expectation: $\mathbf{E}[X]=\int_{0}^{\infty} \operatorname{Pr}[X>x] d x$.

Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for $n=2$?
Lemma: No auction is better than 2-competitive.

> Goal: calculate $\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]$ (for \mathbf{B} with $\left.\operatorname{Pr}\left[B_{i}>z\right]=1 / z\right)$.
> For $\mathbf{B}=\left(B_{1}, B_{2}\right), \mathcal{F}^{(2)}(\mathbf{B})=2 \min \left(B_{1}, B_{2}\right)$.
> $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B})>z\right]=\operatorname{Pr}\left[B_{1}>z / 2 \wedge B_{2}>z / 2\right]=4 / z^{2}$.

Definition of Expectation: $\mathbf{E}[X]=\int_{0}^{\infty} \operatorname{Pr}[X>x] d x$.
$\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]=2+\int_{2}^{\infty} 4 / z^{2}$

Two Bidder Case: Lower Bound

Question: What is optimal competitive ratio for $n=2$?
Lemma: No auction is better than 2-competitive.

> Goal: calculate $\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]$ (for \mathbf{B} with $\left.\operatorname{Pr}\left[B_{i}>z\right]=1 / z\right)$.
> For $\mathbf{B}=\left(B_{1}, B_{2}\right), \mathcal{F}^{(2)}(\mathbf{B})=2 \min \left(B_{1}, B_{2}\right)$.
> $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B})>z\right]=\operatorname{Pr}\left[B_{1}>z / 2 \wedge B_{2}>z / 2\right]=4 / z^{2}$.

Definition of Expectation: $\mathbf{E}[X]=\int_{0}^{\infty} \operatorname{Pr}[X>x] d x$.
$\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]=2+\int_{2}^{\infty} 4 / z^{2}=4$
Recall: $\mathbf{E}[\mathcal{A}(\mathbf{B})]=2$, therefore competitive ratio is 2 .

Two Bidder Case: Upper Bound

Lemma: For $n=2$, the Vickrey auction is 2 -competitive.

Two Bidder Case: Upper Bound

Lemma: For $n=2$, the Vickrey auction is 2 -competitive.

Recall:

- For $\mathbf{b}=\left(b_{1}, b_{2}\right), \mathcal{F}^{(2)}(\mathbf{b})=2 \min \left(b_{1}, b_{2}\right)$.
- Vickrey Revenue $=\min \left(b_{1}, b_{2}\right)$.

Three Bidder Case

Lemma: No 3-bidder auction is better than 13/6-competitive.

Three Bidder Case

Lemma: No 3-bidder auction is better than 13/6-competitive.
Open Question: What is best auction for three bidders?

Three Bidder Case

Lemma: No 3-bidder auction is better than 13/6-competitive.
Open Question: What is best auction for three bidders?
What is known:

- 2.3-competitive auction (note: $13 / 6 \approx 2.166$).
- Optimal auction uses prices \neq bid values. (for prices $=$ bid values, optimal auction is 2.5-competitive)

General Lower Bound

Theorem: The competitive ratio of any auction is at least

$$
1-\sum_{i=2}^{n}\left(\frac{-1}{n}\right)^{i-1} \frac{i}{i-1}\binom{n-1}{i-1} \geq 2.42
$$

General Lower Bound

Theorem: The competitive ratio of any auction is at least

$$
1-\sum_{i=2}^{n}\left(\frac{-1}{n}\right)^{i-1} \frac{i}{i-1}\binom{n-1}{i-1} \geq 2.42
$$

Proof Outline:

1. Compute $\mathbf{E}\left[\mathcal{F}^{(2)}(\mathbf{B})\right]$.
(a) Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B})\right] \geq z$.
(b) Integrate.
2. Divide by $\mathbf{E}[\mathcal{A}(\mathbf{B})]=n$.
3. Take limit.

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$
Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$
Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids.

