
Strongly History-Independent Hashing with Applications

Guy E. Blelloch ∗

Computer Science Department
Carnegie Mellon University

Daniel Golovin †

Computer Science Department
Carnegie Mellon University

Abstract

We present a strongly history independent (SHI) hash ta-
ble that supports search in O(1) worst-case time, and insert
and delete in O(1) expected time using O(n) data space.
This matches the bounds for dynamic perfect hashing, and
improves on the best previous results by Naor and Teague
on history independent hashing, which were either weakly
history independent, or only supported insertion and search
(no delete) each in O(1) expected time.

The results can be used to construct many other SHI data
structures. We show straightforward constructions for SHI
ordered dictionaries: for n keys from {1, . . . , nk} searches
take O(log log n) worst-case time and updates (insertions
and deletions) O(log log n) expected time, and for keys in
the comparison model searches take O(log n) worst-case
time and updates O(log n) expected time. We also describe
a SHI data structure for the order-maintenance problem. It
supports comparisons in O(1) worst-case time, and updates
in O(1) expected time. All structures use O(n) data space.

1 Introduction

Computer users on a typical system leave significant clues
to their recent activities, in the form of logs, unflushed
buffers, files marked for deletion but not yet deleted, and
so on. This can have significant security implications. Sim-
ilarly many file formats are effectively data structures and
can contain historical information or clues on what once
appeared in the file. Hartline et al. [10] describe an ex-
ample of a CIA document that was released as a PDF file
in 2000 with classified information redacted by overlaying
black boxes. Unfortunately the overlays could easily be re-
moved revealing key information about the CIA’s role in the
1953 overthrow of the Iranian Government. History repeats
itself. In 2005 the US military released a PDF report on the
accidental shooting of Italian secret agent Nicola Calipari
in Iraq, again with classified information redacted by over-

∗Supported in part by NSF ITR grants CCR-0122581 (The Aladdin
Center). Email: blelloch@cs.cmu.edu

†Supported in part by NSF ITR grants CCR-0122581 (The Aladdin
Center) and IIS-0121678. Email: dgolovin@cs.cmu.edu

laying black boxes. Again the overlays could be removed,
and among the information revealed was the name of the
US military shooter, Mario Lozano.

To address the concern of releasing historical and private
information the notion of history independent data struc-
tures was devised [13, 14]. Roughly, a data structure is
history independent if someone with access to the memory
(file) layout of the data structure (henceforth called the “ob-
server”) can learn no more information than a legitimate
user accessing the data structure via its standard interface.
We assume the observer is computationally unbounded.

The most stringent form of history independence is
called strong history independence and requires that the
behavior of the data structure under its standard interface
along with a collection of randomly generated bits uniquely
determine its memory representation. Thus a SHI data
structure has a canonical representation up to randomness.
Data structures with canonical representations are interest-
ing both theoretically and practically. Theoretically, there
are the natural questions about the time and space complex-
ity of such data structures. As a bonus, canonical form may
simplify proofs that data structures have other properties.
We use this to our advantage when bounding the running
time of our hash table.

Practically, there are many applications for SHI data
structures. Consider a filesystem which supports deleting
a file in a way that provably leaves no trace that it ever ex-
isted. Imagine a government wanting to publish the names
of all voters in an election without divulging any informa-
tion about when or in what order they voted. Publishing
a SHI hash table would be a natural solution. There are
other applications of canonical forms aside from hiding his-
torical information. For example, it makes equality test-
ing of the contents of two data structures very simple based
purely on the memory layout and requires no knowledge of
the representation or even the contents. It also allows for
easy digital signing of a data structure at various times to
provide proof that it contained certain data at those times.
Again the signing code need know nothing about the rep-
resentation or contents. Canonical form can also help with
debugging computations that have some nondeterminacy in
the ordering of operations. If a SHI data structure, for ex-
ample, is generated via some parallel process and then later

1



the system crashes, then while rerunning the code on the
same input we can be sure that whenever the system enters
a previously attained state, it has the same memory layout
as before, even if the exact interleaving of the parallel op-
erations leading up to this state is different the second time
due to nondeterministic timing issues.

Previous Work. Canonical representations were studied
by Snyder [22], Sundar and Tarjan [23], and Andersson
and Ottmann [3]. They showed lower and upper bounds
for the ordered dictionary problem in regards to the canon-
ical form of their pointer representation. Andersson and
Ottmann [3], for example, show Θ(n1/3) matching lower
and upper bounds. This shows a strong separation from
redundant representations which have Θ(log n) lower and
upper bounds. The model considered, however, disallows
even labels on the keys—only comparisons are allowed. If
labels are allowed, the lower-bounds do not hold.

Pugh and Teitelbaum [18] describe how canonical rep-
resentations can be used for incremental computation with
applications to dynamic algorithms. The idea is that canon-
ical representations make it easier to test for equality for the
purpose of memoization (what they call function caching).

Micciancio [13] defined the notion of oblivious data
structures in which the pointer structure reveals nothing
about its history. Oblivious data structures need not have
canonical pointer representation since they only require that
the probability distribution over possible pointer represen-
tations is independent of the sequence of operations.

The two main notions of history independence, which
we formally define in section 2, were advanced by Naor
and Teague [14], and further studied by Hartline et al. [10].
Informally, we say a data structure has a logical state, which
maps each allowed operation to an output and the following
state. Informally, a data structure is weakly history indepen-
dent (WHI) if any two sequences of operations resulting in
the same state result in the same distribution over memory
representations. Here, the distributions may vary with a se-
quence of random bits hidden from the observer. If the ob-
server is allowed to see these random bits yet still obtain no
information beyond that provided via the interface, the data
structure is said to be strongly history independent (SHI).
That is, a SHI data structure has, for each fixed sequence of
random bits, a canonical memory layout for each state.

Buchbinder and Petrank [5] studied the time complex-
ity of WHI and SHI heaps and queues in a comparison
based model of computation similar to those considered
in [3, 22, 23]. They show a large complexity separation be-
tween WHI and SHI versions of these data structures.

In regards to hash tables, Amble and Knuth [2] devel-
oped a SHI hash table that does not support deletions. They
showed that it has excellent performance assuming a ran-
dom hash function is used. Naor and Teague [14] similarly
develop an efficient SHI hash table that does not support
deletions, but it requires only O(log n) pair-wise indepen-

dent hash functions rather than a truly random hash func-
tion. In the same paper they also develop a WHI hash table
based on dynamic perfect hashing [7] with searches taking
O(1) worst-case time and insertions and deletions taking
O(1) expected amortized time.

Our Contributions. We first describe a framework for
constructing SHI hash tables using a variety of open address
hashing schemes. Our framework allows us to exploit a re-
cent breakthrough result of Pagh et al. [16], who showed
that linear probing with 5-universal hash functions yields
expected O(1/(1 − α)3) time operations, where α is the
load of the hash table. Specifically, using linear probing
with a 5-universal hash function we obtain a SHI hash table
that stores n ≤ αp keys in p slots of space such that the ex-
pected time to perform any search, insertion, or deletion is
O(1/(1−α)3). Our framework reveals a subtle connection
between history independent hashing and the Gale-Shapley
stable marriage algorithm [9], which may be of independent
interest.

