Using Julia for Introductory Econometrics $1^{\text {st }}$ edition

Florian Heiss

Daniel Brunner

Using Julia for Introductory Econometrics
© Florian Heiss, Daniel Brunner 2023. All rights reserved.

Companion website: http://www.UPfIE. net

Address:
Universitätsstraße 1, Geb. 24.31.01.24
40225 Düsseldorf, Germany

Contents

Preface 1

1. Introduction 3
1.1. Getting Started 3
1.1.1. Software 3
1.1.2. Julia Scripts 5
1.1.3. Packages 8
1.1.4. File Names and the Work- ing Directory 10
1.1.5. Errors 10
1.1.6. Other Resources 11
1.2. Objects in Julia 11
1.2.1. Variables 12
1.2.2. Built-in Objects in Julia 12
1.2.3. Matrix Algebra in LinearAlgebra.jl 19
1.2.4. Objects in DataFrames.jl 20
1.2.5. Using PyCall.jl 25
1.3. External Data 27
1.3.1. Data Sets in the Examples 27
1.3.2. Import and Export of Data Files 28
1.3.3. Data from other Sources 30
1.4. Base Graphics with Plots.jl 30
1.4.1. Basic Graphs 31
1.4.2. Customizing Graphs with Options 33
1.4.3. Overlaying Several Plots 34
1.4.4. Exporting to a File 35
1.5. Descriptive Statistics 36
1.5.1. Discrete Distributions: Fre- quencies and Contingency Tables 36
1.5.2. Continuous Distributions: Histogram and Density 42
1.5.3. Empirical Cumulative Dis- tribution Function (ECDF) 44
1.5.4. Fundamental Statistics 44
1.6. Probability Distributions 48
1.6.1. Discrete Distributions 48
1.6.2. Continuous Distributions 50
1.6.3. Cumulative Distribution Function (CDF) 51
1.6.4. Random Draws from Prob- ability Distributions 53
1.7. Confidence Intervals and Statisti- cal Inference 55
1.7.1. Confidence Intervals 55
1.7.2. t Tests 57
1.7.3. p Values 59
1.8. Advanced Julia 62
1.8.1. Conditional Execution 62
1.8.2. Loops 62
1.8.3. Functions 63
1.8.4. Computational Speed 65
1.8.5. Outlook 66
1.9. Monte Carlo Simulation 66
1.9.1. Finite Sample Properties of Estimators 67
1.9.2. Asymptotic Properties of Estimators 69
1.9.3. Simulation of Confidence Intervals and t Tests 71
I. Regression Analysis with Cross-Sectional Data 77
2. The Simple Regression Model 79
2.1. Simple OLS Regression 79
2.2. Coefficients, Fitted Values, and Residuals 83
2.3. Goodness of Fit 87
2.4. Nonlinearities 89
2.5. Regression through the Origin and Regression on a Constant 90
2.6. Expected Values, Variances, and Standard Errors 92
2.7. Monte Carlo Simulations 95
2.7.1. One Sample 95
2.7.2. Many Samples 97
2.7.3. Violation of SLR. 4 99
2.7.4. Violation of SLR. 5 100
3. Multiple Regression Analysis: Estima- tion 101
3.1. Multiple Regression in Practice 101
3.2. OLS in Matrix Form 105
3.3. Ceteris Paribus Interpretation and Omitted Variable Bias 108
3.4. Standard Errors, Multicollinearity, and VIF 109
4. Multiple Regression Analysis: Inference 113
4.1. The t Test 113
4.1.1. General Setup 113
4.1.2. Standard Case 114
4.1.3. Other Hypotheses 116
4.2. Confidence Intervals 118
4.3. Linear Restrictions: F Tests 119
4.4. Reporting Regression Results 123
5. Multiple Regression Analysis: OLS Asymptotics 125
5.1. Simulation Exercises 125
5.1.1. Normally Distributed Error Terms 125
5.1.2. Non-Normal Error Terms 126
5.1.3. (Not) Conditioning on the Regressors 128
5.2. LM Test 131
6. Multiple Regression Analysis: Further Issues 133
6.1. Model Formulae 133
6.1.1. Data Scaling: Arithmetic Operations Within a Formula 133
6.1.2. Standardization: Beta Coef- ficients 134
6.1.3. Logarithms 136
6.1.4. Quadratics and Polynomials 136
6.1.5. Hypothesis Testing 138
6.1.6. Interaction Terms 138
6.2. Prediction 140
6.2.1. Confidence and Prediction Intervals for Predictions 140
6.2.2. Effect Plots for Nonlinear Specifications 143
7. Multiple Regression Analysis with Qualitative Regressors 147
7.1. Linear Regression with Dummy Variables as Regressors 147
7.2. Boolean Variables 150
7.3. Categorical Variables 151
7.4. Breaking a Numeric Variable Into Categories 153
7.5. Interactions and Differences in Re- gression Functions Across Groups 154
8. Heteroscedasticity 157
8.1. Heteroscedasticity-Robust Inference 157
8.2. Heteroscedasticity Tests 161
8.3. Weighted Least Squares 164
9. More on Specification and Data Issues 169
9.1. Functional Form Misspecification 169
9.2. Measurement Error 171
9.3. Missing Data and Nonrandom Samples 174
9.4. Outlying Observations 179
9.5. Least Absolute Deviations (LAD) Estimation 181
II. Regression Analysis with Time Series Data 183
10. Basic Regression Analysis with Time Series Data 185
10.1. Static Time Series Models 185
10.2. Time Series Data Types in Julia 186
10.2.1. Equispaced Time Series in Julia 186
10.2.2. Irregular Time Series in Julia 189
10.3. Other Time Series Models 191
10.3.1. Finite Distributed Lag Models 191
10.3.2. Trends 194
10.3.3. Seasonality 195
11.Further Issues in Using OLS with Time Series Data 197
11.1. Asymptotics with Time Series 197
11.2. The Nature of Highly Persistent Time Series 201
11.3. Differences of Highly Persistent Time Series 204
11.4. Regression with First Differences 206
11. Serial Correlation and Heteroscedas- ticity in Time Series Regressions 209
12.1. Testing for Serial Correlation of the Error Term 209
12.2. FGLS Estimation 213
12.3. Serial Correlation-Robust Infer- ence with OLS 215
12.4. Autoregressive Conditional Het- eroscedasticity 216
III. Advanced Topics219
12. Pooling Cross Sections Across Time: Simple Panel Data Methods 221
13.1. Pooled Cross Sections 221
13.2. Difference-in-Differences 222
13.3. Organizing Panel Data 224
13.4. First Differenced Estimator 225
13. Advanced Panel Data Methods 229
14.1. Getting Started with Panel Data 229
14.2. Fixed Effects Estimation 229
14.3. Random Effects Models 231
14.4. Dummy Variable Regression and Correlated Random Effects 233
14. Instrumental Variables Estimation and Two Stage Least Squares 237
15.1. Instrumental Variables in Simple Regression Models 237
15.2. More Exogenous Regressors 239
15.3. Two Stage Least Squares 241
15.4. Testing for Exogeneity of the Re- gressors 243
15.5. Testing Overidentifying Restrictions 2 244
15.6. Instrumental Variables with Panel Data 245
15. Simultaneous Equations Models 247
16.1. Setup and Notation 247
16.2. Estimation by 2SLS 248
16.3. Outlook: Estimation by 3SLS 252
17.Limited Dependent Variable Models and Sample Selection Corrections 255
17.1. Binary Responses 255
17.1.1. Linear Probability Models 255
17.1.2. Logit and Probit Models: Estimation 257
17.1.3. Inference 260
17.1.4. Predictions 261
17.1.5. Partial Effects 262
17.2. Count Data: The Poisson Regres- sion Model 265
17.3. Corner Solution Responses: The Tobit Model 267
17.4. Censored and Truncated Regres- sion Models 270
17.5. Sample Selection Corrections 272
16. Advanced Time Series Topics 275
18.1. Infinite Distributed Lag Models 275
18.2. Testing for Unit Roots 277
18.3. Spurious Regression 278
18.4. Cointegration and Error Correc- tion Models 281
18.5. Forecasting 281
17. Carrying Out an Empirical Project 285
19.1. Working with Julia Scripts 285
19.2. Logging Output in Text Files 287
19.3. Formatted Documents with Jupyter Notebook 288
19.3.1. Getting Started 288
19.3.2. Cells 289
19.3.3. Markdown Basics 289
IV. Appendices 295
Julia Scripts 297
18. Scripts Used in Chapter 01 297
19. Scripts Used in Chapter 02 321
20. Scripts Used in Chapter 03 329
21. Scripts Used in Chapter 04 332
22. Scripts Used in Chapter 05 335
23. Scripts Used in Chapter 06 338
24. Scripts Used in Chapter 07 341
25. Scripts Used in Chapter 08 344
26. Scripts Used in Chapter 09 348
27. Scripts Used in Chapter 10 354
28. Scripts Used in Chapter 11 356
29. Scripts Used in Chapter 12 359
30. Scripts Used in Chapter 13 363
31. Scripts Used in Chapter 14 365
32. Scripts Used in Chapter 15 367
33. Scripts Used in Chapter 16 370
34. Scripts Used in Chapter 17 372
35. Scripts Used in Chapter 18 380
36. Scripts Used in Chapter 19 382
Bibliography 384
List of Wooldridge (2019) Examples 387
Index 389

List of Tables

1.1. Logical Operators 13
1.2. Important Functions for Vectors and Matrices 16
1.3. Julia Built-in Data Types 19
1.4. Important DataFrames Functions 23
1.5. Statistics Functions for De- scriptive Statistics 45
1.6. Distributions Functions for Statistical Distributions 48
4.1. One- and Two-tailed t Tests for $H_{0}: \beta_{j}=a_{j}$ 116

List of Figures

1.1. Julia in the Command Line 3
1.2. Visual Studio Code User Interface 5
1.3. Executing a Script with \triangleright. 6
1.4. Executing a Script Line by Line . . 7
1.5. Examples of Text Data Files 28
1.6. Examples of Point and Line Plots . 32
1.7. Examples of Function Plots using
plot 33
1.8. Overlayed Plots 35
1.9. Examples of Exported Plots 36
1.10. Pie and Bar Plots 41
1.11. Histograms 43
1.12. Kernel Density Plots 44
1.13. Empirical CDF 45
1.14. Box Plots 47
1.15. Plots of the PMF and PDF 50
1.16. Plots of the CDF of Discrete and
Continuous RV 53
1.17. Computation Time of simMean . . 67
1.18. Simulated and Theoretical Density
of \bar{Y}. 70
1.19. Density of \bar{Y} with Different Sample
Sizes 71
1.20. Density of the χ^{2} Distribution with
1 d.f. 72
1.21. Density of \bar{Y} with Different Sample
Sizes: χ^{2} Distribution 72
1.22. Simulation Results: First 100 Con-
fidence Intervals 75
2.1. OLS Regression Line for Example
2-3 82
2.2. OLS Regression Line for Example
2-5 84
2.3. Regression through the Origin and
on a Constant 92
2.4. Simulated Sample and OLS Re-
gression Line 97
2.5. Population and Simulated OLS Re-
gression Lines 99
5.1. Density of $\hat{\beta}_{1}$ with Different Sam-
ple Sizes: Normal Error Terms . . 127
5.2. Density Functions of the Simu- lated Error Terms 127
5.3. Density of $\hat{\beta}_{1}$ with Different Sam- ple Sizes: Non-Normal Error Terms 128
5.4. Density of $\hat{\beta}_{1}$ with Different Sam- ple Sizes: Varying Regressors 130
6.1. Nonlinear Effects in Example 6.2 145
9.1. Outliers: Distribution of Studen- tized Residuals 180
10.1. Time Series Plot: Imports of Bar- ium Chloride from China 188
10.2. Time Series Plot: Stock Prices of Ford Motor Company 190
11.1. Time Series Plot: Daily Stock Re- turns 2008-2016, Apple Inc. 200
11.2. Simulations of a Random Walk Process 202
11.3. Simulations of a Random Walk Process with Drift 203
11.4. Simulations of a Random Walk Process with Drift: First Differences 205
17.1. Predictions from Binary Response Models (Simulated Data) 262
17.2. Partial Effects for Binary Response Models (Simulated Data) 263
17.3. Conditional Means for the Tobit Model 268
17.4. Truncated Regression: Simulated Example 273
18.1. Spurious Regression: Simulated Data from Script 18.3 279
18.2. Out-of-sample Forecasts for Un- employment 284
19.1. Creating a Jupyter Notebook 288
19.2. An Empty Jupyter Notebook 288
19.3. Select Julia in an Empty Jupyter Notebook 289
19.4. Cells in Jupyter Notebook 290
19.5. Example of an Exported Jupyter Notebook 292
19.6. Example of an Exported Jupyter Notebook (cont'ed) 293

Preface

An essential part of learning econometrics is the application of the methods to real-world problems and data. The practical implementation and application of econometric methods and tools helps tremendously with understanding the concepts. But learning how to use a software package also has great benefits in and of itself. Nowadays, a vast majority of our students will have to deal with some sort of data analysis in their careers. So a solid understanding of some serious data analysis software is an invaluable asset for any student of economics, business administration, and related fields.

But what software package is the right one for learning econometrics? That's a tough question. Possibly the most important aspect is that it is widely used both in and outside of academia. A large and active user community helps the software to remain up to date and increases the chances that somebody else has already solved the problem at hand. And fluency in a software package is especially valuable on the job market as well as on the job if it is popular. Another aspect for the software choice is that it is easily (and ideally freely) available to all students. This book is the latest part of a series covering the implementation of the same methods and applications using three of the best choices of software packages for these purposes.:

- "Using R for Introductory Econometrics": R traditionally is the most widely used software package in statistics and there is a huge community and countless packages in this area. More recently, the data wrangling and visualization capabilities using the "tidyverse" set of packages have become very popuar.
- "Using Python for Introductory Econometrics": Python is one of the most popular programming languages in many areas and very versatile. It has also become a de facto standard in areas like machine learning and AI.
- "Using Julia for Introductory Econometrics": Julia is the youngest of these software packages and languages. This makes it the most powerful in many aspects (like the syntax and computational speed). It also has the drawback that there are fewer packages available so far. You will see a few examples where we run Python code inside Julia to work around this problem. Chances are good that the steady development of Julia will make this detour unnecessary in the future.

All three books use the same structure, the same examples, and even much of the same text where it makes sense. This decision was not (only) made for laziness of the authors. It also helps readers to easily switch back and forth between the books. And if somebody worked through the R or Python book, she can easily look it up in Julia to achieve exactly the same results and vice versa, making it especially easy to learn all three languages. But most of all data analysis and econometrics tasks can be equally well performed in all languages. At the end, it's most important point is to get used to the workflow of some dedicated data analysis software package instead of not using any software or a spreadsheet program for data analysis.

The Julia language was released in 2012 and their authors motivated it as follows: ${ }^{1}$
> "We want a language that's open source, with a liberal license. We want the speed of C with the dynamism of Ruby. We want a language that's homoiconic, with true macros like Lisp, but with obvious, familiar mathematical notation like Matlab. We want something as usable for general programming as Python, as easy for statistics as R, as natural for string processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something that is dirt simple to learn, yet keeps the most serious hackers happy. We want it interactive and we want it compiled."

This makes Julia an ideal candidate for starting to learn econometrics and data analysis. As we will show in this book, learning Julia and the basics of econometrics are two goals that can be achieved very well together.
And Julia is completely free and available for all relevant operating systems. When using it in econometrics courses, students can easily download a copy to their own computers and use it at home (or their favorite cafés) to replicate examples and work on take-home assignments. This handson experience is essential for the understanding of the econometric models and methods. It also prepares students to conduct their own empirical analyses for their theses, research projects, and professional work.

A problem we encountered when teaching introductory econometrics classes is that the textbooks that also introduce R, Python or Julia do not discuss econometrics. Conversely, our favorite introductory econometrics textbooks do not cover the software. Although it is possible to combine a good econometrics textbook with an unrelated software introduction, this creates substantial hurdles because the topics and order of presentation are different, and the terminology and notation are inconsistent.

This book does not attempt to provide a self-contained discussion of econometric models and methods. Instead, it builds on the excellent and popular textbook "Introductory Econometrics" by Wooldridge (2019). It is compatible in terms of topics, organization, terminology, and notation, and is designed for a seamless transition from theory to practice.

The first chapter provides a gentle introduction to Julia, covers some of the topics of basic statistics and probability presented in the appendix of Wooldridge (2019), and introduces Monte Carlo simulation as an additional tool. The other chapters have the same names and cover the same material as the respective chapters in Wooldridge (2019). Assuming the reader has worked through the material discussed there, this book explains and demonstrates how to implement everything in Julia and replicates many textbook examples. We also open some black boxes of the built-in functions for estimation and inference by directly applying the formulas known from the textbook to reproduce the results. Some supplementary analyses provide additional intuition and insights. We want to thank Lars Grönberg and Anna Schmidt providing us with many suggestions and valuable feedback about the contents of this book.
The book is designed mainly for students of introductory econometrics who ideally use Wooldridge (2019) as their main textbook. It can also be useful for readers who are familiar with econometrics and possibly other software packages. For them, it offers an introduction to Julia and can be used to look up the implementation of standard econometric methods. Because we are explicitly building on Wooldridge (2019), it is useful to have a copy at hand while working through this book. All computer code used in this book can be downloaded to make it easier to replicate the results and tinker with the specifications. The companion website also provides the full text of this book for online viewing and additional material. It is located at:

> http: //www.UPfIE.net

[^0]
1. Introduction

Learning to use Julia is straightforward but not trivial. This chapter prepares us for implementing the actual econometric analyses discussed in the following chapters. First, we introduce the basics of the software system Julia in Section 1.1. In order to build a solid foundation we can later rely on, Chapters 1.2 through 1.4 cover the most important concepts and approaches used in Julia like working with objects, dealing with data, and generating graphs. Sections 1.5 through 1.7 quickly go over the most fundamental concepts in statistics and probability and show how they can be implemented in Julia. More advanced Julia topics like conditional execution, loops and functions are presented in Section 1.8. They are not really necessary for most of the material in this book. An exception is Monte Carlo simulation which is introduced in Section 1.9.

1.1. Getting Started

Before we can get going, we have to find and download the relevant software, figure out how the examples presented in this book can be easily replicated and tinkered with, and understand the most basic aspects of Julia. That is what this section is all about.

1.1.1. Software

Julia is a free and open source software. Its homepage is https:// julialang. org. There, a wealth of information is available as well as the software itself. Distributions are available for Windows, Mac, and Linux systems and for all what follows, you need to install Julia on your platform. The examples in this book are based on the installation of version 1.8.1.

After downloading and installing, Julia can be accessed by the command line interface. In Windows, run the program "Julia". In Linux or macOS you can simply open a terminal window. ${ }^{1}$ You start Julia by typing julia and pressing the return key (ω). This will look similar to the screenshot in Figure 1.1. It provides some basic information on Julia and the installed version. Right to the "julia>" sign is the prompt where the user can type commands for Julia to evaluate. This kind of interaction with Julia is also called the REPL (read-eval-print loop).

We can type whatever we want here. After pressing \square, the line is terminated, Julia tries to make sense out of what is written and gives an appropriate answer. In the example shown in Figure 1.1, this was done four times. The texts we typed are shown next to the "julia>" text, Julia answers under the respective line.

Our first attempt did not work out well: We have got an error message. Unfortunately, Julia does not comprehend the language of Shakespeare. We will have to adjust and learn to speak Julia's less poetic language. The second command shows one way to do this. Here, we provide the input to the command print in the correct syntax, so Julia understands that we entered text and knows what to do with it: print it out on the console. Next, we gave Julia simple computational tasks and got the result under the respective command. The syntax should be easy to understand apparently, Julia can do simple addition and deals with the parentheses in the expected way. The same applies to the last command, because it simply calculates the square root by calling a function: sqrt (16) $=\sqrt{16}=4$.

Julia is used by typing commands such as these. Not only Apple users may be less than impressed by the design of the user interface and the way the software is used. There are various approaches to make it more user friendly by providing a different user interface added on top of plain Julia. A very popular choice is Microsoft's Visual Studio Code and we use it for all what follows. You can download it for your platform under https://visualstudio.microsoft.com/vs/.

After installing and starting Visual Studio Code, you need to add the Julia extension. For that, click on the extension symbol (${ }^{(1)}$) on the left and type Julia in the marketplace search box. Select Julia and install it.

To work with Julia, open Visual Studio Code and click on New File.... You are asked what kind of file you want to create. Type julia and select the Julia File entry. A screenshot of the user interface on a Mac computer is shown in Figure 1.2 (on other systems it will look very similar). There are several sub-windows. The one on the bottom named "Terminal" looks very similar and behaves exactly the same as the command line. The usefulness of the other windows will become clear soon.

Here are a first few quick tricks for working in the terminal of Visual Studio Code:

- When starting to type a command, press to autocomplete the command. You can try it with $\mathbf{s q}+\leftrightarrows$ for the sqrt command. This only works if there is only one match. If nothing happens, you may have multiple matches and to show them press \leftrightarrows a second time. You can try it with pri $+\Longrightarrow$ and get (among others) the print and println commands.
- Type ? to enter the help mode. Then enter the name of the function you need help with and a help page for the provided command will be printed.
- With the \uparrow and $\sqrt{ }$ arrow keys, we can scroll through the previously entered commands to repeat or correct them.

[^1]Figure 1.2. Visual Studio Code User Interface

1.1.2. Julia Scripts

As already seen, we will have to get used to interacting with our software using written commands. While this may seem odd to readers who do not have any experience with similar software at this point, it is actually very common for econometrics software and there are good reasons for this. An important advantage is that we can easily collect all commands we need for a project in a text file called Julia script.

A Julia script contains all commands including those for reading the raw data, data manipulation, estimation, post-estimation analyses, and the creation of graphs and tables. In a complex project, these tasks can be divided into separate Julia scripts. The point is that the script(s) together with the raw data generate the output used in the term paper, thesis, or research paper. We can then ask Julia to evaluate all or some of the commands listed in the Julia script at once.

This is important since a key feature of the scientific method is reproducibility. Our thesis adviser as well as the referee in an academic peer review process or another researcher who wishes to build on our analyses must be able to fully understand where the results come from. This is easy if we can simply present our Julia script which has all the answers.

Working with Julia scripts is not only best practice from a scientific perspective, but also very convenient once we get used to it. In a nontrivial data analysis project, it is very hard to remember all the steps involved. If we manipulate the data for example by directly changing the numbers in a spreadsheet, we will never be able to keep track of everything we did. Each time we make a mistake (which is impossible to avoid), we can simply correct the command and let Julia start from scratch by a simple mouse click if we are using scripts. And if there is a change in the raw data set, we can simply rerun everything and get the updated tables and figures instantly.

Using Julia scripts is straightforward: We just write our commands into a text file and save it with a ". $\cdot j 1$ " extension. When using a user interface like Visual Studio Code, working with scripts is especially convenient since it is equipped with a specialized editor for script files. To use the editor for working on a new Julia script, click on New File. . . You are asked what kind of file you want to create. Type julia and select the Julia File entry.

The window in the upper part of Figure 1.2 is the script editor. We can type arbitrary text, begin a new line with the return key, and navigate using the mouse or the $\boxed{\square} \square \square$ arrow keys. Our goal is not to type arbitrary text but sensible Julia commands. In the editor, we can also use

Figure 1.3. Executing a Script with \triangleright

tricks like code completion that work in the Console window as described above. A new command is generally started in a new line, but also a semicolon ";" can be used if we want to cram more than one command into one line - which is often not a good idea in terms of readability.
An extremely useful tool to make Julia scripts more readable are comments. These are lines beginning with a "\#". These lines are not evaluated by Julia but can (and should) be used to structure the script and explain the steps. Julia scripts can be saved and opened using the File menu.
Figures 1.3 and 1.4 show a screenshot of Visual Studio Code with a Julia script saved as "First-Julia-Script.jl". It consists of six lines in total including three comments. We can send lines of code to Julia to be evaluated in two different ways:

- Click \triangleright. The complete script is executed and only results that are explicitly printed out (by the commands print or println) show up in the "Terminal" window. The example in Figure 1.3 therefore only returns 15.
- Execute Julia commands and scripts line by line or blockwise. The window "Terminal" shows the command you executed and the output. Press $[$ Shift $+\pi$ to execute the line of the current cursor position or a highlighted block of code. As an alternative you can also rightclick on the line or highlighted block or code an choose Julia: Execute Code in REPL. Figure 1.4 demonstrates the execution line by line.

In what follows, we will do everything using Julia scripts. All these scripts are available for download to make it easy and convenient to reproduce all contents in real time when reading this book. As already mentioned, the address is
http://www.UPfIE.net
They are also printed in Appendix IV. In the text, we will not show screenshots, but the script files printed in bold and (if any) Julia's output in standard font. The latter only contains output that is explicitly printed out, just like the example in Figure 1.3. Script 1.1 (First-Julia-Script.jl) demonstrates the way we discuss Julia code in this book. To improve the readability of generated output, you can include $\backslash \mathrm{n}$ as text in the print command to start a new line. For the same reason we often use println, which does this implicitly at the end of the line.

Figure 1.4. Executing a Script Line by Line

Script 1.1: First-Julia-Script.jl

```
# This is a comment.
# in the next line, we try to enter Shakespeare:
"To be, or not to be: that is the question"
# let's try some sensible math:
sqrt(16)
print((1 + 2) * 5)
```

Output of Script 1.1: First-Julia-Script.jl
15

Script 1.2 (Julia-as-a-Calculator.jl) is a second (and more representative) example in which Julia is used for simple tasks any basic calculator can do. The Julia script and output are:

Script 1.2: Julia-as-a-Calculator.jl

```
result1 = 1 + 1
print("result1 = $result1\n")
result2 = 5 * (4 - 1)^2
println("result2 = $result2")
result3 = [result1, result2]
print("result3:\n $result3")
```

Output of Script 1.2: Julia-as-a-Calculator.jl

```
result1 = 2
result2 = 45
result3:
    [2, 45]
```

By using the function print ("some text \$variablename") we can combine text we want to print out in combination with values of certain variables. This gives clear and readable output. We will discuss some additional hints for efficiently working with Julia scripts in Section 19.

1.1.3. Packages

Packages are Julia files that you can access to solve your problem. ${ }^{2}$ To make use of one or multiple packages you have to import them first with the command:

```
using packagename1, packagename2, ...
```

The standard installation of Julia already comes with a number of built-in packages, also called the Standard Library. Script 1.3 (Package-Statistics.jl) demonstrates this with the Statistics package. All content becomes available once the package is loaded with using Statistics. You can access the package content directly with its objects names, or by packagename. objectname to avoid name conflicts with other packages. In Script 1.3 (Package-Statistics.jl), the functions mean and var demonstrate both ways.

Script 1.3: Package-Statistics.jl
using Statistics
$a=[2,6,4,9,1]$
a_mean $=$ mean (a)
println("a_mean = \$a_mean")
a_var = Statistics.var(a)
println("a_var = \$a_var")

Output of Script 1.3: Package-Statistics.jl

```
a_mean = 4.4
```

a_var = 10.3

The functionality of Julia can also be extended relatively easily by advanced users. This is not only useful to those who are able and willing to do this, but also for a novice user who can easily make use of a wealth of extensions generated by a big and active community. Since these extensions are mostly programmed in Julia, everybody can check and improve the code submitted by a user, so the quality control works very well. At the time of writing there are 7,400 packages listed in the Julia General Registry on GitHub.
Downloading and installing these packages is simple with the built-in package manager Pkg. Execute the following Julia code:

```
using Pkg
Pkg.add("packagename")
```

or type] in the "Terminal" window to enter the package mode and execute add packagename. ${ }^{3}$ In Julia, packages can be organized for each project individually, which is useful if your code depends on a specific version of a package.

[^2]The following two commands are useful if you want to update a package or print out all installed packages:

```
Pkg.update("packagename")
Pkg.status()
```

As already mentioned there are thousands of packages. Here is a list of those we will use throughout this book with a short description from the respective documentation files:

- DataFrames: "DataFrames.jl provides a set of tools for working with tabular data in Julia."
- Plots: "Plots is a plotting API and toolset."
- Distributions: "A Julia package for probability distributions and associated functions."
- GLM: "Linear and generalized linear models in Julia"
- HypothesisTests: "HypothesisTests.jl is a Julia package that implements a wide range of hypothesis tests."
- Econometrics: "This package provides the functionality to estimate the following regression models: Continuous Response Models (Ordinary Least Squares, Longitudinal estimators), Nominal Response Model (Multinomial logistic regression), Ordinal Response Model"
- RegressionTables: "This package provides publication-quality regression tables for use with FixedEffectModels.jl and GLM.jl, as well as any package that implements the RegressionModel abstraction."
- WooldridgeDatasets: "This package includes all the data sets used in the Introductory Econometrics: A Modern Approach by Jeffrey Wooldridge."
- StatsPlots: "This package is a drop-in replacement for Plots.jl that contains many statistical recipes for concepts and types introduced in the JuliaStats organization."
- StatsModels: "Basic functionality for specifying, fitting, and evaluating statistical models in Julia."
- CategoricalArrays: "This package provides tools for working with categorical variables, both with unordered (nominal variables) and ordered categories (ordinal variables), optionally with missing values."
- FreqTables: "This package allows computing one- or multi-way frequency tables (a.k.a. contingency or pivot tables) from any type of vector or array."
- csv: "A pure-Julia package for handling delimited text data, be it comma-delimited (csv), tab-delimited (tsv), or otherwise."
- PyCall: "This package provides the ability to directly call and fully interoperate with Python from the Julia language."
- QuantileRegressions: "Implementation of quantile regression."
- MarketData: "The MarketData package provides open-source financial data for research and testing."
- Optim: "Optim is a Julia package for optimizing functions of various kinds."
- KernelDensity: "Kernel density estimators for Julia."
- BenchmarkTools: "BenchmarkTools makes performance tracking of Julia code easy by supplying a framework for writing and running groups of benchmarks as well as comparing benchmark results."
- Conda: "This package allows one to use conda as a cross-platform binary provider for Julia for other Julia packages, especially to install binaries that have complicated dependencies like Python."

Of course, the installation only has to be done once per computer/user and needs an active internet connection.

We also make use of the following built-in packages, which need no installation:

- Statistics: "The Statistics standard library module contains basic statistics functionality."
- LinearAlgebra: "In addition to (and as part of) its support for multi-dimensional arrays, Julia provides native implementations of many common and useful linear algebra operations which can be loaded with using LinearAlgebra."
- Random: "Random number generation in Julia uses the Xoshiro256++ algorithm by default, with per-Task state."
- Dates: "The Dates module provides two types for working with dates: Date and DateTime, representing day and millisecond precision, respectively; both are subtypes of the abstract TimeType."
- Pkg: "Development repository for Julia's package manager, shipped with Julia v1.0 and above."

1.1.4. File Names and the Working Directory

There are several possibilities for Julia to interact with files. The most important ones are to import or export a data file. We might also want to save a generated figure as a graphics file or store regression tables as text, spreadsheet, or LATEX files.
Whenever we provide Julia with a file name, it can include the full path on the computer. The full (i.e. "absolute") path to a script file might be something like
/Users/MyJlProject/MyScript.jl
on a Mac or Linux system. The path is provided for Unix based operating systems using forward slashes. If you are a Windows user, you usually use back slashes instead of forward slashes, but the Unix-style will also work in Julia. On a Windows system, a valid path would be

C:/Users/MyUserName/Documents/MyJlProject/MyScript.jl

If we do not provide any path, Julia will use the current "working directory" for reading or writing files. It can be obtained by executing the command pwd (). To change the working directory, use the command cd (path). Relative paths are interpreted relative to the current working directory. For a neat file organization, best practice is to generate a directory for each project (say MyJlProject) with several sub-directories (say JlScripts, data, and figures). At the beginning of our script, we can use cd("/Users/MyJlProject") and afterwards refer to a data set in the respective subdirectory as data/MyData.csv and to a graphics file as figures/MyFigure.png . ${ }^{4}$ Note that Julia can handle operating system specific path formats automatically with the function joinpath. Since the project structure for this book is very clear and we rarely use path names, we use relative path names in Unix format when necessary.

1.1.5. Errors

Something you will experience very soon when starting to work with Julia (or any other similar software package) is that you will make mistakes. The main difference to learning to ride a bicycle

[^3]is that when learning to use Julia, mistakes will not hurt. Another difference is that even people who have been using Julia for years make mistakes all the time.

Many mistakes will cause Julia to complain in the form of error messages or warnings. An important part of learning Julia is to roughly get an idea of what went wrong from these messages. Here is a list of frequent error messages and warnings you might get:

- ERROR: DomainError with $\mathbf{x y}$: The argument xy to a function is not valid. Try sqrt (-1) to reproduce the error.
- ERROR: MethodError: no method matching xy: There is no function available, which works with the type of provided arguments. Try "a" + "b" to reproduce the error.
- ERROR: UndefVarError: \mathbf{x} not defined: We have tried to use a variable \mathbf{x} that isn't defined (yet). Could also be due to a typo in the variable name.
- ERROR: IOError: cd("pathxy"): no such file or directory (ENOENT): Julia wasn't able to open the file. Check the working directory, path, file name.
- ERROR: ArgumentError: Package xyz not found in current path.: We mistyped the package name. Or the required package is not installed on the computer. In this case, install it as described in Section 1.1.3.
There are countless other error messages and warnings you may encounter. Some of them are easy to interpret, but others might require more investigative prowess. Often, the search engine of your choice will be helpful.

1.1.6. Other Resources

There are many useful resources helping to learn and use Julia. For useful books on Julia in general and for data science, visit https://julialang.org/learning/books/. Since Julia has a very active user community, there is also a wealth of information available for free on the internet. Here are some suggestions:

- The official Julia learning section (includes the documentation, tutorials and books): https://julialang.org/learning/
- Quantitative economic modeling with Julia https://julia.quantecon.org/intro.html
- A digital version of the book Julia Data Science by Storopoli, Huijzer, and Alonso (2021): https://juliadatascience.io
- Stack Overflow: A general discussion forum for programmers, including many Julia users: https://stackoverflow.com
- Cross Validated: Discussion forum on statistics and data analysis with an active Julia community: https://stats.stackexchange.com
- Recently, large language models like (Chat)GPT have become very powerful tools for learning a language like Julia. They can explain, comment, and improve given code or help to write new code from scratch.

1.2. Objects in Julia

Julia can work with numbers, arrays, texts, data sets, graphs, functions, and many more objects of different types. This section covers the most important ones we will frequently encounter in the remainder of this book. We will first introduce built-in objects that are available in basic Julia. Next, we cover objects included in the packages LinearAlgebra and DataFrames to get closer to
working with real data. Finally, we look at a way to use objects from Python directly in Julia. This is useful if we need an estimator, for example, that is only implemented in Python, but not in Julia. This will happen a few times in this book, so we introduce it here.

1.2.1. Variables

We have already observed Julia doing some basic arithmetic calculations. From Script 1.2 (Julia-as-a-Calculator.jl), the general approach of Julia should be self-explanatory. Fundamental operators include $+,-, *, /$ for the respective arithmetic operations and parentheses (and) that work as expected.

We will often want to store results of calculations to reuse them later. For this, we can assign any result to a variable. A variable has a name and by this name you can access the assigned object. Julia puts few restrictions on variable names. Usually it's a good idea to start them with a small letter and include only letters, numbers, and the underscore character "_". Julia is case sensitive, so \mathbf{x} and \mathbf{x} are different variables. A special feature of Julia is the support of mathematical expressions in your code. Just type a ${ }^{\mathrm{AT}} \mathrm{EX}$ math symbol (starting with the backslash) and press \leftrightarrows. For example, if you want to use δ, just type \delta $+\leftrightarrows$.

You already saw how variables are used to reference objects in
Script 1.2 (Julia-as-a-Calculator.jl): The content of an object is assigned by using =. In order to assign the result of $1+1$ to the variable result1, type result $1=1+1$.
A new object is created, which includes the value 2. After assigning it to result1, we can use result1 in our calculations. If there was a variable with this name before, its content is overwritten.
A list of all currently defined variable names is printed by the command varinfo. Restart Julia to remove all previously defined variables from the workspace.
Up to now, we assigned results of arithmetic operations to variables. In the next sections, we will introduce more complex types of objects like texts, arrays, data sets, function definitions, and estimation results.

1.2.2. Built-in Objects in Julia

You might wonder what kind of objects we have dealt with so far. Script 1.4 (Objects-in-Julia.jl) shows how to figure this out by using the command typeof:

Script 1.4: Objects-in-Julia.jl

```
result1 = 1 + 1
# determine the type:
type_result1 = typeof(result1)
# print the result:
println("type_result1: $type_result1\n")
result2 = 2.5
type_result2 = typeof(result2)
println("type_result2: $type_result2\n")
result3 = "To be, or not to be: that is the question"
type_result3 = typeof(result3)
println("type_result3: $type_result3")
```

Table 1.1. Logical Operators

$\mathrm{x}==\mathrm{y}$	\mathbf{x} is equal to \mathbf{y}	x! =y	\mathbf{x} is NOT equal to \mathbf{y}
$\mathrm{x}<\mathrm{y}$	\mathbf{x} is less than \mathbf{y}	! b	NOT \mathbf{b} (i.e. true, if \mathbf{b} is false)
$x<=y$	\mathbf{x} is less than or equal to \mathbf{y}	a \| b	Either \mathbf{a} or \mathbf{b} is true (or both)
x>y	\mathbf{x} is greater than \mathbf{y}	$a \& b$	Both \mathbf{a} and \mathbf{b} are true
$x>=y$	\mathbf{x} is greater than or equal to \mathbf{y}		

Output of Script 1.4: Objects-in-Julia.jl
type_result1: Int64
type_result2: Float64
type_result3: String

The command typeof tells us that we have created integers (Int64), floating point numbers (Float64) and text objects (String). ${ }^{5}$ The data type not only defines what values can be stored, but also the actions you can perform on these objects. For example, if you want to add an integer to result3, Julia will return:

```
ERROR: MethodError: no method matching +(::String, ::Int64)
```

Scalar data types like Int 64 or Float 64 contain only single values. A Boolean value, also called logical value, is another scalar data type that will become useful if you want to execute code only if one or more conditions are met. An object of type Bool can only take one of two values: true or false. The easiest way to generate them is to state claims which are either true or false and let Julia decide. Table 1.1 lists the main logical operators.

As we saw in previous examples, scalar types differ in what kind of data they can be used for:

- Int 64: whole numbers, for example 2 or 5
- Float 64: numbers with a decimal point, for example 2.0 or 4.95
- Char: single characters delimited by single quotes, for example ' \mathbf{a}^{\prime} or ' \mathbf{b} '
- String: any sequence of characters delimited by double quotes, for example "abc"
- Bool: either true or false

For statistical calculations, we obviously need to work with data sets including many numbers or texts instead of scalars. The simplest way we can collect components (even components of different types) is called an Array in Julia terminology. We will first introduce the definition of this data type as well as the basics of accessing and manipulating arrays. Second, we will demonstrate functions that become useful when working on econometric problems.

In what follows, we need only one- or two-dimensional arrays, which come with special aliases in Julia:

- Vector $\{T\}$: one-dimensional array, where each component is of type T
- Matrix\{T\} : two-dimensional array, where each component is of type T

If you mix types, say a String and a Int64, the resulting object consists of components of type Any, an abstract type that all objects are instances of.

[^4]To define a Vector, we can collect different values with the following syntax:

```
test_vec = [value1, value2, ...]
```

You can access a Vector entry by providing the position (starting at position 1) within square brackets next to the variable name referencing the vector (see Script 1.5 (Arrays.jl) for an example). You can also access a range of values by using their start position i and end position j with the syntax vectorname [i:j]. Instead of using the position of the last entry, you could also use end.

