
Systems

GC28-0984-0
File No. S37o.20

OS/VS2 MVS Overview

---- - .--.---- - ---- ---.-- --.. _ -- - - ----.-.--"'..-.-.-r _ -\11-

I
i

.• i

Systems

1"0

GC28-0984-0
File No. 5370-20

OS/VS2 MVS Overview

--- -----... - ---- ---- ----- - - ----------- .~-

, .,~ . :."

F"1I'St Ectitioa (June, 1978)

This edition applies to reJease 3.7 of OS/VS2 MVS, and to aU subsequent releases and
modifications until otherwise indicated in new editions or Technical Newsletters.
Changes may be made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM 51*1113'7'
BIItUopa,by, GC2()'()()()1. for the editions that are applicable and current.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed. comments may be addressed to IBM Corporation, Department DS8.
Building 7()6.2, PO Box 390, Poughkeepsie, New York. 12602. Comments become the
property of IBM. .

C Copyright International Business Machines Corporation 1918

Preface

This book describes the main features of MVS. It explains each of these
features and describes the flow of work through the major parts of the
system. It does not, however, describe every feature of the system. The
emphasis here is on what MVS does and how it accomplishes its objectives.

The book is intended for a general audience, but some knowledge of
operating systems is necessary.

Chapter 1 is an introduction to the basic features of MVS. It shows how
MVS accomplishes its main objective of doing more work. Those who
require only a high-level overview of the system can obtain this from
Chapter 1.

Chapters 2 - 10 proviae detailed infonnation on each of the concepts
Chapter 1 introduces. Chapters 2 - 10 are, generally speaking, a
chronological view of the system. That is, they take the reader from the
concepts of virtual storage through initializing the system to entering,
scheduling, and supervising work. The main topics they discuss are MVS,
the System Resource Manager, Job Entry Subsystems, I/O, Error Recovery,
and Multiprocessing.

There are no prerequisites to this publication. Related publications are:

OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681

OS/VS2 MVS Release Guide, GC28-0707
OS /VS2 System Programming Library: System Generation Reference,

GC26-3792
OS/VS2 System Programming Library: Supervisor, GC28-0628
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683
OS/VS2 MVS Multiprocessing: An Introduction and Guide to Writing

Operating and Recovery Procedures, GC28-0952
OS/VS2 Conversion Notebook, GC28-0689
OS/VS2 MVS Performance Notebook, GC28-0886
OS/VSl to OS/VS2 Conversion Notebook, GC28-0953
OV/VS2 System Modification Program (SMP) System Programmer's Guide,

GC28-0673
Operator's Library: OS/VS2 MVS System Commands, GC28-0229
OS/VS2 MVS JCL, GC28-0692
Operator's Library: OS/VS2 MVS J£S2 Commands, GC23-0007
Operator's Library: OS/VS2 MVS J£S3 Commands, GC23-0008
OS/VS2 MVS System Programming Library: J£S2, GC23-0002
OS/VS2 System Programming Library: Job Management, GC28-0627
Introduction to J£S3, GC28-0607

Preface iii

it OS/VSl MVS OYeniew

Ot.pter 1: IDtroductJoa . . • .
Direct Benefits . . . •

Multiple Virtual Storage . . .
Addressing in MVS ..
Sharing Real Storage. .
Summary .••••..

Multiprocessing. . . • •
Tightly-Coupled and Loosely-Coupled MUltiprocessing .
Availability • . • . . .,... . . . • . . .
Flexibility . • . • • •
Attached Processor System

Error Recovery. • . • . • •
Recovery Management Support . . .
Recovery Termination Management

Summary of Direct Benefits . . . •
Indirect Benefits. • . . . •

Greater Support for Interactive Users .
Sessions and Transactions
Terminal 1/0 •
Swapping ••.....

Improved Balance
Control of Performance
Overview of the SRM .
Reduction in Bottlenecks .

Improved Security and Integrity. .
Isolate and Protect . .
Validate and Authorize
User Responsibility • • .

Enhanced Function • . .
Job Entry Subsystem.. .

JES2
JES3
Subsystem Interface

System Generation and Initialization .
System Generation. . . • . . .
System Initialization . . • . • . .
System Operation • . . •

Virtual Storage Access Method (VSAM)
Summary •••••..•..•.

Chapter 2: Virtual Storage ID MVS
Pages, Frames, and Slots . •
Integrity ••••••.•••

Storage Protect Keys • • .
Address Space • • • • • • • .

Dynamic Address Translation.
Virtual Address. • • • • •
Segment and Page Tables
Two-Level Table Lookup

Paging •••••••••
Demand Paging •....•.•.
Swapping •••.•
Page Stealing. • • •

Page Frame Table .
System Components .

Real Storage Manager (RSM) . .
Auxiliary Storage Manager (ASM)
Virtual Storage Manager (VSM). .

Program Loading • • • . • . • .
Virtual Storage Areas • • • . •

System Area .•....•....
Common Area • . •

System Queue Area (SQA) . • . .
Pageable Link Pack Area (PLPA) •
Common Service Area (CSA) . • .

Contents

1-1
1-1
1-1
1-2
1-3
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-7
1-8
1-9
1-9
1-9
1-9

1-10
· . 1-10

• 1-10
· • 1-10

1-11
1-11

· . 1-13
• • 1-14

1-14
• • 1-14

• 1-14
· 1-14

· . 1-15
· • 1-15
· • 1-15

1-15
• • 1-16

• 1-16
· • 1-16
• • 1-16
• • 1-17

2-1
2-1

. 2-3
2-3
2-6
2-6
2-6
2-8
2-9

....••. 2-10
• • 2-10
· • 2-11
• . 2-11
· • 2-11
• . 2-13
• • 2-13
• . 2-13

· 2-13
•••• 2-14

· 2-15
• 2-17

. •• 2-17
• • 2-17

· 2-17
• 2-18

Contents y

'II OS/VSl MVS OYeniew

Private Area
Local System Queue Area (LSQA)
Scheduler Work Area (SW A) .
Subpools 229/230
System Region
Virtual (V-V) User Region.
Real (V-R) User Region ..

Extensions and Options
Fixed Link Pack Area (FLPA) ..
Modified Link Pack Area (MLPA)
BLDL Lists ..•........

Cbapter 3: IDstaIIIna aDd SenkiDa tbe System
Installing the System. • • . .

Preliminary Considerations . •
The Installation Plan • . .

Installation Tasks •
Checkpoints and Interdependencies
Performance•..•..
Staffing and Personnel • .

System Generation • . . • •
Planning and Preparing for the System Generation
Executing the System Generation
Verifying the System Generation

MVS System Installation Productivity Option (MVS System IPO)
The MVS System IPO • • . • . . . 0

MVS System IPO Documentation . . 0

The MVS System IPO Installation Plan
Servicing the System . • . . . • . •

The System Modification Program (SMP) ~ •
Installing Selectable Units (SUs). . • . .
SMP Option ••..•..•••.......
Installing Programming Temporary Fixes (PTFs)
Installing User Modifications
SMP Control Functions

Chapter 4: Preparing the System for Work
Overview of the Initialization Process

Initiating the Load Procedure . • •
The System Residence Volume
The System Console . . •

Initial Program Loading . . • .
Clearing Storage . • . 0 •

Loading the Nucleus
Nucleus Initialization via NIP. .

Initializing Real Storage • . • • •
Initializing A Master Address Space
Obtaining System Parameters . •

· 2-18
· 2-18
· 2-19·
· 2-19
· 2-19
· 2-19
.2-20

· . 2-21
· 2-23
· 2-23
• 2-23

3-1
3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-3
3-4
3-5
3-7
3-7
3-7
3-8

• • 3-10
· 3-13

· . 3-13
· • 3-13
· . 3-15
· • 3-15
· . 3-16

· 3-16

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-5
4-6
4-7
4-9 The System Parameter Lists

System Operator Activity . . . • • • . 4-9
Resource Initialization Via RIMs •

Initializing I/O Devices • • • • •
Initializing Volume Attributes •.
Initializing System Consoles • •
Initializing the System Catalog • . .
Initializing the System Resources Manager .•.•.

Automatic Priority Group (APG) Initialization ••..•.
Installation Performance Specification Initialization (IPS)
Optional System Tuning Parameter Initialization (OPT) ..
Additional SRM Initialization. • • • . •

Initializing the Auxiliary Storage Manager
Page Data Set Initialization. •
Swap Data Set Initialization ..
Duplex Data Set Initialization. .
VIO Data Set Initialization • • .

Initializing the Program Manager .•...••••
Pageable Link Pack Area Initialization. .
Fixed Link Pack Area Initialization . . .
Modified Link Pack Area Initialization. • • . .
Table and List Initialization ...•. . • . . .

Master Scheduler Initialization • . .

. ••• 4-10
· . 4-11
• • 4-12

.•• 4-13
• 4-14
· 4-16
· 4-16
· 4-16

· • 4-16
• 4-17
• 4-17
.4-17
• 4-18
· 4-18
· 4-18
• 4-18
.4-19
· 4-21
.4-23
· 4-23
.4-24

Initializing the Master Scheduler Base
Initiating the Master Scheduler. . . .
Initializing the Master Scheduler Region

Job Entry Subsystem (JES) Start-Up. . . .
Creating art" Address Space
Initializing the Region Control Task
Initiating JES

Chapter 5: Entering aDd Scheduling Work
Terminology and Concepts .

Input Stream
Internal Reader.
Initiators and Job Classes . .
Address Space Creation

Job Entry Subsystem Processing.
Input ...
Conversion .
Execution" ..
Output
Purge

JES2 Features .
Priority Aging . . .
Execution Batch Scheduling
Automatic Commands
Multi-Access Spool . . .

JES3 Features
Dependent Job Control
Device Fencing. . . .
Priority Aging
Deadline Scheduling .
Network Job Processing .
Remote Job Processing
Dynamic System Interchange

Allocation of Devices . • . . • .
Dynamic Allocation. • . . • .

Chapter 6: Supervising the Exec:utlon of Work
Interruption Processing. •

The Role of Program Status Words .. " ..
The Interruption Handler (IH) Routines

Creating Dispatchable Units of Work
Task Control Blocks (TCBs) .
Service Request Blocks (SRBs) .

Dispatching Work •..••...
Serializing the Use of Processors

Enqueueing . • . . .
Locking .••.........

Chapter 7: Managing System Resources
How the SRM Meets Its Objectives

Major Functional Areas of SRM . .
Communicating With SRM . . . • .

SRM Control • .
Swap Analysis

The Workload Manager
The Resource Manager. . .

Storage Management
I/O Management •..
Processor Management
Resource Monitoring .

Chapter 8: Satisfying 1/0 Requests aDd Data Managemeut •
Access Method . ••..

Data Set Organization
Access Techniques ...
Access Method Types • . . . • • .

Scheduling 1/0 . . . • . • . . . • • • •
User Program Functions •

OPEN Processing ..
1/0 Request ••...

.4-26
· .4-26

.4-26
· . 4-27

.4-27
· • 4-27

.4-27

5-1
5-1
5-1
5-1
5-2
5-3
5-6
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-7
5-8
5-8
5-9

• 5-1 I
• 5-11
· 5-11

• •• 5-11
• 5-11
• 5-12
• 5-12

••••• 5-12
· • 5-13

6-1
6-2
6-2
6-4
6-7
6-7
6-9
6-9

• 6-10
· 6-10
• 6-10

Conteuts

7-1
7-1
7-2
7-2
7-3
7-3
7-4
7-5
7-5
7-6
7-6
7-7

8-1
8-1
8-1
8-2
8-2
8-3
8-4
8-4
8-6

.. OS/VSl MVS Ofemew

CLOSE Processing. • .
Access Method Function

Control Blocks
Channel Program . • . .
EXCP Macro Instruction .
Appendages • . . • .

Input/Output Supervisor (lOS) Functions .
EXCP Driver Front End
Channel Scheduler. . . • . . . • . .
I/O Interruption Handler. • •
EXCP Driver Disabled Interruption Exit (DIE) .
Post Status . •
EXCP Driver Back End •• • .

Summary•••.••
Virtual Input/Output (VIO) ...••.
Virtual Storage Access Method (VSAM) •

Control Interval •••. •
Key-Sequenced Data Set •
Entry-Sequenced Data Set .
Relative Record Data Set
Alternate Indexes. •
System Catalog. . . • • • •

Qaapter 9: Reco,eriDg from Errors
Recovery Termination . • . • • •

Task Recovery Routines. • • •
Functional Recovery Routines

Recovery Management Support •
Machine Check Handler. . • .

Alternate CPU Recovery • • •
Channel Reconfiguration Hardware • • • • •

Channel Check Handler . • . . . • • . . • • •
Dynamic Device Reconfiguration •
Missing Interrupt Handler • • • • .

Chapter 10: MuitiprocessiDa •
Looscly-Coupled Multiprocessing
Tightly-Coupled Multiprocessing

Configuration ..•..•.
Logical Reconfiguration . .
Physical Reconfiguration • • .

Communication .•••.••.
MVS.Initiated Communication • • .
Hardware-Initiated Communication

Control •...••••••••
Physical Addresses. • • • . .
Status and Control Information • •

Attached Processor System •

ladex ••••••••••••

8-7
8-8
8-8
8-9
8-9

• 8-10
.8-10

• • 8-11
• • 8-12
• • 8-t3
• • 8-13
• 0 8-14
• • 8-14

• •• 8-14
• • 8-16
• • 8-17

• •• 8-18
• •• 8-20

• • 8-21
• • 8-21

••••••••• 8-22
•••• 8-22

• to-I
• IO-i
• 10-1

• • 10-2
• ••• 10-2

••••••• 10-2
• •• Io-~

• • 10-3
• 1().4
• 10-'
• 10-'

• •• 10-'
• • l~

• •• 1·1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure .3.9
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 9.1

Figures

Basic Virtual Storage Concepts 2-2
The Key in Storage. 24
Storage Protect Key Assignment 2-5
Virtual Storage Address 2-7
Segment Table and Page Tables 2-8
Dynamic Address Translation 2-9
Page Frame Table 2-12
Page-out and Page-in . • 2-14
Program Loading. 2-15
Virtual Storage Layout .. 2-16
V-R Storage Mapping • 2-20
Extensions and Options . 2-27
Installation Planning Phases 3-2
Creating an MVS System with System Generation Procedure 34
Executing the System Generation 3-6
I/O Device Generation . , 3-8
MVS System IPO Documentation 3-9
The MVS System IPO Installation Phase Plan .• 3-11
Sysgen Install Option 3-14
SMP Install Option • 3-15
SMP Functions 3-17
System Initialization Summary. 4-1
Initial Program Loading. . . . 4-3
Loading the Nucleus 44
Initializing Real Storage. 4-5
Initializing the Master Address Space . 4-6
System Parameters 4-7
Paths to a Device. 4-11
Specifying Volume Attributes• 4-12
Locating a Master System Console . . . • • 4-13
Locating the System Catalog.•. 4-15
Initializing the PLPA 4-19
System Pack List and ALPAQ Initialization • 4-20
Initializing FLPA ... ' 4-22
Master Scheduler Initialization . . . • . . • • 4-25
Creating an Address Space • • • . . • .• S4
A JES2 Multi-access Spool Configuration . . • • • . . • 5-9
A JES3 Complex .•......•..........•..•. 5-10
The Use of Program Status Words (PSWs) in Interruption Processing 6-3
Summary of Interruption Processing • • . 6-6
Task Control block (TCB) Structure . • . 6-8
Summary of MVS Locks•..•• . 6-12
Major Steps in a Standard I/O Operation . 8-5
Relationships Established by OPEN 8-6
Access Method and User Program in an Address Space 8-7
CLOSE Processing Summary .•.•..... 8-8
Control Block Structure for the EXCP Driver. ..•••• 8-9
lOS Drivers • . 8-11
Flow of an I/O Request. • . . . • . . . • • •••• 8-15
VIO Window .•..•••••..••. • . 8-16
Control Intervals and Physical Records . . • . • 8-19
Data Records and Control Information Placement ••••.. 8-19
Relationships Between Levels of a Prime Index • . 8-21
Structure of the System Catalog . • . . . • • . • 8-23
MCH Control Flow•...••.•..•••..•••.•.....••. 94

Contents Ix

x OS/VSl MVS Overview

Chapter 1: Introduction

The basic difference between the IBM Operating System/Virtual Storage
with Multiple Virtual Storage (MVS) and previous IBM operating systems
is that MVS does more work. That is, MVS does things faster and does
more things at the same time.

This ability to do more work benefits the user directly and indirectly:

• Directly, it provides greater support for a larger number of users, both
interactive and batch. The user can have many more activities going
o~ in the system simultaneously without loss of time.

• ~directly, the ability to do more work allows the system to enhance
its own capabilities by providing improved performance, improved
sec~rity and integrity, apd enhanced function.

What then allow~ MVS to do more work and what are these
improvements to the basic abilities of any operating system?

Direct Beqefits
~ere are several basic MVS features that enable it to do more work. They
are:

• M\1ltiple virtual storage
• Increased multiprocessing capabilities
• Enhanced error recovery

These MVS features provide the most direct benefits to the user.

M.,til"e Yirtual ~torage

Main storage is a scarce resource and even when it can be shared, the
amount of space an installation's programs and data require far exceed the
~mount of main storage available. In previous systems, this was true not
only on an installa~ion basis, but on a program basis:

amount of storage available
to a parti<:ular program

amount of storage available in the
system - (system requirements + amount.
of storage already being used by other
programs)

Furthermore, previous systems had to preallocate storage before the job
executed, the preallocated storage had to belong to the job for the duration
of the job, and the programmers had to plan complicated overlay structures
to fit their programs into the available space. This caused three very .
expensive problems: . .

1. Some portions of storage may not be used at all.

Chapter I: Introduction I-I

1-2 . OS/VSl MVS OYeniew

Emmple: The system has one million bytes of main storage. Job A requests
and receives 384,000 bytes; these bytes belong to Job A until it completes
- they cannot be shared; Job B and Job C request and receive 300,000
bytes each. Now there is a fragment of 16,000 bytes that cannot be used at
all unless the system starts a job that requires only that much. This is
known as fragmentation - unused fragments, too small to start a normal
job, exist throughout storage.

2. Though occupied, some locations did not contain active programs.
These programs were waiting for some event to occur or they were
waiting for another part of the program to be brought into storage to
overlay the completed part. In any case, they tied up storage without
being active.

3. To deal with the size limitations, users had to design complicated
overlay structures. This took a great deal of programmer time. Also,
the system had to wait while fmding and bringing in the next part of
the overlay structure.

In short, even though main storage was scarce, previous systems still
wasted it. To help overcome this problem, mM developed virtual storage
and then multiple virtual storage systems. To understand how MVS
overcomes these three problems, you must know a bit about ad~essing.

Addressing in MVS

Generally speaking, an address is a group of characters that identify a
physical location in main storage (called real storage in MVS). In MVS, an
address has 24 positions (called bits). An addressing scheme based on
24-bit addressing allows up to 16,777,216 addresses (16 megabytes).

Of course, a normal system may not have this many real storage
locations - and, even if it did, there would be other programs in real
storage at the same time so that the 16 megabytes would have to be divided
among them.

MVS allows each programmer to use all 16 million addresses, even
though real storage includes only, for example, 4 million physical locations.

How?

The range of addresses in a program - from entry to completion, is
called the program address space. When a programmer creates a program,
he makes within it certain references to required pieces of information.
These references are usually of a symbolic nature, such as: CALL
UPDATE,· where UPDATE begins a series of instructions. In previous
systems, each of these program references had to be associated with a real
storage location. Thus, specific real storage locations had to be preallocated
t~ them leading, as we mentioned, to the problem of fragmentation.

In MVS, references in the program address space are Dot associated with
a particular real storage location. They remain.references to a particular
piece of information. But where does virtual come in?

The references in the program are not references to real storage
addresses but to pieces of information, they are called virtual addresses.
They become real only when assigned to a physical location, and these real
locations need not be assigned either contiguously or in a particular place.
For example, the program might occupy 16,000 bytes in lower storage,
48,000 in the middle of storage, and another 64,000 bytes· at the higher end
of real storage. If that program had to be removed from real storage and
later returned, it could be located or loaded anywhere in real storage: that
is, it need nol be in the same location as before.

When the program is ready to execute, the system, using a System/370
hardware feature called Dynamic Address Translation (or, more familiarly,
the DAT feature), maps the virtual addresses in the program to the real
storage addresses and resolves all references (for a more detailed
description of this process see Chapter 2: Virtual Storage Management). By
doing this, MVS can make the program address space larger than the
number of physical locations available in real storage because each program
can create references up to the theoretical limit of the addressing scheme:
16 megabytes. Thus, each program can operate as if it had access to all of
storage.

In summary, then, there are three levels of addressing in MVS:

1. The theoretical limit, derived from the 24-bit addressing scheme: 16
megabytes. All users of MVS can program up to this limit, that is,
there can be mUltiple virtual user address spaces.

2. Virtual addresses. These are the addresses within the program address
space. They refer to a specific piece of information and not to a real
storage location.

3. Real storage addresses. These are the addresses of the locations in the
storage hardware unit.

When the program is ready to execute, the DA T feature translates the
virtual addresses to real storage addresses. The real storage locations that
the program occupies depend on which ones are available.

However, addressing is only part of the story. The second part is
concerned with how the system makes use of it to do more work, how it
allocates and shares real storage.

Sharing Real Storage

MVS views real storage in 4K blocks called frames. When it allocates
storage, that is, assigns storage areas to specific tasks, it allocates a certain
number of frames. These frames may be contiguous, but they need not be.
Because it allocates storage on a 4K -one page- basis, it minimizes the
problem of fragmentation (if a fragment does exist, it will be smaller than
4K). If, for example, there are 10 frames available and they are scattered
through storage, MVS can still allocate them as if they were contiguous.

What happens, though, if a hundred programs, each larger than the
available real storage are ready to execute at the same time?

Chapter 1: Introduction 1-3

1-4 OS/VS2 MVS Overview

t_, ... ,

When MVS, is fully loaded, the only portion of a program allowed in
real storage is one that is active, that is, one that is using the processor or
being referenced. The remaining parts of the program remain on auxiliary
storage (data storage other than real storage; for example, storage on direct
access devices; space on auxiliary storage is called a slot; a slot is 4K) until
they become active. (Note: The user does not have to worry about any of
this ... the system determines what should be in real storage and what
remains on auxiliary storage). When a program in real storage must wait, it
is moved from real storage to auxiliary storage, and another job 1>r another
part of the same program is brought in. (The process of moving a part of a
program between real storage and auxiliary storage is called paging; a page
is 4K.An access method - see the chapter "Satisfying I/O Requests"
moves the program from direct access storage to real storage and back)
When the program is again ready to execute, it is assigned whatever frames
(MVS keeps track of the activity of each frame) are available --·nof
necessarily the same ones it previously occupied. Thus, generally speaking, a
program in MVS real storage is a working program, not a waiting one.

Summary

These are, the essential points to grasp about multiple virtual storage:

1. MVS does not waste very much storage. It does not preallocate
storage thus significant fragments do not occur. In a fully loaded
system, only active portions of programs occupy real storage
locations.

2. MVS reduces program design time: the user does not have to worry
about fitting his program into real storage.

Because of these factors, MVS can share the real storage resource among
many more programs and start many more programs running. Thus, it can
do more work.

Multiprocessing

MVS supports many new hardware developments. Among them are:

• The IBM System/370 provides more capacity and speed than previous
IBM systems, and at comparable prices. More real storage is available
and the cost per byte has been significantly reduced. For example, the
System/360 Model 50 had a maximum real storage size of 512K, while
many System/370 models have more than 4 megabytes of real
storage, more than eight times that of the Model 50.

• Complementing these real storage improvements are faster, more
capable processors. For example, the. processor cycle time on the
System/360 Model 50 was 500 nanoseconds (one-thousand-millionth
of a second); on the System/370 Model 158 it is only 115
nanoseconds, and on other models it is less.

• Block multiplexer channels (a multiplexer channel that interleaves
-accesses two or more streams of data from distinct storage units
simultaneously-blocks of data rather than bytes as in a byte
mUltiplexer channel), not available on System/360, are standard on
many System/370 models. While maintaining compatibility with the
System/360 selector channels, block multiplexer channels can" sustain
much higher data rates.

Each of these hardware improvements contribute to MVS's ability to do
more work. An even more direct influence is MVS's mUltiprocessing (MP)
capabilitY'4'which is incorporated into the MVS system control program. The
optional MP and the Attached Processor (AP) System can increase the
instruction processing capability of the installation; the AP system is
discussed later in this chapter and in more detail in Chapter 10:
Multiprocessing.)

Tightly-Coupled & Loosely-Coupled Muitiprocessing

Multiprocessing simply means executing two or more tasks simultaneously
on two or more processors. It is a logical extension of multiprogramming, in
which two or more· tasks logically execute concurrently on a single
processor.

When a single processor shares a common workload with other
processors, but does not share storage, it becomes part of a loosely-coupled
multiprocessing complex.

When a single processor shares real storage with another processor, and
when both are controlled by a single system control program, they becom~
part of a tightly-coupled multiprocessing complex. Both processors can run
under the MVS system control program in multiprocessor (MP) mode.
When a single processor is not sharing real storage, it can run under MVS
in uniprocessor (UP) mode.

Our emphasis here is on tightly-coupled Model 158 or Model 168
multiprocessors, which have the following characteristics:

• The processors share access to all processor storage available to them.
• The processors communicate by storing data in shared storage and by

direct processor-to-processor signals (both program-initiated and
hardware-initiated).

• The processors operate under the control of a single operating system
(MVS) that is resident in the shared processor storage. The operating
system treats the processors as resources, assigning them to process
tasks. Also, the operating system maintains one input queue and one
task queue and can use either processor to process (although not
concurrently) a single job, if necessary.

A component of MVS, called the Job Entry Subsystem (JES2 or JES3)
assumes the role of coordinator and controls the flow of work through the
system, that is JES controls the entry and exit of work to and from the
system.

Availability

Clearly, if you can now do two things where before you could only do one,
you can now do more work. Multiprocessing also offers increased
availability. Availability in data processing means the percent of scheduled
time the system or an application is capable of processing. A system is
available when both its hardware and programming system can process jobs.
An application is available when it can perform processing for its end users.

Chapter I: Introduction 1-5

1-6 OS/VSl MVS Overview

The improved availability MVS offers derives from the ability to:

• Automatically switch from a failing unit to an alternate for it
• In MP, the system can switch work from a failing processor to the

good one
• Reconfigure hardware components to fit an installation's needs
• Reconfigure hardware components to allow service personnel to

perform concurrent maintenance

Thus, over a period of time, the system does more work because it loses
less time due to failing hardware.

Flexibility

You can divide a multiprocessor into two systems that operate in
uniprocessor mode when necessary. For example, you might need a
uniprocessor system for preventative maintenance, a test system for a
system programmer, or a programming system other than MVS (VM/370,
for example). The installation can divide the two systems so that only the
hardware components actually required for the special system are allocated
to one processor, leaving the balance of the hardware resources available
for normal work on the other processor.

Thus, MP not only does more work in the sense of doing two things at
one time, but also is available more responding to the different needs of an
installation at different times. .

Attached Processor System

The attached processor (AP) consists of a System/370 Model 158 or
Model 168 processor (host processor) combined with an attached
processing unit to form a tightly-coupled processing system. The host
processor provides instruction processing, I/O, and storage functions. The
attached processor has a similar instruction processing capability, but no
I/O or storage facilities of its own; the attached processor shares the
storage facilities of the host processor. When joined in a tightly-coupled
configurat:on to an Attached Processor system, the host and the attached
processor provide significantly increased instruction processing power.

Error Recovery

As mentioned, one way of doing more work is to ensure that the system is
available when necessary. Multiprocessing is one means of increasing
availability. Another is eliminating the need for unscheduled shutdowns.

When an error occurred in previous systems, the system could not do
any work until the installation reinitialized the system. When an error
occurs in the MVS system, the system attempts to continue operating. MVS
attempts to retain availability through error recovery routines that:

• Isolate and record
• Clean up and repair
• Retry and reconfigure

Processing continues while the system carries out these tasks. Primarily,
recovery management support and the recovery termination manager
perform these functions (see Chapter 9 for more information on error
recovery.)

Recovery Management Support

One means of increasing availability is to reconfigure the system when there
is a problem with a hardware component. In this way. the system can
continue working. MVS provides this ability through RMS routines.

Missing Interruption Handler: The missing interruption handler (MIH)
checks whether expected I/O interruptions occur within a specified time
period. If the interruptions do not occur. the operator is notified so he can
take steps to correct the situation before the system status is harmed.

The MIH checks for pending device ends, channel ends. DDR swaps.
and MOUNT commands. When a pending condition is found, the condition
is indicated in the UCB of the device. After a specified time elapses.
another check is made for the pending condition. If the condition is still
pending, a message is used informing the operator what condition is
pending and what operator action is required.

Dynamic Device Reconfaguration: The operator may invoke dynamic device
reconfiguration (DDR) when a device cannot be made ready, or the system
may invoke it to bypass a permanent I/O failure. DDR makes it possible to
move a demountable DASD or tape volume from one device to another.
MVS processes DDR requests without shutting down the system and may
eliminate the need for terminating a job.

Channel Check Handler: The channel check handler (CCH) receives
control when a channel error is detected. CCH builds an error control block
and records the error environment. When the CCH is entered due to an
error affecting an entire channel, it invokes I/O restart routines to recover
the I/O activity on the failing channel.

Machine Check Handler: The machine check handler (MCH) in MVS
supports the expanded machine check hardware in the IBM System/370. A
machine check is an interruption that a malfunction causes. Some machine
checks can be corrected by hardware. Others require software recovery.
The MCH records all machine checks and invokes software recovery
routines when necessary. If the MCH determines that processing cannot
continue on a processor, it terminates operations on that processor.

Alternate CPU Recovery: When running in MP mode, alternate CPU
recovery (ACR) allows work in progress on a failing processor to be
recovered on the good processor. The object is to retain system availability
and continue system operation.

The ACR routine takes responsibility for all work in progress on the
failing CPU, including I/O. If critical I/O devices are symmetrical (Lhat is
attached to both processors), or if channel reconfiguration hardwart' (CRH)
is available, critical I/O can be recovered. ACR will attempt to restore
resources to an operable state, recover from the failure, and contin:Je
operation. (The operator must also take actions such as reducing tht~
workload or reconfiguring hardware if the system is to continue running
efficiently.)

ACR is available only in MP and AP mode, and it can provide
significant added availability.

Chapter 1: Introduction 1-7

1-8 OS/VSl MVS Owemew

Recovery Termination Management

Recovery termination management (RTM) cleans up system resources when
a task or address space terminates. Specifically, RTM performs normal and
abnormal task termination, normal and abnormal address space termination.
writes dumps, records errors, provides for recovery of supervisory routines
via routing control to functional recovery routines, and recovers the system
when a processor in a tightly-coupled multiprocessing environment fails.
RTM provides these functions for both system and problem program
routines.

Functional Recovery Routines: FRRs are provided for critical system
components - those. that have high availability requirements, such as the
interruption handlers, the lock manager, and the dispatcher. Upon entry, a
functional component establishes an FRR by issuing the SETFRR, a macro
instruction. FRR's are placed in LIFO - last in, first out order in an FRR
stack maintained by the RTM. Each FRR stack represents the functions
being performed in a single path through the system control program. When
an error occurs in a path, the RTM passes control to the most recent FRR
placed in the appropriate stack. That FRR will attempt to contain the error,
record it, repair it, and either request retry or termination. If retry is
requested, RTM will reenter the. function at a specified location. If
termination is requested, the error is passed to the next FRR in the stack to
attempt recovery; this process is called PC?rcolation.

Task Recovery: Task recovery routines may be written for critical units of
user or subsystem work. Task recovery routines should be written for those
critical user or subsystem tasks that have a high availability requirement. If
they are not, the availability of critical subsystems, or critical user jobs may
be unnecessarily reduced.

An MVS facility called the extended sub task abend exit (EST AE)
supports task recovery. With this facility, users can write and establish
recovery routines in the form of user exits that will receive control at
appropriate times during abnormal termination of the task. A recovery exit
may be set up when a task is created or it may be established at any time
by issuing an EST AE macro instruction. Each EST AE routine is placed in
LIFO order on a chain established for that task. When RTM is entered, it
routes control to the last EST AE routine in a task's chain. That task
recovery routine attempts to contain the error, record it, and repair it if
possible. It will then request either retry or termination of the task. If retry
is requested, RTM reenters the failing task or subtask at a specified
location.

If you want your own exit routine to receive control for certain exceptions,
you can issue the specify program interruption exit (SPIE) macro
instruction. Any problem program being executed in performance of a task
can issue SPIE. When the task is active, your exit routine receives control
for all interruptions resulting from exceptions the SPIE macro instruction
specifies unless the current routine for the task is operating in supervisor
mode. For other program interruptions, control is given to the control
program exit routine. Each succeeding SPIE macro instruction completely
overrides specifications in the previous macro instruction.

". -r

Percolation: If an FRR or EST AE routine is requesting or continuing
termination, percolation occurs. The recovery termination manager passes
the error to the next recovery routine in the FRR stack or in the EST AE
chain. This represents the previous or the next higher level of control.
Hence, the term, percolation. This process continues until a retry results in
recovery or until the FRR stack or EST AE chain has been exhausted.

Summary of Direct Benefits

MVS can do more work because:

1. MVS makes more effective use of real storage, in effect increasing
the space available for installation programs.

2. MVS provides more throughput by extensive use of
multiprogramming. Through MP and AP it can do two things
simultaneously.

3. MVS has higher availability more of the time over the long term
through enhanced error recovery function.

Indirect Benefits
The ability of MVS to do more work also allowed IBM to improve the
basic functions of the operating system itself. These indirect benefits lead
to:

• Greater support for interactive users
• Improved performance
• Improved security and integrity
• Enhanced functions

Greater Support for Interactive Users

The Time Sharing Option (TSO) is an integral part of MVS. [BM has
enhanced TSO as follows:

• Each TSO user is assigned a private address space, and so has more
space for processing and is protected from other users.

• TSO users may allocate a greater variety of data sets and devices.
• TSO command processors and service routines may be in pageable

storage.
• TSO driver and swapping functions have been integrated into MVS.

TSO makes the operating system available to both local and remote
terminal users. A TSO user, identified by a unique use rid, can initiate a
TSO session by issuing a LOGON command. Each TSO user can develop,
test, and execute programs interactively without experiencing the usual
delays associated with batch job processing.

Sessions and Transactions

MVS allocates data sets and I/O devices to a user at the beginning of a
TSO session. In this respect, a TSO session is like. a batch job. Interaction
with a terminal user involves a terminal read, the appropriate processing,
and a terminal write. Each such interaction is called a TSO transaction.

Chapter I: Introduction 1-9

1-10 OS/VSl MVS Oveniew

A user may be entering a line of input or compiling a program; both are
transactions. Additional resources may be allocated during transaction
processing. In this respect, a TSO transaction is somewhat like a batch job
step.

Some TSO transactions are trivial and some are not. For example. TSO
provides an EDIT facility to create and modify user data sets. When a data
set is being created, EDIT prompts the user for a new line of input by
displaying a line number. A line of data is entered, stored by EDIT, and a
new line number is displayed. This is a trivial transaction because line
number prompting requires very little processing and not much I/O.

By contrast, the user may enter a transaction that invokes a COBOL
compiler. The response can be a full source listing with compiler
diagnostics. This is a non-trivial transaction.

Terminal 1/0

All terminal I/O for TSO is controlled by the telecommunications access
method (TCAM) or the virtual telecommunications access method
(VTAM). (For information on TCAM and VTAM see OS/VS TeAM
Concepts and Applications, GC30-2049 and Introduction to VTA"M,
GC27-6987.) A TSO address space is frequently in the wait state since
terminal I/O is slow compared to internal processor speeds and terminal
users tend to require "think time." During this timet processing is suspended "
and the user can be swapped out.

Swapping

Swapping means moving address spaces in and out of real storage. When an
address space is swapped out, the virtual storage pages associated with that
user are moved from real storage frames to auxiliary storage. Other users
who have processing to do can then use the frames. When the swapped-out
user is again ready to run, the appropriate virtual storage pages can be
swapped in and processing can be resumed.

MVS uses swapping to manage the workload and control the job mix.
Swapping takes place for almost all TSO and batch users. An new MVS
function, the system resources manager (SRM), makes swapping decisions
to meet performance objectives and to balance the use of resources. (For
more information on swapping, see Chapter 2.)

Improved Performance

Improved performance derives from control of system resources and a
reduction in bottlenecks.

Control of Performance

As discussed, MVS allows more users (address spaces) to be active
concurrently in the system. More users mean more competition for available
system resources - processor time, I/O resources, and real storage. An
address space has access to these resources only when it is in real storage.
The system resources manager (SRM) is the component in MVS that
decides which address spaces to swap in or out and when to swap them in
or out; therefore, it is the component that controls access to system
resources.

The SRM has two objectives:

• Objective O~e: Meet installation-specified performance guidelines,
which reflect the installation's response and turnaround time
requirements

• Objective Two: Achieve the optimal use of processor time, real
storage, and I/O resources, from the viewpoint of system throughput.

SRM makes decisions that represent trade-offs between these two
conflicting objectives.

Overview of the SRM

The installation specifies its requirements for the first SRM objective in a
member of the parameter library (SYS1.PARMLIB) called the installation
performance specification (IPS). Through IPS, the installation divides its
types of work into distinct groups, assigns relative importance to each
group, and specifies the desired performance characteristics for each address
space within each group.

A secondary means of specifying requirements to the SRM is through the
OPT, member of PARMLIB. (The OPT member contains parameters that
affect swapping decisions by the SRM.) Through a cOQlbination of IPS and
OPT parameters, an installation can exercise a degree of control over
system throughput characteristics (objective two). That is, an installation
can specify whether, and under what circumstances, throughput
considerations are more important than response and turnaround
requirements when the need arises to make tradeoffs between objectives
one and two.