We then construct SHI data structures with various worst
case guarantees. Unfortunately, these require a potentially
exponential amount of randomness, however they serve as
the basis for more practical data structures that either (i) re-
tain the running times but make the data structure SHI
with high probability (by which we mean with probability
1 − 1/nc for any user-defined constant c > 0) and WHI
with certainty, or (ii) retain SHI-ness but replace worst case
time guarantees with “with high probability” time guaran-
tees. These require only O(nδ) random bits for any con-
stant δ > 0, and, in case (i), the ability to sample random
bits as needed. For ease of exposition we describe the orig-
inal versions first, and then the (relatively straightforward)
modifications needed to get guarantees of form (i) and (ii).

The first such data structure we present is a SHI hash
table that supports search in O(1) worst-case time and up-
dates in O(1) expected time. Our approach is novel, and
quite different from previous approaches [7, 8, 17]. We
then use this hash table to construct other SHI data struc-
tures. We show straightforward constructions for ordered
dictionaries. For n keys from [1, . . . , nk] searches take
O(log log n) worst-case time and updates (insertions and
deletions) take O(log log n) expected time. For keys in the
comparison model searches take O(log n) worst-case time
and updates take O(log n) expected time. Both structures
use O(n) data space.

We also describe a SHI data structure for the order-
maintenance (OM) problem. It supports comparisons in
O(1) worst-case time, and updates in O(1) expected time.
The OM problem is important since it can be used in the
framework of Acar et al. [1] to generate SHI data structures
by dynamizing static algorithms. Acar et al. gave sufficient
conditions for strong history independence of dynamized
algorithms based on a SHI OM structure. The SHI OM and
SHI hashing imply, for example, a SHI data structure for



dynamic trees supporting updates and queries in O(log n)
expected time and using O(n) data space.

Finally, note we do not allow the observer to decide
what operations are performed when giving these guaran-
tees. Since we allow the observer to inspect our hash table’s
random bits, allowing the observer to select the set S would
be disastrous in terms of performance if U is sufficiently
large (as it would be for any space efficient hash table). Of
course, for any fixed set of n keys selected without knowl-
edge of the hash table’s random bits, the hash table opera-
tions will take expected constant time.

2 Preliminaries

For convenience, we define [k] := {0, 1, 2, . . . , k − 1}.
Throughout the paper, we let with high probability (whp)
mean with probability at least 1− 1/nc where c > 0 is any
user defined constant.

We consider the problem of hashing n ≤ αp (key, ob-
ject) pairs into a table of length p, for any positive integer
p. The quantity α ∈ (0, 1) is called the load of the hash
table. Since we are interested in space efficient hashing, we
assume the load α is constant.

For our machine model, we assume a standard unit cost
RAM with word size at least log |U |, where U is the uni-
verse of keys. Thus, a key can be stored in a single word.
We also assume the ability to sample various hash func-
tions h : U → [p] which can be evaluated in O(1) time.
For a discussion of efficient O(1)-universal hash functions,
see [16]. Where Θ(log n)-universal hash functions are
needed, the constructions of Siegel [20, 21] and Östlin and
Pagh [15] are suitable, assuming the keys are integers. The
latter are also suitable where full randomness is called for.

History independence is defined below. The definition
of weak history independence is reproduced from Naor and
Teague [14], and is given here for completeness. Our def-
inition of strong history independence differs from that of
Naor and Teague, however the two definitions were proved
equivalent by Hartline et al. [10] for reversible data struc-
tures (i.e., those for which there always exists some se-
quence of operations which returns the data structures to
its initial state), which include all the data structures in this
paper.

Definition 2.1 (Weak History Independence)
A data structure is weakly history independent (WHI)
if, for any two sequences of operations X and Y that take
the data structure from initialization to state A, the distri-
bution over memory representations after X is performed
is identical to the distribution after Y is performed. (The
distribution in question is over the random bits that the
WHI data structure may hide from the observer.)

Definition 2.2 (Strong History Independence)
A reversible data structure is strongly history inde-

pendent (SHI) if it has canonical representations up to
initial randomness. That is, for each sequence of initial
random bits and for each state of the data structure, there
is a unique memory representation.

Note that building an efficient SHI hash table based on
separate chaining requires a SHI memory allocator. We
therefore focus on open-address hash schemes. We will also
need the following definitions.

Definition 2.3 (k-Universal Hash Family) A family H of
functions from X to Y is k-universal if for all distinct
x1, x2, . . . , xk ∈ X and for all y1, y2, . . . , yk ∈ Y

Prh∈H

[∧k
i=1 h(xi) = yi

]
≤ |Y |−k where h is chosen uni-

formly at random from H.

Definition 2.4 (Data Space) The data space of a data
structure is the space it uses excluding any space used to
store random bits.

3 Efficient SHI Hashing

Our approach is based on exploiting an interesting prop-
erty of the stable marriage algorithm of Gale and Shap-
ley [9], stated below in Theorem 3.1. The stable marriage
problem is as follows: Given a set M of n men and a set W
of n women, and a preference list over the opposite sex for
each person, find a stable matching E ⊂ M ×W of size n.
A matching E is stable if for all (m,w), (m′, w′) ∈ E, it is
not the case that m prefers w′ to w and w′ prefers m to m′.

Recall that in the Gale-Shapley stable marriage algo-
rithm, the men propose to the women in decreasing order
of their preferences, and each woman is tentatively matched
with her favorite man among all those who have proposed to
her. The algorithm terminates when all men are tentatively
matched with some woman.

Note that the algorithm is underspecified in the sense that
there may be many men who are not tentatively matched,
and they may propose in arbitrary order. Thus, there are
many different valid executions of this algorithm, corre-
sponding to various ways of selecting among tentatively
unmatched men. Nevertheless, the following theorem, im-
plicit in [9] and treated explicitly in [11], shows the outcome
is not affected by the choice of valid execution.

Theorem 3.1 ([9]) Every execution of the Gale-Shapley al-
gorithm results in the same stable matching.

Framework. Theorem 3.1 suggests the following ap-
proach to constructing a SHI hash table that supports inser-
tions and searches: interpret the keys as men and the slots
of the hash table as women, and construct a distribution on
stable marriage instances between U and the set of all slots.



This distribution is based on the random bits of the hash ta-
ble. In particular, the probe sequence for a key k will equal
k’s preference list over the slots. (If the probe sequence has
duplicate entries, retain only the first occurrence of each slot
to obtain the preference list). The preference lists for each
slot will be used to resolve collisions. In this case, Theorem
3.1 ensures that for each set of keys of size at most n, the
resulting memory representation is the same no matter what
order the keys are inserted in. So the resulting hash table is
SHI under insertions. To ensure that the hash table performs
well, we must ensure that

1. We can sample efficiently from the distribution on sta-
ble marriage instances.

2. Each instance in the distribution can be represented
compactly, such that the following operations take con-
stant time: determining the ith slot in k’s preference
list, determining slot x’s rank in k’s preference list, and
comparing any two keys with respect to x’s preference
list, for arbitrary i, k and x.