A Matrix can be defined row by row in the following ways:

```
test_mat_a = [[v_row1_col1 v_row1_col2 ...]
    [v_row2_col1 v_row2_col2 ...]
    ...]
test_mat_b = [v_row1_col1 v_row1_col2 ...
    v_row2_col1 v_row2_col2 ...
    ...]
test_mat_c = [v_row1_col1 v_row1_col2 . . ; v_row2_col1 v_row2_col2 ... ; ...]
```

You can also provide column by column to build the Matrix:

```
test_mat_d = [[v_row1_col1, v_row2_col1, ...] [v_row1_col2, v_row2_col2, ...] ...]
```

Accessing entries in a Matrix is similar to vectors except that you need to supply two comma separated positions in square brackets: the first number gives the row, the second number gives the column. If you want to access the third row in the second column of test_mat, for example, you use test_mat [3, 2]. Matrices are important tools for econometric analyses. Appendix D of Wooldridge (2019) introduces the basic concepts of matrix algebra and we come back to it in Section 1.2.3. ${ }^{6}$

Script 1.5 (Arrays.jl) demonstrates multiple ways of accessing single or multiple entries in a vector or matrix.

Script 1.5: Arrays.jl

```
# define arrays:
testarray1D = [1, 5, 41.3, 2.0]
println("type(testarray1D): $(typeof(testarray1D))\n")
testarray2D = [4 9 8 3
    2 6 3 2
    1 1 7 4]
# same as:
#testarray2D = [[4 9 8 3; 2 6 3 2; 1 1 7 4]
#testarray2D = [[[4 9 8 3]
# [ 2 6 3 2]
# [[\begin{array}{llll}{1}&{1}&{7}&{4}\end{array}]}
#testarray2D = [[4, 2, 1] [9, 6, 1] [8, 3, 7] [3, 2, 4]]
# get dimensions of testarray2D:
dim = size(testarray2D)
println("dim: $dim\n")
```

[^5]```
access elements by indices:
third_elem = testarray1D[3]
println("third_elem = $third_elem\n")
second_third_elem = testarray2D[2, 3] # element in 2nd row and 3rd column
println("second_third_elem = $second_third_elem\n")
second_to_third_col = testarray2D[:, 2:3] # each row in the 2nd and 3rd column
println("second_to_third_col = $second_to_third_col\n")
last_col = testarray2D[:, end] # each row in the last column
println("last_col = $last_col\n")
access elements by array:
first_third_elem = testarray1D[[1, 3]]
println("first_third_elem: $first_third_elem\n")
same with Boolean array:
first_third_elem2 = testarray1D[[true, false, true, false]]
println("first_third_elem2 = $first_third_elem2\n")
k = [[true false false false]
 [false false true false]
 [true false true false]]
elem_by_index = testarray2D[k] # 1st elem in 1st row, 1st elem in 3rd row...
print("elem_by_index: $elem_by_index")
```

Output of Script 1.5: Arrays.jl

```
type(testarray1D): Vector{Float64}
dim: (3, 4)
third_elem = 41.3
second_third_elem = 3
second_to_third_col = [9 8; 6 3; 1 7]
last_col = [3, 2, 4]
first_third_elem: [1.0, 41.3]
first_third_elem2 = [1.0, 41.3]
elem_by_index: [4, 1, 3, 7]
```

Script 1.6 (Array-Copy.jl) in the appendix demonstrates how to work with a copy of an array. By default you will not work on a copy when assigning it to another variable, but the underlying object. You can use deepcopy to create a copy.

There are many built-in functions that can be applied directly to arrays as one or more arguments. In case you need a function that is not already available, you can define your own function as discussed in Section 1.8.3. You call a function with the syntax:

```
functionname(argument1, argument2, ...)
```

```
Table 1.2. Important Functions for Vectors and Matrices
 \(\mathbf{x} .+\mathbf{y} \quad\) Element-wise sum of all elements in \(\mathbf{x}\) and \(\mathbf{y}\)
\(\mathbf{x} .-\mathbf{y} \quad\) Element-wise subtraction of all elements in \(\mathbf{x}\) and \(\mathbf{y}\)
\(\mathbf{x} . / \mathbf{y} \quad\) Element-wise division of all elements in \(\mathbf{x}\) and \(\mathbf{y}\)
\(\mathbf{x} . \boldsymbol{\mathbf { * }} \quad\) Element-wise multiplication of all elements in \(\mathbf{x}\) and \(\mathbf{y}\)
\(\mathbf{x} . \wedge \mathbf{y} \quad\) Element-wise raising of \(\mathbf{x}\) to the power of \(\mathbf{y}\)
\(\exp .(\mathbf{x}) \quad\) Element-wise exponential of all elements in \(\mathbf{x}\)
sqrt. (\(\mathbf{x}\)) Element-wise square root of all elements in \(\mathbf{x}\)
\(\log .(\mathbf{x}) \quad\) Element-wise natural logarithm of all elements in \(\mathbf{x}\)
\(\operatorname{sum}(x) \quad\) Sum of all elements in \(\mathbf{x}\)
minimum (\(\mathbf{x}\)) Minimum of all elements in \(\mathbf{x}\)
maximum (\(\mathbf{x}\)) Maximum of all elements in \(\mathbf{x}\)
length (\(\mathbf{x}\)) Total number of elements in \(\mathbf{x}\)
size (\(x\)) Rows and/ or columns of a matrix \(x\)
ndims (\(\mathbf{x}\)) Dimension of \(\mathbf{x}\) (1 for a vector, 2 for a matrix)
sort (\(\mathbf{x}\)) Sort elements in vector \(\mathbf{x}\) in ascending order
inv (\(x\)) Inverse of matrix \(x\)
\(\mathbf{x} \boldsymbol{\mathbf { y }} \quad\) Matrix multiplication of matrices \(\mathbf{x}\) and \(\mathbf{y}\)
transpose (\(\mathbf{x}\)) or \(\mathbf{x}^{\prime}\) Transpose of matrix \(\mathbf{x}\)
```

Julia functions work on a copy of the arguments by default. This means that a modification of any argument within the function has no side effect outside the function. There might be situations, where working directly on the argument instead of a copy might be more efficient. In Julia, the exclamation mark behind the function name, i.e. functionname! (argument1, argument2, ...), implements this. The exclamation mark "warns" you that the function has side effects. / Functions are often vectorized meaning that they are applied to each of the elements in one or more arguments separately (in a very efficient way). In Julia, a dot behind the name of a function or before an operator implements this behaviour. For example, exp. (vector) and vector .+ 2, is the correct syntax for calculating the exponential and adding 2 to every element of a vector.

Table 1.2 lists important functions, which work on an Array and Script 1.7 (Array-Functions.jl) provides examples to see them in action. ${ }^{7}$ Functions in the last part of Table 1.2 will be discussed in the next subsection. We will see in Section 1.5 how to obtain descriptive statistics of the data.

Script 1.7: Array-Functions.jl

```
define arrays:
vec1 = [1, 4, 64, 36]
mat1 = [lllllll
 2 6 3 2
 1 1 7 4]
apply some functions:
sort!(vec1)
println("vec1: $vec1\n")
vec2 = sqrt.(vec1)
vec3 = vec1 .+ vec2
println("vec3: $vec3\n")
```

${ }^{7}$ For a complete list of mathematical functions, see https://docs.julialang.org/en/v1/manual/ mathematical-operations/.

```
get dimensions of mat1:
dim_mat1 = size(mat1)
println("dim_mat1: $dim_mat1")
```


## Output of Script 1.7: Array-Functions.jl

```
vec1: [1, 4, 36, 64]
vec3: [2.0, 6.0, 42.0, 72.0]
dim_mat1: (3, 4)
```

We can also use some predefined and useful special cases of arrays. We show some of them in Script 1.8 (Array-SpecialCases.jl).

Script 1.8: Array-SpecialCases.jl

```
initialize matrix with each element set to zero:
zero_mat = zeros (4, 3)
println("zero_mat: \n$zero_mat\n")
initialize matrix with each element set to one:
one_mat = ones (2, 5)
println("one_mat: \n$one_mat\n")
uninitialized matrix (filled with arbitrary nonsense elements):
empty_mat = Array{Float64}(undef, 2, 2)
println("empty_mat: \n$empty_mat")
```

Output of Script 1.8: Array-SpecialCases.jl
zero_mat:
[0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0]
one_mat:
$[1.01 .01 .01 .01 .0 ; 1.01 .01 .01 .01 .0]$
empty_mat:
[0.0 2.7850472156e-314; 2.7850472156e-314 0.0]

A key characteristic of an Array is the order of included components. This order allows you to access its components by a position. Dictionaries (Dict) are unordered sets of components. You access components by their unique keys. A Dict can be defined in the following ways:

```
test_dict_a = Dict([("key1", object1), ("key2", object2)])
test_dict_b = Dict("key1" => object1, "key2" => object2)
```

Any component can be accessed by the test_dict["key"] syntax. Script 1.9 (Dicts.jl) demonstrates their definition and some basic operations.

Script 1.9: Dicts.jl

```
define and print a dict:
var1 = ["Florian", "Daniel"]
var2 = [96, 49]
example_dict = Dict("name" => var1, "points" => var2)
println("example_dict: \n$example_dict\n")
get data type:
type_example_dict = typeof(example_dict)
println("type_example_dict: $type_example_dict\n")
access "points":
points_all = example_dict["points"]
println("points_all: $points_all\n")
access "points" of Daniel:
points_daniel = example_dict["points"][2]
println("points_daniel: $points_daniel\n")
add 4 to "points" of Daniel:
example_dict["points"][2] = example_dict["points"][2] + 4
println("example_dict: \n$example_dict\n")
add a new component "grade":
example_dict["grade"] = [1.3, 4.0]
delete component "points":
delete!(example_dict, "points")
print("example_dict: \n$example_dict\n")
```

Output of Script 1.9: Dicts.jl

```
example_dict:
Dict{String, Vector}("name" => ["Florian", "Daniel"], "points" => [96, 49])
type_example_dict: Dict{String, Vector}
points_all: [96, 49]
points_daniel: 49
example_dict:
Dict{String, Vector}("name" => ["Florian", "Daniel"], "points" => [96, 53])
example_dict:
Dict{String, Vector}("name" => ["Florian", "Daniel"], "grade" => [1.3, 4.0])
```

There are more important data types and functions and so far we covered only some of them. You will see them in this book only occasionally, so we will introduce them briefly:

- A Range stores a sequence of numbers between start and stop and can be defined by the start: stop syntax. The default step size of 1 can be varied by start:stepsize:stop or you can set the length $L$ of the sequence, alternatively. The function range can also be used to define a Range with the following function calls: range (start, stop, step=stepsize) or range (start, stop, length=L). To inspect a range, the function collect is useful converting the range to an array.
- A Tuple contains multiple objects with the syntax (object1, object2,...). In a NamedTuple the components can also have names (name1 = object1, name2 = object $2, .$. ), which makes them accessible by the test_tuple. name syntax.
- A Pair binds two objects with the syntax object1 $\Rightarrow$ object 2 and we have already used them as an input for a Dict.
- A symbol is defined with the colon by : symbolname. It looks similar to a string and is used if you work with variable names, for example.
Table 1.3 summarizes all relevant built-in data types plus a simple example in case you have to look them up later.

Table 1.3. Julia Built-in Data Types

| Julia type | Data Type | Example |
| :--- | :--- | :--- |
| Int64 | Integer | $a=5$ |
| Float64 | Floating Point Number | $a=5.3$ |
| String | String | $a=$ abc" |
| Bool | Boolean | $a=$ true |
| Array | Vector or Matrix | $a=[1,3,1.5]$ |
| Dict | Dictionary | $a=$ Dict("a" $=>[1,2], ~ " c "=>[5, ~ 3])$ |
| Range | Range | $a=0: 4: 20$ |
| Tuple | Tuple | $a=(b=[1,2], c=3, d=" a b c ")$ |
| Pair | Pair | $a=[" a ", " b "]=>[1,2,3]$ |
| Symbol | Symbol | $a=:$ varname |

### 1.2.3. Matrix Algebra in LinearAlgebra. jl

The built-in package LinearAlgebra has a powerful matrix algebra system and is loaded by: 8

```
using LinearAlgebra
```

Basic matrix algebra includes:

- Matrix addition using the operator .+ as long as the matrices have the same dimensions.
- Matrix multiplication is done with the operator * as long as the dimensions of the matrices match.
- Element-wise multiplication is implemented by the operator .*.
- Transpose of a matrix $\mathbf{X}$ : as $\mathbf{X}^{\prime}$ or transpose ( $\mathbf{x}$ )
- Inverse of a matrix $\mathbf{X}$ : as inv (X)

The examples in Script 1.10 (Matrix-Operations.jl) should help to understand the workings of these basic operations. In order to see how the OLS estimator for the multiple regression model can be calculated using matrix algebra, see Section 3.2.

[^6]```
# define matrices:
mat1 = [4 9 8
    2 6 3]
mat2 = [ll 5 2
    6 6 0
    4 3]
# use exp() and apply it to each element:
result1 = exp.(mat1)
result1_rounded = round.(result1, digits=4)
println("result1_rounded: \n$result1_rounded\n")
result2 = mat1 .+ mat2[1:2, :]
println("result2: $result2\n")
# use another function:
mat1_tr = transpose(mat1) #or simply: mat1'
println("mat1_tr: $mat1_tr\n")
# matrix algebra:
matprod = mat1 * mat2
println("matprod: $matprod")
```

Output of Script 1.10: Matrix-Operations.jl

```
result1_rounded:
[54.5982 8103.0839 2980.958; 7.3891 403.4288 20.0855]
result2: [5 14 10; 8 12 3]
mat1_tr: [4 2; 9 6; 8 3]
matprod: [90 138 32; 50 70 13]
```


1.2.4. Objects in DataFrames.jl

The package DataFrames builds on top of data types introduced in previous sections and allows us to work with something we will encounter almost every time we discuss an econometric application: a data frame. ${ }^{9}$
A data frame is a structure that collects several variables and can be thought of as a rectangular shape with the rows representing the observational units and the columns representing the variables. A data frame can contain variables of different data types (for example a numerical Array, an array of Strings and so on). Before you start working with DataFrames, make sure that it is installed. The first line of code always is:

using DataFrames

The most important data type in DataFrames is DataFrame, which we will often simply refer to as "data frame".
Accessing elements of a variable df referencing an object of data type DataFrame can be done in multiple ways:

[^7]- Access columns/ variables by name: df.varname1, df[!, [:varname1, :varname2, ...]] or df[!, ["varname1", "varname2", ...]] ${ }^{10}$
- Access columns/ variables by integer position i : $\mathrm{df}[!$, i] (also works with ranges $\mathrm{i}: \mathrm{j}$ or vectors of integers, e.g. [2,4,5, . .] $)$
- Access rows/ observations by integer position i : $\mathrm{df}[\mathrm{i}, \quad$:] (also works with ranges $\mathbf{i}: \mathrm{j}$ or vectors of integers, e.g. [2, 4, 5, . .])
- Access variables and observations by row and column integer positions i and j : $\mathbf{d f}[\mathbf{i}, j]$ (columns/ variables can also be provided by name)

Script 1.11: DataFrames.jl

```
using DataFrames
# define a DataFrame:
icecream_sales = [30, 40, 35, 130, 120, 60]
weather_coded = [0, 1, 0, 1, 1, 0]
customers = [2000, 2100, 1500, 8000, 7200, 2000]
df = DataFrame(
    icecream_sales=icecream_sales,
    weather_coded=weather_coded,
    customers=customers
)
# print the DataFrame
println("df: \n$df\n")
# access columns by variable reference:
subset1 = df[!, [:icecream_sales, :customers]]
println("subset1: \n$subset1\n")
# access second to fourth row:
subset2 = df[2:4, :]
println("subset2: \n$subset2\n")
# access rows and columns by variable integer positions:
subset3 = df[2:4, 1:2]
println("subset3: \n$subset3\n")
# access rows by variable integer positions:
subset4 = df[2:4, [:icecream_sales, :weather_coded]]
println("subset4: \n$subset4")
```

[^8]Output of Script 1.11: DataFrames.jl

```
df:
6\times3 DataFrame
    Row | icecream_sales weather_coded customers
        | Int64 Int64 Int64
\begin{tabular}{|c|c|c|c|}
\hline 1 & 30 & 0 & 2000 \\
\hline 2 & 40 & 1 & 2100 \\
\hline 3 & 35 & 0 & 1500 \\
\hline 4 & 130 & 1 & 8000 \\
\hline 5 & 120 & 1 & 7200 \\
\hline 6 & 60 & 0 & 2000 \\
\hline
\end{tabular}
subset1:
6\times2 DataFrame
    Row | icecream_sales customers
        | Int64 Int64
        l
subset2:
3\times3 DataFrame
    Row | icecream_sales weather_coded customers
        | Int64 Int64 Int64
        l
subset3:
3\times2 DataFrame
    Row | icecream_sales weather_coded
        | Int64 Int64
    l
subset 4:
3\times2 DataFrame
    Row | icecream_sales weather_coded
        | Int64 Int64
\begin{tabular}{c|rr}
1 & 1 & 40 \\
2 & 1 & 35 \\
3 & 130 & 0 \\
\hline
\end{tabular}
```

Table 1.4. Important DataFrames Functions	
first (df, i)	First i observations in df
last (df, i)	Last i observations in df
describe (df)	Print descriptive statistics in df
ncol (df)	Number of variables in df
nrow (df)	Number of observations in df
names (df)	Variable names in df
df. x or df [!, : x]	Access \mathbf{x} in df
df [i, j]	Access variables and observations in df by integer position
push! (df, row)	Add one observation at the end of df in-place
vcat (df, df2)	Bind two data frames $\mathbf{d f}$ and df2 vertically if variable names match
deleteat! (df, i)	Delete row \mathbf{i} in data frame df in-place
	Sort the data in df by variable \mathbf{x} in ascending order
subset (df, : x => ByRow(condition))	Extract rows in df, which match the provided condition in variable \mathbf{x}
groupby (df, : x)	Create subgroups of $\mathbf{d f}$ according to \mathbf{x} in a grouped data frame
combine (gdf, : x => function)	Apply a function to variable \mathbf{x} in a grouped data frame gdf

Many economic variables of interest have a qualitative rather than quantitative interpretation. They only take a finite set of values and the outcomes don't necessarily have a numerical meaning. Instead, they represent qualitative information. Examples include gender, academic major, grade, marital status, state, product type or brand. In some of these examples, the order of the outcomes has a natural interpretation (such as the grades), in others, it does not (such as the state).

As a specific example, suppose we have asked our customers to rate our product on a scale between 0 (="bad"), 1 (="okay"), and 2 (="good"). We have stored the answers of our ten respondents in terms of the numbers 0,1 , and 2 in an array. We could work directly with these numbers, but often, it is convenient to use a special data type from the package CategoricalArrays. ${ }^{11}$ One advantage is that we can attach labels to the outcomes. We extend a modified example in Script 1.12 (DataFrames-Functions.jl), where the variable weather is coded, and demonstrate how to assign meaningful labels. The example also includes some functions from Table 1.4, i.e. adding observations or calling functions on subgroups of the data frame. The comments explain the effect of the respective action.

[^9]Script 1.12: DataFrames-Functions.jl

```
using DataFrames, CategoricalArrays, Statistics
# define a DataFrame:
icecream_sales = [30, 40, 35, 130, 120, 60]
weather_coded = [0, 1, 0, 1, 1, 0]
customers = [2000, 2100, 1500, 8000, 7200, 2000]
df = DataFrame(
    icecream_sales=icecream_sales,
    weather_coded=weather_coded,
    customers=customers
)
# get some descriptive statistics:
descr_stats = describe(df)
println("descr_stats: \n$descr_stats\n")
# add one observation at the end in-place:
push!(df, [50, 1, 3000])
println("df: \n$df\n")
# extract observations with more than 2500 customers:
subset_df = subset(df, :customers => ByRow(> (2500)))
println("subset_df: \n$subset_df\n")
# use a CategoricalArray object to attach labels (0 = bad; 1 = good):
df.weather = recode(df[!, :weather_coded], 0 => "bad", 1 => "good")
println("df \n$df\n")
# mean sales for each weather category by
# grouping and splitting data:
grouped_data = groupby(df, :weather)
# apply the mean to icecream_sales and combine the results:
group_means = combine(grouped_data, :icecream_sales => mean)
println("group_means: \n$group_means")
```

Output of Script 1.12: DataFrames-Functions.jl


```
subset_df:
3\times3 DataFrame
    Row | icecream_sales weather_coded customers
        | Int64 Int64 Int64
        l_----------------------------------------------------
df
l\times4 DataFrame 
\begin{tabular}{c|cccc} 
& Int64 & Int64 & Int64 & String \\
1 & & 30 & 0 & 2000 \\
2 & 40 & 1 & 2100 & bad \\
2 & 35 & 0 & 1500 & bad \\
3 & 130 & 1 & 8000 & good \\
4 & 120 & 1 & 7200 & good \\
5 & 60 & 0 & 2000 & bad \\
6 & & 1 & 3000 & good
\end{tabular}
group_means:
2\times2 DataFrame
Row | weather icecream_sales_mean
    | String Float64
    1 | bad 41.6667
    2 | good 85.0
```


1.2.5. Using PyCall.jl

So far, we have relied on Julia and its packages to provide the functionality we need. In the few cases where this does not work, we make use of Python's extensive range of modules with the PyCall package. ${ }^{12}$ The main advantage of this package is that we can easily execute Python code directly within a Julia session.

We start by providing the basic syntax of a Python module installation. This is important, because PyCall uses a minimal Python installation, which is private to Julia. After installing the Julia package Conda, the following Julia code performs a module installation in Python:

```
using Conda
Conda.add("packagename")
```

As demonstrated in Script 1.13 (PyCall-Simple.jl), the syntax py""" pythoncode """ can be used to execute Python code. Note that PyCall automatically converts many types between the two languages, so finally we deal with a Julia array.

[^10]```
using PyCall
define a block of Python Code:
py"""
import numpy as np
define arrays in numpy:
mat1 = np.array([[4, 9, 8],
 [2, 6, 3]])
mat2 = np.array([[1, 5, 2],
 [6, 6, 0],
 [4, 8, 3]])
matrix algebra:
matprod_py = mat1 @ mat2
"""
automatic type conversion from Python to Julia:
matprod = py"matprod_py"
matprod_type = typeof(matprod)
println("matprod_type: $matprod_type\n")
println("matprod: $matprod")
```

Output of Script 1.13: PyCall-Simple.jl
matprod_type: Matrix\{Int64\}
matprod: [90 138 32; 5070 13]

Script 1.14 (PyCall-Alternative.jl) repeats the matrix multiplication, but instead of defining the input matrices in Python, we start with Julia arrays and pass it to numpys dot function. The functionality of a Python module becomes available after assigning the output of pyimport to the Julia variable np.

Script 1.14: PyCall-Alternative.jl

```
using PyCall
using pyimport to work with modules:
np = pyimport("numpy")
define matrices in Julia:
mat1 = [4 9 8
 2 6 3]
mat2 = [lllll
 6 6 0
 4 8 3]
... and pass them to numpys dot function:
matprod = np.dot(mat1, mat2)
println("matprod: $matprod\n")
matprod_type = typeof(matprod)
println("matprod_type: $matprod_type")
```

Output of Script 1.14: PyCall-Alternative.jl
matprod: [90 138 32; 50 70 13]
matprod_type: Matrix\{Int64\}

### 1.3. External Data

In previous sections, we entered all of our data manually in the script files. This is a very untypical way of getting data into our computer and we will introduce more useful alternatives. These are based on the fact that many data sets are already stored somewhere else in data formats that Julia can handle.

### 1.3.1. Data Sets in the Examples

We will reproduce many of the examples from Wooldridge (2019). The companion web site of the textbook provides the sample data sets in different formats. If you have an access code that came with the textbook, they can be downloaded free of charge. The Stata data sets are also made available online at the "Instructional Stata Datasets for econometrics" collection from Boston College, maintained by Christopher F. Baum. ${ }^{13}$

Fortunately, we do not have to download each data set manually and import them by the functions discussed in Section 1.3.2. Instead, we can use the package WooldridgeDatasets. ${ }^{14}$ First, you need to install it as explained in Section 1.1.3. By default the function wooldridge imports a CSV file and we directly convert this to a more convenient DataFrame as introduced in Section 1.2.4. When working with WooldridgeDatasets, the first line of code always is:

```
using WooldridgeDatasets, DataFrames
```

Script 1.15 (Wooldridge.jl) demonstrates the first lines of a typical example in this book. As you see, we are dealing with a DataFrame data type, so all the functions from the previous section are applicable.

Script 1.15: Wooldridge.jl

```
using WooldridgeDatasets, DataFrames
load data:
wage1 = DataFrame(wooldridge("wage1"))
get type:
type_wage1 = typeof(wage1)
println("type_wage1: $type_wage1\n")
get first four observations and first eight variables:
preview_wage1 = wage1[1:4, 1:8]
println("preview_wage1: \n$preview_wage1")
```

Output of Script 1.15: Wooldridge. jl


[^11]Figure 1.5. Examples of Text Data Files

| (a) sales.txt | (b) sales.csv |
| :---: | :---: |
| year product1 product2 product 3 | 2008,0,1,2 |
| 2008012 | $2009,3,2,4$ |
| 2009324 | 2010,6,3,4 |
| 2010634 | 2011, 9,5,2 |
| 2011952 | 2012,7, 9, 3 |
| 2012793 | 2013,8, 6, 2 |
| 2013862 | 2013, $0,6,2$ |

### 1.3.2. Import and Export of Data Files

Probably all software packages that handle data are capable of working with data stored as text files. This makes them a natural way to exchange data between different programs and users. Common file name extensions for such data files are RAW, CSV or TXT. Most statistics and spreadsheet programs come with their own file format to save and load data. While it is basically always possible to exchange data via text files, it might be convenient to be able to directly read or write data in the native format of some other software.

Fortunately, packages like CSV or XLSX provide the possibility for importing and exporting data from/to text files and many programs. For a CSV or TXT file, for example, two functions in the CSV package handle the import and export of data: ${ }^{15}$

- CSV.read (path, DataFrame) : Imports a CSV or TXT file stored at path as a DataFrame.
- CSV. write (path, df) : Exports a data frame df as a CSV file to the provided path.

Figure 1.5 shows two flavors of a raw text file containing the same data. The file sales.txt contains a header with the variable names. In file sales.csv, the columns are separated by a comma.
Text files for storing data come in different flavors, mainly differing in how the columns of the table are separated. The commands CSV.read and CSV.write provide possibilities for reading many flavors of text files which are then stored as a DataFrame. Script 1.16 (Import-Export. jl) demonstrates the import and export of the files shown in Figure 1.5. In this example, data files are stored in and exported to the folder data.

Script 1.16: Import-Export.jl

```
using DataFrames, CSV
import a .CSV file with CSV.read:
df1 = CSV.read("data/sales.csv", DataFrame, delim=",",
 header=["year", "product1", "product2", "product3"])
println("df1: \n$df1\n")
import a .txt file with CSV.read:
df2 = CSV.read("data/sales.txt", DataFrame, delim=" ")
println("df2: \n$df2\n")
add a row to df1:
push!(df1, [2014, 10, 8, 2])
println("df1: \n$df1")
```

[^12]```
# export with CSV.write:
CSV.write("data/sales2.csv", df1)
```

Output of Script 1.16: Import-Export. jl

```
df1:
6\times4 DataFrame
    Row | year product1 product2 product3
        | Int64 Int64 Int64 Int64
\begin{tabular}{l|cccc}
1 & 2008 & 0 & 1 & 2 \\
2 & 1 & 2009 & 3 & 2 \\
3 & 1 & 2010 & 6 & 3 \\
4 & 1 & 2011 & 9 & 5 \\
5 & 1 & 2012 & 7 & 9 \\
6 & 2013 & 8 & 6 & 4 \\
& & & & 2 \\
& & &
\end{tabular}
df2:
6\times4 DataFrame
    Row | year product1 product2 product3
        | Int64 Int64 Int64 Int64
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2008 & 0 & 1 & 2 \\
\hline 2 & 2009 & 3 & 2 & 4 \\
\hline 3 & 2010 & 6 & 3 & 4 \\
\hline 4 & 2011 & 9 & 5 & 2 \\
\hline 5 & 2012 & 7 & 9 & 3 \\
\hline 6 & 2013 & 8 & 6 & 2 \\
\hline
\end{tabular}
df1:
7\times4 DataFrame
    Row | year product1 product2 product3
        | Int64 Int64 Int64 Int64
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2008 & 0 & 1 & 2 \\
\hline 2 & 2009 & 3 & 2 & 4 \\
\hline 3 & 2010 & 6 & 3 & 4 \\
\hline 4 & 2011 & 9 & 5 & 2 \\
\hline 5 & 2012 & 7 & 9 & 3 \\
\hline 6 & 2013 & 8 & 6 & 2 \\
\hline 7 & 2014 & 10 & 8 & 2 \\
\hline
\end{tabular}
```

The command CSV.read includes many optional arguments that can be added. Many of these arguments are detected automatically by CSV, but you can also specify them explicitly. The most important arguments are:

- header: Integer specifying the row that includes the variable names or a vector of variable names.
- delim: Often columns are separated by a comma, i.e. delim=','. Instead, an arbitrary other character can be given. sep=' ;' might be another relevant example of a separator.
- skipto: Integer specifying the first row to import (and skipping all previous ones).

1.3.3. Data from other Sources

The last part of this section deals with importing data from other sources than local files on your computer. We will use the package MarketData which makes it straightforward to query data on Yahoo Finance. ${ }^{16}$ You have to install MarketData as explained in Section 1.1.3. Script 1.17 (Import-StockData.jl) demonstrates the workflow of importing stock data of Ford Motor Company with the function yahoo. All you have to do is specify the ticker symbol of the stock and start and end date with the function DateTime. The latter is part of the Dates package and creates an object of type DateTime, which is the native way of storing date and time data in Julia. To set a date, you have to provide the year, followed by the month and day. We provide more details about DateTime objects in Section 10.2.1.

```
                            Script 1.17: Import-StockData.jl
using DataFrames, Dates, MarketData
# download data for "F" (= Ford) and define start and end:
ticker = "F"
start_date = DateTime(2007, 12, 31)
end_date = DateTime(2017, 01, 01)
# import data as DataFrame:
F_data = DataFrame (yahoo(ticker,
    YahooOpt(period1=start_date, period2=end_date)))
preview_F_data = first(F_data, 5)
println("preview_F_data: \n$preview_F_data")
```

Output of Script 1.17: Import-StockData.jl

1.4. Base Graphics with Plots .jl

The package Plots is a popular and versatile tool for producing all kinds of graphs in Julia. ${ }^{17}$ In this section, we discuss the overall base approach for producing graphs and the most important general types of graphs. We will only scratch the surface of Plots, but you will see most of the graph producing commands relevant for this book. For more information, see the package documentation. Some specific graphs used for descriptive statistics will be introduced in Section 1.5.
Before you start producing your own graphs, make sure that you install plots as explained in Section 1.1.3. When working with Plots, the first line of code always is:

```
using Plots
```

[^13]
1.4.1. Basic Graphs

One very general type is a two-way graph with an abscissa and an ordinate that typically represent two variables like X and Y.

If we have data in two vectors \mathbf{x} and \mathbf{y}, we can easily generate scatter plots, line plots or similar two-way graphs. The command plot is capable of these types of graphs and we will see some of the more specialized uses later on. Script 1.18 (Graphs-Basics.jl) generates Figures 1.6(a) and (b) and demonstrates the minimum amount of code to produce a black line plot with the plot command with all other options on default. It also shows how to create a scatter plot with scatter. A legend is included by default and can be suppressed by legend=false. Graphs are displayed in a separate Julia window. The savefig command exports the created plot as a PDF file to the folder JlGraphs. If the folder JlGraphs does not exist yet you must create one first to execute Script 1.18 (Graphs-Basics.jl) without error.

Script 1.18: Graphs-Basics.jl

```
using Plots
# create data:
x = [1, 3, 4, 7, 8, 9]
y = [0, 3, 6, 9, 7, 8]
# plot and save:
plot(x, y, color=:black)
savefig("JlGraphs/Graphs-Basics-a.pdf")
# scatter and save:
scatter(x, y, color=:black, markershape=:dtriangle, legend=false)
savefig("JlGraphs/Graphs-Basics-b.pdf")
```

Two important arguments of the plot commands are linestyle and markershape. The argument linestyle takes the values :solid (the default), : dash, : dot, and many more. The argument markershape can take :circle, :cross, and many more. Some resulting plots are shown in Figure 1.6. The code is shown in the appendix in Script 1.19 (Graphs-Basics2.jl). For a complete list of arguments to customize a plot, see https://docs.juliaplots.org/latest/ generated/attributes_series/.

The plot command can be used to create a function plot, i.e. function values $y=f(x)$ are plotted against x. To plot a smooth function, the first step is to generate a fine grid of x values. In Script 1.20 (Graphs-Functions.jl) we choose the range function and control the number of x values with length. ${ }^{18}$ The following plotting of the function works exactly as in the previous example. We choose the quadratic function plotted in Figure 1.7(a) and the standard normal density (see Section 1.6) in Figure 1.7(b).

[^14]Figure 1.6. Examples of Point and Line Plots
(a) see Script 1.18 (Graphs-Basics.jl)

(c) linestyle=:dash

(e) linewidth=3

(b) see Script 1.18 (Graphs-Basics.jl)

(d) linestyle=:dot

(f) markershape=:circle

Figure 1.7. Examples of Function Plots using plot
(a) $\mathbf{x} 1 . \wedge 2$
(b) pdf. (Normal (), x2)

Script 1.20: Graphs-Functions.jl

```
using Plots, Distributions
# support of quadratic function
# (creates an array with 100 equispaced elements from -3 to 2):
x1 = range(start=-3, stop=2, length=100)
# function values for all these values:
y1 = x1 .^ 2
# plot quadratic function:
plot(x1, y1, linestyle=:solid, color=:black, legend=false)
savefig("JlGraphs/Graphs-Functions-a.pdf")
# same for normal density:
x2 = range(-4, 4, length=100)
y2 = pdf.(Normal(), x2)
# plot normal density:
plot(x2, y2, linestyle=:solid, color=:black, legend=false)
savefig("JlGraphs/Graphs-Functions-b.pdf")
```


1.4.2. Customizing Graphs with Options

As already demonstrated in the examples, these plots can be adjusted very flexibly. A few examples:

- The width of the lines can be changed using the argument linewidth.
- The size of the marker symbols can be changed using the argument markersize (default: markersize=4).
- The transparency of a line can be changed by the argument linealpha with a number between 0 (complete transparency) and 1 (no transparency).
- The color of the lines and symbols can be changed using the argument color (also see linecolor, markercolor etc. for more flexibility). It can be specified in several ways:
- By name: :blue, :green, :red, :yellow, :black, :white, and many more. See http://juliagraphics.github.io/Colors.jl/stable/namedcolors/ for a complete list.
- By RGBA values provided by ($\mathrm{r}, \mathrm{g}, \mathrm{b}, \mathrm{a}$) with each letter representing a number between 0 and 1, for example plot (\mathbf{x}, y, color=RGBA (0.9,0.2,0.1,0.3)). ${ }^{19}$ This is useful for fine-tuning colors.
You can also add more elements to change the appearance of your plot:
- A title can be added using title! ("My Title").
- The horizontal and vertical axis can be labeled using xlabel! ("My x axis label") and ylabel!("My y axis label").
- The limits of the horizontal and the vertical axis can be chosen using xlims!(min, max) and ylims!(min, max), respectively.
For an example, see Script 1.21 (Graphs-BuildingBlocks.jl) and Figure 1.8.

1.4.3. Overlaying Several Plots

Often, we want to plot more than one set of variables or multiple graphical elements. This is an easy task, because each plot is added to the previous one if you use in-place modification by the plot! command.

Script 1.21 (Graphs-BuildingBlocks.jl) shows an example that also demonstrates some of the options from the previous paragraph. Its result is shown in Figure 1.8. ${ }^{20}$

> Script 1.21: Graphs-BuildingBlocks.jl

```
using Plots, Distributions
# support for all normal densities:
x = range (-4, 4, length=100)
# get different density evaluations:
y1 = pdf.(Normal(), x)
y2 = pdf.(Normal (1, 0.5), x)
y3 = pdf. (Normal (0, 2), x)
# plot:
plot(x, y1, linestyle=:solid, color=:black, label="standard normal")
plot!(x, y2, linestyle=:dash, color=:black,
    linealpha=0.6, label="mu = 1, sigma = 0.5")
plot!(x, y3, linestyle=:dot, color=:black,
    linealpha=0.3, label="mu = 0, sigma = 2")
xlims! (-3, 4)
title!("Normal Densities")
ylabel!("phi(x)")
xlabel!("x")
savefig("JlGraphs/Graphs-BuildingBlocks.pdf")
```

In this example, you can also see some useful commands for adding elements to an existing graph. Here are some (more) examples:

- hline! ([y]) adds a horizontal line at \mathbf{y}.
- vline! ([x]) adds a vertical line at \mathbf{x}.
- legend=position adds the legend at a specific position, which can be :topleft, :top, :topright, :left, :inside, :right, :bottomleft, :bottom, or :bottomright.
- size=(width, height) sets the width and height of your graph (the default is (600, 400)).

[^15]Figure 1.8. Overlayed Plots
Normal Densities

1.4.4. Exporting to a File

By default, a graph generated in one of the ways we discussed above will be displayed in its own window. Julia offers the possibility to export the generated plots automatically using specific commands.

Among the different graphics formats, the PNG (Portable Network Graphics) format is very useful for saving plots to use them in a word processor and similar programs. For LATEX users, PS, EPS and SVG are available and PDF is very useful. You have already seen the export syntax of the current graph in many examples:

```
savefig("filepath/filename.format")
```

Script 1.22 (Graphs-Export.jl) and Figure 1.9 demonstrate the complete procedure.

```
using Plots, Distributions
```

\# support for all normal densities:
$\mathbf{x}=$ range ($-4,4$, length=100)
\# get different density evaluations:
$\mathrm{y} 1=\mathrm{pdf}$. (Normal(), x)
$\mathrm{y}^{2}=\mathrm{pdf}$. (Normal (0, 3), x)
\# plot (a):
plot(legend=false, size=(400, 600))
plot! (x, y1, linestyle=:solid, color=:black)
plot! (x, y2, linestyle=:dash, color=:black, linealpha=0.3)
savefig("JlGraphs/Graphs-Export-a.pdf")

Figure 1.9. Examples of Exported Plots


```
# plot (b):
plot(legend=false, size=(600, 400))
plot!(x, y1, linestyle=:solid, color=:black)
plot!(x, y2, linestyle=:dash, color=:black, linealpha=0.3)
savefig("JlGraphs/Graphs-Export-b.png")
```


1.5. Descriptive Statistics

The Julia packages Statistics and FreqTables offer many commands for descriptive statistics. ${ }^{21}$ In this section, we cover the most important ones for our purpose.