The SRM attempts to ensure optimal use of system resources by
monitoring and balancing resource utilization. If resources are
under-utilized, the SRM attempts to increase the system load. If resources
are over-utilized, the SRM attempts to alleviate this by reducing the system
load or by shifting commitments to under-utilized resources. Examples of
such resources are the processor, logical channels, auxiliary storage, and
pageable real storage.

For more information on the SRM see Chapter 8. For information on
performance analysis see OS/VS2 MVS Performance Notebook.

Reduction in Bottlenecks

A bottleneck is an obstruction, something that slows down work. While
specific bottlenecks differ from installation to installation, there are some
general ones. MVS design has attempted to reduce the impact of these and
improve performance by:

• Reducing path lengths
• Increasing parallelism
• Reducing contention for system resources

Chapter 1: Introduction 1-11

1-12 OS/VS2 MVS Oveniew

These concepts are defined and illustrated in the following descriptions
of:

..
• The Scheduler Work Area
• Device Allocation
• Virtual Input/Output
• Service Request Blocks
• Multiple Locks

Scheduler Work. Area: In MVS, the scheduler work area (SWA) contains
much of the same job control information that the System Job Queue
(SYSJOBQE) did in previous systems. SYSJOBQE was a major source of
contention in MVT and SVS because almost every component of the job
scheduler (and every job in execution) required concurrent access to it.

SW A is, in effect, a local job queue for each MVS user and it resides in
the user's private address space. All control information that applies to a
single job, such as data set and device allocation information, is placed in
SW A when a job is selected. It is available to the job scheduler and the
user while he is executing. It improves performance, therefore, by
eliminating SYSJOBQE.

Device Allocation: The process used to allocate I/O resources is called
device allocation. Data sets, volumes, and devices are allocated to a batch
user when a job step is initiated and to a "TSO user when a session begins.
They may also be allocated dynamically. In MVT and SVS, allocation
requests are processed one at a time. This serialization eliminates potential
conflicts and possible deadlocks. However. in a fully loaded MVT or SVS
system, device allocation can be a serious bottleneck.

MVS eliminates this bottleneck by processing requests in parallel. The
process may be summarized as follows:

• Associate a user data set with a volume
• Asso<;:iate the volume with a device
• Allocate the device to the user

Significant performance improvement has been realized through this
r~design of device allocation.

Virtual Input/Output: In MVS, temporary data sets can be handled by a
new facility called virtual input/output (VIO). Data sets for which VIO has
been specified reside in paging space on auxiliary storage. However, to a
user or to one of the access methods, the data appears to reside in a real
data set on a DASD volume. A VIO specification exists only for the
duration of the job.

During system generation, one or more unit names can be defined as
VIO and associated with a real DASD device type, such as a 3350. These
unit names are then specified on the job control statements requesting
device allocation. These requests are processed in parallel and no device is
allocated for the VIO request.

After the job has gone through the device allocation process, and as data
is being stored in 4K blocks on a VIO data set, real storage frames and
auxiliary storage slots are assigned as required. These frames and slots may
not be contiguous and the data may be dispersed in real storage and on
auxiliary storage. When a user accesses a VIO data set, the desired data is
paged in and out of real storage as required. The auxiliary storage slots are
released when the data set is deleted or the job ends and are immediately
available for paging. VIO offers these performance advantages:

• Elimination of some device allocation and data management overhead
• Generally more efficient use of DASD space
• Use of the I/O load balancing capability of the auxiliary storage

manager (ASM)

Service Requests: Service requests, a new facility in MVS, improve
performance and make MVS a more responsive system. The system, a
privileged (authorized) user, or subsystem may issue them.

The requester builds a service request block (SRB) and issues the
SCHEDULE macro instruction. The SRB represents work to be done and
the SCHEDULE macro instruction places the SRB on one of the service
manager queues. An SRB for a particular address space is given control
before any tasks associated with that address space.

An SRB is an efficient way to communicate between address spaces.
SRBs also make it possible to handle multiple events in parallel.

Multiple Locks: A lock is a means of serialization. MVS has implemented
multiple system locks to improve and standardize serialization techniques.
There are two different categories of locks. A global lock protects a serially
reusable resource that relates to the whole system - for example, there is a
global lock for each unit control block (UCB) associated with each device
in the system. A local lock serializes address space related storage areas.
Implementation of these locks offers the MVS user these performance
improvements:

• A standard for path serialization techniques
• Less disabled processor time and a more responsive system
• More parallelism and less contention

Improved Security and Integrity
Increased security and integrity are major design objectives of MVS:

• Security is the ability to protect resources from unauthorized access,
alteration, or destruction.

• Integrity is the inability of any program not authorized by a
mechanism under the customers control to:

1. Circumvent or disable store or fetch protection

2.Access a password-protected or a RACF-protected resource
(RACF is the Resource Access Control Facility program product)

3. Obtain control in an authorized state, that is, in supervisor state,
with a protection key less than eight, or protected by the authorized
program facility

Chapter 1: Introduction 1-13

1-14 OS/VSl MVS Overview

A goal. of MVS is to build integrity into the base system so that if an
installation wishes, }t can add a security system to it.

Isolate and Protect

In MVS, virtual storage consists of a system area, a common area, and a
private area. Every MVS user can address one private area. MVS isolates
each user from every other user in a private address space - thereby
preventing him from violating another user's address space. MVS uses
multiple storage protect keys to protect the system and subsystems from
unauthorized users.

Validate and Authoriz.e

Before MVS performs services on behalf of the users, it takes steps to
validate any protected resources that are to be used and to authorize the
use of any restricted functions. This is done to prevent possible security
violations through the use of invalid control blocks or the execution of
unauthorized code and to avoid user-induced system failures due to
improperly specified requests.

User Responsibility

To avoid compromising MVS security, each installation must assume
responsibility for:

• The integrity of user written authorized programs
• Password protection of critical system libraries
• Access to the system by programmers and operators
• The physical security of the computing systems

Increased security and integrity costs some processor time and real
storage space. However, every effort has been made to employ efficient
programming techniques that do not significantly impact performance.

Enhanced Function
There is an overall enhancement of function in MVS. MVS function has
been enhanced by integrating into the system many functions that
previously were only available as add-on support and by extending these
functions to include multiple virtual storage. In particular this enhancement
applies to:

• JES2 and JES3
• System generation and initialization
• The virtual storage access method (VSAM)

Job Entry Subsystem

Job management has been enhanced by the implementation of JES2 and
JES3. Either JES2 or JES3 may be specified as the primary job entry
subsystem. Job management in MVS is handled by the job entry subsystems

(JES2 and JES3). They control the entry of jobs and perform job
scheduling functions upon request. MVS interfaces with these job entry
subsystems ,Yia a new component. the subsystem interface (SSI). For further.
information on JES, see Chapter 5.

JES2

JES2 is the MVS replacement for HASP II (Houston automatic spooling
program). Most of the functions performed by HASP II have been
integrated along with many functions formerly performed by the job
scheduler in MVT and SVS. These are some of the functions performed by
JES2:

• Reading jobs and SYSIN data, both local and remote
• Spooling jobs and input data to direct access storage
• Scheduling, initiating, and monitoring jobs
• Reading SYSIN data and writing SYSOUT data for active jobs
• Writing jobs and SYSOUT data, both local and remote

An extensive set of JES2 operator commands is provided. Job
accounting, journaling, and restarting ca·pabilities have been integrated into

. the subsystem; and the scheduling of TSO :;es~ions and the control of batch
output for TSO users is done by JES2.

JES3

JES3 functions, integrated into MVS, are generally the equivalent of those
in ASP (asymmetric multiprocessing system) Version 3. Multiple processors
in a variety of loosely-coupled combinations are supported.

When JES3 is used to manage a loosely-coupled multiprocessing
complex, it controls job scheduling and device allocation for the entire
complex. The controlling processor is called a global processor and the
others are called local processors or ASP mains. A local processor with
access to the necessary I/O devices and connected to all other processors
can assume global functions if the global processor fails. JES3 provides
even more extensive job management functions than those listed for J ES2.
In addition to increasing availability, JES3 permits more efficient use of
system resources by providing:

• Automatic scheduling of jobs to mUltiple processors
• Controlled allocation of all I/O devices in the complex
• Mounting and verifying of private volumes before scheduling a job
• Deadline scheduling

Subsystem Interface

Both JES2 and JES3 use MVS functions and service MVS requests. Each is
considered a subsystem and communicates with MVS via a component,
called the subsystem interface (SSI). SSI makes it easier to add subsystems
to MVS, including those written by users.

System Generation and Initialization

During system generation and system initialization, an installation can select
options and specify parameters that tailor an operating system to meet
specific needs. In MVS, the number of SYSGEN options that must be

Chapter 1: Introduction 1-15

1-16 OS/VSl MVS Overview

'. . ~"I'--",.

specified have been minimized and initialization flexibility has been
increased. Operating procedures have been simplified and dependence upon
the system operator .. has been reduced, while the control of system resources
has become more automated during system initialization. Preset initialization
options may be stored in the parameter library and invoked by specifying
the parmlib member at initial program load (lPL).

System Generation

Macro instructions are used during system generation to select options from
IBM Distribution Libraries (DLIBs). This process has been simplified for
MVS in the following ways:

• Many previous options are now standard
• Several macro instructions have been eliminated, consolidated, or

clarified
• Multiple jobs can be run to speed up the SYSGEN process

See Chapter 3 for more information on system generation.

System Initialization

The installation can use the console to select parameter lists from
PARMLIB or to specify additional parameters during system initialization.
In MVS, changes have been made to the. initialization process that provide
greater flexibility in specifying parameters, and that simplify the process by
reducing the amount of operator intervention required. These changes
include:

• Fewer operator messages and fewer replies
• Multiple parameter lists and selective merging of parameters

See Chapter 4 for more information on system initialization.

System Operation

MVS depends less upon the system operator than any of its predecessors.
Operator commands are used to request system and user status and to
initiate, alter, or terminate system functions. Many functions that previously
depended upon operator commands are now performed by JES2 or JES3.
In some cases, the system may not wait for operator intervention when
devices being allocated are offline or not ready. The operator is usually not
required to make job scheduling and storage configuration decisions.

Virtual Storage Access Method (VSAM)

The virtual storage access method (VSAM) is a high performance access
method for direct access storage. It is designed to run in virtual storage and
uses virtual storage to buffer input and output operations. VSAM provides
support for batch users, online transactions and data base applications.
Through a master catalog, VSAM controls the allocation of data space on
VSAM volumes and the location and use of VSAM data sets. In MVS, the
VSAM master catalog is also the system catalog. (See Chapter 8 for more
information on VSAM.)

Summary

Through better management of real storage, increased multiprocessing and
instruction processing capability, and enhanced error recovery MVS can do
more work than previous systems. This has improved the system's basic
operating capabilities, especially in the areas of resource management,
integrity, and function.

MVS integrates many items, such as TSO and tightly-coupled
multiprocessing, into the overall system that has been special purpose
options.

Some of the major new features that MVS includes are recovery
facilities, VSAM, virtual I/O, and multiple virtual address spaces.

MVS offers more space to more users, greater throughput, high
availability, and more control of the system. In short, it does more work
than previous systems.

Chapter 1: IDtroductIoII 1-17

1-18 OS/VSl MVS O¥emew

Chapter 2: Virtual Storage in MVS

Storage in an MVS system - or any computing system, for that matter -
consists of a number of locations available for programs and data. In a
system without virtual storage, the range of addresses (the number of
storage locations, each having a unique address) is equal to the number of
addressable physical locations in the main storage installed. In a system with
virtual storage, however, the range of addresses available for programs and
data is equal to the theoretical limit of the addressing scheme. In MVS, this
theoretical limit - the size of the virtual storage available to the
programmer - is 16 megabytes, the maximum number of addresses
allowed by the 24-bit addressing scheme that MVS uses. Virtual storage is
larger than main storage (called real storage in MVS); how much larger
depends on the size of real storage installed. Therefore, the use of virtual
storage increases the number of storage locations available to hold programs
and data.

In most computing systems, a program cannot execute unless there is a
single block of storage big enough to hold it, and the block of storage is
allocated to the program until it has finished. However, when a program
executes in virtual storage under MVS, only the parts of the program that
are currently active need be in real storage at any particular time. The
inactive parts of any executing program are held in auxiliary storage, in
special data sets that most probably reside on a high-speed direct access
device. Thus, the programmer is freed from the problem of designing a
program to fit a predetermined limit of real storage. Additionally, more
programs can occupy real storage concurrently because only the active parts
of each program are in real storage at any particular time; thus, the system
can start more jobs.

Pages, Frames, and Slots
To enable the movement of the parts of a program executing in virtual
storage between real storage and auxiliary storage, the MVS system breaks
real storage, virtual storage, and auxiliary storage into blocks:

• A block of real storage is a frame.
• A block of virtual storage is a page.
• A block of auxiliary storage is a slot.

A page, a frame, and a slot are all the same size; each is 4K bytes. An
active virtual storage page resides in a real storage frame; an inactive virtual
storage page resides in an auxiliary storage slot. Moving pages between real
storage frames and auxiliary storage slots is called paging.

Chapter 2: Virtual Storage in MVS 2-1

1.1 OS/VSl MVS Overview

Figure 2.1 shows how paging is performed for a program running in
virtual storage. Parts A, B, and C of a three-page program are in virtual
storage. Page A is ~ctive and executing in a real storage frame, while pages
B and C reside in auxiliary storage slots. At point <D page B is required;
the system brings B in from auxiliary storage and puts it in an available real
storage frame. At point CD page C is required; the system brings C in
from auxiliary storage and puts it in an available real storage frame. If page
A became inactive and the system needed· its frame in real stora~ page A
would be moved to an auxiliary storage slot. as shown at point Q).

Virtual
Storage

A I B I c

Real Storage

FIgUre 1.1. Basic Virtual Storage Concepts

AUXiliary
Storage

Thus, the entire program resides in virtual storage; the system moves
pages of the program between real storage frames and auxiliary storage
slots to ensure that the pages that are currently active are in real storage
when they are required. Note also that both the frames and the slots
allocated to a program need not be contiguous; thus, a page could occupy
several different frames and several different slots during the execution of a
program. That is, if page A in the example become active again, MVS could
move it to any available frame.

Integrity
Figure 2.1 showed how virtual storage works for one program; in reality, of
course, many programs or users would be competing for use of the system.
MVS implements two techniques to preserve the integrity of each user's
work: (1) a private address space for each user and (2) multiple storage
protect keys. Each of these techniques is described in the following text.·

Storage Protect Keys

Under MVS, the information in real storage is protected from unauthorized
use by means of mUltiple storage protect keys .. A control field in. storage
called a key is associated with each 2K block of real storage. This field or
key, sometimes called a "storage bump," is not part of addressable storage.

The key in storage contains the protect key of the owner and a fetch
protect bit (as well as the reference and change bits maintained by the
hardware and used by the software to make paging decisions, as described
later in this chapter under "Paging.") The protect key protects the block of
storage from unauthorized modification. The fetch protect bit protects the
block of storage from an unauthorized attempt to read or fetch its contents.
Figure 2.2 shows the format of the key in storage.

Chapter 2: Virtual Storage in MVS 2-3

2-4 OSIVSl MVS OYeniew

Real
Storage

2K 2K

o

2K

Key

3

Key - 4-bit protect key
F - Fetch protect
R Storage has been referenced
C - Storage has been changed
U Reserved

2K 2K

~,--------------------~--------------------)
Addressable Storage

figure 2.2. The Key In Storage

When a request is made to modify the contents of a real storage
location, the key in storage is compared to the storage protection key
associated with the request, which appears in the current program status
word (PSW). (See "The Role of Program Status Words" in Chapter 6 for
more information about the PSW.) If the keys match, the request is
satisfied. If the key associated with the request does not match the key in
storage, the system rejects the request and issues a program exception
interruption.

When a request is made to access (read or fetch) the contents of a real
storage location, the request is automatically satisfied unless the fetch
protect bit is on. When the fetch protect bit is on, the block of storage is
fetch-protected. When a request is made to access the contents of a
fetch-protected real storage location, the key in storage is compared to the
key associated with the request. If the keys match, the request is satisfied.
If the keys do not match, the system rejects the request and issues a
program exception interruption.

There are sixteen possible storage protect keys available. A specific key
is assigned according to the type of work being performed. Figure 2.3
summarizes the assignment of storage protect keys.

Storage protect keys 0 through 7 are reserved for the MVS system
control program and various subsystems. Storage protect key 0 is the master
key. Wben.a storage protect key of 0 is associated with a request to access

. or modify the contents of a real storage location, the request is
automatically satisfied. Thus, the use of key 0 is restricted to those parts of
the MVS system control program that require unlimited store and fetch
capabilities.

Storage protect keys 8 through 15 are assigned to users. Because all
users are isolated in private address spaces, most users - those whose
programs run in a virtual region - can use the same storage protect key.
These users are assigned a key of 8. Some users, however, must run in a
real region. These users require individual storage protect keys, which are
assigned from the range of 9 through 1 S. Descriptions of a virtual region
and a real region appear later in this chapter under "Virtual (V:: V) User
Region" and "Real (V=R) User Region."

Key Use
o MVS system control program

Job scheduler and job entry subsystems
(JES2 or JES3)

2-4 . Reserved
5 Data management
6 TeAM and. VT AM
7 IMS
8 v-v users
9-15 V-R users

figure 1.3. Stonge Protect Key AssipmeIIt

Frequently, a user program requests a service from a system (or
subsystem) program; with the request the program passes the address of an
area in storage to be modified· by the system program. This area should
belong to the user. However, if an error occurs and the area really belongs
to the system instead of the user, the system could be destroyed. Thus, the
system program does a key switch before performing the service for the
user. A key switch means that the system program uses the storage protect
key of the user rather than its own storage protect key while performing the
requested service. The key switch is thus another mechanism MVS uses to
provide protection from possible destruction.

Chapter 1: VIrtual Storage in MVS 1-5

2-6 OS/VSl MVS <>Wemew

Address Space

MVS assigns each user his own map of virtual storage. The 16-megabyte
virtual storage available to each user is called an address space. A
16-megabyte address space is available to each job, TSO user, or system
task. Each address space competes with all other active address spaces for
the use of real storage and other system resources, and the work being
performed in each address space is paged between real and auxiliary
storage.

In order for this paging activity to take place quickly and efficiently, the
system must be able to translate a virtual address (the address of a specific
instruction or data item in virtual storage) into a real address (the address
of the corresponding location in real storage). The solution is dynamic
address translation.

Dynamic Address Translation

Dynamic address translation (DAT) is a System/370 hardware feature that
makes virtual storage possible. The DAT feature hardware works in
conjunction with MVS system software to translate a virtual address into a
real address.

Virtual Address

In order to obtain a virtual address, MVS breaks the 16 megabytes of
virtual storage into 256 segments, numbered 0 through 255. Each segment
consists of 64K bytes. The 64K bytes in each segment are further broken
down into 16 pages, numbered 0 through 15. Each page, as stated earlier,
consists of 4K bytes. Within each page, a specific location is addressed by
its byte displacement, that is, the number of bytes between the page origin
and the specific location.

A virtual address consists of the segment number, the page number
within that segment, and the byte displacement within that page. Figure 2.4
shows how virtual storage is broken down to provide a virtual address that
consists of a segment number, a page number, and a byte displacement.

Virtual storage of
16,777,216 bytes
(16,384K)

I Page 15

Segment 255

16,320K t--_p_a_ge_o_..LI ________ -t

Segments 2 to 254 -..... -~
-r- -r-

Hex 0 1 F 0 0 4
128 K

I Page 15 8 16 20 31

Segment 1 t 00000001 1111 000000000100

Page 0 I Segment Page Byte

\ 1 15 4)

I Page 15 ""-/
Virtual Storage Address

64K

Segment 0

0
Page 0 I

64K segments, 4K pages

FtgUI'e 2.4. Virtual Storage Address

Chapter 2: Virtual Storage in MVS 2-7

2-8 OS/VSl MVS Overview

Segment and Page Tables

To translate a virtual address into a 24-bit real address, the DAT feature
requires tables that describe each address space. These tables are the
private segment table and the private page tables. The segment table has
one entry for each of the 256 segments in the address space; each entry
contains a pointer to the page table for that particular segment. The page
tabie for each segment has one entry for each of the 16 pages in the
segment. If a page is currently in a real storage frame, the entry consists of
the real storage address of that page. If a page is not currently in real
storage, the entry in invalid; that is, the system must move the page from
auxiliary storage to real storage and update the page table before the virtual
address can be successfully translated. Figure 2.5 shows the relationship
between the segment table, the page tables, and the pages in virtual storage.

Segment Table

Segment 255

Segment 254

Segment 1

Segment 0

Page Tables

Page 15 1
........ -

~------------- -

Figure 2.5. Segment Table and Page Tables

Virtual Storage

Segment 255

12 13 14 15

8 9 10 11

4 5 6 7

~ 0 1 2 3

-~ -~
-r-" -po-

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Segment 0

Two-Level Table Lookup

STOR

To translate a virtual address into a real address. OAT uses a two.level
table lookup .. Figure 2.6 illustrates this process. The first table lookup (j)
uses the segment table origin in the segment table origin register (STOR)
and the segment number in the virtual address (multiplied times 4, the
length of each segment table entry) to locate the origin of the page table
for that segment. The second table lookup ® uses the page table origin
from the segment table entry and the page number in the virtual address
(multiplied times 2, the length of each page table entry) to locate the
required entry in the page table. Unless the entry is invalid. the page table
entry contains the address of the real storage frame that holds the page
specified in the virtual address. The final step 0 in dynamic address
translation adds the address of the real storage frame to the byte
displacement in the virtual address to compute the 24-bit real address. This
value is loaded into a hardware storage address register (SAR).

Virtual Address

Byte Displacement

ragure 2.6. Dynamic Address Translation

Chapter 2: Virtual Storage in MVS 2-9

2-10 OS/VSl MVS Overview

Each time a virtual address is successfully translated into a real address, the
system saves the address of the real storage frame in a special hardware
buffer called the translation lookaside buffer (TLB). The TLB contains the
segment number and page number from the virtual address and the
corresponding real storage address for the most active virtual pages. The
DAT hardware checks the TLB before beginning the process of address
translation, and, because a very high percentage of addresses can be found
in the TLB, address translation time is significantly reduced by bypassing
the two-level table lookup process.

When the second step of the table lookup process encounters an invalid
page table entry, the required page is not in real storage. The DAT
hardware thus cannot translate the virtual address, and a page translation
exception, known as a page fault, occurs. Paging - the movement of pages
between auxiliary storage and real storage - is required to bring the page
into real storage.

Paging

Paging is the movement of pages between real storage and auxiliary storage
to ensure· that currently active pages are in real storage. In addition to the
DAT hardware and the segment and page tables required for address
translation, paging activity involves a number of system components to
perform the movement of pages and several additional tables to keep track
of where each page is at any particular time.

Demand Paging

To understand how paging works, assume that OAT encounters an invalid
page table entry during address translation, indicating that a page is
required that is not in a real storage frame. To resolve this page fault, the
system must locate an available real storage frame. If there is no available
frame, an assigned frame must be freed. To free a frame, the system moves
its contents to auxiliary storage. This movement is called a page-out. The
system performs a page-out only when the contents of the frame have been
changed since the page was brought into real storage.

Once a frame is located for the required page, the contents of the page
are moved from auxiliary storage to real storage. This movement is called a
page-in. The process of bringing a page from auxiliary storage to real
storage in response to a page fault is called demand paging.

MVS tries to avoid the time-consuming process of demand paging by
keeping an adequate supply of available real storage frames constantly on
hand. Swapping is one means of ensuring this adequate supply. Page
stealing is another.

Swapping

Swapping is the movement of an entire address space between virtual
storage and auxiliary storage. It is one of several methods MVS employs to
balance system workload, as well as to ensure that an adequate supply of
available real storage frames is maintained. Address spaces that are
swapped in are active, currently executing in virtual storage with pages in
real storage frames and pages in auxiliary storage slots. Address spaces that
are swapped out are inactive; the address space resides on auxiliary storage
and cannot execute until it is swapped in. Swapping is performed in
response to recommendations from the system resources manager (SRM),
described later in this book in "Chapter 7: Managing System Resources."

Page Stealing

In addition to swapping, the system uses page stealing to ensure an
adequate supply of available real storage frames. Page stealing occurs when
the system takes a frame assigned to an active user and makes it available'
for other work. The decision to steal a particular page is based on two
factors: (1) the size of the working set for an address space and (2) the
activity history of each page currently residing in a real storage frame. The
working set is the number of virtual pages that should reside in real storage
frames in order for work in an address space to run effectively. Each user
- that is, each address space - has a working set, and the system does
not steal pages from the working set under normal operating conditions.

Page Frame Table

Any active pages that exceed the working set, however, are candidates for
page stealing. To determine the pages that are to be stolen, MVS examines
the activity history of the pages that are currently in storage. This
information is held in the page frame table. There is one page frame table
for the entire system, and it has an entry for each frame of real storage.
Each entry includes the address space identifier and the segment and page
number within the address space for the virtual page that is currently using
the frame.

Other information in the entry describes the activity history of the page.
The status field indicates whether the frame is currently in use; if the status
field is set to zero, the frame is available. Two additional bits associated
with the entry, the reference bit and the change bit, are relevant when the
frame is in use. (Note: These bits are actually part of a control field
associated with each 2K block of storage. They are maintained by the
hardware and used by the software to make paging decisions; they are
therefore described here as if they were physically part of the page frame
table.)

The reference bit is set on whenever the page is referenced. At regular
intervals, the system sets the reference bits back to zero. Thus, the
reference bit is an indication of how recently the page has been used. A
page in storage with the reference bit set off has not been referenced
recently; it is a candidate for page stealing.

Chapter 2: Virtual Storage in MVS 2-11

2-12 OS/VS2 MVS Overview

The changt: bit is set to zero when a page is initially brought into a real
storage frame. When the contents of the page are changed during execution
of work in the address space, the change bit is set on. Setting the change
bit on tells the system that it must move the contents of the frame to
auxiliary storage before making the frame available for other work.
Checking the change bit ensures that no changes made during program
execution· are lost during the paging process.

Figure 2.7 shows how the page frame table entries are set up and how
the status, reference, and change information is used to determine which
pages will be stolen. All of the pages in the table are active; the status field
is set to one. The system checks the reference bits and finds two pages that
have not been referenced recently and are, therefore, temporarily inactive.
These two pages will be stolen. The first page <D has not been changed
since it was brought in from auxiliary storage; therefore, no physical
page-out is required to save its contents because the copy of the page in
real storage is the same as the copy of the page in auxiliary storage. The
second page CD has been changed; therefore the system performs a
page-out before it steals the page, and the contents of the page are written
to auxiliary storage. The system is thus able to steal two pages, only one of
which requires a page-out. To save the time required to perform a page-out,
the system, whenever possible, steals pages that have not been changed.

PAGE FRAME TABLE

Frame Program Page & Segment Reference
Number Number Number Status Bit Change Bit

1

1

1

1

1
J

1 IT
1 I

1 I
1 I

I
This page has not been recently
referenced, but it has been changed
since page-in. Before page stealing
occurs, it must be paged-out.

Figure 2.7. Page Frame Table

1 1

1 0

0 0

1 1

0 1

1 1

1 1

1 1

1 0

o

System Components

Through s\Vapping, page stealing, and, when required, demand paging, MVS
ensures that the most active pages of each address space are in real storage
when required and keeps track of the exact location of each page. This
complex paging process is transparent to the user; each program runs in its
own address space as if it were the only program executing at any particular
time and as if it had all of virtual storage at its disposal. The paging process
is managed by several components of MVS. The three major ones are the
real storage manager, the auxiliary storage manager, and the virtual storage
manager.

Real Storage Manager (RSM)

The real storage manager (RSM) checks and maintains the entries in the
page frame table. It determines which pages are to be moved out of real
storage in response to a request for swapping an entire address space out of
storage or in response to a need for page stealing or demand paging.

The real storage manager also verifies the storage protect keys. The use
of storage protect keys is described earlier in this chapter under "Storage
Protect Keys."

Auxiliary Storage Manager (AS~)

The auxiliary storage manager (ASM) to keeps track of the contents of the
page data sets and swap data sets. Page data sets contain virtual pages that
are not currently occupying a real storage frame. Swap data sets contain the
virtual pages for address spaces that have been swapped out.

The ASM also maintains a table called the external page table. Entries in
the external page table enable ASM to determine the location of a page
residing in an auxiliary storage slot. When a page-in is required, the RSM
locates an available frame, and the ASM uses the external page table to
find the required page on auxiliary storage and bring it into real storage.
When a page-out is required, ASM locates a slot on auxiliary storage,
moves the page from real storage to auxiliary storage, and updates the
external page table.

Virtual Storage Manager (VSM)

The virtual storage manager (VSM) provides the map of virtual storage for
each address space. VSM works with RSM to handle subpool management,
requests to obtain and free storage, and storage allocations for programs
that must run in real storage rather than virtual storage.

Figure 2.8 summarizes the paging process, showing how pages move
between real and auxiliary storage in response to a page fault or to fill the
need for an adequate supply of real storage frames.

Chapter 2: Virtual Storage in MVS 2-13

VIRTUAL STORAGE

Segment N
(pages 0 to 15)

:;: Virtual =~
storage
pages
within
segments

=~ ::;:::

Segment 1)
(pages 0 to 15)

Segment 0
(pages 0 to 15)

I"""

Tables
map pages
and slots

Paged area

(Nucleus)

AUXILIARY STORAGE

Slots
(containing
pages of
instructions
and data)

Contents of
pageable
virtual storage

'\

" " " " " " ,
Tables map
pages and
frames

" " REAL STORAGE

Frames
(containing active
pages of executing
programs)

Nucleus

----- -- - - - ---~-------

Figure 2.8. Page-out and Page-in

2-14 OS/VS2 MVS Overview

Program Loading

Paging also takes place when the program loader initially loads a program
into virtual storage. The program loader brings an entire program into
virtual storage from the library on which the program resides. Virtual
storage is obtained for the user program. Each page in the program is
brought into real storage; that is, a real storage frame is allocated to each
page and an entry, including reference and change bits, is built in the page
frame table. Each page is then active and subject to the normal paging
activity; that is, the most active pages are retained in real storage while the
pages not currently active are paged out to auxiliary storage. Figure 2.9
summarizes the program loading process.

Figure 2.9. Program Loading

Loader
Program
is executing

Control
Program

REAL STORAGE

/
/

/
/

/

/

PROGRAM

.Control
Program

VIRTUAL STORAGE

Up to this point, virtual storage has been described as if the entire
16-megabyte address space is available for user programs and as if all of
real storage is available for paging. As Figure 2.8 and 2.9 show, however,
some virtual storage and a corresponding amount of real storage are taken
up by the control program, also called the nucleus. In most systems, an area
of approximately eight to ten megabytes is available for user programs in an
address space. The map of virtual storage for each address space includes
both the areas used by the control program and the area available for a
user program. The remainder of this chapter describes the map of virtual
storage in more detail to show how storage is organized in MVS to make
effective use of real storage, an important system resource.

Virtual Storage Areas

Each virtual storage area consists of a system area, a private area, and a
common area. The address space each user controls enables him to address
all three areas. However, private segment and page tables and storage keys
isolate one address space from all other address spaces and protect the
system from destruction.

Chapter 2: Virtual Storage in MVS 2-15

Common
Area

e
Private
Area

o
System
Area

{
r

Figure 2.10 shows the m~r parts of virtual storage. The system area
<D and the common area ~ contain the system control program and
various routines and data areas that pertain to the entire system. The
private area 0 is the area available for user programs. As the figure
shows, both the common area and the private area contain several separate
parts. The contents of the system area, the common area, and the private
area are described in the following text.

In addition to the basic storage layout shown in Figure 2.10, the system
area and the common area can be extended or changed, depending on the
configuration or options a particular installation selects. Thes"e additions to
the storage layout are described later in this chapter under "Extensions and
Options."

System Queue Area
Hi

Pageable Link Pack Area

Common Service Area

I
I

gh Address

Local System Queue Area
~---- --

Scheduler Work Area
"~-- - ---

Subpools 229/230

f

User's Private Address Space

+
User Region

r-

~

System Region

Nucleus

L ow Address

Figure 2.10. Virtual Storage Layout

2-16 OS/VS2 MVS Onrview

System Area

The system 'area is allocated from the bottom of virtual storage during
system initialization. It contains the nucleus load module and any extensions
to the nucleus, the page frame table entries, DEBs (data extent blocks) for
the system libraries, recovery management support routines, and unit
control blocks. The nucleus and the other contents of the system area make
up the resident part of the MVS system control program.

The system area is initialized after initial program load (lPL) by the
nucleus initialization program (NIP). The system area is fixed; that is, it is
non-pageable and non-swappable. Its contents are mapped one for one into
real storage frames at initialization time and remain fixed for the duration
of the IPL. While the size of the system area varies depending on the
system configuration and the extensions and options an installation chooses,
the size of the system area does not change once it is initialized.

Common Area

The common area is allocated from the top of virtual storage. It contains
parts of the system control program, control blocks, tables, and data areas.
The basic parts of the common area are:

• The system queue area (SQA), which contains tables and queues that
are used by the entire system

• The pageable link pack area (PLPA), which contains system programs,
such as SVC routines and access methods, and selected reentrant user
programs

• The common service area (CSA), which contains system and user data
areas

System Queue Area (SQA)

The system queue area (SQA) contains tables and queues relating to the
entire system. For example, the page tables that define the system area and
the common area are held in SQA. The contents of SQA depend on an
installation's configuration and job requirements.

SQA is allocated from the top of virtual storage in 64K segments; a
minimum of three segments are allocated during system initialization.
Within the virtual segments, SQA space is allocated as long-term fixed
frames when it is required. Because it consists of long-term fixed frames,
allocated SQA space is both ~on-swappable and non-pageable.

Pageable Link Pack Area (PLP A)

The pageable link pack area (PLPA) contains SVC routines, access
methods, other system programs, and selected user programs. As its name
implies, PLPA is pageable; however, no physical page-outs are performed.
Because any changes made to a module would be lost and because the
modules in PLP A are shared by all users, all program modules in PLP A
must be reentrant and read-only.

PLPA space is allocated in 4K blocks directly below SQA. The size of
PLP A is determined by the number of modules included, and, once the size
is set, PLP A does not expand.

Chapter 2: Virtual Storage in MVS 2-17

2-18 OS/VS2 MVS OYeniew

Common Service Area (CSA)

The common service area (CSA) contains page able system and user data
areas. It is addressable by all active virtual storage address spaces and is
shared by all swapped-in users. Data associated with an individual address
space can be isolated by a storage protect key.

Virtual storage for CSA is allocated in 4K pages directly below PLP A.
The amount of storage allocated is determined by the value specified for
the CSA parameter during system initialization. CSA is paged in and out of
storage as required.

Private Area

As stated earlier, each address space can access the contents of the system
area and the common area. In addition, each address space has its own
private area. Virtual storage for the private area is allocated from the top of
the system area up, and from the bottom of the common area down.

In most installations, the size of the private area ranges from eight to ten
megabytes. Even when there are significant extensions to the nucleus, SQA,
CSA, and PLP A, more than five megabytes should be available to each
user. The private area is made up of the local system queue area (LSQA),
the scheduler work area (SW A), sub pools 229/230, and a system region, in
addition to the user region.

The user region is the space within the private area that is available for
running the user's problem programs. There are two types of user regions:
virtual (V = V) and real (V =R). The two types are mutually exclusive; that
is, a user region can be V = V or V =R, but it cannot be both.

The two types of user regions, as well as the other areas within the private
area, are described in the following text.

Local System Queue Area (LSQA)

The local system queue area (LSQA) contains tables and queues that are
unique to a particular address space. For example, LSQA includes the user's
private segment table and private page tables. LSQA also contains all the
control blocks required by the region control task (RCT). The region
control task is the highest level task in each address space; it plays a key
role when an address space must be swapped in or out.

LSQA is allocated downward from the top of the private area,
intermixed with the scheduler work area (SW A) and subpools 229/230.
LSQA for each address space that is swapped in is fixed in real storage
frames.

Scheduler Work Area (SW A)

The scheduler work area (SWA) contains the control blocks that exist from
task initiation to task termination. It is, in effect, a local job queue, and the
information it contains eliminates contention for a system job queue. The
information in SWA is created when a job is interpreted and used during
job initiation and execution. "Chapter 5: Entering and Scheduling Work"
describes how MVS processes a job.

SWA is allocated from the top of each private area, intermixed with
LSQA and subpools 229/230. It is pageable and swappable.

Subpools 229/230

A subpool is a logical group of storage blocks that share some common
characteristics; each type of subpool has a uniqu~ identifying number. "
Sub pools 229 and 230 are both protected by the user's storage key. In
addition, subpool 229 is fetch-protected, which means that its contents
cannot even be read unless the key in storage matches "the key in the PSW.

Subpools 229/230 contain user control blocks that can be used only by
programs with the appropriate storage protect key. Protected user resources,
such as the data extent block (DEB) that describes a user data set, reside in
these subpools.

Space for subpools 229/230" is allocated from the top of each private
area, intermixed with LSQA and SW A.

System Region

The system region within the private area is used by system functions
performing work for an address space. These system functions run under
the region control task (RCT) and obtain the storage they need from the
system region by issuing GETMAIN macro instructions.

The system region consists of four virtual pages (16K) allocated from the
bottom of the private area. It is pageable and exists for the life of the
address space.

Virtual (V = V) User Region

A virtual (V = V) user region can be any size up to the size of the private
area minus the size of LSQA, SWA, subpools 229/230, and the system
region. Its size can be limited by the REGION parameter on the user's JOB
or EXEC statement.

V = V user regions are page able and swappable. Only enough real storage
frames are allocated at any particular time to hold the active (paged-in)
parts of the problem program. A V = V region, as shown earlier in Figure
2.1 O~ begins at the top of the system region and is allocated upward to the
bottom of LSQA, SW A, and sub pools 229/230.

