
Course: The XPath Language

Pierre Genevès
CNRS

University of Grenoble, 2012–2013

1 / 27

Why XPath?

Search, selection and extraction of information from XML documents are
essential for any kind of XML processing.

→ XPath is the W3C standard language for expressing traversal and
navigation in XML trees.

2 / 27

XPath Introduction

• A common syntax and semantics for many web languages

• A W3C recommendation (www.w3.org/TR/xpath)

• Compact syntax, not in XML, for use within XML attributes

• A language for expressing paths

• XPath operates on the logical (tree) structure of XML documents, not on
their syntax

3 / 27

http://www.w3.org/TR/xpath

XPath Expressions

• XPath provides a powerful mechanism for navigating in XML trees: the
location path

• A location path is a sequence of location steps separated by ’/’:

child :: chapter︸ ︷︷ ︸
location step

/

axis︷ ︸︸ ︷
descendant ::

nodetest︷ ︸︸ ︷
section︸ ︷︷ ︸

location step

/ child :: para︸ ︷︷ ︸
location step

4 / 27

Evaluating a location path

• Starting from a context node, a location path returns a node-set

• Each node of this node-set becomes in turn the context node for
evaluating the next step

5 / 27

Evaluating a location path

• Starting from a context node, a location path returns a node-set

• Each node of this node-set becomes in turn the context node for
evaluating the next step

5 / 27

Evaluating a location path

• Starting from a context node, a location path returns a node-set

• Each node of this node-set becomes in turn the context node for
evaluating the next step

5 / 27

Evaluating a location path

• Starting from a context node, a location path returns a node-set

• Each node of this node-set becomes in turn the context node for
evaluating the next step

5 / 27

Evaluating a location path

• Starting from a context node, a location path returns a node-set

• Each node of this node-set becomes in turn the context node for
evaluating the next step

5 / 27

Evaluation Context

• Every XPath expression is evaluated with respect to a context that
includes:

• the context node
• 2 integers > 0 obtained from the evaluation of the last step:

• context size: the number of nodes in the node-set
• context position: the index of the context node in the node-set

• a set of variable bindings (expressed in the host language)

• Navigation “propagates” the context: evaluation of astep yields a new
context state

• Remark: a location path starting with ’/’ indicates that the initial context
is set to the root of the document, such a location path is called
“absolute”

6 / 27

Zoom on location steps

• A each navigation step, nodes can be filtered using qualifiers

• General syntax of a location step:

axis::nodetest[qualifier][qualifier]

• A location step is composed of 3 parts:

1. an axis: specify the relation between the context node and returned
nodes

2. a nodetest: type and name of returned nodes
3. optional qualifiers that further filter nodes

• Qualifiers are applied one after the other, once the selection is performed
by the axis and nodetest

• A qualifier returns a node-set that is filtered by the next qualifier

• Example: child::section[child::para][child::b]

7 / 27

Axes
• Indicates where in the tree (with respect to the context node) selected

nodes must be searched

• XPath defines 13 axes allowing navigation, including:

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

• 5 axes define a partition of tree nodes

8 / 27

Axes

• Each axis has a direction: forward or backward (w.r.t document ordering)

• Other axes:

• ancestor-or-self, descendant-or-self
• attribute: selects attributes of the context node (element)
• namespace: selects namespace nodes of the context node

9 / 27

Nodetest

• The nodetest of a location step indicates which nodes must be chosen on
the considered axis

• A nodetest filters nodes, e.g.:

Test Semantics

node() let any node pass

text() preserve only text nodes

comment() preserve only comment nodes

name preserve only elements/attributes with tag “name”

* preserve arbitrary elements/attributes

• Remarks:

1. path/child::* ⊆ path/child::node()

2. path/attribute::node() 6⊆ path/child::node()

10 / 27

Qualifier

• A qualifier filters a node-set depending on the axis and returns a
newnode-set

• A qualifier is a boolean expression evaluated depending on the context:

• context node
• context size: number of nodes in the node-set
• context position: index of the context node in the node-set, in the

order of the document (or in reverse document order for backward
axes)

• Each node of a node-set is kept only if the evaluation of the qualifier for
this node returns true

• Examples:

• following-sibling::para[position()=last()]
• child::para[position() mod 2 = 1]

11 / 27

Value Comparisons

• Qualifiers may include comparisons:

path[path1 eq path2] eq ∈ {=, ! =, <, >, <=, >=}

• Existential semantics:

node-set1 eq node-set2
iff

∃n1 ∈ node-set1,∃n2 ∈ node-set2 | string-value(n1) eq string-value(n2)

12 / 27

Value Comparisons

• Qualifiers may include comparisons:

path[path1 eq path2] eq ∈ {=, ! =, <, >, <=, >=}

• Existential semantics:

node-set1 eq node-set2
iff

∃n1 ∈ node-set1,∃n2 ∈ node-set2 | string-value(n1) eq string-value(n2)

• string-value(n): concatenation of all descendant text nodes in
document order

• Example: descendant::chapter[child::section="Conclusion"]

→ all “chapter” nodes whose at least one “section” child has string-value
"Conclusion".

