
greenfoot:
Combining Object Visualisation with Interaction

Poul Henriksen
Mærsk McKinney Møller Institute
University of Southern Denmark

polle@mip.sdu.dk

Michael Kölling
Mærsk McKinney Møller Institute
University of Southern Denmark

mik@mip.sdu.dk
ABSTRACT
The introduction of programming education with object-
oriented languages slowly migrates down the curriculum and
is now often introduced at the high school level. This
migration requires teaching tools that are adequate for the
intended target audience.

In this paper, we present a new tool for teaching object-
oriented programming aimed at students at or below college
level, with special emphasis of supporting school age learners.
This tool was designed by analysing and combining the most
beneficial aspects of several existing tools. It aims at
combining the simplicity and visual appeal of Karel the Robot
with much of the flexibility and interaction of BlueJ, while at
the same time opening up possibilities of new applications.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information
Science Education - Computer Science Education

D.1.5 [Programming Techniques]: Object-Oriented
Programming.

General Terms
Design, Human Factors, Languages

Keywords
Pedagogy, Objects-First, Micro worlds, Java, Visualisation,
Experimentation.

1. INTRODUCTION
Introductory programming teaching has changed quite
considerably since the widespread introduction of object
orientation into first semester programming courses.

The acceptance of an ‘objects-early’ teaching approach,
together with the inclusion of views that originate from the
software engineering discipline (such as using ‘larger’
projects, using library classes, code maintenance) have led to a
more complicated infrastructure that beginning students have
to deal with. This frequently includes multiple source files,
teacher supplied classes or frameworks, class libraries and
environment setup to deal with compilation dependencies.

As a result, a number of tools have become popular that help
students to deal with this increase in complexity of the

infrastructure. These tools range from custom class libraries
for specific tasks over thematic frameworks to full
programming environments.

While a number of useful tools have been produced, there i s
considerable room for improvement. Specifically, the
introduction of object orientation below the university level,
e.g. in high schools, is a very recent development that might
benefit from more targeted tool support.

The ‘objects-early’ movement has argued for a long time that i t
is important to teach good object-oriented practices from the
start, to avoid having to correct or unlearn bad practices later.
While this has led to a wide acceptance of teaching about
objects early in first semester college courses, the target has
since shifted: for many students, the introductory college
course is not the first contact with programming anymore.
Frequently, students get exposed to programming at the
school level. If we are serious about teaching objects early,
this is what we have to look at. We argue in this paper that
goals and requirements for a software support tool for the
school level differ from tools aimed at universities.

In this paper we discuss the design and development of a new
tool named ‘greenfoot’ for introducing object-oriented
programming to beginners. One explicit goal is the suitability
for school age students.

By analysing benefits of several different approaches, and
combining their respective strengths, we believe we can
construct a system that offers a new quality of learning
experience and has benefits beyond any individual system
available today.

The greenfoot design was originally inspired by considering
the combination of aspects of two popular teaching
environments, Karel the Robot [12] and BlueJ [10]. One of the
major strengths of Karel the Robot is the excellent
visualisation of objects, their state and behaviour. It lacks,
however, a means for direct interaction with objects.

BlueJ’s tools provide strong support for direct object
interaction, but the object visualisation lacks in detail and
appeal compared to Karel.

Karel exists as a Java framework [4] and BlueJ is a Java
environment. It is possible to execute Karel within BlueJ to
get benefits of both. When doing this, however, confusing
things start to happen. Since BlueJ offers a built-in object
visualisation, and Karel visualises objects as well (in a
different manner), a schizophrenic view of the world emerges.
Many objects are represented twice (once by BlueJ and once by
the Karel framework), and different aspects of visualisation or
interaction are spread to different views of the same object.
This has the potential to severely confuse beginners.
Greenfoot combines the strengths of functionality without the
resulting problems of representation.

We also show that the resulting system has qualities beyond
the mere combination of Karel and BlueJ, but allows work with
a more general class of interesting projects, including
effectively a large number of simulation style problems.

2. RELATED TOOLS
Several existing teaching systems have influenced the design
of greenfoot. The most important ones are briefly discussed
here.

2.1 Karel the Robot
The idea of Karel the Robot was first published in 1981 by
Richard E. Pattis [12], using a Pascal-like programming
language. Since then it has been adapted to use various
different programming languages [3][4], and several
implementations are available for Java [2][4][6].

Karel is a conceptual framework that uses a robot that can
move around in an environment in which ‘beepers’ and walls
can be placed. The robot can then be programmed to perform a
variety of tasks, such as collecting beepers and avoiding
obstacles.

