
Staged Refresh Timers for RSVP
Ping Pan and Henning Schulzrinne

Abstract—The current resource Reservation Protocol (RSVP) design has
no reliability mechanism for the delivery of control messages. Instead,
RSVP relies on periodic refresh between routers to maintain reservation
states. This approach has several problems in a congested network. End
systems send PATH and RESV messages to set up RSVP connections. If the
first PATH or RESV message from an end system is accidentally lost in the
network, a copy of the message will not be retransmitted until the end of a
refresh interval, causing a delay of 30 seconds or more until a reservation is
established. If a congested link causes a tear-down message (PATHTEAR
or RESVTEAR) to be dropped, the corresponding reservation will not be
removed from the routers until the RSVP cleanup timer expires.

We present an RSVP enhancement called staged refresh timers to sup-
port fast and reliable message delivery that ensures hop-by-hop delivery of
control messages without violating the soft-state design. The enhancement
is backwards-compatible and can be easily added to current implementa-
tions. The new approach can speed up the delivery of trigger messages while
reducing the amount of refresh messages. The approach is also applicable
to other soft-state protocols.

Keywords—RSVP; soft state; reliability; signaling.

I. I NTRODUCTION

The Reservation Protocol (RSVP) [1], [2] has been designed
to exchange resource reservation information among routers in
an internet. One of its advantages is that it relies onsoft state
to maintain reservation state in each router: Reservations will
disappear by themselves if they are not refreshed periodically.
This avoids orphan reservations and allows reservations to adapt
quickly to routing changes, without involvement of the end sys-
tems. End systems send explicit tear-down messages to speed
up the removal of reservations when routes change or the appli-
cation exits.

RSVP sends its control messages as IP datagrams with no re-
liability guarantee. It relies on the periodic refresh messages
from hosts and routers to handle the occasional loss of a PATH
or RESV message. Each RSVP host or router maintains a
cleanup timer. A state is deleted if no refresh messages arrive
before the expiration of a cleanup timeout interval.

Packet losses in the current Internet can be frequent, unfor-
tunately. In today’s Internet multicast backbone (Mbone), the
packet loss rate [3] is approximately 1-2% on average, and can
occasionally reach 20% or more on congested links. The exist-
ing RSVP message delivery mechanism will not work well in
such an environment. For example, when a user tries to make
a reservation over the network, if thefirst reservation request
(RESV) is lost due to congestion, it will not be retransmitted
over the congested link until the next refresh cycle arrives. The
default refresh interval is 30 seconds.

Thus, the first few seconds of, say, a multimedia flow may
experience degraded quality of service as packets are carried on
a best-effort basis rather than as a reserved flow. Unfortunately,
packet loss is more likely to delay reservations just when needed
most, i.e., when packet loss rates for best-effort service are high.

P. Pan is with the IBM Thomas J. Watson Research Center, Yorktown Heights,
NY 10598.pan@watson.ibm.com.

H. Schulzrinne is with the Department of Computer Science and the Depart-
ment of Electrical Engineering, Columbia University, New York, NY 10027.
schulzrinne@cs.columbia.edu.

RSVP soft states are managed hop-by-hop, i.e., no network
entities other than the node that sent the original refresh message
can retransmit a refresh message. Thus, a user cannot accelerate
the reservation process by retransmitting RESV messages.

RSVP also does not retransmit tear-down messages. If, for
example, a user tries to remove a reservation, and the message
(RESVTEAR) is lost, the reservation will remain in place until
it times out, by default after 90 seconds. If holding a reservation
incurs costs, the user will have to pay for the extra time that has
been spent waiting for the reservation time-out. Also, network
resources are used inefficiently. Network providers will have to
account for this uncertainty in their billing policies.

In this paper, we propose a simple RSVP extension that pro-
vides a mechanism to deliver RSVP messages faster and more
reliably, that is backward compatible with the existing imple-
mentations, and that reduces the number of refreshes among
routers, contributing to protocol scalability.

II. T ERMINOLOGY

A. Sending and Receiving Nodes

A sending node is a router or host that generates RSVP mes-
sages. A receiving node is defined as the RSVP router or host
that is one hop away from a sending node. In a shared-media
or non-broadcast multiple access (NBMA) network such as an
ATM subnet, a sending node may have multiple receiving nodes.
In some cases, not all routers between sending and receiving
nodes implement RSVP. We refer to these networks as non-
RSVP clouds.