3. For each set of keys S ⊂ U such that |S| ≤ n, the ex-
pected running time of the Gale-Shapley algorithm on
an instance drawn from the distribution and restricted
to the set of men S is O(|S|) on every valid execution
of the algorithm.

We note that the SHI hash table of Naor and Teague [14],
which does not support deletions, fits directly into this
framework. Intuitively, to ensure property (3) it makes
sense to construct the slot preference lists so that each slot
prefers keys that rank it high on their preference lists. Not
surprisingly then, Naor and Teague favor what they call
“youth-rules” for collision resolution, which do exactly this.

To enable support for deletions, the crux of the matter is
efficiently computing, for a slot x currently holding key k,
the slot x′ of the most preferred key k′ 6= k (according to
x’s preference list) that prefers x to its current slot. This
requirement is what keeps us from extending the SHI hash
table of Naor and Teague to support deletions. Though this
is a function of the state of the hash table, we will abuse
notation slightly and denote it by NEXT(x).

Psuedocode for insertion and deletion are given in Fig-
ure 1. In the psuedocode, PROBE(k, i) is the ith slot in
k’s probe sequence, A is the array of the hash table, and
RANK(k, x) = i if x is the ith slot in k’s probe sequence.

Implementation. Though there are many hashing
schemes, such as quadratic probing, that can be imple-
mented in our framework to give efficient SHI hash tables,
perhaps the simplest implementation is based on linear
probing. Interestingly enough, specializing our framework
to linear probing results in essentially the same insertion
algorithm as the linear probing specialization of Amble and
Knuth’s ‘Ordered hash table’ framework [2]. Of course,
our hash table will also support deletions.

FIND(key k)
For (i = 0, 1, 2, . . . , p− 1)

If (A[PROBE(k, i)] is empty OR slot
PROBE(k, i) prefers k to A[PROBE(k, i)])
return null;

Else if (A[PROBE(k, i)] equals k)
return PROBE(k, i);

INSERT(key k)
Set x = PROBE(k, 0), i = 0, and k′ = k;
While (A[x] not empty)

If (A[x] equals k′) then return;
Else if (slot x prefers A[x] to k′)

Increment i; Set x = PROBE(k′, i);
Else (slot x prefers k′ to A[x])

Swap the values of k′ and A[x];
Set i = RANK(k′, x); Increment i;
Set x = PROBE(k′, i);

Set A[x] = k′; return;

DELETE(key k)
Let slot x = FIND(k).
If x is null, return.
While (NEXT(x) is not null)

Set y = NEXT(x); Set A[x] = A[y]; Set x = y;
Set A[x] to be empty; return;

Figure 1. Psuedocode for a generic SHI hash
table following our framework.

To build a hash table for n keys we fix p = (1 + ε)n for
some ε > 0, and a total ordering on the keys. As long as we
can compare two keys in constant time, this ordering can
be arbitrary, however for simplicity of exposition we will
assume the keys are integers and use the natural ordering.
That is, each slot prefers k to k′ if k > k′. Then sample a 5-
universal hash function h : U → [p] that can be evaluated in
constant time. The functions PROBE(k, i) := (h(k) + i)
mod (p), and RANK(k, x) := (x − h(k)) mod (p) can
both be computed in constant time.

Search proceeds in a fashion similar to a standard linear
probing hash table. Specifically, we try PROBE(k, i) for
i = 0, 1, 2, etc., until reaching a slot containing k, an empty
slot, or a slot containing a key k′ such that k′ < k. In the
last case, if k had been inserted, it would have displaced the
current contents of slot PROBE(k, i), so we can report that
k is not present.

Deletions are slightly more involved. We supply the
psuedocode for NEXT(·) in Figure 2. In the case of lin-
ear probing, NEXT(x) is the slot x′ containing the largest
key k′ that probed x but was rejected (or displaced) in fa-
vor of another key. Thus k′ residing in slot x′ satisfies
RANK(k′, x) < RANK(k′, x′). Furthermore, since all
slot preference lists are the same, NEXT(x) is the slot y
that minimizes (y − x) mod p from among all slots with
keys satisfying this condition.



NEXT(slot x)
Set x′ = (x + 1) mod (p);
While (A[x′] not empty)

If (RANK(A[x′], x) < RANK(A[x′], x′))
return x′;

Set x′ = (x′ + 1) mod (p);
return null;

Figure 2. Psuedocode for NEXT(·) in the lin-
ear probing implementation.

Canonical Memory Representation. We first prove that
any hash table following our framework is indeed SHI.

Theorem 3.2 For any hash table following our framework,
after fixing the random bits there is a unique representation
of the slots array for each set of p− 1 or fewer keys.

We will sketch a proof of Theorem 3.2. Fix the hash ta-
ble’s random bits and a set of keys S such that |S| ≤ p− 1.
Searches do not change the memory representation of the
slots array, and thus we can safely ignore them. Defer the
treatment of deletions for the moment. We will use Theo-
rem 3.1 to show that any sequence of insertions resulting in
the table having contents S results in the same memory rep-
resentation. Suppose key k ∈ S is stored in slot s(k) ∈ [p].
Then {(k, s(k))|k ∈ S} is the stable matching output by
the Gale-Shapley algorithm on a particular stable marriage
instance. In this instance, M := S and W := [p]. The
preference lists for each k ∈ M are built from the probe
sequence for k: if RANK(k, w) < RANK(k, w′), then k
prefers w to w′. The preference lists for each w ∈ [p] can
be arbitrary. It is now straightforward to verify that any se-
quence of insertions corresponds to a valid execution of the
stable matching algorithm. Note also that Theorem 3.1 eas-
ily extends to the case that |M | < |W |, and thus we can
apply it to show that there is a unique representation of the
slots array if only insertions and searches are permitted.

