

A Comparison of Consecutive and Concurrent Input Text
Entry Techniques for Mobile Phones

Daniel Wigdor, Ravin Balakrishnan
Department of Computer Science

University of Toronto
www.dgp.toronto.edu

dwigdor | ravin @dgp.toronto.edu

ABSTRACT
The numeric keypads on mobile phones generally consist of
12 keys (0-9, *, #). Ambiguity arises when the 36-character
alpha-numeric English alphabet is mapped onto this smaller
number of keys. In this paper, we first present a taxonomy of
the various techniques for resolving this ambiguity, dividing
them into techniques that use consecutive actions to first
select a character grouping and then a character from within
that grouping, and those that use concurrent actions to
achieve the same end. We then present the design and
implementation of a chording approach to text entry that uses
concurrent key presses. We conducted a controlled
experiment that compared this chording technique to one-
handed and two-handed versions of the commonly used
MultiTap technique. The results show that the concurrent
chording technique significantly outperforms both versions
of the consecutive action MultiTap technique.

Categories and Subject Descriptors: H.5.2 [Information
Interfaces and Presentation]: User Interfaces – Input
devices and strategies, Interaction styles; H.1.2 [Models and
Principles]: User/Machine Systems – Human Factors.

General Terms: Experimentation, Human Factors, Design.

Keywords: text input, mobile phones, chording.

INTRODUCTION
Entering text from the 26 character English alphabet using
the standard 12-key (0-9,*,#) mobile phone keypad forces a
mapping of more than one character per key. The typical
mapping has keys 2-9 representing either three or four
alphabetic characters in addition to the numerals. All text
input techniques that use this standard keypad have to
somehow resolve the ambiguity that arises from this
multiplexed mapping. Mackenzie et al. [7] describe this
problem as involving two main tasks necessary for entering a
character: between-group selection of the appropriate group

of characters, and within-group selection of the appropriate
character within the previously chosen group.

Most text input techniques to date can generally be divided
into two categories: those that require multiple presses of a
single key to make the between-group followed by within-
group selections, and those that require a single press of
multiple keys to make these selections. Because both
categories require consecutive key presses, the research focus
has been on reducing the average number of key strokes per
character “KSPC” required to enter text. Advances in the
area generally make language specific assumptions to
“guess” the desired within-group character, thus reducing or
eliminating the key presses required for the within-group
selection. The success of these techniques, however, is based
almost entirely on how closely the text entered conforms to
the underlying language model. Given that text entered on
mobile phones often involves significant abbreviations and
even evolving new “languages” by frequent users of SMS
messaging, making language assumptions may not be the
best approach to solving the text input problem.

Recently, the TiltType [10] and TiltText [13] techniques
demonstrated using a second physical action – tilting the
device – to make within-group selection concurrent to the
between-group key press selection. This effectively shifted
the research focus from reducing KSPC in consecutive key
press techniques to finding new, language independent,
concurrent techniques. The improvements in entry speeds
demonstrated by these techniques indicate that developing
new concurrent input methods may be a promising avenue
for further research.

In this paper, we explore the design space of consecutive and
concurrent input techniques for text entry. We first review
the literature, and develop a taxonomy of current techniques.
We then present the design and implemention of a concurrent
chording text input technique using both hands – one to make
the between-group selection, and the other to concurrently
make the within-group selection. We present a controlled
experiment that compares this concurrent chording technique
to one and two handed versions of the most common
consecutive selection technique – MultiTap, and discuss
implications for future designs.

P
p
n
b
o
s
C
C

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

ermission to make digital or hard copies of all or part of this work for
ersonal or classroom use is granted without fee provided that copies are
ot made or distributed for profit or commercial advantage and that copies
ear this notice and the full citation on the first page. To copy otherwise,
r republish, to post on servers or to redistribute to lists, requires prior
pecific permission and/or a fee.
HI 2004, April 24–29, 2004, Vienna, Austria.

opyright 2004 ACM 1-58113-702-8/04/0004...$5.00.

