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Why XPath?

Search, selection and extraction of information from XML documents are
essential for any kind of XML processing.

→ XPath is the W3C standard language for expressing traversal and
navigation in XML trees.
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XPath Introduction

• A common syntax and semantics for many web languages

• A W3C recommendation (www.w3.org/TR/xpath)

• Compact syntax, not in XML, for use within XML attributes

• A language for expressing paths

• XPath operates on the logical (tree) structure of XML documents, not on
their syntax
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XPath Expressions

• XPath provides a powerful mechanism for navigating in XML trees: the
location path

• A location path is a sequence of location steps separated by ’/’:

child :: chapter︸ ︷︷ ︸
location step

/

axis︷ ︸︸ ︷
descendant ::

nodetest︷ ︸︸ ︷
section︸ ︷︷ ︸

location step

/ child :: para︸ ︷︷ ︸
location step
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Evaluating a location path

• Starting from a context node, a location path returns a node-set

• Each node of this node-set becomes in turn the context node for
evaluating the next step
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Evaluation Context

• Every XPath expression is evaluated with respect to a context that
includes:

• the context node
• 2 integers > 0 obtained from the evaluation of the last step:

• context size: the number of nodes in the node-set
• context position: the index of the context node in the node-set

• a set of variable bindings (expressed in the host language)

• Navigation “propagates” the context: evaluation of astep yields a new
context state

• Remark: a location path starting with ’/’ indicates that the initial context
is set to the root of the document, such a location path is called
“absolute”
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Zoom on location steps

• A each navigation step, nodes can be filtered using qualifiers

• General syntax of a location step:

axis::nodetest[qualifier][qualifier]

• A location step is composed of 3 parts:

1. an axis: specify the relation between the context node and returned
nodes

2. a nodetest: type and name of returned nodes
3. optional qualifiers that further filter nodes

• Qualifiers are applied one after the other, once the selection is performed
by the axis and nodetest

• A qualifier returns a node-set that is filtered by the next qualifier

• Example: child::section[child::para][child::b]
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Axes
• Indicates where in the tree (with respect to the context node) selected

nodes must be searched

• XPath defines 13 axes allowing navigation, including:

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

• 5 axes define a partition of tree nodes
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Axes

• Each axis has a direction: forward or backward (w.r.t document ordering)

• Other axes:

• ancestor-or-self, descendant-or-self
• attribute: selects attributes of the context node (element)
• namespace: selects namespace nodes of the context node
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Nodetest

• The nodetest of a location step indicates which nodes must be chosen on
the considered axis

• A nodetest filters nodes, e.g.:

Test Semantics

node() let any node pass

text() preserve only text nodes

comment() preserve only comment nodes

name preserve only elements/attributes with tag “name”

* preserve arbitrary elements/attributes

• Remarks:

1. path/child::* ⊆ path/child::node()

2. path/attribute::node() 6⊆ path/child::node()
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Qualifier

• A qualifier filters a node-set depending on the axis and returns a
newnode-set

• A qualifier is a boolean expression evaluated depending on the context:

• context node
• context size: number of nodes in the node-set
• context position: index of the context node in the node-set, in the

order of the document (or in reverse document order for backward
axes)

• Each node of a node-set is kept only if the evaluation of the qualifier for
this node returns true

• Examples:

• following-sibling::para[position()=last()]
• child::para[position() mod 2 = 1]
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Value Comparisons

• Qualifiers may include comparisons:

path[path1 eq path2] eq ∈ {=, ! =, <, >, <=, >=}

• Existential semantics:

node-set1 eq node-set2
iff

∃n1 ∈ node-set1,∃n2 ∈ node-set2 | string-value(n1) eq string-value(n2)
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General XPath Expressions

• A general XPath expression is a location path, or a union of
location paths separated by ’|’

• Qualifiers may include boolean expressions:
path[(path eq path) or (qualifier and not(qualifier))]

• An XPath expression may include variables (notation: $x)

• variables are bound by the host language (i.e. they are constants ,)
• they are part of the evaluation context
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Observation on Data Value Comparisons

• Assume variable $x is bound to a node-set

• What do you think of the following XPath expressions e1 and e2?

$x="foo"︸ ︷︷ ︸
e1

not($x!="foo")︸ ︷︷ ︸
e2
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→ e2 is true iff all nodes in $x have string string-value foo.

• Owing to negation and comparison defined by existential quantification,
we can formulate universal quantification...