Finally, consider deletions. Proving that deletions pre-
serve the unique representation property amounts to prov-
ing that any two sequences of operations ρ and ρ′ result-
ing in the same hash table contents result in the same
representation. Suppose that this holds for any sequence
pairs (ρ, ρ′) such that ρ has no deletions and ρ′ has at
most one. Then an easy induction on the maximum num-
ber of deletions in {ρ, ρ′} yields the desired result. So
we consider (ρ, ρ′) such that ρ has no deletions and ρ′

has exactly one. WLOG, we can assume that the dele-
tion in ρ′ deletes a key that was present at the time,
that neither ρ nor ρ′ has any searches, and that the dele-
tion in ρ′ is the last operation in ρ′. So suppose ρ′ =
(insert(k′1), insert(k′2), . . . , insert(k′r),delete(k′r)). Since
insertions maintain the unique representation and ρ contains
only insertions, we know that ρ results in the same repre-
sentation as (insert(k′1), insert(k′2), . . . , insert(k′r−1)), so

WLOG we let ρ equal this sequence.
We will show that delete(k′r) exactly undoes all the

changes insert(k′r) makes to the slot array. Set k0 := k′r.
During an insertion, whenever two keys collide and the cur-
rent key in the slot is evicted, we say that the evicted key
is displaced by the other key. In the psuedocode, k′ dis-
places A[x] when we reach the case “x prefers k′ to A[x].”
We will define ki as the key displaced by ki−1 during the
insertion of k0 ≡ k′r. Suppose the chain of displaced keys
is {ki|i = 1, 2, . . . , d}. Let s(k) be the slot containing k
immediately after the operation insert(k0) in ρ′, and s′(k)
be the slot containing k immediately before the operation
insert(k0) in ρ′. It is easy to see that s(ki) = s′(ki+1)
for all i ∈ {0, 1, . . . , d − 1}, and that the keys not in
{ki|i ∈ [0, d]} are not affected. Now consider delete(k0).
It first finds x = s(k0) = s′(k1). It then repeatedly
sets A[x] to A[NEXT(x)] and sets x to NEXT(x) while
NEXT(x) exists. To ensure this is the desired behavior,
we require that NEXT(s(ki)) = s(ki+1). Fortunately, this
is relatively easy to confirm via proof by contradiction, as
is the fact that the delete operation correctly clears the slot
that used to contain kd, and leaves all other slots unaffected.
Thus ρ′ results in the same representation as ρ.

Since the linear probing hash table stores only the slot
array, we can immediately infer the following.

Corollary 3.3 The hash table implementation described
above is SHI.

Space and Time Complexity. The hash table implemen-
tation based on linear probing requires p = n/α slots to
store n keys and requires no auxiliary memory other than
that used to store and compute the hash function. As we will
show, the expected cost for all operations is O(1/(1−α)3).

We bound the expected time per operation for our hash
table implementation by comparing it to a standard lin-
ear probing hash table. Recall that this standard hash
table selects a hash function h(·), uses probe sequences
PROBE(k, i) = h(k) + i mod (p), and resolves all col-
lisions in favor of the key already residing in the contested
slot. In a recent breakthrough result, Pagh et al. [16] showed
that linear probing with 5-universal hash functions yields
expected O(1/(1− α)3) time operations.

Theorem 3.4 The linear probing hash table implementa-
tion described above performs searches, insertions, and
deletions in expected O(1/(1− α)3) time, where the hash
table has p slots and n = αp keys.

Proof: First consider only searches and insertions. Fix
a set of keys S of size at most n. It is easy to see that if the
standard hash table and our hash table use the same hash
function h(·), then after inserting S (using any sequence of
operations that does not contain delete operations to do so)
both hash tables will have exactly the same set of occupied



slots, even though they likely have different memory rep-
resentations. Note that for the standard hash table the cost
to insert k /∈ S is Θ(dh

S(k)), where dh
S(k) is one plus the

smallest i such that slot (h(k)+ i) mod (p) is unoccupied.
It is not hard to see that in our hash table, during insertion
of k the while loop is executed at most dh

S(k) times, and
each iteration takes constant time. Thus if the standard ta-
ble takes time t to insert k after a sequence of operations
ρ, our hash table takes t′ = O(t) time. Using the result of
Pagh et al. [16], E[t′] = O(E[t]) = O(1/(1− α)3).

Searching for k /∈ S takes the same amount of time as
inserting k, up to multiplicative constants. Searching for
k ∈ S similarly takes less time than inserting k, assuming
we have inserted all keys in S \ k first. So this is expected
O(1/(1− α)3) time as well.

Now consider deletions. Suppose we insert keys set S
and then delete key k ∈ S. We can compute RANK(·)
in constant time. Looking at the psuedocode for delete
and NEXT(·), it is easy to prove that delete(k) takes time
O(dh

S(k)). So, as before, we consider inserting all elements
of S \ k before inserting k, and then inserting k last before
deleting it. By our analysis above, the insert(k) operation
takes time O(dh

S(k)) which is O(1/(1− α)3) in expecta-
tion, so the deletion takes O(1/(1− α)3) in expectation as
well. Note that for a hash table which is not SHI this line
of reasoning is invalid, because changing the order of inser-
tions might change the memory representation of the hash
table and conceivably reduce the amount of time the delete
operation takes. However we may safely dispense with this
concern because our hash table is SHI.

Remark: Our result is modular in the following sense. If
linear probing with a hash function drawn from a hash fam-
ily H results in f(α, n) expected time for insertions, then
using a hash function drawn from H in our construction re-
sults in O(f(α, n)) searches, insertions, and deletions.

Dynamic Resizing. We can dynamically resize the hash
table using the standard technique of doubling its size and
rehashing all keys upon reaching a threshold number of
keys. For good performance against an adversary, we select
the threshold randomly, as done in previous work [10, 14].

4 SHI Perfect Hashing

Building on the work of Fredman et al. [8], Dietzfel-
binger et al. [7] gave a hash table with O(1) worst case
time for lookups and O(1) amortized expected time for in-
sertions and deletions, while using space linear in the num-
ber of keys. More recently, Pagh and Rodler [17] devel-
oped a different technique to obtain the same guarantees,
called cuckoo hashing. In this section we will present a third
way to achieve identical time and data-space bounds while
maintaining strong history independence, assuming our ma-
chine has access to a large sequence of random bits. Unfor-

tunately, for reasons which we will discuss later, we can-
not sample random bits “on demand.” On the other hand,
our approach is novel and relatively simple. Previously
the only history independent hash table with these perfor-
mance guarantees was a WHI hash table due to Naor and
Teague [14], who built on the work in [7].

For ease of exposition, we begin with an impractical de-
sign that requires exponentially many random bits, and af-
terwords describe how to modify it for practical use. We
will assume that the number of keys to be stored, n, is
known in advance1.

Theorem 4.1 There exists a SHI hash table that executes
insertions and deletions in expected O(1) time, executes
search in worst case O(1) time, and uses O(n) data space
to store n keys.

We will describe a simplified version of the hash table
that works assuming various low probability events do not
occur, and then address these problematic events.

The Simplified Version. We begin with an array with
p = c0n slots to store the keys, where c0 > 1 is a con-
stant, and a fast Ω(log n)-universal hash function h map-
ping keys to slots. We will insert and delete keys from the
hash table as we did in section 3 using linear probing, but
will need to maintain some additional state. Let δ(k) be the
displacement of key k in the hash table. Fix a parameter
β = Θ(log n), and maintain a fast Ω(log n)-universal hash
function f from keys to a set of labels L := {1, 2, . . . , |L|},
where β3 ≤ |L| = poly(β). Each key k receives a label
f(k) when inserted into the hash table. Each slot x will
have an index Ix associated with it. The index for x will
store tuples (δ(k), f(k)) for each key k such that h(k) = x,
in sorted order.