 Volume 6, Number 1 81

CURRENT MOBILE PHONE TEXT INPUT TECHNIQUES
A few mobile phones on the market today use QWERTY
style keypads that allow for text entry with techniques similar
to typing on a regular keyboard, albeit on a much smaller
physical scale (e.g., Nokia 5510 www.nokia.com). More
recently, hybrid devices that combine PDAs with phones,
such as the Handspring Treo (www.handspring.com) and
PocketPC Phone (www.microsoft.com), use pen-based text
input techniques such as Graffiti. While these devices are
making small inroads into the mobile phone market, the vast
majority of mobile phones are equipped with the standard
keypad (Figure 1) which has 12 keys: 0-9, *, and #.

Figure 1. Standard 12-key mobile phone keypad

We now briefly review current techniques for entering text
with this standard keypad, and refer the reader to Soukoreff
and MacKenzie [12] for a more comprehensive review that is
beyond the scope of the present paper.

MultiTap
The most common text entry technique for mobile phones is
MultiTap, where users repeatedly press the key labelled with
their desired character until it appears on the screen. For
example, the characters abc traditionally appear on the 2
key. Pressing that key once yields a, twice b, and so on. In
effect, multiple consecutive presses of the same key perform
both between and within group selections. A problem arises
when the user attempts to enter two letters from same key
consecutively. For example, tapping the 7 key three times
could result in either r or pq. To overcome this, MultiTap
employs a time-out on the key presses, usually 1-2 seconds,
such that no key presses during the timeout indicates
completion of the current letter. Entering pq under this
scheme has the user press the 7 key once for p, wait for the
timeout, then press 7 twice more to enter q. To mitigate the
time penalty this incurs, some versions add a “timeout kill”
button that allows the user to explicitly skip the timeout. If
we assume that 0 is the timeout kill button, this makes the
sequence of key presses to enter pq: 7,0,7,7. MultiTap is
simple and unambiguous, but can be slow, and has a KSPC
rate of approximately 2.03 [5].

Two-key Disambiguation
In the two-key technique, users press one key to make the
between-group selection, and a second key to select from
within the group. For example, to enter the letter c, the 2 key
is pressed to select the group abc, followed by the 3 key
since c is the third letter in the group. This simple technique
has failed to gain popularity for roman alphabets. It has a

KSPC of 2, since all letters require two consecutive key
presses.

Linguistic Disambiguation
Language based disambiguation techniques use predictive
models to automate the within-group selection, but there is
generally a “next” key that allows the user to choose from
among the possible combinations of characters. If the user
enters text that is perfectly predicted by the language model,
then pressing of the “next” key is rarely required.

An example of these techniques is T9 (www.tegic.com)
which computes all possible combinations of a sequence of
key presses and looks them up in a dictionary. For example,
the key sequence 5,3,8 results in 27 possible combinations
(3x3x3 letters on each of those keys). A dictionary lookup
indicates that the only valid combination in English is jet
and is therefore entered as the result, with the other
combinations rejected outright. Ideally, the user need only
make the between-group selection, by pressing the key that is
labelled with the desired character, and the system will make
a perfect, automatic, within-group selection. Unfortunately,
ambiguity can arise if there is more than one valid
combination for the given language. Typically, the most
common result is presented first. For example, the sequence
6,6 could indicate either on or no. If the algorithm suggests
the wrong word, the user can manually cycle through the
possible options by pressing a “next” key. An analysis of this
technique for entering English text found a KSPC close to 1,
indicating that the “next” key was rarely used [5]. Newer
linguistic disambiguation techniques such as LetterWise [6]
and WordWise (www.eatoni.com) perform similarly, with
subtle advantages over earlier techniques. While these
techniques all have low KSPC rates, their success relies on
users entering “English like” text. As Mackenzie et al. [6]
note, frequent users of text messaging system often resort to
abbreviations, acronyms, or combinations of letters and
numbers (e.g., b4 for before). It is also impossible to enter
numerals using these techniques, so messages including
numbers must be composed with a different technique.
Another problem is that users have to visually monitor the
display to resolve ambiguities, unlike the MultiTap and two-
key techniques which expert users can operate “eyes free”.