Chapter 2: Virtual Storage in MVS 2-19

Real (V = R) User Region

Reserved Area
for VcR Jobs

A real (V =R) user. region is assigned a virtual space within the private area
that maps one for one with real storage; that is, each virtual address in the
region always corresponds to the same real address. Figure 2.11 illustrates
V =R storage mapping; the shaded areas in Figure 2.11 indicate unallocated
storage. Real storage for the entire region is allocated and fixed when the
real region is created. An installation must use the ADDRSPC=REAL
parameter at system generation time to reserve sufficient storage for all
V=R regions that might exist at any particular time. When no V=R jobs
are running, the system uses the storage reserved for V =R jobs for normal
paging activity. Particularly when system activity is high, a V =R job might
not be started immediately; it must wait until the system can free the
storage required for the real region.

REAL STORAGE

Pageable Area

V"R JOB3

VcR JOB2

V-R JOB1

System Area

VIRTUAL STORAGE

Common Area

LSOA, SWA and
229/230

V=R: JOB1

System Region

System Area

LSOA, SWA and LSOA, SWA and
229/230 229/230

System Region System Region

Fagure 2.11. V-R Storage Mapping

2-20 OS/VSl MVS OYeniew

Real regions should be used only for jobs with time-dependent functions
(that is, jobs that cannot wait for paging activity to take place) or for jobs
that cannot run in the virtual environment. such as jobs with channel
programs that use the program control interruption (PCl) to dynamically
modify themselves. See "Chapter 8: Satisfying I/O Requests" later in this
book for more information about channel programs. .

V =R region size is controlled by the VRREGN parameter specified at
IPL or by the REGION parameter in a user JOB or EXEC statement.

Extensions and Options

Both the system area and the common area can be extended. depending on
the configuration of the system or options an installation selects. Figure
2.12 shows all possible extensions, in addition to the storage areas
described earlier (which are shaded in the figure) .

.Two of the extensions, the RMS (recovery management support) nucleus
extension and the prefixed storage area (PSA), depend on your system
configuration.

The RMS nucleus extension contains the recovery management support
routines that increase the availability of the MVS system. The size of this
extension depends on the particular configuration at an installation, but it is
always present in the system area.

The prefixed storage area (PSA) is only present for a multiprocessor
system. Its use is described more fully in "Chapter 10: Multiprocessing"
later in this book. When present, the PSA occupies 4K of virtual storage
and is allocated in the common area just above the CSA.

Other extensions are optional; you choose them at either system
generation time or IPL time. These extensions are:

• The fixed link pack area (FLP A)
• The modified link pack area (MLP A)
• The BLDL list, which can be either fixed or pageable

Each of these optional areas is described in the following text.

Chapter 2: Virtual Storage in MVS 2·21

Common Area

Private User Area

System Area

MVS VIRTUAL STORAGE Built from the

T
high address
down

Syst:er.n.Queue ,Area

1------..;...------------..;.....;...-1 - - - -64K boundary

t------------..;...-..;...------..;...-I- - -- 4K boundary
Modified Link Pack Area· 1---------------------"""'" - - - - 4K boundary
Pageable BLDL Table"

I--------~------------"""'" - - - - 4K boundary
Prefixed Storage Area"·

(4K)

1---------------------...-1 - - - - 4K boundary

~~--___ --------------. - - - - 64K boundary

" " Mutually
" > Exclusive
~ Private

./ ./ Region Areas

~--..;...---..;.....;....;..;,...-----.;..;,...----..;....,_.-..;...-; -- - - 4K boundary

::. ____________ m ______ • ---- 64K boundary

.... ,, ___________________________ ~ Built from the

low address up

·The M LPA is optional.
"The pageable and fixed BLDL tables are mutually exclusive.

·"The PSA is only for MP systems.

Figure 2.12. Extensions and Options

1.22 OS/VS2 MVS <heniew

Fixed Link Pack Area (FLP A)

The fixed link pack area is an extension to the system area that an
installation defines at system generation time. It contains reentrant,
read-only modules similar to those loaded in PLP A.

Because FLPA is fixed - mapped one for one against real storage - it
reduces the amount of storage available for running installation programs.
Thus, the modules selected for FLP A should be chosen with care. The
paging algorithm MVS uses tends to keep a heavily-used PLP A module in
real storage. Therefore, the most likely candidates for FLPA are modules
that significantly improve system performance when they are fixed rather
than paged, such as a module that is infrequently used but that requires
rapid response when it is needed.

Modified Link Pack Area (MLP A)

The modified link pack area (MLPA) can be used for reentrant modules
from selected system or user libraries; it acts as an extension to PLPA, but
it exists only for the duration of the current IPL. That is, the MLPA is not
saved from IPL to IPL as the PLPA is.

MLP A modules do not have to be read-only, and they can be modified.
One effective use of MLPA is to modify and test modules before adding
them to PLP A. .

When MLP A is specified during system initialization, it is allocated just
below PLP A in the common area. It exists for the life of the IPL, and it is
pageable.

BLDL Lists

A BLDL list is a list of directory entries for modules residing on a system
library. Specifying a BLDL list can improve system performance because
the system does not have to perform a library search to locate a required
module. Each entry in a BLDL list contains the information the system
requires to locate the module. The type of module that can be most
effectively included in a BLDL list would be a heavily-used module that
cannot be loaded in FLP A or PLP A because either it is too large or it is
not reentrant.

A BLDL list can be either fixed or pageable, but not both. An
installation can choose either a fixed or a pageable BLDL list during system
initialization.

Fixed BLDL: If you choose a fixed BLDL list, the BLDL is allocated in
the system area directly above the nucleus. As part of the system area, it is
not pageable. Fixed BLDL removes a relatively small amount of real
storage from use by installation programs. However, fixed BLDL can
reduce the number of page faults that occur during system execution and
shouldrbe considered when fast processing by the modules in the list is
critical.

Pageable BLDL: If you choose a pageable list, the BLDL is allocated in
the common area below PLPA, or below MLP A, if present.

Chapter 1: Virtual Storage in MVS 1-13

2-24 OS/VS2 MVS Oveniew

Chapter 3: Installing and Servicing the System

This chapter contains information on installing and servicing an MVS
system. Among the items discussed are: installation planning; system
generation; an alternative to system generation called the MVS System
Installation Productivity Option (MVS System IPO); and the System
Modification Program (SMP) used to service the system.

Installing the System
The installation of OS/VS2 MVS involves the creation of an MVS system
tailored to the needs of a specific installation and to a particular set of user
requirements. The installation can choose to perform a full system
generation, use the IBM-provided installation productivity option (MVS
System IPO), or use combinations of these to assist in the tailoring process.

Preliminary Considerations

For many locations, installing MVS includes converting existing OS/MVT
functions, SVS functions, or OS/VS 1 functions to comparable MVS
functions and adding certain new OS/VS2 MVS features and
enhancements. Such an effort requires a good deal of preliminary thought
prior to system generation in the areas of migration planning, conversion
planning, and installation planning. Thos~ installations who are migrating or
converting from MVT or SVS should refer to OS/VS2 Conversion Notebook,
for information on migration and conversion planning. Those installations
who are migrating or converting from VSl should also refer to OS/VSl to
OS/VS2 Conversion Notebook for information on migration and conversion
planning. This section focuses on installation planning, system generation,
and the MVS System lPO.

The Installation Plan

Installation planning is a key step to successfully installing OS/VS2 MVS.
A well thought out, managed, documented, and executed plan takes into
consideration everyone who uses or supports the system. The installation
should prepare a planning document that includes:

• A guide that indicates the appropriate tasks to be performed and
identifies who should perform these tasks

• Appropriate checkpoints, interdependencies, and deadlines
• User goals and performance expectations
• Staffing and assignment of personnel

Chapter 3: Installing and Senicing the System 3-1

3-2 OS/VS2 MVS Overview

Installation Tasks: Installation tasks can be categorized in five phases, as
shown in Figure 3.1: overall installation planning, generating the system,
integrating and testing the various components, testing the production
system, and stabilizing the production system. These phases are basically
the same as those provided in the MVS System IPO installation plan
discussed later in this chapter. Refer to that discussion for details on how
each of the planning phases should be handled if the MVS System IPO is
going to be used.

Overall
Installation
planning

,
Plan -- --

Generate the
system

I
Plan

- ---
I ntegrate and
test

I
Plan ----

Test the
production
system

I
Plan --- -

Stabilize the
production
system

Figure 3.1. Installation Planning Phases

Checkpoints and Interdependencies: Checkpoints should be established for
each of the tasks within a given phase. Interdependencies of tasks,
identification of tasks that can be run in parallel, and other related planning
information can be established and documented during the overall
installation planning phase.

Performance: In order to migrate or convert to an MVS system from an
existing system, the installation must understand the performance of the
current system and the desired performance of the new system.
Performance expectations should be documented in the installation plan and
should include such items as:

• Turnaround time for all classes of batch jobs
• Response time for online transactions
• Elapsed time for long-running jobs

In addition, the installation should create a workload profile to document
the expected volume of transactions and storage requirements. It may also
be possible to estimate processor use, channel use, and system paging rates.
Several IBM facilities are available to help the installation perform this task.
These include the Generalized Trace Facility (GTF), System Activity
Measurement Facility (MF /1), anq the Resource Measurement Facility
(RMF), an IBM program product. 'Once performapce expectations are
understood and system growth is projected, the proper hardware and
software configuration can be designed and generated. The OS/VS2 MVS
Performance Notebook, includes information on defining performance
objectives.

Staffmg and Personnel: Ideally, the installation plan will be carried out by
the current system programming staff. As an example, a typical
programming staff for installing MVS might include:

• Two people for MVS with JES2/JES3 experience
• One person for TSO with TCAM/VT AM experience
• One person for IMS/CICS (IBM program products)

This staff would be responsible for system generation, problem diagnosis,
monitoring and tuning, and other operation support activities. Each
participant should be fully educated, either in a classroom or self-study
environment, on how to handle each of the installation planning tasks to
which he is assigned. This education time should not be compromised.

System Generation

System generation is the process of selecting modules, options, and
parameters from IBM distribution libraries (DLIBS) and using them to
tailor the installation's MVS system. As shown in Figure 3.2, the system
generation procedure uses an MVS starter system (or a previously-working
MVS system), a set of IBM distribution libraries, and a set of
installation-specified JCL and macro instructions (user specifications) to
produce the new MVS system.

Chapter 3: Installing and Servicing the System 3-3

JCL and macros

MVS starter
system

or
Prior MVS
system

System
generation

Diagnostics
and listings

Figure 3.2. Creating an MVS System with the System Generation Procedure

3-4 OS/VSl MVS Oveniew

When the MVS system is already generated but the installation wishes to
change the machine configuration or certain other program configurations,
an I/O device generation can be performed. Refer to the publication
OS/VS2 SPL: System Generation Reference, for a detailed description of
I/O device generation.

Note: Distribution libraries can be modified prior to system generation to
include specific IBM-supplied selectable units (a new way of packaging
function). This enables the installation to reap the benefits of an improved
MVS. packaging and distribution process provided under the selectable unit
(SU) concept. More is said on this new process under "Servicing the
System."

Planning and Preparing for the System Generation

To prepare for the system generation process, the installation must:

1. Order the MVS distribution libraries from IBM. Information on how
to do this is in the latest edition of the OS/VS2 Release Guide.

2. Select the appropriate MVS system control program options from
those available with MVS. Selected options, with the standard

features, comprise the installation's system. An explanation of all
MVS-supported options is available through the local IBM branch
office representative.

Note that in MVS the number of system generation options that must
be specified has been reduced. Many of the previous options have
been made standard under MVS. In addition, several macros (used to
specify the selected options) have been eliminated, consolidated, or
clarified.

3. Select and code the system generation macro instructions that specify
the selected options, standard features, and the allocation or
pre-allocation of data sets on the system. Instructions on defining
system data sets and a list of system generation macros and their uses
can be found in OS/VS2 MVS SPL: System Generation Reference.

If program products, such as IMS or CICS, are included in the
system, consult the local IBM Branch Office representative for the
appropriate documentation.

4. Initialize the DASD volumes required for the system generation.
Before the system can be generated, the DASD volumes that contain
the MVS distribution libraries, the MVS starter system (or prior MVS
system), and the MVS system-to-be must be initialized.

Executing the System Generation

With MVS system generation, mUltiple jobs can be run in parallel to speed
Up the process. In addition, because many of the previous system options
have been standardized, installation time is saved in coding applicable
macro instructions for these options.

System generation is executed in two stages, as shown in Figure 3.3. In
Stage I, the system generation macros are assembled and then expanded
into job control statements, utility control statements, assembler statements,
and linkage editor control statements. Together, these statements describe:

• The hardware configuration
• The system control program
• The access methods
• Installation routines that are to become part of the system
• Installation-selected program options that are to be included in the

new system

In other words, the statements describe the new, tailored MVS system.
(Additional tailoring can be done during subsequent initializations of the
generated MVS system.)

Chapter 3: Installing and Servicing the System 3-5

User-suppl ied
JCL and macros

MVS starter
system

or
Existing MVS
system

MVS starter
system

or
Existing MVS
system

Figure 3.3. Executing the System Generation

3-6 OS/VSl MVS Oveniew

. Stage I

Assembles

Stage II

Assembles,
link edits,
copies

Documentation
listing and
diagnostic

Punched cards,
card images on tape,
or data set on disk

JCLand
control statements

Documentation
listing

The output of Stage I is input to Stage II. During Stage II, modules from
the distribution libraries are assembled, link edited, and copied to the data
sets that are allocated on the new system volumes.

For a full system generation, Stage II consists of six or seven jobs,
depending on what the installation has pre-defined. For an I/O device
generation, Stage II consists of only five jobs. In all cases, the sequence of
execution is the same and is designed so that multiple jobs are executed in
parallel; that is, it is a multiprogrammed job stream.

The output of Stage II is the installation's MVS system control program
and a listing that documents Stage II execution.

Verifying the System Generation

After the system generation process completes, an IBM-supplied installation
verification procedure (lVP) should be performed to verify that the new
system is operating properly on the specified hardware configuration.
Optionally, the installation can perform an I/O device generation to alter or
extend the I/O configuration of the MVS system. The Installation
Productivity Option (MVS System IPO), to be discussed next, contains
information on system integration and testing of the production system.

MVS System Installation Productivity Option (MVS System IPO)

The MVS System IPO, an alternative to the full system generation process,
is a new approach to packaging, distributing, installing, and servicing a
system. It is a result of an MVS installation completed at an IBM internal
location. As such, the MVS System IPO package provides the installation
with the benefit of extensive installation experience. It should help to
achieve full production status with fewer resources as well as to significantly
reduce the time and effort required to plan, prepare, and execute the
installation of the MVS system.

This section discusses the MVS System IPO, the MVS System IPO
installation plan, and the documentation provided in support of the MVS
System IPO.

The MVS System IPO

MVS System IPO comes to the installation as a pre-generated extension of
the MVS starter system, supporting batch and TSO operation. The standard
version includes JES2, an expanded I/O configuration, TeAM or VT AM
support for TSO or IMS (a separately orderable feature of the MVS System
IPO is available for IMS/VS), and the most common MVS system options.

The system is a moderately tuned, two-volume MVS system that can be
used as is or altered to meet the installation's requirements. It comes with a
set of installed selectable units and programming temporary fixes (PTFs).
(Though the MVS System IPO is not formally tested when the SUs and
PTFs are applied, mM uses the latest distribution level as a production
system at the IBM installation producing the MVS System IPO package.)

Chapter 3: Installing and Servicing the System 3--7

To simplify the installation process, the MVS System IPO package
includes examples of J CL usage and procedures to show how the
installation can use certain functions, change them, or incorporate them into
the MVS system. TSO userids, LOGON procedures, and a sample
command processor are provided, as is information about operating a
time-sharing system, including initializing, monitoring, and terminating TSO.
In addition, examples of exit routines are provided.

The MVS System IPO can be used to educate the installation's system
programmers, system operators, and users. With it, the installation can:

• Perform early testing without extensive tailoring or reconfiguration
• Minimize the number of installation decisions to be researched,

implemented, and tested
• Reduce the stand-alone machine time required

Note, however, that the mM intemallocation where the MVS System
IPO package was constructed was limited by the specific hardware/software
configuration at that location. Therefore, the installation should do an I/O
device generation to match the configuration of the installation's system, as
shown in Figure 3.4. Later, the system can be tailored and extended to
meet installation and user requirements.

I/O
generation

Figure 3.4. I/O Device Generation

3-8 OS/VS2 MVS Oveniew

The MVS System IPO package also contains· supporting documentation
and an installation plan. Discussions of each of these follow.

MVS System IPO Documentation

The MVS System IPO package includes a comprehensive set of documents
to assist the installation in using the MVS System IPO package. These
documents, shown in Figure 3.5, explain how to use the MVS System IPO,
describe how to build a production test system, and provide hints and
techniques relating to the installation process.

Hard copy

Others

Memo to Users

Tuning Guide

System & Installation
Guide
(2 Volumes)

Machine-readable
or

Hard-copy

Machine-readable

MVS System IPO
Contents

Machine-readable

Figure 3.5. MVS System IPO Documentation

All MVS System IPO documents except the planning document are
distributed in machine-readable form. Because of this, they reflect the latest
experience and the most current MVS System IPO information. The
machine-readable documents can be listed on a system· printer or displayed
on a TSO terminal. Their contents follow:

• Memo to Users: This document contains a general description of the
MVS System IPO package. It includes the purpose and concept of the
MVS System lP~, a description of the physical characteristics of the
tapes on which it is distributed, and a brief summary of each MVS
System IPO document.

• Planning an MVS System IPO Installation: This document contains
general information about MVS System IPO. It is intended to assist
those responsible for installation planning in evaluating the use of the
MVS System IPO for their installation. It describes in detail a
structured installation plan that makes maximum use of the MVS
System IPO package.

• MVS System IPO System Contents: This document contains a
physical description of the:

MVS System IPO distribution libraries and the MVS System IPO
itself
Installed selectable units and applied programming temporary fixes

Chapter 3: InstaUing and Servicing the System 3-9

3-10 OS/VSl MVS OYeniew

- I/O configuration and dermed UNITNAMEs

- Contents of the MVS System IPO data sets, physical data set
characteristics, and library members

• System and Installation Guide, Volume I: This document discusses
the procedure for installing the MVS System IPO and the rationale
behind the procedure. In addition to discussing the basic system
set-up, it describes procedures for:

Printing the MVS System IPO documents and listings

Coding system generation macro instructions

Performing an I/O device generation

Verifying the initial system

Building a test production system

• System and Installation Guide, Volume II: This document discusses
the techniques for tailoring the MVS System IPO. These techniques
include the use of the System Modification Program (SMP), user SVC
routines, user exits, and the program properties table. It also discusses
password protection and provides catalog examples, hints about
system back-up, and fall-back and ~ecovery techniques.

• Tuning Guide: This document discusses IBM experience in measuring
and tuning the MVS system along with experience in using certain
programs and aids for tuning purposes. It provides a tuning
methodology, discusses the tailoring of MVS System IPO, and offers
general tuning advice.

There are various other MVS System IPO documents as well. For example:

• MVS System IPO User's Guide
• MVS System IPO Communication and Interactive Guide
• MVS System IPO Operator's Guide
• Program Product Usage and F..xperience Guide
• Various Conversion Guides

These are explained in more detail in the publication Installation
Productivity Option (IPO) for OS/VS2 Release 3.7 (MVS): Planning an
MVS System IPO Installation, GC20-1852-2.

The MVS System IPO Installation Plan

The MVS System IPO package includes an installation plan that helps the
installation's project leaders develop their own plans tailored to the needs of
the installation. The MVS System IPO installation plan, which is divided
into five phases, does the following:

• It defines the required tasks.
• It identifies those tasks that can be performed in parallel.
• It suggests a schedule for executing the various tasks.

As shown in Figure 3.6, each of the system installation phases following
the initial planning effort is preceded by planning activity pertinent to that
phase. Keep in mind while reading the discussions of each of these phases
that the MVS System IPO installation plan formalizes some of the activities

that the installation should seriously consider doing whether or not the
MVS System.IPO, itself, is used.

Overall planning
and preparation

I "

Plan
f------

Build a test
system

I
Plan --- --

I ntegrate and test

~
Plan

f...--- -
Test the production
system

I
Plan

:--- -- --
Stabilize the
production system

Figure 3.6. The MVS System IPO Installation Phase Plan

Phase 1 -- Plan and Prepare: During Phase 1, the MVS programming
group will obtain the necessary MVS education and study the MVS
publications. Then, after printing and reviewing the MVS System IPO
documentation, detailed tasks can be incorporated into the installation plan.
Note that similar tasks are performed in parallel by TSO and IMS
programming groups, as well as operations and users. (This applies to the
other phases, as well.)

To use the new operator and user facilities MVS offers, the installation
may have to revise its standards and procedures. Those responsible for
operations and user applications should evaluate this need.

Chapter 3: Installing and Senicing the System 3-11

3-12 OS/VSl MVS Overview

When the installation has completed all other Phase 1 planning an<~
preparation, the MVS System IPO and the distribution libraries should be
moved from mM tapes to installation DASD volumes in preparation for an
I/O device generation.

Phase 2 -- Build a Test System: During this phase, an MVS system tailored
to the installation's needs and suitable for subsequent production testing is
built. Activities in this phase include:

• An I/O device generation
• Creating P ARMLm and PROCLm members
• Entering user data sets in the catalog
• System verification
• Preparing the TSO component
• Component testing

The MvS System IPO documents and listings include detailed
instructions for completing this phase.

Phase 3 - Integrating and Testing: The objective of this phase is to ensure
that the individual components, with system enhancements and extensions,
work with one another to accomplish the various system functions. At the
end of this phase, the system that the installation began building in Phase 2
is available for production testing. All functions and options are completely
integrated and the structure of the MVS system is complete. (Note,
however, that overall system tuning is not completed until the system
stabilization phase is executed.)

To expedite this phase, there is much parallelism and overlapping that
can be done in the testing of the various components. For this reason, it is
important that the installation synchronize the various activities, and that
the various TSO, ThiS, operations, and user groups communicate with each
other and with the MVS system programming group before and during the
testing.

Phase 4 -- Testing the Production System: The objective of this phase is to
test the entire system with simulated production. The MVS system
programming group should control the testing, but all groups are involved.
Several tests should be planned and executed early, including terminal
simulations, if required. Many installations schedule at least one production
test with live, on-line users prior to releasing the system for limited
production. In any event, it should prove useful to introduce the MVS
system to end users during this phase to familiarize them with new
procedures, modified standards, and enhanced facilities. The MVS System
IPO Tuning Guide provides excellent guidance for this phase.

Before proceeding into limited production (assuming that production
testing has gone satisfactorily), fall-back procedures should also be tested.
The MVS System IPO Operator's Guide includes recommended steps and
procedures.

Phase 5 -- Stabilizing the Production System: The objective of this phase is
to bring the MVS system to a point where it can move into full production
status. Phase 5 is a continuous activity that includes releasing the system for
limited production and for eventual full production. During limited
production, the tuning process is continued to ensure that the system is
adjusted to meet installation performance expectations. Full production is

achieved when performance expectations and all planned user requirements
have been met. In addition to the MVS System IPO Tuning Guide, the
installation will find the following publications useful in reaching full
production status: OS/VS2 MVS Performance Notebook, and OS/VS2
System Programming Library: Initialization and Tuning Guide.

Servicing the System
After full production status has been attained, the installation will want to
control the application of service, including the installation of new
selectable units (SUs), program temporary fixes (PTFs), and user
modifications. System service may also involve ordering a more current
release of the MVS System IPO and repeating some of the key installation
tasks.

The System Modification Program (SMP) is the primary ffiM-provided
tool for servicing the MVS system.

The System Modification Program (SMP)

The SMP controls the application of service at the installation. To do this,
SMP creates a record of all modules and macro instructions in the target
system (that is, the system to be serviced). As service for the system is
received (in the form of new SUs, PTFs, or user modifications), SMP
checks these records to see what modifications have been made. In this
manner, a high degree of control of what is to be included in the system
can be maintained.

SMP can also be used to modify and keep a record of modifications to
permanent user libraries and the IBM distribution libraries. This section
discusses the kinds of modifications that can be made, namely:

• Installing new selectable units
• Installing programming temporary fixes
• Installing user modifications

In addition, some information is included about the SMP functions used
to carry out these modifications.

Installing Selectable Units (SUs)

Selectable units (SUs) represent a recent change to the MVS packaging and
distribution process. By choosing appropriate selectable units, the
installation can add enhanced or new functions to their MVS system
whenever these functions are needed by the installation. This means
installation on a more timely basis with fewer untimely disruptions to
operations.

SUs are installed using a new MVS macro called the INSTALL macro.
The parameters in this macro identify the SUs to be installed and indicate
where the SUs are to be installed. SUs can be installed in the distribution
library for a subsequent MVS system generation (called the SYSGEN
option) or they can be installed from a distribution library into the target
system itself (called the SMP option). The SMP program controls both
methods.

Chapter 3: Instal1ing and Serridn:g the System 3-13

IBM distribution
library tape

SYSGEN Option: When the SYSGEN option is selected, the INSTALL
macro creates a new set of distribution libraries from the IBM distribution
library and the SU. tape. Various SMP functions are performed during the
installation process, as discussed under "SMP Control Functions." The
resulting modified distribution libraries (see Figure 3.7) can be used to
generate a new MVS system that will include the selected SUs.

Note that when the SYSGEN option is selected, the target system, itself
is not affected.

Customer
SU selections

Customer SYSGEN
library

IBM SU tape o SU,.SU2 · .. •

INSTALL
macro

Figure 3.7. SYSGEN Install Option

3-14 OS/VS2 MVS <heniew

SYSGEN

Customer's updated
MVS system

SMP Option

When the SMP option is selected, the INSTALL macro receives applicable
SUs, applies them to the existing MVS system, and accepts them as
modifications to the permanent user libraries or to the distribution libraries.
This is carried out according to the SMP function control statements
encountered by SMP. When the SMP option is selected, the target system is
directly modified, as shown in Figure 3.8 -- no new system generation is
required.

IBM SU tape

Q
Existing MVS system

Figure 3.8. SMP INSTALL Options

Customer
SU selections

INSTALL
macro

Updated MVS
system

Installing Programming Temporary Fixes (PTFs)

A programming temporary fix (PTF) is an IBM~supplied correction to a
defect in one of its programs. It is intended to fix or prevent problems.
Unless the defect is removed in a later release, the PTF becomes a
permanent part of the system. IBM distributes these corrections on a PTF
tape. mM also distributes program update tapes (PUT) to reduce the effort
required to perform service. The tapes contain selected PTFs organized and
arranged to facilitate easy application.

Chapter 3: Installing and Servicing the System 3-15

3-16 OS/VS2 MVS Overview

Each PTF contains a series of SMP function control statements and one
or more changes. The control statements:

• 'Identify the change
• Verify that the change applies to the installation's system
• Specify prerequisite additions to or deletions from the system for this

particular PTF. (In some cases,· a PTF cannot be applied unless one or
more prior PTFs are first added, or unless a PTF added earlier is first
removed.)

• Indicate whether the change is to macro instructions, source modules,
object modules, or load modules

• Indicate whether the change is an update or a replacement

Installing User Modifications

Once your system is installed, you may want to develop and code your own
changes. These changes may be new or replacement macros or source, load,
or object modules. Changes can be assembled and link edited, if that is
required, or SUPERZAP statements can be used. Each change should have
an identifying number.

SMP can be used to apply user modifications. It provides the same
control capabilities and benefits for user modifications as it does for
applying IBM PTFs. To install user modifications with SMP, you write SMP
function control statements to specify the changes you want to make and to
verify the correct base level of the system. The SMP statements should also
be used to check prerequisite changes or changes in the system that might
preclude the present change.

S~PControlFunctions

SMP can process several changes at once and can accept input in the form
of SUPERZAP statements, module replacements, and in PTF form. It
controls application of changes through the use of SMP function control
statements. Figure 3.9 illustrates the function provided by the SMP control
statements. Additional details can be found in the publication OS/VS
System Modification Program (SMP) System Programmer's Guide.

RECEIVE
processing

Yes

APPLY
processing

Yes

ACCEPT
processing

Figure 3.9. SMP Functions

No REJECT
processing

No RESTORE
processing

Chapter 3: Installing and Seniclng the System 3-17

3-18 OS/VSl MVS OYeniew

RECEIVE Function: The RECEIVE function creates essential control
information used to determine whether or not to add the current
modification to the system. This information is placed in an SMP control
data set called SMPCDS. The RECEIVE function also checks the syntax of
control statements and verifies that the current modification applies to your
particular system. Additionally, it prints a listing to help you determine
which changes should be applied to the system or rejected.

REJECT Function: If you decide not to apply a particular change after
RECEIVE processing, the REJECT function deletes the appropriate control
information from the SMPCDS data set.

APPLY Function: The APPLY function first determines that all necessary
changes are either on the system or being applied. It also identifies any
previous changes that might precede this change. When you are satisfied
that you can proceed with the change, the APPLY function makes the
modification.

RESTORE Function: If you find during a testing period that a change does
not work or that you must remove one or more changes for any reason, the
RESTORE function will remove the changes from the system and update
the SMPCDS data set.

ACCEPT Function: The ACCEPT function places into permanent libraries
or into the distribution libraries any changes that the RECEIVE and
APPLY functions have processed. An SMP alternate control data set
(SMP ACDS) is updated to reflect any changes to the distribution libraries.

System
operator
initiates
load
procedure

Chapter 4: Preparing the System For Work

Before productive work can be done, the MVS system must be initialized to
specific starting values. These values, some of which were previously
established during the system generation process and some of which may be
provided by the system operator during the initialization process, provide
installation 'tailoring to the MVS system.

Oveniew of the Initialization Process
As shown in Figure 4.1, the initialization process consists largely of
locating, loa4ing, and initializing the nucleus, initializing system resources,
initializing the master scheduler, and initiating the primary job entry
subsystem (JES). In the course of the initialization process, an initial
program loader (lPL), a nucleus initialization procedure (NIP), various
resource initialization modules (RIMs), and a master sclteduier initializer are
loaded and activated to perform the appropriate initialization steps. To
provide additional flexibility to the initialization process, the system
operator can interact with the various initialization routines through a
system console.

IPL

Locates,
loads
nucleus

NIP

Initializes
nucleus

• • t RIMs
•

Initialize
system
resources

Master
scheduler Initiate
initializer JES

y Initializes
master
scheduler

FIgure 4.1. System Initialization Summary

Chapter 4: Preparing the System for Work 4-1

4-2 OS/VS2 MVS Overview

l"itiating the Load Procedure

-The load procedure is initiated by the system operator. He ensures that the
system residence volume (SYSRES) is mounted and that the load device is
readied. Then, using the system console, he selects the load device and
initiates the load procedure.

The System Residence Volume

The system residence volume (SYSRES) must be online and ready during
system initialization because it contams the initial program loader and some
of the system data sets necessary during the initialization process. For
example, three such data sets that must be on the SYSRES volume are:

SYS1.NUCLEUS

SYS1.LOGREC

SYS1.SVCLIB

SYS I.NUCLEUS contains the resident nucleus to be loaded and
initialized. It also contains the nucleus initialization procedure modules
(NIP), the resource initialization modules (RIMs), and the modules used to
initialize the master scheduler.

SYS1.LOGREC contains a record of.hardware, software, and
input/ output errors that occur during system operation. The data set is
opened during initialization so that error recording can take place.

SYS1.SVCLm is an authorized program library that contains certain
supervisor routines that are not part of the resident nucleus but that are
invoked by NIP.

The System Console

The operator uses the system console to operate and control the system.
The system console consists of a control panel and a console device. On
some System/370 models, the operator uses the control panel to select the
load device and initiate the load procedure. On other models, he or she uses
the console device, which includes a keyboard, a light pen, and a display
screen. In the case in which the console device is used, the operator must
first perform an initial micro program load (IMPL) after powering up the
processor. The'initial micro program controls the display screen, thereby
permitting function selections to be made available as "menu" items. In any
case, the operator's initial actions bring the initial program loader into
storage.

Initial Program Loading

When the operator initiates the load process, the stand-alone initial program
loader (IPL) is loaded from SYSRES into real storage starting at location
zero, as shown in Figure 4.2. Then IPL receives program control.

Real storage

Key

~ Data transfer

__ .~~ Program control

SYSRES U ==:>---
IPL

Console C J ~ ...-.----'---""
~--.... Load key

FIgure 4.2. Initial Program Loading

The initial program loader has two major functions: clearing storage and
loading the nucleus.

Clearing Storage .

IPL clears the general registers and floating point registers. Then it limits
the effective size of real storage to a size specified by the system operator.
(Or, if no size is specified, the system default size contained in the system
parameter library is used.) Next, IPL clears effective real storage and resets
the storage keys.

Chapter 4: Preparing the System for Work 4-3

4-4 OS/VS2 MVS Overview

Loading the Nucleus

After stQrage has been cleared, IPL searches the system residence volume
for the nucleus, or, if applicable, for an operator-specified alternative
nucleus. When it finds the nucleus, IPL relocates itself and then loads the
nucleus load module (IEANUCOx) and the NIP module (lEA VNIPO)
starting at location zero. IPL then passes control to NIP. This is illustrated
in Figure 4.3.

Key

====> Data transfer

____ • Program control

Figure 4.3. Loading the Nucleus

Nucleus Initialization via NIP

Real storage

IEAVNIPO NIP

-,
IEANUCOx

Nucleus load module

After NIP receives control from IPL, it first performs a few preliminary
initialization functions suc~ as verifying that the nucleus has been properly
loaded, initializing the SYSRES unit control block (UCB), and building a
SYS1.NUCLEUS data extent block (DEB). Then NIP performs three major
initialization functions. It:

• Initializes real storage
• Establishes an address space
• Processes SYS I.P ARMLm-specified and operator-specified

initialization parameters

In addition, NIP controls initialization of system resources. (The
appropriate resource initialization modules actually initialize the resources,
however.)

Initializing Real Storage

As previously described, IPL cleared effective real storage, as specified by
the system operator or as an installation default limit. In a multiprocessing
(MP) system, NIP overrides this limit, clearing all real storage and setting
all storage keys to zero. Then NIP reserves space for permanent data areas
and control blocks in real storage, after which it initializes these items.

As shown in Figure 4.4, space at the high end of real storage is reserved
for the system queue area (SQA), and the control blocks necessary for the
management of virtual storage and the processor are built and initialized.

Once SQA space is reserved and initialized, space for the master
scheduler's local system queue area (LSQA) is obtained from the next
available real storage frame below SQA. As with the SQA, appropriate
control blocks are built in that area. Finally, NIPO initializes the NIP
transient area, which is used to execute the various load modules that
constitute NIP.

The bottom of the NIP transient area is the top of the system area, as
shown in Figure 4.4. If an installation attempts to extend the system area
beyond this limit, MVS abnormally terminates and needs to be reinitialized.

NIP also initializes the page frame table entry (PFTE) for each real
storage frame it allocates.

Key -_ > Data transfer

Ell ~ Program control

Figure 4.4. Initializing Real Storage

Real storage

SOA

LSOA

System
area

~_I_EA_N_UC_O_X_---.J __ j_

Chapter 4: Preparing the System for Work 4-5

4-6 OS/VS2 MVS Overview

Initializing A Master Address Space

NIP establishes a master address space in virtual storage. The master
address space contains a system area, a common area, and a private area.
(NIP and the master scheduler execute in the private area.) As shown in
Figure 4.5, virtual space is allocated in the common area for SQA, PLPA,
MLPA, and CSA. Space is allocated in the private area for the master
scheduler LSQA and SW A, the master scheduler region, and the system
region. Space is also allocated in the system area for the nucleus load
module and, optionally, for fixed LP A and fixed BLDL.

Real storage

SQA

LSQA

NIP transient area

IEAVNIPO

IEANUCOx

/

/
/

/

Virtual storage

SOA

PLPA

MLPA

CSA

LSOA andSWA

Mas~er

scheduler
region

System region

Fixed LPA

Fixed BLOL

IEANUCOx

Figure 4.5. Initializing the Master Address Space

Common area

Private area

System area

Next, NIP builds a segment table in the master scheduler's LSQA and
initializes it with pointers to page tables for the nucleus and NIP. These
page tables are built and initialized in SQA. At this point, NIP is ready to
initialize system resources. However, before going into system resource
initialization, a discussion on where NIP gets its initialization values is in
order.

Obtaining System Parameters

NIP depends on system parameters to tell it what initialization functions to
perform, what values to use, and which SYS I.P ARMLIB members to use to
initiali~e the system. Figure 4.6 provides an overview of all system
parameters. While these parameters are not discussed here at any length,
some of them should be meaniI}gful to the installation from previous
discussions. Others will be discussed later. (Many of them, for example,
directly affect the initialization of system resources, a topic that will be
covered later in this chapter.)

IEASYSxx Function Perlormed~value SYSl.PARMLIB
Parameter Specified/Data Set amed List Real

APF Authorized library name IEAAPFxx

APG Automatic priority group for system resources
manager

BLDL Page able directory for SYS1.LlNKLIB IEABLDxx

BLDLF Nonpageable directory for SYS1.LlNKLIB IEABLDxx

CLPA New link pack area to be created IEALODOO

CMD Command to be issued internally COMMNDxx

CSA Size of the common service area

CVIO Delete all VIO data sets from paging space

DUMP Data sets for SYS1.DUMP

DUPLEX Duplex data set name

FIX Reenterable routines for nonpageable LPA IEAFIXxx

HARDCPY Hard copy log

lOS specifies parmlib member containing options IECIOSxx
used by I/O Supervisor

IPS Installation performance specification IEAIPSxx

LNK Names of data sets concatenated to LNKLSTxx
SYS1.LlNKLIB

LOGCLS Output class for log data set

LOGLMT WTL limit for log data set

MAXUSER Maximum number of virtual address spaces

Figure 4.6. System Parameters (Part 1 of 1)

Chapter 4: Preparing the System for Work 4-7

4-8 OS/VS2 MVS Overview

IEASYSxx Function Performed/Value SYS1.PARMLIB
Parameter Specified/Data Set Named List Real

MlPA Modifications to pageabJe lPA IEAlPAxx

OPI SYS1.PARMlIB operator intervention
restrictions

OPT System. resources manager tuning parameters IEAOPTxx

PAGE Page data set names

PAGNUM Number of page and swap data sets that may
be added

PURGE Demounts all mass storage system volumes

REAL V - R address area size

RSU Number of storage IJnits available for storage
reconfiguration in an MP system

SMF SMF parameters SMFPRMxx

SQA Size of the system queue area

SWAP Swap data set names

I

SYSP System parameter list to be merged with IEASYSxx
IEASYSOO

VAL Volume characteristics VATlSTxx

VRREGN Default region size for a V - R request

WTOBFRS Number of buffers for WTO (write to
operator) routine use

WTORPLY Number of operator reply elements for WTOR
routine use

Fagure 4.6. System Parameters (Part 2 of 2)

System parameters are provided to the initialization process from two
sources: from system parameter lists, which are established on the system
residence volume when the system is generated, and directly from the
system operator during the initialization process.