Let us assume for the moment that the displacement of
any key is O(log n). In this case, each displacement re-
quires only O(log log n) bits to store. Note that the labels
require only O(log log n) bits to store as well. It is well
known that using an c log n-universal hash function (with c
sufficiently large) to hash n keys into p ≥ (1 + ε)n slots
(for ε > 0) ensures that at most O(log n/ log log n) keys
are hashed to any one slot with high probability. Assum-
ing this is the case, for each slot x we can store its index
Ix using a word-packed vector of only O(log n) bits. (For
simplicity, we will require all index tuples to use the same
number of bits.) Word-level parallelism then allows us to
perform various queries and updates to the index in con-
stant time. For example, we can insert and delete tuples
in constant time, even while maintaining a canonical form
(that is, the records should be maintained in sorted order,
and if r records are stored in Ix, they must be stored in the
first r spaces in the index). Thus, in the course of inserting
and deleting keys, we can amortize the cost of updating the

1We can dispense with this assumption using a SHI variant of the stan-
dard resizing technique, as in section 3.



index tuples for each key which moved against the cost of
moving it. We can also answer in constant time queries of
the form “for what values of d is there a tuple of the form
(d, l) in Ix” for any l ∈ L. Assuming the labels for each
key hashed to slot x are distinct, we can use this fact to do
searches in constant time as follows. Find all d such that
(d, f(k)) is in Ih(k). Since the labels in Ix are distinct, the
output contains at most one value for displacement, say d,
at which point we may immediately test the slot (x + d)
mod (p) to see if it contains k.

The Full Version. In the simplified version we made three
assumptions that are false in general, namely we fixed con-
stants c1 and c2 and assumed

1. No slot has more than c1
log n

log log n keys hashed to it.
2. No key has a displacement more than c2 log n.
3. For all slots x, the keys hashed to x get distinct labels.

To remove assumption #1, it is tempting to simply sam-
ple a new the hash function using fresh randomness when-
ever it is violated. However, we cannot do this in a naive
way and maintain SHI-ness. Instead, we maintain a ran-
dom permutation πhash on an Ω(log n)-universal family H
of hash functions mapping the keys to the p slots. The idea
is that we will use the first hash function, πhash

0 , in πhash un-
til and unless assumption #1 is violated. In that case we
will iterate through the hash functions {πhash

i |i = 0, 1, . . .},
rehashing everything using the current hash function πhash

i

until we find the first one which satisfies the assumption
(and the “no block overflow assumption,” explained in the
treatment of assumption #2 below). We will denote the
current hash function by h. To maintain SHI-ness, we will
need to take extra precautions during a deletion if the cur-
rent hash function is not πhash

0 . Specifically, we will need to
completely clear the hash table, reset the current hash func-
tion to πhash

0 , and reinsert every key (other than the one to
be deleted) from scratch. (Note that it would not be SHI
to simply iterate backwards through πhash and stop at πhash

i+1

if πhash
i is the first hash function we encounter that violates

assumption #1.)
We remove assumption #2 by essentially treating the

hash table as Θ(n/ log n) hash tables of size Θ(log n). We
partition the slots into blocks, each block will be a con-
tiguous set of β = Θ(log n) slots (assume p is a mul-
tiple of β). Keys hashed into a block do not leave it,
unless h is changed. Rather, the probe sequence wraps
around the block boundaries. Formally, if the block B con-
tains slots in the range [a, b], then the probe sequence for
a key k with h(k) ∈ [a, b] is given by PROBE(k, i) :=
a + ((h(k)− a + i) mod (β)). This ensures the displace-
ment of any key is at most β, assuming the block has at
most β keys hash into it. Call this the “‘no block over-
flow assumption.” If πhash

0 hashes more than β keys to some
block, we will ensure each block has at most β keys in it
by iterating through the hash functions {πhash

i |i = 1, . . .},

rehashing everything using the current hash function πhash
i

until we find the first one which satisfies the no block over-
flow assumption (as well as assumption #1).

To remove assumption #3, we store a random permu-
tation πlabel on an Ω(log n)-universal family H′ of hash
functions mapping the keys to a set of labels L, where
β3 ≤ |L| ≤ poly(β). Each block B will store a pointer to a
hash function in πlabel, which we will call its label function,
and denote by fB . Each block’s label function initializes
to πlabel

0 , and we maintain the invariant that fB is the first
hash function in πlabel that gives distinct labels to every key
which has been hashed to x, for each x ∈ B. Again, we
will need to be careful with deletions. Upon deleting a key
k in block B for which fB 6= πlabel

0 , we iterate through
{πlabel

i |i = 0, 1, . . .}, relabeling all the keys hashed into
block B (excluding k) using πlabel

i until we find a label func-
tion that satisfies assumption #3 for all slots in B with this
set of keys.

Analysis. It is relatively straightforward to prove that the
above data structure is SHI given the results of section 3,
and we omit the details in the interests of space.

The space usage of the data structure is O(n) if we ex-
clude the random bits. The slots and their indices use O(n)
space. Using, for example, the hash functions of Östlin and
Pagh [15], the single pointer into πhash requires O(n) words
of space, and each pointer into πlabel, of which there are
O(n/ log n), requires O(log n) words of space each (since
the hash functions in πlabel need only be uniform for sets of
size Θ(log n)).

We now analyze the running time of each operation.
First, consider a search for key k. By construction, as-
sumptions #1 through #3 hold. Thus in the worst case we
need only evaluate x := h(k), compute k’s label l, find
any record of the form (d, l) that may exist in Ix, compute
y := PROBE(k, d), and determine if k is in slot y. All of
these are constant time operations.

Next, consider insertions and deletions of a key k under
“best case circumstances”, which we define to mean that
h = πhash

0 , fB = πlabel
0 where block B contains h(k), and

at most β/2 keys have been hashed into B. In this case,
we can amortize each index update (a constant time oper-
ation) against a specific operation that moves a key. Thus
we can ignore their cost. Note that inserting or deleting k
costs essentially the same as the corresponding operation
into a hash table with β slots and at most β/2 keys, using
an Ω(β)-wise independent hash function – that is, expected
constant time. Now relax the condition that a block B has
at most β/2 keys, and allow it to have up to β keys. The
cost to do any operation is bounded by β in this case. Let
|B| denote the number of keys in B. We will argue that
Pr[|B| ≥ β/2] ≤ 1/nc if the parameters are set appropri-
ately, and thus the cost contribution from this case is neg-
ligible. We set p = 4e · n, β = 2c log n, γ := β/2 and
use γ-universal hash functions in πhash. Then we get the



following estimate: Pr[|B| ≥ γ] ≤
(
n
γ

) (
β
p

)γ

≤ n−c.
Next, we consider the contribution of various bad events

to the expected running time. Consider insertions. The
probability that we must rehash everything using the next
hash function in πhash can be made as small as O(n−c) for
any constant c > 0 by adjusting various parameters, since
this only occurs when more than c1 log n/ log log n keys
hash to some slot x, which occurs with probability O(n−c),
or when some block B gets more than β keys, which we
have argued above occurs with probability O(n−c). Thus
we only have to rehash everything with probability O(n−c).
Since this takes O(n) expected time, its contribution to
the expected running time is negligible. For a set of keys
S, call a hash function in πhash bad for S if it hashes
more than β/2 keys from S into some block or more than
c1 log n/ log log n keys into some slot. Fix S with |S| ≤ n,
let ε(S, i) denote the event that πhash

i is bad for S, and note

that for any i, Pr
[
ε(S, i)

