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Whitfield Diffie and Martin Hellman startled the computer security world in 1975
with their paper “New Directions in Cryptography”, which introduced public-key
cryptography [7]. There is now evidence that three cryptographers at the British
Government Communications Headquarters (GCHQ), the British equivalent of the
National Security Agency, may have predated this work as well as the discovery of
the Rivest-Shamir-Adleman (RSA) public-key encryption algorithm [9]. It appears,
however, that the British researchers did not appreciate the significance of their
discovery.

Since the mid 1970s, cryptography has become big business, a bestseller (Applied
Cryptography by Bruce Schneier has sold over two hundred thousand copies), and an
extremely active area of research at the intersection of mathematics and computer
science. A plethora of new books in the area currently floods the bookstores.
This review cannot discuss them all. Instead I will delineate the subareas of this
burgeoning field and focus on some of the texts that I believe will be of more interest
to Bulletin readers.
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Many mathematicians are familiar with the RSA cryptosystem in which Alice
makes public an integer n which is the product of two large primes p and ¢ along
with an integer e relatively prime to ¢(n) = (p—1)(¢ — 1) (where ¢(n) is the Euler
¢-function). Bob can securely send his digitized message M < n to Alice by the
encryption:

C =M (mod n);
Alice decrypts through
¢ (mod n),

where the integer d satisfies the equation ed + ¢(z)y = 1 (alternatively, ed = 1
(mod ¢(n))). The security of the system relies on the fact that factoring large in-
tegers (on the order of 2,000 bits, say) is computationally infeasible. Thus, even
though n and e are public and the encrypted message, C, travels over the insecure
wires of the Internet, the message is secure against eavesdroppers. The message
nonetheless presents no difficulty for Alice to decrypt, for Alice knows the factoriza-
tion of n and can easily, that is, computationally efficiently, calculate the decryption
exponent d.

This simple mathematics is what enables the Secure Socket Layer (SSL) com-
munications that secure Web transactions. When you access the check-out page at
Amazon, your machine—the client—and the Amazon computer—the server—do a
negotiation. The Amazon server “authenticates” itself to your PC, “proving” that
it is a genuine Amazon machine. First the two machines determine which algo-
rithm they will use to encrypt your data (credit card number and order). Your PC
chooses a session key, an encryption key that will be used only to encrypt this Web
session and sends this to the Amazon server. But the PC must communicate this
information using an unprotected channel: the Internet. The session key is sent
RSA encrypted with Amazon’s public key, provided to the PC on the certificate
the client received from the Amazon server.

The RSA encryption used in the SSL protocol is not quite as simple as the
description earlier. That straightforward version “leaks” information. One way
is semantically: anyone who learns that C; and Cy are the encryptions of M; and
M, respectively, knows that C1Cs is the encryption of M1 Ms. While this does not
appear to be a terrible leak of information, it is nonetheless a leak. Good cryptosys-
tems do not reveal any information unnecessarily. Thus the SSL implementation
of the RSA algorithm includes some “padding” of the input.

Several years ago a problem was discovered in the SSL protocol. If the plain-
text had not been correctly formatted before it was encrypted, the server would
respond with an error message. Bleicherbacher showed that a potential attacker,
by sending a slew of carefully determined messages, could use the responses to de-
crypt a targetted message [4], [24], [2]. The problem was corrected by changing the
format used to prepare messages for RSA encryption. This type of problem — the
actual implementation of cryptographic algorithms in practical systems — is quite
important, but for space reasons, I will confine my review to purely mathematical
attacks.

If we are to depend upon encryption for securing our on-line communications,
our purchases, our ATM transactions, our cell phone conversations, we will need to
base security on something more precise than the inexact phrase “factoring large
integers is computationally infeasible”. We will need definitions, theorems, clarity,
and rigor. We will need mathematics.
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Let us begin. Cryptosystems consist of two pieces: the algorithm, or method,
for encryption, and a secret piece of information, called the key. In the nineteenth
century, Auguste Kerckhoffs observed that any cryptosystem used by more than a
very small group of people will eventually leak the encryption technique. Thus the
secrecy of a system must reside in the key. I assume that the unencrypted message—
the plaintext—is a string of bits that is to be transformed into an encrypted string:
the ciphertext. This is done through Boolean functions, maps from {0,1}" to {0,1}
or, more generally, to {0,1}™.