Programming and execution is usually done in a standard
editor and execution environment. A running Karel program
displays a graphical representation of Karel’s world and a
simple control panel to start or pause execution. Objects
created by students – robots, beepers and walls – are
represented graphically, and programmed behaviour can easily
be observed. While the control panel offers some basic control
of the execution, the objects themselves do not offer any
interaction facilities.

2.2 Jeroo
One of the latest variants of Karel is Jeroo [13], which uses its
own Java-like programming language. Jeroo adds several
interesting features: it provides code highlighting of the
source code statement being executed while running the
program as well as limited capabilities of inspection. Like
other Karel systems, Jeroo does not provide direct interaction
with its objects.

2.3 BlueJ
BlueJ is a programming environment specifically designed for
education. BlueJ encourages students to define classes and
their relationships with an UML-like notation. Once classes
have been compiled, students can interactively instantiate
objects. These objects get a simple representation on an object
bench. It is possible to inspect these objects, and execute their
methods.

One strength of BlueJ is the clear separation of the concepts of
classes and objects, and the possibility to interact with and
inspect these.

The visual representation of objects in BlueJ provides only
the name and class of the object – it does not display any
visual clues about the object’s state or behaviour. If the object
creates its own visual representation (such as a robot in the
Karel world), this is not reflected in the representation of the
object on the object bench. Thus, BlueJ provides direct
interaction, but does not provide direct visualisation of object
behaviour or state.

2.4 Turtle Graphics
Turtle graphics is one of the oldest libraries used to introduce
computing concepts to beginners. Originally developed for
physical “turtle” robots, it came to fame via implementations
in Logo [11] in the early 70s, and was soon available for use
with several different languages.

The turtle graphics library includes the concept of a “turtle”
that can move across a two-dimensional plane. While doing
this, it moves a pen with it, which can be positioned on or off
the ground, and thus may leave a trace of the turtle’s
movements.

Programming the turtle to draw different patterns can be used
to introduce general computing concepts, such as iteration and
recursion. Object-oriented concepts can also be mapped easily
onto the turtle world [7].

2.5 Alice
Alice is an object-first approach to teaching introductory
computer science courses [8]. It is based on 3D animations
which can be controlled by students. Animation scenes are
assembled from objects programmed by the students using a
built-in programming language. To support the programming
process, the environment provides an editor that allows
students to drag and drop statements and objects.

When the object behaviour has been created, the objects can be
inserted into a 3D world. Object properties can be inspected
and changed before the animation is started. After the
animation has started it is not possible to inspect objects and
interact with them.

2.6 The Marine Biology Case Study
The Marine Biology Case Study is a small Java framework that
provides a two-dimensional world structured as a grid of
positions, and fish that populate this world [14]. Students can
implement new fish behaviour, or new type of fish.

This case study is similar in character to Karel the Robot. It i s
being used mainly for the United States Advanced Placement
Computer Science (APCS) course at the American high school
level. The APCS course is coordinated centrally nation-wide in
the US, and thus this case study has a large user base.

As with Karel frameworks, the Marine Biology Case Study
provides immediate visual feedback of (some) object
behaviour and state changes, but no direct object interaction.

2.7 Summary
We have briefly presented a number of well known tools to aid
computing education. One of the strengths of BlueJ is the
inspection and interaction with objects, but it lacks support
for good object visualisation. Other systems, such as Karel or
turtle graphics, provide good visualisation of object
behaviour, but lack in interaction with objects. Our new tool
will attempt to merge functionality from all these systems into
a tool that has the best from each world.

The result should be functionality that allows BlueJ-like
interaction on rich visualisations, with a flexibility to create
diverse applications including turtle graphics style examples,
as well as simulations like the Marine Biology Case Study and
other kinds of simulations.

3. DESIGN CONSIDERATIONS
In this section we briefly discuss some of the background
arguments and forces that had a strong influence on the design
of the greenfoot system.

3.1 Closing Kolb’s circle
Kolb’s learning circle [9] presents a model often used to
reason about the process of learning, including the learning of
programming concepts. Figure 1 illustrates the four phases of
the circle.

In early programming education, especially in objects-early
approaches, it can be difficult to create activities in all four
quadrants of the circle.

Figure 1: Kolb's learning circle

A lecture-style introduction to the concepts tends to focus on
the area of abstract conceptualization. Creating active
experiments and concrete experience (which then can lead to
reflective observation) in a dedicated objects-early approach i s
often made difficult by technical obstacles. Obscure syntax
and detail problems in the programming environment often
force the concrete experience to be at the level of statements
rather than higher conceptual abstractions.