B. Trigger and Refresh Message

In RSVP, control traffic can be categorized into two types:
trigger and refresh messages. Trigger messages are generated
by an RSVP host or a router due to state changes. Such state
changes include the initiation of a new state, a route change
that altered the reservation paths, or a reservation modifica-
tion by a downstream router. PATH, RESV, PATHTEAR and
RESVTEAR serve as RSVP trigger messages.

Refresh messages, on the other hand, contain replicated state
information generated by a router to maintain state. As indicated
in the introduction, RSVP periodically refreshes state for robust-
ness. For instance, if the RSVP daemon on a router crashes and
resets, it loses all RSVP state information. However, since its
neighbor routers send copies of RSVP state information peri-
odically, the router can recover the lost states within one refresh
interval. A refresh message can be either a PATH or RESV mes-
sage.

The RSVP routing interface [4] can detect state changes, so
that refresh messages are not needed to update router reserva-
tion states. If the RSVP daemon is reasonably reliable, refresh
messages are more of a safety mechanism than actually used
for network operation and can thus be sent very infrequently,



in the range of hours instead of 30 seconds. This greatly re-
duces the traffic and processing impact of RSVP messages and
makes RSVP signaling at least as efficient as circuit-switched
setup protocols. However, this requires that trigger messages
are delivered reliably.

III. RSVP EXTENSIONS

A. Outline of Operation

We propose the following feedback mechanism for RSVP
trigger message delivery: When sending an RSVP trigger mes-
sage, a node inserts a new echo-request flag into the RSVP
common header of the message. Upon reception, a receiving
node acknowledges the arrival of the message by sending back
an echo-reply. When the sending node receives this echo-reply
for a PATH or RESV message, it will automatically scale back
the refresh rate for these messages for the flow. If the trigger
message was a flow tear-down, no more tear-down messages are
sent, just as in the current RSVP specification. Until the echo
reply is received, the sending node will retransmit the trigger
message. The interval between retransmissions is governed by
a staged refresh timer. The staged refresh timer starts at a small
interval which increases exponentially until it reaches a thresh-
old. From that point on, the sending node will use a fixed timer
to refresh PATH and RESV messages and stop re-transmitting
tear-down messages. This mechanism is designed so that the
message load is only slightly larger than in the current specifi-
cation even if a node does not support this staged refresh timer.

The proposed mechanism requires several minor modifica-
tions to the current version of RSVP: a new bit is defined in
the flag field of the RSVP common header, and four new mes-
sage types are created for echo-reply. The echo reply messages
are simple copies of the message to be confirmed, with the mes-
sage type changed. While PATH messages are generated end-
to-end, PATH echo-replies are hop-by-hop, using the previous
hop (PHOP) field from the message.

B. Time Parameters

The new extension makes the use of the following time pa-
rameters:
Fast refresh interval Rf : Rf is the initial retransmission inter-
val for trigger messages. After sending the message for the
first time, the sending node will schedule a retransmission af-
ter Rf seconds. The value ofRf could be as small as the
round trip time (RTT) between a sending and a receiving node,
if known. Unless a node knows that all receiving nodes support
echo-replies, a slightly larger value of, for example, 3 seconds is
suggested. This is the value used in the examples in this paper.
Slow refresh interval Rs: The sending node retransmits with
this interval after it has determined that the receiving nodes sup-
port the RSVP echo-reply. To reduce the number of unnecessary
refreshes in a stable network,Rs can be set to a large value. The
value ofRs can be set for each egress interface. Throughout the
remainder of the paper we assume a value of 15 minutes forRs.
Fixed refresh interval R: A node retransmits the trigger mes-
sage with the interval(1 + �)iRf until the refresh interval
reaches the fixed refresh intervalR or an echo reply has been
received. If no reply has been received, the node continues to

retransmit refreshes everyR seconds. We choose a value for
R of 30 seconds, the same value as the refresh interval in the
current RSVP specification.
Increment value �: � governs the speed with which the sender
increases the refresh interval. The ratio of two successive re-
fresh intervals is(1 + �). We arbitrarily set� to 0.30, which
is also the the same value as theSlew.Max parameter that has
been defined in RSVP to increase the retransmission and time-
out interval for long-lived flows using local repairs.