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$

Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids. (E.g., $\left.\mathbf{B}^{(3)}=(2,1,1), F_{3,2}=6\right)$

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$

Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids. (E.g., $\left.\boldsymbol{B}^{(3)}=(2,1,1), F_{3,2}=6\right)$

Proof: (high level)

1. Consider $\operatorname{Pr}\left[F_{n, k}>z\right]$. (Fix $\left.n, k, z\right)$

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$

Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids. (E.g., $\left.\boldsymbol{B}^{(3)}=(2,1,1), F_{3,2}=6\right)$

Proof: (high level)

1. Consider $\operatorname{Pr}\left[F_{n, k}>z\right]$. (Fix $\left.n, k, z\right)$
2. Event \mathcal{H}_{i} :

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$

Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids. (E.g., $\left.B^{(3)}=(2,1,1), F_{3,2}=6\right)$

Proof: (high level)

1. Consider $\operatorname{Pr}\left[F_{n, k}>z\right]$. (Fix $\left.n, k, z\right)$
2. Event \mathcal{H}_{i} : " i bidders bid $>(k+i) / z$ and no $j>i$ bidders bid $>(k+j) / z^{\prime \prime}$.

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$
Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids. (E.g., $\left.\boldsymbol{B}^{(3)}=(2,1,1), F_{3,2}=6\right)$

Proof: (high level)

1. Consider $\operatorname{Pr}\left[F_{n, k}>z\right]$. (Fix $\left.n, k, z\right)$
2. Event \mathcal{H}_{i} : " i bidders bid $>(k+i) / z$ and no $j>i$ bidders bid $>(k+j) / z^{\prime \prime}$.
3. $\mathcal{H}_{i}=\binom{n}{i}\left(\frac{k+i}{z}\right)^{i} \operatorname{Pr}\left[F_{n-i, k+i}<z\right]$.

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$
Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids. (E.g., $\left.\mathbf{B}^{(3)}=(2,1,1), F_{3,2}=6\right)$

Proof: (high level)

1. Consider $\operatorname{Pr}\left[F_{n, k}>z\right]$. (Fix $\left.n, k, z\right)$
2. Event \mathcal{H}_{i} : " i bidders bid $>(k+i) / z$ and no $j>i$ bidders bid $>(k+j) / z^{\prime \prime}$.
3. $\mathcal{H}_{i}=\binom{n}{i}\left(\frac{k+i}{z}\right)^{i} \operatorname{Pr}\left[F_{n-i, k+i}<z\right]$.
4. $\operatorname{Pr}\left[F_{n, k}>z\right]=\sum_{i=1}^{n} \mathcal{H}_{i}$.

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$
Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids. (E.g., $\left.\mathbf{B}^{(3)}=(2,1,1), F_{3,2}=6\right)$

Proof: (high level)

1. Consider $\operatorname{Pr}\left[F_{n, k}>z\right]$. (Fix $\left.n, k, z\right)$
2. Event \mathcal{H}_{i} : " i bidders bid $>(k+i) / z$ and no $j>i$ bidders bid $>(k+j) / z^{\prime \prime}$.
3. $\mathcal{H}_{i}=\binom{n}{i}\left(\frac{k+i}{z}\right)^{i} \operatorname{Pr}\left[F_{n-i, k+i}<z\right]$.
4. $\operatorname{Pr}\left[F_{n, k}>z\right]=\sum_{i=1}^{n} \mathcal{H}_{i}$.
5. Solve Recurrence.

Compute $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]$
Lemma: $\operatorname{Pr}\left[\mathcal{F}^{(2)}(\mathbf{B}) \geq z\right]=n \sum_{i=2}^{n}\left(\frac{-1}{z}\right)^{i} i\binom{n-1}{i-1}$.