∣∣∣ ⋂
j<i ε(S, j)

]
≤ Pr[ε(S, i)] be-

cause by the principle of deferred decisions we can imag-
ine selecting πhash

i after {πhash
j |j < i}, and noting that if

the concentration of “bad for S” sets is higher than average
among {πhash

j | j < i}, then it must be lower than average
among the remaining hash functions, from which we draw
πhash

i . Using this fact, we conclude that the total expected

time to do all the rehashing is O
(∑

t≥1 tn/nct
)

= o(1).
The expected cost of rehashing after a deletion can be

bounded similarly. That is, the probability that h = πhash
t

is O(n−ct), and the work involved in this case to rehash
everything up to t times is O(tn). The total expected time
to do the rehashing is thus O

(∑
t≥1 tn/nct

)
= o(1).

Finally, we need to bound the cost due to relabeling
within a block. Since the number of keys in the block is
less than the independence of the label functions in πlabel,
the labels will be distributed randomly. If γ keys are
present in a bucket B, we can bound the probability that
all keys in B get distinct labels as follows. The proba-
bility that no collisions occur is

∏γ−1
j=1

(
1− j

|L|

)
. Using

1 − x ≥ e−x−x2
for x ∈ [0, 1/2], we can obtain a lower

bound of exp
(
−

∑γ−1
j=1 (j/|L|)−

∑γ−1
j=1 (j/|L|)2

)
, bound

the exponent from below by z :=
(
−γ2/2|L| − γ3/3|L|2

)
,

and then use ez ≥ 1+z to conclude that Pr[no collisions] ≥
1 − γ2

2|L| −
γ3

3|L|2 . Since we can relabel all γ keys in
block B in O(β) time, and setting |L| ≥ β3 ensures that
Pr[some collision] = O(1/β), the expected work to relabel
everything once is O(1). By a similar argument as above,
we can bound the probability that we relabel everything in
a block t times by O(β−t), so the total expected work from
relabeling is O

(∑
t≥1 tβ/βt

)
= O(1).

Practical Variants. Unfortunately, we cannot resort to
sampling random bits “on demand.” To see why, suppose

we repeatedly insert keys S, then delete them, and S re-
quires the hash table to sample new random bits. Whether
or not we retain these new random bits after deleting S, we
will violate SHI-ness. Thus we are forced to do all the sam-
pling we will ever need to do during data structure initial-
ization. This will require access to a possibly exponential
sized sequence of random bits. We ensure the number of
random bits we need is finite by sampling new hash func-
tions without replacement – in other words, we sample a
random permutation on a suitable hash family.

This is still hopelessly impractical. The saving grace is
that our data structures can be made to inspect only O(nδ)
random words with high probability, for any constant δ > 0,
if we use the hash functions of Siegel [21] in πhash and those
of Östlin and Pagh [15] for πlabel. This suggests the fol-
lowing approach: set thresholds τ hash, τ label ∈ N, and only
sample the first τ hash elements of πhash and the first τ label el-
ements of πlabel. Reasonable values would be τ hash = 1 and
τ label = Θ(log n). Then, if the data structure should ever
need to access a hash function that has not been sampled,
enter one of two failure modes.

The first failure mode is to sample fresh random bits on
demand from now on. The resulting data structure is SHI
with high probability, WHI with certainty, and has the same
running time guarantees as before. Furthermore, if you ad-
ditionally store the fresh random bits and treat them as the
needed elements of πhash and/or πlabel, then other than the
random bits, the data structure is SHI. Thus the only his-
torical information that might be inferred in this case is that
something was inserted and later deleted that forced the data
structure to sample additional random bits.

The second failure mode is to store everything as in the
SHI hash table of section 3. The whole data structure then
remains SHI with certainty, provided on each delete we
reinsert everything from scratch to determine if we should
still be operating in this failure mode. The expected time
guarantees for insertions and deletions still hold, however
searches now take O(1) time with high probability rather
than with certainty as before.

5 Implementing Other SHI Data Structures

By analogy with the practical variants of SHI perfect
hashing, we can define failure modes for all of the follow-
ing data structures. The result is that either we (i) retain
the running times but make the data structure SHI with high
probability (and WHI with certainty), or (ii) retain SHI-ness
but replace worst case guarantees with “with high probabil-
ity” guarantees. We omit the details for lack of space.

Dynamic Ordered Sets. We describe a SHI solution to
the dynamic ordered set (or dictionary) problem supporting
Insert, Delete, and Predecessor. We assume the keys come
from a totally ordered universe U with comparison < and
Predecessor(key k) returns the entry with the greatest key



less or equal to k. Our solutions are straightforward given
the SHI hash structure described in the previous section. If
the keys come from a universe U = [m] we can use the
variant of the Van Emde Boas structure [24] described by
Mehlhorn and Naher [12]. The following theorem follows
directly from the use of our SHI hash table in the algorithm
described by Mehlhorn and Naher.

Theorem 5.1 A SHI ordered dictionary on n keys from the
domain U = [nk] for any constant k can support prede-
cessor in O(log log n) worst-case time, and insertion and
deletion in O(log log n) expected time, while using O(n)
data space.

In the case that the keys come from a general universe
with only comparison we use a variant of treaps [19]. We
assume every element has a unique label that can be used
by a hash function.

Theorem 5.2 A SHI ordered dictionary on n keys from
a totally ordered domain U can support predecessor in
O(log n) worst-case time, and insertion and deletion in
O(log n) expected time, while using O(n) data space.

Proof: We store all elements in a treap using a SHI
hash table to locate the elements in memory. We use a ran-
dom hash function to generate priorities. From Lemma 4.8
of [19] we have Pr[D(x) ≥ 1 + 2c lnn] < 2(n/e)−c ln(c/e)

where D(x) is the depth of an element x. For a set of keys
S, we will call a priority function f good if the correspond-
ing treap on S using f has depth at most, say, 8 ln n, and
bad otherwise. In the unlikely event that the initial priority
function is bad, we would ordinarily just respond by gener-
ating a new random priority function and reconstructing the
tree with the new priorities. To maintain SHI-ness, how-
ever, we must be careful. As with dynamic perfect hashing,
on initialization we select a random permutation on a suit-
able family of priority functions πprio, and iterate through
{πprio

i | i = 0, 1, 2, . . .} until we find the first priority func-
tion which is good for the current keys. As with hashing,
after deleting a key we will need to reconstruct the treap us-
ing each πprio

i in increasing order of i until we find the first
one which is good for the current set of keys. However since
the probability that we need reconstruct the treap t times is
O(n−λt) with λ = 4 ln(4/e) ≈ 1.545, the expected recon-
struction cost is o(1).