• “chapter” nodes whose all children “section” are empty1?
→ descendant::chapter[not(child::section!="")]

1have an empty string-value
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Basic Functions

• Node-sets are not the only types of XPath expressions: there are boolean,
numerical and string expressions too

• Every XPath implementation must provide at least a list of basic functions
called Core Function Library (c.f. appendix)

• Examples:

• last(): a number, the context size
• position(): a number, the context position
• count(node-set): number of nodes in the node-set
• concat(string, string, string*): concatenate several strings
• contains(str1, str2): boolean, true if str1 contains str2
• ...

• Any XPath expression can be used within a qualifier, for instance:

descendant::recipe[count(descendant::ingredients)<5 and
contains(child::title, "cake")]
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Abbreviated Syntax

• child:: is the default axis, it can be omitted

• @ is a shorthand for attribute::

• // is a shorthand for /descendant-or-self::node()/

• . is a shorthand for self::node()

• .. is a shorthand for parent::node()

• [4] is a shorthand for [position()=4]

Example Expanded Form
book/section child::book/child::section
p[@id="bla"] child::p[attribute::id="bla"]
.//p self::node()/descendant-or-self::node()/child::p
../title parent::node()/child::title
p[3] child::p[position()=3]
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Question...

What do you think of the following XPath expressions e1 et e2?

self::title︸ ︷︷ ︸
e1

parent::node()/child::title︸ ︷︷ ︸
e2
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Question...

Can we rewrite the XPath expression following::p without the axis
following?

self
ancestor

descendant

pr
ec

ed
ing

following
following-sibling

preceding-sibling

child

parent
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XPath: A Core Component for XML Technologies

• XPath is used in:

• XSLT: selection of document parts to be transformed
• XQuery: XPath is the (main) subset of the query language
• XPointer: identification of XML fragments
• XLink: definition of hypertext links
• XML Schema: expressing the tree region in which unicity is

guaranteed
• XForms: expressing dependencies (data bindings)
• ...

• Often, it is even the essential component
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XPath and Static Analysis (1/2)

• Many different ways to express navigation to the same nodes
• Two XPath expressions might share the same semantics2 even if
they differ syntactically (and operationally!)

child::a[child::b]/following-sibling::c

child::c[preceding-sibling::a[child::b]]

• Determining query equivalence is crucial (e.g. optimization)

2The semantics of an XPath expression is to be understood as the final set of nodes
resulting from the evaluation of the expression.
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XPath and Static Analysis (2/2)

• What about the following expressions?

descendant::d[parent::b]/following-sibling::a

ancestor-or-self::*/descendant-or-self::b/a[preceding-sibling::d]

• Question for next time(s): how would you write a program that
checks whether two XPath expressions are equivalent (i.e. return the
same set of nodes when applied from the same context in any tree)?
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Appendix

XPath Core Function Library
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Functions over node-sets

• last(): a number, the context size

• position(): a number, the context position

• count(node-set): number of nodes in the node-set

• id(object): selects elements by their unique ID

• local-name(node-set): returns the local part of the expanded-name of
the node in the argument node-set that is first in document order.

• namespace-uri(node-set): returns the namespace URI of the
expanded-name of the node in the argument node-set that is first in
document order

• name(node-set): returns a string containing the whole name of the node
in the argument node-set that is first in document order
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String Functions

• string(object): convert object to a string

• concat(string, string, string*): concatenate several strings

• start-with(string1, string2) : boolean, true if string1 starts with
string2

• contains(str1, str2) : boolean, true if str1 contains str2

• substring-before(string1, string2): the substring of string1
before the first occurrence of string2

• substring-after(string1, string2): the substring of string1 after
the first occurence of string2

• substring(string, number1, number2): the substring of string that
starts at position number1 and whose length is number2

• string-length(string): number of characters in string

• normalize-space(string): remove beginning, ending and double spaces

• translate(s1, s2, s3): replace in s1 each char of s2 by the char of
same position in s3
example : translate("bar","abc","ABC") returns BAr
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Boolean Functions

• boolean(object): convert object into boolean, returns true if non zero
number, non empty node-set, string with non zero length

• not(boolean): negation of boolean

• true()

• false()

• lang(string): the language (attribute xml:lang) of context node is the
same or a sublanguage of string
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Arithmetic Functions

• number(object): convert object into a number

• sum(node-set): sum of the (type casted) number representation of each
node in the node-set

• floor(number): greatest integer less or equal to number

• ceiling(number): smallest integer greater than or equal to number

• round(number): the closest integer of number
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Operator Precedence

1. <=, <, >=, >

2. =, !=

3. and

4. or
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