The System Parameter Lists

System parameter lists are contained in SYS 1.PARMLIB. NIP always reads
the primary system parameter list (IEASYSOO). This list contains basic
initialization instructions, installation-specified initialization defaults, and
other initialization values that will not change from IPL to IPL.

SYSl.PARMLIB may also contain secondary parameter lists (lEASYSxx's
other than IEASYSOO) that can be merged with the primary parameter list
at initialization time. The secondary lists, sometimes called alternate lists,
contain values that override previous values in the primary list. They may
also contain additional values not originally specified in the primary list.
Secondary lists should contain parameters that are subject to change -- for
example, they might contain the kinds of changes that are necessary
between shifts. For more information on these parameters, refer to
OS/VS2 System Programming Library: Initialization and Tuning Guide.

System Operator Activity

The system operator is the key to a successful initialization. After console
communication has been established and the system catalog opened, NIP
asks the system operator to:

SPECIFY SYSTEM PARAMETERS.

If one or more secondary parameter lists are to be merged with the
primary list, the system operator identifies them at this time. In addition,
the system operator may directly specify certain system parameters at this
time. Such a "direct specification" would include parameters that are unique
for a specific IPL. If no secondary parameter lists or direct specifications
are indicated by the system operator, the primary system parameter list is
the sole source of initialization values.

Parameters specified in secondary parameter lists override previous
parameters in the primary list. Likewise, directly supplied parameters
override previous parameters in primary and secondary lists. For example, if
IEASYSOO contains:

MLPA=OO,BLDL=OO

and IEASYSO 1 contains:

MLPA=(Ol,02),BLDL=Ol

and IEASYS02 contains:

MLPA=03,SQA=10

and the system operator specifies:

R OO,'SYSP=(01,02},SQA=2'

Note: The SYSP parameter specifies which seccndary lists
are to be merged with the primary list.

then the system parameters used by NIP will be:

MLPA=03, BLDL=O 1 ,SQA=2.

Chapter 4: Preparing the System for Work 4-9

4-10 OS/VSl MVS OYeniew

While the use of secondary lists and operator-supplied parameters
provides flexibility in tailoring MVS. it increases dependence on the system
operator and tends to slow down the initialization process. By specifying
OPI=NO in the primary system parameter list, the inStallation can forego
operator intervention. And by specifying OPI=NO for secondary lists or for
selected "critical" parameters in these lists, the installation can restrict
operator intervention.

Resource Initialization Via RIMs
NIP controls the initialization of each system resource. However, the actual
initialization is done by a resource initialization module (RIM) that belongs
to the function owning the resource. For example, because the inputloutput
supervisor (lOS) uses and controls the unit control blocks (UeBs) that
represent the 110 devices, the RIM that initializes these devices belongs to
the input I output supervisor. Likewise, the RIM that initializes the system
consoles belongs to the communications task because that task owns the
consoles, and so on. Developing and distributing RIMs in this way tends to
increase system reliability and simplify service.

This section deals with the initialization of the following system
resources:

• 1/0 devices
• System consoles
• System catalog

and the following resource managers:

• System resources manager
• Auxiliary storage manager
• Program manager

Path

CPU

Chn

Oev

Initializ.ing I/O Devices

o

Each device is represented by a unit control block (UCB) that is used for
subsequent device allocation and to control 110 operations. The 110 RIM
initializes each device's UCB by setting status and condition flags in the
UCB and, for DASD, by recording volume information in the UCB.
However, before device UCBs can be initialized, the 1/0 RIM must ensure
that the devices and paths to those devices are available and accessible.

An available path includes an online processor, a physical channel
attached to an online processor, and at least one online device to complete
the path. Figure 4.7 illustrates a configuration in which 110 device 1 has a
single path, and devices 2, 3, and 4 have multiple paths. Note that for a
device to be available, there must be at least one path to that device.
Devices generated offline and devices generated online but with no
available paths are unavailable.

234

o 0

2 11

222

567

o

2 11 21

333

8 9

Fagure 4.7. Paths to a Device

Q\apter 4: Preparing the System for Work 4-11

The I/O RIM tests the accessibility of each available device on all
available paths. To do this, the RIM requests an I/O operation on each
available path. The results of these I/O operations will determine on which
paths a device can be accessed. For DASD, the first of these I/O
operations attempts to read the volume label to determine the volume serial
number and the location of the volume table of contents (VTOC). For
shared DASD, the RIM will issue an I/O operation to see if the device is
actually sharable. Unavailable devices are not tested for accessibility.

After the applicable UCBs have been initialized, the RIM scans online
DASD UCBs for duplicate volume serial numbers. If any duplicate volumes
are found, the operator is requested to remove them.

Initializing Volume Attributes

SYS1.PARMLIB

",

"""" ~ ~

~ ~

Volume attributes are actually initialized toward the end of NIP processing
by a separate RIM called the volume attribute RIM. The installation can
specify mount and use attributes for DASD volumes in a volume attribute
list (VATLSTxx), a member of SYS1.PARMLIB. The list is selected at
initialization time when the VAL system parameter is encountered in a
system parameter list or is specified by the operator.

As shown in Figure 4.8, the volume attribute RIM processes the
VATLSTxx and, accordingly, sets the mount and use attributes in the
UeBs for all mounted volumes. If a volume is not mounted, the system
operator is asked to mount it.

Volume
attribute UCB

RIM UCBPRES Permanently resident
} MOUNT

~I
UCBRESV Reserved

_11..

} USE

VATLSTxx r--v) UCBSTR Storage volume

1 "- ~
UCBPUB Public volume

'- -" UCBPRI Private volume

Figure 4.8. Specifying Volume Attributes

4-12 OS/VSl MVS Oveniew

The MOUNT attribute indicates the conditions under which a volume
can be subsequently demounted. You'll remember that a permanently
resident volume (PRES) cannot be physically removed, or cannot be
demounted until the device is varied offline. Such volumes, which include
the system residence volume and volumes containing critical system data
sets such as SYS 1.LINKLIB or the paging data sets, are always marked
PRES. Their MOUNT attributes should not be included in V A TLSTxx.

Reserved volumes, on the other hand, are demountable. They remain
mounted only until the operator issues a subsequent UNLOAD or a V AR Y
OFFLINE command. A volume is marked RESV if so specified in a
V ATLSTxx, or if the operator issues a MOUNT command for the volume.

The use attributes indicate the types of requests for which a volume can
be allocated. Volumes will be marked as storage volumes (STR), public
volumes (PUB), or private volumes (PRV), as applicable.

Initializing System Consoles

The system console is the I/O device the system operator uses to provide
system parameters and otherwise control the initialization process. Because
it is used for operator-to-system communication, it is actually one of the
first devices to be initialized.

The RIM that initializes the system console must locate an available
console, designate it as the master console, and initialize it. To do this, it
looks first for the installation-specified master console. If the
installation-specified master is not available, it will search for an available,
installation-specified, alternate console to designate as master. If no
alternate consoles are available, -it will search for any other available
console to designate as master.

Figure 4.9 shows how the RIM locates a master console. The RIM first
locates the UCB for the installation-specified master console by searching
the unit control module table (UCM), which contains an entry for each
console in the system. The RIM checks the online flag in the appropriate
UCB. If the console is online and available, it is selected as the master
console.

UCM

Master console

Alternate console

Alternate console

Other console

• • •

FtgW'e 4.9. Locating a Master System Console

Chapter 4: Preparing the System for Work 4-13

'-'14 OS/VSl MVS Overview

If the installation-specified master console is not available, the RIM
searches the UCM for an online, available, alternate console. If it finds one,
it selects it as the master console, it resets flags in the UCM entry for the
installation-specified master console, and it sets like flags in the entry for
the selected alternate console. If no suitable alternate console is located, the
first other available console the RIM finds is designated as the master
console, and the appropriate UCM entries are modified accordingly.

After a master console has been selected, the RIM passes the UCB
address to NIP so that the console can be opened and used to communicate
with the system operator. Finally, the RIM acquires buffer'space in SQA
for messages isssued by NIP. NIP uses this space to pass messages to the
communication tasks so that the messages can be written as hardcopy
during master scheduler initialization.

System parameters RIM uses to initialize the system consoles include:
HARDCPY, LOGCLS, LOGLMT, WTOBFRS, and WTORPLY. You may
want to review the explanation for these parameters given in Figure 4.6.

Initializing the System Catalog

The system catalog is used to locate cataloged data sets and other catalogs.
It contains the volume serial number and device type of each cataloged data
set. Unlike MVf and SVS, the MVS system catalog is a VSAM (virtual
sequential access method) data set serving as the VSAM master catalog. It
can contain entries for VSAM data sets and VSAM user catalogs, as well as
entries for OS data sets and OS user catalogs.

NIP can open data sets residing on the system residence volume whether
or not the system catalog has been opened. However, system data sets
residing on volumes other than the system residence volume are located
through system catalog pointers and cannot be opened or accessed until the
system catalog is initialized. For example,before NIP can complete the
opening of SYS1.LINKLIB, and before any parameters can be read from
SYS I.P ARMLIB, the system catalog must be opened.

Various VSAM RIMs open, initialize, and close the system catalog at
initialization time. As shown in Figure 4.10, one of the VSAM RIMs
obtains the volume serial number and device type of the system catalog
from SYS1.NUCLEUS. It then locates the UCB representing the device on
which the volume is mounted. If the volume containing the system catalog
is not mounted, the operator is requested to mount it. A VSAM RIM then
searches the VTOC of the mounted volume to locate the system catalog.
When it has been found, another VSAM RIM builds the control blocks
necessary to access a VSAM data set. It then opens the data set and
initializes it as the system catalog.

SYSRES

Figure 4.10. Locating the System Catalog

Volume serial

' .
• •

After NIP initialization has completed (before NIP terminates), a VSAM
RIM is again invoked to close the system catalog. After system initialization
is complete, the first reference to a cataloged system data set will cause the
system catalog to be opened normally.

Chapter 4: Preparing the System for Work 4-15

4-16 OS/VS2 MVS Oveniew

Initializ.ing the System Resollrces Manager

It is the job of the system resources manager (SRM) to provide an
installation-specified level of acceptable user service while making the most
efficient use of available system resources. SRM initialization consists of
establishing system constants and processing certain SRM system
parameters.

System constants are used to adjust processor, storage, and I/O loads,
and are based on such variables as the processor model, the number of
online processors, and the number of logical channels. (A logical channel is
the set of all paths to a specific device or group of devices. Figure 4.7, for
example, . depicts four logical channels, one for each device.)

The installation establishes the level of user service in various system
parameter lists and values selected at initialization time. The APG, IPS, and
OPT system parameters specify or point to:

• The automatic priority group (APG)
• Installation performance specifications (IPS)
• Optional system tuning parameters (OPT)

Automatic Priority Group (APG) Initialization

Through use of the APG system parameter, the installation establishes a
range of dispatching priorities designated as an automatic priority group.
During subsequent system operation, the APG value is one of the values
used to determine the position of APG group address spaces on the
dispatching queue. If the installation chooses not to set this value initially, a
default value is established at initialization time. During a subsequent IPL,
the system operator can override an existing APG value by specifying a
system parameter directly.

Installation Performance Specification Initialization (IPS)

The SRM manages the workload and apportions appropriate service to the
current users of the system based on an installation-specified service rate
provided as the installation performance specification. The installation
performance specification is included in one of the IEAIPSxx lists, each of
which is a member of SYS1.PARMLffi. The IPS system parameter tells the
SRM RIM which list to use at initialization time.

Optional System Tuning Parameter Initialization (OPT)

The SRM makes tuning decisions based on recommendations from the
workload manager a~d the various resource managers. Optional system
tuning parameters are used to weight the recommendations of the processor
and I/O resource managers and to attempt to prevent the users from tying
up serially reusable resources.

Optional system tuning parameters are supplied to the SRM in one of the
IEAOPTxx system parameter lists, each of which is a member of
SYS I.P ARMLffi. The OPT system parameter tells the SRM RIM which list
to use at initialization time.

Additional SRM Initialization

After processing the APG, IPS, and OPT system parameters, the SRM RIM
builds an SRM user control block (OUCB) and a user extension block
(OUXB) for the master scheduler address space. Once the master scheduler
is initialized, these blocks, used by SRM to control each user, is
subsequently built for each address space as the address space is created.

After the SRM is initialized, NIP passes control to the RIM for the
auxiliary storage manager.

Initializing the Auxiliary Storage Manager

The auxiliary storage manager (ASM) controls the auxiliary storage used for
paging and swapping, and the I/O operations associated with these
activities. To page efficiently, the ASM divides paging requirements into
page able link pack area (PLPA), common, and local pages. When the
system is generated, the installation allocates, catalogs, and formats page
data sets to meet the requirements of the three types of page data sets
mentioned above. The installation places the names of the data sets into the
primary system parameter list. Additional page data sets can be specified in
secondary system parameter lists or supplied directly by the system operator
at initialization.

Optionally, the names of installation-defined swap data sets and/or
duplex data sets can be specified in the same manner. Also, the installation
can indicate how it wants VlO data sets to be reestablished when
subsequent IPLs are performed.

After initialization, additional page and swap data sets can be
dynamically added to the system. To do this, the system operator uses the
P AGEADD command and names the page and/or swap data sets to be
added. The total number of page and swap data sets is limited at
initialization by the PAGNUM system parameter, which is obtained from a
system parameter list or supplied directly by the operator.

Page Data Set Initialization

Page data sets are opened and initialized by the ASM RIM according to the
type of IPL start - cold or warm (quick starts are handled like warm
starts). During a cold start (defined as the first IPL after the system is
generated or any IPL in which the CLP A--create link pack area--system
parameter is specified), the PAGE system parameter specifies applicable
page data set names. The PAGE parameter is included in a primary system
parameter list. Additional page data sets can be specified in secondary lists
or directly by the system operator.

During a warm start (a start following a system failure), page data set
names are "remembered" from the previous IPL. In these cases, the PAGE
parameter can still be used to specify additional data sets. (Note that the
PAGE parameter cannot be used to replace data sets. That is, secondary or
directly-specified· PAGE parameter values are concatenated to those
specified in the primary list. They do not override existing values).

Chapter 4: Preparing the System for Work 4-17

4-18 OS/VS2 MVS Overview

To successfully initialize the ASM, one PLP A. one common, and at least
one local page dat~ set must be specified and available. All page data sets
(a maximum of 64) must be allocated, cataloged, and formatted as VSAM
data sets prior to IPL. The sum of the local page data sets should be large
enough to hold all of the private area pages and any VIO pages. The PLP A
page data set should be large enough to hold all PLP A pages, and the
common page data set large enough to hold all other pages in the common
area (SQA, CSA, PSA).

Swap Data Set Initialization

Swap data sets are optional, but their use can significantly improve
performance. (If no swap data sets are specified, LSQA pages will be
directed to a local page data set.) Swap data set names are specified by the
SW AP system parameter contained in one of the system parameter lists or
supplied directly by the operator. Unlike the PAGE parameter, the SWAP
parameter permits both the addition and replacement of data set names
specified in the system parameter lists.

Swap data sets must be allocated, cataloged, and formatted prior to the
IPL. A maximum of 25 swap data set names can be specified. When SWAP
is specified, at least one swap data set must be available at IPL time.

Duplex Data Set Initialization

The installation can define a duplex data set to hold a duplicate copy of all
pages written to the page able link pack area (PLP A) and common page
data sets. The DUPLEX system parameter, contained in a system parameter
list or specified directly by the system operator, specifies the data set name.

Only one duplex data set can be specified, and then only on cold starts.
For warm starts, the ASM RIM uses the duplex data set name specified on
the most recent cold start.

If the duplex parameter is used, there must be a duplex data set
available. It must be allocated, cataloged, and formatted as a VSAM data
set prior to IPL.

VIO Data Set Initialization

For warm starts, the ASM RIM will reestablish all VIO data sets if the
volumes containing the previous local page data sets are available. However,
for all cold starts, or if the clear VIO (CVIO) system parameter is specified
for warm starts, the ASM RIM will delete all VIO data sets from local page
space.

Initializing the Program Manager

The program manager locates, loads, deletes, and transfers control between
load modules residing in either the link pack area (LPA) or job pack area.
This section discusses initialization of the LP A. (Modules in the job pack
area are associated with job steps and are not discussed here.) During
initialization, the program manager RIM loads LP A modules into the
common area and builds and initializes related control blocks and queues.
The following areas are initialized:

• The pageable link pack area (PLP A)
• The fixed link pack area (FLP A)
• The I!lodified link pack area (MLP A)
• Various tables and lists

Pageable Link Pack Area Initialization

The pageable link pack area is allocated in the common area of virtual
storage directly below SQA. For cold starts, the program manager RIM
loads the LPA modules from the link pack area library (SYSl.LPALIB) into
the PLP A, as shown in Figure 4.11. Each module is represented by an
entry that is built and initialized in thePLPA directory (PLPAD) as the
module is loaded.

For warm starts, the PLPA is still in auxiliary storage Crom a previous
IPL, and is not reloaded. Instead, the program manager RIM calls a real
storage RIM to reconstruct PLP A page tables and segment table entries,
and to place the auxiliary storage slot addresses in the appropriate external
page table entries. This procedure speeds up the IPL process.

Program
manager
RIM Common area

1 SQA

~ ~ Load modules
PLPA

y

SYS1.LPALIB Directory entries PLPAD
y

Figure 4.11. Initializing the PLPA

To reduce page Caults and improve performance, it is sometimes
appropriate to group PLPA modules that refer to each other or that execute
in sequence. In this manner, the grouped modules will tend to occupy the
same page, or at least be in real storage at the same time. The system pack
list (lEAPAKOO), .. which is a member of SYSl.PARMLIB created when the
system is generated, is used to provide such a grouping. It contains the
names of the modules to be grouped.

Chapter 4: Preparing the System for Work 4-19

4-20 OS/VSl MVS Oveniew

As shown in Figure 4.12, the program manager RIM refers to the system
pack list to determine the order in which SYS 1.LP ALIB modules are to be
loaded into PLPA. If no pack list exists, modules are loaded as they are
encountered, starting at the top of PLP A space. Note that there are no
alternate pack lists; however, IEAPAKOO can be modified (or eliminated)
by the installation prior to initialization.

If it is important to speed up the search procedure for certain link pack
area modules, the load list (lEALODOO) can be used to do this. As shown
in Figure 4.12, the program manager RIM creates and initializes an entry in
the active link pack area queue (ALPAQ), within the SQA, for each
module in the load list. During subsequent MVS system operation, the
program manager searches the ALPAQ before searching the LPA directory.

~

Program
manager
RIM

I Refers to I IEAPAKO_O_-__

\
\
\

For info on which
I modules to group.

1 ,
...,/ Load list OEALODOO) entries

SYS1.LPALIB Load modules

Directory entries

figure 4.12. System Pack List and ALPAQ Initialization

Common area

SUA

... 1 I)I ALPAQ
r 1

to.

., PLPA

'" PLPAD

"

Fixed Link Pack Area Initialization

The fixed link pack area is an extension of the nucleus and is located
directly above it in the system area of virtual storage. It contains reentrant
modules in fixed Y =R pages, which can be used by any task in the system.

As shown in Figure 4.13, FLPA modules are loaded by the program
manager RIM as directed by a fix list (lEAFIXxx) in SYS 1.P ARMLIB.
Since there can be multiple fix lists, the FIX system parameter is used to
specify which list is to be used. If FIX is not specified, no FLP A modules
will be loaded. The fix list can contain names from SYS 1.LP ALIB,
SYS 1.SYCLm, and SYS 1.LINKLlli.

In addition, up to 15 libraries, from which FLP A modules can be loaded,
can be concatenated with SYS1.LINKLm. To concatenate libraries, the
installation creates and/or modifies one or more link lists (LNKLSTOO or
LNKLSTxx). The link lists contain the names of libraries to be
concatenated. At initialization, the LNK system parameter is used to specify
which link lists are to be used. If LNK is not specified, only the default
LNKLSTOO will be used. (This list, as created when the system is
generated, contains only the name SYS I.LINKLIB.)

As the program manager RIM loads FLPA, it builds an SQA ALP AQ
entry for each module. After FLPA is loaded, it is possible for modules
from SYS 1.LP ALIB to now exist in both PLP A and FLP A. In these cases,
the FLP A module represented in the ALP AQ is the one used. The PLP A
module will be in the PLP A directory, but not on the active queue.

napter 4: Preparing the System for Work 4-11

Program
manager
RIM

I I

~
~
J : I

tj
Figure 4.13. Initializing FLPA

4-22 OS/VS2 MVS Overview

ALPAQ entries

Load modules

Nucleus

Modified Link Pack Area Initialization

The modified link pack area (MLP A) is an optional area located directly
below the PLP A directory in virtual storage. It constitutes an extension to
PLP A that remains on the paging data sets and on the ALP AQ only until
the next IPL. With the next IPL, the area is cleared.

As a choice of modules to put in the MLP A, the installation might select
those modules that have been tentatively modified and are being tested.
The original module is not removed from PLP A, but the MLP A module is
substituted for the original module durin~ the current IPL.

Modules to be included in MLP A must be named in one of the modified
LPA lists (IEALPAxx) specified by the MLPA system parameter. If MLPA
is not specified, no MLP A modules are loaded. The program manager RIM
loads each MLP A module and builds an entry for that module on the
ALPAQ. MLPA modules, like FLPA modules, can be loaded from
SYS1.LPALIB, SYS1.SVCLIB, and SYS1.LINKLIB. Additional
concatenated libraries can be included.

Table and List Initialization

In addition to initializing LP A, the program manager RIM initializes tables
and lists used by the program manager. These include:

• BLDL list
• SVC table
• APF table

BLDL List: The BLDL list contains directory entries for frequently-used
modules from SYS1.LINKLIB or any of the concatenated libraries. The
program manager uses the BLDL list to eliminate the I/O required to bring
the directory into storage when accessing a module that is not in virtual
storage. (An in-storage copy of the directory is used.) A well thought out
BLDL list can significantly improve performance. It can be in fixed storage
directly above FLP A, or in pageable storage directly below MLP A. (A
fixed BLDL list improves performance even more by eliminating the page
faults that might otherwise be encountered in searching the list itself.)

The names of the modules to be included are contained in a IEABLDxx
list. The BLDLF system parameter specifies the fixed BLDL list to be used.
The BLDL system parameter specifies the pageable list. The program
manager builds and initializes either a fixed list or a pageable list.

SVC Table: The SVC table contains an entry for each available SVC
routine. The program manager RIM initializes entries for SVC routines that
are not a part of the resident nucleus but have been placed in the LP A. It
searches the ALPAQ and the PLPA directory for SVC load modules and
places their addresses in the appropriate entries within the SVC table. If a
load module cannot be found, the RIM places the address of the SVC error
routine in the SVC table.

APF Table: The authorized program facility (APF) permits an installation
to identify the system and user libraries that contain programs authorized to
use restricted functions. The names of these authorized libraries are placed
in an APF table that the program manager RIM builds in SQA. Entries in
the table are established at initialization for SYS1.LINKLIB and

Chapter 4: Preparing the System for Work 4-23

4-24 OS/VSl MVS Oveniew

SYS 1.SVCLm. As a result, these libraries are always authorized. Note:
Because concatenated libraries are assumed to be part of SYS 1.LINKLm,
they are authorized when accessed through SYS I.LINKLm. If accessed any
other way (e.g., through STEPLm) they are not necessarily authorized.
(That is, they are authorized in these cases only if included in the APF
table.)

In addition, the installation can specify authorized libraries in any APF
list (IEAAPFxx) contained in SYS I.P ARMLm. The list to be used is
specified by the APF system parameter. The program manager RIM
initializes an entry in the APF table for each library named in the
applicable IEMPFxx list.

Master Scheduler Initialization

Master scheduler initialization can be broken into three steps, as shown in
Figure 4.14. In the first step, the base initialization routine performs some
basic initialization functions. In the second step, the initiator initiates the
master scheduler by attaching the master scheduler region initialization
routine as a job step task. To do this, it processes, through the subsystem
interface, a set of master JCL (MSTRJCL) statements obtained from
SYS 1.LINKLIB. In the third step, additional tasks are attached by the
region initialization routine. In addition, automatic commands contained in a
command list (COMMNDxx) on SYS I.PARMLIB are executed or
scheduled for execution, as the case may be. After region initialization is
completed, control is transferred to the master scheduler wait routine ..

NIP

Master scheduler

Base initialization

Subsystem interface

Initiator

Device allocation

Master scheduler

Region initialization

Master scheduler

Wait

FIgUre 4.14. Master Scheduler Initialization

Chapter 4: Preparing the System for Work 4-15

4-26 OS/VSl MVS Oventew

I"iti~lizing the Master Scheduler Base

The master scheduler base initialization routine is entered from NIP. It
creates and initializes the control blocks needed to invoke the initiator.
Then it locates and stores entry points for certain job scheduler routines. It
initializes the subsystem interface, the communications task, some TSO
addresses and parameters, and the time-of-day clock. Finally, it attaches the
initiator to initiate the master scheduler.

Initiating the Master Scheduler

Before the initiator can attach the master scheduler region initialization
routine, it must read the JCL to do so. (Applicable job step task control
blocks must be created and data sets must be allocated.) As yet, however,
no JES readers are active and no procedure libraries are open. So the
initiator gets the necessary JCL from a load module (MSTRJCL)
established on SYS I.LINKLm at system generation time.

To read and process MSTRJCL, the initiator uses the subsystem
interface to request job entry services, as shown in Figure 4.14. The request
is passed to the master subsystem, which reads the MSTRJ CL and invokes
job scheduler routines to process the JCL and initialize necessary control
blocks. The last statement in MSTRJCL is a command to START JES. This
command is passed to the command processor portion of the master
scheduler and scheduled for execution.

The iniuator uses the device allocation routine to allocate the data sets
indicated in MSTRJCL and required by the master scheduler (data sets
such as SYS1.PROCLIB and SYS1.PARMLIB). These are required when
JES is subsequently started. Two internal readers are also allocated. They
are used later to pass JCL from system routines to JES. Lastly, the initiator
attaches master scheduler region initialization as the job step task, and the
master scheduler is active.

Initializing the Master Scheduler Region

The region initialization routine attaches other tasks to be run in the master
scheduler region and passes commands located in SYS I.P ARM LIB to the
command processor for execution or scheduling. These commands are
contained in a command list (COMMNDxx) a member of SYS I.P ARMLIB.
Because there can be multiple command lists, the CMD system parameter is
used to tell master scheduler initialization which list to use.

When initialization is complete, control is transferred to the master
scheduler wait routine, which eventually encounters START JES in a
command scheduler control block (CSCB).

Job Entry Subsystem (JES) Start-Up

When the master scheduler wait routine scans the CSCB chain and finds
the START lES CSCB, it attaches a new address space. (START lES is a
task-creating command requiring a new address space.) Then a region
control task (RCT) prepares the address space for execution. After these
preliminaries have been taken care of, started task control (STC) builds the
lCL necessary to invoke the lES procedure. Then the initiator starts lES.

Creating an Address Space

The master scheduler attaches the address space create routine. This routine
asks SRM if a new address space can be created. Because the only thing
running at this point is the master scheduler, there should be no contention
for system resources. After the address space create routine receives
permission to proceed, it invokes the virtual storage manager to create a
virtual address space for lES. Then it builds LSQA in the private area and
initializes page table entries. Lastly, it builds task control blocks for a
region control task (RCT) and places the address space control block
(ASCB) on the dispatching queue.

Initializing the Region Control Task

The region control task (RCT) is the highest priority task in the new
address space. Therefore, when the lES address space becomes active, the
RCT is the first task dispatched. RCT controls the address space and
prepares it for execution (RESTORE) after a swap-in. It also prepares the
address space (QUIESCE) for a swap-out, and frees the address space
when the initiator terminates.

After RCT is initialized, it attaches the started task control routine to
initiate lES.

Initiating JES

The started task control (STC) routine uses START lES CSCB information
to build the lCL necessary to invoke the lES procedure. Next, STC invokes
the master subsystem to see if lES is already started (as in subsequent
system operation). If lES was already started, STC uses it. But since lES is
not yet started, STC links to the initiator.

The initiator invokes the master subsystem, which uses job scheduler
routines much as it did when initiating the master scheduler. However, to
start lES, it uses the internal lCL built by STC rather than MSTRJCL.
After SYS1.PROCLIB has been allocated to the master scheduler, the lES
procedure can be read.

After all lCL has been processed and after job scheduler control blocks
have been built in the SW A, the initiator links to device allocation to
allocate lES data sets specified in the lES procedure. Then, using the
program name from the EXEC statement of the lES procedure, the
initiator attaches the primary job entry subsystem. lES is started and MVS
is ready for work.

Chapter 4: Preparing the System for Work 4-27

4-28 OS/VSl MVS Oveniew

Chapter 5: Entering and Scheduling Work

When system initialization is complete and the job entry subsystem is
active, MVS can accept jobs for processing. All jobs, started tasks (other
than the job entry subsystem), and time-sharing LOGON requests must
enter the system through the job entry subsystem. Also, the job entry
subsystem processes all output data produced by the jobs.

MVS works with either of two job entry subsystems - JES2 or JES3.
Only one of these subsystems can be specified during system generation to
run as the primary job entry subsystem for MVS. Both JES2 and JES3
perform the following basic functions:

• Reading jobs into the system
• Scheduling jobs for execution
• Maintaining all data submitted with jobs
• Supporting the system management facilities
• Handling output from jobs and time-sharing users

This book uses the acronym JES when referring to the basic functions
supported by both JES2 and JES3. JES2 and JES3 are described separately
in more detail later in this chapter.

Terminology and Concepts
The following information describes several terms and concepts that are
essential to understanding how a job entry subsystem works.

Input Stream

When you present a job to the system for processing, the job consists of
JCL statements and input data. The JCL statements specify job
information, data set characteristics, and device requirements for the job's
execution. The input data is the data to be processed. The sequence of J CL
statements and input data for one or more jobs being submitted is called an
input stream. The job entry subsystem reads an input stream from card
readers, magnetic tapes, direct access devices, remote and local terminals,
and internal readers.

Internal Reader

An internal reader is not an actual hardware device such as a card reader; it
is a special output data set that other programs can use to submit jobs,
control statements, and commands to the job entry subsystem. The job
entry subsystem can receive multiple jobs simultaneously through the
internal reader facility. MVS uses the following two internal readers,
allocated during system initialization, to pass JCL for started tasks and TSO
logon requests to the job entry subsystem:

Chapter 5: Entering and Scheduling Work 5-1

5-2 OS/VS2 MVS Overview

• STCINRDR, which is used by the started task control (STC) routine
when processing a START command. For example, if you issue a
command to start VTAM, STC creates JCL to refer to the VTAM
procedure and passes the JCL to the job entry subsystem through the
STCINRDR internal reader.

• TSUINRDR, which is used by the TSO LOGON command to initiate
a TSO terminal session. The LOGON command writes the
user-specified data set(s), consisting of JCL and input data, into the
TSUINRDR internal reader.

mM supplies an external reader procedure named RDR that uses the
internal reader facility to submit an input stream from tape or disk. Also,
any job executing in MVS can use the internal reader facility to pass an
input stream to the job entry subsystem.

Initiators and Job Classes

An initiator is a job scheduler function that:

• Receives jobs and job steps to be executed
• Causes input/output devices to be allocated for them
• Places them under task control
• Supplies (at completion of the job) control information for writing job

output on a system output device

Normally, the system operator or the job entry subsystem starts several
initiators after system initialization is complete.

A job class is anyone of many job categories that an installation can
define using JES initialization parameters. By assigning jobs to job classes,
the installation can attempt to:

• Avoid contention between jobs that require the same resources by
preventing these jobs from running concurrently

• Provide a better mix of jobs for more efficient use of the system
• Process high-priority work quiCkly

To define a job class, first determine which characteristics are most
important in achieving a good balance of jobs in your installation.
Generally, jobs of similar characteristics and identical processing
requirements should be assigned to the same class. For example, assume
that several jobs are time-dependent and are executed in nonpageable
dynamic storage. Running these jobs concurrently may not be desirable
because it will tie up much nonpageable dynamic storage. The jobs can aU
be assigned to class B (or CorD - class names have no inherent
meaning); then, if only one initiator is started that can accept class B jobs,
more than one of these jobs will never be in execution at once.

Suppose you make the following assignments:

Class B jobs that are time-dependent
Class C = jobs with high instruction-processing

requirements
Class D jobs with high I/O-request requirements

And you specify initiator parameters such as:

I1 (initiator 1) can process classes B, C, and 0
I2 (initiator 2) can process classes C, 0, and B
I3 (initiator 3) can process classes 0, C, and B

Initiator 1 can accept jobs in classes B, C. and 0, but the lowest-priority
job in class B will be executed ahead of the highest-priority job in class C,
and so on. That is, initiator 1 will only process class C jobs when class B is
empty, and class 0 jobs when classes Band C are empty. If the three
initiators are processing jobs with the same priority and all necessary
resources (for example, I/O devices and data sets) are available, then three
jobs (one from each of the three different classes) run concurrently. If a
job within one of the classes has higher priority than the others in that
class, it will be initiated first.

To specify a job's class, you code the CLASS parameter on the JOB
statement. Classes are automatically associated with each initiator during
JES initialization or dynamically by the operator. During execution, the
initiator receives jobs from JES in priority order within their class. That is,
the lowest priority job in the first non-empty class is selected ahead of the
highest priority job of the next class.

When an initiator becomes active, it asks the job entry subsystem for a
job that is ready for execution. The job entry subsystem selects the highest
priority job in a class associated with the initiator, prepares the job for
execution, and returns the job to the initiator. The initiator attaches the first
job step within the job and waits for it to complete before attaching the
next job step, and so on. When all job steps in the job have completed, the
initiator cleans up the address space and asks for another job. This .
continues until the operator stops the initiator or the job entry subsystem,
or until the job class associated with the initiator is exhausted.

For more information on establishing job priorities, see OS/VS2 MVS
JCL.

Address Space Creation

During system initialization, the control program relates an address space
for the master scheduler, and one for the job entry subsystem. After
initialization is complete, the control program creates additional address
spaces in response to START, MOUNT, and LOGON commands, which
represent requests to use system resources. The control program creates one
address space for each program started by a START command (such as
TCAM, IMS, or an initiator), each MOUNT command, and each logged-on
time-sharing user.

When you want to start a job from a console device, reserve a volume
on a device for all jobs that need that volume, or start a TSO terminal
session, you enter a START, MOUNT, or LOGON command, respectively.
The master scheduler, in conjunction with other system components, creates
a task that performs the requested function (initiating a job, reserving a
volume, or initiating a TSO session) in the task's own address space. Figure
5.1 summarizes the process of creating an address space.

Chapter 5: Entering and Scheduling Work 5-3

Master Scheduler's
Address Space

,.....------,
I User issues . I

I
START, MOUNT, or I
~O~N~~d_J

+
Address space
creation routine

• assigns ASID

• creates control
blocks

• notifies SRM

~ IfSRM approves:- f4--+
Invokes VSM

• If SRM rejects,
unassigns ASID,
releases storage,
and informs
operator

Virtual Storage
Manager (VSM)

• assigns virtual
storage

• sets up addressabillty

• builds an LSClA

• creates R CT
control blocks

Initiator subroutine
ofSTC

• asks JESto
prepare job for
execution

• invokes allocation
routines

• initiates the
job's execution

FIgure ~.I. Creating an Address Space

5-4 OS/VS2 MVS Owente"

I
I

System Resources I
Manager (SRM)

• approves or
rejects new
address space

,
I -

User's Address Space

Region Control
Task (RCT)

• builds control
blocks

I -------.-.----'
I
I
I
I
I
I

_J

JES

Started Task
Control (STC)

• builds in-storage
JCL for job

• determines which
command being
processed

Job Entry
Subsystem (JES)

• reads job

• scans JCL and
writes it to spool

• Invokes converter

• queues the job

• assigns job 10 &
passes it to initiator ,

Converter

• transforms the
spooled JCL to
internal text

Interpreter

toI_---.pt..... invokes interpreter ... _If---.... _ • builds control
blocks from
internal text

The address space creation routine, operat.ng in the master scheduler's
address space, assigns the new address space an ASIO (address space
identifier) and creates control blocks for it. Then the routine notifies the
system resources manager (SRM) that a new address space is to be created.
SRM decides (based on the availability of system resources) whether the
creation of an address space is advantageous. If system conditions are
unfavorable for creating a new address space, SRM does not allow the
address space to be created. The address space creation routine unassigns
the ASIO and frees the storage used by the control blocks. The operator
receives a message indicating that the address space could not be created. If
current system conditions are favorable to creating the new address space,
the address space creation routine invokes virtual storage management
(VSM) to assign virtual storage and set up addressability for the address
space. VSM builds an LSQA (local system queue area) and sets up a
segment table, page table, and external page tables in it. VSM also creates
control blocks to operate the region control task (RCT) for the address
space.

Note: The MAXUSER parameter specified during system initialization
limits the number of address spaces that can exist at anyone time; within
the MAX USER limit, SRM controls the number of address spaces that
actually exist at anyone time.