Role playing is one technique that has been used successfully
in the past to overcome parts of this problem in the first stages
of a course [5]. In the design of a software teaching tool, we
should aim at overcoming these problems in software as well.

Any tool to support an objects-early approach for beginners
must attempt to support the practical stages of Kolb’s circle
(experimentation, experience, observation) explicitly at the
level of the fundamental concept: objects.

In other words: students must be able to manipulate,
experiment with, and observe objects, not merely lines of
source code.

3.2 Creating interest
One aspect in which the target audience at a school level i s
significantly different from students at college or university
level is the level of commitment to the subject.

Students at school level have not made a conscious decision
to engage in the study of programming. They may frequently
have no interest in the subject, or even hold prejudices against
it.

Thus, the aim of a support tool for the school level is not only
to illustrate the important concepts to students, it must also
generate interest in the subject in the first place. The activities

students engage in through use of the tool should be engaging
and relevant to the students.

For both of these characteristics – engaging and relevant –
there is no simple recipe defining what this means for any
particular student.

There are, however, some general observations: a system that i s
interactive, visual, allows experimentation, generates
curiosity, without requiring substantial prior theoretical
study, is more likely to create student engagement.

Whether a system is perceived as relevant for any particular
student depends highly on the student’s cultural and personal
background – we do not believe there to be a single solution
to this goal.

For our system design, this means that we need to strive for a
level of flexibility in scenarios presented to students that
allows teachers to address students in locally or personally
relevant ways.

3.3 Supporting teachers
Another aspect that distinguishes the teaching situation at
schools from that at universities is the level of preparation
that can be expected from teachers.

Computing teachers at school level often have significantly
less training in the field of computing, less time and support
for professional training to keep up with latest developments
and less time to prepare teaching material.

As a result, it is beneficial to view teachers as a second target
group to be supported by our teaching tool. Apart from
supporting students in their learning, greenfoot should be
designed to also support teachers in their teaching.

This can be done in various ways: we can arrange the
presentation of important concepts in the tool in ways that
encourage discussion of selected topics early. We can also
design the tool so that sharing of scenarios and exercises
becomes easy. We will discuss this in more detail below.

There is, however, a clear tension between flexibility (as
discussed in the previous section to allow adaptation to
students’ backgrounds) and teacher support.

Supporting teachers tends to mean to provide a rigid
framework in the support tool, so that teachers have less work
to do themselves, and better guidance in their teaching
activities. Allowing flexibility can directly contradict this.

One of the challenges of the greenfoot design will be to find a
solution that allows these two goals to coexist.

4. GOALS
Before describing the design of our new tool, we summarise
the design goals that guided the development of the concrete
system.

The overall goal could be summarised as “suitable for teaching
object orientation at the school level”. After the discussion in
the previous sections, however, we can now formulate this
more precisely. We should also note that the focus on school
level does not exclude use of this tool at early college level.

Our goals are:

• experimentation and visual feedback
• flexible scenarios
• clean illustration of object-oriented concepts

• easy development of scenarios and exercises
• support migration to other environments

Experimentation and visual feedback. We intend our system
to be highly visual and interactive. Users should be able to
experiment with instantiations of concepts directly via the
user interface, and acquire an understanding of important
concepts through direct visual feedback. This is hoped to
close the circle of activities in Kolb’s model, as discussed
above, and also to contribute greatly to the challenge of
engaging students with no prior interest in programming.
Striking a balance between simplicity and richness of tools i s
important. If the program is not simple to use, the users could
loose interest and use of the tool would be counter productive.

Flexible scenarios. To engage students interest, the system
needs to be able to support examples relevant to their age,
gender, personal and cultural background, and other
individual factors. For the system design, this means that
greenfoot must support a wide variety of different tasks and
scenarios. Creating flexibility in scenarios also allows to vary
the complexity and thus the difficulty level of the material to
be learned.

Clean illustration of object-oriented concepts. The primary
focus is to develop students’ understanding of concepts used
in object-oriented programming. Through the use of greenfoot
students should get familiar with fundamental concepts of
object-oriented programming, such as objects, classes, method
invocation and imperative programming concepts.

Easy development of scenarios and exercises. Part of the
larger goal of providing good support for teachers is that i t
should be easy to develop scenarios and exercises. Traditional
systems, such as Karel the Robot or the Marine Biology Case
Study, are of a scope that makes it impractical for most
teachers to develop similar systems with alternative stories.
Greenfoot should attempt to make scenario and exercise
development easy enough so that many teachers can develop
their own versions.