1.5.1. Discrete Distributions: Frequencies and Contingency Tables

Suppose we have a sample of the random variables X and Y stored in a data frame $\mathbf{d f}$ as \mathbf{x} and \mathbf{y}, respectively. For discrete variables, the most fundamental statistics are the frequencies of outcomes. The commands combine (groupby (df, :x), nrow) or freqtable (df.x) from the package FreqTables return such a table of counts. If we are interested in the contingency table, i.e. the counts of each combination of outcomes for variables \mathbf{x} and \mathbf{y}, we can use freqtable (df.x, $\mathrm{df} . \mathrm{y})$. For getting the sample shares instead of the counts, we can use the command proptable:

- The overall sample share: proptable(df.x, df.y)
- The share within \mathbf{x} values (row percentages): proptable (df. $\mathbf{x}, \mathrm{df} . \mathrm{y}$, margins=1)
- The share within y values (column percentages): proptable (df. x, $d f . y$, margins=2)

[^16]As an example, we look at the data set affairs in Script 1.23 (Descr-Tables.jl). We demonstrate the workings of the commands with two variables:

- kids $=1$ if the respondent has at least one child
- ratemarr = Rating of the own marriage ($1=$ very unhappy, ... , $5=$ very happy)

Script 1.23: Descr-Tables.jl

```
using WooldridgeDatasets, DataFrames, CategoricalArrays, FreqTables
affairs = DataFrame(wooldridge("affairs"))
# attach labels to kids and convert it to a categorical variable:
affairs.haskids = categorical(
    recode(affairs.kids, 0 => "no", 1 => "yes")
)
# ... and ratemarr (for example: 1 = "very unhappy", 2 = "unhappy",...):
```

affairs.marriage = categorical (
recode (affairs.ratemarr,
1 => "very unhappy",
2 => "unhappy",
3 => "average",
4 => "happy",
5 => "very happy"
)
)
\# frequency table (alphabetical order of elements):
ft_marriage = freqtable(affairs.marriage)
println("ft_marriage: \n\$ft_marriage\n")
\# frequency table with groupby:
ft_groupby = combine (
groupby (affairs, :haskids),
nrow)
println("ft_groupby: \n\$ft_groupby\n")
\# contingency tables with absolute and relative values:
ct_all_abs = freqtable(affairs.marriage, affairs.haskids)
println("ct_all_abs: \n\$ct_all_abs\n")
ct_all_rel = proptable (affairs.marriage, affairs.haskids)
println("ct_all_rel: \n\$ct_all_rel\n")
\# share within "marriage" (i.e. within a row):
ct_row = proptable(affairs.marriage, affairs.haskids, margins=1)
println("ct_row: \n\$ct_row $\backslash n$ ")
\# share within "haskids" (i.e. within a column):
ct_col = proptable(affairs.marriage, affairs.haskids, margins=2)
println("ct_col: \n\$ct_col")

Output of Script 1.23: Descr-Tables.jl

```
ft_marriage:
5-element Named Vector{Int64}
Dim1 |
"average" | 93
"happy" | 194
"unhappy" | 66
"very happy" | 232
"very unhappy" | 16
ft_groupby:
2\times2 DataFrame
    Row | haskids nrow
        | Cat... Int64
        1 | no 171
        2 | yes 430
ct_all_abs:
5\times2 Named Matrix{Int64}
    Dim1 Dim2 | "no" "yes"
"average" | 24 69
"happy" | 40 154
"unhappy" | 8 58
"very happy" | 96 136
"very unhappy" | 3 13
ct_all_rel:
5\times2 Named Matrix{Float64}
    Dim1 Dim2 | "no" "yes"
"average" | 0.0399334 0.114809
"happy" | 0.0665557 0.25624
"unhappy" | 0.0133111 0.0965058
"very happy" | 0.159734 0.22629
"very unhappy" | 0.00499168 0.0216306
ct_row:
5\times2 Named Matrix{Float64}
    Dim1 Dim2 | "no" "yes"
"average" | 0.258065 0.741935
"happy" | 0.206186 0.793814
"unhappy" | 0.121212 0.878788
"very happy" | 0.413793 0.586207
"very unhappy" | 0.1875 0.8125
ct_col:
5\times2 Named Matrix{Float64}
    Dim1 Dim2 | "no" "yes"
"average" | 0.140351 0.160465
"happy" | 0.233918 0.35814
"unhappy" | 0.0467836 0.134884
"very happy" | 0.561404 0.316279
"very unhappy" | 0.0175439 0.0302326
```

In the Julia script, we first generate categorical versions of the two variables of interest from the coded values provided by the data set affairs. In this way, we can generate tables with meaningful labels instead of numbers for the outcomes, see Section 1.2.4. Then different tables are produced. Of the 601 respondents, 430 have children. Overall, 16 respondents report to be very unhappy with their marriage and 232 respondents are very happy. In the contingency table with counts, we see for example that 136 respondents are very happy and have kids.

The table reporting shares within the rows (ct_row) tells us that for example 81.25% of very unhappy individuals have children and only 58.6% of very happy respondents have kids. The last table reports the distribution of marriage ratings separately for people with and without kids: 56.1% of the respondents without kids are very happy, whereas only 31.6% of those with kids report to be very happy with their marriage. Before drawing any conclusions for your own family planning, please keep on studying econometrics at least until you fully appreciate the difference between correlation and causation!

There are several ways to graphically depict the information in these tables. Script 1.24 (Descr-Figures.jl) demonstrates the creation of basic pie and bar charts using the commands pie and bar, respectively. It also makes use of the package StatsPlots, which is an add-on to Plots for statistical graphs. ${ }^{22}$ These figures can of course be tweaked in many ways, see the help pages and the general discussions of graphics in Section 1.4. The best way to explore the options is to tinker with the specification and observe the results.

[^17]```
 Script 1.24: Descr-Figures.jl
using WooldridgeDatasets, DataFrames, Plots, StatsPlots,
 FreqTables, CategoricalArrays
affairs = DataFrame(wooldridge("affairs"))
attach labels to kids and convert it to a categorical variable:
affairs.haskids = categorical(
 recode(affairs.kids, 0 => "no", 1 => "yes")
)
... and ratemarr (for example: 1 = "very unhappy", 2 = "unhappy",...):
affairs.marriage = categorical(
 recode (affairs.ratemarr,
 1 => "very unhappy",
 2 => "unhappy",
 3 => "average",
 4 => "happy",
 5 => "very happy"
)
)
counts for all graphs:
counts_m = sort(freqtable(affairs.marriage), rev=true)
levels_counts_m = String.(collect(keys(counts_m.dicts[1])))
colors_m = [:grey60, :grey50, :grey40, :grey30, :grey20]
ct_all_abs = freqtable(affairs.marriage, affairs.haskids)
levels_counts_all = String.(collect(keys(ct_all_abs.dicts[1])))
colors_all = [:grey80 :grey50]
pie chart (a):
pie(levels_counts_m, counts_m, color=colors_m)
savefig("JlGraphs/Descr-Pie.pdf")
bar chart (b):
bar(levels_counts_m, counts_m, color=:grey, legend=false)
savefig("JlGraphs/Descr-Bar1.pdf")
stacked bar plot (c):
groupedbar(ct_all_abs, bar_position=:stack,
 color=colors_all, label=["no" "yes"])
xticks!(1:5, levels_counts_all)
savefig("JlGraphs/Descr-Bar2.pdf")
grouped bar plot (d):
groupedbar(ct_all_abs, bar_position=:dodge,
 color=colors_all, label=["no" "yes"])
xticks!(1:5, levels_counts_all)
savefig("JlGraphs/Descr-Bar3.pdf")
```

Figure 1.10. Pie and Bar Plots


### 1.5.2. Continuous Distributions: Histogram and Density

For continuous variables, every observation has a distinct value. In practice, variables which have many (but not infinitely many) different values can be treated in the same way. Since each value appears only once (or a very few times) in the data, frequency tables or bar charts are not useful. Instead, the values can be grouped into intervals. The frequency of values within these intervals can then be tabulated or depicted in a histogram.

In the Julia package Plots, the function histogram ( $\mathbf{x}$, options) assigns observations to intervals which can be manually set or automatically chosen and creates a histogram which plots values of $\mathbf{x}$ against the count or density within the corresponding bin. The most relevant options are

- bins= . . . : Set the interval boundaries:
- no bins specified: let Julia choose number and position.
- bins=n for an integer n : select the number of bins, but let Julia choose the position.
- bins=v for a vector $\mathbf{v}$ : explicitly set the boundaries.
- normalize=true: do not use the count but the density on the vertical axis.

Let's look at the data set CEOSAL1 which is described and used in Wooldridge (2019, Example 2.3). It contains information on the salary of CEOs and other information. We will try to depict the distribution of the return on equity (ROE), measured in percent. Script 1.25 (Histogram.jl) generates the graphs of Figure 1.11. In Sub-figure (b), the breaks are manually chosen and not equally spaced. Setting normalize=true gives the densities on the vertical axis: The sample share of observations within a bin is therefore reflected by the area of the respective rectangle, not the height.

Script 1.25: Histogram.jl
using WooldridgeDatasets, Plots, DataFrames
ceosall = DataFrame(wooldridge("ceosal1"))
\# extract roe:
roe $=$ ceosal1.roe
\# histogram with counts (a):
histogram(roe, color=:grey, legend=false)
ylabel!("Counts")
xlabel! ("roe")
savefig("JlGraphs/Histogram1.pdf")
\# histogram with density and explicit breaks (b):
breaks $=[0,5,10,20,30,60]$
histogram(roe, color=:grey,
bins=breaks,
normalize=true,
legend=false)
xlabel!("roe")
ylabel! ("Density")
savefig("JlGraphs/Histogram2.pdf")

A kernel density plot can be thought of as a more sophisticated version of a histogram. We cannot go into detail here, but an intuitive (and oversimplifying) way to think about it is this: We could create a histogram bin of a certain width, centered at an arbitrary point of $x$. We will do this for many points and plot these $x$ values against the resulting densities. Here, we will not use this plot as an estimator of a population distribution but rather as a pretty alternative to a histogram for the

Figure 1.11. Histograms

descriptive characterization of the sample distribution. For details, see for example Silverman (1986). In Julia, generating a kernel density plot is straightforward with the package KernelDensity: KernelDensity. $\mathrm{kde}(\mathbf{x}$ ) will automatically choose appropriate parameters of the algorithm given the data and often produce a useful result. ${ }^{23}$

Script 1.26 (KDensity.jl) demonstrates how the result of the density estimation can be plotted with Plots and generates the graphs of Figure 1.12. In Sub-figure (b), a histogram is overlayed with a kernel density plot.

Script 1.26: KDensity.jl

```
using WooldridgeDatasets, DataFrames, Plots, KernelDensity
ceosal1 = DataFrame(wooldridge("ceosal1"))
extract roe:
roe = ceosal1.roe
estimate kernel density:
kde_est = KernelDensity.kde(roe)
kernel density (a):
plot(kde_est.x, kde_est.density, color=:black, linewidth=2, legend=false)
ylabel!("density")
xlabel!("roe")
savefig("JlGraphs/Density1.pdf")
kernel density with overlayed histogram (b):
histogram(roe, color="grey", normalize=true, legend=false)
plot!(kde_est.x, kde_est.density, color=:black, linewidth=2)
ylabel!("density")
xlabel!("roe")
savefig("JlGraphs/Density2.pdf")
```

[^18]Figure 1.12. Kernel Density Plots


### 1.5.3. Empirical Cumulative Distribution Function (ECDF)

The ECDF is a graph of all values $x$ of a variable against the share of observations with a value less than or equal to $x$. A straightforward way to plot the ECDF for our ROE variable is shown in Script 1.27 (Descr-ECDF.jl) and Figure 1.13. Here, the argument linetype=:steppre implements a step function.
For example, the value of the ECDF for point roe=15.5 is 0.5 . Half of the sample is less or equal to a ROE of $15.5 \%$. In other words: the median ROE is $15.5 \%$.

Script 1.27: Descr-ECDF.jl

```
using WooldridgeDatasets, DataFrames, Plots
ceosal1 = DataFrame(wooldridge("ceosal1"))
extract roe:
roe = ceosal1.roe
calculate ECDF:
x = sort (roe)
n = length(x)
y = range(start=1, stop=n) / n
plot a step function:
plot(x, y, linetype=:steppre, color=:black, legend=false)
xlabel!("roe")
savefig("JlGraphs/ecdf.pdf")
```


### 1.5.4. Fundamental Statistics

The functions for calculating the most important descriptive statistics with the package Statistics are listed in Table 1.5. Script 1.28 (Descr-Stats.jl) demonstrates this using the CEOSAL1 data set we already introduced in Section 1.5.2.

Figure 1.13. Empirical CDF


Table 1.5. Statistics Functions for Descriptive Statistics

| $\operatorname{mean}(\mathbf{x})$ | Sample average $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ |
| :--- | :--- |
| $\operatorname{median}(\mathbf{x})$ | Sample median |
| $\operatorname{var}(\mathbf{x})$ | Sample variance $s_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ |
| $\boldsymbol{\operatorname { s t d } ( \mathbf { x } )}$ | Sample standard deviation $s_{x}=\sqrt{s_{x}^{2}}$ |
| $\operatorname{cov}(\mathbf{x}, \mathbf{y})$ | Sample covariance $c_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ |
| $\operatorname{cor}(\mathbf{x}, \mathbf{y})$ | Sample correlation $r_{x y}=\frac{s_{x y}}{s_{x} \cdot s_{y}}$ |
| quantile(x, q) | q quantile $=100 \cdot q$ percentile, e.g. quantile ( $\mathbf{x}, \mathbf{0 . 5})=$ sample median |

Script 1.28: Descr-Stats.jl
using WooldridgeDatasets, DataFrames, Statistics
ceosall = DataFrame(wooldridge("ceosal1"))
\# extract roe and salary:
roe $=$ ceosall.roe
salary = ceosall.salary
\# sample average:
roe_mean = mean (roe)
println("roe_mean = \$roe_mean\n")
\# sample median:
roe_med = median(roe)
println("roe_med = \$roe_med $\backslash n$ ")
\# corrected standard deviation ( $\mathrm{n}-1$ scaling):
roe_std = std(roe)
println("roe_st = \$roe_std\n")
\# correlation with roe:
roe_corr = cor (roe, salary)
println("roe_corr = \$roe_corr $\backslash n$ ")
\# correlation matrix with roe:
roe_corr_mat $=$ cor (hcat (roe, salary))
println("roe_corr_mat: \n\$roe_corr_mat")

Output of Script 1.28: Descr-Stats.jl

```
roe_mean = 17.18421050521175
roe_med = 15.5
roe_st = 8.518508659074904
roe_corr = 0.11484173492695977
roe_corr_mat:
[1.0 0.11484173492695976; 0.11484173492695976 1.0]
```

A box plot displays the median (the middle line), the upper and lower quartile (the box) and the extreme points graphically. Figure 1.14 shows two examples. $50 \%$ of the observations are within the interval covered by the box, $25 \%$ are above and $25 \%$ are below. The extreme points are marked by the "whiskers" and outliers are printed as separate dots. In the package Statsplots, box plots are generated using the boxplot command. We have to supply one or more data arrays and can alter the design flexibly with numerous options as demonstrated in Script 1.29 (Descr-Boxplot. jl).

Figure 1.14. Box Plots


Script 1.29: Descr-Boxplot.jl
using WooldridgeDatasets, DataFrames, StatsPlots
ceosal1 = DataFrame(wooldridge("ceosal1"))
\# extract roe and salary:
roe $=$ ceosall.roe
consprod = ceosall.consprod
\# plotting descriptive statistics:
boxplot (roe, orientation=:h,
linecolor=:black, color=:white, legend=false)
yticks!([1], [""])
ylabel!("roe")
savefig("JlGraphs/Boxplot1.pdf")
\# plotting descriptive statistics (logical indexing):
roe_cp0 = roe[consprod.==0]
roe_cp1 = roe[consprod.==1]
boxplot ([roe_cp0, roe_cp1], linecolor=:black,
color=:white, legend=false)
xticks!([1, 2], ["consprod=0", "consprod=1"])
ylabel!("roe")
savefig("JlGraphs/Boxplot2.pdf")

Figure 1.14(a) shows how to get a horizontally aligned plot and Figure 1.14(b) demonstrates how to produce multiple boxplots for two sub groups. The variable consprod from the data set ceosall is equal to 1 if the firm is in the consumer product business and 0 otherwise. Apparently, the ROE is much higher in this industry.

### 1.6. Probability Distributions

Appendix B of Wooldridge (2019) introduces the concepts of random variables and their probability distributions. ${ }^{24}$ The package Distributions has many functions for conveniently working with a large number of statistical distributions. ${ }^{25}$ The commands for evaluating the probability density function (PDF) for continuous, the probability mass function (PMF) for discrete, and the cumulative distribution function (CDF) as well as the quantile function (inverse CDF) for the most relevant distributions are shown in Table 1.6. The functions are available after executing:

```
using Distributions
```

The package documentation defines the relation between the parameter set of a distribution and the function arguments in Distributions. We will now briefly discuss each function type.

| Distribution | Parameters | Combine code with: <br> - PMF/PDF: pdf (..., $x$ ) <br> - CDF: cdf (..., x) <br> - Quantile: quantile (..., q) |
| :---: | :---: | :---: |
| Discrete distributions: |  |  |
| Bernoulli | $p$ | Bernoulli ( $p$ ) |
| Binomial | $n, p$ | Binomial ( $n, p$ ) |
| Hypergeometric | $s, f, n$ | Hypergeometric (s, $f, n$ ) |
| Poisson | $\lambda$ | Poisson ( $\lambda$ ) |
| Geometric | $p$ | Geometric ( $p$ ) |
| Continuous distributions: |  |  |
| Uniform | $a, b$ | Uniform ( $a, b$ ) |
| Logistic | $\mu, \theta$ | Logistic ( $\mu, \theta$ ) |
| Exponential | $\lambda$ | Exponential (1 / $\lambda$ ) |
| Std. normal | - | Normal () |
| Normal | $\mu, \sigma$ | Normal ( $\mu, \sigma$ ) |
| Lognormal | $\mu, \sigma$ | LogNormal ( $\mu, \sigma$ ) |
| $\chi^{2}$ | n | Chisq ( $n$ ) |
| $t$ | $n$ | TDist ( $n$ ) |
| F | $m, n$ | FDist ( $m, n$ ) |

### 1.6.1. Discrete Distributions

Discrete random variables can only take a finite (or "countably infinite") set of values. The PMF $f(x)=P(X=x)$ gives the probability that a random variable $X$ with this distribution takes the given value $x$. For the most important of those distributions (Bernoulli, Binomial, Hypergeometric ${ }^{26}$, Poisson, and Geometric ${ }^{27}$ ), Table 1.6 lists the Distributions functions that return the PMF for any

[^19]value $x$ given the parameters of the respective distribution. See the package documentation, if you are interested in the formal definitions of the PMFs.

For a specific example, let $X$ denote the number of white balls we get when drawing with replacement 10 balls from an urn that includes $20 \%$ white balls. Then $X$ has the Binomial distribution with the parameters $n=10$ and $p=20 \%=0.2$. We know that the probability to get exactly $x \in\{0,1, \ldots, 10\}$ white balls for this distribution is ${ }^{28}$

$$
\begin{equation*}
f(x)=\mathrm{P}(\mathrm{X}=x)=\binom{n}{x} \cdot p^{x} \cdot(1-p)^{n-x}=\binom{10}{x} \cdot 0.2^{x} \cdot 0.8^{10-x} \tag{1.1}
\end{equation*}
$$

For example, the probability to get exactly $x=2$ white balls is $f(2)=\binom{10}{2} \cdot 0.2^{2} \cdot 0.8^{8}=0.302$. Of course, we can let Julia do these calculations using basic Julia commands we know from Section 1.1. More conveniently, we can also use the function Binomial for the Binomial distribution:

Script 1.30: PMF-binom.jl

```
using Distributions
pedestrian approach:
p1 = binomial (10, 2) * (0.2^2) * (0.8^8)
println("p1 = $p1\n")
package function:
p2 = pdf(Binomial(10, 0.2), 2)
println("p2 = $p2")
```

Output of Script 1.30: PMF-binom.jl
$p 1=0.3019898880000002$
$\mathrm{p} 2=0.301989888$

We can also give vectors as one or more arguments to pdf( $\operatorname{Binomial}(n, p), x)$ and receive the results as a vector. Script 1.31 (PMF-example. $j 1$ ) evaluates the PMF for our example at all possible values for $x$ ( 0 through 10). It displays a table of the probabilities and creates a bar chart of these probabilities which is shown in Figure 1.15(a). As always: feel encouraged to experiment!

Script 1.31: PMF-example.jl

```
using Distributions, DataFrames, Plots
```

```
PMF for all values between O and 10:
```

$\mathbf{x}=0: 10$
$\mathrm{fx}=$ pdf. (Binomial (10, 0.2), x )
\# collect values in DataFrame:
result $=$ DataFrame ( $x=x, f x=f x$ )
println("result: \n\$result")
\# plot:
bar(x, fx, color=:grey, alpha=0.6, legend=false)
xlabel! ("x")
ylabel! ("fx")
savefig("JlGraphs/PMF-example.pdf")

[^20]
## Figure 1.15. Plots of the PMF and PDF



Output of Script 1.31: PMF-example.jl

```
result:
11\times2 DataFrame
Row | x fx
 | Int64 Float64
 | 0 0.107374
 | 0.268435
 0.30199
 0.201327
 0.0880804
 0.0264241
 0.00550502
 0.000786432
 7.3728e-5
 4.096e-6
 10 1.024e-7
```

    -
    
### 1.6.2. Continuous Distributions

For continuous distributions like the uniform, logistic, exponential, normal, $t, \chi^{2}$, or $F$ distribution, the probability density functions $f(x)$ are also implemented for direct use in Distributions. These can for example be used to plot the density functions using the plot command (see Section 1.4). Figure 1.15(b) shows the famous bell-shaped PDF of the standard normal distribution and is created by Script 1.32 (PDF-example.jl).

Script 1.32: PDF-example.jl

```
using Plots, Distributions
support of normal density:
x_range = range (-4, 4, length=100)
PDF for all these values:
pdf_normal = pdf.(Normal(), x_range)
```

```
plot:
plot(x_range, pdf_normal, color=:black, legend=false)
xlabel!("x")
ylabel!("dx")
savefig("JlGraphs/PDF-example.pdf")
```


### 1.6.3. Cumulative Distribution Function (CDF)

For all distributions, the CDF $F(x)=\mathrm{P}(X \leq x)$ represents the probability that the random variable $X$ takes a value of at most $x$. The probability that $X$ is between two values $a$ and $b$ is $\mathrm{P}(a<X \leq$ $b)=F(b)-F(a)$. We can directly use the Distributions functions in Table 1.6 in combination with the function cdf to do these calculations as demonstrated in Script 1.33 (CDF-example.jl). In our example presented above, the probability that we get 3 or fewer white balls is $F(3)$ using the appropriate CDF of the Binomial distribution. It amounts to $87.9 \%$. The probability that a standard normal random variable takes a value between -1.96 and 1.96 is $95 \%$.

Script 1.33: CDF-example.jl

```
using Distributions
binomial CDF:
p1 = cdf(Binomial(10, 0.2), 3)
println("p1 = $p1\n")
normal CDF:
p2 = cdf(Normal(), 1.96) - cdf(Normal(), -1.96)
println("p2 = $p2")
```

Output of Script 1.33: CDF-example.jl

```
p1 = 0.8791261183999999
p2 = 0.950004209703559
```


## Wooldridge, Example B.6: Probabilities for a Normal Random Variable

We assume $X \sim \operatorname{Normal}(4,9)$ and want to calculate $\mathrm{P}(2<X \leq 6)$ as our first example. We can rewrite the problem so it is stated in terms of a standard normal distribution as shown by Wooldridge (2019): $\mathrm{P}(2<\mathrm{X} \leq 6)=\Phi\left(\frac{2}{3}\right)-\Phi\left(-\frac{2}{3}\right)$. We can also spare ourselves the transformation and work with the nonstandard normal distribution directly. Be careful that the second argument in the Normal command is not the variance $\sigma^{2}=9$ but the standard deviation $\sigma=3$. The second example calculates $\mathrm{P}(|X|>2)=$ $\underbrace{1-\mathrm{P}(X \leq 2)}_{\mathrm{P}(X>2)}+\mathrm{P}(X<-2)$.
Note that we get a slightly different answer in the first example than the one given in Wooldridge (2019) since we're working with the exact $\frac{2}{3}$ instead of the rounded .67 .

## Script 1.34: Example-B-6.jl

```
using Distributions
first example using the transformation:
p1_1 = cdf(Normal(), 2 / 3) - cdf(Normal(), -2 / 3)
println("p1_1 = $p1_1\n")
first example working directly with the distribution of X:
p1_2 = cdf(Normal (4, 3), 6) - cdf(Normal (4, 3), 2)
println("p1_2 = $p1_2\n")
second example:
p2 = 1 - cdf(Normal (4, 3), 2) + cdf(Normal (4, 3), -2)
println("p2 = $p2")
```

Output of Script 1.34: Example-B-6. jl

```
p1_1 = 0.4950149249061542
p1_2 = 0.4950149249061542
p2 = 0.7702575944012563
```

The graph of the CDF is a step function for discrete distributions. For the urn example, the CDF is shown in Figure 1.16(a). The CDF of a continuous distribution is illustrated by the S-shaped CDF of the normal distribution as shown in Figure 1.16(b). Both figures are created by the following code:

Script 1.35: CDF-figure.jl

```
using Distributions, Plots
binomial CDF:
x_binom = range(-1, 10, length=100)
cdf_binom = cdf.(Binomial(10, 0.2), x_binom)
plot(x_binom, cdf_binom, linetype=:steppre, color=:black, legend=false)
xlabel!("x")
ylabel!("Fx")
savefig("JlGraphs/CDF-figure-discrete.pdf")
normal CDF:
x_norm = range(-4, 4, length=1000)
cdf_norm = cdf.(Normal(), x_norm)
plot(x_norm, cdf_norm, color=:black, legend=false)
xlabel!("x")
ylabel!("Fx")
savefig("JlGraphs/CDF-figure-cont.pdf")
```


## Quantile Function

The $q$-quantile $x[q]$ of a random variable is the value for which the probability to sample a value $x \leq x[q]$ is just $q$. These values are important for example for calculating critical values of test statistics.
To give a simple example: Given $X$ is standard normal, the 0.975 -quantile is $x[0.975] \approx 1.96$. So the probability to sample a value less or equal to 1.96 is $97.5 \%$ :

Figure 1.16. Plots of the CDF of Discrete and Continuous RV


Script 1.36: Quantile-example.jl
using Distributions
q_975 = quantile (Normal (), 0.975)
println("q_975 = \$q_975")

Output of Script 1.36: Quantile-example.jl
q_975 = 1.9599639845400576

### 1.6.4. Random Draws from Probability Distributions

It is easy to simulate random outcomes by taking a sample from a random variable with a given distribution. Strictly speaking, a deterministic machine like a computer can never produce any truly random results and we should instead refer to the generated numbers as pseudo-random numbers. But for our purpose, it is enough that the generated samples look, feel and behave like true random numbers and so we are a little sloppy in our terminology here. For a review of sampling and related concepts see Wooldridge (2019, Appendix C.1).

Before we make heavy use of generating random samples in Section 1.9, we introduce the mechanics here. Commands in Distributions to generate a (pseudo-) random sample are constructed by combining the command of the respective distribution (see Table 1.6) and the function rand. We could for example simulate the result of flipping a fair coin 10 times. We draw a sample of size $n=10$ from a Bernoulli distribution with parameter $p=\frac{1}{2}$. Each of the 10 generated numbers will take the value 1 with probability $p=\frac{1}{2}$ and 0 with probability $1-p=\frac{1}{2}$. The result behaves the same way as though we had actually flipped a coin and translated heads as 1 and tails as 0 (or vice versa). Here is the code and a sample generated by it:

```
using Distributions
sample = rand(Bernoulli(0.5), 10)
println("sample: $sample")
```

Output of Script 1.37: Sample-Bernoulli.jl
sample: Bool[1, 0, 1, 0, 1, 1, 1, 1, 1, 0]

Translated into the coins, our sample is heads-tails-heads-tails-heads-heads-heads-heads-heads-tails. An obvious advantage of doing this in Julia rather than with an actual coin is that we can painlessly increase the sample size to 1,000 or $10,000,000$. Taking draws from the standard normal distribution is equally simple:

## Script 1.38: Sample-Norm.jl

using Distributions
sample $=$ rand (Normal (), 6)
sample_rounded = round. (sample, digits=5)
println("sample_rounded: \$sample_rounded")

Output of Script 1.38: Sample-Norm. jl
sample_rounded: [0.68145, -0.92263, 0.02865, 2.05688, -0.22726, 0.05151]

Working with computer-generated random samples creates problems for the reproducibility of the results. If you run the code above, you will get different samples. If we rerun the code, the sample will change again. We can solve this problem by making use of how the random numbers are actually generated which is, as already noted, not involving true randomness. Actually, we will always get the same sequence of numbers if we reset the random number generator to some specific state ("seed"). In Julia, this is can be done with the function Random.seed! (number), where number is some arbitrary integer that defines the state but has no other meaning. The Random package is part of the standard library and needs to be loaded by using Random. If we set the seed to some arbitrary integer, take a sample, reset the seed to the same state and take another sample, both samples will be the same. Also, if I draw a sample with that seed it will be equal to the sample you draw if we both start from the same seed.
Script 1.39 (Random-Numbers.jl) demonstrates the workings of Random.seed.

## Script 1.39: Random-Numbers.jl

```
using Distributions, Random
Random.seed!(12345)
sample from a standard normal RV with sample size n=3:
sample1 = rand(Normal(), 3)
println("sample1: $sample1\n")
a different sample from the same distribution:
sample2 = rand(Normal(), 3)
println("sample2: $sample2\n")
set the seed of the random number generator and take two samples:
Random.seed! (54321)
sample3 = rand(Normal(), 3)
println("sample3: $sample3\n")
sample4 = rand(Normal(), 3)
println("sample4: $sample4\n")
reset the seed to the same value to get the same samples again:
Random. seed! (54321)
sample5 = rand(Normal(), 3)
println("sample5: $sample5\n")
sample6 = rand(Normal(), 3)
println("sample6: $sample6")
```


# Output of Script 1.39: Random-Numbers.jl 

```
sample1: [2.100688289403679, -0.6969220405779567, -0.6462237060140025]
sample2: [-0.15715760672171591, -0.44322732570611395,0.4102960875997117]
sample3: [-0.021797428733156626, -1.7563750673485294, 0.5611901926084173]
sample4: [0.8018638783150772, -0.5605955184594124, 0.6230820044249342]
sample5: [-0.021797428733156626, -1.7563750673485294, 0.5611901926084173]
sample6: [0.8018638783150772, -0.5605955184594124,0.6230820044249342]
```


### 1.7. Confidence Intervals and Statistical Inference

Wooldridge (2019) provides a concise overview over basic sampling, estimation, and testing. We will touch on some of these issues below. ${ }^{29}$

### 1.7.1. Confidence Intervals

Confidence intervals (CI) are introduced in Wooldridge (2019, Appendix C.5). They are constructed to cover the true population parameter of interest with a given high probability, e.g. $95 \%$. More clearly: For $95 \%$ of all samples, the implied CI includes the population parameter.

CI are easy to compute. For a normal population with unknown mean $\mu$ and variance $\sigma^{2}$, the $100(1-\alpha) \%$ confidence interval for $\mu$ is given in Wooldridge (2019, Equations C. 24 and C.25):

$$
\begin{equation*}
\left[\bar{y}-c_{\frac{\alpha}{2}} \cdot s e(\bar{y}), \quad \bar{y}+c_{\frac{\alpha}{2}} \cdot s e(\bar{y})\right] \tag{1.2}
\end{equation*}
$$

where $\bar{y}$ is the sample average, $s e(\bar{y})=\frac{s}{\sqrt{n}}$ is the standard error of $\bar{y}$ (with $s$ being the sample standard deviation of $y$ ), $n$ is the sample size and $c_{\frac{\alpha}{2}}$ the ( $1-\frac{\alpha}{2}$ ) quantile of the $t_{n-1}$ distribution. To get the $95 \% \mathrm{CI}(\alpha=5 \%)$, we thus need $c_{0.025}$ which is the 0.975 quantile or $97.5^{\text {th }}$ percentile.

We already know how to calculate all these ingredients. The way of calculating the CI is used in the solution to Example C.2. In Section 1.9.3, we will calculate confidence intervals in a simulation experiment to help us understand the meaning of confidence intervals.

## Wooldridge, Example C.2: Effect of Job Training Grants on Worker Productivity

We are analyzing scrap rates for firms that receive a job training grant in 1988. The scrap rates for 1987 and 1988 are printed in Wooldridge (2019, Table C.3) and are entered manually in the beginning of Script 1.40 (Example-C-2.jl). We are interested in the change between the years. The calculation of its average as well as the confidence interval are performed precisely as shown above. The resulting Cl is the same as the one presented in Wooldridge (2019) except for rounding errors we avoid by working with the exact numbers.

[^21]```
using Distributions
# manually enter raw data from Wooldridge, Table C.3:
SR87 = [10, 1, 6, 0.45, 1.25, 1.3, 1.06, 3, 8.18, 1.67,
    0.98, 1, 0.45, 5.03, 8, 9, 18, 0.28, 7, 3.97]
SR88 = [3, 1, 5, 0.5, 1.54, 1.5, 0.8, 2, 0.67, 1.17, 0.51,
    0.5, 0.61, 6.7, 4, 7, 19, 0.2, 5, 3.83]
# calculate change:
Change = SR88 .- SR87
# ingredients to CI formula:
avgCh = mean(Change)
println("avgCh = $avgCh\n")
n = length(Change)
sdCh = std(Change)
se = sdCh / sqrt(n)
println("se = $se\n")
c = quantile(TDist(n - 1), 0.975)
println("c = $c\n")
# confidence interval:
lowerCI = avgCh - c * se
println("lowerCI = $lowerCI\n")
upperCI = avgCh + c * se
println("upperCI = $upperCI")
```

```
avgCh = -1.1545
se = 0.5367992249386514
c = 2.0930240544083096
lowerCI = -2.2780336901843343
upperCI = -0.030966309815665838
```


Wooldridge, Example C.3: Race Discrimination in Hiring

We are looking into race discrimination using the data set AUDIT. The variable y represents the difference in hiring rates between black and white applicants with the identical CV. After calculating the average, sample size, standard deviation and the standard error of the sample average, Script 1.41 (Example-c-3.jl) calculates the value for the factor c as the 97.5 percentile of the standard normal distribution which is (very close to) 1.96 . Finally, the 95% and $99 \% \mathrm{Cl}$ are reported. ${ }^{30}$

[^22]```
 Script 1.41: Example-C-3.jl
using WooldridgeDatasets, DataFrames, Distributions
audit = DataFrame(wooldridge("audit"))
y = audit.y
ingredients to CI formula:
avgy = mean(y)
n = length(y)
sdy = std(y)
se = sdy / sqrt(n)
c95 = quantile(Normal(), 0.975)
c99 = quantile(Normal(), 0.995)
95% confidence interval:
lowerCI95 = avgy - c95 * se
println("lowerCI95 = $lowerCI95\n")
upperCI95 = avgy + c95 * se
println("upperCI95 = $upperCI95\n")
99% confidence interval:
lowerCI99 = avgy - c99 * se
println("lowerCI99 = $lowerCI99\n")
upperCI99 = avgy + c99 * se
println("upperCI99 = $upperCI99")
```

Output of Script 1.41: Example-C-3.jl
lowerCI95 $=-0.1936300609350276$
upperCI95 $=-0.07193010504007612$
lowerCI99 $=-0.2127505097677126$
upperCI99 $=-0.052809656207391156$

### 1.7.2. $t$ Tests

Hypothesis tests are covered in Wooldridge (2019, Appendix C.6). The $t$ test statistic for testing a hypothesis about the mean $\mu$ of a normally distributed random variable $Y$ is shown in Equation C.35. Given the null hypothesis $H_{0}: \mu=\mu_{0}$,

$$
\begin{equation*}
t=\frac{\bar{y}-\mu_{0}}{s e(\bar{y})} . \tag{1.3}
\end{equation*}
$$

We already know how to calculate the ingredients from Section 1.7.1 and show to use them to perform a $t$ test in Script 1.43 (Example-C-5.j1). We also compare the result to the output of the OneSampleTTest function from the package HypothesisTests, which performs an automated $t$ test. ${ }^{31}$

The critical value for this test statistic depends on whether the test is one-sided or two-sided. The value needed for a two-sided test $c_{\frac{\alpha}{2}}$ was already calculated for the CI, the other values can be

[^23]generated accordingly. The values for different degrees of freedom $n-1$ and significance levels $\alpha$ are listed in Wooldridge (2019, Table G.2). Script 1.42 (Critical-Values-t.jl) demonstrates how we can calculate our own table of critical values for the example of 19 degrees of freedom.

Script 1.42: Critical-Values-t.jl

```
using Distributions, DataFrames
degrees of freedom = n-1:
df = 19
significance levels:
alpha_one_tailed = [0.1, 0.05, 0.025, 0.01, 0.005, 0.001]
alpha_two_tailed = alpha_one_tailed * 2
critical values & table:
CV = quantile.(TDist(df), 1 .- alpha_one_tailed)
table = DataFrame(alpha_one_tailed=alpha_one_tailed,
 alpha_two_tailed=alpha_two_tailed,
 CV=CV)
println("table: \n$table")
```

Output of Script 1.42: Critical-Values-t.jl

## table:

$6 \times 3$ DataFrame

| Row | alpha_one_tailed <br> Float 64 | alpha_two_tailed <br> Float64 | $\begin{aligned} & \text { CV } \\ & \text { Float } 64 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.1 | 0.2 | 1.32773 |
| 2 | 0.05 | 0.1 | 1.72913 |
| 3 | 0.025 | 0.05 | 2.09302 |
| 4 | 0.01 | 0.02 | 2.53948 |
| 5 | 0.005 | 0.01 | 2.86093 |
| 6 | 0.001 | 0.002 | 3.5794 |

## Wooldridge, Example C.5: Race Discrimination in Hiring

We continue Example C. 3 in Script 1.43 (Example-C-5.j1) and perform a one-sided $t$ test of the null hypothesis $H_{0}: \mu=0$ against $H_{1}: \mu<0$ for the same sample. As the output shows, the $t$ test statistic is equal to -4.27 . This is much smaller than the negative of the critical value for any sensible significance level. Therefore, we reject $H_{0}: \mu=0$ for this one-sided test, see Wooldridge (2019, Equation C.38).

Script 1.43: Example-C-5.jl
using WooldridgeDatasets, DataFrames, Distributions, HypothesisTests
audit = DataFrame (wooldridge("audit"))
$\mathrm{y}=$ audit. y
\# automated calculation of $t$ statistic for $H 0$ (mu=0):
test_auto $=$ OneSampleTTest ( $y, 0$ )
t_auto = test_auto.t \# access test statistic
p_auto = pvalue (test_auto, tail=:left) \# access one-sided p value
println("t_auto = \$t_auto\n")
println("p_auto $=\$ p$ auto ${ }^{\text {n }}$ ")

```
manual calculation of t statistic for HO (mu=0):
avgy = mean(y)
n = length(y)
sdy = std(y)
se = sdy / sqrt(n)
t_manual = avgy / se
println("t_manual = $t_manual\n")
critical values for t distribution with n-1=240 d.f.:
alpha_one_tailed = [0.1, 0.05, 0.025, 0.01, 0.005, 0.001]
CV = quantile(TDist(n - 1), 1 .- alpha_one_tailed)
table = DataFrame(alpha_one_tailed=alpha_one_tailed, CV=CV)
println("table: \n$table")
```

Output of Script 1.43: Example-C-5.jl