C. Staged Refresh

After a sending node transmits a trigger message, it will im-
mediately schedule a retransmission afterRf seconds. If it re-
ceives echo-replies, the sending node will change the refresh
interval toRs. Otherwise, it will retransmit the message after
(1 + �)Rf seconds. The staged retransmission will continue
until either echo-replies are received, or the refresh interval has
been increased toRf .

The refresh interval for each refresh cyclei can be described
as:

Ri =

8
<
:

(1 + �)iRf if no reply andi � I

R if no reply andi > I

Rs after echo reply
where

I =
log R

Rf

log(1 +�)
is the number of retransmissions before the interval reaches the
fixed refresh intervalR.

Figure 1 illustrates how various refresh mechanisms The fig-
ure shows that the number of refreshes is reduced if both send-
ing and receiving node support the new extension. If the re-
ceiving nodes do not reply to a trigger message, the sending
node generates several refresh messages until the refresh inter-
val converges to the fixed refresh intervalR. While incurring ad-
ditional overhead, these retransmissions increase the likelihood
that the reservation state will be established even in a lossy net-
work. In the figure, the sending node transmit seven messages
before reaching the refresh intervalR. With a larger value of�,
Rf could be decreased to accelerate state establishment.

The implementation of staged refresh is simple. A sending
node can use the following algorithm when the RSVP refresh
timer for state (flow)k has expired:

if (Rk < R)
Rk ! Rk(1 +�)
send out a refresh message;
wake up in statek afterRk seconds;
exit.

else
Rk ! R

if (the statek is for a tear-down message)
clean up statek;
exit.

else
send out a refresh message;
wake up statek afterRk seconds;
exit.



0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140

time (sec)

re
fr

es
h

 r
at

e 
(1

/s
ec

)

Staged refresh (no reply)

Fixed Refresh

Refresh with reply

Fig. 1. RSVP refresh comparison(Rf = 3 s; Rs = 15 min; R = 30 s;� = 0:3)

Asynchronously, when a sending node receives echo-replies
from the receiving nodes, it will change the refresh intervalRk

toRs for statek.

IV. SPECIAL CONSIDERATIONS

A. Backward Compatibility

Backward compatibility is one of the main objectives in our
design. One cannot assume that both sending and receiving
nodes on a link will support the extension simultaneously.

In the current RSVP specification, sending nodes refresh the
soft states with fixed timers. In our design, sending nodes rely
on echo request/reply mechanism to “learn” about the status of
receiving nodes. If a sending node does not receive echo replies
from the receiving nodes after several tries, it will assume the
receiving nodes do not support the new extension, and switch
its refresh interval to a fixed value. The RSVP operation is not
affected at the receiving nodes.

B. Computing Cleanup Timeout Values

Each RSVP PATH and RESV message carries a refresh inter-
val in itsTIME VALUES object. Receiver nodes use the refresh
interval to compute the cleanup timeout interval that governs the
lifetime of reservation state that has not been refreshed. Gener-
ally, the cleanup timeout interval is a small multiple of refresh
interval.

In the staged refresh design, a sending node initially places
the slow refresh timer,Rs, in the PATH or RESV message. For
the receiving nodes that do not support the new extension, the
sending node will insertR in the refresh messages after the ac-
tual refresh interval has been increased toR. If the receiving
nodes do support the new extension, they will set the cleanup
timeout interval based onRs.

C. Handling of Tear-Down Messages

RSVP uses PATHTEAR and RESVTEAR messages to tear-
down path and reservation states, respectively. According to
the current specification, sending nodes only generate one tear-
message per flow. If the message is accidentally dropped along
the way, the reserved resource will not be released until the
cleanup timer expires. However, receiving duplicate tear-down
messages at a receiving node should not impact the operation of
RSVP in a proper implementation.