SHI Order Maintenance. The Order-Maintenance Prob-
lem involves creating a data structure that stores a total or-
dering σ while supporting the following operations:

• Insert(x, y): insert new element y right after x in σ.
• Delete(x): delete element x from σ.
• Compare(x, y): determine if x precedes y in σ.

Dietz and Sleator [6] developed a data structure that sup-
ports all three operations in worst case O(1) time. (Note

that the inputs are assumed to be pointers to the elements in
the data structure.) Bender et al. [4] later developed simpler
data structures with the same performance guarantees. Both
structures depend significantly on the history and we see no
simple modifications to make them SHI. In this section we
describe a randomized SHI data structure for order main-
tenance that takes worst-case O(1) time for compare and
expected O(1) time for updates. We assume each element
has a unique label l ∈ U that can be hashed. We can use the
labels, for example, to place the elements into our SHI hash
table.

Bender et al. describe a general technique for the list-
labeling problem based on a certain class of weight-
balanced trees. The list-labeling problem is to maintain a
dynamic list (with insertions and deletions) along with a
mapping from elements in the list to integer labels in the
range [0, u) such that the ordering in the list matches the or-
dering of the labels. The list-labeling problem can be used
to implement order-maintenance by using the integer labels
for comparison. We say that the weight w(x) of a node x in
a tree is the number of its descendants (including itself), and
the weight cost of an operation is the sum of the weights of
all modified nodes in the tree plus the runtime for the oper-
ation. We then have:

Theorem 5.3 ([4]) Any balanced-tree structure with
(amortized) weight cost f(n) for insertions, maximum
degree d, and depth h yields a strategy for list labeling with
(amortized) cost O(f(n)) and tags from universe [0, dh).

For a binary tree, the idea of the technique is to label each
node x with the binary representation of the path from the
root to x, where left branches yield 0 and right branches 1.
Since internal nodes might be a prefix of another, all paths
can be terminated with an additional 1 giving the desired
(lexicographic) ordering. It is straightforward to show that
Theorem 5.3 also applies for expected weight costs, and the
expected weight cost for updates to a treap is known to be
O(log n) [19]. Furthermore treaps are history independent.
This yields a SHI data structure for the list-labeling prob-
lem that supports O(log n) expected time updates and O(1)
time comparisons with high probability (since labels have
O(log n) bits with high probability).

To make updates O(1) amortized time, previous work
used a two level structure in which the top level stores a par-
tition of the elements into Θ(n/ log n) sets of size O(log n),
such that updates to the top level take O(log n) time and are
relatively rare, and updates to the second level take O(1)
time (see e.g., [6]). Unfortunately the bottom level tech-
nique is highly dependent on history. To achieve history
independence we use two levels based on Theorem 5.3 and
a third level using state transitions with table lookup; this
uses our hashing scheme in an interesting way.

Theorem 5.4 The SHI order maintenance problem can be



supported with O(1) worst-case-time comparisons, and
O(1) expected time updates.

Proof: We dynamically resize the data structure by re-
constructing it from scratch whenever the number of ele-
ments crosses a threshold in {

⌈
α · 2k

⌉
| k ∈ Z≥1}, where

α is chosen uniformly at random from [1, 2]. This allows us
to assume we have an upper bound, N , on the current num-
ber of elements, n, being stored, such that N/2 ≤ n ≤ N .
To bound the expected reconstruction cost for each update,
note that the probability of any operation crossing a thresh-
old is O(1/n), constructing the necessary lookup tables (de-
fined below) takes o(nε) time for any ε > 0, and reinserting
all the elements takes expected O(n) time (assuming up-
dates take O(1) expected time), so this adds only O(1) time
in expectation to any update.

So assume we know N , and N/2 ≤ n ≤ N . We par-
tition the treap as follows based on a size parameter s. A
partition leader of rank s is any element x in the treap such
that its weight w(x) ≥ s. Any element with w(x) < s is
assigned to the partition of its least ancestor that is a par-
tition leader. Note this implies no partition has more than
2s−1 elements. From Siedel and Aragon [19] we have that
for any node x in a treap, Pr[w(x) = s] = O(1/s2) for any
1 ≤ s < n and Pr[w(x) = n] = O(1/n). Thus for any
s, Pr[w(x) ≥ s] = O(1/s), and so each node is a partition
leader with probability O(1/s).

Based on this partitioning we use the following scheme.
Let s = dlog Ne and s′ = dlog log Ne. We sample a pri-
ority function h, and store all partition leaders of rank s (of
the treap containing all elements) in a treap by themselves.
The partition leaders of rank s′ in each top level partition are
likewise stored in treaps by themselves with one treap per
top level partition. The remaining nodes are stored in treaps,
one per second level partition. All these treaps may use h to
generate priorities. We use Theorem 5.3 to implement list
labeling separately for each treap defined above. We also
maintain pointers from each non-leader to its rank s′ leader
and from each rank s′ leader to its rank s leader. Finally,
to facilitate updates, for each leader x (of both ranks) with
elements assigned to it we maintain the number of elements
assigned to x that are less than x in key order, and likewise
the number greater than x in key order. To compare nodes
x and y, we first compare their rank s leaders using their la-
bels. If x and y have the same rank s leader, compare their
rank s′ leaders. Finally, if x and y have the same rank s′

leader, compare them directly. (Note that to achieve worst
case O(1) comparisons we must be able to compare two
labels from [0, 2h] in constant time, where h is the depth
of the top-level treap. Thus, we require that h = O(w),
where w = Ω(log N) is the word size of our machine. We
will ensure the treap has sufficiently small depth as we did
in the proof of Theorem 5.2, using πprio. As before, the
additional expected cost to do this is o(1).) It is possible to
show that this construction yields expected O(log log log n)

time updates, and we could add levels to achieve expected
O(log∗ n) time updates. To get constant time we use table
lookup rather than list labeling for the third level.

The idea of the third-level is to maintain the l ≤
2 dlog log Ne items per partition in a SHI hash table of size
t = Θ(log log N), rather than a treap. As before, each ele-
ment maintains a pointer to its leader. Since the hash table
by itself does not define the ordering among the elements,
we represent each possible ordering among the occupied
hash-table locations as a distinct state. The number of pos-
sible states is at most

∑t
x=0

(
t
x

)
· x! =

∑t
x=0

t!
(t−x)! ≤∑t

x=0 tx ≤ 2 · tt. Since t is O(log log N), the number of
states is o(N ε) for all ε > 0. We can thus represent the state
in a single word of memory which we store with each table.
To allocate space for the SHI hash tables we can use another
SHI hash table with the partition leader as the key.

Each state defines a function q : [t] × [t] → {<,>
, undefined}, where q(a, b) returns whether the element
stored at location a comes before or after the element at lo-
cation b or undefined if either location is unoccupied. This
function can be represented as a lookup-table with t2 2-
bit entries. The total space for representing all functions
is therefore o(N ε(log log N)2) bits, which is o(nδ) for all
δ > ε. To implement the Compare function between ele-
ments that fall in the same table (second-level partition) we
find the location of each in the table and use q to compare
the locations. If two elements appear in different second-
level partitions, we compare their partition leaders.