Next the RCT receives control in the new address space. One RCT
exists for each address space. When the address space is created, the RCT
is the only task associated with it. The RCT builds control blocks that
further define the address space, then attaches the started task control
(STC) routine.

STC determines which command is being processed (START, MOUNT,
or LOGON), builds in-storage JCL for the task associated with the
command, the passes the JCL to the job entry subsystem. The job entry
subsystem reads the job, scans the JCL and writes it on a spool data set,
invokes the converter to transform the spooled JCL into internal text,
queues the job on an internal queue, and assigns a job 10 which it returns
to STC.

Next, STC uses its initiator subroutine to pass this job 10 back to the job
entry subsystem with a request to prepare the job for execution. The job
entry subsystem invokes the interpreter to build and initialize the scheduler
control blocks for the address space from the internal text created by the
converter. Upon return from the job entry subsystem, the initiator
subroutine invokes the allocation routines and issues an A IT ACH macro
instruction for the task related to the address space: any started program·
(START), the MOUNT command processor (MOUNT), or the terminal
monitor program (LOGON).

Chapter 5: Entering and Scheduling Work 5-5

Job Entry Subsystem Processing

5-6 OS/VSl MVS OYe,rvIe" '

Job entry subsystem (JES) processing consists of five stages:

• Input
• Conversion
• Execution
• Output
• Purge

The system operator can communicate with the job entry subsystem in
all stages by using JES commands that control and monitor the devices,
jobs, and functions. For descriptions of the JES commands, see either
Operator's Library: OS/VS2 MVS JES2 Commands or Operator's Library:
OS/VS2 MVS JESJ Commands.

The following descriptions of the five stages apply to JES2 and JES3.
Functions unique to JES2 or JES3 are described briefly in "JES2 Features"
and "JES3 Features" later in this chapter.

Input

The -job entry subsystem reads an input stream from card readers, magnetic
tapes, direct access devices, remote and local terminals, and internal
readers. Before passing control to the converter, JES stores the JCL and
input data on a direct access device called a spool data set.

Conversion

The converter takes the JCL from the spool data set, merges it with JCL
from a procedure library (for any job that requests inclusion of a
procedure), and converts the JCL to internal text (a form of data that is
recognizable by the control program). The internal text is also stored on the
spool data set. If the converter detects any JCL syntax errors, it issues
diagnostic messages and places the job on the output queue. If the job has
no syntax errors, the job entry subsystem assigns it a job ID and puts it on
a priority queue to, await processing.

Execution

Jobs are selected in priority sequence within each job class. JES selects a
job for execution when an initiator eligible to process the job is available.
The use of the word "priority" for JES refers to input queues and output
queues and the order in which jobs will be selected for processing.

JES invokes the interpreter to build and initialize SW A control blocks
from the internal text created by the converter. The initiator calls the
allocation routines to analyze the I/O device requirements of the job and to
allocate the required devices and data sets. Then the initiator activates the
job. JES provides an access method for reading and writing data to and
from the spool data sets in response to requests from executing jobs. When
the job completes its processing, JES places it on a queue to await output
processing.

Output

During its execution, a job creates system messages that must be printed,
and data sets that must be printed or punched. Upon termination of a job,
JES analyzes the characteristics of the job's output in terms of output class,
setup requirements (such as mounting a carriage control tape or pre-printed
forms on a printer, or inserting identification cards between sets of punched
card output on a card punch), and output priority. JES que~es the output
data according to these characteristics; the output data on each output
queue has identical characteristics and is eligible for processing only on an
output device that matches these setup characteristics. Thus JES minimizes
operator interaction with the output devices by grouping together similar
output data.

The JES print/punch routines or the external writer process job output.
The external writer facility allows the user to write to devices other than
printers and punches (such as disks or magnetic tapes) and allows the user
to control all output written by installation-supplied writers.

Purge

When all processing for a job is completed, JES releases the spool space
assigned to the job, making it available for allocation to subsequent jobs.
JES also issues a message to the operator to indicate that the job has been
purged from the system.

JES2 Features
JES2 provides four features that extend the basic job scheduling functions
of a job entry subsystem. JES2 allows an installation to:

• Dynamically control a job's input priority (priority aging)
• Reduce job-scheduling overhead for certain types of jobs (execution

batch scheduling)
• Automatically schedule a given set of commands at specified times

(automatic commands)
• Share a common workload across several processors (multi-access

spool)

Priority Aging

JES2 can increase the priority of a job based on the length of time the job
has been in the system. JES2 initialization parameters specify an upper and
a lower limit for priority aging, and an integer that represents the number
of times the priority can be increased in a 24-hour period. By using the
priority aging facility, an installation can ensure the eventual processing of
low priority jobs. The longer a low-priority job remains on an input queue,
the greater its chance for execution.

Execution Batch Scheduling

Execution batch scheduling is an extension of normal job-scheduling that
can increase throughput by reducing job-scheduling overhead for certain
types of jobs. The jobs eligible for execution batch scheduling are jobs of

Chapter 5: Entering and Scheduling Work 5-7

5-8 OS/VSl MVS Overview

relatively short duration, especially multistep jobs with common setup
requirements that are run frequently. Examples of such jobs are:
compile'-and-go debugging jobs and order-entry and file-inquiry jobs.

To use the execution batch scheduling facility, an installation must write
an execution batch (XBATCH) processing program and a procedure to
initiate it, and assign the jobs a unique job class associated with the
execution batch procedure. Also the installation must include execution
batch scheduling parameters when initializing JES2. When JES2 recognizes
a job with the e~ecution-batch-scheduling job class, JES2 builds and
submits JCL through an internal reader to invoke the XBATCH procedure.
Once the XBATCH procedure initiates the XBATCH program, the program
remains active as long as it has jobs to process. Thus execution batch
scheduling involves gathering related jobs into a single input stream and
passing them as an input data set to the user-written XBATCH program.
This process reduces the overhead associated with setting up for and
processing numerous individual jobs or job steps.

For more information on the XBATCH program, see OS/VS2 MVS
System Programming Library: JES2.

Automatic Commands

You can specify from the console or through a local reader that certain
commands or strings of commands take effect automatically at specific
times or at regular intervals. By performing common preset routines through
automatic command processing, you can eliminate the operator's
involvement in such tasks as:

• Providing periodic status displays
• Starting, stopping, and modifying initiators
• Starting or stopping remote lines

Multi-Access Spool

Previous topics have described JES2 functions on a single system (a
uniprocessor or a multiprocessor) operating under a single copy of the MVS
control program. JES2 can also operate two to seven such systems (each a
uniprocessor or multiprocessor) as members of a multi-access spool
configuration, as shown in Figure 5.2.

Each system in the configuration operates independently and includes all
functions previously described for single JES2 systems. That is, each JES2
system can read jobs from local and remote card readers, schedule jobs for
conversion and execution under MVS initiators, print and punch results
from local and remote output devices, and communicate with operators and
time-sharing users. However, all systems share a common JES2 workload

" queue, which resides on spool volumes.

By sharing a common queue, the systems can balance the workload by
allowing jobs to execute on whatever system has an idle initiator with the
correct class, and to print or punch on whatever system has an idle device
with the correct class, routing, setup, and other requirements.

MVS

Local and
Remote
Card Readers

Local and
Remote
Printers and
Punches

Loc:aland
Remote
Card Readers

Local and
Remote
Printers and
Punches

Operator

-,
I

Time Sharing

MVS

Figure 5.2. A JES2 Multi·Access Spool Configuration

Because all systems are functionally the same, if one system in the
configuration fails, the others may continue processing from the common
queue. Only work in process on the failed system is interrupted; this work
may be recovered by a warm start of the failed system while the other
systems continue processing.

JES3 Features
Under MVS, JES3 supports configurations of one to eight
physically-connected uniprocessors or multiprocessors. In addition, the
configuration can include a number of ASP main processors, up to a
combined maximum of 32 processors.

Chapter 5: Entering and Scheduling Work 5-9

5-10 OS/VSl MVS Overne"

The global JES3 function, which can reside in anyone of the MVS
systerils that make up the configuration, actively controls the other
proceSsors in the complex. The other MVS processors in which lES3 resides
are called local processors. All processors on which jobs can execute are
called main processors; therefore, there may be a global main processor, one
or more local main processors, and one or more ASP main processors.
Figure 5.3 shows a typical JES3 complex.

JES3 Local
Processor

Figure 5.3. A JES3 Complex

JES3 Global
Processor

JES3 Local
Processor

Shared tape and disk device I

Legend:

_ _ _ CTC adapter

ASP Main
Processor

The spool volumes, containing SYSIN and SYSOUT data, JeL, internal
text, and the job queues for the entire complex, are shared by the MVS
processors. Each local processor is also connected to the global processor
by a channel-to-channel adapter for the interchange of control infonnation.

JES3 must run under MVS in all systems sharing the spool volumes. As a
compatibility aid, JES3 also supports ASP Version 3.1 main processors on a
Systein/360 or System/370 connected through a channel-to-channel (CTC)
adapter to the global JES3 processor. These ASP main processors do not
share the spool volumes. Their access to the centralized job queue is
through the CTC adapter to the global system.

JES3 performs the same basic job entry, scheduling, and output services
that JES2 performs. JES3 also offers the following features, some of which
JES2 also provides:

• Dependent job control
• Device fencing
• Priority aging (also provided by JES2)
• Deadline scheduling
• Network job processing (also provided by JES2)
• Remote job processing (also provided by JES2)
• Dynamic system interchange

Dependent Job Control

Dependent job control (DJe) is a JES3 function that causes JES3 to
control job selection based on dependencies among jobs. With JES3 control
statements, the user can specify that one set of jobs (predecessor jobs) is to
be completed before other jobs (successor jobs). The success or failure of a
predecessor job can cause execution, holding, or cancellation of its
successor jobs.

Device Fencing

Device fencing involves reservit:1g devices for use only by jobs within a
specified job group, or jobs within a specific job network. By reserving
devices for certain jobs, the user can improve overall job turnaround
although device utilization will be less efficient. Jobs in a DJe network or
job class may optionally use devices other than the pool of reserved
devices.

1'.riority Aging

JES3 can increase the priority of a job depending on the number of times
the job has been passed over for selection. However, at an
installation-specified priority barrier, JES3 attempts to prevent lower
priority jobs from using idle resources if the resources are known to be
needed by a higher priority job.

Deadline Scheduling

Deadline scheduling allows the user to specify a time of day by which a job
should be scheduled. If the job is not scheduled by this time, JES3 increases
the job's priority at user-defined intervals until it is scheduled.

Network Job Processing

Network job processing (NJP) permits two or more global processors to
schedule and route JES3 jobs from one global processor to another using
telecommunication lines. The system programmer must determine which
jobs can be sent where, "based on data dependencies. By specifically
"defining the types of jobs (by job class) that can execute at various
locations, the system programmer can improve the workload balancing
among JES3 global processors.

Chapter 5: Entering and Scheduling Work 5-11

5-12 OS/VS2 MVS Overview

Remote Job Processing

Remote job processing (RJP) permits a user located many miles from a
particular JES3 installation to submit jobs to that installation. The unit
record devices at the remote site are logically operated by JES3 as if they
were local readers, printers, punches, and consoles. Thus, while operating all
local unit record devices, JES3 can simultaneously read jobs from several
remote readers into the queue of jobs awaiting processing. It can also send
the results of previously entered jobs that have completed execution to
several remote printers and punches.

Dynamic System Interchange

Dynamic system interchange (OSI) allows the operator to assign the JES3
global function to a capable, active local processor. The purpose of OSI is
to sustain the operation of the JES3 complex when a long-term global
system failure occurs. Such a failure might be the result of a hardware
failure of the processor, a channel, or a control unit on the global
processor.

The local processor assuming the global function must have
channel-to-ch~mnel paths to all other local and ASP processors in the
complex. Any processors for which no path exists cannot be supported by
the new global processor

OSI is invoked by the ... CALL,OSI operator command on the processor
that is to assume the global function.

Allocation of Devices
Device allocation is the assignment of a resource (I/O device, volume, data
set) for use by a specific job step. When a user submits a job for
processing, the job consists of statements and any related input data. The
JCL statements identify the job (JOB statement), each job step within the
job (EXEC statement), and the data sets to be used by the job (OD
statements).

When JES selects a job and passes it to an eligible initiator for
execution, the job's JCL has already been converted into internal text,
which the interpreter uses to build and initialize the SW A control blocks.
The parameters on the 00 statement provide such control block
information as:

• The name of the data set
• The name of the volume on which it resides
• The type of I/O device that holds the data set
• The format of the records in the data set
• Whether the data set is old or new
• The size of newly-created data sets
• The access method that will be used to create or refer to the data

The initiator passes control to the allocation routines which use the
control block information to analyze the job's device, volume, and data set
requirements.

During step initiation, the allocation routines assign the requested
devices, volumes, and data sets to the job step. The initiator does not start
the job step's execution until the allocation process is complete. That is, the
job step does not receive control until it has all the resources it needs to
execute successfully. A similar process occurs when a time-sharing user
issues a LOGON command to start a TSO terminal session.

These are the major functions that device allocation performs:

• Locating a requested data set's volume and unit information
• Resolving relationships between two or more requests
• Creating, via data management, new data sets
• Assigning I/O devices to the requests
• Instructing the operator to mount necessary volumes
• Allowing dynamic concatenation and deconcatenation of data sets

These are the major functions that device unallocation performs:

• Directing the processing of a data set's disposition
• Releasing data sets, reserved by an initiator, for use by other job steps
• Releasing I/O devices for use by other job steps

Dynamic Allocation

The allocation performed during job step initiation can be altered prior to
job step unallocation (or LOGOFF command to end a TSO terminal
session) by invoking dynamic allocation. Because resource requirements
may not be fully known prior to execution, dynamic allocation routines
enable jobs and time-sharing users to acquire resources as the need
develops. Dynamic allocation also allows resources to be used more
efficiently because the resources can be acquired just before use and
released immediately after use.

A typical use for dynamic allocation is in a program that needs
temporary use of a device, volume, or data set for which there is heavy
contention. In such a case, dynamic allocation provides the means for a job
to tie up the resource for only as long as necessary rather than for the life
of the job.

Another common use for dynamic allocation is in a job whose need for
allocation resources may vary according to input. Dynamic allocation
permits such jobs to dynamically allocate and free only the data sets
necessary to process the input, so the specific resources supporting the
required data sets can be in use for the minimum time.

For more information on dynamic allocation, see OS/VS2 System
Programming Library: Job Management.

Chapter 5: Entering and Scheduling Work 5-13

5-14 OS/VS2 MVS <heme"

Chapter 6: Supervising the Execution of Work

As described in the preceding chapters, work enters the system, is assigned
a private address space, and is scheduled for execution. Once the work is
brought into real storage (where it has access to the processor), it becomes
the responsibility of the supenisor.

The supervisor provides the controls needed for multiprogramming. This
chapter describes the following functions of the supervisor:

• Interruption processing. In order to achieve mUltiprogramming, some
technique must exist to switch control from one routine to another -
so that, for example, when routine A must wait for an I/O request to
be satisfied, routine B can be executing. In MVS, as in MVT and
SVS, this is achieved by interruptions, which are events that alter the
sequence in which the processor executes instructions. When an
interruption occurs, the supervisor receives control, saves the
execution status of the interrupted routine, analyzes the interruption,
and passes control to the appropriate routine to process the
interruption.

• Creating dispatchable units of work. The supervisor requires some way
of identifying and keeping track of all the work in the system. It does
this by representing each tinit of work with a control block. Two types
of control blocks represent dispatchable units of work in MVS
systems: task control blocks (TCBs), which also exist in MVT and SVS
systems and which represent tasks executing within an address space;
and service request blocks (SRBs), which were introduced in MVS as
an efficient way to provide high priority for system services.

• Dispatching work. After supervisor routines process interruptions, they
either return control to the routine that was interrupted or pass
control to a routine called the dispatcher. (Which action occurs is
described in detail in the topic "The Interruption Handler (IH)
Routines. tt) The dispatcher determines which unit of ready work, of
all the ready units of work in the system, has the highest priority and
passes control to that unit of work.

• Serializing the use of resources. In a multiprogramming system, almost
any sequence of instructions can be interrupted, to be resumed later.
If that set of instructions manipulates or modifies a resource (for
example, a control block or a record in a data set), the supervisor
must prevent other programs from using the resource until the
interrupted program has completed its processing of the resource.

In MVS, the supervisor provides two techniques for serializing the use of
resources: enqueuing (via the ENQ or, for shared DASD, RESERVE macro
instruction), which is also available in MVT and SVS systems; and locking
using multiple locks, which was introduced in MVS as an efficient way to
serialize the use of resources by supervisor routines and, ina
tightly-coupled multiprocessing environment, by processors.

For detailed information on supervisor functions see System
Programming Library: Supervisor and Supervisor Services and Macro
Instructions.

Chapter 6: Supenising the Execution of Work 6-1

6-2 OS/VS2 MVS Overview

Interruption Processing

An interruption is an event that alters the sequence in which the processor
executes instructions. An interruption may be planned (specifically
requested by the task the processor is currently executing) pr unplanned
(caused by an event that may be either related or unrelated to the task
currently executing). There are six types of interruptions:

• SVC (supenisor call) interruptions, which occur when the program
issues an SVC instruction. An SVC is a request for a particular system
service - for example, to open a data set (SVC 19 - OPEN), to
obtain storage (SVC 4 - GETMAIN), to write a message to the
operator (SVC 35 - WTO/WTOR).

• I/O interruptions, which occur when a channel or device signals a
change of status. For example, an I/O operation completes, an error
occurs, or a device becomes ready.

• External interruptions, which indicate any of several events for
example, a time interval expires, the operator presses the interrupt key
on the console, or a signal is received from another processor.

• Restart interruptions, which occur when the operator presses the
restart button on the console or when a restart SIGP (signal
processor) instruction is received from another processor.

• Program interruptions, which are caused by program errors (for
example, the program attempts an invalid operation), page faults
program references a page that is not in real storage), or requests to
monitor an event.

• Machine check interruptions, which are caused by machine
m~ilfunctions. .

The supervisor includes six routines called interruption handlers (IHs) to
process the six types of interruptions: an SVC IH, I/O IH, externaill-l,
restart IH, program IH, and machine check IH. When an interruption
occurs, the system must save the status of the program that was interrupted
and route control to the appropriate interruption handler routine. This is
accomplished by means of a hardware feature called program status words
(PSWs).

The Role of Program Status Words

Program status words (PSWs) are used to control the order in which
instructions are executed and to hold and indicate the status of the system
in relation to the program currently being executed. There are three types
of PSWs: current PSW, new PSWs, and old PSWs.

The current PSW indicates the next instruction to be executed. It also
indicates whether the processor is enabled or disabled for I/O interruptions,
external interruptions, machine check interruptions, and certain program
interruptions. When the processor is enabled, these interruptions can occur.
When the processor is disabled, these interruptions are ignored or remain
pending, to be processed when the unit of work that is executing disabled
completes the processing that requires disablement. (The processor is never
disabled for SVC, restart, or certain program interruptions.)

NEW PSWs

RESTART

EXTERNAL

A new PSW and an old PSW are associated with each of the six types of
interruptions. The new PSW contains the address of the interruption
handler routine that can process its associated interruption. If the processor
is not disabled when an interruption occurs, the System/370 hardware
switches PSWs by:

• Storing the current PSW in the old PSW associated with the type of
interruption that occurred

• Moving the contents of the new PSW for the type of interruption that
occurred into the current PSW

The current PSW, which indicates the next instruction to be executed,
now contains the address of the appropriate IH routine to handle the
interruption (see figure 6.1); this has the effect of transferring control to
the appropriate interruption-handling routine.

OLD PSWs

RESTART

EXTERNAL

SUPERVISOR CALL Current PSW SUPERVISOR CALL

PROGRAM CHECK

MACHINE CHECK

1/0

Contains address of
routine within supervisor
to handle interruption

Hardware switches
PSWs

Figure 6.1. The Use of Program Status Words (PSWs) in Interruption Processing

PROGRAM CHECK

MACHINE CHECK

I/O

Provides a savearea for
PSW that was current at
time of interruption

Chapter 6: Supervising the Execution of Work 6-3

6-4 OS/VSl MVS Overnew

The Interruption Handler (IH) Routines

The interruption handler (IH) that receives control saves the status (general
registers and the old PSW) of the unit of work that was interrupted,
analyzes the interruption, and determines the control program action
required. Specifically:

• The SVC interruption handler determines the type and location of the
requested SVC routine and, if the requested SVC requires that the
caller be authorized, checks that the caller has the appropriate
authorization. (The request is denied if the caller lacks necessary
authorization.) There are several types of SVCs, each type having
different execution characteristics. For example, some types of SVCs
reside in the nucleus, others in the link pack area; some types can
issue other SVCs, other types cannot. If the requested SVC is a type
that can issue other SVCs, the SVC IH builds a control block called
an SVC request block (SVRB) for the requested routine. The SVRB is
needed to save status information about the routine so that it can be
resumed after an SVC interruption has been processed. After checking
for proper authorization and, if necessary, building an SVRB, the SVC
IH passes control to the requested SVC routine.

• The I/O interruption handler passes control to the input/output
supervisor (lOS). lOS performs al1.processing for I/O requests and
controls all I/O error processing. For more information on lOS, see
chapter 8.

• The external interruption handler determines the cause of the external
interruption and passes control to the appropriate external service
routine.

• The restart interruption handler routes control to the recovery
termination manager (RTM). For more information on RTM, see
chapter 9.

• The machine check interruption handler records all machine checks and,
if the machine check cannot be corrected by hardware, calls the
recovery termination manager (RTM) -see chapter 9.

• The program interruption handler determines the cause of the program
interruption and, depending on the cause, passes control to one of the
following:

Real storage management (RSM), if the program interruption was
caused by a page fault. RSM determines if the page fault is valid
and, if it is, starts the processing necessary to bring the referenced
page into real storage.
Generalized trace facility (GTF), if the interruption occurred as the
result of a request to monitor an event. GTF (if it is active) records
the event.
A user-provided program-interruption exit routine, if the program
interruption was caused by an error in user code (for example,
using an incorrect address or attempting to execute privileged
instructions) and the user provided an error-handling routine (by
means of the SPIE -set-program-interruption-element- macro
instruction).
The recovery termination manager (RTM), if the program
interruption was caused by an error in system code or, if the user
does not provide his own error-handling routine, in user code.

The routine that receives control after the interruption is processed
depends on whether the interrupted unit of work was non-preemptive. A
non-preemptive unit of work can be interrupted but must receive control
after the interruption is processed. All SRBs are non-preemptive; a TeB is
non-preemptive if it is executing a non-preemptive SVC (the installation
identifies which SVCs will be non-preemptive during system generation). If
the interrupted unit of work was preemptive, the dispatcher receives control
and determines which unit of work should be performed next.

Figure 6.2 summarizes the processing of interruptions; for more
information on the dispatcher, see the topic "Dispatching Work."

Chapter 6: Supervising the Execution of Work 6-5

Syltem/370
loads new PSW

Unit of Work - executing·

Interruption

• -4------"

---_-...1\ \
\
\
\
\
\
\

Highest Priority Ready \
Unit of Work \

" ,
'\1

~------------------------
I nterruption.nandllng Routine

• Analyzes interruption

• Determines action required

• Routes control to appropriate part
of control program

Routine that Performs Requested
SeNice

Some seNices might require another
seNice and, therefore, cause an
interruption, which causes the supeNisor
cycle to be restarted.

Yes

-Figure .6.2. Summary of Interruption Processing

6-6 OS/VS2 MVS Overview

Dispatcher

The dispatcher dispatches the highest
priority ready unit of work. which might
be the unit of work that was interrupted
or might be another task or SRB.

Creating Dispatchable Units of Wor~

In MVS, dispatchable units of work are represented by two different
control blocks:

• Task control blocks (TCBs), which represent tasks executing within an
address space -user programs and system programs executed to
support the user programs .

• Service request blocks (SRBs), which represent requests to execute a
service routine. SRBs are typically created 'when one address space is
executing and an event occurs that affects a different address space;
they provide the mechanism for almost all communication between
address spaces.

Task Control Blocks (TCBs)

Task control blocks (TCBs) are created in response to an ATTACH macro
instruction. By issuing ATTACH, a user or system routine causes the
supervisor to begin the execution of the program specified on the ATTACH
macro as a subtask of the caller's task. As a subtask, the specified program
can compete for processor time and may use certain resources already
allocated to the caller's task.

The ATTACH macro instruction causes an SVC interruption. The SVC
interruption handler branches to'the ATTACH SVC routine to perform the
requested service. The ATTACH routine does the following:

• Obtains storage for a new TCB
• Places in the new TCB information needed to control the sub task
• Places the new TCB on the chain,of TCBs for that address space
• Branches to program management routines to locate the first program

to be executed for the new subtask and, if necessary, fetch the
program from a program library.

The region control task (RCT), which is responsible for preparing an
address space for swap-in and swap-out, is the highest priority task in an
address space. All tasks within an address space are sub tasks of the RCT.
The RCT's TCB is pointed to from the address space control block
extension (ASXB) and points to the next TCB in the address space. Figure
6.3 illustrates the basic TCB structure for batch jobs, operator-started jobs,
and TSO users.

Chapter 6: Supervising the Execution of Work 6-7

System Area - SOA Private Area - LSOA

Batch job

ASCe ASXe TCe TCe TCe TCe TCe ..
....

V V V V If l/ RCT DUMP STC INIT JOe - - STEP - -" - -
I...--

Operator-started job

ASCe ASXe Tce TCe TCe TCe

V"" V V If V J/ RCT DUMP STC Started
job -- - - -

'---

TSO User

ASCe ASXe TCe TCe TCe TCe TCa
V""'"

If ! if V r / RCT DUMP STC LOGON TMP

- - - - - -"
'---

Legend:
ASCe - address space control block
ASXe - address space control block extension
DUMP - dump task
INIT - initiator
LOGON - TSO LOGON task
LSQA - local system queue area
RCT - region control task
SQA - system queue area
STC - started task control
TCe - task control block
TMP - terminal monitor program

Figure 6.3. Task Control Block (TCB) Structure

6-8 OS/VS2 MVS OYeniew

Service Request Blocks (SRBs)

Service request blocks (SRBs) are typically created when one address space
is executing and an event occurs that affects a' different address space. For
example, address space A is executing and an I/O interruption occurs
because an I/O operation requested by address space B has completed. The
I/O interruption handler collects the necessary information about the
interruption and builds and schedules a service request block (SRB). The
I/O interruption handler can then start I/O requests that were waiting for
the I/O path used by the request that just completed and can accept any
additional pending interruptions. Delaying complete processing of the
interruption by building the SRB allows faster re-use of the I/O path and
less disabled interruption time.

The SRB identifies the routine to be executed and the address space in
which the routine should be executed. In the preceding example, the SRB
would be executed in address space B, because that address space had
requested the I/O operation. To schedule an SRB, the routine that builds
the SRB issues the SCHEDULE macro instruction. On the SCHEDULE
macro instruction, the routine indicates the priority of the request relative to
'other requests in the system by specifying either GLOBAL or LOCAL.
SRBs with a global priority are given a priority higher than that of any
address space, regardless of the actual address space in which they will be
executed. SRBs with a local p~ority receive a priority equal to that of the
address space in which they will be executed, but higher than that of any
TCB within that address space. The assignment of global or local priority
depends on the "importance" of the request; for example, SRBs for I/O
interruptions are scheduled at a global priority, so that I/O delays are
minimized.

Dispatching Work
Dispatching work consists of routing control to the highest priority unit of
work that is ready to execute. The dispatcher, a supervisor routine,
dispatches work in the following order:

1. Special exits. These are exits to routines that have a high priority
because of specific conditions in the system. For example, if one
processor of a tightly-coupled multiprocessing system fails, alternate
CPU recovery (ACR) will be invoked by means of a special exit to
recover work that was being executed on the failing processor.

2. SRBs that have global priority. If a global SRB cannot be dispatched
(for example, the address space in which it will execute is swapped
out), the dispatcher reschedules it at a local priority.

Ch2pter 6: Supervising the Execution of Work 6-9

6-10 OS/VSl MVS Oveniew

3. Ready address spaces in order of priority. An address space is ready
to execute if it is swapped in and not waiting for some event to complete;
an address space's priority is determined by the dispatching priority
specified by the user or the installation. The address space control block
(ASCB) contains the address space's dispatching priority; ASCBs that
represent ready address spaces are queued in storage according to their
dispatching priority. To select an address space, the dispatcher selects the
first ready ASCB on the chain of ASCBs.

After selecting the highest-priority ASCB, the dispatcher rust
dispatches SRBs with a local priority that are scheduled for that address
space and then TCBs in that address space.

If there is no ready work m the system, the dispatcher loads an enabled
wait PSW.

The dispatcher receives control after a task is interrupted or becomes
non-dispatchable, after an SRB completes or is suspended, (that is, an SRB
is delayed because a required resource is not available), and from other
supervisor routines that want higher priority work dispatched without
waiting for an interruption to occur. The dispatcher saves the status of the
unit of work relinquishing control, selects a unit of work, builds a program
status word (PSW) for the selected unit of work, and issues a load PSW
(LPSW) instruction, which results in the selected routine receiving control.
That routine executes until an interruption occurs or until the routine
voluntarily gives up control (for example, by issuing a WAIT SVC).

Serializing the Use of Resources
The supervisor provides two techniques for serializing the use of resources:
enqueuing, which was available in MVT and SVS systems; and locking
using multiple locks, which is a new technique for MVS.

Enqueuing

Enqueuing is accomplished by means of the ENQ (enqueue) and DEQ
(dequeue) macro instructions, which can be used by both user and system
programs; or, for devices shared between systems, by means of the
RESERVE and DEQ macro instructions. On ENQ or RESERVE, a user
specifies the name(s) of one or more resources and requests shared or
exclusive control of those resources. If the resources are to be modified, the
user must request exclusive control; if the resources are not to be modified,
the user should request shared control, which allows the resource to be
shared by other users that do not require exclusive control. The DEQ
macro instruction is used to release control of a resource.

Locking

Locking using multiple locks is a new technique in MVS that serializes the
use of system resources by supervisor routines and, in a tightly-coupled
multiprocessing system, by processors. A lock is simply a field in storage
that indicates if a resource is being used and who is using it. In MVS, there
are two kinds of locks: global locks, for resources related to more than one
address space, and local locks, for resources assigned to a particular address
space. Global locks are provided for non-reentrant routines and the
following control blocks:

• Control blocks the dispatcher uses.
• Control blocks the auxiliary storage manager (ASM) uses.
• Routines of real storage management (RSM) and virtual storage

management (VSM) that allocate storage.
• . Control blocks and functions of the input/output supervisor (IDS).

These include locks for the following: global IDS functions; the
channel availability table (used by IDS to allocate a channel to an I/O
request); each unit control block (updated by IDS when units are
assigned to or released by I/O requests); each logical channel queue
(maintained by IDS for requests waiting for a logical channel).

• Control blocks used by VT AM. There is one lock for each of the
following types of control blocks: VT AM node control blocks; VT AM
destination node controls blocks; VT AM data extent blocks.

• The control algorithms and control blocks the system resources
manager (SRM) uses.

• Control blocks that provide cross-memory services that are not
protected by any of the preceding locks.

A local lock is provided for each address space to serialize the allocation of
storage and the use of control blocks within the address space.

To use a resource protected by a lock, a routine must first request the
lock for that resource. A part of the supervisor called the lock manager
acquires and maintains all locks. If the lock is unavailable (that is, already
held by a different program or processor), the action taken by the program
or processor that requested the lock depends on the type of lock; there are
two types of locks -spin locks and suspend locks:

• If a spin lock is unavailable, the requesting processor continues testing
the lock until the other processor releases it. As soon as the lock is
released, the requesting processor can obtain the lock and, therefore,
control of the protected resource. All of the global locks except the
cross-me mary-services lock are spin locks.

• If a suspend lock is unavailable, the unit of work requesting the lock is
delayed until the lock is available; the requesting processor is
dispatched to do other work. The cross-memory-services global lock
and all local locks are suspend locks.

To prevent deadlocks, MVS locks are arranged in a hierarchy and a
processor or routine may unconditionally request only locks higher in the
hierarchy than locks it currently holds. For example, a deadlock could occur
if processor 1 held lock A and required lock B; and processor 2 held lock B
and required lock A. In MVS, this situation cannot occur because locks
have to be acquired in hierarchical sequence. Assume, in the preceding
example, lock A precedes lock B in the hierarchy. Processor 2, then, cannot
hold lock B without already holding lock A; the deadlock cannot occur.
Figure 6.4 summarizes the locks provided in MVS and lists them in
hierarchical order.

Chapter 6: Supervising the Execution of Work 6-11

6-12 OS/VSl MVS Overview

Class of lock Name of
lock*

Resource protected Type of
lock

Global DISP Dispatcher control blocks

ASM ASM control blocks

SALLOC RSM and VSM routines

10SYNCH Global lOS functions Spin

10SCAT Channel availability table

10SUCB Unit control blocks

10SLCH Logical channel queues

TPNCB VT AM node control blocks

TPDNCB VT AM destination node control
blocks

TPACBDEB VT AM data extent blocks

SRM SRM algorithms and control blocks

eMS Cross memory services Suspend

Local LOCAL Address space storage and control
blocks

·Locks are listed in hierarchical order, from highst. to lowest..

Figure 6.4. Summary of MVS Locks

The design of locking in MVS allows supervisor routines to execute and
allows one processor in a tightly-coupled multiprocessing system to use one
resource while the other processor uses a different resource - two benefits
that were not provided by earlier techniques to serialize the use of
resources.

Chapter 7: Managing System Resources

Managing system resources in MVS is the responsibility of a component
called the system resources manager (SRM). SRM has two objectives:

• To distribute the system's resources (processor time, I/O resources,
and real storage) among individual address spaces as specified in the
installation performance specification (IPS)

• To achieve the optimal use of processor time, real storage, and I/O
resources by active address spaces, as seen from the viewpoint of
system throughput

This chapter describes how SRM attempts to meet these objectives: the
decisions it makes and the factors it considers in making those decisions.
The system programmer can influence almost all of the decisions made by
SRM routines by means of the installation performance specification (IPS)
an the IEAOPTxx member of the SYS I.P ARMLm data set. The
Initialization and Tuning Guide contains detailed information on SRM's
processing and how the installation can influence it.

Note: Except where noted, this chapter describes SRM as it exists when
SU7 (Supervisor Performance #7) has been installed.

How SRM Meets Its Objectives
SRM's two objectives are contradictory in terms of the availability of
resources. Optimizing throughput implies keeping resources busy; meeting
the installation's objectives for response and turnaround time (as reflected
in the IPS) implies the availability of any resource when it's required. SRM
makes decisions that represent trade-offs between its two conflicting
objectives.

The decisions SRM makes include the following:

• Which address spaces should be permitted access to the system's
resources (that is, swapped in)

• When to steal pages and which pages to steal
• When to change the dispatching priority of address spaces (called

"chapping")
• Which device should be allocated, when allocation routines have a

choice of devices
• When to inhibit the creation of new address spaces

These decisions are the controls SRM uses to meet its objectives.

Chapter 7: MamgjDg System Resources 7-1

7-2 OS/VSl MVS Orerriew

Major Fllnctional Areas of SRM

To reach its decisions, SRM is divided into three major functional areas:

• SRM control, which determines the processing required by SRM and
routes control to the appropriate SRM routines. SRM control decides
when and which address spaces will be swapped in or out. To make
this decision, it obtains recommendations from the other functional
areas of SRM: the workload manager and the resource manager.

• Workload manager, which monitors the use of resources by the various
address spaces. It gives the SRM control function swapping
'recommendations that attempt to maintain each address space's use of
system resources as specified in the IPS.

• Resource manager, which monitors system-wide use of resources to
determine if they are over- or under-utilized. It makes swapping
recommendations to the SRM control function that are intended to
optimize throughput - to optimize use of the processor(s), I/O
resources, and storage. In addition, the resource manager is
responsible for implementing other SRM controls related to the use of
resources: inhibiting the creation of new address spaces or stealing
pages when certain shortages of storage exist; changing the
dispatching priority of address spaces, which controls the rate at which
the address spaces are allowed to consume resources; choosing the
device to be allocated if a choice of devices exists, in o"rder to balance
the use of I/O resources.

Communicating with SRM

Other system components communicate with SRM by means of the
SYSEVENT macro instruction. All SYSEVENTs have a code, which
indicates the processing SRM is to do. Essentially, all codes fall into one of
two categories:

• SYSEVENTs that notify SRM of a change in status for a particular
address space or for the system as a whole. For example: real storage
has been configured into or out of the system; an address space has
been deleted; an initiator selects or terminates a job; a swap-in is
started or a swap-out completes. In response' to these SYSEVENTs,
SRM updates, builds, or releases control blocks that contain
information on system and address space activity.

• SYSEVENTs that invoke SRM's decision-making functions. For
example: an address space enters a long wait (SRM will swap the
address space out of real storage); an address space is to be created
(if a shortage of SQA or pageable storage exists, SRM will prohibit
creation of the address space); allocation routines have a choice of
devices to be allocated to a request (SRM will recommend one of the
devices); a time interval expires. The timer-interval SYSEVENT is the
exclusive means to invoke most of SRM's algorithms, which provide
data on which SRM bases its decisions.

Most SYSEVENTs cause the SRM control function to be called, which
in turn can call the resource or workload manager for the processing of
various algorithms. The remainder of this chapter describes in greater detail
SRM control, the workload manager, and the resource manager.

SRM Control

SRM control is the dispatcher of SRM. It schedules actions and algorithms
to be performed by other SRM routines and is responsible for the swapping
of address spaces.