In 1949 Claude Shannon considered the question of designing a code that could
not be broken [21]. Using information-theoretic techniques he proved that aside
from one-time pads—systems that use XOR (bitwise addition mod 2) or other
invertible functions that combine the plaintext with a key of the same length—
there are no unbreakable cryptosystems.

I must make a minor, but important, digression. In this review of cryptography
books, I am concentrating on the mathematics of cryptography. Yet typically,
when a cryptosystem is broken, the break occurs as a result of a “side” issue —
one-time pads used more than once, keys unsafely stored, insider attacks, etc. So
when one speaks of the “unbreakability” of one-time pads, one is speaking only
to the mathematical unbreakability of the cryptography and not to the underlying
security system in which it is embedded.

Shannon observed that it was better to ask whether it was feasible to break the
code. A cryptosystem is considered good if the time to break the system (e.g.,
decode a particular message or, better yet, determine the key used for encryption)
is reasonably proportional to a brute-force search of the key space.

In the 1970s computer scientists were exploring notions of time, space, and com-
plexity. The notions of P, the set of problems solvable in polynomial time, and
NP, the set of problems solvable in non-deterministic polynomial time (essentially
those problems that have a solution checkable in polynomial time), were developed.
Shannon’s notion of feasible computation fit well into this framework. Diffie and
Hellman introduced public-key cryptography: enciphering and deciphering compu-
tations with keys £ and D such that computing D from £ was computationally
infeasible. In one of those felicitous coincidences that periodically occur in science,
Ralph Merkle independently discovered many of these ideas at about the same time
[17]); later, he worked with Diffie and Hellman.

Diffie and Hellman proposed an algorithm that has since become known as the
Diffie-Hellman key exchange, a method for establishing a private key over an inse-
cure channel. In Diffie-Hellman key exchange, a large prime p and a generator g
for the multiplicative group Z/pZ are both known to Alice and Bob. Alice chooses
a random number ¢ and computes ¢g* (mod p), which she sends to Bob. Bob
similarly picks a random number b, computes ¢° (mod p) and communicates the
result of that computation to Alice. Both Alice and Bob are now able to compute
g? = ¢®@ (mod p). Because of the computational difficulty of computing discrete
logs (and the reducibility of the Diffie-Hellman problem to computing discrete logs),
an eavesdropper who saw both g% and g® would nonetheless find it computationally
infeasible to determine g®.

The third, and very important, contribution of the Diffie-Hellman paper was to
define digital signatures, or one-way authentication; this was a concept that had
not been anticipated by the GCHQ researchers. Digital signatures are “digital,
unforgeable, message-dependent signatures” [7]. Public-key cryptography provides
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a technique for digital signatures: if Alice wants to sign a message M she is sending
to Bob, she sends Bob M “decrypted” under Alice’s private key, D 4. Since Bob
knows Alice’s public key, he can “encrypt” the enciphered message and check that
it really came from Alice (since she is presumably the only one who knows her
private key).

Digital signatures enable a server to “prove” to a client that the server is the
server it claims to be, e.g., the server to which the PC has connected attests that
the server belongs to Amazon (and not Fly-Away-Books.com instead). The PC
checks the claim through a chain of “digital certificates”, each of which attests to
the authenticity of the previous element in the chain through digital signatures and
public key/private key pairs. The public key of root certificates (a list typically
including AOL Time Warner, Entrust, RSA Data Security, VeriSign, etc.) are
stored on the user’s PC, enabling these proofs of authenticity. Digital signatures
are thus the second critical component of Internet commerce.

At the time that Diffie-Hellman key exchange and RSA encryption were pro-
posed, the fastest solutions for the underlying mathematical problems—computing
discrete logs (logarithms base a prime) and factoring integers—required exponential
time. (The time to solve a problem is measured in terms of the size of the input.
Thus the problem size for Diffie-Hellman key exchange is O(logp), and for RSA
encryption it is O(logn).) But various mathematicians and computer scientists
rediscovered algorithms of Maurice Kraitchik’s and Allan Cunningham’s from the
1920s that provided a faster, probabilistic, solution to both problems [I5], p. 60]:
the index calculus method.