TiltText
TiltText [13] requires the user to simultaneously tilt the phone
in one of four directions and press a key to enter text. The
key press selects the group of characters, and the tilt selects
the character within that group. For example, to enter the
character e, the user presses the 3 key to select the group
def while simultaneously tilting the phone forward to
indicate that the desired letter is the second in the group. This
technique was demonstrated to be significantly faster than
MultiTap, primarily because the two tasks (between and
within group selections) are done concurrently. The KSPC is
1, but this does not reflect tilting.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

82

A TAXONOMY OF MOBILE PHONE TEXT INPUT
In any design exercise, it is helpful to identify design
dimensions and to organize existing techniques into a
taxonomy that can help suggest future design possibilities.
For text input techniques for mobile phones, important
dimensions include input concurrency, and the number of
keys and key presses needed to enter a single letter. Table 1
presents a taxonomy based on these dimensions:

Single Key Multiple Keys
Single
Press

Multi
Press

Single
Press

Multi
Press

Consecutive #1 MultiTap Linguistic,
Two-key

#4

Concurrent TiltText
(with tilt
sensor)

#2 #3 #5

Table 1. Taxonomy of mobile phone text-entry methods. The
columns indicate how many keys (single or multiple) and

subsequently how many presses of those keys are required to
enter a single character.

From this taxonomy, it is clear that existing techniques fall
within three cells. Of the unpopulated cells, #1, and #2
represent impossible situations and #4 is the regressive case
since consecutive multiple presses on multiple keys will be
obviously worse than the single key, multi press, MultiTap
technique. Techniques that fit in cell #5 could be viable but
likely difficult to accomplish in practice. Cell #3 suggests a
technique that has not been explored for mobile-phone text
entry: concurrent chording, where multiple keys are pressed
once concurrently to input an unambiguous letter.

CHORDING KEYBOARDS
A chording keyboard is a one where characters are entered
using combinations of key presses. Reported as early as 1942
[2] chording keyboards have been explored in various
dimensions and configurations, and we now briefly review
this literature.

Performance of Chording Keyboards
If characters are mapped to all possible key press
combinations, a simple one-handed five key chord keyboard
can enter 31 (25 – 1) distinct characters. For many text
applications, this is sufficient. Adding the second hand
increases this to 1023 (210 – 1) possible unique characters.

Conrad and Longman [2] found that chording keyboards are
faster and easier to learn than traditional keyboards. Gopher
and Koenig [3] examined how best to determine the optimal
mapping of chordings to characters of text. Gopher and Raij
[4] examined whether the two-handed chording keyboard had
any advantage over a one-handed implementation. They
found that while both significantly outpaced a QWERTY
keyboard, there was no significant difference in performance
between their one and two-handed chording keyboards in the
early stages of learning. As average user speed started to
approach 32 wpm, the two-handed keyboard started to
outperform its one-handed counterpart, and this spread in
performance continued to grow as users gained more
experience.

Current Chording Keyboards
Two-handed chorded keyboards have been used by the US
postal service for mail sorting [11], and are still used today
by stenographers. The Twiddler (www.handykey.com) and
the Septambic Keyer (wearcam.org/septambic/) are examples
of modern-day one-handed chording keyboards. Designed to
be held in the hand while text is being entered, both are
commonly used as part of a wearable computer [1], but are
not used for mobile phones. The Twiddler is equipped with 6
keys to be used with the thumb, and 12 for the fingers, while
the traditional Septambic Keyer has just 3 thumb and 4 finger
switches. The Septambic Keyer allows for 47 different
combinations of key presses, while the Twiddler allows over
80,000, though not all keys are used for text entry.

Another interesting chording keyboard is the the half-
QWERTY developed by Matias et al. [9]. The system used
half the usual number of keys of a QWERTY keypad, and
required the user to press the space-bar prior to entering those
keys that are normally located on one half of the keyboard.
The results of their controlled experiment showed quick
adaptation by expert users.

CHORDING INPUT FOR MOBILE PHONES
We have developed a new text input technique for mobile
phones, called ChordTap, based on the principles of a
chording keyboard. The mobile phone is augmented with
three additional “chording” keys on the back of the phone
(Figure 2). Users press a key with their dominant hand on the
standard mobile phone keypad to make the between-group
selection, and concurrently use their other hand to press the
chording keys to make the within-group selection. This
technique is similar in theory to the consecutive press two key
method discussed previously. ChordTap improves upon this
by adding dedicated “chord” keys for making the within-
group selection. With these extra keys, users can
concurrently make between and within group selections,
potentially improving entry speed.

Figure 2. ChordTap prototype. The right image shows the chord

keys mounted on the back of the phone.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

83

There are two major design issues to consider in
implementing ChordTap: which chord combinations indicate
which letter, and which key presses to consider as “events”
for text entry.