This means that the user level scenario should be separated
from the general framework implementation.

Figure 2: Robot, Wall and Beeper objects, as shown in BlueJ

Support migration to other environments. The greenfoot
system should be designed so that concepts and skills learned
can be transferred easily to other environments, such as BlueJ,
which may be used as the next development environment.

5. THE GREENFOOT SYSTEM
The greenfoot system is a framework and environment to create
interactive, simulation-like applications in a two-dimensional
plane.

One way to view the system is as an extension of the BlueJ
object bench. In BlueJ, the state of the object is observable
only by opening a separate inspector window, which displays
the object’s field values. The main visualisation of the object
– a red rectangle with rounded corners – does not convey any
state information, neither via its appearance nor its position
(Figure 2).

Greenfoot extends the idea of the object bench to an object
world. In this world, all objects have a graphical appearance
and a position in the world. Direct interaction with these
objects is still possible, as in the original BlueJ system, but
object behaviour can now be observed directly by observing
changes in the position and appearance of individual objects.

The object world itself (visible as the background area behind
greenfoot objects) also becomes an interactive, programmable
object, thus being integrated into the application framework.

Figure 3: The greenfoot main window

5.1 The Visual System Interface
The largest part of greenfoot’s user interface is reserved for the
display of the world, shown in the centre of the screen (Figure
3). It holds the greenfoot objects (two greenfoot robots, a
beeper and some walls in this example). To the right of the
world is a class display. Here, all classes involved in the
current application are shown along with buttons to compile
and create new classes. The classes are divided into Greenfoot-
World Classes and Greenfoot-Object Classes. Each of these
groups is discussed below.

The lower part of the window holds execution controls to run,
stop or single-step the simulation and a slider to control the
execution speed.

5.2 Greenfoot Scenario Structure
All classes whose instances should be visible in the greenfoot
world extend the predefined superclass GreenfootObject. The
environment also provides a predefined class GreenfootWorld,
which implements the world itself.

The world provides a grid of cells, which can hold greenfoot
objects. Each greenfoot object can specify its own individual
appearance using an icon or a drawing method. Greenfoot
objects have a location in the world and a rotation that i s
applied to the icon. The appearance can span one or more cells.

The world itself provides methods, among others, to change
the resolution (essentially setting the size of each cell in
pixels), to change size of the world (number of cells), to set a
background image and to draw on its background. Using these
methods, worlds that differ greatly in visual appearance can be
created as part of creating a scenario.

All objects in a greenfoot world are automatically animated
and interactive. They can have behaviour that is exhibited
when the simulation is run using the Run button, and they can
be used for direct interaction through associated popup menus
when the simulation is paused. The simulation animation and
direct object interaction features are built into the greenfoot
environment.

An object's popup menu contains a list of methods that can be
invoked on the object as well as an option to inspect the full
object state (Figure 3).

5.3 The Greenfoot IDE
The greenfoot system is an integrated environment: apart from
the main interface described above, it contains an editor, a
compiler and a debugger. Thus, it is a self-contained system
that provides all necessary tools to develop, examine and
execute a complete application.

The underlying runtime and compiler uses standard Java.
Greenfoot classes are standard Java classes.

The greenfoot implementation is based on the BlueJ system,
and many of the BlueJ tools – the editor, the debugger,
Javadoc generation – are available in greenfoot in a very
similar form to BlueJ.

Figure 4: The popup menu of a greenfoot class

5.4 The Class Browser
The environment also supplies a view of the classes that
participate in the simulation on the right side of the main
window.

These classes can be edited, compiled and instantiated. These
actions can be accessed from the popup menu of the class
(Figure 4).

Creating new classes can be done either by selecting New
subclass from the class' popup menu, or by clicking the New
Class button below the class icons.

The class-browser is divided into two sections, discussed
below.

GreenfootObject classes are the classes that are to be
visualised in the world. Their superclass – GreenfootObject –
will always be shown in the class browser. The
GreenfootObject class cannot be modified.

Subclasses of GreenfootObject will typically have an
individual icon. This icon is shown in the representation of
the class next to the class name. Greenfoot objects that do not
specify an appearance have a default look defined in their
superclass.

GreenfootWorld classes are classes that represent worlds.
Different worlds may exist in a single project (holding, for
example, different initial populations of walls and beepers).
The superclass of these – GreenfootWorld – will always be
shown in the class browser.