In our RSVP extension, we have altered the processing rules
for tear-down messages at the sending node. Instead of deleting
the state after a tear-down message is sent, a sending node will
release all resource allocated to the state, and mark the state as
closing. The state information is saved for message retransmis-
sion. The entire state information will be removed when echo-
replies are received, or when the sending node realizes that the
receiving nodes do not support the extension.

D. Operation in an NBMA Environment

For a multicast RSVP session in a non-broadcast multiple
access (NBMA) network (such as ATM), a sending node may
not know the total number of receiving nodes for a PATH or
PATHTEAR message at an egress interface. Therefore, a send-
ing node cannot simply switch to the longer refresh timerRs

based on having received echo-replies.
For example, as shown in Figure 2, if the receiving node R3

does not support the new RSVP extension, the sending node S
should not change to the longer refresh intervalRs, even though
it has received echo-replies from R1 and R2.

In this case, a sending node has two alternatives:
� It can query a local database such as the ARP or MARS server
to find out the exact number of the next-hop receivers. It then
switches to a longer refresh interval after receiving echo-replies
from all receiving nodes.



S

R3

R2

R1

Path

PathAck

PathAck

Path

Path

Path

Fig. 2. PATH messages in an NBMA network

� Since PATH messages are mainly used for traffic advertise-
ment purposes, the sending node may not need to use staged
refresh timers for PATH messages. In an NBMA network, the
staged refresh time mechanism would only make sense for the
message delivery of RESV, RESVTEAR and PATHTEAR mes-
sages.

In case of PATHTEAR message, a sending node always
knows all the receiving nodes that have made reservations. The
following rules can be used:
� A sending node stops re-transmitting PATHTEAR messages
once it receives echo-replies from all its known next-hop re-
ceivers at an egress interface.
� Otherwise, the sending node generates PATHTEAR messages
using staged refresh timer until the refresh interval is increased
to the fixed refresh rate R. Then it stops re-transmitting.

S

R3

R2

R1

PathTear

PathTearAck

PathTearAck

PathTear

PathTear

PathTear

Reserved Link

Non-reserved Link

Fig. 3. PathTear message in an NBMA network

An example is shown in Figure 3. R1, R2 and R3 are the
receiving nodes to S. Initially, the sender S had the reservation
state information for receiving node R1 and R2. Since R3 did
not make any reservation, S would not know the existence of R3
from its RSVP database. After sending the first PATHTEAR
message, S will retransmit the message until it has received

echo replies from R1 and R2. After which, S stops generating
PATHTEAR messages.

V. EVALUATION

A. Reduced Message Loss Probability

Adding feedback mechanism in RSVP message delivery re-
duces the message loss probability. Figure 4 shows the accumu-
lative loss probability for both fixed and staged refresh mecha-
nism. We assume the message loss probability for a single mes-
sage is 20% [3]. In the example, four refreshes are sent within
the first 30 seconds if a staged refresh timer is used, compared
with only one refresh with the fixed refresh timer. The prob-
ability that no reservation is established after half a minute is
reduced to the neighborhood of 3 � 10�4 compared with 4 � 10�2

with the current fixed timer. For a loss rate of 2%, the failure
probabilities are 3 � 10�9 and 4 � 10�4, respectively.

B. Reduced Protocol Overhead

60 s 60 min
Fixed refresh 300 18,000
Slewed refresh 300 1,950
Staged refresh (no reply) 900 18,600
Staged refresh (with reply) 300 900

Fig. 5. Protocol overhead (bytes sent) for different RSVP timer mechanisms

When RSVP trigger messages have been acknowledged by
echo-replies, the soft state refresh frequency is reduced. In Ta-
ble 5, we show the protocol overhead for a single RSVP flow,
using the same parameters as before. We also compare this to
the mechanism described in [2, p. 57], which increases the re-
fresh interval by a slew factor (here, 0.3)1. If the receiving node
supports the staged timer extension, the number of bytes to be
transmitted in an hour is only 900 bytes. Even if the receiving
node does not support the new extension, the amount of data be-
ing transmitted over an hour is nearly the same compared with
the fixed refresh timer case.

For a link that requires to manage thousands of RSVP flows,
protocol overhead reduction is clearly an advantage over the
fixed refresh timer.