```
t_auto = -4.276816348963647
p_auto = 1.3692707811129997e-5
t_manual = -4.276816348963647
table:
6\times2 DataFrame
 Row | alpha_one_tailed CV
 Float64 Float64
 0.1 1.28509
 0.05 1.65123
 0.025 1.9699
 0.01 2.34199
 0.005 2.59647
 0.001 3.12454
```


### 1.7.3. $p$ Values

The $p$ value for a test is the probability that (under the assumptions needed to derive the distribution of the test statistic) a different random sample would produce the same or an even more extreme value of the test statistic. ${ }^{32}$ The advantage of using $p$ values for statistical testing is that they are convenient to use. Instead of having to compare the test statistic with critical values which are implied by the significance level $\alpha$, we directly compare $p$ with $\alpha$. For two-sided $t$ tests, the formula for the $p$ value is given in Wooldridge (2019, Equation C.42):

$$
\begin{equation*}
p=2 \cdot \mathrm{P}\left(T_{n-1}>|t|\right)=2 \cdot\left(1-F_{t_{n-1}}(|t|)\right), \tag{1.4}
\end{equation*}
$$

where $F_{t_{n-1}}(\cdot)$ is the CDF of the $t_{n-1}$ distribution which we know how to calculate from Table 1.6. Similarly, a one-sided test rejects the null hypothesis only if the value of the estimate is "too high" or "too low" relative to the null hypothesis. The $p$ values for these types of tests are:

$$
p= \begin{cases}\mathrm{P}\left(T_{n-1}<t\right)=F_{t_{n-1}}(t) & \text { for } H_{1}: \mu<\mu_{0}  \tag{1.5}\\ \mathrm{P}\left(T_{n-1}>t\right)=1-F_{t_{n-1}}(t) & \text { for } H_{1}: \mu>\mu_{0}\end{cases}
$$

Since we are working on a computer program that knows the CDF of the $t$ distribution, calculating $p$ values is straightforward as demonstrated in Script 1.44 (Example-C-6.jl). Maybe you noticed

[^24]that the HypothesisTests function pvalue in Script 1.43 (Example-C-5.jl) also calculates the $p$ value, but be aware that this function is based on two-sided $t$ tests by default. For the one-sided $t$ test use the argument tail=: left for $H_{1}: \mu<\mu_{0}$ and tail=: right for $H_{1}: \mu>\mu_{0}$.

## Wooldridge, Example C.6: Effect of Job Training Grants on Worker Productivity

We continue from Example C. 2 in Script 1.44 (Example-C-6.jl). We test $H_{0}: \mu=0$ against $H_{1}: \mu<0$. The $t$ statistic is -2.15 . The formula for the $p$ value for this one-sided test is given in Wooldridge (2019, Equation C.41). As can be seen in the output of Script 1.44 (Example-c-6.jl), its value (using exact values of $t$ ) is around 0.022 . For the correct $p$ value with HypothesisTests use tail=:left, because we are dealing with a one-sided test.

Script 1.44: Example-C-6.jl
using Distributions, HypothesisTests
\# manually enter raw data from Wooldridge, Table C.3:
SR87 $=[10,1,6,0.45,1.25,1.3,1.06,3,8.18,1.67$, $0.98,1,0.45,5.03,8,9,18,0.28,7,3.97]$
SR88 $=[3,1,5,0.5,1.54,1.5,0.8,2,0.67,1.17,0.51$, $0.5,0.61,6.7,4,7,19,0.2,5,3.83]$
Change = SR88 .- SR87
\# automated calculation of $t$ statistic for HO (mu=0):
test_auto = OneSampleTTest (Change, 0)
t_auto = test_auto. t
p_auto = pvalue(test_auto, tail=:left)
println("t_auto = \$t_auto\n")
println("p_auto = \$p_auto\n")
\# manual calculation of $t$ statistic for $\mathrm{HO}(\mathrm{mu}=0)$ :
avgCh $=$ mean (Change)
$\mathrm{n}=$ length (Change)
sdCh $=$ std (Change)
se = sdCh / sqrt(n)
t_manual = avgCh / se
println("t_manual = \$t_manual\n")
\# manual calculation of $p$ value for HO ( $\mathrm{mu}=0$ ):
p_manual $=$ cdf(TDist ( $\mathrm{n}-1$ ), t_manual)
println("p_manual = \$p_manual")

Output of Script 1.44: Example-C-6.j1

```
t_auto = -2.1507110039734934
p_auto = 0.02229062646839212
t_manual = -2.1507110039734934
p_manual = 0.02229062646839212
```


## Wooldridge, Example C.7: Race Discrimination in Hiring

In Example C.5, we found the $t$ statistic for $H_{0}: \mu=0$ against $H_{1}: \mu<0$ to be $t=-4.276816$. The corresponding $p$ value is calculated in Script 1.45 (Example-C-7.jl). The number $1.369271 e-05$ is the scientific notation for $1.369271 \cdot 10^{-5}=.00001369271$. So the $p$ value is around $0.0014 \%$ which is much smaller than any reasonable significance level. By construction, we draw the same conclusion as when we compare the $t$ statistic with the critical value in Example C.5. We reject the null hypothesis that there is no discrimination.

Script 1.45: Example-C-7.jl

```
using WooldridgeDatasets, DataFrames, Distributions, HypothesisTests
audit = DataFrame(wooldridge("audit"))
y = audit.y
automated calculation of t statistic for HO (mu=0):
test_auto = OneSampleTTest (y, 0)
t_auto = test_auto.t
p_auto = pvalue(test_auto, tail=:left)
println("t_auto = $t_auto\n")
println("p_auto = $p_auto\n")
manual calculation of t statistic for HO (mu=0):
avgy = mean (y)
n = length(y)
sdy = std(y)
se = sdy / sqrt(n)
t_manual = avgy / se
println("t_manual = $t_manual\n")
manual calculation of p value for HO (mu=0):
p_manual = cdf(TDist(n - 1), t_manual)
println("p_manual = $p_manual")
```

Output of Script 1.45: Example-C-7.jl

```
t_auto = -4.276816348963647
p_auto = 1.3692707811129997e-5
t_manual = -4.276816348963647
p_manual = 1.3692707811129997e-5
```


### 1.8. Advanced Julia

The material covered in this section is not necessary for most of what we will do in the remainder of this book, so it can be skipped. However, it is important enough to justify an own section in this chapter. We will only scratch the surface, though. For more details, see the references in Section 1.1.6.

### 1.8.1. Conditional Execution

We might want some parts of our code to be executed only under certain conditions. Like most other programming languages, this can be achieved with an if else statement with the following syntax:

```
if condition
 expression1
else
 expression2
end
```

The condition has to be a single logical value (true or false). If it is true, then expression1 is executed, otherwise expression 2 which can also be omitted. A simple example would be

```
if p <= 0.05
 print("reject HO!")
else
 print("don't reject HO!")
end
```

Depending on the value of the numeric scalar $p$, the respective test decision is printed. The command ifelse implements the same functionality and in some cases it produces more compact code and higher performance. The code ifelse (condition, expression1, expression2) is equivalent to the if else statement above. You can also use it in a vectorized form with ifelse. by providing a vector of conditions. The following example anticipates the example from Script 1.46 (Adv-Loops.jl), but without the explicit formulation of a loop:

```
seq = [1, 2, 3, 4, 5, 6]
ifelse.(seq .< 4, seq .^ 3, seq .^ 2)
```


### 1.8.2. Loops

For repeatedly executing an expression, different kinds of loops are available. In this book, we will use them for Monte Carlo analyses introduced in Section 1.9. For our purposes, the for loop is well suited. The correct syntax is:

```
for x in sequence
 [some commands]
end
```

The loop variable $\mathbf{x}$ will take the value of each element of sequence, one after another. For each of these elements, [some commands] are executed. Often, sequence will be an array like [1, 2, $3]$.

A nonsense example which combines for loops with an if statement is given in Script 1.46 (Adv-Loops.jl). The reader is encouraged to first form expectations about the output this will generate and then compare them with the actual results.

## Script 1.46: Adv-Loops.jl

```
seq}=[1,2,3,4,5,6
for i in seq
 if i < 4
 println(i^3)
 else
 println(i^2)
 end
end
```

Output of Script 1.46: Adv-Loops.jl

| 1 |
| :--- |
| 8 |
| 27 |
| 16 |
| 25 |
| 36 |

Instead of iterating over a sequence you can also iterate over an index of a sequence and use the index to reference other objects. Another way of generating such a sequence of indices uses the function eachindex, which is demonstrated in Script 1.47 (Adv-Loops2.jl) by doing the same as Script 1.46 (Adv-Loops.jl).

Script 1.47: Adv-Loops2.jl

```
seq = [1, 2, 3, 4, 5, 6]
for i in eachindex(seq)
 if seq[i] < 4
 println(seq[i]^3)
 else
 println(seq[i]^2)
 end
end
```

Output of Script 1.47: Adv-Loops2.j1

| 1 |
| :--- |
| 8 |
| 27 |
| 16 |
| 25 |
| 36 |

If you want to execute expressions as long as a given condition is true, Julia offers the while loop, but we will not present it here.

### 1.8.3. Functions

A function is a block of code that is executed if the function is called. You can provide additional data to the function in form of arguments. There are many pre-defined functions and packages
providing even more functions to expand the capabilities of Julia. We're now ready to define our own little function.
The command function newfunc (arg1, arg2, ...) defines a new function newfunc which accepts the arguments arg1, arg2,... The function definition follows in arbitrarily many lines of code and is ended with end. Within the function definition, the command return stuff means that stuff is to be returned as a result of the function call. For example, we can define the function mysqrt that expects one argument internally named $\mathbf{x}$. Script 1.48 (Adv-Functions.jl) shows how to define and call the function mysqrt.

Script 1.48: Adv-Functions.jl
\# define function:
function mysqrt ( x )
if $x>=0$
result $=x^{\wedge} 0.5$
else
result = "You fool!"
end
return result
end
\# call function and save result:
result1 = mysqrt (4)
println("result1 = \$result1\n")
result2 $=$ mysqrt ( -1.5 )
println("result2 = \$result2")

Output of Script 1.48: Adv-Functions.jl
result1 $=2.0$
result2 = You fool!

By default, variables defined within a function do not interfere with variables outside the function. This scoping rule can be made more explicit by adding local in front of a functions variable, e.g. local result. In some cases you may need to access variables outside the function, which is implemented by using global in front of the variable of a function.
If functions are defined as in Script 1.48 (Adv-Functions.jl), arguments are passed to the function by position. In Script 1.48 (Adv-Functions.jl) it is clear that any provided input to the function must be the argument $\mathbf{x}$. In the case of multiple arguments the order of provided inputs matters: the first piece of input is related to the first argument in the function definition, the second piece of input is related to the second argument in the function definition, etc. .
If you need many arguments in your function (remember the plot function, for example) providing arguments by name is an alternative easier to read. In Julia, this kind of argument is called a keyword argument. Note that the order of provided keyword arguments does not matter. When defining a function in Julia, you must specify which arguments are chosen by position and name. These both sets of arguments are separated by a semicolon in the function definition:

```
function newfunc(pos_arg1, pos_arg2, ... ; kwd_arg1, kwd_arg2, ...)
```

For an example, see Script 1.49 (Adv-Functions-MultArg.jl).

Script 1.49: Adv-Functions-MultArg.jl

```
define function (only positional arguments):
```

function mysqrt_pos ( $x$, add)
if $\mathrm{x}>=0$
result $=x^{\wedge} 0.5+$ add
else
result $=$ "You fool!"
end
return result
end
\# define function ("x" as positional and "add" as keyword argument):
function mysqrt_kwd (x; add)
if $x>=0$
result $=x^{\wedge} 0.5+$ add
else
result = "You fool!"
end
return result
end
\# call functions:
result1 = mysqrt_pos (4, 3)
println("result1 = \$result1")
\# mysqrt_pos(4, add = 3) is not valid
result2 $=$ mysqrt_kwd(4, add=3)
println("result2 = \$result2")
\# mysqrt_kwd (4, 3) is not valid

Output of Script 1.49: Adv-Functions-MultArg.jl

```
result1 = 5.0
```

result $2=5.0$

### 1.8.4. Computational Speed

Chances are good that you'll be using Julia because of what you've heard about its good performance. In this subsection we want to give you a short introduction in measuring the runtime of a function call. We also include a performance comparison of a simple for loop in Julia, $R$ and Python to give you an impression of what Julia is capable of.

In Script 1.50 (Adv-Performance. jl) we define a simple function simMean computing multiple means of randomly generated numbers. The @timed command is called a macro and for your purposes we can treat it similar to a function call. It measures the execution time of the subsequent function call in seconds on your system and allows to find potential bottlenecks in your code.

```
using Random, Distributions
set the random seed:
Random.seed!(12345)
function simMean(n, reps)
 ybar = zeros(reps)
 for j in 1:reps
 # sample from normal distribution of size n
 sample = rand(Normal(), n)
 ybar[j] = mean(sample)
 end
 return ybar
end
call the function and measure time:
n}=10
reps = 10000
stats = @timed simMean(n, reps);
runTime = stats.time
println("runTime = $runTime")
```

Output of Script 1.50: Adv-Performance.jl

```
runTime = 0.010652042
```

To get a more reliable estimate of the execution time of a function, it is evaluated multiple times. We use the package BenchmarkTools for this reason. ${ }^{33}$ Figure 1.17 shows the mean runtime of simMean for different amounts of repetitions and compares it to basic for loops in $R$ and Python. ${ }^{34}$ This comparison is not completely fair, because you can do many things to improve the performance of $R$ and Python code. However it shows that Julia can give impressive results without having lots of experience in optimizing code.

### 1.8.5. Outlook

While this section is called "Advanced Julia", we have admittedly only scratched the surface of semiadvanced topics. One topic we defer to Chapter 19 is how Julia can automatically create formatted reports and publication-ready documents. An example of seriously advanced topics for the real Julia geek is to use parallel computing to speed up computations. Since real Julia geeks are not the target audience of this book, we will stop to even mention more intimidating possibilities and focus on implementing the most important econometric methods in the most straightforward and pragmatic way.

### 1.9. Monte Carlo Simulation

Appendix C. 2 of Wooldridge (2019) contains a brief introduction to estimators and their properties. ${ }^{35}$ In real-world applications, we typically have a data set corresponding to a random sample from a well-defined population. We don't know the population parameters and use the sample to estimate them.

[^25]Figure 1.17. Computation Time of simMean


When we generate a sample using a computer program as we have introduced in Section 1.6.4, we know the population parameters since we had to choose them when making the random draws. We could apply the same estimators to this artificial sample to estimate the population parameters. The tasks would be: (1) Select a population distribution and its parameters. (2) Generate a sample from this distribution. (3) Use the sample to estimate the population parameters.

If this sounds a little insane to you: Don't worry, that would be a healthy first reaction. We obtain a noisy estimate of something we know precisely. But this sort of analysis does in fact make sense. Because we estimate something we actually know, we are able to study the behavior of our estimator very well.

In this book, we mainly use this approach for illustrative and didactic reasons. In state-of-the-art research, it is widely used since it often provides the only way to learn about important features of estimators and statistical tests. A name frequently given to these sorts of analyses is Monte Carlo simulation in reference to the "gambling" involved in generating random samples.

### 1.9.1. Finite Sample Properties of Estimators

Let's look at a simple example and simulate a situation in which we want to estimate the mean $\mu$ of a normally distributed random variable

$$
\begin{equation*}
Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \tag{1.6}
\end{equation*}
$$

using a sample of a given size $n$. The obvious estimator for the population mean would be the sample average $\bar{Y}$. But what properties does this estimator have? The informed reader immediately knows that the sampling distribution of $\bar{Y}$ is

$$
\begin{equation*}
\bar{Y} \sim \operatorname{Normal}\left(\mu, \frac{\sigma^{2}}{n}\right) \tag{1.7}
\end{equation*}
$$

Simulation provides a way to verify this claim.
Script 1.52 (Simulate-Estimate. jl ) shows a simulation experiment in action: We set the seed to ensure reproducibility and draw a sample of size $n=100$ from the population distribution (with the population parameters $\mu=10$ and $\sigma=2){ }^{36}$ Then, we calculate the sample average as an estimate of $\mu$. We see results for three different samples.

Script 1.52: Simulate-Estimate.jl
using Distributions, Random
\# set the random seed:
Random. seed! (12345)
\# set sample size:
$\mathrm{n}=100$
\# draw a sample given the population parameters:
sample1 $=$ rand (Normal (10, 2), n)
\# estimate the population mean with the sample average:
estimate1 = mean (sample1)
println("estimate1 = \$estimate1 $\backslash \mathrm{n}$ ")
\# draw a different sample and estimate again:
sample2 $=\operatorname{rand}(\operatorname{Normal}(10,2), \mathrm{n})$
estimate $2=$ mean (sample2)
println("estimate2 $=$ \$estimate2\n")
\# draw a third sample and estimate again:
sample3 $=\operatorname{rand}(\operatorname{Normal}(10,2), n)$
estimate3 $=$ mean (sample3)
print("estimate3: \$estimate3")

Output of Script 1.52: Simulate-Estimate.jl
estimate1 $=10.255315396762523$
estimate2 $=9.686886737328141$
estimate3: 9.958420923636215
All sample means $\bar{Y}$ are around the true mean $\mu=10$ which is consistent with our presumption formulated in Equation 1.7. It is also not surprising that we don't get the exact population parameter - that's the nature of the sampling noise. According to Equation 1.7, the results are expected to have a variance of $\frac{\sigma^{2}}{n}=0.04$. Three samples of this kind are insufficient to draw strong conclusions regarding the validity of Equation 1.7. Good Monte Carlo simulation studies should use as many samples as possible.

The code shown in Script 1.53 (Simulation-Repeated.jl) uses a for loop to draw 10,000 samples of size $n=100$ and calculates the sample average for all of them. After setting the random seed, the empty array ybar of size 10,000 is initialized using the zeros command. We will replace these empty array values with the estimates one after another in the loop. In each of these replications $j=1,2, \ldots, 10000$, a sample is drawn, its average calculated and stored in position number $j$ of ybar. In this way, we end up with a list of 10,000 estimates from different samples. The Script Simulation-Repeated.jl does not generate any output.

[^26]Script 1.53: Simulation-Repeated.jl

```
using Distributions, Random
set the random seed:
Random.seed! (12345)
set sample size:
n = 100
initialize ybar to an array of length r=10000 to later store results:
r = 10000
ybar = zeros(r)
repeat r times:
for j in 1:r
 # draw a sample and store the sample mean in pos. j=1,\ldots.. of ybar:
 sample = rand(Normal (10, 2), n)
 ybar[j] = mean(sample)
end
```

Script 1.54 (Simulation-Repeated-Results.jl) analyses these 10,000 estimates. Here, we just discuss the output, but you find the complete code in the appendix. The average of ybar is very close to the presumption $\mu=10$ from Equation 1.7. Also the simulated sampling variance is close to the theoretical result $\frac{\sigma^{2}}{n}=0.04$. Note that the degrees of freedom are adjusted in the function var to compute the unbiased estimate of the variance. Finally, the estimated density (using a kernel density estimate from the package KernelDensity) is compared to the theoretical normal distribution. The result is shown in Figure 1.18. The two lines are almost indistinguishable except for the area close to the mode (where the kernel density estimator is known to have problems).

Output of Script 1.54: Simulation-Repeated-Results.jl
ybar_preview:
[10.2553, 9.6869, 9.9584, 9.9454, 9.9426, 9.7717, 9.7265, 9.9904]
mean_ybar = 10.001370606455168
var_ybar $=0.04090275420375032$

To summarize, the simulation results confirm the theoretical results in Equation 1.7. Mean, variance and density are very close and it seems likely that the remaining tiny differences are due to the fact that we "only" used 10,000 samples.

Remember: for most advanced estimators, such simulations are the only way to study some of their features since it is impossible to derive theoretical results of interest. For us, the simple example hopefully clarified the approach of Monte Carlo simulations and the meaning of the sampling distribution and prepared us for other interesting simulation exercises.

### 1.9.2. Asymptotic Properties of Estimators

Asymptotic analyses are concerned with large samples and with the behavior of estimators and other statistics as the sample size $n$ increases without bound. For a discussion of these topics, see Wooldridge (2019, Appendix C.3). According to the law of large numbers, the sample average $\bar{Y}$ in the above example converges in probability to the population mean $\mu$ as $n \rightarrow \infty$. In (infinitely) large samples, this implies that $\mathrm{E}(\bar{Y}) \rightarrow \mu$ and $\operatorname{Var}(\bar{Y}) \rightarrow 0$.

Figure 1.18. Simulated and Theoretical Density of $\bar{Y}$


With Monte Carlo simulation, we have a tool to see how this works out in our example. We just have to change the sample size in the code line $\mathrm{n}=100$ in Script 1.53 (Simulation-Repeated.jl) to a different number and rerun the simulation code. Results for $n=10,50,100$, and 1000 are presented in Figure 1.19. Apparently, the variance of $\bar{Y}$ does in fact decrease. The graph of the density for $n=1000$ is already very narrow and high indicating a small variance. Of course, we cannot actually increase $n$ to infinity without crashing our computer, but it appears plausible that the density will eventually collapse into one vertical line corresponding to $\operatorname{Var}(\bar{Y}) \rightarrow 0$ as $n \rightarrow \infty$.
In our example for the simulations, the random variable $Y$ was normally distributed, therefore the sample average $\bar{Y}$ was also normal for any sample size. This can also be confirmed in Figure 1.19 where the respective normal densities were added to the graphs as dashed lines. The central limit theorem (CLT) claims that as $n \rightarrow \infty$, the sample mean $\bar{Y}$ of a random sample will eventually always be normally distributed, no matter what the distribution of $Y$ is (unless it is very weird with an infinite variance). This is called convergence in distribution.

Let's check this with a very non-normal distribution, the $\chi^{2}$ distribution with one degree of freedom. Its density is depicted in Figure 1.20. ${ }^{37}$ It looks very different from our familiar bellshaped normal density. The only line we have to change in the simulation code in Script 1.53 (Simulation-Repeated.jl) is sample $=\operatorname{rand}(\operatorname{Normal}(10,2), n)$ which we have to replace with sample $=\operatorname{rand}(\operatorname{Chisq}(1), \mathrm{n})$ according to Table 1.6. Figure 1.21 shows the simulated densities for different sample sizes and compares them to the normal distribution with the same mean $\mu=1$ and standard deviation $\frac{s}{\sqrt{n}}=\sqrt{\frac{2}{n}}$. Note that the scales of the axes now differ between the sub-figures in order to provide a better impression of the shape of the densities. The effect of a decreasing variance works here in exactly the same way as with the normal population. Not surprisingly, the distribution of $\bar{Y}$ is very different from a normal one in small samples like $n=2$. With increasing sample size, the CLT works its magic and the distribution gets closer to the

[^27]Figure 1.19. Density of $\bar{Y}$ with Different Sample Sizes

normal bell-shape. For $n=10000$, the densities hardly differ at all so it's easy to imagine that they will eventually be the same as $n \rightarrow \infty$.

### 1.9.3. Simulation of Confidence Intervals and $t$ Tests

In addition to repeatedly estimating population parameters, we can also calculate confidence intervals and conduct tests on the simulated samples. Here, we present a somewhat advanced simulation routine. The payoff of going through this material is that it might substantially improve our understanding of the workings of statistical inference.

We start from the same example as in Section 1.9.1: In the population, $\Upsilon \sim \operatorname{Normal}(10,4)$. We draw 10,000 samples of size $n=100$ from this population. For each of the samples we calculate

- The $95 \%$ confidence interval and store the limits in CIlower and CIupper.
- The $p$ value for the two-sided test of the correct null hypothesis $H_{0}: \mu=10 \Rightarrow$ array pvalue 1
- The $p$ value for the two-sided test of the incorrect null hypothesis $H_{0}: \mu=9.5 \Rightarrow$ array pvalue2

Finally, we calculate the vectors reject1 and reject2 with logical items that are true if we reject the respective null hypothesis at $\alpha=5 \%$, i.e. if pvalue 1 or pvalue 2 are smaller than 0.05 , respectively. Script 1.56 (Simulation-Inference.jl) shows the Julia code for these simulations and frequency tables for the results reject1 and reject2.

Figure 1.20. Density of the $\chi^{2}$ Distribution with 1 d.f.


Figure 1.21. Density of $\bar{Y}$ with Different Sample Sizes: $\chi^{2}$ Distribution

(a) $n=2$

(c) $n=100$
(b) $n=10$

(d) $n=10000$

If theory and the implementation in Julia are accurate, the probability to reject a correct null hypothesis (i.e. to make a Type I error) should be equal to the chosen significance level $\alpha$. In our simulation, we reject the correct hypothesis in 536 of the 10,000 samples, which amounts to $5.36 \%$.

The probability to reject a false hypothesis is called the power of a test. It depends on many things like the sample size and "how bad" the error of $H_{0}$ is, i.e. how far away $\mu_{0}$ is from the true $\mu$. Theory just tells us that the power is larger than $\alpha$. In our simulation, the wrong null $H_{0}: \mu=9.5$ is rejected in $69.6 \%$ of the samples. The reader is strongly encouraged to tinker with the simulation code to verify the theoretical results that this power increases if $\mu_{0}$ moves away from 10 and if the sample size $n$ increases.

Figure 1.22 graphically presents the $95 \%$ CI for the first 100 simulated samples. ${ }^{38}$ Each horizontal line represents one CI. In these first 100 samples, the true null was rejected in five cases. This fact means that for those five samples the CI does not cover $\mu_{0}=10$, see Wooldridge (2019, Appendix C.6) on the relationship between CI and tests. These five cases are drawn in black in the left part of the figure, whereas the others are gray.
The $t$-test rejects the false null hypothesis $H_{0}: \mu=9.5$ in 71 of the first 100 samples. Their CIs do not cover 9.5 and are drawn in black in the right part of Figure 1.22.

Script 1.56: Simulation-Inference.jl
using Distributions, Random, HypothesisTests
\# set the random seed:
Random. seed! (12345)
\# set sample size and MC simulations:
$r=10000$
$\mathrm{n}=100$
\# initialize arrays to later store results:
CIlower $=$ zeros $(r)$
CIupper $=$ zeros $(r)$
pvalue1 $=$ zeros ( $r$ )
pvalue2 $=$ zeros $(r)$
\# repeat $r$ times:
for $j$ in 1:r
\# draw a sample
sample $=\operatorname{rand}(\operatorname{Normal}(10,2), n)$
sample_mean $=$ mean (sample)
sample_sd = std(sample)
\# test the (correct) null hypothesis mu=10:
testres1 = OneSampleTTest (sample, 10)
pvalue1[j] = pvalue(testres1)
$\mathrm{cv}=$ quantile(TDist(n -1 ), 0.975)
CIlower[j] = sample_mean - cv * sample_sd / sqrt(n)
CIupper[j] $=$ sample_mean $+C v$ * sample_sd / sqrt( $n$ )
\# test the (incorrect) null hypothesis mu=9.5 \& store the $p$ value:
testres $2=$ OneSampleTTest (sample, 9.5)
pvalue2[j] = pvalue(testres2)
end

[^28]```
# test results as logical value:
reject1 = pvalue1 .<= 0.05
count1_true = count(reject1) # counts true
count1_false = r - count1_true
println("count1_true: $count1_true\n")
println("count1_false: $count1_false\n")
reject2 = pvalue2 .<= 0.05
count2_true = count(reject2)
count2_false = r - count2_true
println("count2_true: $count2_true\n")
println("count2_false: $count2_false")
```

Output of Script 1.56: Simulation-Inference.jl
count1_true: 536
count1_false: 9464
count2_true: 6962
count2_false: 3038

Figure 1.22. Simulation Results: First 100 Confidence Intervals

Part I.

Regression Analysis with Cross-Sectional Data

2. The Simple Regression Model

2.1. Simple OLS Regression

We are concerned with estimating the population parameters β_{0} and β_{1} of the simple linear regression model

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+u \tag{2.1}
\end{equation*}
$$

from a random sample of y and x. According to Wooldridge (2019, Section 2.2), the ordinary least squares (OLS) estimators are

$$
\begin{align*}
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \tag{2.2}\\
& \hat{\beta}_{1}=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} . \tag{2.3}
\end{align*}
$$

Based on these estimated parameters, the OLS regression line is

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x . \tag{2.4}
\end{equation*}
$$

For a given sample, we just need to calculate the four statistics $\bar{y}, \bar{x}, \operatorname{Cov}(x, y)$, and $\operatorname{Var}(x)$ and plug them into these equations. We already know how to make these calculations in Julia, see Section 1.5. Let's do it!

Wooldridge, Example 2.3: CEO Salary and Return on Equity

We are using the data set CEOSAL1 we already analyzed in Section 1.5. We consider the simple regression model

$$
\text { salary }=\beta_{0}+\beta_{1} \text { roe }+u
$$

where salary is the salary of a CEO in thousand dollars and roe is the return on investment in percent. In Script 2.1 (Example-2-3.j1), we first load the packages and the data set. We also calculate the four statistics we need for Equations 2.2 and 2.3 so we can reproduce the OLS formulas by hand. Finally, the parameter estimates are calculated.
So the OLS regression line is

$$
\widehat{\text { slar } y}=963.1913+18.50119 \cdot \text { roe } .
$$

Script 2.1: Example-2-3.jl
using WooldridgeDatasets, DataFrames, Statistics
ceosal1 = DataFrame (wooldridge("ceosal1"))
$\mathbf{x}=$ ceosall.roe
$\mathrm{y}=$ ceosal1.salary
\# ingredients to the OLS formulas:
$\operatorname{cov} _x y=\operatorname{cov}(x, y)$
$\operatorname{var} \mathrm{va}^{\prime}=\operatorname{var}(\mathrm{x})$
$x _$bar $=\operatorname{mean}(x)$
Y_bar $=$ mean (y)
\# manual calculation of OLS coefficients:
b1 = cov_xy / var_x
b0 = y_bar - b1 * x_bar
println("b1 = \$b1 \n")
println("b0 = \$b0")

Output of Script 2.1: Example-2-3.jl
$\mathrm{b} 1=18.50118634521492$
$b 0=963.191336472558$

While calculating OLS coefficients using this pedestrian approach is straightforward, there is a more convenient way to do it. Given the importance of OLS regression, it is not surprising that many Julia packages have a specialized command to do the calculations automatically. In the following chapters, we will often use the package GLM to apply linear regression and other econometric methods. ${ }^{1}$ When working with GLM, the first line of code often is:

```
using GLM
```

If the data frame sample contains the values of the dependent variable in column y and those of the regressor in the column \mathbf{x}, we can calculate the OLS coefficients as

```
reg = lm(@formula(y ~ x), sample)
```

The first argument including $\mathbf{y} \sim \mathbf{x}$ is called a formula. Essentially, it means that we want to model a left-hand side variable \mathbf{y} to be explained by a right-hand side variable \mathbf{x} in a linear fashion. We will discuss more general model formulae in Section 6.1. The second argument sample refers to the data that is used for the calculation of OLS coefficients.
Finally, all kind of results are assigned to the variable reg. The name could of course be anything, for example yummy_chocolate_chip_cookies, but choosing telling variable names makes our life easier. The referenced object does not only include the OLS coefficients, but also information on standard errors and much more we will get to know and use later on.

[^29]
Wooldridge, Example 2.3: CEO Salary and Return on Equity (cont'ed)

In Script 2.2 (Example-2-3-2.jl), we repeat the analysis we have already done manually. Besides the import of the data, there are only a few lines of code. The output shows how to access both estimated parameters with coef (reg) : $\hat{\beta}_{0}$ is the first, and $\hat{\beta}_{1}$ is second element in the vector \mathbf{b}. The values are the same we already calculated except for different rounding in the output.

Script 2.2: Example-2-3-2.j1
using WooldridgeDatasets, DataFrames, GLM
ceosal1 = DataFrame(wooldridge("ceosal1"))
reg $=\operatorname{lm}(@ f o r m u l a(s a l a r y ~ ~ r o e), ~ c e o s a l 1) ~$
b = coef (reg)
println("b = \$b")

Output of Script 2.2: Example-2-3-2.jl
$b=[963.191336472557,18.50118634521497]$

From now on, we will rely on the built-in routine in GLM instead of doing the calculations manually. It is not only more convenient for calculating the coefficients, but also for further analyses as we will see soon.

Given the results from a regression, plotting the regression line is straightforward. In this case, we simply supply the regressor roe and the predicted values (available under predict (reg)) and connect them by a line with plot. We also use the command scatter to add points to the graph.

Wooldridge, Example 2.3: CEO Salary and Return on Equity (cont'ed)

Script 2.3 (Example $-2-3-3 . j 1$) demonstrates how to store the regression results in a variable reg and then use the resulting fitted values as an argument to plot to add the regression line to the scatter plot. It generates Figure 2.1.

Script 2.3: Example-2-3-3.jl

```
using WooldridgeDatasets, DataFrames, GLM, Plots
ceosal1 = DataFrame(wooldridge("ceosal1"))
reg = lm(@formula(salary ~ roe), ceosal1)
# scatter plot and fitted values:
fitted_values = predict(reg)
scatter(ceosal1.roe, ceosal1.salary, color=:grey80, label="observations")
plot!(ceosal1.roe, fitted_values, color=:black, linewidth=3, label="OLS")
xlabel!("roe")
ylabel!("salary")
savefig("JlGraphs/Example-2-3-3.pdf")
instead of scatter, you can also use:
plot(ceosall.roe, ceosall.salary, label="observations", seriestype=:scatter)
```

Figure 2.1. OLS Regression Line for Example 2-3

Wooldridge, Example 2.4: Wage and Education

We are using the data set WAGE1. We are interested in studying the relation between education and wage, and our regression model is

$$
\text { wage }=\beta_{0}+\beta_{1} \text { education }+u
$$

In Script 2.4 (Example-2-4.jl), we analyze the data and find that the OLS regression line is

$$
\widehat{\text { wage }}=-0.90+0.54 \cdot \text { education. }
$$

One additional year of education is associated with an increase of the typical wage by about 54 cents an hour.

Script 2.4: Example-2-4.jl

using WooldridgeDatasets, DataFrames, GLM
wage1 = DataFrame(wooldridge("wage1"))
reg $=\operatorname{lm}(@ f o r m u l a($ wage \sim educ), wage1)
$b=c o e f(r e g)$
println("b = \$b")

Output of Script 2.4: Example-2-4.jl
$\mathrm{b}=[-0.9048516119571958,0.5413592546651733]$

Wooldridge, Example 2.5: Voting Outcomes and Campaign Expenditures

The data set votel contains information on campaign expenditures (shareA = share of campaign spending in \%) and election outcomes (voteA = share of vote in \%). The regression model

$$
\operatorname{vote} \mathrm{A}=\beta_{0}+\beta_{1} \text { share } A+u
$$

is estimated in Script 2.5 (Example $-2-5 . j 1$). The OLS regression line turns out to be

$$
\widehat{\mathrm{voteA}}=26.81+0.464 \cdot \text { shareA }
$$

The scatter plot with the regression line generated in the code is shown in Figure 2.2.

Script 2.5: Example-2-5.jl
using WooldridgeDatasets, DataFrames, GLM, Plots
vote1 = DataFrame(wooldridge("vote1"))
\# OLS regression:
reg = lm(@formula (voteA ~ shareA), vote1)
$\mathrm{b}=\operatorname{coef}(\mathrm{reg})$
println("b = \$b")
\# scatter plot and fitted values:
fitted_values = predict (reg)
scatter (vote1.shareA, vote1.voteA,
color=:grey, label="observations", legend=:topleft)
plot! (vote1.shareA, fitted_values, color=:black, linewidth=3, label="OLS")
xlabel! ("shareA")
ylabel! ("voteA")
savefig ("JlGraphs/Example-2-5.pdf")

Output of Script 2.5: Example-2-5.jl
$b=[26.812214128680353,0.4638269122908861]$

2.2. Coefficients, Fitted Values, and Residuals

The object returned by the function 1 m contains other important information on the regression and is the basis for further calculations. After defining the regression results object reg in Script 2.2 (Example-2-3-2.jl), we can access the OLS coefficients with

Figure 2.2. OLS Regression Line for Example 2-5

coef (reg)
$\hat{\beta}_{0}$ is the first, and $\hat{\beta}_{1}$ is second element in the returned vector, so you can access the parameters separately by using the position. For example, in Script 2.2 (Example-2-3-2.jl) you can access intercept and slope parameter by

```
b[1] # intercept
b[2] # slope parameter
```

To attach names to calculated coefficients, you can also use coeftable instead of coef. See 2.6 (Example-2-6.jl) for an example.
Given these parameter estimates, calculating the predicted values \hat{y}_{i} and residuals \hat{u}_{i} for each observation $i=1, \ldots, n$ is easy:

$$
\begin{align*}
& \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} \cdot x_{i} \tag{2.5}\\
& \hat{u}_{i}=y_{i}-\hat{y}_{i} \tag{2.6}
\end{align*}
$$

If the values of the dependent and independent variables are stored in a data frame sample as \mathbf{y} and \mathbf{x}, respectively, we can estimate the model and do the calculations of these equations for all observations jointly using the code

```
reg = lm(@formula(y ~ x), sample)
b = coef(reg)
y_hat = b[1] .+ b[2] .* sample.x
u_hat = sample.y .- y_hat
```

We can also use a more black box approach which will give exactly the same results using predict and residuals on the regression results object:

```
reg = lm(@formula(y ~ x), sample)
y_hat = predict(reg)
u_hat = residuals(reg)
```


Wooldridge, Example 2.6: CEO Salary and Return on Equity

We extend the regression example on the return on equity of a firm and the salary of its CEO in Script 2.6 (Example-2-6.j1). After the OLS regression, we calculate fitted values and residuals. A table similar to Wooldridge (2019, Table 2.2) is generated displaying the values for the first 10 observations.

Script 2.6: Example-2-6.jl
using WooldridgeDatasets, DataFrames, GLM
ceosal1 = DataFrame(wooldridge("ceosal1"))
\# OLS regression:
reg $=$ lm(@formula(salary ~ roe), ceosal1)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg\n")
\# obtain predicted values and residuals:
salary_hat = predict(reg)
u_hat = residuals(reg)
\# Wooldridge, Table 2.2:
table = DataFrame (roe=ceosall.roe,
salary=ceosal1.salary,
salary_hat=salary_hat,
u_hat=u_hat)
table_preview $=$ first (table, 10)
println("table_preview: \n\$table_preview")

Output of Script 2.6: Example-2-6.jl

Wooldridge (2019, Section 2.3) presents and discusses three properties of OLS statistics which we will confirm for an example.

$$
\begin{align*}
& \sum_{i=1}^{n} \hat{u}_{i}=0 \quad \Rightarrow \quad \bar{u}_{i}=0 \tag{2.7}\\
& \sum_{i=1}^{n} x_{i} \hat{u}_{i}=0 \quad \Rightarrow \quad \operatorname{Cov}\left(x_{i}, \hat{u}_{i}\right)=0 \tag{2.8}\\
& \bar{y}=\hat{\beta}_{0}+\hat{\beta}_{1} \cdot \bar{x} \tag{2.9}
\end{align*}
$$

Wooldridge, Example 2.7: Wage and Education

We already know the regression results when we regress wage on education from Example 2.4. In Script 2.7 (Example-2-7.j1), we calculate fitted values and residuals to confirm the three properties from Equations 2.7 through 2.9. Note that Julia does all calculations in "double precision" implying that it is accurate for at least 15 significant digits. The output that checks the first property shows that the average residual is $5.943703493050267 e-16$ which in scientific notation means 5.943703493050267 . $10^{-16}=0.0000000000000005943703493050267$. The reason it is not exactly equal to 0 is a rounding error in the $17^{\text {th }}$ digit. The same holds for the second property: The covariance between the regressor and the residual is zero except for minimal rounding error. Note that running Script 2.7 (Example-2-7.j1) will give you the same accurate digits, but the digits with rounding error will differ. The third property is also confirmed: If we plug the average value of the regressor into the regression line formula, we get the average value of the dependent variable.