The GreenfootWorld classes have popup menus exactly like
the ones described for GreenfootObject classes. When a
constructor is selected for a subclass of GreenfootWorld, the
new world object will automatically replace the existing world
in the main view of the greenfoot user interface.

6. SAMPLE APPLICATIONS
The way we envisage greenfoot being used is for teachers to
create custom scenarios, which students then investigate and
extend.

Custom scenarios can resemble Karel the Robot, the Marine
Biology Case Study or Turtle Graphics, or they can represent
other simulation scenarios such as traffic or lift simulations.

Student activities include instantiating objects, running a
simulation, interactively calling single methods, reading and
modifying the code, compiling and creating new simulation
object subclasses.

We will now describe some possible scenarios and discuss the
activities expected of scenario writers, teachers and students in
turn, in order to give an impression of the level of difficulty
involved at each level.

First, we discuss what a Karel the Robot implementation would
look like in greenfoot. This serves to illustrate some of the
most important characteristics of this framework. The
following two examples (Shapes and Turtle Graphics) are
briefly presented to illustrate alternative scenario styles.

6.1 The Karel-The-Robot Scenario
First, we discuss in more detail a Karel-like scenario, which
readers have already seen in the general system introduction
above.

6.1.1 Scenario Writer Activities
Scenario writers are typically teachers, but since scenarios can
be shared between teachers, not every teacher needs to be a
scenario writer.

The greenfoot framework provides most of the functional
aspects of the simulation and lets teachers focus on creating an
interesting scenario.

When a new project is created, the class browser contains only
the GreenfootWorld and the GreenfootObject classes. These are
the base classes for all others created by the teacher.

First, we want to create a world for the robots. We create a
subclass of GreenfootWorld, which is automatically initialised
with a source skeleton, in which we only have to modify the
constructor.

To create a world of size 20x20 cells with a cell size of 50x50
pixels and a tiled background image, the RobotWorld class
looks like this:

public class RobotWorld extends GreenfootWorld
{
 public RobotWorld() {
 super(20,20,50,50);
 setBackgroundColor(Color.BLACK);
 setBackgroundImage("road.gif");
 setTiledBackground(true);
 }
}

All methods called in this constructor are inherited from
GreenfootWorld.

The next task for the scenario writer is to create the core classes
for the project: the robot, the wall and the beeper. The last two
classes are easy to create because they do not have any
behaviour. The only thing that needs to be changed are the
objects’ icons. The Beeper class then looks like this:

public class Beeper extends GreenfootObject
{
 public Beeper()
 {
 setImage("beeper.gif");
 }
}

Since a skeleton for this class is provided when it is created,
the scenario writer needs to edit only a single line of code.

The class for the robot is a bit more interesting because i t
should have behaviour to control the robot in various ways:
moving, turning, picking up and putting down beepers. The
moving and turning of the robot is easy to do using methods
from its superclass. For moving the robot, the
setLocation(int x, int y) method can be used together
with the getX() and getY() methods. Turning the robot can
be accomplished using the setRotation(int degrees)
method. This rotation will be automatically reflected in the
visualisation of the robot by rotating the icon.

The robot should be able to collect beepers. For this we use a
collection which we call beeperBag. To pick up a beeper at the
robot's current location we create a method pickBeeper():1

1 We are using Java 1.5 syntax in this example. Syntax from

previous Java versions can, of course, also be used.

public void pickBeeper()
{
 GreenfootWorld myWorld = getWorld();
 Set objectsHere =
 myWorld.getObjectsAtCell(getX(), getY());

 for(Beeper beeper : objectsHere) {
 myWorld.removeObject(beeper);
 beeperBag.add(beeper);
 }
}

This method illustrates the use of several of the methods
available from the GreenfootWorld and GreenfootObject
classes. The rest of the robot methods are rather simple and
will not be shown in detail. The full set of methods
implemented in the Robot class is:

• void move(): Move the robot one cell forward in its
current direction.

• void setDirection(int direction): Set the
direction of the robot to one of the static values EAST,
WEST, NORTH, or SOUTH.

• void turnLeft(): Turn the robot 90 degrees counter-
clockwise.

• boolean canMove(): Determine whether the robot can
move forward (it cannot move if there is a wall in front of
the robot).

• void putBeeper(): Put down a beeper from the robot’s
beeperBag if there are any.

• void pickBeeper(): Pick up a beeper.