Mapping Chords States to Within-Group Selection
Each key on a mobile phone has mapped onto it one, four, or
five characters: some have only the numeral, most have three
letters and one numeral, while the 7 and 9 keys have four
letters and one numeral (Table 2). When designing
ChordTap, we had to decide how many chording keys to
have, and how to assign combinations of chords to particular
character selections. We use simple binary state switches for
the chording keys. The need to map five possible within-
group character selections onto the chord states dictated that
we would need at least 3 chording keys to ensure
unambiguous selection. The chords’ states can be viewed as
3-digit binary numbers, where the ith digit indicates whether
that key is depressed (“1”) or released (“0”). Table 2
illustrates.

Chord States Character selected Example
000 Numeral 7
001 First letter p
010 Second letter q
100 Third letter r
011 Fourth letter s
101 Fourth letter s
110 Fourth letter s
111 Fourth letter s

Table 2. Mapping of chord state to within-group characters.
Example selection shown based on pressing the 7 key.

This mapping was chosen with the intent that it be as simple
as possible for the user. We believe that pressing the first
chord for the first letter, second chord for the second letter,
and third chord for the third letter would be a fairly intuitive
mapping. The choice to use all remaining chordings for the
fourth letter was made because we felt that since this
mapping was used least frequently, and it was not in keeping
with the more frequently used ith chord to ith letter mapping, it
would reduce errors & learning time to simply map them all
to the fourth letter. One could alternatively envision using
these remaining mappings for additional characters in a non-
English alphabet.

Event Handling
To enter each character, the user must input precisely two
pieces of information: the between-group selection using the
standard keypad, and the within-group selection using the
chords. Since both the within and between group selections
are explicit but separate key presses, a number of options are
available when determining exactly when a character should
be generated.

Treating Only Chord Presses as Events
In this implementation, chord presses trigger new text, but
keypad presses do not. The keypad states are read only when
an event is triggered by a chord press. As shown in Table 3,

this approach saves work when two subsequent characters
are present in the same letter group (i.e., on the same key).
This savings is achieved because the user can hold down the
same key while consecutively pressing the appropriate
chords to generate the desired characters.

Key
Held

User Action Key
Held

Output
Text

- depress “6” 6
6 depress and release 3rd chord 6 o
6 depress and release 2nd chord 6 n
6 release “6” -
 depress “5” 5

5 depress and release 3rd chord 5 l
5 release “5” -
- depress “9” 9
9 depress and release 3rd chord 9 y

Table 3. Sequence of actions required to enter the string “only”
in a ChordTap implementation that treats only chord presses as

events. Some consecutive actions are combined because they
either generate no text, or the same text is generated with either

ordering.

Of the 362 possible pairs of consecutive characters, there are
112 (6 x 4P2 + 2 x 5P2) sequences that come from the same
key. This means that for 9% of all pairings the user would
not need to move their finger between character entries.
Though these sequences are not uniformly probable when
entering text in a particular language, this still represents
some savings in just about any language.

Treating Only Keypad Presses as Events
In this implementation, keypad presses trigger new text to be
entered into the phone, but chord presses do not. The chords’
states are read only when an event is triggered by a keypad
press. As demonstrated in Table 4, this approach to text entry
gives a savings of work whenever two subsequent characters
appear on different keys, but share the same chord.

Chord
State

User Action Chord
State

Output
Text

000 depress 3rd chord 100
100 depress and release “6” 100 o
100 release 3rd chord 000
000 depress 2nd chord 010
010 depress and release “6” 010 n
010 release 2nd chord 000
000 depress 3rd chord 100
100 depress and release “5” 100 l
100 depress and release “9” 100 y

Table 4. Sequence of user actions required to enter the string
“only” in a ChordTap implementation that treats only keypad

presses as events. Some consecutive actions are combined
because they either generate no text, or the same text is

generated with either ordering.

Of the 362 possible pairs of sequential characters, there are
262 (10P2 + 3 x 8P2 + 2 x 2P2) sequences that share the same
chording for both characters. This means that for 20% of all
pairings the user would not need to change the chording
between key presses, thus saving time.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

84

Treating Both Chord & Keypad Presses as Events
In this implementation, either a chord or keypad press results
in new text being entered. The advantage of this
implementation is that because every state change generates a
new character, expert users would benefit from the savings
illustrated in both the previous event handlers. In order for
this implementation to work, we must assign no character
mapping to the “000” (all un-pressed) state of the chords.
Table 5 demonstrates how fewer distinct actions are required
to generate text in this configuration.