Script 2.7: Example-2-7.jl
using WooldridgeDatasets, DataFrames, GLM, Statistics
wage1 = DataFrame (wooldridge("wage1"))
reg $=\operatorname{lm}(@ f o r m u l a(w a g e ~ \sim ~ e d u c), ~ w a g e 1) ~$
\# obtain coefficients, predicted values and residuals:
b = coef (reg)
wage_hat = predict (reg)
u_hat $=$ residuals (reg)
\# confirm property (1):
u_hat_mean $=$ mean (u_hat)
println("u_hat_mean = \$u_hat_mean\n")
\# confirm property (2):
educ_u_cov = cov(wage1.educ, u_hat)
println("educ_u_cov = \$educ_u_cov $\backslash \mathrm{n} "$)
\# confirm property (3):
educ_mean $=$ mean (wage1.educ)
wage_pred $=b[1]+b[2]$ * educ_mean
println("wage_pred = \$wage_pred\n")
wage_mean $=$ mean (wage1.wage)
println("wage_mean = \$wage_mean")

Output of Script 2.7: Example-2-7.jl

```
u_hat_mean = 5.943703493050267e-16
educ_u_cov = 9.828178542739973e-15
wage_pred = 5.896102674787035
wage_mean = 5.896102674787035
```


2.3. Goodness of Fit

The total sum of squares (SST), explained sum of squares (SSE) and residual sum of squares (SSR) can be written as

$$
\begin{align*}
& \mathrm{SST}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=(n-1) \cdot \operatorname{Var}(y) \tag{2.10}\\
& \mathrm{SSE}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=(n-1) \cdot \operatorname{Var}(\hat{y}) \tag{2.11}\\
& \mathrm{SSR}=\sum_{i=1}^{n}\left(\hat{u}_{i}-0\right)^{2}=(n-1) \cdot \operatorname{Var}(\hat{u}) \tag{2.12}
\end{align*}
$$

where $\operatorname{Var}(x)$ is the sample variance $\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$.
Wooldridge (2019, Equation 2.38) defines the coefficient of determination in terms of these terms. Because ($n-1$) cancels out, it can be equivalently written as

$$
\begin{equation*}
R^{2}=\frac{\operatorname{Var}(\hat{y})}{\operatorname{Var}(y)}=1-\frac{\operatorname{Var}(\hat{u})}{\operatorname{Var}(y)} . \tag{2.13}
\end{equation*}
$$

Wooldridge, Example 2.8: CEO Salary and Return on Equity

In the regression already studied in Example 2.6, the coefficient of determination is 0.0132 . This is calculated in the two ways of Equation 2.13 in Script 2.8 (Example-2-8.j1). In addition, it is calculated as the squared correlation coefficient of y and \hat{y}. Not surprisingly, all versions of these calculations produce the same result (they are not exactly equal to each other because of the rounding error in the $17^{\text {th }}$ digit).

Script 2.8: Example-2-8.jl
using WooldridgeDatasets, DataFrames, GLM, Statistics
ceosall = DataFrame (wooldridge("ceosal1"))
\# OLS regression:
reg $=\operatorname{lm}(@ f o r m u l a(s a l a r y ~ ~ r o e), ~ c e o s a l 1) ~$
\# obtain predicted values and residuals:
sal_hat = predict (reg)
u_hat = residuals (reg)
\# calculate $R^{\wedge} 2$ in three different ways:
sal = ceosall.salary
R2_a = var(sal_hat) / var(sal)
R2_b = 1 - var(u_hat) / var(sal)
R2_c $=$ cor (sal, sal_hat) ^2
println("R2_a = \$R2_a\n")
println("R2_b = \$R2_b\n")
println("R2_c = \$R2_c")

Output of Script 2.8: Example-2-8.jl
R2_a $=0.013188624081034168$
R2_b $=0.013188624081034162$
R2_c = 0.013188624081034099

Many interesting results for a regression can be computed automatically with the output of $\mathbf{1 m}$, and we show this for the coefficient of determination. As demonstrated in Script 2.9 (Example-2-9.j1), the function $\mathbf{r 2}$ calculates the coefficient of determination just with the output object of 1 m .
When we are interested in the coefficients and their significance, we will often use the function coeftable for a compact presentation of results. This is demonstrated with the object table_reg in Script 2.9 (Example-2-9.jl). We will discuss the details of this additional information later.

Wooldridge, Example 2.9: Voting Outcomes and Campaign Expenditures

We already know the OLS coefficients to be $\hat{\beta}_{0}=26.8122$ and $\hat{\beta}_{1}=0.4638$ in the voting example (Script 2.5 (Example-2-5.jl)). These values are again found in the output of Script 2.9 (Example-2-9.jl). The coefficient of determination is reported as $\mathbf{r 2}$ _automatic to be $R^{2}=0.856$.

Script 2.9: Example-2-9.jl
using WooldridgeDatasets, DataFrames, GLM
vote1 = DataFrame (wooldridge("vote1"))
\# OLS regression:
reg $=\operatorname{lm}(@ f o r m u l a(v o t e A \sim s h a r e A), ~ v o t e 1)$
\# print results using coeftable:
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg\n")
\# accessing $\mathrm{R}^{\wedge} 2$:
r2_automatic = r2 (reg)
println("r2_automatic = \$r2_automatic")

Output of Script 2.9: Example-2-9.jl

```
table_reg:
\begin{tabular}{lccrcrc} 
& Coef. & Std. Error & t & Pr \((>|t|)\) & Lower 95\% & Upper 95\% \\
(Intercept) & 26.8122 & 0.887215 & 30.22 & \(<1 \mathrm{e}-69\) & 25.0609 & 28.5635 \\
shareA & 0.463827 & 0.0145397 & 31.90 & \(<1 \mathrm{e}-73\) & 0.435127 & 0.492527
\end{tabular}
r2_automatic = 0.8561408655827665
```


2.4. Nonlinearities

For the estimation of logarithmic or semi-logarithmic models, the respective formula can be directly entered into the specification of lm (@formula (. .)) as demonstrated in Examples 2.10 and 2.11. For the interpretation as percentage effects and elasticities, see Wooldridge (2019, Section 2.4).

Wooldridge, Example 2.10: Wage and Education

Compared to Example 2.7, we simply change the command for the estimation to account for a logarithmic specification as shown in Script 2.10 (Example-2-10.j1). The semi-logarithmic specification implies that wages are higher by about 8.3% for individuals with an additional year of education.

Script 2.10: Example-2-10.jl
using WooldridgeDatasets, DataFrames, GLM
wage1 = DataFrame (wooldridge ("wage1"))

```
# estimate log-level model:
```

reg $=\operatorname{lm}(@ f o r m u l a(\log (w a g e) ~ \sim ~ e d u c), ~ w a g e 1) ~$
$\mathrm{b}=\operatorname{coef}(\mathrm{reg})$
println("b = \$b")

Output of Script 2.10: Example-2-10.jl
$\mathrm{b}=[0.5837726746718852,0.08274436586375138]$

Wooldridge, Example 2.11: CEO Salary and Firm Sales

We study the relationship between the sales of a firm and the salary of its CEO using a log-log specification. The results are shown in Script 2.11 (Example-2-11.j1). If the sales increase by 1%, the salary of the CEO tends to increase by 0.257%.

Script 2.11: Example-2-11.jl
using WooldridgeDatasets, DataFrames, GLM
ceosal1 = DataFrame(wooldridge("ceosal1"))
\# estimate log-log model:
reg $=\operatorname{lm}(@ f o r m u l a(\log (s a l a r y) ~ ~ ~ l o g(s a l e s)), ~ c e o s a l 1) ~$
$\mathrm{b}=\operatorname{coef}(\mathrm{reg})$
println("b = \$b")

Output of Script 2.11: Example-2-11.jl
$\mathrm{b}=[4.821996478164936,0.2566716916641498]$

2.5. Regression through the Origin and Regression on a Constant

Wooldridge (2019, Section 2.6) discusses models without an intercept. This implies that the regression line is forced to go through the origin. In Julia, we can suppress the constant which is otherwise implicitly added to a formula by specifying

```
reg = lm(@formula(y ~ 0 + x), sample)
```

instead of reg $=\operatorname{lm}(@$ formula $(\mathbf{y} \sim \mathbf{x})$, sample). The result is a model which only has a slope parameter.
Another topic discussed in this section is a linear regression model without a slope parameter, i.e. with a constant only. In this case, the estimated constant will be the sample average of the dependent variable. This can be implemented in Julia using the code

```
reg = lm(@formula(y ~ 1), sample)
```

Both special kinds of regressions are implemented in Script 2.12 (SLR-Origin-Const. $j 1$) for the example of the CEO salary and ROE we already analyzed in Example 2.8 and others. The resulting regression lines are plotted in Figure 2.3 which was generated using the last lines of code shown in Script 2.12 (SLR-Origin-Const.jl).

Script 2.12: SLR-Origin-Const.jl
using WooldridgeDatasets, DataFrames, GLM, Plots, Statistics
ceosall = DataFrame(wooldridge("ceosal1"))
\# usual OLS regression:
reg1 = lm(@formula(salary ~ roe), ceosal1)
b1 = coef(reg1)
println("b1 = \$b1 \n")
\# regression without intercept (through origin) :
reg2 = lm(@formula(salary ~ 0 + roe), ceosal1)
b2 = coef (reg2)
println("b2 = \$b2\n")
\# regression without slope (on a constant):
reg3 = lm(@formula(salary ~ 1), ceosal1)
b3 = coef (reg3)
println("b3 = \$b3\n")
\# average y :
sal_mean = mean (ceosall.salary)
println("sal_mean = \$sal_mean")
\# scatter plot and fitted values:
scatter (ceosall.roe, ceosall.salary, color="grey85", label="observations")
plot! (ceosall.roe, predict(reg1), linewidth=2, color="black", label="full")
plot! (ceosall.roe, predict(reg2), linewidth=2, color="dimgrey", label="trough origin")
plot! (ceosall.roe, predict(reg3), linewidth=2, color="lightgrey", label="const only")
xlabel! ("roe")
ylabel! ("salary")
savefig("JlGraphs/SLR-Origin-Const.pdf")

Output of Script 2.12: SLR-Origin-Const.jl

```
b1 = [963.191336472557, 18.50118634521497]
b2 = [63.537955204261635]
b3 = [1281.1196172248804]
sal_mean = 1281.1196172248804
```

Figure 2.3. Regression through the Origin and on a Constant

2.6. Expected Values, Variances, and Standard Errors

Wooldridge (2019) discusses the role of five assumptions under which the OLS parameter estimators have desirable properties. In short form they are

- SLR.1: Linear population regression function: $y=\beta_{0}+\beta_{1} x+u$
- SLR.2: Random sampling of x and y from the population
- SLR.3: Variation in the sample values x_{1}, \ldots, x_{n}
- SLR.4: Zero conditional mean: $\mathrm{E}(u \mid x)=0$
- SLR.5: Homoscedasticity: $\operatorname{Var}(u \mid x)=\sigma^{2}$

Based on those, Wooldridge (2019) shows in Section 2.5:

- Theorem 2.1: Under SLR. 1 - SLR.4, OLS parameter estimators are unbiased.
- Theorem 2.2: Under SLR. 1 - SLR.5, OLS parameter estimators have a specific sampling variance.
Because the formulas for the sampling variance involve the variance of the error term, we also have to estimate it using the unbiased estimator

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{1}{n-2} \cdot \sum_{i=1}^{n} \hat{u}_{i}^{2}=\frac{n-1}{n-2} \cdot \operatorname{Var}\left(\hat{u}_{i}\right), \tag{2.14}
\end{equation*}
$$

where $\operatorname{Var}\left(\hat{u}_{i}\right)=\frac{1}{n-1} \cdot \sum_{i=1}^{n} \hat{u}_{i}^{2}$ is the usual sample variance. We have to use the degrees-of-freedom adjustment to account for the fact that we estimated the two parameters $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ for constructing the residuals. Its square root $\hat{\sigma}=\sqrt{\hat{\sigma}^{2}}$ is called standard error of the regression (SER) by Wooldridge (2019).

The standard errors (SE) of the estimators are

$$
\begin{align*}
& \operatorname{se}\left(\hat{\beta}_{0}\right)=\sqrt{\frac{\hat{\sigma}^{2} \overline{x^{2}}}{\sum_{i=1}^{n}(x-\bar{x})^{2}}}=\frac{1}{\sqrt{n-1}} \cdot \frac{\hat{\sigma}}{\operatorname{sd}(x)} \cdot \sqrt{\overline{x^{2}}} \tag{2.15}\\
& \operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}(x-\bar{x})^{2}}}=\frac{1}{\sqrt{n-1}} \cdot \frac{\hat{\sigma}}{\operatorname{sd}(x)} \tag{2.16}
\end{align*}
$$

where $\operatorname{sd}(x)$ is the sample standard deviation $\sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.
In Julia, we can obviously do the calculations of Equations 2.15 through 2.16 explicitly. But the output of the coeftable command for linear regression results, which we discovered in Section 2.3 , already contains the results. We use the following example to calculate the results in both ways to open the black box of the canned routine and convince ourselves that from now on we can rely on it.

Wooldridge, Example 2.12: Student Math Performance and the School Lunch Program

Using the data set MEAP 93, we regress a math performance score of schools on the share of students eligible for a federally funded lunch program. Wooldridge (2019) uses this example to demonstrate the importance of assumption SLR. 4 and warns us against interpreting the regression results in a causal way. Here, we merely use the example to demonstrate the calculation of standard errors.
Script 2.13 (Example $-2-12 . j 1$) first calculates the SER manually using the fact that the residuals \hat{u} are available as residuals (reg). Then, the SE of the parameters are calculated according to Equations 2.15 and 2.16, where the regressor is addressed as the variable in the data frame meap93.1nchprg. Finally, we see the output of coeftable. The SE of the parameters are reported in the second column of the regression table, next to the parameter estimates. We will look at the other columns in Chapter 4. All values are exactly the same as the manual results.

Script 2.13: Example-2-12.jl
using WooldridgeDatasets, DataFrames, GLM, Statistics
meap93 = DataFrame(wooldridge("meap93"))
\# estimate the model and save the results as reg:
reg $=1 \mathrm{~lm}$ (@formula (math10 \sim lnchprg), meap93)
\# number of obs.:
$\mathrm{n}=$ nobs (reg)
\# SER:
u_hat_var = var(residuals(reg))
SER $=$ sqrt (u_hat_var) * sqrt($(\mathrm{n}-1) /(\mathrm{n}-2))$
println("SER = \$SER\n")
\# SE of b0 and b1, respectively:
lnchprg_sq_mean = mean(meap93.lnchprg .^ 2)
lnchprg_var = var (meap93.1nchprg)
b0_se = SER / (sqrt (lnchprg_var) * sqrt (n - 1)) * sqrt (lnchprg_sq_mean)
b1_se = SER / (sqrt(lnchprg_var) * sqrt (n - 1))
println("bO_se = \$bO_se\n")
println("b1_se = \$b1_se\n")
\# automatic calculations:
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 2.13: Example-2-12.jl
SER $=9.565938459482759$
b0_se $=0.9975823856755017$
b1_se $=0.03483933425836962$
table_reg:

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	32.1427	0.997582	32.22	$<1 e-99$	30.1816	34.1038
lnchprg	-0.318864	0.0348393	-9.15	$<1 e-17$	-0.387352	-0.250376

2.7. Monte Carlo Simulations

In this section, we use Monte Carlo simulation experiments to revisit many of the topics covered in this chapter. It can be skipped but can help quite a bit to grasp the concepts of estimators, estimates, unbiasedness, the sampling variance of the estimators, and the consequences of violated assumptions. Remember that the concept of Monte Carlo simulations was introduced in Section 1.9.

2.7.1. One Sample

In Section 1.9, we used simulation experiments to analyze the features of a simple mean estimator. We also discussed the sampling from a given distribution, the random seed and simple examples. We can use exactly the same strategy to analyze OLS parameter estimators.
Script 2.14 (SLR-Sim-Sample.jl) shows how to draw a sample which is consistent with Assumptions SLR. 1 through SLR.5. We simulate a sample of size $n=1000$ with population parameters $\beta_{0}=1$ and $\beta_{1}=0.5$. We set the standard deviation of the error term u to $\sigma=2$. Obviously, these parameters can be freely chosen and every reader is strongly encouraged to play around.

Script 2.14: SLR-Sim-Sample.jl

```
using Random, GLM, DataFrames, Distributions, Statistics, Plots
```

\# set the random seed:
Random. seed! (12345)
\# set sample size:
$\mathrm{n}=1000$
\# set true parameters (betas and sd of u):
beta0 $=1$
beta1 $=0.5$
su $=2$
\# draw a sample of size n :
$\mathbf{x}=\operatorname{rand}(\operatorname{Normal}(4,1), \mathrm{n})$
$\mathrm{u}=\operatorname{rand}(\operatorname{Normal}(0, \mathrm{su}), \mathrm{n})$
$y=$ beta0 . + beta1 . * $x .+u$
$\mathrm{df}=\operatorname{DataFrame}(\mathrm{y}=\mathrm{y}, \mathrm{x}=\mathrm{x})$
\# estimate parameters by OLS:
reg $=\operatorname{lm}(@$ formula $(y \sim x)$, df)
$\mathrm{b}=\mathrm{coef}$ (reg)
println("b = \$b\n")
\# features of the sample for the variance formula:
x_sq_mean $=\operatorname{mean}(x . \wedge 2)$
println("x_sq_mean = \$x_sq_mean $\backslash n "$)
$x_{\text {_ }} \operatorname{var}=\operatorname{sum}((x .-\operatorname{mean}(x))$.^ 2)
println("x_var = \$x_var")
\# graph:
x_range $=$ range (0,8 , length $=100$)
scatter (x, y, color="lightgrey", ylim=[-2, 10],
label="sample", alpha=0.7, markerstrokecolor=:white)
plot! (x_range, beta0 .+ beta1 . * x_range, color="black",
linestyle=:solid, linewidth=2, label="pop. regr. fct.")
plot! (x_range, coef (reg) [1] .+ coef(reg) [2] . * x_range, color="grey",
linestyle=:solid, linewidth=2, label="OLS regr. fct.")

```
xlabel!("x")
ylabel!("y")
savefig("JlGraphs/SLR-Sim-Sample.pdf")
```

Output of Script 2.14: SLR-Sim-Sample.jl
$\mathrm{b}=$ [1.0941139603852943, 0.49071895330338017]
x_sq_mean = 16.855828584405046
x_var = 1069.5006680128563

Then a random sample of x and y is drawn in three steps:

- A sample of regressors x is drawn from an arbitrary distribution. The only thing we have to make sure to stay consistent with Assumption SLR. 3 is that its variance is strictly positive. We choose a normal distribution with mean 4 and a standard deviation of 1 .
- A sample of error terms u is drawn according to Assumptions SLR. 4 and SLR.5: It has a mean of zero, and both the mean and the variance are unrelated to x. We simply choose a normal distribution with mean 0 and standard deviation $\sigma=2$ for all 1000 observations independent of x. In Sections 2.7.3 and 2.7.4 we will adjust this to simulate the effects of a violation of these assumptions.
- Finally, we generate the dependent variable y according to the population regression function specified in Assumption SLR.1.
In an empirical project, we only observe x and y and not the realizations of the error term u. In the simulation, we "forget" them and the fact that we know the population parameters and estimate them from our sample using OLS. As motivated in Section 1.9, this will help us to study the behavior of the estimator in a sample like ours.
For our particular sample, the OLS parameter estimates are $\hat{\beta}_{0}=1.09411$ and $\hat{\beta}_{1}=0.49072$. The result of the graph generated in the last lines of Script 2.14 (SLR-Sim-Sample.jl) is shown in Figure 2.4. It shows the population regression function with intercept $\beta_{0}=1$ and slope $\beta_{1}=0.5$. It also shows the scatter plot of the sample drawn from this population. This sample led to our OLS regression line with intercept $\hat{\beta}_{0}=1.09411$ and slope $\hat{\beta}_{1}=0.49072$ shown in gray.
Since the SLR assumptions hold in our exercise, Theorems 2.1 and 2.2 of Wooldridge (2019) should apply. Theorem 2.1 implies for our model that the estimators are unbiased, i.e.

$$
\mathrm{E}\left(\hat{\beta}_{0}\right)=\beta_{0}=1 \quad \mathrm{E}\left(\hat{\beta}_{1}\right)=\beta_{1}=0.5
$$

The estimates obtained from our sample are relatively close to their population values. Obviously, we can never expect to hit the population parameter exactly. If we change the random seed by specifying a different number in Script 2.14 (SLR-Sim-Sample.jl), we get a different sample and different parameter estimates.
Theorem 2.2 of Wooldridge (2019) states the sampling variance of the estimators conditional on the sample values $\left\{x_{1}, \ldots, x_{n}\right\}$. It involves the average squared value $\overline{x^{2}}=16.856$ and the sum of squares $\sum_{i-1}^{n}(x-\bar{x})^{2}=1069.5$ which we also know from the Julia output:

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\beta}_{0}\right)=\frac{\sigma^{2} \overline{x^{2}}}{\sum_{i=1}^{n}(x-\bar{x})^{2}}=\frac{4 \cdot 16.856}{1069.5}=0.063 \\
& \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum_{i=1}^{n}(x-\bar{x})^{2}}=\frac{4}{1069.5}=0.0037
\end{aligned}
$$

Figure 2.4. Simulated Sample and OLS Regression Line

If Wooldridge (2019) is right, the standard error of $\hat{\beta}_{1}$ is $\sqrt{0.0037}=0.0608$. So getting an estimate of $\hat{\beta}_{1}=0.49$ for one sample doesn't seem unreasonable given $\beta_{1}=0.5$.

2.7.2. Many Samples

Since the expected values and variances of our estimators are defined over separate random samples from the same population, it makes sense for us to repeat our simulation exercise over many simulated samples. Just as motivated in Section 1.9, the distribution of OLS parameter estimates across these samples will correspond to the sampling distribution of the estimators.

Script 2.16 (SLR-Sim-Model-Condx.jl) implements this with the same for loop we introduced in Section 1.8.2 and already used for basic Monte Carlo simulations in Section 1.9.1. We analyze $r=10,000$ samples.

Note that we use the same values for x in all samples since we draw them outside of the loop. We do this to simulate the exact setup of Theorem 2.2 which reports the sampling variances conditional on x. In a more realistic setup, we would sample x along with y. The conceptual difference is subtle and the results hardly differ in reasonably large samples. We will come back to these issues in Chapter $5 .{ }^{2}$ For each sample, we estimate our parameters and store them in the respective position $i=1, \ldots, r$ of the arrays b0 and b1.

Script 2.16: SLR-Sim-Model-Condx.jl

```
using Random, GLM, DataFrames, Distributions, Statistics, Plots
```

\# set the random seed:
Random. seed! (12345)
\# set sample size and number of simulations:
$\mathrm{n}=1000$
$r=10000$
\# set true parameters (betas and sd of u):
beta0 $=1$

[^30]```
beta1 = 0.5
su = 2
initialize b0 and b1 to store results later:
b0 = zeros(r)
b1 = zeros(r)
draw a sample of x, fixed over replications:
x = rand(Normal (4, 1), n)
repeat r times:
for i in 1:r
 # draw a sample of y:
 u = rand(Normal (0, su), n)
 y = beta0 .+ beta1 .* x .+ u
 df = DataFrame(y=y, x=x)
 # estimate and store parameters by OLS:
 reg = lm(@formula(y ~ x), df)
 b0[i] = coef(reg) [1]
 b1[i] = coef(reg)[2]
end
MC estimate of the expected values:
b0_mean = mean (b0)
b1_mean = mean (b1)
println("b0_mean = $b0_mean\n")
println("b1_mean = $b1_mean\n")
MC estimate of the variances:
b0_var = var(b0)
b1_var = var(b1)
println("b0_var = $b0_var\n")
println("b1_var = $b1_var")
graph:
x_range = range(0, 8, length=100)
add population regression line:
plot(x_range, beta0 .+ beta1 .* x_range, ylim=[0, 6],
 color="black", linewidth=2, label="Population")
add first OLS regression line (to attach a label):
plot!(x_range, b0[1] .+ b1[1] .* x_range,
 color="grey", linewidth=0.5, label="OLS regressions")
add OLS regression lines no. 2 to 10:
for i in 2:10
 plot!(x_range, b0[i] .+ b1[i] .* x_range,
 color="grey", linewidth=0.5, label=false)
end
ylabel!("y")
xlabel!("x")
savefig("JlGraphs/SLR-Sim-Model-Condx.pdf")
```

Output of Script 2.16: SLR-Sim-Model-Condx.jl

```
b0_mean = 1.0014083956786675
b1_mean = 0.49971507018893335
b0_var = 0.06407053033863686
b1_var = 0.0037976368475450464
```

Script 2.16 (SLR-Sim-Model-Condx.jl) gives descriptive statistics of the $r=10,000$ estimates we got from our simulation exercise. Wooldridge (2019, Theorem 2.1) claims that the OLS estimators are unbiased, so we should expect to get estimates which are very close to the respective population parameters. This is clearly confirmed. The average value of $\hat{\beta}_{0}$ is very close to $\beta_{0}=1$ and the average value of $\hat{\beta}_{1}$ is very close to $\beta_{1}=0.5$.

The simulated sampling variances are $\widetilde{\operatorname{Var}}\left(\hat{\beta}_{0}\right)=0.064$ and $\widetilde{\operatorname{Var}}\left(\hat{\beta}_{1}\right)=0.0038$. Also these values are very close to the ones we expected from Theorem 2.2. The last lines of the code produce Figure 2.5. It shows the OLS regression lines for the first 10 simulated samples together with the population regression function.

### 2.7.3. Violation of SLR. 4

We will come back to a more systematic discussion of the consequences of violating the SLR assumptions below. At this point, we can already simulate the effects. In order to implement a violation of SLR. 4 (zero conditional mean), consider a case where in the population $u$ is not mean independent of $x$. A simple example is

$$
\mathrm{E}(u \mid x)=\frac{x-4}{5}
$$

What happens to our OLS estimator? Script 2.17 (SLR-Sim-Model-ViolSLR4.jl)implements a simulation of this model and is listed in the appendix (p. 327).

Figure 2.5. Population and Simulated OLS Regression Lines


The only line of code we changed compared to Script 2.16 (SLR-Sim-Model-Condx.jl) is the sampling of $\mathbf{u}$ which now reads

```
u_mean = (x . - 4) ./ 5
u = rand.(Normal.(u_mean, su), 1)
```

The simulation results are presented in the output of Script 2.17 (SLR-Sim-Model-ViolSLR4.jl). Obviously, the OLS coefficients are now biased: The average estimates are far from the population parameters $\beta_{0}=1$ and $\beta_{1}=0.5$. This confirms that Assumption SLR. 4 is required to hold for the unbiasedness shown in Theorem 2.1.

Output of Script 2.17: SLR-Sim-Model-ViolSLR4.jl
b0_mean $=0.2014083956786684$
b1_mean $=0.6997150701889331$
b0_var $=0.0640705303386369$
b1_var $=0.0037976368475450494$

### 2.7.4. Violation of SLR. 5

Theorem 2.1 (unbiasedness) does not require Assumption SLR. 5 (homoscedasticity), but Theorem 2.2 (sampling variance) does. As an example for a violation consider the population specification

$$
\operatorname{Var}(u \mid x)=\frac{4}{e^{4.5}} \cdot e^{x},
$$

so SLR. 5 is clearly violated since the variance depends on $x$. We assume exogeneity, so assumption SLR. 4 holds. The factor in front ensures that the unconditional variance $\operatorname{Var}(u)=4 .{ }^{3}$ Based on this unconditional variance only, the sampling variance should not change compared to the results above and we would still expect $\operatorname{Var}\left(\hat{\beta}_{0}\right)=0.063$ and $\operatorname{Var}\left(\hat{\beta}_{1}\right)=0.0037$. But since Assumption SLR. 5 is violated, Theorem 2.2 is not applicable.

Script 2.18 (SLR-Sim-Model-ViolSLR5.jl) implements a simulation of this model and is listed in the appendix (p. 328). Here, we only had to change the line of code for the sampling of $u$ to

```
u_var = 4 / exp(4.5) .* exp. (x)
u = rand.(Normal.(0, sqrt.(u_var)), 1)
```

The output of Script 2.18 (SLR-Sim-Model-ViolSLR5.jl) demonstrates two effects: The unbiasedness provided by Theorem 2.1 is unaffected, but the formula for sampling variance provided by Theorem 2.2 is incorrect.

Output of Script 2.18: SLR-Sim-Model-ViolSLR5.jl
b0_mean $=1.000195953976725$
b1_mean $=0.49992437529387573$
b0_var $=0.10866572428292555$
b1_var $=0.008591646835322982$

[^31]
## 3. Multiple Regression Analysis: Estimation

Running a multiple regression in Julia is as straightforward as running a simple regression using the lm command in GLM. Section 3.1 shows how it is done. Section 3.2 opens the black box and replicates the main calculations using matrix algebra. This is not required for the remaining chapters, so it can be skipped by readers who prefer to keep black boxes closed.

Section 3.3 should not be skipped since it discusses the interpretation of regression results and the prevalent omitted variables problems. Finally, Section 3.4 covers standard errors and multicollinearity for multiple regression.

### 3.1. Multiple Regression in Practice

Consider the population regression model

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\cdots+\beta_{k} x_{k}+u \tag{3.1}
\end{equation*}
$$

and suppose the data set sample contains variables $\mathbf{y}, \mathbf{x 1}, \mathbf{x 2}, \mathbf{x 3}$, with the respective data of our sample. We estimate the model parameters by OLS using the commands

```
reg = lm(@formula(y ~ x1 + x2 + x3), sample)
```

The tilde " $\sim$ " again separates the dependent variable from the regressors which are now separated using a " + " sign. We can add options as before. The constant is again automatically added unless it is explicitly suppressed using ' $\mathbf{y} \sim 0+\mathbf{x} 1+\mathbf{x} 2+\mathbf{x} 3+\ldots$. .

We are already familiar with the workings of 1 m , so the estimation results are stored in a variable reg. We can use this variable for further analyses. For a typical regression output including a coefficient table, call coeftable (reg). Further analyses involving residuals, fitted values and the like can be used exactly as presented in Chapter 2.

The output of coeftable includes parameter estimates, standard errors according to Theorem 3.2 of Wooldridge (2019), and many more useful results we cannot interpret yet before we have worked through Chapter 4.

## Wooldridge, Example 3.1: Determinants of College GPA

This example from Wooldridge (2019) relates the college GPA (colGPA) to the high school GPA (hsGPA) and achievement test score (ACT) for a sample of 141 students. The commands and results can be found in Script 3.1 (Example-3-1.jl). The OLS regression function is

$$
\widehat{\mathrm{COLGPA}}=1.286+0.453 \cdot \mathrm{hsGPA}+0.0094 \cdot \mathrm{ACT} .
$$

```
Script 3.1: Example-3-1.jl
```

```
using WooldridgeDatasets, GLM, DataFrames
```

using WooldridgeDatasets, GLM, DataFrames
gpa1 = DataFrame(wooldridge("gpa1"))
gpa1 = DataFrame(wooldridge("gpa1"))
reg = lm(@formula(colGPA ~ hsGPA + ACT), gpa1)
reg = lm(@formula(colGPA ~ hsGPA + ACT), gpa1)
table_reg = coeftable(reg)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
println("table_reg: \n$table_reg\n")
r2_automatic = r2(reg)
r2_automatic = r2(reg)
println("r2_automatic = \$r2_automatic")

```
println("r2_automatic = $r2_automatic")
```

```
Output of Script 3.1: Example-3-1.jl
table_reg:
\begin{tabular}{lllrrrl}
& \multicolumn{1}{c}{ Coef. } & Std. Error & \(t\) & \(\operatorname{Pr}(>|t|)\) & Lower 95\% & Upper 95\% \\
(Intercept) & 1.28633 & 0.340822 & 3.77 & 0.0002 & 0.612419 & 1.96024 \\
hsGPA & 0.453456 & 0.0958129 & 4.73 & \(<1 e-05\) & 0.264005 & 0.642907 \\
ACT & 0.00942601 & 0.0107772 & 0.87 & 0.3833 & -0.0118838 & 0.0307358
\end{tabular}
r2 automatic = 0.17642159703480598
```


## Wooldridge, Example 3.4: Determinants of College GPA

For the regression run in Example 3.1, the output of Script 3.1 (Example-3-1.jl) reports $R^{2}=0.176$, so about $17.6 \%$ of the variance in college GPA is explained by the two regressors.

## Examples 3.2, 3.3, 3.5, 3.6: Further Multiple Regression Examples

In order to get a feeling of the methods and results, we present the analyses including the full regression tables of the mentioned Examples from Wooldridge (2019) in Scripts 3.2 (Example-3-2.j1) through 3.6 (Example-3-6. j1). See Wooldridge (2019) for descriptions of the data sets and variables and for comments on the results.

Script 3.2: Example-3-2.jl
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame(wooldridge("wage1"))

table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 3.2: Example-3-2.jl
table_reg:

|  | Coef. | Std. Error | $t$ | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :--- | :--- | :--- | ---: | ---: | ---: | :--- |
|  |  |  |  |  |  |  |
| (Intercept) | 0.28436 | 0.10419 | 2.73 | 0.0066 | 0.0796756 | 0.489044 |
| educ | 0.092029 | 0.00732992 | 12.56 | $<1 e-31$ | 0.0776292 | 0.106429 |
| exper | 0.00412111 | 0.00172328 | 2.39 | 0.0171 | 0.000735698 | 0.00750652 |
| tenure | 0.0220672 | 0.00309365 | 7.13 | $<1 e-11$ | 0.0159897 | 0.0281447 |

Script 3.3: Example-3-3.jl
using WooldridgeDatasets, DataFrames, GLM
k401k = DataFrame(wooldridge("401k"))
reg $=\operatorname{lm}(@$ formula (prate $\sim$ mrate + age), $k 401 k)$
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 3.3: Example-3-3.jl
table_reg:
Coef. Std. Error $t \operatorname{Pr}(>|t|)$ Lower 95\% Upper 95\%

| (Intercept) | 80.119 | 0.779021 | 102.85 | $<1 \mathrm{e}-99$ | 78.591 | 81.6471 |
| :--- | :--- | :--- | ---: | ---: | ---: | :---: |
| mrate | 5.52129 | 0.525884 | 10.50 | $<1 \mathrm{e}-24$ | 4.48976 | 6.55282 |
| age | 0.243147 | 0.0446999 | 5.44 | $<1 \mathrm{e}-07$ | 0.155467 | 0.330826 |

Script 3.4: Example-3-5a.jl

```
using WooldridgeDatasets, DataFrames, GLM
crime1 = DataFrame(wooldridge("crime1"))
model without avgsen:
reg = lm(@formula(narr86 ~ ponv + ptime86 + qemp86), crime1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Output of Script 3.4: Example-3-5a.jl
table_reg:

|  | Coef. | Std. Error | t | Pr $(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| (Intercept) | 0.711772 | 0.0330066 | 21.56 | $<1 e-94$ | 0.647051 | 0.776492 |
| pcnv | -0.149927 | 0.0408653 | -3.67 | 0.0002 | -0.230058 | -0.0697973 |
| ptime86 | -0.0344199 | 0.008591 | -4.01 | $<1 e-04$ | -0.0512655 | -0.0175744 |
| qemp86 | -0.104113 | 0.0103877 | -10.02 | $<1 e-22$ | -0.124482 | -0.0837445 |

Script 3.5: Example-3-5b.jl
using WooldridgeDatasets, DataFrames, GLM
crime1 = DataFrame (wooldridge("crime1"))
\# model with avgsen:
reg $=$ lm(@formula (narr86 ~ pcnv + avgsen + ptime86 + qemp86), crime1) table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 3.5: Example-3-5b.jl

```
table_reg:
```

Coef. Std. Error $t \operatorname{Pr}(>|t|)$ Lower 95\% Upper 95\%

| (Intercept) | 0.706756 | 0.0331515 | 21.32 | $<1 e-92$ | 0.641752 | 0.771761 |
| :--- | :---: | :--- | ---: | ---: | ---: | ---: |
| pcnv | -0.150832 | 0.0408583 | -3.69 | 0.0002 | -0.230948 | -0.0707154 |
| avgsen | 0.00744312 | 0.00473384 | 1.57 | 0.1160 | -0.00183918 | 0.0167254 |
| ptime86 | -0.0373908 | 0.00879407 | -4.25 | $<1 e-04$ | -0.0546345 | -0.0201471 |
| qemp86 | -0.103341 | 0.0103965 | -9.94 | $<1 e-22$ | -0.123727 | -0.0829552 |

Script 3.6: Example-3-6.jl
using WooldridgeDatasets, DataFrames, GLM
wage1 = DataFrame (wooldridge("wage1"))
reg $=\operatorname{lm}(@ f o r m u l a(\log ($ wage $) \sim$ educ), wage1)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 3.6: Example-3-6. jl

```
table_reg:
```

Coef. Std. Error $\quad$ Pr $(>|t|)$ Lower 95\% Upper 95\%

| (Intercept) 0.583773 | 0.0973358 | 6.00 | $<1 e-08$ | 0.392556 | 0.774989 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| educ | 0.0827444 | 0.00756669 | 10.94 | $<1 e-24$ | 0.0678796 | 0.0976091 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

### 3.2. OLS in Matrix Form

For applying regression methods to empirical problems, we do not actually need to know the formulas our software uses. In multiple regression, we need to resort to matrix algebra in order to find an explicit expression for the OLS parameter estimates. Wooldridge (2019) defers this discussion to Appendix E and we follow the notation used there. Going through this material is not required for applying multiple regression to real-world problems but is useful for a deeper understanding of the methods and their black box implementations in software packages. In the following chapters, we will rely on the comfort of the canned routine $\mathbf{l m}$, so this section may be skipped.

In matrix form, we store the regressors in a $n \times(k+1)$ matrix $\mathbf{X}$ which has a column for each regressor plus a column of ones for the constant. The sample values of the dependent variable are stored in a $n \times 1$ column vector $\mathbf{y}$. Wooldridge (2019) derives the OLS estimator $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}\right)^{\prime}$ to be

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \tag{3.2}
\end{equation*}
$$

This equation involves three matrix operations which we know how to implement in Julia from Section 1.2.3:

- Transpose: The expression $\mathbf{X}^{\prime}$ is transpose (X)
- Matrix multiplication: The expression $\mathbf{X}^{\prime} \mathbf{X}$ is translated as transpose (X) * $\mathbf{X}$
- Inverse: $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ is written as inv (transpose ( $\mathbf{X}$ ) * X)

So we can collect everything and translate Equation 3.2 into the somewhat unsightly expression

```
b = inv(transpose(X) * X) * transpose(X) * y
```

The vector of residuals can be manually calculated as

$$
\begin{equation*}
\hat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \hat{\beta} \tag{3.3}
\end{equation*}
$$

or translated into

```
u_hat = y - x * b
```

The formula for the estimated variance of the error term is

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{1}{n-k-1} \hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}} \tag{3.4}
\end{equation*}
$$

which is equivalent to

```
sigsq_hat = (transpose(u_hat) * u_hat) / (n - k - 1)
```

The standard error of the regression (SER) is its square root $\hat{\sigma}=\sqrt{\hat{\sigma}^{2}}$. The estimated OLS variancecovariance matrix according to Wooldridge (2019, Theorem E.2) is then

$$
\begin{equation*}
\widehat{\operatorname{Var}(\hat{\boldsymbol{\beta}}})=\hat{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tag{3.5}
\end{equation*}
$$

Vbeta_hat $=$ sigsq_hat . * inv(transpose (X) * X)

Finally, the standard errors of the parameter estimates are the square roots of the main diagonal of $\operatorname{Var}(\hat{\boldsymbol{\beta}})$ which can be expressed in Julia as

```
se = sqrt.(diag(Vbeta_hat))
```

Script 3.7 (OLS-Matrices.jl) implements this for the GPA regression from Example 3.1. Comparing the results to the built-in function (see Script 3.1 (Example-3-1.jl)), it is reassuring that we get exactly the same numbers for the parameter estimates and standard errors of the coefficients.