The Robot class so far only contains methods for explicit
invocation and is not very difficult to develop. To create
behaviour that lets this robot act as part of a continuous
simulation, the act() method can be implemented. All objects
in the world are part of the simulation loop, and the act method
of these objects will be called in each time step of the
simulation. The default (inherited) act method is empty.

An example of such a robot could be one that moves forward
and collects all beepers on the way. Such a harvester robot can
be created, for example, as a subclass of Robot. The full
implementation reads:

public class Harvester extends Robot
{
 public Harvester()
 {
 }

 public void act()
 {
 pickBeeper();
 move();
 }
}

Several robots could be created in this way that solve various
tasks.

When using this scenario, students would typically be given
an initial world, which contains an instance of a robot and
possibly walls and beepers. This world is created by the
constructor of the RobotWorld class. For instance, to add a
beeper in the top left cell as part of the world creation, the
following lines should be added to the world constructor:

 Beeper beeper = new Beeper();
 beeper.setLocation(0,0);
 addObject(beeper);

6.1.2 Student Activities
Students can perform the same activities as in other Karel
implementations with better support, and they can perform
additional activities that enhance the students understanding
of the dynamics of the program.

The traditional activities – executing and observing a robot;
modifying a robot; creating and running new robots – are
better supported since the editor, compiler and runtime
display are all in one place and tightly integrated. There is no
need to deal directly with file system structures, command line
interfaces or class paths.

Additional activities possible in greenfoot include interactive
placement of one or more robots (or other objects), interactive
execution of any public method of the robot to test parts of its
behaviour, inspection of the robot’s fields, easy creation of
test worlds by placing rows of walls interactively and single
stepping in the debugger while observing source code
execution and robot behaviour at the same time.

Observing behaviour. When students use greenfoot for the
first time, they will typically interact with a scenario provided
by the teacher. Students simply open the project in order to get
started. On opening the project, the environment will
automatically instantiate a new RobotWorld and show it. This
initial world can include instances of objects, so the student
can start experimenting and observing.

If the RobotWorld has, for instance, a harvester robot and a
number of beepers, the student could start by pressing the Run
button to observe how the robot is able to move and pick up
beepers. (The Run button causes the simulation to start – that
is, the act methods of all objects are repeatedly executed.)

Pressing the Act button calls each object’s act method exactly
once. It can be used to single step through the behaviour for a
more fine-grained observation.

Figure 5: Interactive method invocation (left) with
immediate visual feedback (right)

Direct interaction with individual objects . Another
possibility is to directly interact with the objects in the world.
For instance, it is possible to invoke methods on the objects
and immediately observe the resulting change in state. Figure
5 shows the selection of the turnLeft() method from the
popup menu on a Robot object (left) and robot after the
method has been invoked (right).

Instantiating objects. Instantiation is directly supported by
the greenfoot user interface. To instantiate a robot, students

select a constructor from the class’s popup menu (Figure 6,
left). The mouse cursor then shows the image of the new object,
which can be placed in the world (Figure 6, right).

Figure 6: Interactive instantiation of objects

Students can easily instantiate several objects, and through
experimentation and interaction observe common behaviour
and differences in state. Object identity and the relation
between classes and objects are emphasised.

Inspection. The visualisation of objects in the world does not
show the complete state of the object. For example, it may not
be possible to see how many beepers the robot carries. Objects
may be explicitly inspected (by selecting the Inspect option
from their popup menu) to display the complete set of values
for the object’s fields. Figure 7 shows an inspection of a Robot
object.

Figure 7: Inspection of a Robot object

Modifying behaviour. So far we have discussed how students
can experiment with and observe objects without looking at
the source code. The next step may be to modify some of the
teacher supplied classes in order to see how methods are
defined programmatically. For this the integrated editor can be
invoked by double clicking a class.

Editing, compiling and error reporting are integrated in the
environment, enabling a quick turn-around between code
editing and execution. Students can also easily create new
subclasses of existing classes.

Figure 8: The 'shapes' example in greenfoot

6.2 The Shapes Scenario
The shapes example illustrates a different style of scenario to
the grid based robot worlds. It is based on the shapes example
for BlueJ, described in [1].

In the shapes scenario we have three types of shapes: circles,
rectangles and triangles. These basic objects can be used to
create various drawings by instantiating objects and changing
their size, colour, rotation and location (Figure 8).

This example illustrates how greenfoot can be used for
applications that are not obviously grid-based. This i s
achieved by creating a world with cells that span only a single
pixel on screen, and simulation objects with icons that span
multiple cells.