The indez-calculus method works for groups that possess a certain structure.
Suppose G is a group of order n with elements g¢1,..., g, and generator g; given
g® we seek to efficiently determine “a”. The index-calculus method proceeds as
follows:

(1) Step 1: Collect m identities of the form:

m

aij by,
I ="
=1

rewrite the identities as a set of linear congruences:

Zaij indgg; =b; (mod n).
j=1
(2) Step 2: Solve for indgg;.
Note that these two steps can be pre-computed.
(3) Step 3: To find a, construct:

m

GJ _ e
ng = a9
j=1

which gives indga = X7, e;jindgg; — e.

The index-calculus method works in groups where it is known how to efficiently
generate the relations in Step 1 with the b;s “small”, that is, less than some bound
dependent on n. This includes some finite fields and class groups of imaginary
quadratic number-fields [15, p. 61]. The index-calculus method is used in both the
quadratic and number-field sieve algorithms for integer factorization, which take
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respectively exp v/Iog nlog log n and exp((clogn)'/3(loglogn)?/3) (where ¢ depends
on which flavor of the number field sieve is implemented). (See [20] for a lovely
elementary exposition of the two sieves.)

Elliptic curves are one type of group for which the index-calculus method does not
work. This, and the fact that for each prime power ¢ there are many elliptic curve
groups E/F, (as opposed to just a single finite field), inspired Neal Koblitz and
Victor Miller, who, in 1985, independently invented Elliptic Curve Cryptography
(ECC). Elliptic curves are solutions to equations of the form

y2 +aizy + a3z = 23 +a2x2 + asx + ag

and had been extensively studied. Using point addition, one can create a group
structure on the points of the curve. In 1984 Rene Schoof had discovered a
polynomial-time algorithm for computing the size of the elliptic curve group over
any finite field, thus enabling the use of elliptic curves for several problems, in-
cluding integer factorization, primality testing, and cryptography. In ECC, the
easy-to-compute function is point multiplication: given a point P on an elliptic
curve E defined over a finite field F,, compute kP, that is, P added to itself &
times. The infeasible—or at least, infeasible by current methods—computation is
determining k given kP.

There is an ECC analogue of Diffie-Hellman key exchange in which Alice and
Bob send each other the points aP and bP respectively and the key is abP. There
are also various Elliptic Curve Digital Signature Algorithms. ECC rapidly became
quite important. As Koblitz put it, “At first, elliptic curve cryptography seemed
like the sort of notion that would be of practical utility only in the distant future,
if at all. However, as often happens in cryptography, the distant future came
quickly” [I3, p. 131]. The fact that ECC with a smaller key size offers the same
security as RSA and Diffie-Hellman makes ECC attractive to manufacturers of
devices with small memory and low power, e.g., cell phones. With the National
Institute of Standards and Technology publishing a list of recommended elliptic
curves for federal government use (http://csrc.nist.gov/publications/fips/fips186-
2/fips186-2-changel.pdf), the distant future is here.

Cryptography is at the intersection of engineering and mathematics; one of the
important directions of modern cryptographic research has been in building the
mathematical foundations. Shannon’s work is, of course, seminal. In recent decades
complexity theorists have worked to develop a rigorous treatment of the underlying
assumptions. As one begins to examine “obvious” concepts such as security or ran-
domness, it quickly becomes apparent that these are neither obvious nor necessarily
well-defined.

What does it mean to say a cryptosystem is secure (recall that T am confining the
issue to the mathematics of the cryptography)? If, given the ciphertext, one can
guess a single bit of the plaintext with better than 1/2 probability, is the system
still secure (or does that single break enable discovering other bits of the plaintext
with better than 1/2 probability)? If the system reveals any information about
the plaintext, is it still secure (cf. the issue of semantic security discussed in RSA
above)? In terms of computational complexity, what does it mean to classify one
problem as “simpler” than another? What does randomness mean? Can we, in
polynomial time, distinguish between random and pseudorandom sequences? Is
there a way to expand short, randomly selected “seeds” into longer, pseudorandom
bit sequences?
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During the 1980s and 1990s researchers developed different ways of distinguish-
ing security. Zero-knowledge proofs, proofs that reveal that the prover “knows”
X without actually revealing X (for example, that a graph can be three colored—
no two adjacent vertices with the same color—without revealing anything about
any particular three coloring), came from this work. So did PCP, probabilisti-
cally checkable proofs, which are proofs checkable in probabilistic polynomial time.
PCP gave a new characterization of the important class AP, which typically is de-
scribed as the set of membership problems with polynomial-size proofs. (Composite
integers and graphs that are three colorable are in N’P.) The alternate PCP char-
acterization of AP says that finding approximate solutions (say within a constant
factor of optimal) for certain A'P-optimization problems is N'P-hard. As a result
of this characterization, there has been great progress in developing polynomial-
time algorithms to approximate problems as closely as possible (assuming that
P £ NP).