Chord State /
Key Held

User Action

Chord State /
Key Held

Output
Text

000 / - depress “6” 000 / 6
000 / 6 depress and release 3rd chord 000 / 6 o
000 / 6 depress and release 2nd chord 000 / 6 n
000 / 6 release “6” 000 / -
000 / - depress 3rd chord 100 / -
100 / - depress and release “5” 100 / - l
100 / - depress and release “9” 100 / - y

Table 5. Sequence of actions required to enter the string “only”
in a ChordTap implementation that treats both chord and

keypad presses as events. Note that in some cases ordering of
events required to enter text is not unique.

This approach gives some savings for approximately 29% of
all the possible sequences of two characters. However, this is
likely harder to learn. As such, we used the “keypad presses
as events” approach for our prototype, since it had the greater
savings of the single-event approaches.

EVALUATION

Goals
We wished to compare the performance of ChordTap to
existing techniques for entering text into mobile phones. For
this experiment, we chose MultiTap as the comparison
technique, because it has served as a baseline in almost every
other evaluation of text entry reported to date, and because it
is the most common of the consecutive action techniques. In
previous experiments reported in the literature [13], MultiTap
users were usually instructed to use only the thumb on the
dominant hand to press keys. However, informal observation
of MultiTap users indicates that many use two thumbs to
enter text. Since ChordTap is also a two-handed technique,
we tested both one and two-handed MultiTap use. The one-
handed case served as a common baseline for comparison
with previous studies.

Apparatus

Hardware
A Motorola i95cl phone was used, with chording facilitated
by attaching momentary switches to the phone’s back,
connected via custom circuitry to the phone’s serial port.

Software
The software to read chords’ states and render text, as well as
conduct the experiment, was written in Java 2 Micro-Edition
using classes from the Mobile Devices Information Profile
(MIDP 1.0) and proprietary i95cl specific classes.

The experiment was conducted entirely on the phone rather
than simulating a mobile phone keypad on some other
device. All software, including those implementing the text
entry techniques, and data presentation and collection
software, ran on the phone. No connection to an external
computing device was used.

Our MultiTap implementation used the i95cl’s built-in
MultiTap engine, with a 2 second timeout and timeout kill.
We only considered lowercase text entry in this evaluation.
As such, the MultiTap engine was modified slightly to
remove characters from the key mapping that were not on the
face of the key, so that the options available were only the
lower case letters and numeral on the key. This matches the
traditional MultiTap implementation in past experiments,
such as LetterWise [6] .

Participants
Fifteen participants recruited from the university community
volunteered for the experiment. There were 5 women and 10
men of whom 2 were left-handed and 13 were right-handed.
All participants had little prior experience in entering text
into mobile phones, and did not receive any tangible
compensation for their participation.

Procedure
Participants entered short phrases of text selected from
MacKenzie and Soukoreff’s corpus [8]. These phrases were
selected because they have been used in previous text entry
studies involving MultiTap [6, 13], allowing comparisons
with this previous work. This corpus’ high correlation of
frequencies of letters to the English language is an asset,
although it does not take into account abbreviations
commonly used in mobile text input.

Timing began when participants entered the first character of
the phrase, and ended when the phrase was entered
completely and correctly. If an erroneous character was
entered, the phone alerted the user by vibrating, and the user
was required to correct their error. With this procedure, the
end result is error-free in the sense that the correct phrase is
captured. Also, the phrase completion time incorporates the
time taken to correct for errors.

Phrases were shown to participants on the phone’s display.
Before beginning each treatment, participants were told to
read and understand the displayed phrase before entering it,
and were given instructions for that treatment as follows:

One-handed MultiTap instructions: to enter a character using
the MultiTap technique, first find the key that is labeled with
that character. Press that key repeatedly until the desired
character is reached. Press once for the first character, twice
for the second, three times for the third, and, if present, four
times for the fourth. Once you have found the correct letter,
and are ready for the next one, you simply repeat the process.
If the letter you wish to enter next is on the same key, you
must first either press the “right” arrow on the phone or wait
two seconds for the cursor to advance. Please use only the

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

85

thumb of the hand with which you hold the phone, and do not
change hands during the experiment.