The installation provides guidelines for SRM's swap decisions by defining
a domain for each distinct type of work (for example, batch work). For
each domain, the installation defines a minimum and maximwri MPL
(multiprogramming level) and the domain's importance relative to other
domains. The definition of each domain's importance is used by resource
manager routines, as described in the topic "Resource Monitoring." The
MPLs state the minimum and maximum number of address spaces in each
domain that should be in real storage (that is, swapped in) at the same
time. Within the boundaries of the minimum and maximum MPL and based
on factors such as the total utilization of system resources, SRM
periodically computes an optimal MPL for each domain, called the target
MPL. The objective of the swap analysis performed by SRM control is to
maintain the MPL of each domain at its target value.

Swap Analysis

Swap analysis is triggered by several events -for example, a user becomes
ready to execute or a time interval expires. The swap analysis must answer
two questions: whether a swap is necessary; and, if so, which address
space(s) to swap.

To determine whether a swap is necessary, SRM control goes through the
following steps:

1. SRM control examines each domain, to locate any domain(s) whose
current MPL exceeds its target MPL. SRM control swaps out the
required number of address spaces to lower the domain's MPL to its
target value.

2. If a user is swapped out and enqueued on a resource requested by
another user, SRM control swaps in the enqueued user.

3. SRM control examines each domain, to locate any domain(s) whose
current MPL is less than its target MPL. SRM control swaps in the
required number of risers to raise the current MPL to its target value.

4. If a domain's MPL equals its target value, SRM control analyzes
swapped-in users and swapped-out users to determine if an exchange
swap should occur (that is, a swapped-in user and swapped-out user
change places).

Each time swap analysis is called, SRM control proceeds with the preceding
steps until it reaches the end of a step that has resulted in at least one swap
or it determines no swap is required.

To determine which address space(s) within a domain to swap in or out,
SRM control asks the workload manager and resource manager for swap
recommendations, which take the form of swap recommendation values
(RVs). The workload manager's RVs aim to maintain an address space's

Chapter 7: Mana&iaI System ResotfteS 7-3

7-4 OS/VSl MVS OYeniew

use of resources as specified in the IPS. The resource manager's RVs aim to
correct imbalances.in I/O or processor utilization. By combining the RVs of
the workload manager and resource manager, SRM control makes trade-offs
between its two objectives: distributing resources as specified in the IPS and
optimizing throughput.

The workload manager has three basic functions:

• To monitor service rates -the rates at which system resources are
being provided to individual address spaces

• To provide swapping recommendations requested by SRM control
• To collect data for certain measurement tools -for example, the

system activity measurement facility (MF /1) or the Resource
Measurement Facility (RMF), Program Product #S740-XXH

The workload manager measures the rate at which resources are used in
terms of service units per second. Service units are computed as a
combination of three basic system resources: processor time used, I/O
activity (EXCP counts for data sets associated with the address space), and
real storage frames occupied. Service rate, then, is the result of dividing the
number of service units by a time interval, which includes both the time an
address space is swapped into real storage and the time it is swapped out
but otherwise ready to execute.

To arrive at a swapping recommendation, the workload manager
measures the service rates of different address spaces and compares them in
light of factors defined by the installation in the IPS (installation
performance specification). By means of these factors, the installation can
instruct SRM to give certain users better service at the expense of other
u~rs. For example, assume two address spaces exist in real storage and one
must be swapped out; the installation-defined IPS factors will dictate how
the workload manager views measured service rates:

• Address space A has a higher service rate than address space B. Based
on IPS factors associated with these two address spaces, the workload
manager determines that address space B should be swapped out. (A
different IPS could result in the opposite decision - that address
space A should be swapped out.)

• Address space A has a lower service rate than address space B. The
IPS indicates that address space A is more important and, based on
the IPS, the workload manager determines that address space B should
be swapped out.

• Address space A and address space B have identical service rates.
Again, IPS factors indicate which address space is more important and
which, therefore, should remain in storage.

The IPS factors that dictate the workload manager's swap
recommendations are described in detail in the Initialization and Tuning
Guide. The workload manager passes its swap recommendations to SRM
control, which combines them with recommendations from the resource
manager.

The Resource Manager

The resource manager includes algorithms that are concerned with
improving the system-wide use of resources (as contrasted to an individual
address space's use of resources, which is the concern of the workload
manager). The resource manager's routines can be divided into four
functional areas:

• Storage management, which is concerned with SRM's decisions to
steal pages and to prevent the creation of new address spaces

• I/O management, which is concerned with SRM's swap decisions and
device allocation decisions

• Processor management, which is concerned with SRM's swap decisions
and decisions to change an address space's dispatching priority

• Resource monitoring, which is concerned with adjusting the target
MPLs of individual domains based on the need to raise or lower the
system-wide multiprogramming level

Storage Management

Storage management routines of SRM take action when shortages of the
following are detected: available frames in real storage; space in the system
queue area (SQA); slots on auxiliary storage; and pageable frames in real
storage.

The system maintains an avauable frame queue, which indicates the
number of available frames in real storage. When the number of available
frames falls below a "LOW" threshold, SRM storage management routines
begin to steal the least-recently used pages from the working sets of address
spaces in real storage. The storage management routines continue stealing
pages until the count of available frames plus the number of pages stolen
exceeds an "OK" threshold for the available frame queue.

SQA shortages are detected by the virtual storage manager (VSM) ,
which calls SRM's storage management routines when a shortage is
detected. The storage management routines prevent the creation of new
address spaces until the shortage is relieved. The routines also write
messages to the operator when the shortage is detected and when the
shortage is relieved.

SRM's storage management routines periodically check that the number
of available auxiliary storage slots has not fallen below a certain limit.
Shortages of pageable real storage are detected by real storage management
(RSM) when the percentage of fixed frames to total frames exceeds a
certain limit; RSM then notifies SRM's storage management routines. The
action taken by SRM for shortages of auxiliary storage slots or pageable

.. real storage is the same; SRM: .

• Prevents the creation of new address spaces
• Delays' newly-initiated jobs
• Sets the multiprogramming level in each domain to its minimum MPL
• Swaps out the user who is acquiring slots at the greatest rate (for

shortages of auxiliary storage) or the user who has the most fixed
frames (for shortages of real storage)

• Notifies the operator of the shortage and the identity of the
swapped-out user

Chapter 7: Managing System Resources 7-5

,-6 OS/VSl MVS OYeme.

When the shortage is relieved, creation of address spaces is again
allowed, the operator is notified, and address spaces that were swapped out
are again made eligible for swap-in.

I/O Ma"agem~"t

SRM's I/O management routines are called to:

• Choose a device when allocation routines have a choice of devices to
allocate

• Give swap recommendations to SRM control

In both cases, the objective of I/O management is to balance I/O activity
across logical channels. 'Yhen choosing a device for allocation, I/O
management seeks candidates on the logical channel that has the lowest
utilization; for direct access devices, it then chooses the device with the
lowest number of allocated data sets. When giving swap recommendations
to SRM control, I/O management bases its recommendations on the extent
to which the swap-in or swap-out of a user would correct a detected I/O
imbalance: it recommends, via swap recommendation values, that a
significant user of an over-utilized logical channel be swapped out; or that a
significant user of an under-utilized logical channel be swapped in.

Proc~ssor Manageme"t

Processor management routines have three responsibilities:

• Controlling the APG (automatic priority group) subset of dispatching
priorities

• Preventing the swap-out of users who are enqueued on resources
required by other users

• Making swap recommendations to correct under- or over-utilization of
the processor .

The APG is a range of dispatching priorities under the control of SRM.
Dispatching priority controls the rate at which address spaces are allowed to
consume resources after they have been given access to those resources. By
placing jobs in the APG range, the installation, via the IPS and SRM, can
alter the dispatching priorities of address spaces as their execution
characteristics change.

The APG is divided into three groups: the mean-time-to-wait (MTIW)
group, rotate priority, and fixed priorities. (If MVS System Extensions,
Program Product #5740-XEl, is installed, the installation can defme more
than one MTTW group and more than one rotate priority.)

• The MTIW group can be used to increase system throughput by
increasing processor and 110 overlap (that is, the processor is not
waiting while I/O requests are satisfied). Users in the MTIW group
have a dispatching priority based on the user's mean execution time
before entering a wait state; users who quickly release the processor
receive a high priority within the MTIW group.

• The rotate priority can be used to ensure that one address space does
not dominate the processor in relation to other address spaces also
assigned the rotate priority. Processor management routines
periodically reposition the address space that is highest in the rotate
priority group to the bottom of the group.

• SRM does not change fixed priorities; they are available so that the
installation can associate, via the IPS, a different fixed priority with
different periods in the life of a job or transaction.

By means of the APG, the installation can give SRM control even over
nonswappable address spaces.

For users enqueued on resources in demand· by other users, processor
management routines prevent their swap-out until they have released the
resource or executed for a fixed period of time (whichever occurs first).
The installation can specify the execution time interval via an SRM tuning
parameter.

If processor management routines determine that the processor is over
or under-utilized, they will search for heavy processor users and calculate
swap recommendation values for swap-out (to correct over-utilization) or
swap-in (to correct under-utilization). A heavy processor user is one that
meets or exceeds a certain mean execution time before entering the wait
state. The processor is considered over-utilized if, during the period under
consideration, it did not enter the wait state and any ready address space
on the dispatching queue was not dispatched. The processor is considered
under-utilized when its utilization is less than a certain percentage.
Processor management routines take into account the extent to which the
processor is over- or under-utilized when computing swap recommendation
values for SRM control.

Resource Monitoring

The resource monitoring function of the resource manager periodically
checks several system resource usage indicators, such as length of the ASM
queue, which indicates paging and swapping requests not yet satisfied, and
processor utilization. If measured resource usage (averaged over a number
of sample intervals) is greater than a "high" threshold or less than a "low"
threshold for that indicator, the resource monitoring function recommends
that the system-wide mUltiprogramming level (MPL) be lowered or raised.
(The system-wide MPL is the total number of address spaces in the system
that are swapped in.)

If the system-wide MPL is to be raised or lowered, resource monitoring
routines then identify the individual domain whose :MIlL will be r3ised or
lowered to achieve the recommended system-wide MPL. The domain
selected for MPL adjustment depends on the relative importance of the
domains, as defined by the installation in the IPS.

Chapter 7: Managing System Resources 7-7

7-3 OS/VSl MVS OJeme,..

Chapter 8: Satisfying I/O Requests and Data Management

An input/output operation - I/O - involves the movement of data
between main storage and a data set on an I/O device, such as a tape, disk,
card reader, or printer. In comparison to the time the processor requires to
execute a series of instructions, an I/O operation is very lengthy.

Under MVS, the processor initiates the I/O operation by signalling a
channel. The channel, a link between the processor and the device, then
executes independently of the processor, thus allowing an overlap of the·
I/O operation with processor activity. Overlap is one of the key techniques
for achieving efficiency in handling I/O operations.

Data moves between main storage and a device along a path; the logical
path for data consists of main storage, a channel, and a device. MVS allows
the definition of multiple logical paths to a single device, thus giving more
flexibility in scheduling I/O requests to balance the load over physical
channels and devices.

Under MVS, where many jobs execute concurrently and efficient system
operation requires overlap between I/O operations and processor'activity,
both the information the system must have to perform an I/O operation
and the decisions it must make to balance its resources are complex.
However, MVS provides a number of services and facilities that make the
complexity of an I/O operation largely transparent to the user. One of
these services is the access method.

Access Method
An access method is a data management routine that a user program selects
based on the organization of the data set and the access technique used to
process the records in the data set. The access method moves data between
main storage and an I/O device in response to macro instructions issued by
the user program.

Data Set Organiz.ation

A data set is a collection of related records that are associated with a
particular device. If the device is a tape or a disk, the data set occupies a
specific area on a volume mounted on the device. A data set can be
organized in four ways:

• Sequential. Records are stored and retrieved according to their
physical position in the data set.

• Indexed sequential. Records are arranged in sequence according to a
key. An index or set of indexes maintained by the access method gives
access to the records.

Chapter 8: Satisfying I/O Requests and Data Management 8-1

1-2 OS/VSl MVS OTeniew

• Direct. The records in the data set, which must be on a direct access
device, can be organized in any way that meets the user's needs.
Records are stored and retrieved according to the address of each
record within the data set.

• Partitioned. The data set, which must be on a direct access volume,
consists of members. A member is an independent group of
sequentially-organized records that is accessed through its name in the
directory of the data set. Partitioned data sets are generally used to
store programs and are often referred to as libraries.

Acc~ss Techniques

The records in a data set can be accessed by two techniques: the queued
access technique and the basic access technique. Some data sets can be
accessed by either technique.

With queued access, GET and PUT macro instructions are used to
transfer data. The queued technique assumes that the records are to be
accessed sequentially. The access method automatically blocks and deblocks
the records and, on input, anticipates I/O requests so that the record is
generally available before the request is actually made. After a request,
control (that is, the ability to execute, to use the resources of the system)
does not return to the user program until the requested operation has
completed.

With basic access, READ and WRITE macro instructions are used to
transfer data. The basic technique is used for direct access of any of the
records in the data set. Therefore, the access method does not block or
deblock records and does not perform I/O operations in advance of the
request. The user program must test for the completion of the I/O
operation.

Access Method Types

MVS provides an access method, the virtual sequential access method
(VSAM), that is specifically designed to run in virtual storage; it is
described under "Virtual Sequential Access Method (VSAM)" later in this
chapter. MVS also supports the following access methods:

• Basic 'sequential access method (BSAM). Records in a data set
processed by BSAM are sequentially organized and are stored and
retrieved in physical blocks. The READ and WRITE macro
instructions are used to initiate I/O operations. The user program tests
for completion of the operation and performs any required blocking or
deblocking .

• Queued sequential access method (QSAM). Records in a data set
processed by QSAM are stored and retrieved as logical records;
QSAM handles any physical blocking or deblocking required. On
input, QSAM anticipates the need for a record based on its physical
order; normally, the desired record is in storage, ready for use, before
the request for it is made. On output, QSAM holds the logical records
in a buffer and performs physical output only when the buffer is
filled.

• Basic direct access method (BDAM). Records in a data set processed
by BDAM can be organized in any manner chosen by the
programmer. The data set must reside on a direct access volume.
Records are stored and retrieved by actual or relative addresses within
the data set.

• Indexed sequential access method (ISAM). Records in a data set
processed by ISAM are arranged in sequential order according to the
contents of a key. ISAM maintains an index structure that is used to
locate a particular record. Access to the records can be either
sequential (QISAM) or direct (BISAM).

• Basic partitioned access method (BP AM). A data set processed by
BP AM consists of a number of members and a directory that holds
the name and location of each member. A member contains a group
of records that are organized sequentially. BP AM maintains and
accesses the directory; once BPAM locates the desired member, the
records within the member are processed by BSAM.

A user program can also request I/O operations without using a specific
access method by issuing the execute channel program (EXCP or
EXCPVR) macro instruction.

To request an I/O operation, either the access method or the user
program presents information about the operation to the components of the
MVS system control program. that manage the actual physical I/O
operation. These components are the EXCP driver and the I/O supervisor
(lOS). How the EXCP driver and lOS handle the I/O operation and how
their functions and responsibilities fit together with those of the user
program and the access method are described under "Scheduling I/O" later
in this chapter.

As a means of improving system performance by eliminating much of the
overhead and time required to allocate a device and move data physically
between main storage and an I/O device, MVS provides virtual
input/output (VIO). VIO can be used only for temporary data sets; it uses
the system paging routines to transfer data into and out of a page data set
and attempts to keep as much data as possible in real storage. "Virtual
Input/Output (VIO)" later in this chapter describes how the system
intercepts a VIO request and branches to VIO. . .

Scheduling I/O
To satisfy an I/O request, the user program, with or without an access
method, describes the operation required, and the system components
perform the operation, handle the interruption that signals the completion
of the operation, and post its status.

Figure 8.1 shows the major steps required to perform an I/O operation.
The figure summarizes the responsibilities and functions of the user
program, the access method, and the system components; the circled
numbers show the chronological sequence of events. The figure assumes the
use of an access method and that the user is executing in a virtual region.
When a program does not use an access method, or when it executes in a
real region, the process differs slightly from the one shown in the figure.
However, the I/O services provided by MVS can handle these special cases.

Chapter 8: Satisfying I/O Requests and Data Management 8-3

8-4 OS/VSl MVS OYeniew

The following text explains the standard operation in more detail and
describes the actions taken to handle special cases, such as the user who
must get control during the execution of an I/O operation.

U$~r Program F,,"ctio"s

. The user program that issues the I/O request must describe the data set to
be used and the specific operation to be performed on the data set. To
describe the data set to the system, the user program creates a data control
block (DCB) and issues an OPEN macro instruction.

OPEN Processing

When the user program issues an OPEN macro instruction, it invokes the
system OPEN routines. These routines merge information from various
sources to build a complete description of the data set. The information
used comes from:

• The job rue control block (JFCB) and a task I/O table (TIOT) entry
built from information in the DD statement included in the JCL for
the user program. After the device for the data set has been allocated,
the nOT entry points to the unit control block (UCB) for the
required device.

• The data set control block (nSCB) that describes the data set: For
data sets on a direct access device, for example, the DSCB comes
from the volume table of contents (VTOC) for the volume containing
the data set.

• The data control block (DCB) the user program builds. The DCB
includes a great deal of information, one piece of which is the access
method that the user program needs to perform I/O operations on the
data set. Other information might include how the data set is
organized and how its records are to be accessed.

User Program Access Method System Components

• Describes data set.

a Issues OPEN macro to
prepare data set.

a Issues I/O request to
link to access method.

0 Builds control blocks and
channel program to
describe request.

e Issues EXCP macro to
invoke the system
components.

0 Builds control blocks, fixes
pages and translates channel
program, schedules or starts
operation with an 510
instruction, and returns to
the requester .

• Waits for operation to
complete. (User program
waits on completion if using
basic access technique.)

e Handles liO interruption
that signals completion of
the operation, analyzes and
posts the status of the
operation, and returns to the
dispatcher .

• Continues processing when
I/O operation is complete.

Gi> ~
Issues CLOSE macro when
all operations on a data set
are complete.

FIgure 8. t. Major Steps in a Standard I/O Operation

Chapter 8: Satisfying I/O Requests and Data Management 8-5

The OPEN routines can acquire the information they need from any of
these sources, giving the user a great deal of flexibility in specifying I/O
operations. To achieve device independence, for example, a user can specify
a minimal amount of DCB information in the program and supply the rest
of the information on the JCL for a particular execution of his program.

The OPEN routines build a data extent block (DEB), which specifies the
device on which the volume is mounted and the physical extent of the data
set on that volume. OPEN processing also places addresses in the DCB that
provide linkage between the user program and the access method. H the
user program needs access method appendages or user exits to perform such
functions as analyzing data errors or processing end-of-data conditions,
linkage between the user program and the required routines is also built
into the DCB. Figure 8.2 summarizes the relationships the OPEN routines
establish between the control blocks and between the user program and the
access method.

User Access
Method

~
Figure 8.2. Relationships Established by OPEN

Once the data set to be used for the operation is successfully opened, it
is ready to be used. The user program can then issue an I/O request.

I/O Request

8-6 OS/VSl MVS Oferriew .

To transfer data between a data area in storage and an I/O device using an
access method, the user program issues a macro instruction. GET and PUT
are used for queued input and output requests; the access method does not
return control to the user program until the I/O operation is compl~~e.
READ and WRITE are used for basic input and output requests; Control
returns to the user program once the I/O operation is initiated, and the
user program must test for the completion of the' operation.

Either type of request causes a branch to the access method. The access
method routines reside in PLPA, but, as shown in Figure 8.3, both the user
program and the access lIlethod run in the user's address space .

. .

User
Program

1
OPEN ~
GET/PUT (DCB)
CLOSE

-Access
Method

SQA

PLPA*

CSA

Nucleus

Figure 8.3. Access Method and User Program in an Address Space

If the access method cannot satisfy the request because of a specification
error in the request, the access method immediately returns control to the
user with indicators set to describe the nature of the error. If the request
was made correctly, processing of the I/O operation continues as described
later in this chapter under "Access Method Functions."

A user program can also issue an I/O request with an EXCP or
EXCPVR macro instruction to invoke the EXCP driver directly. See
"EXCP Driver Front End" later in this chapter for more information.

When the user program has made all its requests for work to be done on
a data set, it must free the data set by issuing a CLOSE macro instruction.

CLOSE Processing

Issuing a CLOSE macro instruction causes the user program to invoke the
system CLOSE routines. The CLOSE routines modify the DCB to break
the logical connections between control blocks and between the user
program and the access method; these connections were established when
the data set was opened. The· CLOSE routines free any storage acquired by
the OPEN routines.

These routines also rewrite the DSCB for the data set to the volume.
Because the DSCB can be modified during OPEN processing, a user
program can change the specifications for the data set by opening and
closing it.

Chapter 8: Satisfying I/O Requests and Data Management 8-7

1-8 OS/VSl MVS OYerYlew

Figure 8.4 summarizes the control blocks used as input to the CLOSE
routines, the functions the CLOSE routines perform, and the modified
control blocks that are created during CLOSE processing.

Input-----....... Process -----........ Output

DeB

DEB

• Write DSeB

• Restore DeB

• Release storage
acquired bV OPEN

Figure 8.4. CLOSE PrQCessing Summary

Access Method Functions

DeB

Because the OPEN routines place the address of the required access
method in the DCB for the data set, the access method gets control when
the user program issues an I/O macro instruction. The access method uses
the control block structure built by the OPEN routines to build control
blocks for the EXCP driver and a channel program for the I/O request.
The access method then issues an EX CP macro instruction to pass control
to the EXCP driver.

Control Blocks

The access method builds two control blocks: the input/output block (lOB)
and the event control block (ECB). The lOB points to the DCB; through
the DCB, the EXCP driver can access the contents of the DEB and the
UCB., The lOB also points to the ECB and to the channel program. The
lOB thus contains pointers to all of the information lOS needs about the
I/O request.

Th~ ECB is logically empty when it is built; it is used when the
operation is complete to post the status of the operation. The access
methOd or the user program can thus test the contents of the ECB to find
out when the I/O operation is finished.

Channel Program

The access method builds a channel program for the I/O operation. A
channel program consists of a string of channel command words (CCWs)
that describe the operation to the channel. Channel command words
provide the channel with all of the information that it needs to perform the
operation, such as the address of the data area and the number of bytes of
data to be transferred.

EXCP Macro Instruction

When the lOB and ECB have been built and initialized and the channel
program has been created, the access method issues an EXCP macro
instruction. The EXCP macro instruction causes an SVC interruption to
occur. As a result of this interruption, the SVC interruption handler causes
control to be passed to the EXCP driver and then to lOS to schedule and
execute the physical I/O operation.

Figure 8.S summarizes the control block structure and the channel
program built by the access method and the pointers it sets before causing
control to pass to the EXCP driver.

Channel
Program

Access -Method

EXCP lOB

J
SVC

REG1

~
EG4

RB
TCB

Figure 8.5. Control Block Structure for the EXCP Driver

EXCP Driver

When the EXCP driver and lOS have completed or scheduled the
operation, c~ntrol returns to the access method. If the request used a GET
or PUT macro instruction (queued access technique), the access method
issues aWAIT against the ECB for the operation. In this case, the access
method waits until the ECB is posted complete, and then it returns control
to the user program. If the request used a READ or WRITE macro
instruction (basic access technique), the access method returns control to
the user program, which issues the WAIT macro instruction against the
ECB and waits until the request is completed.

Chapter 8: Satisfying I/O Requests and Data Management 8-9

8-10 OS/VSl MVS Oveniew

Appendages

Appendages are routines that enable a user to get control at various points
during the execution of an I/O operation. Some are entered before
execution of the I/O operation, others after execution, and one, the PCI
appendage, enables a user to get control during execution to modify the
channel program while it is executing.

To establish these exits, authorized routines from authorized libraries
identified during system generation can be loaded during OPEN processing
for authorized users. The DEB contains the pointers to the appendage
routines.

Input/Output Supervisor (lOS) Functions

The MVS input/output supervisor (lOS) has been rewritten and
restructured to:

• Support multiprocessing
• Increase system responsiveness
• Make effective use of virtual storage
• Use the MVS recovery capabilities

To maintain compatibility and achieve the improved function described in
the preceding list, new interfaces to lOS were created. These interfaces are
the lOS drivers. Because the standard access methods use the EXCP driver
as an interface to lOS, the balance of this description is concerned only
with the relationship between lOS and the EXCP driver. As this
relationship is explained, you will see that the EXCP driver is tailored to
meet the needs of its intended users.

Figure 8.6 shows some of the drivers that were developed to meet the
needs of various lOS users.

lOS USER

AUTHORIZED
USER

OS/VS
ACCESS METHOD

JES2

PAGING

RSM I ASM

VSAM

PROGRAM
MANAGER

VTAM

.FE
DIAGNOSTICS

MSS

JES3

Figure 8.6. lOS Drivers

DRIVER lOS

.. \ ASM

~I VSAM
(ABP)

\ lOS .. I /
FETCH

.. I VTAM

.. \ OLTEP

.. I MSS

.. I JES3 1..;1

The EXCP driver has three major parts: the front end, the disabled
interruption exit (DIE), and the back end. These parts function in response
to the needs of the I/O request to interact with the three major parts of
lOS: the channel scheduler, the I/O interruption handler, and the post
status routines. The driver is separate from lOS, acting primarily as an
interface between the I/O requestor and lOS. However, the following
description of the functions of the driver and lOS is presented in
chronological order to show the steps involved in satisfying a single I/O
request.

EXCP Driver Front End

The front end of the EXCP driver gets control from the SVC interruption
handler when an I/O requestor issues an EXCP or EXCPVR macr/J
instruction. The EXCP macro instruction is used by the standard a\~cess
methods and most user programs. The EXCPVR macro instruction is used
by programs that have special I/O needs, such as a program that must
dynamically modify a channel program.

Chapter 8: Satisfying I/O Requests and Data Management 8- t t

8-12 OS/VSl MVS OYeniew

Most user programs and the standard access methods run ,with virtual
addresses. Thus, user data areas, control blocks, and the channel programs
built by the standard access methods are in virtual storage, use virtual
addresses, and are pageable. However, the System/370 channels transfer
data into and out of real storage locations. Therefore, the data areas, the
control blocks, and the channel program for the I/O operation must be
fixed and use real addresses.

The front end of the EXCP driver performs the address translation and
page fixing required by the user running in a virtual (V = V) region. Such
users invoke the driver with an EXCP macro instruction.

However, users that run in a real (V=R) region do not require address
translation or page fixing. The EXCP driver recognizes a V =R user and
bypasses the address translation and page fixing functions.

Users who invoke the driver with an EXCPVR macro instruction must
construct their own channel programs and build a list of pages to be fixed
by the EXCP driver.

Thus, a user who needs to dynamically modify his channel program must
either run V=R or use the EXCPVR macro instruction to invoke the
driver. Note that the disabled interruption exit (DIE) of the EXCP driver
can be invoked only by a user who runs in a V =R region or issues the
EXCPVR macro instruction.

Whether or not address translation and page fixing are performed, the
EXCP driver front end processing constructs the control blocks lOS
requires and branches to the lOS channel scheduler.

The EXCP driver front end gets control again when the channel
scheduler has initiated or scheduled the requested I/O operation. At that
point, the front end returns control to the access. method or user program
that issued the EXCP or EXCPVR macro instruction.

Channel Scheduler

The lOS channel scheduler gets control from the EXCP driver. The channel
scheduler initiates the physical I/O operation by attempting to establish a
path from the processor through a channel to a device.

If no path is available because the device, the control unit, or the
physical channel is busy, the channel scheduler queues the request. To
queue a request, the channel scheduler places it on a logical channel queue
where it waits until the required path becomes available. (MVS allows the
definition of multiple logical paths to a single device, thus giving more
flexibility in scheduling I/O requests to balance the load over physical
channels and devices.)

If a path is available, the channel scheduler initiates the I/O operation
by issuing a start I/O (SIO) instruction to the channel. Before issuing the
S10 instruction, the channel scheduler places the address of the channel
program in the channel address word (CAW) in a fixed real storage
location. When the S10 instruction is issued, the channel fetches and loads
the CAW and uses its contents to locate the channel program, which it then
proceeds to execute without requiring further intervention from the
processor.

After queuing or initiating the I/O operation, the channel scheduler
returns control to the front end of the EXCP driver.

During the course of system execution, the channel scheduler is also
invoked by the I/O interruption handler each time an I/O interruption
occurs, which usually signals the completion of an I/O operation. When the
channel scheduler is invoked by the I/O interruption handler, it searches
the logical channel queues for an operation that was queued but not
initiated because a path was not available. If an operation is waiting for a
path that is now available, the channel scheduler issues an SIO instruction
to initiate the operation before returning to the I/O interruption handler.
Control then passes to either the interrupted program or the dispatcher.

110 Interruption Handler

When the physical I/O operation completes, the channel sends an I/O
interruption to the processor. The status of the operation is stored in a
fixed real storage location called the channel status word (CSW). The
hardware then passes control to the 1/ 0 interrupt~!)n handler in the
supervisor, called the first-level interruption handler. This routine passes
control to the interruption handler in lOS, the second-level interruption
handler.

If the I/O request was initiated from a V=R region or by means of an
EXCPVR macro instruction and if the interruption was a program
controlled interruption (PCI), control also passes to the disabled
interruption exit (DIE) of the EXCP driver.

After analyzing the status information about the operation and, if
required, taking the disabled interruption exit, the second-level I/O
interruption handler schedules execution of the lOS post status routines and
passes control to the channel scheduler so that any scheduled I/O
operations can be initiated.

EXCP Driver Disabled Interruption Exit (DIE)

The disabled interruption exit (DIE) of the EXCP driver is entered only
when the I/O interruption that occurred was a program controlled
interruption (PCI) and the user is either running in a V =R region or has
issued the EXCPVR macro instruction.

In each CCW in a channel program, there is a PCI bit. When the PCI
bit is on, an I/O interruption occurs when the CCW is loaded into the
channel. Setting the PCI bit on, which indicates that the us~r might want to
modify his channel program while it is executing, causes control to pass to
the DIE. . .

When the DIE gets control, the processor is in supervisor state and
disabled for I/O interruptions. For the DIE to function, the address of a
valid PCI appendage must have been placed in the DEB during OPEN
processing. The PCI appendage and the DIE make it possible for an
authorized user to get control during the execution of the I/O request.

After the user program has processed the PCI, it returns control to the
DIE. The DIE then returns control to the second-level I/O interruption
handler.

Chapter 8: Satisfying I/O Requests and Data Management 8-13

Post Status

The I/O interruption handler schedules an SRB to invoke lOS post status.
When post status is dispatched, it passes control to the EXCP driver back
end, which handles any appendages requested by the user, and returns
control to the post status routine.

Post status then analyzes the status indicators from the completed
operation and returns to the back end of the EXCP driver. If an error has

." occurred, post status passes control to an error recovery procedure (ERP)
before returning to the back end of the EXCP driver. After the back end

8-14 OS/VS2 MVS Overview

of the EXCP driver completes its processing and returns control, post status
returns to the dispatcher.

EXCP Driver Back End

The back end of the EXCP driver receives control.after lOS has analyzed
the status of the event. The back end exits to any access method
appendages that are to receive control after the execution of an I/O
request. Upon return from any appendages, the EXCP driver back end
issues a POST macro instruction to post the status of the completed
operation in the. ECB and returns control to the post status routine.

The access method or user program that is waiting for the ECB to be
posted then becomes ready for execution and is eventually dispatched.
Control returns to the user program or access method at the instruction
immediately following the WAIT for the completion of the I/O request.

Summary

The preceding explanation described the part each component of the EXCP
driver and lOS performs in satisfying an I/O request made by a user
program directly or by an access method on behalf of a user program.
Figure 8.7 presents an overview of the interaction between the user
program, the access method, the EXCP driver, and lOS, showing the flow
of a single operation and the means of passing control from step to step.

Program

OPEN'" -
.....

CLOSE--

I DATAl

Exits

Access
Method

CREATES
CHANNEL
PGM

Figure 8.7. Flow of an I/O Request

Software (Storage) Hardware

EXCP
Driver

FRONT END

5
POST

~
DISPATCHER

lOS

CHANNEL
SCHEDULER

RETURN

ANALYZE STATUS

S
CHANNEL RESTART

?

ERP

Channel
Program

Devicp

Chapter 8: Satisfying I/O Requests and Data Management 8-15

Virtual Input/OUtput (VIO)

A physical input/output operation reads data from or writes data to a data
set on an I/O device. A virtual input/output (VIO) operation uses the
system paging routines to transfer data.

To use VIO, an installation specifies one or more I/O unit names for
VIO at system generation time. Then, a user program or access method can
build a channel program to send input data to a system-named temporary
data set on a unit that was specified for VIO. The EXCP driver intercepts
such a channel program and branches to VIO instead of invoking lOS to
transfer the data over a channel to a device. VIO uses the move character
(MVC) instruction to move that data from the channel program buffers to
a special buffer in the user's address space. This special buffer is called a
window.

The window contains enough contiguous virtual storage pages to hold all
of the data that could be placed on a track for a real device. For example,
a 2314 track requires a two-page window, and a 3330 or 2305 track
requires a four-page window. Figure 8.8 shows the movement of data
between the channel program buffer and the VIO window.

r- -,
I

"ii E... I
§E! I
~ E::I I

(
I ,0 Q.e=> III ~ : Window ,

~---~~--~~~------~~I~.----~'----------~
~~ ~. I
Address I

Space ~~~ction t = = j}
'--- J I ,
L __ ...J

Virtual

Pages

Data Set

Figure 8.8. VIO Window

8-16 OS/VSl MVS Overview

When VIO intercepts a channel program and issues the first MVC
instruction, a page fault causes frames to be assigned to the window. One
or more channel programs are then executed to fill the window. When the
user program or access method determines that the track is full, it builds
another channel program to place data on a second track. When VIO
detects this track switch, it writes the contents of the window to a page

data set, using the system paging operations. The system provides special
support to keep VIO data set pages in real storage after this page-out,
whenever possible. 'VIO then disconnects the window from the frames that
contain the VIO data set pages. When VIO moves new data (the second
track) to the window, another page fault occurs, causing fresh frames to be
assigned to the window. '

As the data set is created and external page storage assigned, the system
keeps track of the locations of each page of the VIO data set. The paging
data set slots, like the real storage frames, are not necessarily contiguous;
they are allocated dynamically throughout external page storage as the data
set is created.

When data is to be retrieved from the VIO data set, VIO locates the
pages that contain the required data. If the data is not currently in the
window, VIO changes the appropriate page table entries to point to the
required pages in external page storage. Then VIO uses the MVC
instruction to move data from the window to the channel program buffers.
This instruction causes a page fault, and the proper page is either reclaimed
or brought into real storage and made addressable through the window.

Thus, VIO uses paging rather than explicit I/O to transfer data. VIO
eliminates the channel program translation and page fixing done by the
EXCP driver as well as some d~vice allocation and data management
overhead. It also provides dynamic allocation of DASD space as it is
needed. Another advantage of VIO is that the data set can remain in real
storage after it is created because VIO attempts to keep the pages in real
storage as long as possible. In this case, no actual I/O operations are
required to create or retrieve data fr~m the VIO data set.

Virtual Storage Access Method (VSAM)
The virtual storage access method (VSAM) is a high performance access
method for direct access storage that runs in virtual storage and uses virtual
storage to buffer input and output operations. VSAM supports batch users,
online transactions, and data base applications.

Through a master catalog, VSAM controls allocation of data space on
VSAM volumes and the location and use of VSAM data sets. An MVS
system requires at least one VSAM master catalog; this required catalog is
also the system catalog. It is maintained by VSAM, but, because it is
required for system operation, it is discussed separately later in this chapter
under "System Catalog."

VSAM can process three types of data sets: key-sequenced,
entry-sequenced, and relative record. The order in which the data set is
initially loaded and updated is different for each type.

For a key-sequenced data set, records are loaded; as the name implies, in
key sequence. Each record must have a key, and the ordering of the records
is determined by the collating sequence of the keys. Any new records
subsequently added to the data set are added in key sequence.

For an entry-sequenced data set, records are loaded in sequential order as
they are entered. New records are added at the end of the data set.

Chapter 8: Satisfyq I/O Requests and Data Management 8-17

8-18 OS/VS2 MVS Overview

For a relative record data set, records are loaded according to a relative
record number that can be assigned either by VSAM or by the user
program. When VSAM assigns the relative record number, new records are
added at the end of the data set. When the user program assigns the
relative record number, new records can be added in relative record number
sequence.

When a VSAM data set of any type is created, it is defined to VSAM as
a cluster. A cluster for a key-sequenced data set consists of an index
component and a data component. A cluster for an entry-sequenced or
relative record data set consists of only a data component.

A VSAM data set of any tyPe is allocated in a data space. A VSAM data
space is an area of direct access storage defmed in a volume table of
contents (VfOC) for exclusive VSAM use. A data space can consist of a
single extent (area) on a single volume, multiple extents on multiple
volumes, or multiple data spaces on multiple volumes. A single volume can
contain both VSAM data spaces and non-VSAM areas.

Within a VSAM data set, VSAM stores the records for each type of data
set in the same way - in a fixed-length area of direct access storage called
a control interval.

Control Interval

A control interval is a continuous area of direct access storage that VSAM
uses for storing data records and the control information that describes
them. It is the area that VSAM transfers between virtual and direct access
storage during an input or output operation. A control interval can contain
stored records, free space, or both stored records and free space.

The size of the control interval for a data set can be chosen by either the
user or VSAM. Once chosen, the size is fixed, and all control intervals
within the data set are the same length. When VSAM chooses the size of
the control interval, it considers the following factors:

• The type of direct access device used for the data set
• The size of the data records
• The smallest amount of virtual storage the user program can provide

for I/O buffers

When the user chooses the size of the control interval, the size chosen must
fall within limits that VSAM finds acceptable, based on the factors listed
above.

The size of the control interval need not correspond to the size of a
track on the device. Figure 8.9 shows the independence of control intervals
from physical records, which are limited by the capacity of a track on a
particular device.