Public key is mathematically delightful—and it provides an excellent refutation
to Hardy’s claim about the inapplicability of pure mathematics—and essential for
key exchange, but public-key cryptography has its limitations. In particular, cur-
rent public-key methods are inefficient and as a result are typically used only for
key exchange and signatures. Symmetric-, or private-key, cryptography is usually
used for message encryption.

In the mid 1970s, the U.S. government issued a call for a public symmetric-
key cryptosystem that would be used for securing sensitive unclassified information
[23]. IBM’s design was accepted, and the algorithm, which became known as the
Data Encryption Standard (DES), was widely adopted, becoming, for example, the
cryptographic standard for Electronic Funds Transfer.

DES’s acceptance was not without controversy, not the least because of its short
key length: 56 bits. Diffie and Hellman argued the algorithm was easily subject to a
“brute-force” attack in which an opponent simply tried all possible keys until deter-
mining the correct one [8]. In fact, DES did not fall to a brute-force attack until the
summer of 1998, when a special-purpose $250,000 computer built by the Electronic
Frontier Foundation decrypted a DES-encoded message in 56 hours. Five years
earlier, however, two mathematically interesting attacks on DES were developed:
differential and linear cryptanalysis. Differential cryptanalysis, discovered by Adi
Shamir and Eli Biham, uses differences in the plaintext and how they are handled
by the cipher to determine information about the key bits [1]. Linear cryptanalysis,
discovered by Mitsuru Matsui, works by finding linear relations between the input
and output bits and chaining such relations together [14]. Although in theory dif-
ferential and linear cryptanalysis represented serious attacks on DES, in practice
they did not. The 247 and 2% DES encryptions needed by differential and lin-
ear cryptanalysis respectively take sufficiently much time that the EFF brute-force
search of the key space was much faster.

Although symmetric-key encryption, the more obvious way of sending secret
messages, has always been the mainstay of cryptography, it is only in the last few
decades that the field has really benefited from a serious mathematical analysis.
The invention of public-key cryptography and the approval of DES as a Federal
Information Processing Standard by the U.S. government generated much excite-
ment and the field has blossomed. In 1981 fewer than fifty researchers attended the
first open meeting on cryptography, which occurred in Santa Barbara. Now there
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are several international meetings a year, numerous workshops, and active research
groups in Europe and Asia as well as across North America.

By the late 1990s it was clear that DES would need to be replaced. In January
1997 NIST announced a competition for a symmetric-key algorithm running on
128-bit blocks of data using 128-, 192-, or 256-bit keys (DES has 64-bit block
size). Cryptographers from around the world submitted candidates. After several
international meetings and two-and-a-half years of of evaluation, NIST announced
its choice for the Advanced Encryption Standard: Rijndael, an algorithm written
by two Belgian cryptographers, Joan Daemen and Vincent Rijmen [5].

Rijndael is very interesting. It is written as a mathematician might write an
algorithm, its steps described algebraically. At some level, this is no surprise. After
all, although Rijndael is a transformation from {0, 1}12® to itself, this function can
also be described as a map from GF(27) to itself, which clearly can be written as an
algebraic function. But the special part of Rijndael is the simplicity of the algebraic
description. These same functions help provide “proofs” of the algorithm’s security
(“proofs” is in quotes because these demonstrate security only against known forms
of attack, not undiscovered ones).

Rijndael was approved as the Advanced Encryption Standard (AES) in 2001. In
June 2003, the U.S. government stamped a higher seal of approval on the algorithm.
AES was approved for use at the 128-bit key level in transmitting “SECRET”
documents (and at the 192-bit level, “TOP SECRET”) [19]. Times have changed.
The U.S. government has approved for use in “TOP SECRET” communications an
algorithm developed by a community that did not exist thirty years ago. That is
indicative of major progress since the early seventies.