Two-handed MultiTap instructions (the same instructions
were given as for the one-handed technique, with the
following addendum): in this experiment, we are interested in
seeing how people use MultiTap with two thumbs
simultaneously. Please hold the phone with two hands so that
you are able to reach all of the keys with either thumb
comfortably. As you enter text, use whichever thumb you
wish to press the appropriate key – do whatever feels best for
you. Feel free to change how you press keys as you get more
comfortable with the technique, but please be sure to press
only with your thumbs.

ChordTap instructions: to enter a character using the ChordTap
technique, first find the key that is labeled with that character,
then hold it down. Next, press the chord on the back of the
display that corresponds to the position of the letter on the key.
For the first letter, press the top chord, for the second letter, the
2nd chord from the top, for the 3rd letter, the 3rd chord from the
top. To enter the 4th letter on a key, press any two of the chords.
ChordTap works by detecting the state of the chords at the time
you release a key. Because of this, you can continue to hold
down a chord if two keys in a row require the same chord. It’s
also not important whether you press the chords before or after
the key, just so long as the correct chord is being held when you
release the keys.

The experimenter then demonstrated the relevant technique.
To ensure that participants understood how the technique
worked, they were asked to enter a single phrase that would
require the use of all chord combination for ChordTap, or
two successive letters on the same key for MultiTap.

Instructions were also given to describe space and delete
keys, as well as to enter an extra space at the end of the
phrase to indicate completion. The process for error
correction was also explained. Participants were directed to
rest as required between phrases, but to continue as quickly
as possible once they had started entering a phrase.

Design
Data was collected for both one and two-handed MultiTap
and ChordTap. To prevent the transfer effects between
techniques inherent in within-subjects designs, a between-
subjects design was used. Participants were randomly
assigned to three groups of five. The first group performed
the experiment with the one-handed MultiTap technique, the
second group used the two-handed MultiTap technique, and
the third group used the ChordTap technique.

Participants were asked to complete two sessions of 8 blocks
of trials each. Each block required the entry of 2 identical
practice phrases, followed by 20 different phrases selected
randomly from the corpus. Phrase selection for each of the 16
blocks were done before the experiment, and presented in the
same order to each participant. Phrases were selected such
that all blocks had similar average phrase lengths. The same
set of phrases and blocks were used for all three techniques.

In other words, all participants entered identical phrases in
the same order, the only difference being which technique
they used. Participants were asked to rest for at least 5
minutes between each block, and each session of 8 blocks
was conducted on separate days. In summary, the design was
as follows:

3 techniques x
5 participants per technique x
2 sessions per participant x
8 blocks per session x
20 phrases per block (excluding practice phrases)
= 4800 phrases entered in total.

Results

Data Summary
The data collected from 15 participants took an average of
9.9 minutes per block. A total of 109020 correct characters of
input were entered for the 4800 phrases.

Physical Comfort
Some participants reported that their thumb became sore
while using the one-handed MultiTap technique. When this
was reported, the participants were encouraged to rest until
they felt comfortable to proceed. No participant reported pain
or discomfort in their wrist or arms.

Overall Entry Speed
The standard wpm (words-per-minute) measure was used to
quantify text entry speed. Traditionally, this is calculated as
(characters per second)*60/5. Because timing in our
experiment started only after entering the first character, that
character should not be included in entry speed calculations.
Thus, the phrase length is n-1 characters in our computations.
Although users entered an extra space at the end of each
phrase to signify completion, the entry of the last real
character of the phrase denotes the end time.

The average text entry speeds for all blocks were 13.59 wpm
for ChordTap, 10.11 wpm for one-handed MultiTap, and
10.33 wpm for two-handed MultiTap (Figure 3). Analysis of
variance showed a significant main effect for technique (F2,12
= 615.8, p < .0001). Pairwise means comparisons showed
that ChordTap was significantly faster than both MultiTap
techniques, with no significant difference between the two
MultiTap techniques. Overall, ChordTap was 32% faster than
two-handed MultiTap, which in turn was 2% faster than one-
handed MultiTap.