We also need to define state transition tables for updates
in a second level partition. The insertion of an element into
a hash table can be broken down into a sequence of (pos-
sibly zero) swaps, followed by an insertion into an empty
slot. Deletion is symmetric. We therefore only need state
transitions for insertion into an empty slot, deletion from a
slot, and swapping of two slot. Each can be represented as
a table with t2 entries, with one such table per state. For
example, when inserting k into an empty slot, the transition
is specified by the slot y to insert k into, as well as the slot
(if it exists) containing the key that immediately precedes k,
among those stored in the relevant hash table. As with the
comparison function q, these tables will use o(nδ) bits.

The overall scheme for an Insert(x, y) can be outlined as
follows. First we must determine if the treap on leaders of
rank s must be altered. There are two ways this could hap-
pen: y itself could become a leader (its priority is greater
than some element on the search path), or it could force
an overflow that creates a partition leader (some node of
weight s − 1 now has weight s). Both possibilities can be
detected in O(1) time given the information we maintain.
As stated earlier, the probability a node is a partition leader
of rank s is O(1/s), and if it is, it will require expected O(s)
time to update labels in the top-level treap (Theorem 5.3).
Furthermore expected O(s) time might be required to reor-
ganize the expected O(s) elements in all partitions that fall



below it. An overflow would require that after the insertion
there is an element within s elements of x in the ordering
which now has exactly s descendants. Since there are at
most 2s potential elements, each with probability O(1/s2)
of having exactly s children, the probability of forcing an
overflow is O(1/s). When there is an overflow, O(s) work
is required. Updating the relevant size information takes
O(1) time. The cost of insertion in the top level is therefore
O(1) expected time. The same procedure is used on the
second level and again requires O(1) expected time. The
SHI hash-table along with the state transition tables is used
for the third level requiring another O(1) time. Deletion is
symmetric.

6 Conclusions

We have shown how to build a space efficient, strongly his-
tory independent hash table with O(1) worst-case search
time and O(1) expected update time. The techniques ex-
ploit a connection between history independent hashing and
the Gale-Shapley stable marriage algorithm and can be used
in conjunction with various probing schemes. We described
some SHI data-structures that make use of the SHI hash ta-
ble. We expect that our results will enable efficient SHI data
structures for a large class of problems.

Acknowledgments

We thank Kirk Pruhs, Shan Leung Maverick Woo, and
Adam Wierman for helpful discussions.

References

[1] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and
S. L. M. Woo. Dynamizing static algorithms, with applica-
tions to dynamic trees and history independence. In SODA
’04: Proceedings of the fifteenth annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 531–540, 2004.

[2] O. Amble and D. E. Knuth. Ordered hash tables. The Com-
puter Journal, 17(2):135–142, May 1974.

[3] A. Andersson and T. Ottmann. New tight bounds on
uniquely represented dictionaries. SIAM Journal of Com-
puting, 24(5):1091–1103, 1995.

[4] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton,
and J. Zito. Two simplified algorithms for maintaining order
in a list. In ESA ’02: Proceedings of the tenth annual Eu-
ropean Symposium on Algorithms, pages 152–164, London,
UK, 2002. Springer-Verlag.

[5] N. Buchbinder and E. Petrank. Lower and upper bounds on
obtaining history independence. In CRYPTO ’03: Proceed-
ings of the Advances in Cryptology, pages 445–462, 2003.

[6] P. Dietz and D. Sleator. Two algorithms for maintaining or-
der in a list. In STOC ’87: Proceedings of the nineteenth an-
nual ACM Symposium on Theory of Computing, pages 365–
372, New York, NY, USA, 1987. ACM Press.

[7] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der
Heide, H. Rohnert, and R. E. Tarjan. Dynamic perfect hash-
ing: Upper and lower bounds. SIAM Journal of Computing,
23(4):738–761, 1994.

[8] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a
sparse table with O(1) worst case access time. Journal of
the ACM, 31(3):538–544, 1984.

[9] D. Gale and L. Shapley. College admissions and the stabil-
ity of marriage. American Mathematical Monthly, 69:9–15,
1962.

[10] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and
E. Rocke. Characterizing history independent data struc-
tures. Algorithmica, 42(1):57–74, 2005.

[11] J. M. Kleinberg and E. Tardos. Algorithm design.
Pearson/Addison-Wesley, first edition, 2006.

[12] K. Mehlhorn and S. Naher. Bounded ordered dictionaries in
O(log log n) time and O(n) space. Information Processing
Letters, 35(4):183–189, 1990.

[13] D. Micciancio. Oblivious data structures: applications to
cryptography. In STOC ’97: Proceedings of the twenty-ninth
annual ACM Symposium on Theory of Computing, pages
456–464, New York, NY, USA, 1997. ACM Press.

[14] M. Naor and V. Teague. Anti-persistence: history inde-
pendent data structures. In STOC ’01: Proceedings of the
thirty-third annual ACM Symposium on Theory of Com-
puting, pages 492–501, New York, NY, USA, 2001. ACM
Press.

[15] A. Östlin and R. Pagh. Uniform hashing in constant time and
linear space. In STOC ’03: Proceedings of the thirty-fifth an-
nual ACM Symposium on Theory of Computing, pages 622–
628, New York, NY, USA, 2003. ACM Press.

[16] A. Pagh, R. Pagh, and M. Ruzic. Linear probing with con-
stant independence. In STOC ’07: Proceedings of the thirty-
ninth annual ACM Symposium on Theory of Computing,
pages 318–327, New York, NY, USA, 2007. ACM Press.

[17] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algo-
rithms, 51(2):122–144, 2004.

[18] W. Pugh and T. Teitelbaum. Incremental computation via
function caching. In POPL ’89: Proceedings of the Six-
teenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 315–328, 1989.

[19] R. Seidel and C. R. Aragon. Randomized search trees. Al-
gorithmica, 16(4/5):464–497, 1996.

[20] A. Siegel. On universal classes of fast high performance
hash functions, their time-space tradeoff, and their applica-
tions. In FOCS ’89: IEEE Symposium on Foundations of
Computer Science, pages 20–25, 1989.

[21] A. Siegel. On universal classes of extremely random con-
stant time hash functions and their time-space tradeoff.
Technical report, New York University, New York, NY,
USA, 1995.

[22] L. Snyder. On uniquely representable data structures. In
FOCS ’77: IEEE Symposium on Foundations of Computer
Science, pages 142–146. IEEE, 1977.

[23] R. Sundar and R. E. Tarjan. Unique binary search tree rep-
resentations and equality-testing of sets and sequences. In
STOC ’90: Proceedings of the twenty-second annual ACM
Symposium on Theory of Computing, pages 18–25, New
York, NY, USA, 1990. ACM Press.

[24] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and
implementation of an efficient priority queue. Mathematical
Systems Theory, 10:99–127, 1977.