- $\mathrm{B}^{(n)}: n$ bids i.i.d. as $\operatorname{Pr}\left[B_{i}>z\right]=1 / z$.
- $F_{n, k}$: random variable for optimal single price profit on $\mathbf{B}^{(n)}$ and additional k high bids. (E.g., $\left.\mathbf{B}^{(3)}=(2,1,1), F_{3,2}=6\right)$

Proof: (high level)

1. Consider $\operatorname{Pr}\left[F_{n, k}>z\right]$. (Fix $\left.n, k, z\right)$
2. Event \mathcal{H}_{i} : " i bidders bid $>(k+i) / z$ and no $j>i$ bidders bid $>(k+j) / z^{\prime \prime}$.
3. $\mathcal{H}_{i}=\binom{n}{i}\left(\frac{k+i}{z}\right)^{i} \operatorname{Pr}\left[F_{n-i, k+i}<z\right]$.
4. $\operatorname{Pr}\left[F_{n, k}>z\right]=\sum_{i=1}^{n} \mathcal{H}_{i}$.
5. Solve Recurrence.
6. $\operatorname{Pr}\left[\mathcal{F}^{(2)}\left(\mathbf{b}^{(n)}\right)>z\right]=\operatorname{Pr}\left[F_{n, 0}>z\right]-\operatorname{Pr}\left[\mathcal{H}_{1}\right]$.

Conclusions

General:

- Upper Bound: 3.25. [HM-05]
- Lower Bound: 2.42. [GHKS-04]
- Open: optimal auction?

Limited Supply:

- 2-items: optimal competitive ratio $=2$. [FGHK-02]
- 3-items: optimal competitive ratio $=13 / 6 \approx 2.17$. [GHKS-04,HM-05]
- 4-items: lower bound: $215 / 96 \approx 2.24$. [GHKS-04]

Optimal Mechanism Design without Priors

Part IV

The Technique of Consensus Estimates

Models

Analysis Models:

- Average Case.
- Worst Case.
- Approximation with assumption.
- Competitive analysis.

Design Techniques:

- Market analysis metaphor.
- Other techniques.

Incentive Properties:

- Truthful.
- Truthful with high probability.

Solution Approach

Consider definitions:

- A summary value does not change much when any bidder lowers their bids.

$$
\begin{aligned}
& \text { E.g., } \# p p^{(\mathbf{b})=\text { "number of bidders above } p "} \mathrm{OPT}(\mathbf{b})=\text { "optimal profit from a single price" }
\end{aligned}
$$

- A summary consensus estimate is a random estimate of summary value that with high probability cannot be manipulated by a bidder lowering their bid.
- A summary mechanism, $\mathcal{M}_{S_{1}, \ldots, S_{k}}$ is a consistent mechanism that approximates profit when parameterized by (an) approximate summary value(s).

Classical Reduction

Optimization problem: "What is the maximum value of a feasible sol ution?"

Decision problem: "Is there a feasible solution with value at least V ?"
Classical reduction: Search for optimal value using repeated calls to decision problem solution.

Classical Reduction

Optimization problem: "What is the maximum value of a feasible sol ution?"

Decision problem: "Is there a feasible solution with value at least V ?"
Classical reduction: Search for optimal value using repeated calls to decision problem solution.

Note: This reduction does not work for private value problems. (Simulating several truthful mechanisms and using the outcome of the best one is not truthful)

Basic Auction Decision Problem

The Decision Problem for the Basic Auction:

Given:

- n identical items for sale.
- n bidders, bidder i willing to pay at most v_{i} for an item.
- Target profit R.

Design: auction mechanism that obtains profit R if $R \leq$ OPT.

Basic Auction Decision Problem

The Decision Problem for the Basic Auction:

Given:

- n identical items for sale.
- n bidders, bidder i willing to pay at most v_{i} for an item.
- Target profit R.

Design: auction mechanism that obtains profit R if $R \leq$ OPT.