Interestingly, we see in Figure 3 that while the progress of
average speed per block for one-handed MultiTap fits the
power law of learning with a high correlation (R2 of .9032),
this correlation for two-handed MultiTap is not as strong (R2
= .7964). We attribute the difference to users’ changing their
use of the non-dominant hand throughout the experiment in
the two-handed case. Since hand use was not prescribed,
users were free to change how it was used over the course of
the experiment.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

86

y = 8.0351x0.1195

R2 = 0.9032

y = 7.7391x0.1466

R2 = 0.7964

y = 8.4133x0.2411

R2 = 0.9479

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Block

Te
xt

 E
nt

ry
 S

pe
ed

 (W
P

M
)

One-Handed MT
Two-Handed MT
ChordTap

`

Figure 3. Entry speed (wpm) by technique and block for entire
experiment. Best-fit power law of learning curve shows

projected progress beyond the 16 blocks of measured data.

Learning
As Figure 3 shows, all three techniques began with roughly
the same performance (average speeds of 7.62 wpm for one-
handed MultiTap, 8.67 wpm for two-handed MultiTap, and
8.46 wpm for ChordTap), but improved at different rates.
ChordTap users had an overall improvement of 90% between
the first and last blocks, vs. 45% and 39% for one and two-
handed MultiTap respectively. Two-handed MultiTap users
spent most of the first day (first 8 blocks) with lower average
speeds than the one-handed users. The one-day break seemed
to benefit them more, as they spent all of the second day with
higher speeds than the one-handed users. By the end of the
experiment, average speeds were 11.05 wpm for one-handed
MultiTap, 12.04 wpm for two-handed MultiTap, and 16.06
wpm for ChordTap.

Error Rates
Recall that that our experimental procedure required
participants to make corrections as they proceeded, with an
end result of a completely correctly entered phrase. As such,
the entry speed results discussed previously incorporate the
cost of error correction. However, it is still helpful to look at
a more explicit error rate. We calculate percentage error rate
as the number of characters entered that did not match the
expected character, divided by the length of the phrase. In
this case, we used the actual length of the phrase, and not (n-
1) as in the wpm rate.

Overall, there was a significant main effect for error rate
(F2,12 = 79.91, p < .0001). The error rate for one-handed
MultiTap was 2.6%, two-handed MultiTap was 4.6%, and
ChordTap was 3.3% (Figure 4).

With ChordTap an incorrect character can be generated in
two ways: by pressing an incorrect key (key error) or
incorrect chord (chord error). An examination of error rates
(Figure 5) on individual letters shows that the key error rate
is fairly consistent across letters (average rate of 1.8 key
errors per 100 entries, standard deviation of 1.4). The chord
error rate, however, varies more widely (average rate of 2.6
per 100 entries, standard deviation of 3.3). Pairwise means

comparisons revealed that the chord error rate was
significantly higher (p < .0001) for characters that required
multiple-chord chording (s,z). We attribute this higher rate to
the less obvious chording scheme (others are first chord=first
letter, second chord = second letter, etc), and to the
requirement to press two chords simultaneously. While the
higher error rate for ‘z’ could also be attributed to its lower
frequency and thus fewer opportunities for user practice, the
same cannot be said for ‘s’ which appears as frequently as
characters (a,i,n,r) with lower error rates.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Block
E

rr
or

 ra
te

 (%
)

One-Handed MT
Two-Handed MT
ChordTap

Figure 4. Error rate per 100 attempted character entries by

block for all three techniques

Figure 5. Key and Chord error rates per 100 attempted entries

for each character in the experiment (space shown as “>”)

Figure 6. Chord error rate by required chord. Since all

multiple-chords (011,101,110,111) produced the same letter in
our prototype, they are combined in this graph.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

87

DISCUSSION & FUTURE WORK
This is a proof of concept experiment that indicates
concurrent chording to be a viable text input technique for
mobile phones. Note that these results were achieved despite
a fairly crude prototype of switches for entering chords. As
such, it is highly likely that with better industrial design of
the chord switches and their integration with the phone, even
greater performance benefits could be realized. It is also
plausible that an appropriately designed layout could enable
chording and keypad entry to be performed using the fingers
of one hand. It will be the topic of future work to examine
how this technique could be adapted for the use with one
hand, and how varying the placement of the chords impacts
speed of entry. We will also examine applying the research
of Gopher & Koenig [3] to alter the mappings of chords to
characters to optimize entry speed.