Of late there has been a real boom in cryptography books. For example, Springer-
Verlag has published six texts in the last several years (this count does not include
the proceedings of various conferences). In writing this review, I have tried to con-
fine myself to books most likely to be of interest to mathematicians interested in
learning about cryptography. I have omitted elementary books as well as practi-
cal ones, and I have not included books whose main focus is security rather than
cryptography.

Many mathematicians have been intrigued by the application of computational
number theory, and a number of the texts, including some of the more basic ones,
have that emphasis. Richard Mollin has written RSA and Public-Key Cryptography
[1R], which he says is intended for senior math majors. There are some useful
aspects to this book. Mollin discusses randomness, some attacks on RSA, and key
management, all important issues in cryptography, not all of which are covered
in other texts. Unfortunately the book is superficial in many ways and wrong in
others. For example, Mollin’s reason for why one-way functions have not been
shown to exist (“...there is no rigorous definition of the terms ‘computationally
easy’ or ‘computationally infeasible’” [I8, p. 54]) is false, as is his reasoning about
cookies [I8, p. 184]. The problems are pedestrian. I would not want to teach—or
learn—out of this book.

Hans Delfs and Helmut Knebl have also written a textbook on cryptography,
Introduction to Cryptography, at the senior major level; their audience is students
in computer science, mathematics, and engineering [6]. Like Mollin’s book, this text
emphasizes public-key cryptography, though symmetric-key systems do appear in
Chapter 2. (There is, however, no description of AES; I view this as a serious
omission.) There is no cryptanalysis presented in this book, but there is a fair
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amount of material on protocols, including commitment schemes, voting schemes,
and anonymous electronic cash. However, one drawback for mathematicians is the
bareness of explanation; e.g., the description of the Kerberos protocol mentions
that the reason for time stamps is to prevent replay attacks, but this point is not
explained. A mathematician might do better to learn the protocol material from a
book that focuses on such issues, e.g., Network Security by Kaufman et al. [12].

My favorite of the current crop of undergraduate books is the second edition
of Cryptography: Theory and Practice by Douglas Stinson. Of the three books
at this level covered in this review, Stinson’s is the most complete, covering for
example, Shannon’s paper (as do Delfs and Knebl), whitening (a useful technique
that consists simply of XORing with a subkey at the beginning and end of an
algorithm), attacks on RSA, linear and differential cryptanalysis, and a description
of AES. My main unhappiness with Stinson’s book is his descriptions often ignore
the why of certain procedures. Thus Stinson says DES begins and ends with the
permutations P and IP~!, but he doesn’t tell us that the reason is to spread the
data efficiently. Stinson describes the functions SHIFTROW and MIXCOLUMN
in AES, but he doesn’t explain that those steps are for diffusion. Cryptography
is full of complex little ideas that make the difference between an algorithm that
works and one that falls flat on its face. I would prefer a book that gave insight
into these when such insight is easily accessible. Stinson skimps.

Stinson’s book is dense with material and is definitely more than a one-semester
course for undergraduates. Some of the material, including the abstract n-tuples
used to describe the cryptosystems, may be a bit much for students. But if I were
learning/teaching cryptography for the first time to a class of undergraduate math
majors, this is the book I would use.

On the other hand, if I were teaching elliptic curve cryptography, I would have
a rather different set of choices. A slightly older book (1998), Algebraic Aspects of
Cryptography by Neal Koblitz, co-inventor of ECC, is charming and more mathe-
matical than many treatments [13]. Koblitz presents public-key cryptography, com-
plexity, and ECC. This material is covered lightly; Koblitz makes no attempt to
have a thorough, let-us-cover-every-scheme-there-is text. Koblitz’s presentation is
a bit idiosyncratic, but definitely interesting. He presents some relevant complexity
theory, including discussions of BPP, bounded probabilistic polynomial time, those
languages recognizable (with high probability) by a probabilistic polynomial-time
algorithm. He also discusses Brassard’s Theorem, which gives complexity-theoretic
evidence that an NP-hard cryptosystem is unlikely (Koblitz explains what the theo-
rem’s implications to cryptography really are). To those who know Koblitz’s work,
there will be no surprise that the problems are also quite good.

In Elliptic Curves: Number Theory and Cryptography, Larry Washington has
written a nice, relatively complete, elementary account of elliptic curves. Their
application to cryptography is also there, but ECC is less of a focus of the text
than in Koblitz’s book. Washington covers Rene Schoof’s point-counting algorithm
(Koblitz does not). This text is definitely a mathematician’s viewpoint on ECC;
there is no bit counting, no concern with actual implementations, etc.