12 / 27

Value Comparisons

• Qualifiers may include comparisons:

path[path1 eq path2] eq ∈ {=, ! =, <, >, <=, >=}

• Existential semantics:

node-set1 eq node-set2
iff

∃n1 ∈ node-set1,∃n2 ∈ node-set2 | string-value(n1) eq string-value(n2)

• string-value(n): concatenation of all descendant text nodes in
document order

• Example: descendant::chapter[child::section="Conclusion"]

→ all “chapter” nodes whose at least one “section” child has string-value
"Conclusion".

• Comparisons may involve (implicit) type casting (ex: a[b>7])

12 / 27

General XPath Expressions

• A general XPath expression is a location path, or a union of
location paths separated by ’|’

• Qualifiers may include boolean expressions:
path[(path eq path) or (qualifier and not(qualifier))]

• An XPath expression may include variables (notation: $x)

• variables are bound by the host language (i.e. they are constants ,)
• they are part of the evaluation context

13 / 27

Observation on Data Value Comparisons

• Assume variable $x is bound to a node-set

• What do you think of the following XPath expressions e1 and e2?

$x="foo"︸ ︷︷ ︸
e1

not($x!="foo")︸ ︷︷ ︸
e2

14 / 27

Observation on Data Value Comparisons

• Assume variable $x is bound to a node-set

• What do you think of the following XPath expressions e1 and e2?

$x="foo"︸ ︷︷ ︸
e1

not($x!="foo")︸ ︷︷ ︸
e2

• e1 is different from e2:

→ e1 is true iff there exists a node in $x which has string-value foo;

→ e2 is true iff all nodes in $x have string string-value foo.

14 / 27

Observation on Data Value Comparisons

• Assume variable $x is bound to a node-set

• What do you think of the following XPath expressions e1 and e2?

$x="foo"︸ ︷︷ ︸
e1

not($x!="foo")︸ ︷︷ ︸
e2

• e1 is different from e2:

→ e1 is true iff there exists a node in $x which has string-value foo;

→ e2 is true iff all nodes in $x have string string-value foo.

• Owing to negation and comparison defined by existential quantification,
we can formulate universal quantification...

14 / 27

Observation on Data Value Comparisons

• Assume variable $x is bound to a node-set

• What do you think of the following XPath expressions e1 and e2?

$x="foo"︸ ︷︷ ︸
e1

not($x!="foo")︸ ︷︷ ︸
e2

• e1 is different from e2:

→ e1 is true iff there exists a node in $x which has string-value foo;

→ e2 is true iff all nodes in $x have string string-value foo.

• Owing to negation and comparison defined by existential quantification,
we can formulate universal quantification...

• “chapter” nodes whose all children “section” are empty1?

1have an empty string-value
14 / 27

Observation on Data Value Comparisons

• Assume variable $x is bound to a node-set

• What do you think of the following XPath expressions e1 and e2?

$x="foo"︸ ︷︷ ︸
e1

not($x!="foo")︸ ︷︷ ︸
e2

• e1 is different from e2:

→ e1 is true iff there exists a node in $x which has string-value foo;

→ e2 is true iff all nodes in $x have string string-value foo.

• Owing to negation and comparison defined by existential quantification,
we can formulate universal quantification...

• “chapter” nodes whose all children “section” are empty1?
→ descendant::chapter[not(child::section!="")]

1have an empty string-value
14 / 27

Basic Functions

• Node-sets are not the only types of XPath expressions: there are boolean,
numerical and string expressions too

• Every XPath implementation must provide at least a list of basic functions
called Core Function Library (c.f. appendix)

• Examples:

• last(): a number, the context size
• position(): a number, the context position
• count(node-set): number of nodes in the node-set
• concat(string, string, string*): concatenate several strings
• contains(str1, str2): boolean, true if str1 contains str2
• ...