Students can interact directly with the shapes in the drawing to
change their state. Shapes can then be programmed to include
animated behaviour. The sun in this project, for instance, has a
sunset() method that causes it to slowly move down.

6.3 The Turtle Graphics Scenario
One of the classic examples of a teaching world is the Turtle
Graphics scenario. A greenfoot version of this is shown in
Figure 9.

As in the shapes scenario the turtles do not seem to be in an
obvious grid because the resolution of the cells is a single
pixel.

The turtles can paint on the world through a standard interface
supplied to greenfoot objects by the world class. Figure 9
shows three turtles painting various shapes in different
colours.

It is easily possible to alternate between programmed
behaviour (the execution of the act() method through the
simulation framework) and direct interaction with the turtles.
The turtle drawing the circle, for instance, has been stopped
several times to manually raise and lower the pen and change
its colours. Turtles could also be picked up and dropped
elsewhere to continue their actions at another position on
screen.

Figure 9: Turtle Graphics in greenfoot

6.4 Other scenarios
A wide range of other applications can be fitted into the
greenfoot framework. While best suited to applications that
produce two-dimensional graphic output, other uses are not
excluded. Since drawing capabilities on the world include the
drawing of text, some objects could display a behaviour that
displays textual information on the screen. While this is not
the main goal for greenfoot, it extends its capabilities.

A scenario like the Marine Biology Case Study can easily be
implemented. This example is structurally similar to Karel the
Robot, and does not require further detailed discussion here.
One difference in use patterns is that there are often many fish
involved in such a simulation, whereas Karel often only uses a
few robots. To add a larger number of fish, a constructor or a
method of the world can be used.

The graphical simulation output generated by greenfoot does
not have to be a birds-eye view of a two dimensional area. A
lift simulation is an example where the output might be a
schematic animated drawing of a building with lifts and
people.

It is easy to imagine many other simulation scenarios that are
straight forward to implement. These include emergency
evacuation of buildings, traffic simulations, supermarket
checkout queues, predator/prey simulations and many more.
Greenfoot may even be used to provide an easy-to-use output
mechanism to more advanced exercises such as, for example,
the dining philosophers problem.

7. DISCUSSION AND CONCLUSION
The examples discussed attempted to illustrate the
functionality and flexibility of greenfoot. The greenfoot
system provides enhanced support for two user groups:
teachers and students.

7.1 Support for student activities
Students are presented with richly visual scenarios that have
proven popular in other systems, combined with interaction
and easy experimentation tools that are intended to increase
their engagement and understanding.

As in Karel-like systems, state changes and object behaviour
are immediately observable through visual changes of
greenfoot objects on screen.

Execution of object methods in ‘simulation mode’ i s
supported, which lets students sit back and observe object
behaviour over a larger number of execution steps (after
having implemented this behaviour), including interaction of
objects in the greenfoot world and other emergent behaviour.

In addition to this, direct interaction with individual methods
of individual objects is also supported, which lets student
perform ad-hoc experiments with object behaviour before
coding the behaviour in Java source code.

This functionality is available in addition to more standard
tools for an educational IDE: an easy to use integrated source
code editor, integrated compilation and a source level
debugger.

7.2 Support for teachers
In section 3, we have discussed the tension between flexibility
and framework support. Different approaches are at different
ends of this scale.

On the one hand, teachers could write the complete framework
themselves, thus achieving maximum flexibility in creating
their preferred scenarios. In practice, this is impractical,
because the workload of writing and maintaining such a
framework is too high for the average teacher.

On the other hand, a ready-made framework could be used
(such as Karel, Turtle Graphics or the Marine Biology Case
Study). This avoids a lot of the work for the teacher, but has
the disadvantage that the scenario is not flexible. If the
framework gives you robots and beepers, then that’s what
students deal with: robots and beepers. Whether they like it or
not.

The second is the situation commonly found today: micro
world frameworks or libraries are written and maintained by a
single person or a small group, including the design of
scenarios. Exercises can then be created and shared between
teachers. As a result of this, only a very small number of these
micro world scenarios are available today.

Figure 10: Roles of people involved in creation and use of
micro worlds (greenfoot vs. traditional)

Greenfoot decouples the framework creation from the scenario
writing (Figure 10). Once the greenfoot framework is available,
the difficulty and time requirements of writing a scenario

become manageable for a much larger number of teachers.
Projects such as robot worlds or lift simulations are easy to
create, since all execution logic is provided by the
environment. In addition, well tested and useful tools such as
an editor, integrated compilation, a debugger and
documentation generation are provided in a simple and easy to
use interface.