For the other type of approach, one should read FElliptic Curves in Cryptogra-
phy by Ian Blake, Gadiel Seroussi, and Nigel Smart [3]. This LMS Lecture Note
Series book “summarizes the latest knowledge from both theoretical and practical
knowledge of ECC.” This lovely book has a thorough coverage of bit-counting is-
sues, something that matters greatly when you are thinking of implementing ECC.
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The text covers valuable background research, including Hendrik Lenstra’s factor-
ing method and Schoof’s point counting algorithm; it also presents various attacks
(e.g., the MOV attack). The book is short and doesn’t have proofs for all the theo-
rems presented, but the text is clearly written and brings the reader up to date on
current research. It is a gem.

The complexity-theoretic end of cryptography has not seen the same number
of books as the algorithmic end, although Oded Goldreich has written two books,
Modern Cryptography, Probabilistic Proofs, and Pseudorandomness and Founda-
tions of Cryptography: Basic Tools that summarize much of this area. Of the two,
Foundations is more centered on cryptography and probably of greater interest to
mathematicians interested in learning about cryptography. The text presents com-
plexity research which gives the mathematical underpinnings for cryptography; this
includes one-way functions, pseudorandom generators, and zero-knowledge proofs.
The material is quite abstract; very little relation to real cryptosystems is pre-
sented. A mathematician who did not know the underlying cryptography might
have trouble understanding how this material applies to cryptography; Goldreich
does not make the connections clear. On the other hand, if a reader wants to learn
about foundational work, Goldreich’s books are the place to go.

Symmetric-key systems are the workhorses of cryptography, so it is perhaps sur-
prising that there are so few books that focus on symmetric-key systems. It is
probably because until recently the area was more engineering than mathematics.
Daemen and Rijmen’s The Design of Rijndael is the only recent text in this impor-
tant subarea of cryptography. The book is both a pleasure and a disappointment.

Rijndael incorporates new design paradigms: a simple algebraic function in the
“S-box” and a diffusion strategy, called wide trails, that combines efficiency with
resistance to differential and linear cryptanalysis. The Design of Rijndael begins
with appropriate background in algebra and combinatorics and then proceeds to a
technical specification of the algorithm. This is all quite clearly written. The book
continues with a discussion of implementation issues; this is followed by a discussion
of design philosophy. Then the book becomes significantly more abstract, moving
to a discussion of correlation, difference propagation, the wide-trail strategy, and
cryptanalysis.

Because The Design of Rijndael coherently pulls together the series of papers
that preceded the development of Rijndael, the book will prove quite useful for
cryptography researchers. Others may find it heavy going. The notation can be
cumbersome, and sometimes the motivation is less than clear. This is too bad.
Rijndael is a wonderful algorithm—simple to state and implement, with useful,
provable security properties. Daemen and Rijmen have thought clearly and cogently
about algorithm design. I would have preferred that their book had been written
to appeal to a wider audience. But I am carping. Daemen and Rijmen’s book is a
useful addition to the canon, and many readers will benefit from it.

No review of cryptography books could be complete without a discussion of
the Handbook, that is, the Handbook of Applied Cryptography by Alfred Menezes,
Paul van Oorschot, and Scott Vanstone. Published in 1997—and thus somewhat
out of date in this fast-moving field—the Handbook is an incredible achievement.
Modulo the publication date, the Handbook is complete. If I want to check what
problems there were with a proposed system, determine how the variations on a
particular algorithm developed, see what research preceded and followed an idea,
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I go to the Handbook. The Handbook has accurate, clear, and correct information.
It is wonderful.

The book has drawbacks. The Handbook has theorems but no proofs. The
Handbook is not a textbook, and there are no problems. I would not try to learn
cryptography from the Handbook. Elliptic curve cryptography is only minimally
covered. But, in contrast to other texts, the Handbook lists important patents and
cryptographic standards. If I were limited to only one cryptography text on my
shelves, it would be the Handbook of Applied Cryptogmphy

Cryptography is an active and dynamic field, and in the last few years a number
of books have appeared that will make it easier for mathematicians to discover
the wonderful results that have appeared in papers, newspapers, and even your
SSL-enabled web browser. Read and enjoy.
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