• Any XPath expression can be used within a qualifier, for instance:

descendant::recipe[count(descendant::ingredients)<5 and
contains(child::title, "cake")]

15 / 27

Abbreviated Syntax

• child:: is the default axis, it can be omitted

• @ is a shorthand for attribute::

• // is a shorthand for /descendant-or-self::node()/

• . is a shorthand for self::node()

• .. is a shorthand for parent::node()

• [4] is a shorthand for [position()=4]

Example Expanded Form
book/section child::book/child::section
p[@id="bla"] child::p[attribute::id="bla"]
.//p self::node()/descendant-or-self::node()/child::p
../title parent::node()/child::title
p[3] child::p[position()=3]

16 / 27

Question...

What do you think of the following XPath expressions e1 et e2?

self::title︸ ︷︷ ︸
e1

parent::node()/child::title︸ ︷︷ ︸
e2

17 / 27

Question...

Can we rewrite the XPath expression following::p without the axis
following?

self
ancestor

descendant

pr
ec

ed
ing

following
following-sibling

preceding-sibling

child

parent

18 / 27

XPath: A Core Component for XML Technologies

• XPath is used in:

• XSLT: selection of document parts to be transformed
• XQuery: XPath is the (main) subset of the query language
• XPointer: identification of XML fragments
• XLink: definition of hypertext links
• XML Schema: expressing the tree region in which unicity is

guaranteed
• XForms: expressing dependencies (data bindings)
• ...

• Often, it is even the essential component

19 / 27

XPath and Static Analysis (1/2)

• Many different ways to express navigation to the same nodes
• Two XPath expressions might share the same semantics2 even if
they differ syntactically (and operationally!)

child::a[child::b]/following-sibling::c

child::c[preceding-sibling::a[child::b]]

• Determining query equivalence is crucial (e.g. optimization)

2The semantics of an XPath expression is to be understood as the final set of nodes
resulting from the evaluation of the expression.

20 / 27

XPath and Static Analysis (2/2)

• What about the following expressions?

descendant::d[parent::b]/following-sibling::a

ancestor-or-self::*/descendant-or-self::b/a[preceding-sibling::d]

• Question for next time(s): how would you write a program that
checks whether two XPath expressions are equivalent (i.e. return the
same set of nodes when applied from the same context in any tree)?

21 / 27

Appendix

XPath Core Function Library

22 / 27

Functions over node-sets

• last(): a number, the context size

• position(): a number, the context position

• count(node-set): number of nodes in the node-set

• id(object): selects elements by their unique ID

• local-name(node-set): returns the local part of the expanded-name of
the node in the argument node-set that is first in document order.

• namespace-uri(node-set): returns the namespace URI of the
expanded-name of the node in the argument node-set that is first in
document order

• name(node-set): returns a string containing the whole name of the node
in the argument node-set that is first in document order

23 / 27

String Functions

• string(object): convert object to a string

• concat(string, string, string*): concatenate several strings

• start-with(string1, string2) : boolean, true if string1 starts with
string2

• contains(str1, str2) : boolean, true if str1 contains str2

• substring-before(string1, string2): the substring of string1
before the first occurrence of string2

• substring-after(string1, string2): the substring of string1 after
the first occurence of string2

• substring(string, number1, number2): the substring of string that
starts at position number1 and whose length is number2

• string-length(string): number of characters in string

• normalize-space(string): remove beginning, ending and double spaces

• translate(s1, s2, s3): replace in s1 each char of s2 by the char of
same position in s3
example : translate("bar","abc","ABC") returns BAr

24 / 27

Boolean Functions

• boolean(object): convert object into boolean, returns true if non zero
number, non empty node-set, string with non zero length

• not(boolean): negation of boolean

• true()

• false()

• lang(string): the language (attribute xml:lang) of context node is the
same or a sublanguage of string

25 / 27

Arithmetic Functions

• number(object): convert object into a number

• sum(node-set): sum of the (type casted) number representation of each
node in the node-set

• floor(number): greatest integer less or equal to number

• ceiling(number): smallest integer greater than or equal to number

• round(number): the closest integer of number

26 / 27

Operator Precedence

1. <=, <, >=, >

2. =, !=

3. and

4. or

27 / 27

	Motivations for XPath
	XPath Expressions
	Evaluation Principle
	Evaluation Context
	Steps
	Axes
	Node Tests
	Qualifiers
	Value Comparisons
	General XPath Expressions
	Basic Functions
	Abbreviated Syntax
	XPath: A Core Component

	Appendix
	Nodeset Functions
	String Functions
	Boolean Functions
	Arithmetic Functions
	Operator Precedence