One of the reasons why we chose to compare ChordTap to
MultiTap was because MultiTap is used as a baseline
technique in most studies of text entry performance. We are
able to make direct comparisons with our own previous
technique, TiltText, since our experiment in [13] used a
nearly identical design. We are able to overcome the only
difference between the present and previous work by looking
only at the data from the between-subject portion of the
earlier experiment [13]. At the end of the experiment for
TiltText, users had achieved speeds of 13.5 wpm, with an
error rate of 8.6%, as compared with ChordTap’s 16.06 wpm
and 4.5% in the present study.

As was done in [13], we are also able to approximate a
comparison of the performance of ChordTap to MacKenzie’s
Letterwise, by comparing our results to that of [6]. We see
that the 16th block of our experiment is roughly equivalent to
the 6th or 7th session in MacKenzie et al.’s experiment. At this
point, their data for MultiTap is roughly in the 11 wpm range,
which is very close to ours. At the same point in time, entry
rates for LetterWise are about 14 wpm, which is in the same
range as our experiment’s rate for ChordTap of 16.06 wpm.
While the different experimental designs, number of phrases
per block, and other factors necessarily imply that these
cross-experiment comparisons are not precise, this rough
analysis does give us a ballpark sense of how ChordTap
compares to techniques other than MultiTap.

CONCLUSION
We have described a taxonomy of mobile phone text-entry
research, with particular focus on the differences between
consecutive and concurrent approaches. Our experiment has
demonstrated the effectiveness of the classic concurrent
technique, chording, when applied to mobile phone text
entry. The performance advantages seen over the consecutive
action MultiTap technique, and consequently the inherent
advantages over linguistic disambiguation techniques,
indicates that concurrent text input could be a viable
alternative to current techniques.

ACKNOWLEDGMENTS
We thank Tovi Grossman, Maya Przybylski, our experiment
participants, members of the Dynamic Graphics Project lab,
and Microsoft Research.

REFERENCES
1. Barfield, W., & Caudell, T., eds. (2001). Fundamentals of

wearable computers and augmented reality. Lawrence
Erlbaum Associates: Mahwah, New Jersey.

2. Conrad, R., & Longman, D. (1965). Standard typewriter
versus chord keyboard: An experimental comparison.
Ergonomics. 8. p. 77-88.

3. Gopher, D., & Koenig, W. (1983). Hands coordination in
data entry with a two-hand chord typewriter.Technical
Report CPL 83-3. Cognitive Psychology Laboratory,
Dept. of Psychology, University of Illinois, Champaign,
ILL 61820.

4. Gopher, D., & Raij, D. (1988). Typiing with a two-
handed chord keyboard: Will QWERTY become
obsolete. IEEE Transactions on Systems, Man, and
Cybernetics. 18(4). p. 601-609.

5. MacKenzie, I.S. (2002). KSPC (keystrokes per character)
as a characteristic of text entry techniques. Fourth
International Symposium on Human-Computer
Interaction with Mobile Devices. p. 195-210.

6. MacKenzie, I.S., Kober, H., Smith, D., Jones, T., &
Skepner, E. (2001). LetterWise: Prefix-based
disambiguation for mobile text input. ACM UIST
Symposium. p. 111-120.

7. MacKenzie, S., & Soukoreff, W. (2002). Text entry for
mobile computing: Models and methods, theory and
practice. Human-Computer Interaction. 17. p. 147-198.

8. MacKenzie, S., & Soukoreff, W. (2003). Phrase sets for
evaluating text entry techniques. Extended Abstracts of
the ACM CHI Conference on Human Factors in
Computing Systems. p. 754-755.

9. Matias, E., MacKenzie, I., & Buxton, W. (1996). One-
handed touch typing on a QWERTY keyboard. Human-
Computer Interaction. 11. p. 1-27.

10. Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G., &
Want, R. (2002). TiltType: accelerometer-supported text
entry for very small devices. ACM UIST Symposium. p.
201-204.

11. Rosenberg, B. (1994). Chord keyboards. Queen Mary &
Westfield College. London, UK.

12. Soukoreff, W., & MacKenzie, I.S. (2002). Text entry for
mobile computing: Models and methods, theory and
practice. Human-Computer Interaction. 17. p. 147-198.

13. Wigdor, D., & Balakrishnan, R. (2003). TiltText: Using
tilt for text input to mobile phones. ACM UIST
Symposium. p. 81-90.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

88