Definition: Profit extractor is solution to private value decision problem.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

$$
\begin{aligned}
& \text { ProfitExtract } R \\
& \text { 1. Find largest } k \text { s.t. } k \text { bidders have } b_{i} \geq R / k \text {. } \\
& \text { 2. Sell at price } R / k \text {. } \\
& \text { 3. Reject lower bidders. }
\end{aligned}
$$

Example:

- $R=9$.
- $\mathbf{b}=(8,7,4,1,1)$.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

$$
\begin{aligned}
& \text { ProfitExtract } R \\
& \text { 1. Find largest } k \text { s.t. } k \text { bidders have } b_{i} \geq R / k \text {. } \\
& \text { 2. Sell at price } R / k \text {. } \\
& \text { 3. Reject lower bidders. }
\end{aligned}
$$

Example:

- $R=9$.
- $\mathbf{b}=(8,7,4,1,1)$.

Properties:

- Truthful.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

$$
\begin{aligned}
& \text { ProfitExtract } R \\
& \text { 1. Find largest } k \text { s.t. } k \text { bidders have } b_{i} \geq R / k \text {. } \\
& \text { 2. Sell at price } R / k \text {. } \\
& \text { 3. Reject lower bidders. }
\end{aligned}
$$

Example:

- $R=9$.
- $\mathbf{b}=(8,7,4,1,1)$.

Properties:

- Truthful.
- Revenue R if $R<$ OPT, and 0 otherwise.

Moulin-Shenker

Result: [Moulin, Shenker 1996] Profit extractor for basic auction.

$$
\begin{aligned}
& \text { ProfitExtract } R \\
& \text { 1. Find largest } k \text { s.t. } k \text { bidders have } b_{i} \geq R / k \text {. } \\
& \text { 2. Sell at price } R / k \text {. } \\
& \text { 3. Reject lower bidders. }
\end{aligned}
$$

Example:

- $R=9$.
- $\mathbf{b}=(8,7,4,1,1)$.

Properties:

- Truthful.
- Revenue R if $R<\mathrm{OPT}$, and 0 otherwise.
- envy-free!

Summary Consensus Estimates

Fact: If OPT sells at least k units,

$$
\frac{k-1}{k} \mathrm{OPT}(\mathbf{b}) \leq \mathrm{OPT}\left(\mathbf{b}_{-i}\right) \leq \mathrm{OPT}(\mathbf{b})
$$

Summary Consensus Estimates

Fact: If OPT sells at least k units,

$$
\frac{k-1}{k} \mathrm{OPT}(\mathbf{b}) \leq \mathrm{OPT}\left(\mathbf{b}_{-i}\right) \leq \mathrm{OPT}(\mathbf{b})
$$

Consider summary consensus estimate:
" $\operatorname{OPT}(\mathbf{b})$ rounded down to nearest power of 2"

Summary Consensus Estimates

Fact: If OPT sells at least k units,

$$
\frac{k-1}{k} \mathrm{OPT}(\mathbf{b}) \leq \mathrm{OPT}\left(\mathbf{b}_{-i}\right) \leq \mathrm{OPT}(\mathbf{b})
$$

Consider summary consensus estimate:

" $\mathrm{OPT}(\mathbf{b})$ rounded down to nearest power of 2"

Analysis:

Case 1:

Summary Consensus Estimates

Fact: If OPT sells at least k units,

$$
\frac{k-1}{k} \mathrm{OPT}(\mathbf{b}) \leq \mathrm{OPT}\left(\mathbf{b}_{-i}\right) \leq \mathrm{OPT}(\mathbf{b})
$$

Consider summary consensus estimate:

" $\mathrm{OPT}(\mathbf{b})$ rounded down to nearest power of 2"

Analysis:

Case 1: Consensus!

Summary Consensus Estimates

Fact: If OPT sells at least k units,

$$
\frac{k-1}{k} \mathrm{OPT}(\mathbf{b}) \leq \mathrm{OPT}\left(\mathbf{b}_{-i}\right) \leq \mathrm{OPT}(\mathbf{b})
$$

Consider summary consensus estimate:

" $\mathrm{OPT}(\mathbf{b})$ rounded down to nearest power of 2"

Analysis:

Case 1: Consensus!