I
Control Interval Control Interval Control Interval

Physics
Records

\ ... I I I 1 I I J I I
Track 1 Track 2 Track 3

Control Interval Control Interval Co'n"trol Interval

I I I I I I
Track 1 Track 2 Track 3 Track 4

Figure 8.9. CoatrollDtenals aod Pbysical Records

Control intervals are grouped together in a control area. A control area is
the unit of a data set that VSAM preformats for data integrity as records
are added to the data set. The number of control intervals in a control area
is fixed by VSAM; the minimum is two. In a key-sequenced data set,
control areas are also used for placing portions of the index next to the
data set and for distributing free space throughout the data set. Free space
is distributed as a percentage of control intervals in each control area.

The records in a VSAM data set can be either fixed or variable; VSAM
treats both types in the same way. It puts control information at the end of
a control interval to describe the data records stored in that control interval.
The combination of a data record and its control information, even though
they are not physically adjacent, is called a stored record. When adjacent
records are the same length, they share control information. Figure 8.10
shows how data records and controi information are stored in a control
interval.

Although the records for each type of VSAM data set are similar in that
they are all stored in control intervals, there are significant differences in
the way VSAM processes each data set type. These differences are
explained in the following text.

Control Interval

Data Data Data Data Data Data Control
Record Record Record Record Record Record Information

Jilaure 8.10. Data Records aod Cootrollnformatioa Placement

Chapter 8: Satisfying 1/0 Requests and Data Management 1.19

8-20 OS/VSl MVS Overview

Key-Seque"ced Data Set

A key-sequenced data set is always defined with an index and distributed
free space. The index relates key values to the location of the associated
record in the data set. The index created with the data set is the prime
index; other indexes, called alternate iDcIexes, can also be created for the
data set, as described later in this chapter under "Alternate Indexes."
Distributed free space is the number of control intervals within a control.
area that are initially left blank; VSAM uses the distributed free space to
add records to the data set in key sequence. VSAM also reclaims space
freed by the deletion or shortening of records; that is, such space is also
available to hold additional records.

The index for a key-sequenced data set has one or more levels, each of
which is a set of records that contains entries giving the location of the
records in the next lower level. The index records at the lowest level are
called the sequence set; they give the location of control intervals containing
data records. The records in all higher levels are called the iDdex set; they
point to lower-level index records. The highest level always consists of only
one record. The index of a small data set thus might consist of one record.

Figure 8.11 shows the levels of a prime index and the relationship
between a sequence-set index record and a control area. Note that the
highest-level index record (A) controls· the entire next level (B through Z)
and that each sequence-set index record points to a control area as well as
to control intervals within the control area.

Figure 8.11 also shows both vertical and horizontal pointers. Vertical
pointers are followed to access records directly by key. Horizontal pointers
are followed between the sequence-set index records to access records
sequentially by key. To reduce the size of the index, keys can be
compressed; that is, VSAM retains only those characters required to
distinguish one key from another.

Because VSAM transmits control intervals between direct access storage
and virtual storage, index keys are compared and stored and records are
accessed while they are in virtual storage.

} Inde. Set

Index

Sequence Set

Data Set •••

Control Intervals of First Control Area Control I ntervals of Second Control Area

Fipre 8.t t. Relationships Betweea Leyels of • Prime Index

Entry-Sequenced Data Set

Records in an entry-sequenced data set are loaded in the order in which
they are received. When VSAM places a record in the data set, it returns
the relative byte address (RBA) of the record to the user program. Thus,
the records could be accessed directly because the user program can create
an index based on the RBAs returned by VSAM.

When the records are accessed sequentially, VSAM retrieves them in the
order in which they were stored. Thus, an entry-sequenced data set is very
useful for such applications as a journal or a log.

No prime index is associated with an entry-sequenced data set; however,
it can have an alternate index. See "Alternate Indexes" later in this chapter.

Relative Record Data Set

In a relative record data set, each record occupies a fixed-length slot, each
of which has a relative record number ranging from one up to the total
number of records in the data set. A record is stored and retrieved
according to the number of the slot that it occupies.

Because a slot can contain data or be empty, a data record can be
inserted., moved, or deleted without affecting the position of other data
records. Records can be accessed either sequentially or directly but only by
relative record number; a record cannot be accessed by its relative byte
address (RBA).

Qapter 8: Satisfying I/O Requests and Data Management 8-21

8-22 OS/VSl MVS OYeniew

A relative record data set is appropriate for many applications that use
fixed-length records. A user program could, for example, process a field in
each record to yield a unique relative record number for each record. Then,
a record could be located directly through the contents of the field. In this
way, a relative record data set could be accessed as if it were a
key-sequenced data set but without the overhead required to search through
index records to locate a particular record.

Like a key-sequenced or entry-sequenced data set, records in a relative
record data set are grouped together in control intervals. Each control
interval contains the same number of slots, the size of which is the record
length specified when the data set is defined. The number of slots in a
control interval is determined by the control interval size and the record
length.

Altemate Indexes

An alternate index provides another way to gain access to a single data set,
thus eliminating the need to keep multiple copies of the same information
organized in different ways for different applications. For example, a
payroll data set indexed by employee number can also be indexed by other
fields, such as employee name or department number. Thus, multiple
alternate indexes can be associated with the same base data set, allowing
multiple logical paths to the same data.

VSAM can build an alternate index for either a key-sequenced or an
entry-sequenced data set. Each entry in an alternate index for a
key-sequenced data set contains an alternate key and one or more prime
key pointers. Each entry in an alternate index for an entry-sequenced data
set contains a key and an RBA pointer. Alternate indexes can be used to
access a data set either sequentially or directly.

Alternate indexes must, of course, be updated to reflect changes to the
base data set. Either VSAM or the user program can maintain the alternate
indexes.

System Catalog

Under MVS, the VSAM master catalog, which acts as a central information
point for volumes, data spaces, and data sets controlled by VSAM, is.also
the system catalog.

The system catalog contains pointers to VSAM data sets, to all system
data sets that must be cataloged, to VSAM user catalogs, and to
non-VSAM data sets and user catalogs. Non-VSAM data sets are called OS
data sets, and non-VSAM user catalogs are called CVOLs. Figure 8.12
shows the structure of the system catalog.

There can be only one system catalog. It is established at system
generation time and must be available to the system during system
initialization and operation to locate user catalogs, data spaces, and data
sets. The volume on which the system catalog is defined must be
permanently mounted.

as
Data Set
Information

as
CVOL
Information

figure 8.12. Structure of the System CataIoa

MVS
Master Catalog

VSAM
and
Other
Data Sets

VSAM
Data Sets

VSAM
and
Other
Data Sets

Optional
VSAM
User
Catalog(s)

VSAM
Data Sets

Qapter I: Satbf)'iall/O R~ aM Data Managelllellt 1-23

1-24 OS/VSl MVS Oreniew

Chapter 9: Recovering From Errors

A system is available when both its hardware and software are capable of
processing jobs. Error recovery in MVS is designed to increase the
availability of the system and reduce the impact on users when errors occur
in critical software and hardware components. If recovery is not possible,
MVS attempts to continue without the damaged facility. In general,
recovery is attempted in such a manner that the recovery processes are
transparent to the user.

Recovery routines have four objectives:

• To isolate the error
• To assess the damage, and attempt to confine it to one user or task
• To indicate the actions, such as dumping, that should be taken
• To repair the damage and perform clean-up processing so that the

function is reinvokable

In MVS, error processing of software failures is handled by recovery
termination, and error processing of hardware . failures is handled by
recovery management support (RMS). As a result of these facilities, MVS
prOCessing continues with minimal downtime.

Recovery Termination
The recovery termination manager (RTM) monitors the flow of software
recovery processing by handling all abnormal termination of tasks and
address spaces, and passing control to recovery routines associated with the
terminating functions. The RTM enables user programs to establish their
own recovery protection and system programs to enhance system
serviceability and reliability.

The RTM is invoked for the following conditions:

• 110 error during a page-in operation
• Program error not handled by a program interruption routine
• Machine error not handled by hardware recovery
• Supervisor call that is invalid
• Restart operation initiated by the console operator
• CALLR TM macro instruction directed towards another task

(ABTERM)
• CALLRTM macro instruction directed towards an address space

(MEMTERM)
• ABEND macro instruction
• Dynamic address translation (DAT) error
• Branch entries for abnormal termination requests
• Reentry for abnormal termination requests
• Reentry for machine checks

Two types of recovery routines are identified by the RTM: task recovery
routines and functional recovery routines. These routines are described in
the following sections. (For more information on the recovery routines and
the RTM, see OSIVS2 System Programming Library: Supervisor,
GC28-0628.)

Chapter 9: Reeo,eriDI From Enors 9-1

,.2 OS/VSl MVS OYeniew

Task Recovery Routines

Task recovery routines (ST AE/ST AI, EST AE/EST AI) provide recovery for
those programs that run enabled, unlocked, and in task mode. They are
established by using the ST AE or EST AE macro instruction or the ST AI or
ESTAI parameter of the ATTACH macro instruction.

Issuance of the ST AE or EST AE macro instruction or A TI ACH with
the ST AI or EST AI option allows the user to intercept an anticipated
abend. Control is given to a user-specified routine in which the user may
perform pretermination processing, diagnose the cause of the abend, and
specify a retry address if he wishes to avoid the termination. The routines
operate in the mode (problem program or supervisor) that existed at the
time. the ST AE/EST AE request was made.

No*: The ST AE macro instruction is available with OS/VS2 Release 1
(SVS) and with aS/MVT and as/MFr. Although ST AE is also available
in MVS, it is recommended that EST AE be used in MVS. EST AE provides
increased capabilities over ST AE: it can schedule clean-up processing under
certain instances for which ST AE routines do not get control, and it can
provide defaults for the most commonly used options.

If a task is scheduled for abnormal termination, the recovery routine
specified by the most recently issued EST AE (or ST AE) macro instruction
is given control. If the EST AE routine cannot provide recovery for the
error, the next higher-level ESTAE routine (if any) associated with the task
is given control. (This, process of passing control from a recovery routine to
a higher-level recovery routine along a preestablished path is called
percolation, and does not apply to STAE routine.) Each ESTAE routine for
the task is then given control, one at a time in LIFO (last-in fust-out)
order, until retry is requested or all routines for the task are exhausted.
When EST AE processing is exhausted, abnormal termination occurs.

Functional Recovery Routines

Functional recovery routines (FRRs) provide recovery for those system
programs that run disabled, locked, or in SRB (service request block) mode.
The system programs establish the FRRS by using the SETFRR macro
instruction.

The SETFRR macro instruction provides each system program with the
ability to define its own unique recovery environment. Each FRR
established by a system program is placed in an FRR LIFO (last-in
first-out) stack that is used during processing of the RTM. The SETFRR
macro instruction can be used to add, delete, or replace FRRs in the stack,
or to purge all FRRs in the stack.

Each FRR stack used by RTM contains the addresses of the FRRs
established to protect a single path through the system control program.
When an error occurs in a path, the RTM passes control to the last FRR in
the associated stack. If the FRR cannot provide recovery for the error, the
previously-established FRR in the stack is given control (percolation.) Each
FRR in the stack is eventually given control, one at a time in LIFO order,
until retry is requested or the stack is exhausted. When FRR processing is
exhausted, appropriate task recovery routines (if any exist) are given
control; otherwise, abnormal termination occurs.

Any user-written routines outside the control program that are qualified
to issue the SETFRR macro instruction may add one, and only one, FRR
to a stack. If m~re than one FRR is added to a stack, abnormal termination
may occur when SETFRR is issued .

. Recovery Management Support
Recovery management support (RMS) includes those standard MVS
facilities that gather information about hardware reliability and allow retry
of operations that fail because of processor, I/O device, or channel errors.
The facilities are designed to keep the system operational in the event of
hardware failures.

The RMS facilities are:

• Machine check handler
- Alternate CPU recovery
- Channel reconfiguration hardware

• Channel check handler
• Dynamic device reconfiguration
• Missing interruption handler

For information on the RMS facilities in an MP environment, see OS/VSl
MVS Multiprocessing: An Introduction and Guide to Writing Operating and
Recovery Procedures, GC28-09S2.

Machine Check Handler

The machine check handler (MCH) minimizes the impact of machine
malfunctions on System/370 models supported by MVS. It alerts the
control program of any hardware failures that could affect the successful
execution of the control program.

Recovery from machine malfunctions is initially attempted by the
hardware instruction retry (HIR) and error checking and correction (ECC)
facilities of the hardware. If the hardware recovery attempts are
unsuccessful, MCH is invoked to analyze the data and isolate the source of
error. MCH then provides the recovery termination manager (RTM) with
an analysis of the error.

When the RTM receives control, it records the error analysis on the
SYS1.LOGREC data set and invokes the appropriate functional recovery
routines to attempt recovery from the machine check. If recovery is
possible, RTM resumes the interrupted program at the point of interruption;
if recovery is not possible, RTM terminates the interrupted program.

In a uniprocessing environment, if MCH determines that processing
cannot continue on the processor, it will terminate execution on that
processor and place the processor in a disabled wait state. In a
multiprocessing environment, however, MCH will invoke the alternate CPU
recovery routine.

Chapter 9: Recovering From ElTon 9-3

Figure 9.1 demonstrates the flow of control through the machine check
handler and, also, through alternate CPU recovery and channel
reconfiguration hardware.

J Task In Exec,ution
__ ' ... A t ... T ... i m8 Of Error

.,..."."", 11

_'~

ABEND -

Figure '.1. MOl Control Flow

9-4 OS/VSl MVS Oreniew

Machine Check

Repairable
Machine
Check

Retry

-
Terminate

Machine Check
Handler (MCH)

Terminating
Machine Check UP

Nonrepairable
Machine Check MP

Recovery
Termination
Manager
(RTM)

Recovery
Routines
(FRRs, ESTAEs)

Alternate ~
CPU Recovery
(ACR) I+--

System
Terminates

1/0 Restart

! 1
Channel
Reconfiguration
Hardware (CRH)
·168 MP Only

Alternate CPU Recovery

The alternate CPU recovery (ACR) routine provides a multiprocessing
system with the ability to recover system operations on the operational
processor after one processor fails. Where possible, it will take responsibility
for all work in progress on the failing processor, including I/O.

In a mUltiprocessing environment, if MCH is unsuccessful because of a
recursive error or a damaged processor, MCH invokes ACR on the
operative processor to terminate execution on the failing processor. When
ACR receives control, it attempts to transfer work that was in progress on
the failing processor to the operative processor. The recovery termination
manager then initiates recovery by invoking the appropriate functional
recovery routines to free resources associated with the failing processor.

ACR then cleans up resources associated with the failing processor and
frees them, where possible, for use by the operative processor. The failing
processor is logically disconnected along with all devices uniquely affiliated
with that processor. Since the remaining processor cannot continue to
handle the load of two processors, it is important for the installation to take
appropriate actions to reduce workload and reconfigure I/O.

In a system without channel reconfiguration hardware (CRH), a
processor failure in a multiprocessing environment means the loss of all I/O
paths through channels attached to the lnoperative processor. However, if
CRH was included during system generation for a Model 168 MP, then
ACR passes control to the CRH routine.

Channel Reconfiguration Hardware

Channel reconfiguration hardware (CRH) enables either processor in a
Model 168 MP to control the operation of the channels normally dedicated
to the other processor. The facility is intended as a short-term recovery aid,
and can degrade system performance if kept active indefinitely.

CRH receives control when a hardware failure in one processor causes
ACR to take that processor offline, or when the operator varies online a
channel that is attached only to an offline processor. It is available only on
a 168 MP and is included with the 168 hardware; however, it is activated
only if included during system generation.

With CRH, since the operative processor can access the channels on the
inoperative processor, all devices in the configuration remain accessible to
the system. In addition, CRH allows access to symmetric devices when the
paths through the operative processor are busy or offline, or when the
device is reserved through a path on the inoperative processor.

Since the operation of CRH can result in significant system overhead,
the installation should deactivate CRH as soon as possible.

Channel Check Handler

The channel check handler (CCH) reduces the impact of channel
malfunctions on System/370 models supported by MVS. It aids the I/O
supervisor (lOS) in recovering from channel errors and informs the operator
or system maintenance personnel when errors occur.

Chapter 9: Recovering From Errors 9-5

''''' OS/VSl MVS OYemew

CCH receives control from the lOS after a channel malfunction is
detected. It analyzes the type and extent of the error using .he information
stored by the channel. If the error condition affects the entire channel,
CCH invokes the I/O restart function of lOS to recover the active I/O on
the failing channel. If any other error condition occurs, CCH allows the
device-dependent error recovery procedures to retry the failing I/O, forcing
the retry on an alternate channel path (if one is available). Records
describing the error are written to the SYS 1.LOGREC data set.

CCH performs no error recovery itself: it does not retry any operation or
make any changes to the system. Recovery from channel errors is
performed only by the device-dependent routines.

Dynamic Device Recon/iguration

Dynamic device reconfiguration (DDR) allows the system and user to
circumvent an I/O failure, if possible, by moving a demountable volume
(tape or disk) from one device to another or by substituting one unit record
device (reader, punch, or printer) for another. DDR requests are processed
without shutting down the system and may eliminate the need for
terminating a job.

A DDR swap can be initiated by either the system or an operator. When
a permanent I/O error occurs, the system initiates a swap along with a
proposed alternate device to take over the processing of the device on
which the error occurred. The operator can accept the swap and proposed
device, accept the swap but select another device, or refuse the swap. The
operator himself may initiate a swap (via the SW AP command) if a device
cannot be made ready, if one unit record device is to be substituted for
another, or if, for example, cleaning procedures are to be carried out on a
device.

For additional information on DDR, see Operator's Library: OS/VS2
MVS System Commands, GC38-0229.

Missing Interruption Handler

The missing interruption handler (MllI) checks whether expected I/O
interruptions occur within a specified period of time. If an inteIT'..lption does
not occur, the operator is notified so that corrective steps c~n be taken
before system status is harmed. MIH does not support teleprocessing
devices or devices that are marked offline.

MIH is invoked as part of the master scheduler. It checks for missing
interruptions caused by pending device and channel ends, DDR swaps, and
MOUNT commands. The absence of such interruptions may indicate, for
example, that a device is not ready, a MOUNT message has not been
satisfied, or a device has malfunctioned. Channel and device end
interruptions are recorded on the SYS 1.LOGREC data set.

. If a pending condition is found and remains pending after a useror
system-specified time interval has elapsed, a missing interruption condition
is peteqn.ined to exist and the operator is notified. The specific pending
conqition 4etermines what operator action is needed to correct the situation.

Chapter 10: Multiprocessing

With the growth of multiple applications and the proliferation of online
users, an installation may find that a single processor cannot service its
needs. More capacity and higher speed are often required. A viable solution
to the need for more computing power is a configuration of several
processors sharing one or more critical resources. In such a configuration
the processors share the workload and synchronize their activities.

Sharing, synchronizing, and controlling the work on several processors is
generally called multiprocessing. The two basic types of multiprocessing are:

• Loosely-coupled mUltiprocessing, which allows processors to operate
independently, yet share a common workload queue. The processors
are connected by channel-to-channel adapters or by shared DASD.

• Tightly-coupled mUltiprocessing, which allows two processors to
operate under the control of a single operating system. The processors
are connected by·a multisystem unit.

Loosely-Coupled Multiprocessing
Loosely-coupled multiprocessing affords an easy growth path. The
installation can connect many combinations of System/360 and System/370
processors into a single configuration with the following traits:

• JES2 or JES3 supports the processors' access to a common workload
queue.

• Each processor has its own control program.
• The 1/ 0 device configurations on the various processors need not be

identical. However, availability can be improved by including
redundant components and by making the configuration symmetrical.

• Jobs can be routed to a particular processor, if necessary.

For further discussion of JES2 and JES3 multiprocessing support this
book, see "Multi-Access Spool" under "JES2 Features" in chapter 5, and
"JES3 Features" also in chapter 5.

For more detailed information about JES2 and JES3 multiprocessing
support, refer to OS /VS2 MVS System Programming Library: JES2 and
Introduction to JES3, respectively.

Tightly-Coupled Multiprocessing
In a tightly-coupled multiprocessor (MP), the two processors share all
processor storage, communicate directly with each other, and operate under
the control of a single system control program (OS/VS2 MVS). MVS
supports tightly-coupled MPs and APs on the mM System/370 Model 158
and Model 168.

Chapter to: MuItlprocessiag 10. t

10-2 OS/VSl MVS OYerriew

A Model 158 or 168 tightly-coupled MP configuration in some respects
has less complex operational requirements than two uncoupled 158 or 168
processors. The MP presents a single system image to the operator even
though there are two processors available for work. The operator has one
operational interface to the entire system, one job scheduling interface, and
one point of control for all the resources available. In addition, the operator
must communicate with and control only one operating system instead of
two.

Three other important characteristics of a tightly-coupled MP are:

• The ability to dynamically change the hardware configuration to meet
various needs

• The ability to communicate between the processors to coordinate their
activity

• The ability to control the operation of the two processors and yet
keep tbeir individual control and status information separate

Configuration

A tightly-coupled MP configuration consists of many hardware components,
which MVS regards as resources. "Reconfiguration" refers to the process of
changing the configuration of these hardware components. It involves
varying system resources online or offline as well as changing some control
switches on the processors' configuration control panel to establish the
corresponding physical configuration.

Change to the configuration can occur for several reasons, such as:

• A segment of storage that experiences .failures must be disabled from
both processors. By removing the failing storage from the system
while the system is still processing, the system operator can isolate the
failure from the MVS system and allow the repairs to take place.

• A scheduled change from MP mode to UP mode can allow MVS to
continue uninterrupted on one processor while the other processor
runs a secondary operating system or undergoes repairs.

Logical Reconfiguration

The process of varying system resources online and offline with the VARY
command is called logical reconfiguration. The system operator uses the
VARY command to make system resources (processor, storage, I/O device)
either available or unavailable for system use, for example, changing from
MP mode to UP mode by varying a processor offline. This command, along
with other system commands and operator actions, can separate a system
resource from an active MP system without necessarily interrupting the
work being processed.

Physical Reconfiguration

When the system operator changes the logical configuration, he must make
corresponding changes to the physical configuration. This process, called
physical reconfiguration, involves the configuration control panel which is
housed in the multisystem unit that connects the two processors. The
configuration control panel contains rotary switches, toggle switches,
pushbuttons, and 'display lights that allow the operator to establish:

• System mode - MP mode in which the processors share real storage
and communicate with each other, or UP mode in which the
processors operate independently, do not share real storage, and do
not communicate with each other.

• Storage configuration - Each storage switch assigns a real storage
.address range to its associated segment of storage (a storage element).
Furthermore, each storage element can be enabled for access by one
or both processors or disabled for access by both processors.

• I/O device configuration - A pair of I/O allocation switches (one
for each processor) is assigned to each control unit connected to the
configuration control panel. Each switch establishes the associated
processor's access to a particular control unit. As with segments of
storage, each control unit can be enabled for access by one or both
processors or disabled for access by both processors.

• Validity of a desir~d configuration - The configuration-validity
indicators show whether the desired configuration control panel
settings are acceptable (valid). If the specified configuration is valid,
pressing the ENTER CONFIG pushbutton causes the control panel
settings to take effect.

Communicatioll

To control the system resources, the two processors must communicate 'with
each other. Communication between the processors is referred to as
interprocessor communication (!PC). The MVS software and the
System/370 hardware both provide support for IPC.

MVS-Initiated Communication

MVS establishes interprocessor communication for several purposes:

• To perform system initialization
• To dispatch work or start an I/O operation
• To stop or restart a processor during reconfiguration
• To attempt alternate CPU recovery

To accomplish this communication, MVS uses the signal processor (SIGP)
instruction. A SIGP instruction indicates the address of the processor being
signaled and transmits a request to that processor. The request indicates the
function to be performed. When the addressed processor receives the signal,
an external interruption occurs. As a result of the interruption, the
addressed processor decodes the request, performs the requested function
(if possible), and transmits a response to the calling processor. The
response contains a condition code and status information.

The following topics describe some of the SIGP requests used by the
system.

InitiaIization: During the initialization of a tightly-coupled MP system, MVS
can determine whether the other processor is online by issuing a SIGP
sense instruction. The addressed processor responds with an indication of its
status. If the response indicates the processor is online, MVS can issue a
SIGP start instruction. The addressed processor performs the start function
just as though an operator had pressed the START key on the processor's
console. When initialization is complete, multiprocessing operation can
proceed on both processors.

Chapter 10: Multiprocessing 10-3

10-4 OS/VS1 MVS OYeniew

Operatioo: Normal operation proceeds with each processor receiving work
from the MVS dispatcher routine. The dispatcher is normally entered after a
system event occurs,or when a unit of work is complete. However, if one
processor has entered the wait state because it had no work to perform, the
other processor may wish to tell the idle processor that new work has
arrived. This kind of communication is called "shoulder-tapping."

Other situations may arise that make shoulder-tapping necessary. For
example, a program running on processor A may need to issue an I/O
request to a device that is attached only to processor B. Using the SIGP
extemal-call instruction, processor A can ask processor B to perform the
operation.

Reconraguration: When the operator varies a processor offline or online,
MVS-initiated communication may be necessary. For example, if the master .
scheduler is running in processor A when a VARY command is received to
vary processor B offline, processor A must tell processor B to stop. To do
this, processor A issues a SIGP stop instruction. Processor B enters th~
stopped state just as it would if the STOP key on the processor's system
console bad been pressed. To vary processor B back online, processor A
can issue a SIGP restart instruction. Processor B performs a restart function
just as though the RESTART key had been pressed.

Recovery: When one processor wants the other to perform an action
immediately, it executes a SIGP emergency-signal (EMS) instruction, which
also results in an external interruption on the other processor. A SIGP
emergency-signal is used to initiate actions such as a request from a failing
processor for alternate CPU recovery activity on the operative processor.
The operative processor can transmit a SIGP program-reset instruction to
reset any pending I/O operations that were in progress on the failing
processor. The operative processor may also issue a SIGP
stop-and-store-status instruction to determine the status of the failing
processor. If the status can be obtained, the MVS recovery routines have a
better chanc!e oT succeeding.

Hardware-Initiated Communication

In addition to the signals exchanged between processors through use of the
SIGP instruction, the System/370 hardware supports direct communication
between the processors. This communication is necessary to ensure:

• Clock synchronization
• Storage control
• Recovery

Cock Synchronization: In a tightly-coupled MP configuration, each
processor has a time-of-day (TOD) clock. When the two processors operate
in MP mode, the TOD clock in one processor transmits synchronizing
pulses to the other processor to keep the TOD clocks synchronized. When
the operator initializes (IPLs) a tightly-coupled MP system or varies a
processor online, he must ensure that the TOO clocks are synchronized. If
MYS detects that the clocks have become unsynchronized, an external
interruption occurs and the processor that accepts the interruption first can
reset the clocks and initiate operator intervention, if necessary.

Storage Control: Because storage is shared between the processors, the
processors must communicate with each other to ensure that all references
to shared storage refer to the most current data. Therefore, each processor
(for example, processor A) notifies the other processor (for example,
processor B) when it modifies the contents of a real storage location.
Processor B then determines whether its high-speed buffer currently
contains the contents of that same real storage location. If processor B's
buffer contains this same storage, this copy of the storage is no longer
·current; processor B invalidates its copy in the buffer.

Re~overy: When a processor experiences a failure that causes it to enter
the check-stop state, the failing processor generates a malfunction-alert
interruption on the other processor, which then attempts recovery. Alternate
CPU recovery routines receive control and attempt to keep MVS running
on the operative processor.

Control

Although tightly-coupled MPs share all real storage and run under the
control of a single MVS operating system, each processor must have a
unique physical address for identification ·purposes. Likewise, each processor
must have its own status and control information.

Physical Addresses

In a tightly-coupled MP, one processor is called processor A and the other
is called processor B, as indicated on the configuration control panel.
Internally, the processors have addresses of 0 and 1, respectively, which the
processors must use when signaling each other and when recording the
processor identifier in operator messages, SMF records, and so on. The
operator must use 0 and 1 when issuing the configuration commands (for
example, VARY PATH, VARY CPU). These addresses are permanent and
apply in both MP and UP modes.

Status and Control Information

The System/370 hardware and MVS software maintain status and control
information in specifically-assigned real storage locations. This information
consists of data such as PSWs. A 4096-byte block of fixed storage is
reserved for the information in the low-address range (storage locations
0-4095) of real storage. However, the two processors can execute two jobs
concurrently, one in each processor. In order to keep the jobs separate,
each processor must have its own storage area. The technique used to
achieve this is called prenxing, whereby the two processors do not use
absolute locations 0-4095 (0-4K) for status and control information. Each
processor has its own separate 4K-byte prefixed storage area (PSA) of real
storage. MVS can locate each PSA by referring to the address contained in
the prefix register for each processor.

Chapter 10: Multiprocessing 10-5

10-6 OS/VSl MVS OYernew

Attached Processor System
An attached processor (AP) system consists of a System/370 Model 158 or
Model 168 proeessilig unit (called the host processor) and an attached
processing unit. The host processor provides instruction processing, I/O
control, and storage control. The attached processor has a similar
inStruction processing ability, but has no I/O or storage control of its own.
The host processor shares its I/O and storage control with the attached
processor.

Most communication and control facilities of a tightly-coupled MP also
apply to an AP system. However, an AP system's availability is not
significantly increased over a UP system because an AP system's ability to
reconfigure is limited. An attached processor does not have the same
configuration control panel that an MP has. If an attached processor fails, it
can be varied offline and MVS can continue on the host processor in UP
mode. But if the host processor fails, it cannot be varied offline and MVS
cannot continue on the attached processor. [Exception: The Model 168 does
allow the operator to reinitialize (re-IPL) an attached process'.>r as a
stand-alone host processor with acCess to channels and storage.]

The advantage of an attached processor system is increased perfomiance.
Just as in a tightly-coupled MP system, an AP system can execute two tasks
concurrently, one in each processor. Part.of the performance improvement
results from less interprocessor communication (no need to communicate
for I/O-device and storage control).

A
abnormal termination (see recovery termination

management)
ACCEPT function 3-18
accepting work 5-1
access method 1-4

appendages 8-10
description 8-1
for lES 5-6"
functions 8-8
types 8-2
VSAM 8-17

access techniques 8-2
accessible

devices-checking for 4-12
paths-checking for 4-12

ACR (alternate CPU recovery) 1-7,9-5
address 1-2
address space 2-6

content of 4-6
creation of 5-3

when prevented by SRM 7-5,7-6
improved performance 1-10
initialization 4-6
locks for 6-11,6-12
serialization 1-13
swapping 1-10

address space control block (see ASCB)
address space control block extension (ASXB), in TCB

structure 6-8
address space identifier (ASIO) S-4
addresses 0 and 1 10-5
addressing

in MVS 1-2
scheme 1-2

allocating
internal readers during initialization 4-26
I/O resources (see device allocation)
storage 1-3
virtual space during initialization 4-6

allocation of devices 5-12
dynamic 5-13
influenced by SRM 7-6
major functions 5-13

allocation routines, called by initiator S-6
ALPAQ initialization 4-20
alternate

console, initializing 4--13
CPU recovery (ACR) 1-7,9-5
indexes 8-20,8-22
parameter lCrt 4-9
SMP control data set 3-18

AP (see attached processor)
APF (authorized program facility)

initializing 4-23
list (IEAAPFxx), use during initialization 4-2.4
system parameter uSe 4-24
table, initializing 4-23

APG (automatic priority group)
controlled by SRM 7-6
initialization 4-16

appendages to access methods 8-10
APPLY function 3-18
ASCB (address space control block)

containing dispatching priority 6-10
in TCB structure 6-8
initialization 4-27

ASID (address space identifier) 5-4
ASM (auxiliary storage manager) 2-13

initializing 4-17
locks 6-11,6-12

ASP main processors 1-15,5-10
assembling system generation macros 3-5
assigning

a job class 5-2
a master console 4-14
resources to jobs 5-12

ASXB (address space control block extension)
in TCD structure 6-8

ATTACH macro instruction 9-2
ATfACH routine processing 6-7
to create TCDs 6-7

attached processor (AP) 1-5,1-6.10-6
reconfiguring 10-6

attaching the initiator during initialization 4-26
attribute tCrt, volume 4-12
attributes, initializing volume 4-12
authorized program facility (see APF)
automatic commands 5-8
automatic priority group (see APG)
auxiliary storage 1-4

shortages detected by SRM 7-5
auxiliary storage manager (see ASM)
availability 1-5

multiple virtual storage 1-6
multiprocessing 1-5

available

B

devices-checking for 4-11
frame queue, used by SRM 7-5
path, definition of 4-12
paths-checking for 4-11

back cnd of EXCP driver 8-14
base, initialization of master scheduler 4-26
basic access tcchnique 8-2
basic direct access method (BDAM) 8-3
basic partitioned access method (BP AM) 8-3
basic sequential access method (BSAM) 8-2
batch jobs, TCB structure for 6-8
DDAM (basic direct access method) 8-3
BLDL list 2-23

initializing 4-23
BLDLF system parameter use 4-23
block. multiplexer channels 1-4
bottlenecks

device allocation 1-12
mUltiple locks 1-13
reduction in 1-11
service requests 1-13
virtual input/output 1-12

BPAM (basic partitioned access method) 8-3
BSAM (basic sequential· access method) 8-2

Index

building a test system phase of MVS system IPO 3-12

C
CAW (channel address word) 8-12
CCH (channel check handler) 1-7,9-5
CCW (channel command word) 8-9
change, bit 2-4,2-11,2-12
changes, identifying prerequisite PTF or user 3-18
changing

Index 1-1

the hardware configuration 10-2
the MVS machine configuration 3-4

channel
logical 4-16
malfunction recovery 9-6
role in I/O operation 8-1
scheduler 8-12

channel address word (CAW) 8-12
channel check handler (CCH) 1-7,9-5
channel command word (CCW) 8-9
channel program

definition 8-9
dynamically modifying (see also PCI)
dynamically modifying 8-10,8-11

channel reconfiguration hardware (CRH) 1-7,9-5
channel status word (CSW) 8-13
channel use, planning for 3-3
channel-to-channel (CTC) adapter 5-10,10-1
checkpoin~, installation planning 3-3
CLASS parameter 5-3
classes of jobs 5-2
clearing storage during initialization 4-3
CLOSE macro instruction processing 8-7
closing the system catalog during initialization 4-14
CLP A system parameter usage 4-17
cluster 8-18
CMD system parameter use 4-26
CMS (cross-memory services)

locks for 6-11,6-12
cold start

page data set initialization 4-17
PLPA initialization 4-19
VIO data set initialization 4-18

command list (COMMNDxx) use during initialization
4-26

COMMNDxx use during initialization 4-26
common area

of virtual storage' 2-17
space allocation 4-6

common service area (CSA) 2-18
common workload queue 5-9
communication between processors 10-3

clock synchronization 10-4
during initialization 10-3
during operation 10-4
during reconfiguration 10-4
during recovery 10-4,10-5
hardware-initiated 10-4
'MVS-initiated 10-3
shoulder-tapping 10-4
storage control 100S

communications task initialization 4-26
concatenating

libraries during initialization 4-21
PAGE parameter values 4-17

concepts of job scheduling 5-2
configurability commands 10-5
configuration

changing the MVS machine 3-4
control panel 10-2
for multiprocessor 10-2

configuration-validity indicator 10-3
configuring

hardware components 10-2
I/O devices 10-3
storage 10-3

control
and status information 10-5
area 8-19
functions

SMP 3-16,3-17

1-2 OS/VSl MVS (hemew

interval 8-18
within an MP 10-5

control blocks
ASCB and ASXB in TCB structure 6-8
ASCB containing dispatching priority 6-10
for an I/O operation 8-8
locks for 6-11,6-12
representing dispatchable units of work 6-1
use of SVRB in interruption processing 6-4

control program
generating the MVS system 3-7
options, selecting system 3-4

control statements
SMP function 3-15,3-16,3-18
syntax checking 3-18

converter 5-6
creating

an address space 4-27,5-3
dispatchable units of work 6-7

overview of 6-1
SRBs 6-9
TCBs 6-7

CRH (channel reconfiguration hardware) 1-7,9-5
cross-memory services (CMS), locks for 6-11,6-12
CSA (common service area) 2-18
CSW (channel status word) 8-13
CTC (channel-to-channeO adapter 5-10,10-1
current MPL (see target MPL)
CVlO s~em pa~ameter usage 4-18

o
DASD volumes, initializing prior to system generation 3-S
OAT (dynamic address translation) 2-6
data control block (DCB) 8-4
data extent block (DEB) 8-6
data management 8-1
data set

definition 8-1
organization 8-1

data space 8-18
DCB (data control block) 8-4
DD statement 5-12
DDR (dynamic device reconfiguration) 1-7,9-6
DDR swap 9-6
deadline scheduling 5-11
deadlocks, role of locks in preventing 6-11
DEB (data extent block) 8-6
defects, correcting program 3-15
defining performance objectives, instructions on 3-3
deleting information from SMPCDS 3-18
demand paging 2-10
demountable volumes, initializing 4-13
dependent job control 5-11
DEQ macro instruction (see enqueuing)
device

allocation 1-12,5-12
dynamic 5-13
major functions 5-13

checking for access able 4-12
checking for available 4-11
fencing 5-11
generation

I/O 3-4,3-7,3-8
unallocation, major functions 5-13

DIE (disabled interruption exit) of EXCP driver 8-13
direct

data set organization 8-2
specification of system parameters 4-9

disabled state 6-2
dispatcher (see also dispatching work)

locks for 6-11,6-12
dispatching priorities

establishing a range of 4-16
under control of SRM 7-6

dispatching work 6-10
after interruption processing 6-7
creating dispatchable units of work 6-7

SRBs 6-9
TCBs 6-7

functions of dispatcher 6-10
order of dispatching 6-10
role of dispatcher 6-1
when dispatcher receives control 6-10

distributed free space 8-20
distribution libraries 1-16

creating new 3-15
modifying 3-4
modifying with SMP 3-13

• MVS system IPO 3-8
ordering IBM 3-4

DJC (dependent job control) 5-11
DUBs (see distribution libraries)
document, installation planning 3-1
documentation