Not every teacher needs to write scenarios (these can still be
shared), but we expect that many teachers can, and will, create
their own scenarios for greenfoot.

Thus, greenfoot is not a micro world, but a meta framework for
micro worlds.

This decoupling of framework functionality from the user
level scenario allows us to provide good tool support for the
teaching of object orientation while allowing flexibility for
individual adaptation at the same time.

7.3 New possibilities
Apart from making current curricula more engaging or more
interactive, we believe that the use of greenfoot can open new
possibilities for course design that are not practical today.

One of those possibilities is a direct side effect of the
decoupling of the scenarios from the framework: using
multiple worlds in a single course.

Currently, each micro world carries a significant overhead in
its use. Each has different technical requirements, different
installation procedures, different user interfaces that need to
be learned, and different interaction models. As a result, there
is usually not enough time in a single course to use more than
one world scenario.

Since greenfoot has a consistent interface and interaction
model across different world scenarios, the overhead of
learning to use greenfoot exists only once, and using
additional worlds is almost ‘free’. This opens up the
possibility to use a sequence of simulation scenarios (maybe
of increasing complexity or from different application areas)
in the same course. A course could start with turtles, move to
Karel-like robots, and end by implementing a lift simulation
for a high rise building.

7.4 Status
An implementation of a greenfoot prototype has been
completed, and experimentation with this prototype with the
goal of functional refinement is currently underway. A beta
release of greenfoot will be available for free download shortly
from www.greenfoot.org . A complete system, also to be
distributed freely, is expected later in the year.

8. REFERENCES
[1] Barnes, D. J. & Kölling, M., Objects First With Java – A

Practical Introduction Using BlueJ, ISBN 0-13-044929-6,
Pearson Education, 2003.

[2] Becker, B. W., Teaching CS1 with Karel the Robot in Java.
In Proceedings of the 32nd SIGCSE Technical Symposium
on Computer Science Education. Vol. 33. (Charlotte,
North Carolina, 2001)

[3] Bergin, J., Stehlik, M., Roberts, J., & Pattis, R. Karel++ – A
Gentle Introduction to the Art of Object-Oriented
Programming. John Wiley & Sons, 1997

[4] Bergin, J., Stehlik, M., Roberts, J., & Pattis, R. Karel J.
Robot – A Gentle Introduction to the Art of Object-
Oriented Programming in Java. Unpublished manuscript,
available [18 March 2004] from: http://csis.pace.edu/
~bergin/KarelJava2ed/Karel++JavaEdition.html

[5] Andrianoff, S. K. & Levine D. B., Role Playing in an
Object-Oriented World, Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education,
Cincinnati, Kentucky, 121-125, 2002.

[6] Buck, D., Stucki, D.J., JKarelRobot: a case study in
supporting levels of cognitive development in the
computer science curriculum. In Proceedings of the 32nd

SIGCSE Technical Symposium on Computer Science
Education. Vol. 33. (Charlotte, North Carolina, 2001)

[7] Caspersen, M. E., Christensen, H. B., Here, There and
Everywhere – On the Recurring Use of Turtle Graphics in
CS1, Proceedings of the Fourth Australasian Conference
on Computing Education, 34-40, 2000

[8] Cooper S., Dann, W. & Pausch R. Teaching Objects-First In
Introductory Computer Science. In Proceedings of the 34th

SIGCSE symposium (Reno, Nevada, February 2003).

[9] Kolb, D. A., Experiential Learning. Experiences as the
source of Learning and Development. Prentice-Hall, ISBN
0-13-295261, 1983.

[10] Kölling, M., Quig, B., Patterson, A. & Rosenberg, J., The
BlueJ system and its pedagogy. In Journal of Computer
Science Education, Special issue on Learning and
Teaching Object Technology, 13 (4), December 2003

[11] Lukas, G., Uses of the LOGO programming language in
undergraduate instruction. In Proc. of the ACM annual
conference, Volume 2. (Boston, Massachusetts, 1972)

[12] Pattis, R., Roberts, J., & Stehlik, M. Karel the robot: a
gentle introduction to the art of programming, 2nd

Edition. John Wiley & Sons, 1994.

[13] Sanders, D., Dorn, B. Introduction to OO: Jeroo: a tool for
introducing object-oriented programming. In 34th

SIGCSE Proceedings (Reno, Nevada, February 2003)

[1 4] The College Board (Advanced Placement Program),
Marine Biology Case Study. Available [September 10,
2003] from: http://www.collegeboard.com/