Case 2:

Summary Consensus Estimates

Fact: If OPT sells at least k units,

$$
\frac{k-1}{k} \mathrm{OPT}(\mathbf{b}) \leq \mathrm{OPT}\left(\mathbf{b}_{-i}\right) \leq \mathrm{OPT}(\mathbf{b})
$$

Consider summary consensus estimate:

" $\mathrm{OPT}(\mathbf{b})$ rounded down to nearest power of 2"

Analysis:

Case 1: Consensus!

Case 2: No Consensus!

Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform $[0,1]$,

OPT(b) rounded down to nearest 2^{j+y} (for j integer).

Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0,1 ,

OPT(b) rounded down to nearest 2^{j+y} (for j integer).
Lemma: Probability of Consensus:

$$
1-\log \rho
$$

Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0,1 ,

OPT(b) rounded down to nearest 2^{j+y} (for j integer).
Lemma: Probability of Consensus: (recall: $1 / \rho=\left(1-\frac{1}{k}\right)$)

$$
1-\log \rho
$$

Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0,1 ,

OPT(b) rounded down to nearest 2^{j+y} (for j integer).
Lemma: Probability of Consensus: (recall: $1 / \rho=\left(1-\frac{1}{k}\right)$)

$$
1-\log \rho=1+\log \left(1-\frac{1}{k}\right)
$$

Summary Consensus Estimate (cont)

Solution: [Goldberg, Hartline 2003] For y uniform [0,1 ,

OPT(b) rounded down to nearest 2^{j+y} (for j integer).
Lemma: Probability of Consensus: (recall: $1 / \rho=\left(1-\frac{1}{k}\right)$)

$$
\begin{aligned}
1-\log \rho & =1+\log \left(1-\frac{1}{k}\right) \\
& =1-O(1 / k)
\end{aligned}
$$

Final Solution

Consensus and Profit Extraction Auction, CoPE
On input b,

1. Draw y uniform $[0,1]$.
2. Compute $R=\mathrm{OPT}(\mathbf{b})$ rounded down to nearest 2^{j+y} for $j \in \mathbb{Z}$.
3. Run ProfitExtract ${ }_{R}$ on \mathbf{b}.

Final Solution

Consensus and Profit Extraction Auction, CoPE
On input b,

1. Draw y uniform $[0,1]$.
2. Compute $R=\operatorname{OPT}(\mathbf{b})$ rounded down to nearest 2^{j+y} for $j \in \mathbb{Z}$.
3. Run ProfitExtract ${ }_{R}$ on \mathbf{b}.

From [GH-03]:
Theorem: CoPE auction is truthful with high probability.
Theorem: CoPE auction is envy-free.
Theorem: CoPE auction approximates the optimal profit.

Notes on CoPE

Motivates Search for Profit Extractors.

- Exists (approximate) profit extractor for double auciton.
- Exists profit extractor for decreasing marginal costs.
- Open: profit extractors for other constrained optimizations?

Models

Analysis Models:

- Average Case.
- Worst Case.
- Approximation with assumption.
- Competitive analysis.

Design Techniques:

- Market analysis metaphor.
- Other techniques.

Incentive Properties:

- Truthful.
- Truthful with high probability.

Competitive Analysis of Auctions

What about auctions that perform well in worst case without assumptions???

Competitive Analysis of Auctions

What about auctions that perform well in worst case without assumptions???

Definition: Auction \mathcal{A} is β-competitive with benchmark \mathcal{G} if for all \mathbf{b}.

$$
\mathbf{E}[\mathcal{A}(\mathbf{b})] \geq \mathcal{G}(\mathbf{b}) / \beta
$$

Competitive Analysis of Auctions

What about auctions that perform well in worst case without assumptions???

Definition: Auction \mathcal{A} is β-competitive with benchmark \mathcal{G} if for all \mathbf{b}.

$$
\mathbf{E}[\mathcal{A}(\mathbf{b})] \geq \mathcal{G}(\mathbf{b}) / \beta
$$

Definition: The optimal auction for \mathcal{G} is β-competitive with minimal β.