C. Simple to Process

The newly defined echo-reply messages are simple to gener-
ate and easy to process. The format of echo-reply messages can
be designed in such a way that a router can build an echo-reply
message by simply copying the appropriate objects from the
echo-request message block. We added staged refresh timers to
IBM’s RSVP implementation, requiring only a few dozen lines
of extra C code.

VI. CONCLUSION AND FUTURE WORK

We believe that RSVP message delivery mechanism requires
some degree of reliability guarantee to make RSVP useful for
individual applications rather than reserving “pipes” . One way
of improving reliability is to grant some minimal bandwidth

1As far as we know, this has not been implemented anywhere.



-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180

time (sec)

L
o

ss
 P

ro
b

 (
lo

g
10

)

Staged Refresh

Fixed Refresh

Fig. 4. Comparison of message loss probability as a function of time for fixed and staged refresh

for RSVP messages to protect them from congestion losses, as
suggested in the RSVP specification [2]. However, this may
require additional functionality at both sending and receiving
nodes and does not help if RSVP messages have to traverse non-
RSVP clouds. It is also not clear how this can be achieved in a
backward-compatible manner.

In this paper, we presented a mechanism called staged refresh
timers that enhances the current RSVP message delivery and is
completely backward compatible. Staged refresh timers are easy
to add to RSVP router and host implementations and save both
processing and bandwidth overhead.

The staged refresh timer algorithm is currently being imple-
mented in IBM Research’s router software platform, and will be
tested on several router/switch prototypes.

The staged refresh timer mechanism is an example of
state management that falls somewhere between “classical”
handshake-based reliability as found in ATM signaling, for ex-
ample, and purely timer-based soft-state protocols such as the
original RSVP proposal [1], delta-t [5] or IGMPv1 [6]. An ap-
proach similar to staged refresh is also being used by the Session
Initiation Protocol [7] to confirm state establishment. Gener-
ally speaking, experience has shown that state management is
greatly simplified by requiring only one message (in each di-
rection) to establish state, rather than going through several in-
termedia states. State establishment messages should be idem-
potent and should contain a globally (spatially and temporally)
unique state label, so that retransmissions of the same message
can be ignored.

Since only neighboring routers are involved in the reliabil-
ity mechanism described here, these routers can easily estimate
round-trip times, thus further tightening the retransmission in-
terval, if desired.

While staged refresh timers improve scalability, RSVP re-
mains a rather complex protocol. Alternative approaches to re-

serve reservation [8], [9] may offer better scaling properties.

Acknowledgments. The authors wish to thank Shai Herzog for
the useful discussions at the early stages of this work and Roch
Guérin for his insightful comments.

REFERENCES

[1] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: a
new resource ReSerVation protocol,” IEEE Network, vol. 7, pp. 8–18, Sept.
1993.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource reser-
vation protocol (RSVP) – version 1 functional specification,” Internet Draft,
Internet Engineering Task Force, June 1997. Work in progress.

[3] M. Yajnik, J. Kurose, and D. Towsley, “Packet loss correlation in the MBone
multicast network,” in Proceedings of Global Internet, (London, England),
Nov. 1996.

[4] D. Zappala, “RSRR: a routing interface for RSVP,” Internet Draft (expired),
Internet Engineering Task Force, Nov. 1996. Work in progress.

[5] R. W. Watson, “The Delta-t transport protocol: Features and experience,”
in First IFIP WG6.1/WG6.4 International Workshop on Protocols for High-
Speed Networks (H. Rudin and R. Williamson, eds.), (Zürich, Switzerland),
pp. 3–17, May 1989.

[6] S. Deering, “Host extensions for IP multicasting,” Request for Comments
(Standard) STD 5, RFC 1112, Internet Engineering Task Force, Aug. 1989.
(Obsoletes RFC0988).

[7] M. Handley, H. Schulzrinne, and E. Schooler, “SIP: Session initiation pro-
tocol,” Internet Draft, Internet Engineering Task Force, July 1997. Work in
progress.

[8] D. Clark and J. Wroclawski, “An approach to service allocation in the inter-
net,” Internet Draft, Internet Engineering Task Force, Aug. 1997. Work in
progress.

[9] P. P. Pan and H. Schulzrinne, “YESSIR: A simple reservation mechanism
for the Internet,” in submitted for publication, 1998.