Script 3.7: OLS-Matrices.jl
using WooldridgeDatasets, DataFrames, LinearAlgebra
gpa1 = DataFrame (wooldridge ("gpa1"))
\# determine sample size \& no. of regressors:
$\mathrm{n}=$ size (gpa1) [1]
$k=2$
\# extract $y$ :
$y=$ gpal.colGPA
\# extract $X$ and add a column of ones:
$\mathrm{X}=$ hcat (ones ( n ) , gpa1.hsGPA, gpa1.ACT)
\# display first rows of X :
x_preview $=$ round. $(X[1: 3,:]$, digits=5)
println("X_preview $=$ \$X_preview\n")
\# parameter estimates:
b $=$ inv (transpose (X) * X) * transpose (X) * $Y$
println("b = \$b\n")
\# residuals, estimated variance of $u$ and SER:
$u \_$hat $=y-X * b$
sigsq_hat $=$ (transpose (u_hat) * u_hat) / (n - k - 1)
SER = sqrt (sigsq_hat)
println("SER = \$SER\n")
\# estimated variance of the parameter estimators and SE:
Vbeta_hat $=$ sigsq_hat .* inv(transpose (X) * X)
se $=$ sqrt. (diag (Vbeta_hat))
println("se = \$se")

Output of Script 3.7: OLS-Matrices. jl

```
X_preview = [1.0 3.0 21.0; 1.0 3.2 24.0; 1.0 3.6 26.0]
b = [1.286327766521133, 0.4534558853481646, 0.009426012260470441]
SER = 0.3403157569643908
se = [0.34082211993697037, 0.09581291608058075, 0.010777187759672879]
```

Script 3.8 (OLS-Matrices-Formula.jl) and Script 3.9 (getMats.jl) also demonstrates another way of generating $\mathbf{y}$ and $\mathbf{X}$ by using the formula syntax to conveniently create all matrices. This is a very useful technique especially in later chapters when using functions that do not support formula syntax.

In Script 3.8 (ols-Matrices-Formula.jl) a formula $\mathbf{f}$ is defined, just as you know it from the lm command. Note that we do not make use of the GLM package here, so we have to load the package that provides formula syntax explicitly by

```
using StatsModels
```

It is also worth mentioning that outside from GLM, we have to include the constant explicitly by adding 1 to the formula. Next, we supply this formula and the data to the function getMats, which is defined in Script 3.9 (getMats.jl) and needs to be loaded with include in Script 3.8 (OLS-Matrices-Formula.jl). We use the recommended procedure from the package documentation and will not go into details here. ${ }^{1}$ Basically, we apply the formula to the data and extract explanatory and explained variables. We get exactly the same results as in previous examples.

Script 3.8: OLS-Matrices-Formula.jl
using WooldridgeDatasets, DataFrames, StatsModels, LinearAlgebra include("getMats.jl")
gpa1 = DataFrame(wooldridge("gpa1"))
\# build $y$ and $x$ from a formula:
$\mathrm{f}=$ @formula (colGPA ~ 1 + hsGPA + ACT)
$\mathrm{xy}=$ getMats(f, gpa1)
$y=x y[1]$
$x=x y[2]$
\# parameter estimates:
b = inv (transpose (X) * X) * transpose (X) * y
println("b = \$b")

Output of Script 3.8: OLS-Matrices-Formula.jl
$b=[1.286327766521133,0.4534558853481646,0.009426012260470441]$

Script 3.9: getMats.jl
\# for details, see https://juliastats.org/StatsModels.jl/stable/internals/ using StatsModels
function getMats (formula, df)
f = apply_schema(formula, schema(formula, df))
resp, pred = modelcols (f, df)
return (resp, pred)
end

[^32]
### 3.3. Ceteris Paribus Interpretation and Omitted Variable Bias

The parameters in a multiple regression can be interpreted as partial effects. In a general model with $k$ regressors, the estimated slope parameter $\beta_{j}$ associated with variable $x_{j}$ is the change of $\hat{y}$ as $x_{j}$ increases by one unit and the other variables are held fixed.

Wooldridge (2019) discusses this interpretation in Section 3.2 and offers a useful formula for interpreting the difference between simple regression results and this ceteris paribus interpretation of multiple regression: Consider a regression with two explanatory variables:

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2} . \tag{3.6}
\end{equation*}
$$

The parameter $\hat{\beta}_{1}$ is the estimated effect of increasing $x_{1}$ by one unit while keeping $x_{2}$ fixed. In contrast, consider the simple regression including only $x_{1}$ as a regressor:

$$
\begin{equation*}
\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1} . \tag{3.7}
\end{equation*}
$$

The parameter $\tilde{\beta}_{1}$ is the estimated effect of increasing $x_{1}$ by one unit (and NOT keeping $x_{2}$ fixed). It can be related to $\hat{\beta}_{1}$ using the formula

$$
\begin{equation*}
\tilde{\beta}_{1}=\hat{\beta}_{1}+\hat{\beta}_{2} \tilde{\delta}_{1} \tag{3.8}
\end{equation*}
$$

where $\tilde{\delta}_{1}$ is the slope parameter of the linear regression of $x_{2}$ on $x_{1}$

$$
\begin{equation*}
x_{2}=\tilde{\delta}_{0}+\tilde{\delta}_{1} x_{1} \tag{3.9}
\end{equation*}
$$

This equation is actually quite intuitive: As $x_{1}$ increases by one unit,

- Predicted $y$ directly increases by $\hat{\beta}_{1}$ units (ceteris paribus effect, Equ. 3.6).
- Predicted $x_{2}$ increases by $\tilde{\delta}_{1}$ units (see Equ. 3.9).
- Each of these $\tilde{\delta}_{1}$ units leads to an increase of predicted $y$ by $\hat{\beta}_{2}$ units, giving a total indirect effect of $\tilde{\delta}_{1} \hat{\beta}_{2}$ (see again Equ. 3.8)
- The overall effect $\tilde{\beta}_{1}$ is the sum of the direct and indirect effects (see Equ. 3.8).

We revisit Example 3.1 to see whether we can demonstrate Equation 3.8 in Julia. Script 3.10 (Omitted-Vars.jl) repeats the regression of the college GPA (colGPA) on the achievement test score (ACT) and the high school GPA (hsGPA). We study the ceteris paribus effect of ACT on colGPA which has an estimated value of $\hat{\beta}_{1}=0.0094$. The estimated effect of hsGPA is $\hat{\beta}_{2}=0.453$. The slope parameter of the regression corresponding to Equation 3.9 is $\tilde{\delta}_{1}=0.0389$. Plugging these values into Equation 3.8 gives a total effect of $\tilde{\beta}_{1}=0.0271$ which is exactly what the simple regression at the end of the output delivers.

In this example, the indirect effect is actually stronger than the direct effect. ACT predicts colGPA mainly because it is related to hsGPA which in turn is strongly related to colGPA.

These relations hold for the estimates from a given sample. In Section 3.3, Wooldridge (2019) discusses how to apply the same sort of arguments to the OLS estimators which are random variables varying over different samples. Omitting relevant regressors causes bias if we are interested in estimating partial effects. In practice, it is difficult to include all relevant regressors making of omitted variables a prevalent problem. It is important enough to have motivated a vast amount of methodological and applied research. More advanced techniques like instrumental variables or panel data methods try to solve the problem in cases where we cannot add all relevant regressors, for example because they are unobservable. We will come back to this in Part 3.

```
using WooldridgeDatasets, DataFrames, GLM
```

gpa1 = DataFrame (wooldridge("gpa1"))
\# parameter estimates for full and simple model:
reg $=\operatorname{lm}(@ f o r m u l a(c o l G P A \sim A C T+h s G P A), ~ g p a 1)$
$\mathrm{b}=\operatorname{coef}(\mathrm{reg})$
println("b = \$b\n")
\# relation between regressors:
reg_delta $=\operatorname{lm}(@ f o r m u l a(h s G P A \sim A C T), ~ g p a 1)$
delta_tilde $=$ coef(reg_delta)
println("delta_tilde = \$delta_tilde\n")
\# omitted variables formula for b1_tilde:
b 1 _tilde $=\mathrm{b}[2]+\mathrm{b}[3]$ * delta_tilde[2]
println("b1_tilde = \$b1_tilde\n")
\# actual regression with hsGPA omitted:
reg_om = lm(@formula(colGPA ~ ACT), gpa1)
b_om = coef (reg_om)
println("b_om = \$b_om")

Output of Script 3.10: Omitted-Vars.jl

```
b = [1.2863277665211537, 0.009426012260472088, 0.4534558853481625]
delta_tilde = [2.4625365832309214, 0.03889675325123465]
b1_tilde = 0.027063973943179713
b_om = [2.4029794730723775, 0.027063973943179418]
```


### 3.4. Standard Errors, Multicollinearity, and VIF

We have already seen the matrix formula for the conditional variance-covariance matrix under the usual assumptions including homoscedasticity (MLR.5) in Equation 3.5. Theorem 3.2 provides another useful formula for the variance of a single parameter $\beta_{j}$, i.e. for a single element on the main diagonal of the variance-covariance matrix:

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{j}\left(1-R_{j}^{2}\right)}=\frac{1}{n} \cdot \frac{\sigma^{2}}{\operatorname{Var}\left(x_{j}\right)} \cdot \frac{1}{1-R_{j}^{2}}, \tag{3.10}
\end{equation*}
$$

where $\operatorname{SST}_{j}=\sum_{i=1}^{n}\left(x_{j i}-\bar{x}_{j}\right)^{2}=(n-1) \cdot \operatorname{Var}\left(x_{j}\right)$ is the total sum of squares and $R_{j}^{2}$ is the usual coefficient of determination from a regression of $x_{j}$ on all of the other regressors. ${ }^{2}$

[^33]The variance of $\hat{\beta}_{j}$ consists of four parts:

- $\frac{1}{n}$ : The variance is smaller for larger samples.
- $\sigma^{2}$ : The variance is larger if the error term varies a lot, since it introduces randomness into the relationship between the variables of interest.
- $\frac{1}{\operatorname{Var}\left(x_{j}\right)}$ : The variance is smaller if the regressor $x_{j}$ varies a lot since this provides relevant information about the relationship.
- $\frac{1}{1-R_{j}^{2}}$ : This variance inflation factor (VIF) accounts for (imperfect) multicollinearity. If $x_{j}$ is highly related to the other regressors, $R_{j}^{2}$ and therefore also $V I F_{j}$ and the variance of $\hat{\beta}_{j}$ are large.
Since the error variance $\sigma^{2}$ is unknown, we replace it with an estimate to come up with an estimated variance of the parameter estimate. Its square root is the standard error

$$
\begin{equation*}
\operatorname{se}\left(\hat{\beta}_{j}\right)=\frac{1}{\sqrt{n}} \cdot \frac{\hat{\sigma}}{\operatorname{sd}\left(x_{j}\right)} \cdot \frac{1}{\sqrt{1-R_{j}^{2}}} . \tag{3.1}
\end{equation*}
$$

It is not directly obvious that this formula leads to the same results as the matrix formula in Equation 3.5. We will validate this formula by replicating Example 3.1 which we also used for manually calculating the SE using the matrix formula above. The calculations are shown in Script 3.11 (MLR-SE.jl).

Script 3.11: MLR-SE.jl
using WooldridgeDatasets, DataFrames, GLM, Statistics
gpa1 = DataFrame (wooldridge ("gpa1"))
\# full estimation results including automatic SE:
reg $=\operatorname{lm}(@ f o r m u l a(c o l G P A \sim h s G P A+A C T), ~ g p a 1)$
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg\n")
\# calculation of SER via residuals:
$\mathrm{n}=$ nobs (reg)
$\mathrm{k}=$ length (coef(reg))
SER = sqrt (sum (residuals (reg) .^ 2) / (n - k))
\# regressing hsGPA on ACT for calculation of R2 \& VIF:
reg_hsGPA $=\operatorname{lm}(@ f o r m u l a(h s G P A \sim A C T), ~ g p a 1)$
R2_hsGPA = r2 (reg_hsGPA)
VIF_hsGPA $=1 /(1-$ R2_hsGPA)
println("VIF_hsGPA = \$VIF_hsGPA\n")
\# manual calculation of SE of hsGPA coefficient:
sdx $=$ std (gpa1.hsGPA) * sqrt( $(\mathrm{n}-1) / \mathrm{n})$
SE_hsGPA = 1 / sqrt(n) * SER / sdx * sqrt(VIF_hsGPA)
println("SE_hsGPA = \$SE_hsGPA")

Output of Script 3.11: MLR-SE.j1

```
table_reg:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Coef. & Std. Error & t & \(\operatorname{Pr}(>|t|)\) & Lower 95\% & Upper 95\% \\
\hline (Intercept) & 1.28633 & 0.340822 & 3.77 & 0.0002 & 0.612419 & 1.96024 \\
\hline hsGPA & 0.453456 & 0.0958129 & 4.73 & <1e-05 & 0.264005 & 0.642907 \\
\hline ACT & 0.00942601 & 0.0107772 & 0.87 & 0.3833 & -0.0118838 & 0.0307358 \\
\hline
\end{tabular}
VIF_hsGPA = 1.1358234481972784
SE_hsGPA = 0.09581291608057595
```

In Script 3.11 (MLR-SE.j1), we extract the SER of the main regression and the $R_{j}^{2}$ from the regression of hsGPA on ACT which is needed for calculating the VIF for the coefficient of hsGPA. ${ }^{3}$ VIF_hsGPA $=1.1358$ means that the variance of the regression coefficient of hsGPA is higher by a factor of (only) 1.1358 than in a world in which it were uncorrelated with the other regressor. The other ingredients of Equation 3.11 are straightforward. The standard error calculated this way is exactly the same as the one of the built-in command and the matrix formula used in Script 3.7 (OLS-Matrices.jl).

[^34]
## 4. Multiple Regression Analysis: Inference

Section 4.1 of Wooldridge (2019) adds assumption MLR. 6 (normal distribution of the error term) to the previous assumptions MLR. 1 through MLR.5. Together, these assumptions constitute the classical linear model (CLM).

The main additional result we get from this assumption is stated in Theorem 4.1: The OLS parameter estimators are normally distributed (conditional on the regressors $x_{1}, \ldots, x_{k}$ ). The benefit of this result is that it allows us to do statistical inference similar to the approaches discussed in Section 1.7 for the simple estimator of the mean of a normally distributed random variable.

### 4.1. The $t$ Test

After the sign and magnitude of the estimated parameters, empirical research typically pays most attention to the results of $t$ tests discussed in this section.

### 4.1.1. General Setup

An important type of hypotheses we are often interested in is of the form

$$
\begin{equation*}
H_{0}: \beta_{j}=a_{j}, \tag{4.1}
\end{equation*}
$$

where $a_{j}$ is some given number, very often $a_{j}=0$. For the most common case of two-tailed tests, the alternative hypothesis is

$$
\begin{equation*}
H_{1}: \beta_{j} \neq a_{j}, \tag{4.2}
\end{equation*}
$$

and for one-tailed tests it is either one of

$$
\begin{equation*}
H_{1}: \beta_{j}<a_{j} \quad \text { or } \quad H_{1}: \beta_{j}>a_{j} . \tag{4.3}
\end{equation*}
$$

These hypotheses can be conveniently tested using a $t$ test which is based on the test statistic

$$
\begin{equation*}
t=\frac{\hat{\beta}_{j}-a_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} . \tag{4.4}
\end{equation*}
$$

If $H_{0}$ is in fact true and the CLM assumptions hold, then this statistic has a $t$ distribution with $n-k-1$ degrees of freedom.

### 4.1.2. Standard Case

Very often, we want to test whether there is any relation at all between the dependent variable $y$ and a regressor $x_{j}$ and do not want to impose a sign on the partial effect a priori. This is a mission for the standard two-sided $t$ test with the hypothetical value $a_{j}=0$, so

$$
\begin{align*}
H_{0}: \beta_{j} & =0, \quad H_{1}: \beta_{j} \neq 0,  \tag{4.5}\\
t_{\hat{\beta}_{j}} & =\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} . \tag{4.6}
\end{align*}
$$

The subscript on the $t$ statistic indicates that this is "the" $t$ value for $\hat{\beta}_{j}$ for this frequent version of the test. Under $H_{0}$, it has the $t$ distribution with $n-k-1$ degrees of freedom implying that the probability that $\left|t_{\hat{\beta}_{j}}\right|>c$ is equal to $\alpha$ if $c$ is the $1-\frac{\alpha}{2}$ quantile of this distribution. If $\alpha$ is our significance level (e.g. $\alpha=5 \%$ ), then we

$$
\text { reject } H_{0} \text { if }\left|t_{\hat{\beta}_{j}}\right|>c
$$

in our sample. For the typical significance level $\alpha=5 \%$, the critical value $c$ will be around 2 for reasonably large degrees of freedom and approach the counterpart of 1.96 from the standard normal distribution in very large samples.
The $p$ value indicates the smallest value of the significance level $\alpha$ for which we would still reject $H_{0}$ using our sample. So it is the probability for a random variable $T$ with the respective $t$ distribution that $|T|>\left|t_{\hat{\beta}_{j}}\right|$ where $t_{\hat{\beta}_{j}}$ is the value of the $t$ statistic in our particular sample. In our two-tailed test, it can be calculated as

$$
\begin{equation*}
p_{\hat{\beta}_{j}}=2 \cdot F_{t_{n-k-1}}\left(-\left|t_{\hat{\beta}_{j}}\right|\right), \tag{4.7}
\end{equation*}
$$

where $F_{t_{n-k-1}}(\cdot)$ is the CDF of the $t$ distribution with $n-k-1$ degrees of freedom. If our software provides us with the relevant $p$ values, they are easy to use: We

$$
\text { reject } H_{0} \text { if } p_{\hat{\beta}_{j}} \leq \alpha .
$$

Since this standard case of a $t$ test is so common, GLM provides us with the relevant $t$ and $p$ values directly in the output of coeftable which we already saw in the previous chapter. The regression table includes for all regressors and the intercept:

- parameter estimates and standard errors, see Section 3.1.
- test statistics $t_{\hat{\beta}_{j}}$ from Equation 4.6 in the column $t$
- respective $p$ values $p_{\hat{\beta}_{j}}$ from Equation 4.7 in the column $\operatorname{Pr}(>|t|)$
- respective $95 \%$ confidence interval from Equation 4.8 in columns Lower 95\% and Upper 95\% (see Section 4.2)


## Wooldridge, Example 4.3: Determinants of College GPA

We have repeatedly used the data set GPA1 in Chapter 3. This example uses three regressors and estimates a regression model of the form

$$
\operatorname{colGPA}=\beta_{0}+\beta_{1} \cdot \text { hsGPA }+\beta_{2} \cdot \operatorname{ACT}+\beta_{3} \cdot \text { skipped }+u
$$

For the critical values of the $t$ tests, using the normal approximation instead of the exact $t$ distribution with $n-k-1=137$ d.f. doesn't make much of a difference:

Script 4.1: Example-4-3-cv.jl

```
using Distributions
CV for alpha=5% and 1% using the t distribution with 137 d.f.:
alpha = [0.05, 0.01]
cv_t = round.(quantile.(TDist(137), 1 .- alpha ./ 2), digits=5)
println("cv_t = $cv_t\n")
CV for alpha=5% and 1% using the normal approximation:
cv_n = round.(quantile.(Normal(), 1 .- alpha ./ 2), digits=5)
println("cv_n = $cv_n")
```

Output of Script 4.1: Example-4-3-cv.jl
cv_t $=$ [1.97743, 2.61219]
cv_n $=$ [1.95996, 2.57583]

Script 4.2 (Example-4-3.jl) presents the output of coeftable which directly contains all the information to test the hypotheses in Equation 4.5 for all parameters. The $t$ statistics for all coefficients except $\beta_{2}$ are larger in absolute value than the critical value $c=2.61$ (or $c=2.58$ using the normal approximation) for $\alpha=1 \%$. So we would reject $H_{0}$ for all usual significance levels. By construction, we draw the same conclusions from the $p$ values.
In order to confirm that GLM is exactly using the formulas of Wooldridge (2019), we next reconstruct the $t$ and $p$ values manually. We extract the coefficients (coef) and standard errors (stderror) from the regression results, and simply apply Equations 4.6 and 4.7.

Script 4.2: Example-4-3.jl

```
using WooldridgeDatasets, GLM, DataFrames, Distributions
gpa1 = DataFrame(wooldridge("gpa1"))
store and display results:
reg = lm(@formula(colGPA ~ hsGPA + ACT + skipped), gpa1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
manually confirm the formulas, i.e. extract coefficients and SE:
b = coef(reg)
se = stderror(reg)
reproduce t statistic:
tstat = round.(b ./ se, digits=5)
println("tstat = $tstat\n")
reproduce p value:
pval = round.(2 * cdf.(TDist(137), -abs.(tstat)), digits=5)
println("pval = $pval")
```

Output of Script 4.2: Example-4-3.jl
table_reg:

|  | Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 1.38955 | 0.331554 | 4.19 | $<1 \mathrm{e}-04$ | 0.73393 | 2.04518 |
| hsGPA | 0.411816 | 0.0936742 | 4.40 | <1e-04 | 0.226582 | 0.59705 |
| ACT | 0.0147202 | 0.0105649 | 1.39 | 0.1658 | -0.00617107 | 0.0356115 |
| skipped | -0.0831131 | 0.0259985 | -3.20 | 0.0017 | -0.134523 | -0.0317028 |

### 4.1.3. Other Hypotheses

For a one-tailed test, the critical value $c$ of the $t$ test and the $p$ values have to be adjusted appropriately. Wooldridge (2019) provides a general discussion in Section 4.2. For testing the null hypothesis $H_{0}: \beta_{j}=a_{j}$, the tests for the three common alternative hypotheses are summarized in Table 4.1:

Table 4.1. One- and Two-tailed $t$ Tests for $H_{0}: \beta_{j}=a_{j}$

| $H_{1}:$ | $\beta_{j} \neq a_{j}$ | $\beta_{j}>a_{j}$ | $\beta_{j}<a_{j}$ |
| :--- | :---: | :---: | :---: |
| $c=$ quantile | $1-\frac{\alpha}{2}$ | $1-\alpha$ | $1-\alpha$ |
| reject $H_{0}$ if | $\left\|t_{\hat{\beta}_{j}}\right\|>c$ | $t_{\hat{\beta}_{j}}>c$ | $t_{\hat{\beta}_{j}}<-c$ |
| $p$ value | $2 \cdot F_{t_{n-k-1}}\left(-\left\|t_{\hat{\beta}_{j}}\right\|\right)$ | $F_{t_{n-k-1}}\left(-t_{\hat{\beta}_{j}}\right)$ | $F_{t_{n-k-1}}\left(t_{\hat{\beta}_{j}}\right)$ |

Given the standard regression output like the one in Script 4.2 (Example-4-3.jl) including the $p$ value for two-sided tests $p_{\hat{\beta}_{j}}$, we can easily do one-sided $t$ tests for the null hypothesis $H_{0}: \beta_{j}=0$ in two steps:

- Is $\hat{\beta}_{j}$ positive (if $H_{1}: \beta_{j}>0$ ) or negative (if $H_{1}: \beta_{j}<0$ )?
- No $\rightarrow$ Do not reject $H_{0}$ since this cannot be evidence against $H_{0}$.
- Yes $\rightarrow$ The relevant $p$ value is half of the reported $p_{\hat{\beta}_{j}}$.
$\Rightarrow$ Reject $H_{0}$ if $p=\frac{1}{2} p_{\hat{\beta}_{j}}<\alpha$.


## Wooldridge, Example 4.1: Hourly Wage Equation

We have already estimated the wage equation

$$
\log (\text { wage })=\beta_{0}+\beta_{1} \cdot \text { educ }+\beta_{2} \cdot \text { exper }+\beta_{3} \cdot \text { tenure }+u
$$

in Example 3.2. Now we are ready to test $H_{0}: \beta_{2}=0$ against $H_{1}: \beta_{2}>0$. For the critical values of the $t$ tests, using the normal approximation instead of the exact $t$ distribution with $n-k-1=522$ d.f. doesn' $\dagger$ make any relevant difference:

Script 4.3: Example-4-1-cv.jl

```
using Distributions
CV for alpha=5% and 1% using the t distribution with 522 d.f.:
alpha = [0.05, 0.01]
cv_t = round.(quantile.(TDist(522), 1 .- alpha), digits=5)
println("Cv_t = $cv_t\n")
CV for alpha=5% and 1% using the normal approximation:
cv_n = round.(quantile.(Normal(), 1 .- alpha), digits=5)
println("cv_n = $cv_n")
```

Output of Script 4.3: Example-4-1-cv.jl
$c v_{\text {_ }} t=[1.64778,2.33351]$

Cv_n $=[1.64485,2.32635]$
Script 4.4 (Example $-4-1 . j 1$ ) shows the standard regression output. The reported $t$ statistic for the parameter of exper is $t_{\hat{\beta}_{2}}=2.39$ which is larger than the critical value $c=2.33$ for the significance level $\alpha=1 \%$, so we reject $H_{0}$. By construction, we get the same answer from looking at the $p$ value. Like always, the reported $p_{\hat{\beta}_{j}}$ value is for a two-sided test, so we have to divide it by 2 . The resulting value $p=\frac{0.0171}{2}=0.00855<0.01$, so we reject $H_{0}$ using an $\alpha=1 \%$ significance level.

Script 4.4: Example-4-1.jl
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame (wooldridge ("wage1"))
reg $=$ lm(@formula(log(wage) $\sim$ educ + exper + tenure), wage1)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 4.4: Example-4-1. jl
table_reg:

|  | Coef. | Std. Error | $t$ | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 0.28436 | 0.10419 | 2.73 | 0.0066 | 0.0796756 | 0.489044 |
| educ | 0.092029 | 0.00732992 | 12.56 | $<1 e-31$ | 0.0776292 | 0.106429 |
| exper | 0.00412111 | 0.00172328 | 2.39 | 0.0171 | 0.000735698 | 0.00750652 |
| tenure | 0.0220672 | 0.00309365 | 7.13 | $<1 e-11$ | 0.0159897 | 0.0281447 |

### 4.2. Confidence Intervals

We have already looked at confidence intervals (CI) for the mean of a normally distributed random variable in Sections 1.7 and 1.9.3. CI for the regression parameters are equally easy to construct and closely related to $t$ tests. Wooldridge (2019, Section 4.3) provides a succinct discussion. The $95 \%$ confidence interval for parameter $\beta_{j}$ is simply

$$
\begin{equation*}
\hat{\beta}_{j} \pm c \cdot \operatorname{se}\left(\hat{\beta}_{j}\right) \tag{4.8}
\end{equation*}
$$

where $c$ is the same critical value for the two-sided $t$ test using a significance level $\alpha=5 \%$. Wooldridge (2019) shows examples of how to manually construct these CI.
GLM provides the $95 \%$ confidence intervals for all parameters in the regression table. In Script 4.5 (Example-4-8.jl), we compute other significance levels.

## Wooldridge, Example 4.8: Model of R\&D Expenditures

We study the relationship between the R\&D expenditures of a firm, its size, and the profit margin for a sample of 32 firms in the chemical industry. The regression equation is

$$
\log (r d)=\beta_{0}+\beta_{1} \cdot \log (\text { sales })+\beta_{2} \cdot \operatorname{profmarg}+u
$$

Script 4.5 (Example $-4-8 . j 1$ ) presents the regression results as well as the $95 \%$ and $99 \% \mathrm{Cl}$.

Script 4.5: Example-4-8.jl

```
using WooldridgeDatasets, GLM, DataFrames, Distributions
rdchem = DataFrame(wooldridge("rdchem"))
OLS regression:
reg = lm(@formula(log(rd) ~ log(sales) + profmarg), rdchem)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
replicating 95% CI:
alpha = 0.05
CI95_upper = coef(reg) .+ stderror(reg) .* quantile(TDist(32 - 3), alpha / 2)
CI95_lower = coef(reg) .- stderror(reg) .* quantile(TDist(32 - 3), alpha / 2)
println("CI95_upper = $CI95_upper\n")
println("CI95_lower = $CI95_lower\n")
calculating 99% CI:
alpha = 0.01
CI99_upper = coef(reg) .+ stderror(reg) .* quantile(TDist (32 - 3), alpha / 2)
CI99_lower = coef(reg) .- stderror(reg) .* quantile(TDist(32 - 3), alpha / 2)
println("CI99_upper = $CI99_upper\n")
println("CI99_lower = $CI99_lower")
```

Output of Script 4.5: Example-4-8.jl

|  | Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | -4.37827 | 0.468018 | -9.35 | $<1 e-09$ | -5.33548 | -3.42107 |
| $\log ($ sales) | 1.08422 | 0.060195 | 18.01 | <1e-16 | 0.961107 | 1.20733 |
| profmarg | 0.0216557 | 0.0127826 | 1.69 | 0.1010 | -0.00448772 | 0.0477991 |
| CI95_upper $=[-5.335478449854266,0.9611072560097931,-0.004487721638015186]$ |  |  |  |  |  |  |
| CI95_lower $=$ [-3.4210680632861976, 1.2073324801318628, 0.04779910329394221$]$ |  |  |  |  |  |  |
| CI99_upper $=$ [ $-5.668312696316047,0.9182992000644498,-0.013578168544388751]$ |  |  |  |  |  |  |
| CI99_lower | [-3.0882338 | 68244168, | 25014 | 5360772062 | 0.05688955 | $20031578]$ |

### 4.3. Linear Restrictions: F Tests

Wooldridge (2019, Sections 4.4 and 4.5) discusses more general tests than those for the null hypotheses in Equation 4.1. They can involve one or more hypotheses involving one or more population parameters in a linear fashion.

We follow the illustrative example of Wooldridge (2019, Section 4.5) and analyze major league baseball players' salaries using the data set MLB1 and the regression model

$$
\begin{equation*}
\log (\operatorname{salary})=\beta_{0}+\beta_{1} \cdot \text { years }+\beta_{2} \cdot \text { gamesyr }+\beta_{3} \cdot \text { bavg }+\beta_{4} \cdot \text { hrunsyr }+\beta_{5} \cdot \text { rbisyr }+u . \tag{4.9}
\end{equation*}
$$

We want to test whether the performance measures batting average (bavg), home runs per year (hrunsyr), and runs batted in per year (rbisyr) have an impact on the salary once we control for the number of years as an active player (years) and the number of games played per year (gamesyr). So we state our null hypothesis as $H_{0}: \beta_{3}=0, \beta_{4}=0, \beta_{5}=0$ versus $H_{1}: H_{0}$ is false, i.e. at least one of the performance measures matters.

The test statistic of the $F$ test is based on the relative difference between the sum of squared residuals in the general (unrestricted) model and a restricted model in which the hypotheses are imposed $\mathrm{SSR}_{u r}$ and $\mathrm{SSR}_{r}$, respectively. In our example, the restricted model is one in which bavg, hrunsyr, and rbisyr are excluded as regressors. If both models involve the same dependent variable, it can also be written in terms of the coefficient of determination in the unrestricted and the restricted model $R_{u r}^{2}$ and $R_{r}^{2}$, respectively:

$$
\begin{equation*}
F=\frac{\operatorname{SSR}_{r}-\operatorname{SSR}_{u r}}{\operatorname{SSR}_{u r}} \cdot \frac{n-k-1}{q}=\frac{R_{u r}^{2}-R_{r}^{2}}{1-R_{u r}^{2}} \cdot \frac{n-k-1}{q}, \tag{4.10}
\end{equation*}
$$

where $q$ is the number of restrictions (in our example, $q=3$ ). Intuitively, if the null hypothesis is correct, then imposing it as a restriction will not lead to a significant drop in the model fit and the $F$ test statistic should be relatively small. It can be shown that under the CLM assumptions and the null hypothesis, the statistic has an $F$ distribution with the numerator degrees of freedom equal to $q$ and the denominator degrees of freedom of $n-k-1$. Given a significance level $\alpha$, we will reject $H_{0}$ if $F>c$, where the critical value $c$ is the $1-\alpha$ quantile of the relevant $F_{q, n-k-1}$ distribution.

In our example, $n=353, k=5, q=3$. So with $\alpha=1 \%$, the critical value is 3.84 and can be calculated using the FDist function in the package Distributions as

```
quantile(FDist(3, 347), 1 - 0.01)
```

Script 4.6 ( F -Test. jl ) shows the calculations for this example. The result is $\mathrm{F}=9.55>3.84$, so we clearly reject $H_{0}$. We also calculate the $p$ value for this test. It is $p=4.47 \cdot 10^{-06}=0.00000447$, so we reject $H_{0}$ for any reasonable significance level.

Script 4.6: F-Test.jl
using WooldridgeDatasets, GLM, DataFrames, Distributions

```
mlb1 = DataFrame(wooldridge("mlb1"))
```

\# unrestricted OLS regression:
reg_ur = lm(@formula(log(salary) ~
years + gamesyr + bavg + hrunsyr + rbisyr), mlb1)
r2_ur = r2 (reg_ur)
println("r2_ur = \$r2_ur\n")
\# restricted OLS regression:
reg_r = lm(@formula(log(salary) ~ years + gamesyr), mlb1)
r2_r = r2 (reg_r)
println("r2_r = \$r2_r\n")
\# F statistic:
$\mathrm{n}=$ nobs (reg_ur)
fstat $=\left(r 2 \_u r-r 2 \_r\right) /\left(1-r 2 \_u r\right) *(n-6) / 3$
println("fstat $=\$$ fstat $\backslash n$ ")
\# CV for alpha=1\% using the $F$ distribution with 3 and 347 d.f.:
$\mathrm{cv}=$ quantile(FDist (3, 347), 1 - 0.01)
println("cv = \$cv\n")
\# p value = 1-cdf of the appropriate $F$ distribution:
fpval = 1 - cdf(FDist (3, 347), fstat)
println("fpval = \$fpval")

Output of Script 4.6: F-Test.jl

```
r2_ur = 0.6278028485187441
r2_r = 0.5970716339066893
fstat = 9.550253521951943
Cv}=3.838520048496029
fpval = 4.473708139829391e-6
```

It should not be surprising that there is a more convenient way to do this. The package GLM provides a command ftest which is well suited for these kinds of tests. All you have to do, is providing the regression object of the restricted and unrestricted model in that order. We demonstrate the procedure in Script 4.7 ( F -Test-Automatic.jl). As in Script 4.6 ( F -Test.jl), $H_{0}$ is that the three parameters of bavg, hrunsyr, and rbisyr are all equal to zero, so all results are identical to the output of Script 4.6 (F-Test.jl).

Script 4.7: F-Test-Automatic.jl

```
using WooldridgeDatasets, GLM, DataFrames
mlb1 = DataFrame(wooldridge("mlb1"))
OLS regression:
reg_ur = lm(@formula(log(salary) ~
 years + gamesyr + bavg + hrunsyr + rbisyr), mlb1)
reg_r = lm(@formula(log(salary) ~
 years + gamesyr), mlb1)
automated F test:
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Output of Script 4.7: F-Test-Automatic.jl
fstat $=9.550253521951944$
fpval $=4.473708139838451 e-6$

The function ftest can also be used to test more complicated null hypotheses, although this is much more convenient in $R$ or Python so far. For example, suppose a sports reporter claims that the batting average plays no role and that the number of home runs has twice the impact as the number of runs batted in. This translates as $H_{0}: \beta_{3}=0, \beta_{4}=2 \cdot \beta_{5}$ and gives the following restricted model:

$$
\begin{aligned}
\log (\text { salary }) & =\beta_{0}+\beta_{1} \cdot \text { years }+\beta_{2} \cdot \text { gamesyr }+0 \cdot \text { bavg }+2 \cdot \beta_{5} \cdot \text { hrunsyr }+\beta_{5} \cdot \text { rbisyr }+u \\
& =\beta_{0}+\beta_{1} \cdot \text { years }+\beta_{2} \cdot \text { gamesyr }+\beta_{5} \cdot(2 \cdot \text { hrunsyr }+ \text { rbisyr })+u
\end{aligned}
$$

Equation 4.9 is still our unrestricted model. The output of Script 4.8 (F-Test-Automatic2.jl) shows the results of this test. The $p$ value is $p=0.6$, so we cannot reject $H_{0}$, so the reporter might be right.

Script 4.8: F-Test-Automatic2.jl
using WooldridgeDatasets, GLM, DataFrames
mlb1 = DataFrame(wooldridge("mlb1"))
\# OLS regression:
reg_ur = lm(@formula(log(salary) ~
years + gamesyr + bavg + hrunsyr + rbisyr), mlb1)
\# restrictions "bavg = 0" and "hrunsyr = 2*rbisyr":
mlb1.newvar $=2$ * mlb1.hrunsyr + mlb1.rbisyr
reg_r = lm(@formula(log(salary) ~ years + gamesyr + newvar), mlb1)
\# automated F test:
ftest_res = ftest (reg_r.model, reg_ur.model)
fstat $=$ ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat $=\$$ fstat $\$ n")
println("fpval = \$fpval")

Output of Script 4.8: F-Test-Automatic2.jl
fstat $=0.5117822576247593$
fpval $=0.5998780329146316$

Both the most important and the most straightforward $F$ test is the one for overall significance. The null hypothesis is that all parameters except for the constant are equal to zero. If this null hypothesis holds, the regressors do not have any joint explanatory power for $y$. The results of such a test are easily obtained with the techniques used above. As an example, see Script 4.9 (Example-4-8-2.jl). The null hypothesis that neither the sales nor the margin have any relation to R\&D spending is clearly rejected with an $F$ statistic of 162.2 and a $p$ value smaller than $10^{-15}$.

Script 4.9: Example-4-8-2.jl

```
using WooldridgeDatasets, GLM, DataFrames
rdchem = DataFrame(wooldridge("rdchem"))
OLS regression:
reg_ur = lm(@formula(log(rd) ~ log(sales) + profmarg), rdchem)
reg_r = lm(@formula(log(rd) ~ 1), rdchem)
automated F test:
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Output of Script 4.9: Example-4-8-2.j1
fstat $=162.23139858478663$
fpval $=1.793854336903236 \mathrm{e}-16$

### 4.4. Reporting Regression Results

Now we know most of the statistics shown in a typical regression output. Wooldridge (2019) provides a discussion of how to report them in Section 4.6. We will come back to these issues in more detail in Chapter 19. Here is already a preview of how to conveniently generate tables of different regression results very much like suggested in Wooldridge (2019, Example 4.10).

To automatically generate useful regression tables, we use the package RegressionTables. ${ }^{1}$ Given multiple regression objects, the command regtable generates a table including all of them. We demonstrate this using the following example.

## Wooldridge, Example 4.10: Salary-Pension Tradeoff for Teachers

Wooldridge (2019) discusses a model of the tradeoff between salary and pensions for teachers. It boils down to the regression specification

$$
\log (\operatorname{salary})=\beta_{0}+\beta_{1} \cdot(\text { benefits } / \text { salary })+\text { other factors }+u
$$

Script 4.10 (Example-4-10.j1) loads the data, generates the new variable b_s = (benefits/salary) and runs three regressions with different sets of other factors. The regtable command is then used to display the results in a clearly arranged table of all relevant results.