Competitive Analysis of Auctions

What about auctions that perform well in worst case without assumptions???

Definition: Auction \mathcal{A} is β-competitive with benchmark \mathcal{G} if for all \mathbf{b}.

$$
\mathbf{E}[\mathcal{A}(\mathbf{b})] \geq \mathcal{G}(\mathbf{b}) / \beta
$$

Definition: The optimal auction for \mathcal{G} is β-competitive with minimal β.

Notes:

- Precise mathematical framework to search for optimal auction.
- What about choice of \mathcal{G} ?

Competitive Analysis of Auctions

What about auctions that perform well in worst case without assumptions???

Definition: Auction \mathcal{A} is β-competitive with benchmark \mathcal{G} if for all \mathbf{b}.

$$
\mathbf{E}[\mathcal{A}(\mathbf{b})] \geq \mathcal{G}(\mathbf{b}) / \beta
$$

Definition: The optimal auction for \mathcal{G} is β-competitive with minimal β.

Notes:

- Precise mathematical framework to search for optimal auction.
- What about choice of \mathcal{G} ?
- Recall: cannot approximate optimal when only one unit is sold.
- Our Choice: optimal single price sale of at least two units.

Competitive Analysis of Auctions

What about auctions that perform well in worst case without assumptions???

Definition: Auction \mathcal{A} is β-competitive with benchmark \mathcal{G} if for all \mathbf{b}.

$$
\mathbf{E}[\mathcal{A}(\mathbf{b})] \geq \mathcal{G}(\mathbf{b}) / \beta
$$

Definition: The optimal auction for \mathcal{G} is β-competitive with minimal β.

Notes:

- Precise mathematical framework to search for optimal auction.
- What about choice of \mathcal{G} ?
- Recall: cannot approximate optimal when only one unit is sold.
- Our Choice: optimal single price sale of at least two units.
- Choise of \mathcal{G} is mostly irrelevant. [HM-05]

Conclusions

1. Different in Analysis Frameworks:
i.i.d. bids vs. worst case with assumption vs. competitive analysis.

Conclusions

1. Different in Analysis Frameworks:
i.i.d. bids vs. worst case with assumption vs. competitive analysis.
2. Similar Issues:

- estimate empirical distribution from \mathbf{b}_{-i}.
- consistency.
- bounds improve with information smallness of bidders.

Conclusions

1. Different in Analysis Frameworks:
i.i.d. bids vs. worst case with assumption vs. competitive analysis.
2. Similar Issues:

- estimate empirical distribution from \mathbf{b}_{-i}.
- consistency.
- bounds improve with information smallness of bidders.

3. Future Directions:

- Approximating general optimization problems. (with cost functions or constrained feasible outcomes)
- Asymmetric optimizations.

Followup to Wilson

"Game theory has a great advantage in explicitly analyzing the consequences of trading rules that presumably are really common knowledge, it is deficient to the extent it assumes other features to be common knowledge, such as one player's probability assessment about another's preferences or information.
"I forsee the progress of game theory as depending on successive reductions in the base of common knowledge required to conduct useful analysis of practical problems. Only be repeated weakening of common knowledge assumptions will the theory approximate reality."

- Robert Wilson, 1987.

Challenges for Mechanism Design:

- common prior (or known prior).
- no collusion.
- no externalities.
- single-shot games.

Followup to Wilson

"Game theory has a great advantage in explicitly analyzing the consequences of trading rules that presumably are really common knowledge, it is deficient to the extent it assumes other features to be common knowledge, such as one player's probability assessment about another's preferences or information.
"I forsee the progress of game theory as depending on successive reductions in the base of common knowledge required to conduct useful analysis of practical problems. Only be repeated weakening of common knowledge assumptions will the theory approximate reality."

- Robert Wilson, 1987.

Challenges for Mechanism Design:

- common prior (or known prior).
- no collusion. [GH-05]
- no externalities.
- single-shot games.