MVS system IPO 3-9
printing the MVS system IPO 3-11

domain, providing guidelines for SRM's swap decision 7-3
DSI (dynamic system interchange) 5-12
duplex data set initialization 4-18
DUPLEX system parameter usage 4-18
duplicate VOLSER, scanning for during initialization 4-12
dynamic address translation (DAT) 1-3,2-6
dynamic allocation 5-13
dynamic device reconfiguration (DDR) 1·7,9-6
dynamic system interchange (DS1) 5-12

E
ECB (event control block) 8-8
ECC (error checking and correction) 9-3
effective real storage, limiting size of 4-3
element of storage 10-3
emergency-signal (EMS) SlOP instruction 10-4
enabled state 6-2
enhanced function 1-14

job entry subsystem 1-14
system generation and initialization 1-15
system operation 1-16
virtual storage access method 1-16

ENQ macro instruction (see enqueuing)
enqueuing

overview of 6-1
SRM control of users enqueued on resources 7-7

ENTER CONFIO pushbutton 10-3
entering and scheduling work 5-1
entry-sequenced data set 8-17,8-21
ERP (error recovery procedure) in post status 8-14
error checking and correction (ECC) 9-3
error processing .

of hardware failures 9-1
of software failures 9-1

error recovery 1-6,9-1
alternate CPU recovery 1-8
channel check handler 1-7
dynamic device recortfiguration 1-7
functional recovery routines 1-8
machine check handler 1-7
missing interruption handler 1-7
percolation 1-8 .•
procedure in post status 8-14
recovery management support 1-7

recovery termination management 1-8
task recovery 1-8

errors, recovering from 9-1
establishing recovery routines 1-8
ESTAE 1-8

macro instruction 9-2
recovery routine 9-2

ESTAI
parameter 9-2
recovery routine 9-2

event control block (ECB) 8-8
exclusive control of resources, requested on ENQ 6-10
EXCP driver

back end 8-14
disabled interruption exit (DIE) 8-13
front end 8-11

EXCP macro instruction 8-9
EXCPVR macro instruction 8-12
execution batch scheduling· 5-7
extended subtask abend exit 1-8
extension to MVS starter system 3-7
extensions and options 2-21
external interruptions 6-2

enabled/disabled state 6-2
interruption handler 6-4

external writer 5-7

F
failure of global processor 5-12
fetch protection 2-3,2-4
fix list (IEAFXxx), use during initialization 4-21
FIX system parameter use 4-21
fixed

BLDL list 2-23
link. pack area (FLP A) 2-23

initialization 4-21
priority of APO 7·7

flexibility 1-6
FLP A (fixed link pack area) 2-23

initialization 4-21
fragmentation 1-2
frame 1-3

definition 2-1
shortages

detected by SRM 7-5
front end of EXCP driver 8-11
FRRs (see functional recovery routines)
full production status, achieving 3-7,3-12
function control statements, SMP 3-15,3-16,3-18
functional recovery routines 1-8,9-2

SETFRR macro instruction 1-8
functions of job entry subsystem 5-1

o
generalized trace facility (OTF)

receiving control from program interruption handler
6-4

use during installation planning 3-3
generation

I/O device 3-4,3-7,3-8
planning for system 3-4
system 3-3
verifying system 3-7

global
locks 1-13,6-11
priority SRBs 6-10

in dispatching order 6-10
processor 5-10

failure 5-12

Index 1-3

greater support for interactive users 1-9
GTF (see generalized trace facility)

H
hardware

configuration 10-2
error processing 9-1
instruction retry (HIR) 9-3
recovery, communication during 10-5

hardware-initiated communication 10-4
clock synchronization 1 ()..4
during recovery 10-5
storage control 10-5

HASP II 1-15
hierarchical order of locks 6-11,6-12
HIR (hardware instruction retry) 9-3
host processor 1-6,10-6

I
IBM distribution libraries 3-3

modifying 3-4
ordering 3-4

IEAAPFxX list, use of 4-24
IEABLDxx use during initialization 4-23
IEAFIXxx use during initialization 4-21
IEAIPSxx lists 4-16
IEALODOO use during initialization 4-20
IEALP Axx use during initialization 4-23
IEAOPTxx list selection 4-16
IEAOPTxx member of SYS1.PARMLIB, used to influence

SRM decisions 7-1
lEAP AKOO use during PLP A initialization 4-19
IEASYSOO 4-9
IEAUNlPO, relocating during initialization 4-4
IH routines (see interruption handler routines)
IMPL (initial micro program load) 4-2
improved performance 1-10

device allocation 1-12
mUltiple locks 1-13
scheduler work area 1-12
service request blocks 1-13
system resources manager 1-10
virtual input/output 1-13

index set 8-20
indexed sequential access method (ISAM) 8-3
indexed sequential data set organization 8-1
initial micro program load (IMPL) 4-2
initial program loader (lPL) 4-1

bringing into storage 4-2
functions of 4-3

initial program loading 4-3
initialization

dearing storage during 4-3
functions, preliminary 4-4
instructions, list containing 4-9
of the link pack area (LPA) 4-18
process overview 4-1
relocating IPL during 4-4
via RIMs 4-10

initializing
ALPAQ 4-20
an address space 4-6
an alternate console 4-13
APF table 4-23
ASCB 4-27
ASM, rules for 4-18
authorized program facility 4-23
automatic priority group 4-16
auxiliary storage manager 4-17

1-4 OS/VSl MVS Overview

BLDL list 4-23
communications task 4-26
DASD prior to system generation 3-5
duplex data sets 4-18
fixed link pack area 4-21
FLPA 4-21
installation performance specification 4-16
I/O devices 4-11
LSQA 4-5
master console 4-13
master scheduler 4-1.4-24
master scheduler base 4-26
master scheduler region 4-26
modified link pack area 4-23
MVS system 4-1
NIP transient area 4-5
nucleus 4-1,4-4
optional system tuning parameters 4-16
page data sets 4-17
page frame table entry 4-5
pageable link pack area 4-19
permanently resident volumes 4-12
primary job entry subsystem 4-1
private volumes (PRV) 4-13
program manager 4-18
public volumes (PUB) 4-13
real storage 4-5
region control task 4-27
reserved volumes 4-13
SQA 4-5
storage volumes (STR) 4-13
subsystem interface 4-26
SVC table 4-23
swap data sets 4-18
system catalog 4-14
system console 4-2
system consoles 4-13
system pack list 4-19
system resources 4-1
system resources manager 4-16
TOD clock 4-26
VIO data sets 4-18
volume attribute 4-12

initiating
JES 4-27
the load procedure 4-2

initiator 5-2
associating classes with 5-2
attaching during initialization 4-26
attaching job steps 5-3
subroutine, and address space creation 5·S.

input
processing 5-6
stream 5-1

input/output (see I/O)
input/output block (lOB) 8-8
input/output supervisor (see lOS)
INSTALL

macro 3-13
options 3-1 S

SMP 3-15
installation

considerations, preliminary 3-1
planning 3-1

document 3-1
facilities 3·3
phases 3-2

productivity option 3·7
staffing 3-3
standards and MVS system IPO 3-11
tasks 3-2

verification procedure (IVP) 3-7
installation performance specification (IPS) 1-11

initialization 4-16
used to influence SRM decisions 7-1

installation plan
MVS system IPO 3-10

phase 1 3-11
phase 2 3-12
phase 3 3-12
phase 4 3-12
phase 5 3-12

installing
~Fs 3-13,3-15
selectable units 3-13,3-15
SUs 3-13
the MVS system 3-1
user modifications 3-13,3-16

,integrating and testing phase of MVS system IPO 3-12
integrity 1-13

use of address space 2-3
use of storage protect keys 2-3

interactive users 1-9
internal

JCL use during initialization 4:-27
text 5-6

internal readers
allocating during initialization 4-26
definition of 5-1
IBM-supplied RDR 5-2
STCINRDR 5-2
T.sUINRDR 5-2

interpreter 5-6
interprocessor communication (lPC) 10-3

MVS-initiated 10-3
interruption handler routines 6-2,6-4

switching control to 6-4
interruption processing 6-2

definition of interruption 6-2
enabled/disabled for interruptions 6-2
interruption handler routines 6-2,6-4
overview of 6-1
role of PSWs 6-2,6-4
summary of 6-7
types of interruptions 6-2

interruptions
(see also interruption processing)

definition 6-2
invalid page table entry 2-8
invoking

the JES procedure 4-27
the virtual storage manager during initialization 4-27

I/O allocation switches 10-3
I/O device

checking for accessable 4-12
checking for available 4-12
configuration 10-3
generation 3-4,3-7,3-8
initialization 4-11

I/O interruption handler 8-13
I/O interruptions 6-2

enabled/disabled. state 6-2
interruption handler 6-4

I/O loads, establishing 4-16
I/O management functiod of SRM 7-6
I/O operation summ~ 8-14
I/O request

in user program 8-6
processing 8-1

lOB (input/output control block) 8-8
lOS (input/output supervisor)

channel scheduler 8-12

drivers 8-1 1
function 8-10
I/O interruption handler 8-13
locks for 6-11,6-12
post status 8-1 4
receiving control from I/O interruption handler 6-4
recovery 9-6

(PC (see interprocessor communication)
IPL (initial program loader) 1-16,4-1,4-3

bringing into storage during initialization 4-2
functions of 4-3
relocating during initialization 4-4

IPO (installation productivity option) 3-7
documentation 3-9
installation plan 3-11

phase I 3-11
phase 2 3-12
phase 3 3-12
phase 4 3-12
phase 5 3-12

memo to users documentation 3-9
planning an installation documentation 3-9
system and installation guide 3-10
system contents documentation 3-9
tuning guide 3-10
uses for 3-8

IPS (see installation performance specification)
ISAM (indexed sequential access method) 8-3
isolate and protect 1-14
IVP (installation verification procedure) 3-7

J
JCL usage with MVS system IPO 3-8
JES (see job entry subsystem)
JES2 (job entry subsystem 2) 1-14,5-1

features 5-7
JES3 (job entry subsystem 3) 1-15,5-1

channel-to-channel adapter 5-10
deadline scheduling 5-11
dependent job control 5-11
device fencing 5-11
dynamic system interchange 5-12
features ·5-9,5-11
global processor 5-10

failure. 5-12

job

local processor 5-10
main processor 5-1 0
network job processing 5-11
priority aging 5-11
remote job processing 5-12
support for ASP 5-10

input 5-6
input stream 5-1
management (see job entry subsystem)
output 5-7

job class 5-2
job entry subsystem (JES) 1-14,5-1

access method 5-6
and address space creation 5-5
as an acronym 5-1
automatic commands 5-8
basic functions 5-1
communication with 5-6
concepts 5-1
execution batch scheduling 5-7
external writer 5-7
initializing 4-1
initiating 4-27
internal reader 5-2

Index I-~

JES2 I-IS
JES3 I-IS
multi-access spool 5-9
output processing 5-7
print-punch routines 5-7
priority 5-6
priority aging 5-7
procedures, invoking 4-27
purge processing 5-7
queues 5-6
stages of processing 5-6

execute 5-6
input 5-6
output 5-7
P!lrge 5-7

start-up 4-27
subsystem interface 1-15
terminolo,8y 5-I

job entry subsystem 2 (see JES2)
job entry subsystem 3 (see JES3)
job steps

K

allocation 5-13
attached by initiator 5-3
un allocation 5-13

key switch 2-5
key-sequenced data set 8-17,8-20

L
layout of virtual storage 2-16
level of user service, establishing 4-16
limited production, proceeding into 3-12
link list (LNKLSTOO or LNKLSTxx) creation or

modification 4-2 I
link pack area (LPA)

fixed 2-23
initialization 4-18
library (SYS1.LPALlB) use during initialization 4-19
modified 2-23
pageable 2-17

list, volume attribute 4-12
LNK system parameter use 4-21
load list use during initialization 4-20
load procedure, initiating 4-2
loading

programs into virtual storage 2-14
the nucleus 4-4

for initialization 4-1
local

job queue (see scheduler work area)
locks 1-13,6-11
priority SRBs 6-10

in dispatching order 6-10
processor 5-10

local system queue area (see LSQA)
locating the nucleus for initialization 4-1
lock manager 6-11
locking 6-10

definition of lock 6-10
global locks 6-10
hierarchical order of locks 6-11,6-12
local locks 6-11
overview of 6-1
spin locks 6-11
summary of locks 6-12
suspend locks 6-11

locks (see also locking)
locks 1-13

1-6 OS/VSl MVS OYeniew

global 1-13
local 1-13

logical channel, definition of 4-16
logical reconfiguration 10-2
LOGON command, and address space creation 5-3
loosely-coupled multiprocessing 1-5

definition 10-1
traits of 10-1

LPA (see link pack area)
LSQA (local system queue area) 2-18

initialization of 4-5
pages 4-18.

M
machine check handler (MCH) 1-7,9-3

control flow 9-5
machine check interruptions 6-2

enabled/disabled state 6-2
interruption handler 6-4

machine configuration, changing the MVS 3-4
machine-readable IPO 3-9
macro instructions

ATIACH6-7,9-2
CLOSE 8-7
DEQ 6-1
ENQ 6-1
ESTAE 9-2
EXCP 8-9
EXCPVR 8-12
OPEN 8-4
RESERVE 6-1
SCHEDULE 1-13,6-9
SETFRR 1-8,9-2
SPIE 1-8
STAE 9-2
SYSEVENT 7-2
system generation 3-5

main processor 5-10
main storage (see real storage)
malfunction-alert (MFA) interruption 10-5
master catalog 1-16,8-23
master console, initializing 4-13
master JCL load module (MSTRJCL) 4-26,4-27
master scheduler

and address space creation 5-3
initialization 4-1,4-24
initialization overview 4-24
initialization routine, attaching 4-26
preliminary set-up 4-17
region initialization 4-26

maximum MPL, providing guidelines for SRM's swap
decisions 7-3

MAXUSER parameter 5-5
MCH (see machine check handler)
mean-time-to-wait (MlTW) group of APG 7-7
memo to users documentation, MVS system (PO 3-9
merging system parameters 4-9
MFA (malfunction-alert) interruption 10-5
migrating installations, instructions to 3-1
MIH (missing interruption handler) 1-7,9-6
minimum MPL, providing guidelines for SRM's swap

decisions 7-3
missing interruption handler (MIH) 1-7,9-6
MLPA (see modified link pack area)
model 158 or 168 multiprocessor 10-2
modified link pack area (MLPA) 2-23

initialization 4-23
system parameter use 4-2 _

modified LPA list (IEALP Axx), use of during initialization
4-23

modifying IBM distribution libraries 3-4
MOUNT

attribute
initializing 4-12
purpose of 4-12
rules for inclusion in V ATLSTxx 4-12

command 9-6
and address space creation 5-3

MP (see multiprocessing)
MP mode (see multiprocessing)
MPLs (multiprogramming levels)

providing guidelines for SRM's swap decisions 7-3
system-wide, monitored by resource monitoring function

of SRM 7-7
MSTRJCL (master JCL load module) 4-27

use during initialization 4-26
~TIW (mean-time-to-wait) group of APG 7-7
multi-access spool 5-8
multiple locks 1-13
multiple virtual storage I-I

addressing 1-2,1-3
availability 1-5
levels of addressing 1-3
security and integrity 1-13
sharing real storage 1-3
summary 1-4

multiprocessing 1-4
ACR recovery 9-5
alternate CPU recovery 1-7
availability 1-5
CRH recovery 9-5
definition 10-1
flexibility 1-6
job entry subsystem 1-5,1-15
loosely-coupled 1-5,10-1
MCH recovery 9-5
MP mode 10-3
tightly-coupled 1-5,10-1

locking, overview of 6-1
UP mode 10-3

mUltiprocessing systems, shared DASD, RESERVE macro
instruction (see enqueuing)

multiprocessor mode 10-3
mUltiprocessors 10-2

communication between 10-3
mUltiprogramming, controls provided by supervisor 6-1
multiprogramming levels (see MPLs)
multisystem unit 10-1,10-2 .
MVS (multiple virtual storage)

installing 3-1
servicing 3-1
tailoring 3-1,3-3

MVS installation
considerations, ~eliminary ·3-1
planning phases 3-2
tasks 3-2

MVS machine configuration, changing the 3-4
MVS starter system 3-3

contents of 3-7·
extension to 3-7

MVS system
control program, generating the 3-7
initializing 4-1
producing a new 3-4
servicing 3-13

MVS system IPO 3-7
build a test system phase 3-12
contents documentation 3-9
contents of 3-8
distribution libraries 3-8
documentation 3-8

installation guide 3-10
installation plan 3-10

phase 1 3-11
phase 2 3-12
phase 3 3-12
phase 4 3-12
phase 5 3-12

integrating and testing. phase 3-12
JCL usage with 3-8
memo to users documentation . 3-9
planning an installation d~umentation 3-9
planning and preparing phase 3-11
stabilizing the production system phase 3-12
tapes, printing 3-11
testing the production system phase 3-12
testing with 3-8
tuning guide 3-10
uses for 3-8

MV5-initiated communication 10-3
during initialization 10-3
during operation 10-4
during reconfiguration 10-4
during recovery 10-4

N
nanoseconds 1-4
network job processing (NJP) 5-11
NIP (nucleus initialization procedure) 4-1

preliminary initialization functions 4-4
transient area, initializing 4-5

NJP (network job processing) 5-11
non-preemptive units pf work 6-5
nontrivial transaction 1-10
nucleus

o

initialization 4-1,4-4
initialization procedure (NIP) 4-1
loading 4-1,4-4
locating 4-1

obtaining system parameters 4-7
OPEN macro instruction processing 8-4
opening the system catalog during initialization 4-14
operator intervention, restrictions 4-10
operator-started jobs, TCB structure for 6-8
operator-supplied system parameters 4-9
OPI. NO 4-10
OPT (optional system tuning parameter) initialization

4-16 .
optional system tuning parameter (OPT) initialization

4-16
options

installation productivity 3-7
selecting system control program 3-4
SMP 3-1S
SMP INSTALL 3-15
SYSGEN 3-14
SYSGEN INSTALL 3-15

ordering IBM distribution libraries 3-4
organization of data sets 8-1
OUCB (user control block), building the 4-17
output

characteristics 5-7
processing 5-7

OUXB (user extension block), building 4-17
overriding

APG initialization values 4-16
system parameter values 4-9

overview of the initialization process 4-1

Index 1-7

P
page 1-4

definition 2-1
fault 2-10
stealing 2-11
translation exception 2-10

page data sets 2-13
dynamically adding to the system 4-17
initialization 4-17
limiting the number of 4-17

page frame table 2-11
entry (PFrE), initializing 4-5

PAGE system parameter usage 4-17
page table 2-8

initializing 4-6
pageable

BLDL list 2-23
link pack area (PLPA) 2-17

initialization 4-19
PAGEADD command usage 4-17
page-in 2-10
page-out 2-10
paging 2-10

concepts example 2-2
rates, planning for system 3-3

PAGNUM system parameter usage 4-17
parameter library 1-11

storing options 1-16
system initialization 1-16

PARMLIB (see SYSl.PARMLIB data set)
partitioned data set organization 8-2
paths

checking for accessable 4-12
checking for available 4-11

PCI (program controlled interrupt) 8-10,8-13
pending condition 9-6
percolation 1-9,9-2
perfonnance

expectations, documenting 3-3
planning prior to installation 3-3

permanent user libraries, modifying 3-13
pennanently resident volume, initializing 4-12
phase plan, MVS system IPO 3-11
physical

addresses 10-5
reconfiguration 10-2

planning
an MVS system IPO installation documentation 3-9
and preparing phase of MVS system IPO 3-11
document 3-1
for system generation 3-4
phases, installation 3-2
to install MVS 3-1

PLPA (pageable link pack area) 2-17
directory use during initialization 4-19
initialization 4-19

PLPAD (pageable link pack area directory) use during
PLPA initialization 4-19

post status 8-14
preallocated storage 1-1
predecessor jobs 5-11
preemptive units of work 6-5

. prefixed storage area (PSA) 10-5
layout in virtual storage 2-21

prefixing 10-5
preparing the system for work 4-1
prerequisite PTF identification 3-18
PRES volumes, initializing 4-12
primary

job entry subsystem. initializing 4-1
system parameter list 4-9

1-8 OS/VSl MVS Ovemew

prime index 8-20
printing the MVS system IPO tapes 3-11
print-punch routines 5-7
priority

aging 5-7,5-11
in lES 5-6

private
address space 2-6
area of virtual storage 2-18
area space allocation 4-6
page table 2-8
segment table 2-8
volumes (PRV), initializing 4-13

problem program mode 9-2
processing I/O requests in parallel (see device allocation)
processor

addresses 10-5
enabled/disabled state 6-2
loads, establishing 4-16
management function of SRM 7-6
use, planning for 3-3
utilization monitored by SRM 7-7

production
status

achieving 3-7,3-12
system, stabilizing 3-12
testing, system availability for 3-12

productivity option, installation 3-7
profile preparation, workload 3-3
program address space 1-2
program controlled interrupt (PCI) 8-10,8-13
program interruptions 6-2

enabled/disabled state 6-2
interruption handler 6-4

program loading 2-14
program manager initialization 4-18
program status words (see PSWs)
program update tapes (PUT) 3-15
PSA (prefixed storage area) 10-5

layout in virtual storage 2-21
PSWs (program status words)

built by dispatcher 6-10
current PSW 6-2
indicating processor is enabled/disabled 6-2
new PSW 6-2
old PSW 6-2
role of 6-2,6-4
switching 6-4

PTFs (program temporary fixes)
definition of 3-15
installing 3-13,3-15
removing changes from the system 3-18

public volumes (PUB), initializing 4-13
publications, MVS system IPO 3-9
purge processing 5-7
PUT tapes 3-15

Q
QSAM (queued sequential access method) 8-2
queued access technique 8-2
queued sequential access method (QSAM) 8-2
queues 5-6

common workload 5-8
quick start

page data set initialization 4-17
PLPA initialization 4-19
VIO data set initialization 4-18

R'
ReI' (see region control task)
RDR internal reader 5-2
real (V-R) user region ~18,~20
real storage 1-2

addresses 1-3
initializing 4-S
limiting effective 4-3
shortages of available frames detected by SRM 7-5
shortages of pageable frames detected by SRM 7-5

real storage management (RSM) 2-13'
locks for 6-11,6-12
receiving control from program interruption handler

6-4
RECEIVE function 3-18
reconfiguration 10-2

communication during 1 ().4

logical 10-2
, physical 10-2

recovery
communication during 10-4,10-5
error 9-1

recovery management support (RMS) 1-7,9-3
nucleus extension 2-21

recovery routines
device-dependent 9-6
ESTAE 9-2
ESTAI 9-2
functional 9-2
objectives of 9-1
STAE 9-2
STAI 9-2
task 9-2
types of 9-1

recovery termination 9-1
recovery termination management (RTM) 1-8,9-1

extended subtask ahend exit 1-8
functional recovery routines 1-8
percolation 1-8
receiving control from machine check interruption

handler 6-4
receiving control from program interruption handler

6-4
receiving control from restart interruption handler 6-4
specify program interruption exit 1·8
task recovery 1-8
when invoked 9-1

reference bit 2-4,2·11,2-12
region control task (Ref) 4-27

and address space creation 5-5
in LSQA 2-18
in system region 2-19
in TCB structure 6-7
initializing 4-27

region initialization routine 4-26
REJEeI' function 3-18
relative record data set 8-18,8-21
remote job processing (RJP) 5-12
removing changed from the system 3-18
RESERVE macro instruction (see enqueuing)
reserved volume, initializing 4-12
reserving devices via JES3 5-11
resource

allocation 5·12
initialization modules (RIM) 4-1
initialization via RIMs 4-10
management facility, use during installation planning

3-3
monitoring function of SRM 7-7

resource manager function of SRM
description of 7-5

I/O management function 7-6

processor management function 7-6
resource monitoring function 7·7
storage management function 7-5

overview of 7-2
resources manager, initializing the system 4-16
restart interruption 6-2 .

enabled state 6-2
interruption handler 6-4

RESTORE function 3-18
restoring the MVS system IPO 3-11
restricted functions, locating users of 4-23
restricting operator intervention 4-10
RIM (resource initialization module) 4-1

initialization 4-10
table and list initialization 4-23

RJP (remote job processing) 5-12
RMS (see recovery management support)
rotate priority of APG 7-7
RSM (see real storage management)
RTM (see recovery termination management)
RVs (see swap recommendation values)

S
SAR (storage address register) 2-9
satisfying I/O requests and data management 8-1
SCHEDULE macro instruction 1-13

used to schedule SRB 6-9
scheduler, initializing 4-1,4-24
sCheduler work area (SWA) 1-12,2-19
scheduling work 5-1

by deadline 5-11
secondary parameter list 4-9
security 1-13

isolate and protect 1-14
user responsibility 1-14
validate and authorize 1-14

segment table 2-8
initializing 4-6
origin register (STOR) 2·9

selectable units (SUs)
installing 3-13
modifying distribution libraries to accommodate 3-4

selecting a master console 4-14
sequence set 8-20
sequential data set organization 8·1
serializing the use of resources 6-10

enqueuing 6-10
locking 6-10
overview of 6-1

serially reusable resources, ensuring the freedon of 4-16
service

controlling the application of 3-13
rate

definition 7-4
establishing 4-16

request block (see SRBs)
requests 1·13

SCHEDULE macro instruction 1-13
service request blocks 1-13

units, definition 7-4
servicing the MVS system 3-1,3-13
sessions and transactions 1-9
SETFRR macro instruction 1-8,9-2
shared control of resources, requested on ENQ 6-10
shared DASD, RESERVE macro instruction (see

enqueuing)
shared storage, controlling in MP 10-5
sharing real storage 1-3
shoulder-tapping 10-4
signal processor (se.e SlOP instruction)

Index 1-9

SIGP (signal processor) instruction 10-3
emergency-signal 10-4
extemal-caU 10-4
program-reset 10-4
restart 10-4
sense 10-3
start 10-3
stop 10-4
stop-and-store-status 10-4

single system image 10-2
SIO (start I/O) instruction 8-12
slot 1-4

definition 2-i
shortages

detected by SRM 7-5
SMP (system modification program) 3-13

control data set 3-18
altema~ 3-18

control functions 3-16
function control statements 3-15,3-16,3-18
INSTALL options 3-15
option . 3-15

SMPACDS control data set 3-18
SMPCDS control data set 3-18

deleting information from 3-18
software error proces.sing 9-1
special exits, in dispatching order 6-10
specify program interruption exit (SPIE) macro instruction

1-8
providing error-handling routine 6-4

specifying
a job class 5-2
device parameters 5-12
system parameters 4-9

SPIE macro instruction 1-8
providing error-handling routine 6-4

spin locks 6-11,6-12
spool data set 5-6,5-10

reading and writing to 5-6
SQA (system queue area) 2-17

initialization 4-5
shortages

detecte'!.by SRM 7-5
SRB mode Y-2
SRBs (service request blocks) 1-13,6-9

in dispatching order 6-10
non-preemptive 6-5
representing dispatchable units of work 6-7

SRM (see system resources manager)
SSI (see subsystem interface)
stabilizing the production system phase of MVS system IPO

3-12
STAE

macro instruction 9-2
recovery routine 9-2

staffing during installation 3-3
STAI

parameter 9-2
recovery routine 9-2

standards, revising installation 3-11
START command, and address space creation 5-3
start I/O (SIO) instruction 8-12
START JES command

encountering during initialization 4-26
location of 4-26

started task control (STC) 4-27
routine, and address space creation 5-5

starter system
contents of 3-7
extension to MVS 3-7
MVS 3-3

1-10 OS/VSl MVS Oveniew

start-up, lES 4-27
statements, SMP function control 3-15,3-16,3-18
status and control information 10-5
STC (see started task control)
STCINRDR internal reader 5-2
stealing pages, initiated by SRM 7-5
STOR (segment table origin register) 2-9
storage

address register (SAR) 2-9
configuring 10-3
control, communication for 10-5
element 10-3
layout 2-16
management function of SRM 7-5
protect keys 2-3

assignment of 2-4,2-5
requirements, planning for 3-3
segments of 10-3
volumes (STR), initializing 4-13

stored record 8-19
subpools 229/230 2-19
subsystem interface (SSI) 1-15

initialization 4-26
successor jobs 5-11 .
supervising the execution of work (see supervisor)
supervisor

creating dispatchable units of work 6-7
interruption processing 6-2
mode 9-2 .
overview of functions 6-1

supervisor call interruption (see SVC interruption)
SUPERZAP statements 3-16
SUs (see selectable units)
suspend locks 6-11,6-12
SVC interruptions 6-2

enabled state 6-2
interruption handler 6-4

SVC request block (SVRB), used in SVC interruption
processing 6-4

SVC table, initializing 4-23
SVCs, preemptive and non-preemptive 6-5
SVRB, used in SVC interruption processing 6-4
SWA (scheduler work area) 1-12,2-19
SWAP command 9-6
swap data sets 2-13

dynamically adding to the system 4-17
iriitialization 4-18
limiting the number of 4-17

swap recommendation values (RVs)
provided by I/O management function of SRM 7-6
provided by workload manager function of SRM 7-4
used in SRM's swap analysis 7-3

SWAP system parameter usage 4-18
swapping 1-10,2-11

in reaction to storage shortages 7-6
influenced by I/O management function of SRM 7-6
influenced by processor management function of SRM

7-6,7-7
influenced by workload manager function of SRM 7-4
swap analysis done by SRM 7-3
the system resources manager 1-10

switching PSWs 6-4
synchronizing time-of-day (TOD) clocks 10-4
syntax checking control statements 3-18
SYSEVENT macro instruction, used to communicate with

SRM 7-2
SYSGEN INSTALL option 3-15
SYSGEN option 3-14
SYSIN data (see spool data set)
SYSJOBQE, elimination of 1-12
SYSOUT data (see spool data set)

SYSP (system parameter) 4-9
SYSRES. mounting for initialization 4-2 ..
system activity measurement facility. use during installation

planning 3-3
system and installation guide. 'MVS system IPO 3-10
system area

of virtual storage 2-17
space allocation 4-6

system catalog
closing during initialization 4-14
format of 8-22.8-23
initializing 4-14
opening during initialization 4-14

system components used in paging 2·13
system console initialization 4-2.4-13

system parameters for 4-14
~tem constants. variablcs used to establish 4-16
system contents documentation. MVS system IPO 3-9
system control program

generating the MVS 3-7
options, selecting 3-4

system generation 1-16.3-3,3-4
distribution libraries 1-16
executing the 3-5,3-6
initializing DASD volumes prior to 3-5
macro instructions 3-5

assembling • 3-5 '
option 3-14
planning for 3-4
stages 3-5
verifying 3-7

system initialization 1-16
system mode 10-3
system modification program (see SMP)
system operation 1-16
system operator

activity during initialization 4-9
parameter specification 4-9

system pack list (lEAPAKOO)
initialization 4-19
use during PLPA initialization 4-19

system paging rates, planning for 3-3
system parameters

for system console initialization 4-14
lists 4-9
merging 4-9
obtaining 4-7
specifying 4-9
table 4-7

system queue area (see SQA)
system region 2-19
system residence volume, initializing 4-2
system resources, initializing 4-1
system resources manager (SRM) 1-10

and address space creation S-5
communicating with SRM 7-2
control 7-3

description of 7-3
overview of 7-2
swap analysis 7-3

how SRM meets its objectivcs 7-1
improved performance 1-10
initializing 4-16
installation performance specification 1-11
locks for 6-11.6-12
major functional areas of SRM 7-2
objectives of 1-11,7-1
OPT member 1-11
overview 1-11
resource manager 7-5

I/O management 7-6

processor management 7-6
resource monitoring 7-7
storage management 7-5

swapping 1-10
user 'control block, building the 4-17
workload manager 7-4 '

system/370 model 158 or 168 multiprocessor 10-2
SYS1.LOGREC

error analysis 9-3
opening during initialization 4-2

SYS1.NUCLEUS, contents of 4-2
SYSI.PARMLIB

IEAOPTxx member, used to influence SRM decisions
7-1

usage during initialization 4-7,4-9
SYSl.SVCLlB 4-2

·T
table and list initialization, RIM 4-23
tailoring the MVS system 3-1,3-3.4-1

statements to 3-5
target MPL

computed by SRM 7-3
providing guidelines for SRM's swap decisions 7-3

task
control block (see TCBs)
mode 9-2
recovery 1-8

extended subtask abend exit 1-8
specify program interruption exit 1-8

recovery routines 9-2
tasks, MVS installation 3-2
TCBs (task control blocks) 6-7

in dispatching order 6-10
representing dispatchable units of work 6-7
structure 6-8

temporary data sets, handling 1-12
terminalI/O 1-10
terminology of job', _.: uling 5-2
testing

for accessibility of devices 4-12
the production system phase of MVS system IPO 3·12
with MVS system IPO 3-8

tightly-coupled multiprocessing 1-5
definition 10-1
locking, overview of 6-1
traits of 10-1

time sharing option (TSO) 1-9
sessions and transaction 1-9
swapping 1-10
terminalI/O 1-9

time-of-day (TOO) clocks, synchronizing 10-4
TLB (translation look aside buffer) 2·10
TOO (time-of-day) clocks

initializing 4-26
synchronizing 10-4

transactions 1-9
planning for expected 3-3

transient area, initializing 4-5
translation look aside buffer (TLB) 2-10
trivial transactions 1-10
TSO (see time sharing option)
TSO users, TCB structure for 6-8
TSUINRDR internal reader 5-2
tuning guide, MVS system IPO 3-10
two-level table lookup 2·9

U
UCB (unit control block), initializing I/O device 4-11

Index 1-11

UCM (unit control module table), use during initialization
4-13

unallocation of devices, major functions 5-13
unavailable devices, description of 4-12
uniprocessing, MCH recovery 9-5
uniprocessor mode 16-3
unique physical addresses 16-5
unit control block (see UCB)
unit control module table (see UCM)
UP mode (see multiprocessing)
use attribute, initializing 4-12
user control block (OUCB), building the 4-17
user exits (see task recovery)
user extension black (OUXB), building the 4-17
user libraries, modifying with SMP 3-13
user modifications, installing 3-13,3-16
user program functions in I/O operation 8-4
user service, 'establishing the level of 4-16

V
VAL system parameter use 4-12
valid configuration 16-3
validate and authonze 1-14
VARY command 16-2
varying resources online and offline 16-2
VATLSTxx 4-12
verification procedure, installation 3-7
verifying the system generation 3-7
VIO (see virtual input/output)
VIO data set initialization 4-18
virtual (V-V) user region 2-18,2-19
virtual addresses 1-3,2-6,2-7
virtual input/output 1-12

data set initialization 4-18
description 8-16
during system generation 1-12

virtual space allocation during initialization 4-6
virtual storage .

access method (VSAM) 1-16
areas 2-15
in MVS 2-1

virtual storage access method (see VSAM)
virtual storage manager (VSM) 2-13

and address space creation 5-5

., --,

1-11 OS/VSl MVS Overview

invoking during initialization 4-27
Ioc:ks for 6-11,6-12

virtual telecommunications access method (VT AM), loc:ks
for 6-11,6-12

volume attribute list (VATLSTxx) 4-12
volume attributes, initializing 4-12
volume serial numbers, scanning for duplicates 4-12
VSAM (virtual storage access method) 1-16

concepts 8-17
entry-sequenced data set 8-21
key-sequenced data set 8-20
master catalog 8-23
relative record data set 8-21

VSM (see virtual storage manager)
VT AM (virtual telecommunications access method), Ioc:ks

for 6-11,6-12

W
warm start

page data set initialization 4-17
PLP A initialization 4-19
VIO data set initialization 4-18

window 8-16
work, Scheduling 5-1
working set 2-11
workload

manager function of SRM
description of " 7-4
overview of 7-2

profile preparation 3-3
writer, external 5-7

X
XBATCH S-8

1
IS8 or 168 multiprocessor 16-2

2
24-bit addressing 1-2

~§
G 0
E-
Q.'" .; :c
r:r" Ga;
enG c OIl

-0 1:: ..
o G
411 Q. =ca ca ..
E]
"iE .. E E :l
o en ::; ; ~ en
ca-5 c
.=0 0

10 ;(
"a

E·~ '0
G~ U. - '" ...
-8ii 0
.. WI ..
Q.~ = ~ .. Co)
... :l
:l i! B ..
C Q.

B s
; :l

-s Q.ca
S~
ella.

!
0 z

OS/VS2 MVS Overview
GC28-0984-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source fOf systems analysts~ programmers,
and operators of IBM systems. This form may be used to communicate YOUl views about this
publication. They will be sent to the author's department for whatever review and action, if any,
is deemed appropriate.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted
information, in any form, for any and all purposes, without obligation of any kind to the sub
mitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at tile location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit ___ _

If you wish a reply, give your name and mailing address:

Please·circle the description that most closely describes your occupation.

(Q) (U) (X) (Y)

Customer Install System System System
Mgr. Consult. Analyst Prog.

(Z) (F)

Applica. System
Prog. Oper.

(I)

I/O
Oper.

(L)

Term.
Oper.

~
LJ

(5) (P) (A) (B) (C) (D) (R) (G) (J) (E) (N) (T)

IBM System Prog. System System Applica. Dev. Compo System 1/0 Ed. Cust. Tech.
Eng. Sys. Analyst Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. Staff

Rep. Rep. Rep.

Number of latest Newsletter associated with this publication: ____________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.)

GC28-0984-0

Reader's Comment Form

FOld and tape

FOld and tape

--- ------ ----- ---- ----- - - ----------_.-

Please 00 Not Staple

Business Reply Mail
No postage stamp nEcessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 058, Building 706·2
PO Box 390
Poughkeepsie, New York 12602

Please 00 Not Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.s.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.y., U.s.A. 10601

FOld and tape

First Class
Permit 40
Armonk
New York

M

MM'
W8W
_22M
-dRS.
MWM.
we:i';""
il!!i!e:; t1 -*Wi

FOld and tape
--I

I
I
I
I
I
I
I
I ,
f

I
I