Script 4.10: Example-4-10.jl
using WooldridgeDatasets, GLM, DataFrames, RegressionTables
meap93 = DataFrame (wooldridge ("meap93"))
meap93.b_s $=$ meap93.benefits.$/$ meap93.salary
\# estimate three different models:
reg1 $=$ lm(@formula(log(salary) $\sim$ b_s), meap93)
reg2 $=\operatorname{lm}\left(@ f o r m u l a\left(l o g(s a l a r y) ~ \sim b \_s+\log (e n r o l l)+\log (s t a f f)\right), \operatorname{meap} 93\right)$
reg3 $=$ lm(@formula(log(salary) ~
$b \_s+\log (e n r o l l)+\log (s t a f f)+$ droprate + gradrate), meap93)
\# print results with RegressionTables:
regtable(reg1, reg2, reg3)

[^35]Output of Script 4.10: Example-4-10.jl

|  | $\log (\mathrm{salary})$ |  |  |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| (Intercept) | $\begin{array}{r} 10.523 * * * \\ (0.042) \end{array}$ | $\begin{array}{r} 10.844 * * * \\ (0.252) \end{array}$ | $\begin{array}{r} 10.738 * * * \\ (0.258) \end{array}$ |
| b_s | $\begin{gathered} -0.825 * * * \\ (0.200) \end{gathered}$ | $\begin{array}{r} -0.605 * * * \\ (0.165) \end{array}$ | $\begin{array}{r} -0.589 * * * \\ (0.165) \end{array}$ |
| $\log ($ enroll) |  | $\begin{gathered} 0.087 * * * \\ (0.007) \end{gathered}$ | $\begin{gathered} 0.088 * * * \\ (0.007) \end{gathered}$ |
| $\log (s t a f f)$ |  | $\begin{array}{r} -0.222 * * * \\ (0.050) \end{array}$ | $\begin{array}{r} -0.218 * * * \\ (0.050) \end{array}$ |
| droprate |  |  | $\begin{array}{r} -0.000 \\ (0.002) \end{array}$ |
| gradrate |  |  | $\begin{array}{r} 0.001 \\ (0.001) \end{array}$ |
| Estimator | OLS | OLS | OLS |
| N | 408 | 408 | 408 |
| R2 | 0.040 | 0.353 | 0.361 |

## 5. Multiple Regression Analysis: OLS Asymptotics

Asymptotic theory allows us to relax some assumptions needed to derive the sampling distribution of estimators if the sample size is large enough. For running a regression in a software package, it does not matter whether we rely on stronger assumptions or on asymptotic arguments. So we don't have to learn anything new regarding the implementation.

Instead, this chapter aims to improve on our intuition regarding the workings of asymptotics by looking at some simulation exercises in Section 5.1. Section 5.2 briefly discusses the implementation of the regression-based Lagrange multiplier (LM) test presented by Wooldridge (2019, Section 5.2).

### 5.1. Simulation Exercises

In Section 2.7, we already used Monte Carlo Simulation methods to study the mean and variance of OLS estimators under the assumptions SLR.1-SLR.5. Here, we will conduct similar experiments but will look at the whole sampling distribution of OLS estimators similar to Section 1.9.2 where we demonstrated the central limit theorem for the sample mean. Remember that the sampling distribution is important since confidence intervals, $t$ and $F$ tests and other tools of inference rely on it.

Theorem 4.1 of Wooldridge (2019) gives the normal distribution of the OLS estimators (conditional on the regressors) based on assumptions MLR. 1 through MLR.6. In contrast, Theorem 5.2 states that asymptotically, the distribution is normal by assumptions MLR. 1 through MLR. 5 only. Assumption MLR. 6 - the normal distribution of the error terms - is not required if the sample is large enough to justify asymptotic arguments.

In other words: In small samples, the parameter estimates have a normal sampling distribution only if

- the error terms are normally distributed and
- we condition on the regressors.

To see how this works out in practice, we set up a series of simulation experiments. Section 5.1.1 simulates a model consistent with MLR. 1 through MLR. 6 and keeps the regressors fixed. Theory suggests that the sampling distribution of $\hat{\beta}$ is normal, independent of the sample size. Section 5.1.2 simulates a violation of assumption MLR.6. Normality of $\hat{\beta}$ only holds asymptotically, so for small sample sizes we suspect a violation. Finally, we will look closer into what "conditional on the regressors" means and simulate a (very plausible) violation of this in Section 5.1.3.

### 5.1.1. Normally Distributed Error Terms

Script 5.1 (Sim-Asy-OLS-norm.jl) draws 10,000 samples of a given size (which has to be stored in variable n before) from a population that is consistent with assumptions MLR. 1 through MLR.6. The error terms are specified to be standard normal. The slope estimate $\hat{\beta}_{1}$ is stored for each of the
generated samples in the array b1. For a more detailed discussion of the implementation, see Section 2.7.2 where a very similar simulation exercise is introduced.

Script 5.1: Sim-Asy-OLS-norm.jl

```
using Distributions, DataFrames, GLM, Random
set the random seed:
Random.seed!(12345)
set sample size and number of simulations:
n = 100
r = 10000
set true parameters:
beta0 = 1
beta1 = 0.5
sx = 1
ex = 4
initialize b1 to store results later:
b1 = zeros(r)
draw a sample of x, fixed over replications:
x = rand(Normal (ex, sx), n)
repeat r times:
for i in 1:r
 # draw a sample of u (std. normal):
 u = rand (Normal (0, 1), n)
 y = beta0 .+ beta1 . * x .+ u
 df = DataFrame (y=y, x=x)
 # estimate conditional OLS:
 reg = lm(@formula(y ~ x), df)
 b1[i] = coef(reg)[2]
end
```

This code was run for different sample sizes. The density estimate together with the corresponding normal density are shown in Figure 5.1. Not surprisingly, all distributions look very similar to the normal distribution - this is what Theorem 4.1 predicted. Note that the fact that the sampling variance decreases as $n$ rises is only obvious if we pay attention to the different scales of the axes.

### 5.1.2. Non-Normal Error Terms

The next step is to simulate a violation of assumption MLR.6. In order to implement a rather drastic violation of the normality assumption similar to Section 1.9 .2 , we implement a "standardized" $\chi^{2}$ distribution with one degree of freedom. More specifically, let $v$ be distributed as $\chi_{[1]}^{2}$. Because this distribution has a mean of 1 and a variance of 2 , the error term $u=\frac{v-1}{\sqrt{2}}$ has a mean of 0 and a variance of 1 . This simplifies the comparison to the exercise with the standard normal errors above. Figure 5.2 plots the density functions of the standard normal distribution used above and the "standardized" $\chi^{2}$ distribution. Both have a mean of 0 and a variance of 1 but very different shapes.

Script 5.2 (Sim-Asy-OLS-chisq.jl) implements a simulation of this model and is listed in the appendix (p. 336). The only line of code we changed compared to the previous Script 5.1 (Sim-Asy-OLS-norm.jl) is the sampling of $\mathbf{u}$ where we replace drawing from a standard normal distribution using $u=\operatorname{rand}(\operatorname{Normal}(0,1), n)$ with sampling from the standardized $\chi_{[1]}^{2}$ distribution with

```
u = (rand(Chisq(1), n) .- 1) ./ sqrt (2)
```

Figure 5.1. Density of $\hat{\beta}_{1}$ with Different Sample Sizes: Normal Error Terms


Figure 5.2. Density Functions of the Simulated Error Terms


Figure 5.3. Density of $\hat{\beta}_{1}$ with Different Sample Sizes: Non-Normal Error Terms


For each of the same sample sizes used above, we again estimate the slope parameter for 10,000 samples. The densities of $\hat{\beta}_{1}$ are plotted in Figure 5.3 together with the respective normal distributions with the corresponding variances. For the small sample sizes, the deviation from the normal distribution is strong. Note that the dashed normal distributions have the same mean and variance. The main difference is the kurtosis which is larger than 8 in the simulations for $n=5$ compared to the normal distribution for which the kurtosis is equal to 3 .
For larger sample sizes, the sampling distribution of $\hat{\beta}_{1}$ converges to the normal distribution. For $n=10$, the difference is smaller but still discernible. For $n=1000$, it cannot be detected anymore in our simulation exercise. How large the sample needs to be depends among other things on the severity of the violations of MLR.6. If the distribution of the error terms is not as extremely nonnormal as in our simulations, smaller sample sizes like the rule of thumb $n=30$ might suffice for valid asymptotics.

### 5.1.3. (Not) Conditioning on the Regressors

There is a more subtle difference between the finite-sample results regarding the variance (Theorem 3.2) and distribution (Theorem 4.1) on one hand and the corresponding asymptotic results (Theorem 5.2). The former results describe the sampling distribution "conditional on the sample values of the
independent variables". This implies that as we draw different samples, the values of the regressors $x_{1}, \ldots, x_{k}$ remain the same and only the error terms and dependent variables change.

In our previous simulation exercises in Scripts like 2.16 (SLR-Sim-Model-Condx.jl), 5.1 (Sim-Asy-OLS-norm.jl), and 5.2 (Sim-Asy-OLS-chisq.jl), this is implemented by making random draws of $x$ outside of the simulation loop. This is a realistic description of how data is generated only in some simple experiments: The experimenter chooses the regressors for the sample, conducts the experiment and measures the dependent variable.
In most applications we are concerned with, this is an unrealistic description of how we obtain our data. If we draw a sample of individuals, both their dependent and independent variables differ across samples. In these cases, the distribution "conditional on the sample values of the independent variables" can only serve as an approximation of the actual distribution with varying regressors. For large samples, this distinction is irrelevant and the asymptotic distribution is the same.

Let's see how this plays out in an example. Script 5.3 (Sim-Asy-OLS-uncond.jl) differs from Script 5.1 (Sim-Asy-OLS-norm.jl) only by moving the generation of the regressors into the loop in which the 10,000 samples are generated. This is inconsistent with Theorem 4.1, so for small samples, we don't know the distribution of $\hat{\beta}_{1}$. Theorem 5.2 is applicable, so for (very) large samples, we know that the estimator is normally distributed.

Figure 5.4 shows the distribution of the 10,000 estimates generated by Script 5.3 (Sim-Asy-OLS-uncond.jl) for $n=5,10,100$, and 1000 . As we expected from theory, the distribution is (close to) normal for large samples. For small samples, it deviates quite a bit. The kurtosis is 10.25 for a sample size of $n=5$ which is far away from the kurtosis of 3 of a normal distribution.

Script 5.3: Sim-Asy-OLS-uncond.jl
using Distributions, DataFrames, GLM, Random
\# set the random seed:
Random. seed! (12345)
\# set sample size and number of simulations:
$\mathrm{n}=100$
$r=10000$
\# set true parameters:
beta0 $=1$
beta1 $=0.5$
sx = 1
$e x=4$
\# initialize b1 to store results later:
b1 $=\operatorname{zeros}(x)$

```
repeat r times:
```

for $i$ in 1:r
\# draw a sample of $x$, varying over replications:
$\mathbf{x}=\operatorname{rand}(\operatorname{Normal}(e x, s x), n)$
\# draw a sample of $u$ (std. normal):
$\mathrm{u}=\operatorname{rand}(\operatorname{Normal}(0,1), \mathrm{n})$
$\mathrm{y}=$ beta0 . + beta1 .* x . +u
df = DataFrame ( $y=y, x=x$ )
\# estimate unconditional OLS:
reg $=\operatorname{lm}(@ f o r m u l a(y \sim x)$, df)
b1[i] = coef(reg) [2]
end

Figure 5.4. Density of $\hat{\beta}_{1}$ with Different Sample Sizes: Varying Regressors


### 5.2. LM Test

As an alternative to the $F$ tests discussed in Section 4.3, LM tests for the same sort of hypotheses can be very useful with large samples. In the linear regression setup, the test statistic is

$$
L M=n \cdot R_{\tilde{u}}^{2}
$$

where $n$ is the sample size and $R_{\tilde{u}}^{2}$ is the usual $R^{2}$ statistic in a regression of the residual $\tilde{u}$ from the restricted model on the unrestricted set of regressors. Under the null hypothesis, it is asymptotically distributed as $\chi_{q}^{2}$ with $q$ denoting the number of restrictions. Details are given in Wooldridge (2019, Section 5.2).

The implementation in GLM is straightforward if we remember that the residuals can be obtained with the residuals function.

## Wooldridge, Example 5.3: Economic Model of Crime

We analyze the same data on the number of arrests as in Example 3.5. The unrestricted regression model equation is

$$
\operatorname{narr} 86=\beta_{0}+\beta_{1} \text { pcnv }+\beta_{2} \text { avgsen }+\beta_{3} \text { tottime }+\beta_{4} \text { ptime } 86+\beta_{5} \text { qemp } 86+u
$$

The dependent variable narr86 reflects the number of times a man was arrested and is explained by the proportion of prior arrests (pcnv), previous average sentences (avgsen), the time spend in prison before 1986 (tottime), the number of months in prison in 1986 (pt ime 86), and the number of quarters unemployed in 1986 (qemp86).
The joint null hypothesis is

$$
H_{0}: \beta_{2}=\beta_{3}=0,
$$

so the restricted set of regressors excludes avgsen and tottime. Script 5.4 (Example-5-3.j1) shows an implementation of this $L M$ test. The restricted model is estimated and its residuals utilde $\tilde{u}$ are calculated. They are regressed on the unrestricted set of regressors. The $R^{2}$ from this regression is 0.001494, so the $L M$ test statistic is calculated to be around $L M=0.001494 \cdot 2725=4.071$. This is smaller than the critical value for a significance level of $\alpha=10 \%$, so we do not reject the null hypothesis. We can also easily calculate the $p$ value using the $\chi^{2}$ CDF. It turns out to be 0.1306 .
The same hypothesis can be tested using the $F$ test presented in Section 4.3 using the command ftest. In this example, it delivers the same $p$ value up to three digits.

Script 5.4: Example-5-3.jl

```
using WooldridgeDatasets, GLM, DataFrames, Distributions
crime1 = DataFrame(wooldridge("crime1"))
1. estimate restricted model:
reg_r = lm(@formula(narr86 ~ pcnv + ptime86 + qemp86), crime1)
r2_r = r2 (reg_r)
println("r2_r = $r2_r\n")
2. regression of residuals from restricted model:
crimel.utilde = residuals(reg_r)
reg_LM = lm(@formula(utilde ~
 pcnv + ptime86 + qemp86 + avgsen + tottime), crime1)
r2_LM = r2(reg_LM)
println("r2_LM = $r2_LM\n")
3. calculation of LM test statistic:
LM = r2_LM * nobs (reg_LM)
println("LM = $LM\n")
4. critical value from chi-squared distribution, alpha=10%:
cv = quantile(Chisq(2), 1 - 0.10)
println("cv = $cv\n")
5. p value (alternative to critical value):
pval = 1 - cdf(Chisq(2), LM)
println("pval = $pval\n")
6. compare to F test:
reg_ur = lm(@formula(narr86 ~
 pcnv + ptime86 + qemp86 + avgsen + tottime), crime1)
hypotheses: "avgsen = 0" and "tottime = 0"
reg_r = lm(@formula(narr86 ~ pcnv + ptime86 + qemp86), crime1)
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat [2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Output of Script 5.4: Example-5-3.jl

```
r2_r = 0.041323307701239265
r2_LM = 0.0014938456737831896
LM = 4.070729461059192
CV = 4.605170185988092
pval = 0.13063282803348197
fstat = 2.0339215584291725
fpval = 0.13102048172866032
```


## 6. Multiple Regression Analysis: Further Issues

In this chapter, we cover some issues regarding the implementation of regression analyses. Section 6.1 discusses more flexible specification of regression equations such as variable scaling, standardization, polynomials and interactions. They can be conveniently included in the formula and used in the GLM OLS estimation. Section 6.2 is concerned with predictions and their confidence and prediction intervals.

### 6.1. Model Formulae

If we run a regression in GLM using a syntax like

```
lm(@formula(y ~ x1 + x2 + x3), sample)
```

the expression $\mathbf{y} \sim \mathbf{x} \mathbf{1}+\mathbf{x} \mathbf{2}+\mathbf{x} \mathbf{3}$ is referred to as a model formula. It is a compact symbolic way to describe our regression equation. The dependent variable is separated from the regressors by a " $\sim$ " and the regressors are separated by a " + " indicating that they enter the equation in a linear fashion. A constant is added by default by the 1 m command. Such formulae can be specified in more complex ways to indicate different kinds of regression equations. We will cover the most important ones in this section.

### 6.1.1. Data Scaling: Arithmetic Operations Within a Formula

Wooldridge (2019) discusses how different scaling of the variables in the model affects the parameter estimates and other statistics in Section 6.1. As an example, we consider a model relating the birth weight to cigarette smoking of the mother during pregnancy and the family income. The basic model equation is

$$
\begin{equation*}
\text { bwght }=\beta_{0}+\beta_{1} \text { cigs }+\beta_{2} \text { faminc }+u \tag{6.1}
\end{equation*}
$$

which translates into formula syntax as bwght ~ cigs + faminc.
If we want to measure the weight in pounds rather than ounces, there are two ways to implement different rescaling in Julia. We can

- Define a different variable like bwght_lbs = bwght ./ 16 and use this variable in the formula: bwght_lbs ~ cigs + faminc
- Specify this rescaling directly in the formula: (bwght/16) ~ cigs + faminc

Note that + and * have a formula-specific meaning, so some arithmetic operations are problematic within the formula. In these cases, the function identity disables formula syntax in parts of the formula. To convert from ounces back to pounds by bwght_lbs * 16 in the formula, for example, we use identity in Script 6.1 (Data-Scaling.jl). If we want to measure the number of cigarettes smoked per day in packs, we could again define a new variable packs = cigs ./ 20 and use it
as a regressor or simply specify the formula bwght $\sim$ (cigs/20) + faminc. Brackets are not mandatory, but increase the readability of the formula.

Script 6.1 (Data-Scaling.jl) demonstrates these features. As discussed in Wooldridge (2019, Section 6.1), dividing the dependent variable by 16 changes all coefficients by the same factor $\frac{1}{16}$ and dividing a regressor by 20 changes its coefficient by the factor 20 . Other statistics like $R^{2}$ are unaffected.

Script 6.1: Data-Scaling.jl

```
using WooldridgeDatasets, GLM, DataFrames, RegressionTables
bwght = DataFrame(wooldridge("bwght"))
regress and report coefficients:
reg = lm(@formula (bwght ~ cigs + faminc), bwght)
weight in pounds, manual way:
bwght.bwght_lbs = bwght.bwght ./ 16
reg_lbs1 = lm(@formula(bwght_lbs ~ cigs + faminc), bwght)
weight in pounds, direct way:
reg_lbs2 = lm(@formula((bwght / 16) ~ cigs + faminc), bwght)
packs of cigaretts:
reg_packs = lm(@formula(bwght ~ (cigs / 20) + faminc), bwght)
weight in ounces using bwght_lbs:
reg_pds = lm(@formula(identity(bwght_lbs * 16) ~ cigs + faminc), bwght)
print results with RegressionTables:
regtable(reg, reg_lbs1, reg_lbs2, reg_packs, reg_pds)
```

Output of Script 6.1: Data-Scaling.jl

|  | bwght | bwght_lbs | bwght / 16 | bwght | identity (bwght_lbs * 16) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) | (5) |
| (Intercept) | $\begin{array}{r} 116.974 * * * \\ (1.049) \end{array}$ | $\begin{gathered} 7.311 * * * \\ (0.066) \end{gathered}$ | $\begin{gathered} 7.311 * * * \\ (0.066) \end{gathered}$ | $\begin{array}{r} 116.974 * * * \\ (1.049) \end{array}$ | $\begin{array}{r} 116.974 * * * \\ (1.049) \end{array}$ |
| cigs | $\begin{array}{r} -0.463 * * * \\ (0.092) \end{array}$ | $\begin{array}{r} -0.029 * * * \\ (0.006) \end{array}$ | $\begin{array}{r} -0.029 * * * \\ (0.006) \end{array}$ |  | $\begin{array}{r} -0.463 * * * \\ (0.092) \end{array}$ |
| faminc | $\begin{aligned} & 0.093 \star * \\ & (0.029) \end{aligned}$ | $\begin{aligned} & 0.006 * * \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.006 * * \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.093 * * \\ & (0.029) \end{aligned}$ | $\begin{aligned} & 0.093 * * \\ & (0.029) \end{aligned}$ |
| cigs / 20 |  |  |  | $\begin{array}{r} -9.268 * * * \\ (1.832) \end{array}$ |  |
| Estimator | OLS | OLS | OLS | OLS | OLS |
| N | 1,388 | 1,388 | 1,388 | 1,388 | 1,388 |
| R2 | 0.030 | 0.030 | 0.030 | 0.030 | 0.030 |

### 6.1.2. Standardization: Beta Coefficients

A specific arithmetic operation is the standardization. A variable is standardized by subtracting its mean and dividing by its standard deviation. For example, the standardized dependent variable $y$
and regressor $x_{1}$ are

$$
\begin{equation*}
z_{y}=\frac{y-\bar{y}}{\operatorname{sd}(y)} \quad \text { and } \quad z_{x_{1}}=\frac{x_{1}-\bar{x}_{1}}{\operatorname{sd}\left(x_{1}\right)} . \tag{6.2}
\end{equation*}
$$

If the regression model only contains standardized variables, the coefficients have a special interpretation. They measure by how many standard deviations $y$ changes as the respective independent variable increases by one standard deviation. Inconsistent with the notation used here, they are sometimes referred to as beta coefficients.

In Julia, we can use the same type of arithmetic transformations as in Section 6.1.1 to subtract the mean and divide by the standard deviation. It can be done more conveniently by defining and using a function scale directly for all variables we want to standardize. Defining a function was introduced in Section 1.8.3 and Script 6.2 (Example-6-1.jl) demonstrates the use of scale in the context of a regression.

## Wooldridge, Example 6.1: Effects of Pollution on Housing Prices

We are interested in how air pollution (nox) and other neighborhood characteristics affect the value of a house. A model using standardization for all variables is expressed in a formula as

```
price_sc ~ 0 + nox_sc + crime_sc + rooms_sc + dist_sc + stratio_sc
```

with variable_sc denoting the scaled version of variable. The output of Script 6.2 (Example-6-1.j1) shows the parameter estimates of this model. The house price drops by 0.34 standard deviations as the air pollution increases by one standard deviation.

Script 6.2: Example-6-1.jl
using WooldridgeDatasets, GLM, DataFrames, Statistics

```
hprice2 = DataFrame(wooldridge("hprice2"))
```

\# define a function for the standardization:
function scale (x)
$x^{\prime}$ mean $=$ mean $(x)$
$x_{\text {_ }} \operatorname{var}=\operatorname{var}(x)$
x_scaled = (x .- $x$ mean) ./ sqrt. (x_var)
return x_scaled
end
\# standardize and estimate:
hprice2.price_sc = scale(hprice2.price)
hprice2.nox_sc = scale(hprice2.nox)
hprice2.crime_sc = scale(hprice2.crime)
hprice2.rooms_sc = scale(hprice2.rooms)
hprice2.dist_sc = scale(hprice2.dist)
hprice2.stratio_sc = scale(hprice2.stratio)
reg $=$ lm(@formula (price_sc ~
0 + nox_sc + crime_sc + rooms_sc + dist_sc + stratio_sc),
hprice2)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 6.2: Example-6-1. jl
table_reg:

|  | Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| nox_sc | -0.340446 | 0.0444966 | -7.65 | $<1 e-12$ | -0.427869 | -0.253023 |
| crime_sc | -0.143283 | 0.0306861 | -4.67 | $<1 e-05$ | -0.203572 | -0.0829934 |
| rooms_sc | 0.513888 | 0.0300002 | 17.13 | $<1 e-51$ | 0.454946 | 0.57283 |
| dist_sc | -0.234839 | 0.0429788 | -5.46 | $<1 e-07$ | -0.319279 | -0.150398 |
| stratio_sc | -0.27028 | 0.0299399 | -9.03 | $<1 e-17$ | -0.329103 | -0.211457 |

### 6.1.3. Logarithms

We have already seen in Section 2.4 that we can include the function log directly in formulas to represent logarithmic and semi-logarithmic models. A simple example of a partially logarithmic model and its formula would be

$$
\begin{equation*}
\log (y)=\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} x_{2}+u \tag{6.3}
\end{equation*}
$$

which can be expressed as $\log (y) \sim \log (x 1)+\mathbf{x} 2$.
Script 6.3 (Formula-Logarithm.jl) shows this again for the house price example. As the air pollution nox increases by one percent, the house price drops by about 0.72 percent. As the number of rooms increases by one, the value of the house increases by roughly $30.6 \%$. Wooldridge (2019, Section 6.2) discusses how the latter value is only an approximation and the actual estimated effect is $(\exp (0.306)-1)=0.358$ which is $35.8 \%$.

Script 6.3: Formula-Logarithm.jl

```
using WooldridgeDatasets, GLM, DataFrames
hprice2 = DataFrame(wooldridge("hprice2"))
reg = lm(@formula(log(price) ~ log(nox) + rooms), hprice2)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Output of Script 6.3: Formula-Logarithm.jl

|  | Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 9.23374 | 0.187741 | 49.18 | <1e-99 | 8.86489 | 9.60259 |
| $\log$ (nox) | -0.717674 | 0.0663397 | -10.82 | <1e-23 | -0.848011 | -0.587337 |
| rooms | 0.305918 | 0.0190174 | 16.09 | <1e-46 | 0.268555 | 0.343282 |

### 6.1.4. Quadratics and Polynomials

Specifying quadratic terms or higher powers of regressors can be a useful way to make a model more flexible by allowing the partial effects or (semi-)elasticities to decrease or increase with the value of the regressor.

Instead of creating additional variables containing the squared value of a regressor, in Julia we can simply add $\mathbf{x}^{\wedge} \mathbf{2}$ to a formula. Higher order terms are specified accordingly. A simple cubic model and its corresponding formula are

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+u \tag{6.4}
\end{equation*}
$$

which translates to $\mathbf{y} \sim \mathbf{x}+\mathbf{x}^{\wedge} \mathbf{2}+\mathbf{x}^{\wedge} \mathbf{3}$ in formula syntax.
For nonlinear models like this, it is often useful to get a graphical illustration of the effects. Section 6.2.2 shows how to conveniently generate these.

## Wooldridge, Example 6.2: Effects of Pollution on Housing Prices

This example of Wooldridge (2019) demonstrates the combination of logarithmic and quadratic specifications. The model for house prices is

$$
\log (\text { price })=\beta_{0}+\beta_{1} \log (\text { nox })+\beta_{2} \log (\text { dist })+\beta_{3} \text { rooms }+\beta_{4} \text { rooms }^{2}+\beta_{5} \text { stratio }+u .
$$

Script 6.4 (Example-6-2.jl) implements this model and presents detailed results including $t$ statistics and their $p$ values. The quadratic term of rooms has a significantly positive coefficient $\hat{\beta}_{4}$ implying that the semi-elasticity increases with more rooms. The negative coefficient for rooms and the positive coefficient for rooms ${ }^{2}$ imply that for "small" numbers of rooms, the price decreases with the number of rooms and for "large" values, it increases. The number of rooms implying the smallest price can be found as ${ }^{1}$

$$
\text { rooms }{ }^{*}=\frac{-\beta_{3}}{2 \beta_{4}} \approx 4.4 .
$$

Script 6.4: Example-6-2.jl
using WooldridgeDatasets, GLM, DataFrames

```
hprice2 = DataFrame(wooldridge("hprice2"))
```

reg $=\operatorname{lm}(@ f o r m u l a(\log ($ price $) ~ ~$
$\log ($ nox $)+\log (d i s t)+$ rooms $+(r o o m s \wedge 2)+$ stratio), hprice2)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 6.4: Example-6-2.jl

|  | Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 13.3855 | 0.566473 | 23.63 | $<1 e-82$ | 12.2725 | 14.4984 |
| $\log (\mathrm{nox})$ | -0.901682 | 0.114687 | -7.86 | <1e-13 | -1.12701 | -0.676354 |
| $\log$ (dist) | -0.0867813 | 0.0432807 | -2.01 | 0.0455 | -0.171816 | -0.00174687 |
| rooms | -0.545113 | 0.165454 | -3.29 | 0.0011 | -0.870184 | -0.220042 |
| rooms ^ 2 | 0.0622612 | 0.012805 | 4.86 | <1e-05 | 0.037103 | 0.0874194 |
| stratio | -0.0475902 | 0.00585419 | -8.13 | $<1 e-14$ | -0.059092 | -0.0360884 |

[^36]
### 6.1.5. Hypothesis Testing

A natural question to ask is whether a regressor has additional statistically significant explanatory power in a regression model, given all the other regressors. In simple model specifications, this question can be answered by a simple $t$ test, so the results for all regressors are available with a quick look at the standard regression table. ${ }^{2}$ When working with polynomials or other specifications, the influence of one regressor is captured by several parameters. We can test its significance with an $F$ test of the joint null hypothesis that all of these parameters are equal to zero. As an example, let's revisit Example 6.2:

$$
\log (\text { price })=\beta_{0}+\beta_{1} \log (\text { nox })+\beta_{2} \log (\text { dist })+\beta_{3} \text { rooms }+\beta_{4} \text { rooms }^{2}+\beta_{5} \text { stratio }+u
$$

The significance of rooms can be assessed with an $F$ test of $H_{0}: \beta_{3}=\beta_{4}=0$. As discussed in Section 4.3, such a test can be performed with the command ftest from the package GLM. This is shown in Script 6.5 (Example-6-2-Ftest.jl).

```
 Script 6.5: Example-6-2-Ftest.jl
using WooldridgeDatasets, GLM, DataFrames
hprice2 = DataFrame(wooldridge("hprice2"))
reg_ur = lm(@formula(log(price) ~
 log(nox) + log(dist) + rooms + (rooms^2) + stratio), hprice2)
testing hypotheses rooms = 0 and rooms^2 = 0:
reg_r = lm(@formula(log(price) ~
 log(nox) + log(dist) + stratio), hprice2)
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Output of Script 6.5: Example-6-2-Ftest.jl
fstat $=110.41878192669476$
fpval $=1.91932500195311 e-40$

### 6.1.6. Interaction Terms

Models with interaction terms allow the effect of one variable $x_{1}$ to depend on the value of another variable $x_{2}$. A simple model including an interaction term would be

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+u \tag{6.5}
\end{equation*}
$$

Of course, we can implement this in Julia by defining a new variable containing the product of the two regressors. But again, a direct specification in the model formula is more convenient. The expression $\mathbf{x} 1 \& \mathbf{x} \mathbf{2}$ within a formula adds the interaction term $x_{1} x_{2}$. Even more conveniently, $\mathbf{x} 1$ * $\mathbf{x} 2$ adds not only the interaction but also both original variables allowing for a very concise syntax. So the model in Equation 6.5 can be specified in Julia as either of the two formulas:

[^37]$$
y \sim x 1+x 2+x 1 \& x 2 \quad \Leftrightarrow \quad y \sim x 1 * x 2
$$

If one variable $x_{1}$ is interacted with a set of other variables, they can be grouped by parentheses to allow for a compact syntax. For example, the shortest way to express the model equation

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}+u \tag{6.6}
\end{equation*}
$$

in Julia syntax is $\mathbf{y} \sim \mathbf{x} \mathbf{1} *(\mathbf{x} \mathbf{2}+\mathbf{x} 3)$.

## Wooldridge, Example 6.3: Effects of Attendance on Final Exam Performance

This example analyzes a model including a standardized dependent variable, quadratic terms and an interaction. Standardized scores in the final exam are explained by class attendance, prior performance and an interaction term:

$$
\text { stndfnl }=\beta_{0}+\beta_{1} \text { atndrte }+\beta_{2} \text { priGPA }+\beta_{3} \text { ACT }+\beta_{4} \text { priGPA }{ }^{2}+\beta_{5} \text { ACT }^{2}+\beta_{6} \text { priGPA } \cdot \text { atndrte }+u
$$

Script 6.6 (Example-6-3.j1) estimates this model.
The effect of attending classes is

$$
\frac{\partial \text { stndfnl }}{\partial a t n d r t e}=\beta_{1}+\beta_{6} \text { priGPA. }
$$

For the average $\overline{\text { priGPA }}=2.59$, the script estimates this partial effect to be around 0.0078 . It tests the null hypothesis that this effect is zero using an $F$ test by plugging in $\beta_{1}+\beta_{6} \cdot 2.59=0 \Leftrightarrow \beta_{1}=-\beta_{6} \cdot 2.59$, which gives the following restricted model:

$$
\text { stndfnl }=\beta_{0}-\beta_{6} \cdot 2 \cdot 59 \cdot \text { atndrte }+\beta_{2} \text { priGPA }+\beta_{3} \text { ACT }+\beta_{4} \text { priGPA }{ }^{2}+\beta_{5} \text { ACT }^{2}+\beta_{6} \text { priGPA } \cdot \text { atndrte }+u
$$

$$
\Leftrightarrow
$$

stndfnl $=\beta_{0}+\beta_{6}(-2.59 \cdot$ atndrte + priGPA $\cdot$ atndrte $)+\beta_{2}$ priGPA $+\beta_{3}$ ACT $+\beta_{4}$ priGPA $^{2}+\beta_{5}$ ACT $^{2}+u$ With a $p$ value of 0.0034 , this hypothesis can be rejected at all common significance levels.

Script 6.6: Example-6-3.jl

```
using WooldridgeDatasets, GLM, DataFrames
attend = DataFrame(wooldridge("attend"))
reg_ur = lm(@formula(stndfnl ~ atndrte * priGPA + ACT +
 (priGPA^2) + (ACT^2)), attend)
table_reg_ur = coeftable(reg_ur)
println("table_reg_ur: \n$table_reg_ur\n")
estimate for partial effect at priGPA=2.59:
b = coef(reg_ur)
partial_effect = b[2] + 2.59 * b[7]
println("partial_effect = $partial_effect\n")
F test for partial effect at priGPA=2.59:
attend.pe = -2.59 .* attend.atndrte .+ attend.atndrte .* attend.priGPA
reg_r = lm(@formula(stndfnl ~ pe + priGPA + ACT +
 (priGPA^2) + (ACT^2)), attend)
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```


## Output of Script 6.6: Example-6-3.jl

```
table_reg_ur:
(Intercept)
atndrte
priGPA
ACT
priGPA ^ 2
ACT ^ 2
atndrte & priGPA
partial_effect = 0.007754572228611521
fstat = 8.63258105674091
fpval = 0.003414992399585733
```


### 6.2. Prediction

In this section, we are concerned with predicting the value of the dependent variable $y$ given certain values of the regressors $x_{1}, \ldots, x_{k}$. If these are the regressor values in our estimation sample, we called these predictions "fitted values" and discussed their calculation in Section 2.2. Now, we generalize this to arbitrary values and add standard errors, confidence intervals, and prediction intervals.

### 6.2.1. Confidence and Prediction Intervals for Predictions

Confidence intervals reflect the uncertainty about the expected value of the dependent variable given values of the regressors. If we are interested in predicting the college GPA of an individual, prediction intervals account for the additional uncertainty regarding the unobserved characteristics reflected by the error term $u$.

Given a model

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+u \tag{6.7}
\end{equation*}
$$

we are interested in the expected value of $y$ given the regressors take specific values $c_{1}, c_{2}, \ldots, c_{k}$ :

$$
\begin{equation*}
\theta_{0}=\mathrm{E}\left(y \mid x_{1}=c_{1}, \ldots, x_{k}=c_{k}\right)=\beta_{0}+\beta_{1} c_{1}+\beta_{2} c_{2}+\cdots+\beta_{k} c_{k} . \tag{6.8}
\end{equation*}
$$

The natural point estimates are

$$
\begin{equation*}
\hat{\theta}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} c_{1}+\hat{\beta}_{2} c_{2}+\cdots+\hat{\beta}_{k} c_{k} \tag{6.9}
\end{equation*}
$$

and can readily be obtained once the parameter estimates $\hat{\beta}_{0}, \ldots, \hat{\beta}_{k}$ are calculated.
Standard errors and confidence intervals are less straightforward to compute. Wooldridge (2019, Section 6.4) suggests a smart way to obtain these from a modified regression. GLM provides an even simpler and more convenient approach.

The function predict automatically calculates $\hat{\theta}_{0}$. The function can be called on an object created by the 1 m function. Its argument is a data frame containing the values of the regressors $c_{1}, \ldots c_{k}$ of the regressors $x_{1}, \ldots x_{k}$ with the same variable names as in the data frame used for estimation. If we don't have one yet, it can for example be specified as

```
DataFrame(id="newobservation1", x1 = c1, x2 = c2, ... , xk = ck)
```

where $\mathbf{x} 1$ through $\mathbf{x k}$ are the variable names and $\mathbf{c} 1$ through $\mathbf{c k}$ are the values which can also be specified as vectors to get predictions at several values of the regressors. See Section 1.2.4 for more on data frames and Script 6.7 (Predictions.jl) for an example.

Script 6.7: Predictions.jl

```
using WooldridgeDatasets, GLM, DataFrames
gpa2 = DataFrame(wooldridge("gpa2"))
reg = lm(@formula(colgpa ~ sat + hsperc + hsize + (hsize^2)), gpa2)
print regression table:
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
generate data set containing the regressor values for predictions:
cvalues1 = DataFrame(id="newPerson1", sat=1200, hsperc=30, hsize=5)
println("cvalues1: \n$cvalues1\n")
point estimate of prediction (cvalues1):
colgpa_pred1 = round.(predict(reg, cvalues1), digits=5)
println("colgpa_pred1 = $colgpa_pred1\n")
define three sets of regressor variables:
cvalues2 = DataFrame(id=["newPerson1", "newPerson2", "newPerson3"],
 sat=[1200, 900, 1400],
 hsperc=[30, 20, 5], hsize=[5, 3, 1])
println("cvalues2: \n$cvalues2\n")
point estimate of prediction (cvalues2):
colgpa_pred2 = round. (predict(reg, cvalues2), digits=5)
println("colgpa_pred2 = $colgpa_pred2")
```

Output of Script 6.7: Predictions.jl

| Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) 1.49265 | 0.0753414 | 19.81 | $<1 e-82$ | 1.34494 | 1.64036 |
| sat 0.0014925 | $6.52134 e-5$ | 22.89 | <1e-99 | 0.00136464 | 0.00162035 |
| hsperc -0.0138558 | 0.000561005 | -24.70 | <1e-99 | -0.0149557 | -0.0127559 |
| hsize -0.0608815 | 0.0165012 | -3.69 | 0.0002 | -0.0932328 | -0.0285302 |
| hsize ^ 20.0054603 | 0.00226985 | 2.41 | 0.0162 | 0.00101017 | 0.00991042 |
| cvalues1: |  |  |  |  |  |
| $1 \times 4$ DataFrame |  |  |  |  |  |
| Row \| id sat  <br>  \| String Int 64 | $\begin{array}{ll} \text { hsperc } & \text { hsi } \\ \text { Int64 } & \text { Int } \end{array}$ |  |  |  |  |
| 1 \| newPerson1 1200 | 30 | 5 |  |  |  |
| colgpa_pred1 $=$ [2.70008] |  |  |  |  |  |
| cvalues2: |  |  |  |  |  |
| $3 \times 4$ DataFrame |  |  |  |  |  |


| Row | id | sat | hsperc | hsize |
| :--- | :--- | :--- | :---: | :---: |
|  | String | Int64 | Int64 | Int64 |
| -------------------------------------------------- |  |  |  |  |
| 1 | newPerson1 | 1200 | 30 | 5 |
| 2 | newPerson2 | 900 | 20 | 3 |
| 3 | newPerson3 | 1400 | 5 | 1 |
| colgpa_pred2 $=[2.70008$, | 2.42528, | $3.45745]$ |  |  |

The function predict calculates not only $\hat{\theta}_{0}$, but also

- confidence intervals, if the argument interval=: confidence is used and
- prediction intervals, if the argument interval=:prediction is used. Wooldridge (2019) explains how to calculate the prediction interval manually.
Script 6.8 (Example-6-5.jl) demonstrates the procedure for $\alpha=5 \%$ and $1 \%$.


## Wooldridge, Example 6.5: Confidence Interval for Predicted College GPA

We try to predict the college GPA, for example to support the admission decisions for our college. Our regression model equation is

$$
\text { colgpa }=\beta_{0}+\beta_{1} \text { sat }+\beta_{2} \text { hsperc }+\beta_{3} \text { hsize }+\beta_{4} \text { hsize }^{2}+u .
$$

Script 6.8 (Example-6-5.j1) shows the implementation of the estimation and prediction. The estimation results are stored as the variable reg. The values of the regressors for which we want to do the prediction are stored in the new data frame cvalues2. Then the function predict is called multiple times with different arguments. For an SAT score of 1200, a high school percentile of 30 and a high school size of 5 (i.e. 500 students), the predicted college GPA is 2.7 . Wooldridge (2019) obtains the same value using a general but more cumbersome regression approach. We define two other types of students with different values of sat, hsperc, and hsize in the data frame cvalues2.
Script 6.8 (Example-6-5.j1) also calculates the $95 \%$ and $99 \%$ confidence and prediction intervals. The object colgpa_CI_95 contains the $95 \%$ confidence interval, for example, which is reported in columns lower and upper. With $95 \%$ confidence we can say that the expected college GPA for students with the features of the student named newPerson1 is between 2.66 and 2.74 . The object colgpa_PI_99 contains the $99 \%$ prediction interval, for example, which is also reported in columns lower and upper. All results are the same as those manually calculated by Wooldridge (2019).

Script 6.8: Example-6-5.jl

```
using WooldridgeDatasets, GLM, DataFrames
gpa2 = DataFrame(wooldridge("gpa2"))
reg = lm(@formula(colgpa ~ sat + hsperc + hsize + (hsize^2)), gpa2)
define three sets of regressor variables:
cvalues2 = DataFrame(
 id=["newPerson1", "newPerson2", "newPerson3"],
 sat=[1200, 900, 1400],
 hsperc=[30, 20, 5],
 hsize=[5, 3, 1])
point estimates and 95% confidence and prediction intervals:
colgpa_CI_95 = predict(reg, cvalues2, interval=:confidence)
```

```
println("colgpa_CI_95: \n$colgpa_CI_95\n")
colgpa_PI_95 = predict(reg, cvalues2, interval=:prediction)
println("colgpa_PI_95: \n$colgpa_PI_95\n")
point estimates and 99% confidence and prediction intervals:
colgpa_CI_99 = predict(reg, cvalues2, interval=:confidence, level=0.99)
println("colgpa_CI_99: \n$colgpa_CI_99\n")
colgpa_PI_99 = predict(reg, cvalues2, interval=:prediction, level=0.99)
println("colgpa_PI_99: \n$colgpa_PI_99")
```

Output of Script 6.8: Example-6-5.jl
colgpa_CI_95:
$3 \times 3$ DataFrame
Row | prediction lower upper
Float64? Float64? Float64?

| 1 | 2.70008 | 2.6611 | 2.73905 |
| :---: | :---: | :---: | :---: |
| 2 | 2.42528 | 2.39733 | 2.45324 |
| 3 | 3.45745 | 3.40277 | 3.51213 |

colgpa_PI_95:
$3 \times 3$ DataFrame
Row | prediction lower upper
Float64? Float64? Float64?

|  | ---------------------------------1 |  |  |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 2.70008 | 1.60175 |
| 2 |  | 2.42528 | 1.32729 |


| 2 | 2.42528 | 1.32729 | 3.52327 |
| :--- | :--- | :--- | :--- |
| 3 | 3.45745 | 2.35845 | 4.55644 |

colgpa_CI_99:
$3 \times 3$ DataFrame
Row | prediction lower upper
Float64? Float64? Float64?

| 1 | 2.70008 | 2.64885 | 2.7513 |
| :---: | :---: | :---: | :---: |
| 2 | 2.42528 | 2.38854 | 2.46203 |
| 3 | 3.45745 | 3.38557 | 3.52932 |

colgpa_PI_99:
$3 \times 3$ DataFrame
Row | prediction lower upper
Float64? Float64? Float64?

| 1 | 2.70008 | 1.25639 | 4.14376 |
| :---: | :---: | :---: | :---: |
| 2 | 2.42528 | 0.982034 | 3.86853 |
| 3 | 3.45745 | 2.01288 | 4.90202 |

### 6.2.2. Effect Plots for Nonlinear Specifications

In models with quadratic or other nonlinear terms, the coefficients themselves are often difficult to interpret directly. We have to do additional calculations to obtain the partial effect at different values of the regressors or derive the extreme points. In Example 6.2, we found the number of rooms implying the minimum predicted house price to be around 4.4.

For a better visual understanding of the implications of our model, it is often useful to calculate predictions for different values of one regressor of interest while keeping the other regressors fixed at
certain values like their overall sample means. By plotting the results against the regressor value, we get a very intuitive graph showing the estimated ceteris paribus effects of the regressor.

We already know how to calculate predictions and their confidence intervals from Section 6.2.1. Script 6.9 (Effects-Manual.jl) repeats the regression from Example 6.2 and creates an effects plot for the number of rooms. The number of rooms is varied between 4 and 8 and the other variables are set to their respective sample means for all predictions. The regressor values and the implied predictions are shown in a table and then plotted with their confidence bands. We see the minimum at a number of rooms of around 4. The resulting graph is shown in Figure 6.1.

Script 6.9: Effects-Manual.jl

```
using WooldridgeDatasets, GLM, DataFrames, Plots, Statistics
hprice2 = DataFrame(wooldridge("hprice2"))
repeating the regression from Example 6.2:
reg = lm(@formula(log(price) ~
 log(nox) + log(dist) + rooms + (rooms^2) + stratio), hprice2)
predictions with rooms = 4-8, all others at the sample mean:
nox_mean = mean(hprice2.nox)
dist_mean = mean(hprice2.dist)
stratio_mean = mean(hprice2.stratio)
x = DataFrame(
 rooms=4:8,
 nox=nox_mean,
 dist=dist_mean,
 stratio=stratio_mean)
println("X: \n$X\n")
calculate 95% confidence interval:
lpr_CI = predict(reg, X, interval=:confidence)
println("lpr_CI: \n$lpr_CI\n")
plot:
plot(X.rooms, lpr_CI.prediction, color="black", label=false, legend=:topleft)
plot!(X.rooms, lpr_CI.upper, color="lightgrey", linestyle=:dash, label="upper CI")
plot!(X.rooms, lpr_CI.lower, color="darkgrey", linestyle=:dash, label="lower CI")
ylabel!("lprice")
xlabel!("rooms")
savefig("JlGraphs/Effects-Manual.pdf")
```

Figure 6.1. Nonlinear Effects in Example 6.2


Output of Script 6.9: Effects-Manual.jl

```
X:
5\times4 DataFrame
Row | rooms nox dist stratio
 | Int64 Float64 Float64 Float64
 1 |
 2 | 5 5.54978 3.79575 18.4593
 3 | % 5.54978 3.79575 18.4593
 4 | llllllll
 5 | 8 5.54978 3.79575 18.4593
lpr_CI:
5\times3 DataFrame
 Row | prediction lower upper
 Float64? Float64? Float64?
 1 | 9.6617 9.49981 9.82359
 2 | 9.67694 9.61021 9.74367
 3 | 9.8167 9.78706 9.84635
 4 10.081 10.0424 10.1196
 5 | 10.4698 10.3834 10.5562
```


## 7. Multiple Regression Analysis with Qualitative Regressors

Many variables of interest are qualitative rather than quantitative. Examples include gender, race, labor market status, marital status, and brand choice. In this chapter, we discuss the use of qualitative variables as regressors. Wooldridge (2019, Section 7.5) also covers linear probability models with a binary dependent variable in a linear regression. Since this does not change the implementation, we will skip this topic here and cover binary dependent variables in Chapter 17.

Qualitative information can be represented as binary or dummy variables which can only take the value zero or one. In Section 7.1, we see that dummy variables can be used as regressors just as any other variable. An even more natural way to store yes/no type of information in Julia is to use Boolean variables which can also be directly used as regressors, see Section 7.2.

While qualitative variables with more than two outcomes can be represented by a set of dummy variables, the more natural and convenient way to do this are categorical variables as covered in Section 1.2.4. A special case in which we wish to break a numeric variable into categories is discussed in Section 7.4. Finally, Section 7.5 revisits interaction effects and shows how these can be used with categorical variables to conveniently allow and test for difference in the regression equation.

### 7.1. Linear Regression with Dummy Variables as Regressors

If qualitative data are stored as dummy variables (i.e. variables taking the values zero or one), these can easily be used as regressors in linear regression. If a single dummy variable is used in a model, its coefficient represents the difference in the intercept between groups, see Wooldridge (2019, Section 7.2).

A qualitative variable can also take $g>2$ values. A variable MobileOS could for example take one of the $g=4$ values "Android", "iOS", "Windows", or "other". This information can be represented by $g-1$ dummy variables, each taking the values zero or one, where one category is left out to serve as a reference category. They take the value one if the respective operating system is used and zero otherwise. Wooldridge (2019, Section 7.3) gives more information on these variables and their interpretation.
Here, we are concerned with implementing linear regressions with dummy variables as regressors. Everything works as before once we have generated the dummy variables. In the example data sets provided with Wooldridge (2019), this has usually already been done for us, so we don't have to learn anything new in terms of implementation. We show two examples.

## Wooldridge, Example 7.1: Hourly Wage Equation

We are interested in the wage differences by gender and regress the hourly wage on a dummy variable which is equal to one for females and zero for males. We also include regressors for education, experience, and tenure. The implementation with GLM is standard and the dummy variable female is used just as any other regressor as shown in Script 7.1 (Example-7-1.j1). Its estimated coefficient of -1.81 indicates that on average, a woman makes $\$ 1.81$ per hour less than a man with the same education, experience, and tenure.

Script 7.1: Example-7-1.jl

```
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame(wooldridge("wage1"))
reg = lm(@formula(wage ~ female + educ + exper + tenure), wage1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Output of Script 7.1: Example-7-1.jl

| table_reg: |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| (Intercept) | -1.56794 | 0.724551 | -2.16 | 0.0309 | -2.99134 | -0.144538 |
| female | -1.81085 | 0.264825 | -6.84 | <1e-10 | -2.33111 | -1.2906 |
| educ | 0.571505 | 0.0493373 | 11.58 | <1e-27 | 0.47458 | 0.668429 |
| exper | 0.0253959 | 0.0115694 | 2.20 | 0.0286 | 0.00266739 | 0.0481243 |
| tenure | 0.141005 | 0.0211617 | 6.66 | <1e-10 | 0.0994323 | 0.182578 |

## Wooldridge, Example 7.6: Log Hourly Wage Equation

We used log wage as the dependent variable and distinguish gender and marital status using a qualitative variable with the four outcomes "single female", "single male", "married female", and "married male". We actually implement this regression using an interaction term between married and female in Script 7.2 (Example-7-6.j1). Relative to the reference group of single males with the same education, experience, and tenure, married males make about $21.3 \%$ more (the coefficient of married), and single females make about $11.0 \%$ less (the coefficient of female). The coefficient of the interaction term implies that married females make around $30.1 \%-21.3 \%=8.7 \%$ less than single females, $30.1 \%+11.0 \%=41.1 \%$ less than married males, and $30.1 \%+11.0 \%-21.3 \%=19.8 \%$ less than single males. Note once again that the approximate interpretation as percent may be inaccurate, see Section 6.1.3.

## Script 7.2: Example-7-6.jl

using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame(wooldridge ("wage1"))
reg $=$ lm(@formula(log(wage) ~
married * female + educ + exper $+\left(\right.$ exper^$\left.^{\wedge} 2\right)+$
tenure + (tenure^2)), wage1)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 7.2: Example-7-6.jl

|  | Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 0.321378 | 0.100009 | 3.21 | 0.0014 | 0.124904 | 0.517852 |
| married | 0.212676 | 0.0553572 | 3.84 | 0.0001 | 0.103923 | 0.321428 |
| female | -0.11035 | 0.0557421 | -1.98 | 0.0483 | -0.219859 | -0.000841431 |
| educ | 0.0789103 | 0.0066945 | 11.79 | $<1 e-27$ | 0.0657585 | 0.092062 |
| exper | 0.0268006 | 0.00524285 | 5.11 | <1e-06 | 0.0165007 | 0.0371005 |
| exper ^ 2 | -0.000535245 | 0.000110426 | -4.85 | <1e-05 | -0.000752184 | -0.000318307 |
| tenure | 0.0290875 | 0.006762 | 4.30 | <1e-04 | 0.0158031 | 0.0423719 |
| tenure ^ 2 | -0.000533143 | 0.000231243 | -2.31 | 0.0215 | -0.000987434 | -7.88514e-5 |
| married \& female | -0.300593 | 0.0717669 | -4.19 | $<1 \mathrm{e}-04$ | -0.441584 | -0.159602 |

### 7.2. Boolean Variables

A natural way for storing qualitative yes/no information in Julia is to use Boolean variables introduced in Section 1.2.2. They can take the values true or false and can be transformed into a $0 / 1$ dummy variable with the function Int where true $=1$ and false $=0.0 / 1$-coded dummies can vice versa be transformed into logical variables with the function Bool.
Instead of transforming Boolean variables into dummies, they can be directly used as regressors. For this, the argument contrasts in the 1 m function must be set as

```
lm(@formula(y ~ x), sample, contrasts=Dict(:varname => DummyCoding()))
```

to generate a dummy from a variable named varname.
The coefficient is then named varname: true indicating that true was treated as 1 . Script 7.3 (Example-7-1-Boolean.jl) repeats the analysis of Example 7.1 with the regressor female being coded as true or false instead of a $0 / 1$ dummy variable.

Script 7.3: Example-7-1-Boolean.jl

```
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame(wooldridge("wage1"))
regression with boolean variable:
wage1.isfemale = Bool.(wagel.female)
reg = lm(@formula(wage ~ isfemale + educ + exper + tenure), wage1,
 contrasts=Dict(:isfemale => DummyCoding()))
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Output of Script 7.3: Example-7-1-Boolean.jl

```
table_reg:
```

|  | Coef. | Std. Error | t | $\operatorname{Pr}(>\|t\|)$ | Lower 95\% | Upper 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | -1.56794 | 0.724551 | -2.16 | 0.0309 | -2.99134 | -0.144538 |
| isfemale: true | -1.81085 | 0.264825 | -6.84 | <1e-10 | -2.33111 | -1.2906 |
| educ | 0.571505 | 0.0493373 | 11.58 | $<1 e-27$ | 0.47458 | 0.668429 |
| exper | 0.0253959 | 0.0115694 | 2.20 | 0.0286 | 0.00266739 | 0.0481243 |
| tenure | 0.141005 | 0.0211617 | 6.66 | <1e-10 | 0.0994323 | 0.182578 |

In real-world data sets, qualitative information is often not readily coded as logical or dummy variables, so we might want to create our own regressors. Suppose a qualitative variable saved as the array OS takes one of the three string values "Android", "iOS", "Windows", or "other". We can manually define the three relevant logical variables with "Android" as the reference category with

```
iOS = OS .== "iOS"
wind = OS .== "Windows"
oth = OS .== "other"
```

A more convenient and elegant way to deal with qualitative variables are categorical variables discussed in the next section.

### 7.3. Categorical Variables

We have introduced categorical variables in Section 1.2.4. They take one of a given set of outcomes, so they are well suited to store qualitative information.

In a linear regression performed by GLM we can easily transform any variable into a categorical variable using the contrasts argument from the previous section. The function 1 m is clever enough to implicitly add $g-1$ dummy variables if the variable has $g$ outcomes. As a reference category, the first category is left out by default. For string variables this even works without specifying the contrasts argument, because the package implementing the formula syntax treats such variables as categorical variables and uses them as dummys.

Script 7.4 (Regr-Categorical.jl) shows how categorical variables are used. It uses the data set CPS1985. ${ }^{1}$ This data set is similar to the one used in Examples 7.1 and 7.6 in that it contains wage and other data for 534 individuals. The frequency tables for the two variables gender and occupation are shown in the output. The variable gender has two categories male and female. The variable occupation has six categories.

In the output, the coefficients are labeled with a combination of the variable and category name. As an example, the estimated coefficient of 0.224 for gender: male in results implies that men make about $22.4 \%$ more than women who are the same in terms of the other regressors. Employees in technical positions earn around $1 \%$ (see coefficient of oc: technical) less than otherwise equal management positions (who are the reference category).

We can choose different reference categories using the argument base of the function DummyCoding, where we provide a new reference group somegroup with the command :varname => DummyCoding (base="somegroup"). In the specification reg_newref, we choose male and technical. When we rerun the same regression command, we see the expected results: Variables like education and experience get the same coefficients. The dummy variable for females gets the negative of what the males got previously. Obviously, it is equivalent to say "female log wages are lower by 0.224 " and "male log wages are higher by 0.224 ".

The coefficients for the occupation are now relative to technical. From the first regression we already knew that technical positions make $1 \%$ less than managers, so it is not surprising that in the second regression we find that managers make $1 \%$ more than technical positions. The other occupation coefficients are higher by 0.010085 implying the same relative comparisons as in the first specification.

Script 7.4: Regr-Categorical.jl
using WooldridgeDatasets, GLM, DataFrames, FreqTables, CSV
CPS1985 = DataFrame (CSV.File("data/CPS1985.csv"))
\# rename variable to make outputs more compact:
rename! (CPS1985, :occupation => :oc)
\# table of categories and frequencies for two categorical variables:
freq_gender = freqtable (CPS1985.gender)
println("freq_gender: \n\$freq_gender $\backslash \mathrm{n}$ ")
freq_occupation $=$ freqtable (CPS1985.oc)
println("freq_occupation: \n\$freq_occupation\n")
\# directly using categorical variables in regression formula
\# (the formula automatically interprets string
\# columns as categorical variables and dummy codes them):


[^38]```
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
# rerun regression with different reference category:
reg_newref = lm(@formula(log(wage) ~ education + experience + gender + oc),
    CPS1985,
    contrasts=Dict(:gender => DummyCoding(base="male"),
        :oc => DummyCoding(base="technical")))
table_newref = coeftable(reg_newref)
println("table_newref: \n$table_newref")
```


Output of Script 7.4: Regr-Categorical.jl

```
freq_gender:
2-element Named Vector{Int64}
Dim1 |
    --_--------------------------------------------------
String7("female") | 245
String7("male") | 289
freq_occupation:
6-element Named Vector{Int64}
Dim1
                            |
                            -----------------------------------------------------
String15("management") | 55
String15("office") | 97
String15("sales") | 38
String15("services") | 83
String15("technical") | 105
String15("worker") | 156
table_reg:
Coef. Std. Error
t \(\operatorname{Pr}(>|t|)\)
Lower 95\%
Upper 95\%
\begin{tabular}{lllllll} 
(Intercept) & 0.904983 & 0.171665 & 5.27 & \(<1 e-06\) & 0.567749 & 1.24222 \\
education & 0.0758559 & 0.0100539 & 7.54 & \(<1 e-12\) & 0.056105 & 0.0956068 \\
experience & 0.0118785 & 0.0016755 & 7.09 & \(<1 e-11\) & 0.00858694 & 0.01517 \\
gender: male & 0.223848 & 0.0422525 & 5.30 & \(<1 e-06\) & 0.140843 & 0.306853 \\
Oc: office & -0.207314 & 0.0776473 & -2.67 & 0.0078 & -0.359851 & -0.0547764 \\
OC: sales & -0.360111 & 0.0936446 & -3.85 & 0.0001 & -0.544075 & -0.176147 \\
Oc: services & -0.362586 & 0.0818392 & -4.43 & \(<1 e-04\) & -0.523359 & -0.201814 \\
Oc: technical & -0.0100857 & 0.0739841 & -0.14 & 0.8916 & -0.155427 & 0.135255 \\
OC: worker & -0.152544 & 0.0763434 & -2.00 & 0.0462 & -0.30252 & -0.00256801
\end{tabular}
table_newref:
Coef. Std. Error \(\quad\) Pr \(\operatorname{Pr|t|)}\) Lower 95\%
Upper 95\%
\begin{tabular}{lclrllr} 
(Intercept) & 1.11875 & 0.176479 & 6.34 & \(<1 e-09\) & 0.772055 & 1.46544 \\
education & 0.0758559 & 0.0100539 & 7.54 & \(<1 e-12\) & 0.056105 & 0.0956068 \\
experience & 0.0118785 & 0.0016755 & 7.09 & \(<1 e-11\) & 0.00858694 & 0.01517 \\
gender: female & -0.223848 & 0.0422525 & -5.30 & \(<1 e-06\) & -0.306853 & -0.140843 \\
oc: management & 0.0100857 & 0.0739841 & 0.14 & 0.8916 & -0.135255 & 0.155427 \\
oc: office & -0.197228 & 0.0678171 & -2.91 & 0.0038 & -0.330454 & -0.064002 \\
oc: sales & -0.350025 & 0.0863381 & -4.05 & \(<1 e-04\) & -0.519636 & -0.180415 \\
oc: services & -0.352501 & 0.0749517 & -4.70 & \(<1 e-05\) & -0.499743 & -0.205259 \\
oc: worker & -0.142458 & 0.0704599 & -2.02 & 0.0437 & -0.280876 & -0.00404035
\end{tabular}
```


7.4. Breaking a Numeric Variable Into Categories

Sometimes, we do not use a numeric variable directly in a regression model because the implied linear relation seems implausible or inconvenient to interpret. As an alternative to working with transformations such as logs and quadratic terms, it sometimes makes sense to estimate different levels for different ranges of the variable. Wooldridge (2019, Example 7.8) gives the example of the ranking of a law school and how it relates to the starting salary of its graduates.

Given a numeric variable, we need to generate a categorical variable to represent the range into which the rank of a school falls. In Julia, the command cut included in the package CategoricalArrays is very convenient for this. It takes a numeric variable and a vector of cut points and returns a categorical variable. The lower cut points are included and upper cut points are excluded in the corresponding range.

Wooldridge, Example 7.8: Effects of Law School Rankings on Starting Salaries

The variable rank of the data set LAWSCH85 is the rank of the law school as a number between 1 and 175. We would like to compare schools in the top 10 , ranks 11-25, 26-40, 41-60, and 61-100 to the reference group of ranks above 100. So in Script 7.5 (Example-7-8.j1), we store the cut points 1, 11, $26,41,61,101$, and 176 in a variable cutpts. In the data frame lawsch 85 , we create our new variable ro using the cut command.
To be consistent with Wooldridge (2019), we do not want the top 10 schools as a reference category but the last category. It is chosen with the base argument in DummyCoding. The regression results imply that graduates from the top 10 schools collect a starting salary which is around 70% higher than those of the schools below rank 100. In fact, this approximation is inaccurate with these large numbers and the coefficient of 0.7 actually implies a difference of $\exp (0.7)-1=1.013$ or 101.3%.

```
                                    Script 7.5: Example-7-8.jl
using WooldridgeDatasets, GLM, DataFrames, CategoricalArrays, FreqTables
lawsch85 = DataFrame(wooldridge("lawsch85"))
# define cut points for the rank:
cutpts = [1, 11, 26, 41, 61, 101, 176]
# note that "cut" takes intervals only in the form of [lower, upper)
# create categorical variable containing ranges for the rank:
lawsch85.rc = cut(lawsch85.rank, cutpts,
    labels=["[1,11)", "[11,26)", "[26,41)",
                "[41,61)", "[61,101)", "[101,176)"])
# display frequencies:
freq = freqtable(lawsch85.rc)
println("freq: \n$freq\n")
# run regression:
reg = lm(@formula(log(salary) ~ rc + LSAT + GPA + log(libvol) + log(cost)),
    lawsch85,
    contrasts=Dict(:rc => DummyCoding(base="[101,176)",
        levels=["[1,11)", "[11,26)", "[26,41)",
                            "[41,61)", "[61,101)", "[101,176)"])))
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Output of Script 7.5: Example-7-8. jl
freq:
6-element Named Vector\{Int64\}
Dim1
" $[1,11$) " | 10
" $[11,26)^{\prime \prime} \mid 16$
" $[26,41) "$ | 13
" $[41,61$)" | 18
" $[61,101) "$ | 37
" $[101,176)$ " | 62
table_reg:

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	9.1653	0.411424	22.28	$<1 e-44$	8.3511	9.97949
rc: [1,11)	0.699566	0.0534919	13.08	$<1 e-24$	0.593707	0.805425
rc: $[11,26)$	0.593543	0.03944	15.05	$<1 e-29$	0.515493	0.671594
rc: $[26,41)$	0.375076	0.0340812	11.01	<1e-19	0.307631	0.442522
rc: $[41,61)$	0.262819	0.0279621	9.40	$<1 e-15$	0.207483	0.318155
rc: [61,101)	0.131595	0.0210419	6.25	$<1 e-08$	0.0899538	0.173236
LSAT	0.00569085	0.00306301	1.86	0.0655	-0.000370751	0.0117524
GPA	0.0137255	0.0741919	0.19	0.8535	-0.133098	0.160549
$\log (1 i b v o l)$	0.0363619	0.0260165	1.40	0.1647	-0.015124	0.0878478
$\log ($ cost)	0.000841189	0.025136	0.03	0.9734	-0.0489023	0.0505847

7.5. Interactions and Differences in Regression Functions Across Groups

Dummy and categorical variables can be interacted just like any other variable. Wooldridge (2019, Section 7.4) discusses the specification and interpretation in this setup. An important case is a model in which one or more dummy variables are interacted with all other regressors. This allows the whole regression model to differ by groups of observations identified by the dummy variable(s).

The example from Wooldridge (2019, Section 7.4-c) is replicated in Script 7.6 (Dummy-Interact. j1). Note that the example only applies to the subset of data from spring. We use the subset option of 1 m directly to define the estimation sample. Other than that, the script does not introduce any new syntax but combines two tricks we have seen previously:

- The dummy variable female is interacted with all other regressors using the " $*$ " formula syntax with the other variables contained in parentheses, see Section 6.1.6.
- The F test for all interaction effects is performed using the command ftest.

Script 7.6: Dummy-Interact.jl
using WooldridgeDatasets, GLM, DataFrames
gpa3 = DataFrame (wooldridge ("gpa3"))
\# model with full interactions with female dummy (only for spring data):
reg_ur $=\operatorname{lm}(@ f o r m u l a(c u m g p a ~ \sim ~ f e m a l e ~ * ~(s a t ~+~ h s p e r c ~+~ t o t h r s)), ~$ subset (gpa3, :spring => ByRow (==(1))))
table_reg_ur = coeftable (reg_ur)
println("table_reg_ur: \n\$table_reg_ur\n")
\# F test for HO (the interaction coefficients of "female" are zero):
reg_r = lm(@formula (cumgpa ~ sat + hsperc + tothrs),
subset (gpa3, :spring => ByRow(==(1))))
ftest_res $=$ ftest (reg_r.model, reg_ur.model)
fstat $=$ ftest_res.fstat [2]
fpval = ftest_res.pval[2]
println("fstat $=$ \$fstat $\$ n")
println("fpval = \$fpval")

Output of Script 7.6: Dummy-Interact.jl

	Coef.	Std. Error		$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	1.48081	0.207334	7.14	$<1 e-11$	1.07307	1.88856
female	-0.353486	0.410529	-0.86	0.3898	-1.16084	0.453866
sat	0.00105164	0.000181089	5.81	<1e-07	0.000695512	0.00140778
hsperc	-0.00845156	0.00137036	-6.17	<1e-08	-0.0111465	-0.00575659
tothrs	0.00234413	0.000862373	2.72	0.0069	0.000648173	0.00404008
female \& sat	0.000750598	0.000385168	1.95	0.0521	-6.87813e-6	0.00150807
female \& hsperc	-0.000549755	0.00316172	-0.17	0.8621	-0.00676764	0.00566813
female \& tothrs	-0.000115833	0.00162769	-0.07	0.9433	-0.00331687	0.00308521

We can estimate the same model parameters by running two separate regressions, one for females and one for males, see Script 7.7 (Dummy-Interact-Sep.jl). We see that in the joint model, the parameters without interactions (Intercept, sat, hsperc, and tothrs) apply to the males and the interaction parameters reflect the differences to the males.

To reconstruct the parameters for females from the joint model, we need to add the two respective parameters. The intercept for females is $1.4808-0.3535=1.1273$ and the coefficient of sat for females is $0.0011+0.0008 \approx 0.0018$.

Script 7.7: Dummy-Interact-Sep.jl

```
using WooldridgeDatasets, GLM, DataFrames
gpa3 = DataFrame(wooldridge("gpa3"))
# estimate model for males (& spring data):
reg_m = lm(@formula(cumgpa ~ sat + hsperc + tothrs),
    subset(gpa3, :spring => ByRow(==(1)), :female => ByRow(==(0))))
table_reg_m = coeftable (reg_m)
println("table_reg_m: \n$table_reg_m")
# estimate model for females (& spring data):
reg_f = lm(@formula(cumgpa ~ sat + hsperc + tothrs),
    subset(gpa3, :spring => ByRow(==(1)), :female => ByRow(==(1))))
table_reg_f = coeftable(reg_f)
println("table_reg_f: \n$table_reg_f")
```

Output of Script 7.7: Dummy-Interact-Sep.jl

table_reg_m:						
	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	1.48081	0.205971	7.19	<1e-11	1.07531	1.88631
sat	0.00105164	0.000179899	5.85	<1e-07	0.000697474	0.00140582
hsperc	-0.00845156	0.00136135	-6.21	<1e-08	-0.0111317	-0.00577144
tothrs	0.00234413	0.000856704	2.74	0.0066	0.000657514	0.00403074
table_reg_f:						
	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	1.12733	0.361595	3.12	0.0025	0.408498	1.84615
sat	0.00180224	0.000346916	5.20	<1e-05	0.0011126	0.00249189
hsperc	-0.00900131	0.00290777	-3.10	0.0027	-0.0147818	-0.00322086
tothrs	0.00222829	0.00140879	1.58	0.1174	-0.000572284	0.00502887

8. Heteroscedasticity

The homoscedasticity assumptions SLR. 5 for the simple regression model and MLR. 5 for the multiple regression model require that the variance of the error terms is unrelated to the regressors, i.e.

$$
\begin{equation*}
\operatorname{Var}\left(u \mid x_{1}, \ldots, x_{k}\right)=\sigma^{2} . \tag{8.1}
\end{equation*}
$$

Unbiasedness and consistency (Theorems 3.1,5.1) do not depend on this assumption, but the sampling distribution (Theorems 3.2, 4.1,5.2) does. If homoscedasticity is violated, the standard errors are invalid and all inferences from t, F and other tests based on them are unreliable. Also the (asymptotic) efficiency of OLS (Theorems 3.4, 5.3) depends on homoscedasticity. Generally, homoscedasticity is difficult to justify from theory. Different kinds of individuals might have different amounts of unobserved influences in ways that depend on regressors.

We cover three topics: Section 8.1 shows how the formula of the estimated variance-covariance can be adjusted so it does not require homoscedasticity. In this way, we can use OLS to get unbiased and consistent parameter estimates and draw inference from valid standard errors and tests. Section 8.2 presents tests for the existence of heteroscedasticity. Section 8.3 discusses weighted least squares (WLS) as an alternative to OLS. This estimator can be more efficient in the presence of heteroscedasticity.

8.1. Heteroscedasticity-Robust Inference

Wooldridge (2019, Equation 8.4 in Section 8.2) presents the following formula for the classical version of White's heteroscedasticity-robust standard errors:

$$
\begin{equation*}
\widehat{\operatorname{Var}}\left(\hat{\beta}_{j}\right)=\frac{\sum_{i=1}^{n} \hat{r}_{i j}^{2} \cdot \hat{u}_{i}^{2}}{\left(\sum_{i=1}^{n} \hat{r}_{i j}^{2}\right)^{2}} \tag{8.2}
\end{equation*}
$$

In this equation

- $\hat{r}_{i j}$ denotes the i-th residual from regressing x_{j} on all other explanatory variables, and
- \hat{u}_{i} is the i-th residual from regressing y on all explanatory variables.

Wooldridge (2010, Formula 4.11) shows another formula for the complete variance-covariance matrix:

$$
\begin{equation*}
\widehat{V \operatorname{Cov}}(\hat{\boldsymbol{\beta}})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\sum_{i=1}^{n} \hat{u}_{i}^{2} x_{i}^{\prime} x_{i}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tag{8.3}
\end{equation*}
$$

The diagonal of this matrix is equivalent to Equation 8.2. Because we know matrix algebra in Julia, we choose this representation to implement heteroscedasticity-robust standard errors in Script 8.1 (calc-white-se.jl). ${ }^{1}$ The function getMats was introduced in Section 3.2 in case you want to

[^39]look it up. As you can see in Scripts 8.2 (Example-8-2-manual.jl) and 8.3 (Example-8-2.jl), both formulas give the same heteroscedasticity-robust standard errors. Note that t statistics and their p values returned by the coeftable function are still based on usual standard errors and need to be updated by Equations 4.6 and 4.7 discussed in Chapter 4.

Script 8.1: calc-white-se.jl

```
using LinearAlgebra
include("../03/getMats.jl")
# for details, see Wooldridge (2010), p. }5
function calc_white_se(reg, df)
    f = formula(reg)
    xy = getMats(f, df)
    y = xy[1]
    x = xy[2]
    u = residuals(reg)
    invXX = inv(X' * X)
    sumterm = (X .* u)' * (X .* u)
    avar = invXX' * sumterm * invXX
    std_white = sqrt.(diag(avar))
    return std_white
end
```


Wooldridge, Example 8.2: Heteroscedasticity-Robust Inference

Scripts 8.2 (Example-8-2-manual.jl) and 8.3 (Example-8-2.jl) demonstrate the calculation of heteroscedasticity-robust standard errors. As you can see, Equation 8.2 and the implementation in Script 8.1 (calc-white-se.jl) give the same results. The output of Script 8.3 (Example-8-2.jl) also compares to the usual standard errors.
In Script 8.4 (Example-8-2-cont.jl) we want to perform an F test and face the problem that there is no implementation available for an F test with heteroscedasticity-robust standard errors. This is one of the few times we use the PyCall package to easily access functions that are available in Python as introduced in Chapter 1.2.5. Details about the Python implementation are given, for example, in Heiss and Brunner (2020). As you can see, the Python command f_test from the statsmodels module is performing the F test and the default of the fit method are usual standard errors just as in GLM. It is reassuring that the statsmodels and GLM implementations give the same results. We can also use cov_type="HC0" for an F test with heteroscedasticity-robust standard errors.
The results generally do not differ a lot between the different versions. This is an indication that heteroscedasticity might not be a big issue in this example. To be sure, we would like to have a formal test as discussed in the next section.

Script 8.2: Example-8-2-manual.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("../03/getMats.jl")
gpa3 = DataFrame(wooldridge("gpa3"))
reg_default = lm(@formula(cumgpa ~ sat + hsperc + tothrs +
    female + black + white),
        subset(gpa3, :spring => ByRow(==(1))))
```

```
# extract formula parts for SE calculation:
f = formula(reg_default)
xy = getMats(f, subset(gpa3, :spring => ByRow(==(1))))
y = xy[1]
x = xy[2]
u = residuals(reg_default)
df = DataFrame(X, :auto)
# calculate all rij:
ri1 = residuals(lm(@formula(x1 ~ 0 + x2 + x3 + x4 + x5 + x6 + x7), df))
ri2 = residuals(lm(@formula(x2 ~ 0 + x1 + x3 + x4 + x5 + x6 + x7), df))
ri3 = residuals(lm(@formula(x3 ~ 0 + x1 + x2 + x4 + x5 + x6 + x7), df))
ri4 = residuals(lm(@formula(x4 ~ 0 + x1 + x2 + x3 + x5 + x6 + x7), df))
ri5 = residuals(lm(@formula(x5 ~ 0 + x1 + x2 + x3 + x4 + x6 + x7), df))
ri6 = residuals(lm(@formula(x6 ~ 0 + x1 + x2 + x3 + x4 + x5 + x7), df))
ri7 = residuals(lm(@formula(x7 ~ 0 + x1 + x2 + x3 + x4 + x5 + x6), df))
# calculate SE according to Wooldridge (2019), Ch. 8.2:
se1 = sqrt(sum((ri1 .^ 2) .* (u .^ 2)) / (sum((ri1 .^ 2))^2))
se2 = sqrt(sum((ri2 .^ 2) .* (u .^ 2)) / (sum((ri2 .^ 2))^2))
se3 = sqrt(sum((ri3 .^ 2) .* (u .^ 2)) / (sum((ri3 .^ 2))^2))
se4 = sqrt(sum((ri4 .^ 2) .* (u .^ 2)) / (sum((ri4 .^ 2))^2))
se5 = sqrt(sum((ri5 .^ 2) .* (u .^ 2)) / (sum((ri5 .^ 2))^2))
se6 = sqrt (sum((ri6 .^ 2) .* (u .^ 2)) / (sum((ri6 .^ 2))^2))
se7 = sqrt(sum((ri7 .^ 2) .* (u .^ 2)) / (sum((ri7 .^ 2))^2))
se_white = round.([se1, se2, se3, se4, se5, se6, se7], digits=5)
println("se_white = $se_white")
```

Output of Script 8.2: Example-8-2-manual. jl
se_white $=[0.21856,0.00019,0.0014,0.00073,0.05857,0.1181,0.11032]$

Script 8.3: Example-8-2.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("calc-white-se.jl")
gpa3 = DataFrame(wooldridge("gpa3"))
reg_default = lm(@formula(cumgpa ~ sat + hsperc + tothrs +
    female + black + white),
    subset(gpa3, :spring => ByRow(==(1))))
hc0 = calc_white_se(reg_default, subset(gpa3, :spring => ByRow(==(1))))
table_se = DataFrame(coefficients=coeftable(reg_default).rownms,
    b=round. (coef(reg_default), digits=5),
    se_default=round.(coeftable(reg_default).cols[2], digits=5),
    se_white=hc0)
println("table_se: \n$table_se")
```

Output of Script 8.3: Example-8-2.jl

table_se:

7×4 DataFrame

Row	coefficients String	$\begin{aligned} & \text { b } \\ & \text { Float } 64 \end{aligned}$	se_default Float64	$\begin{aligned} & \text { se_white } \\ & \text { Float } 64 \end{aligned}$
1	(Intercept)	1.47006	0.2298	0.21856
2	sat	0.00114	0.00018	0.000189691
3	hsperc	-0.00857	0.00124	0.0014043
4	tothrs	0.0025	0.00073	0.000733526
5	female	0.30343	0.05902	0.0585696
6	black	-0.12828	0.14737	0.118095
7	white	-0.05872	0.14099	0.110322

Script 8.4: Example-8-2-cont.jl

```
using PyCall, WooldridgeDatasets, GLM, DataFrames
include("../03/getMats.jl")
# install Python's statsmodels with: using Conda; Conda.add("statsmodels")
sm = pyimport("statsmodels.api")
gpa3 = DataFrame(wooldridge("gpa3"))
gpa3_subset = subset(gpa3, :spring => ByRow(==(1)))
# F test using usual VCOV in Julia:
reg_ur = lm(@formula(cumgpa ~ sat + hsperc + tothrs + female + black + white),
    gpa3_subset)
reg_r = lm(@formula(cumgpa ~ sat + hsperc + tothrs + female),
    gpa3_subset)
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat_jl = ftest_res.fstat[2]
fpval_jl = ftest_res.pval[2]
println("fstat_jl = $fstat_jl\n")
println("fpval_jl = $fpval_jl\n")
# F test using different variance-covariance formulas:
# definition of model and hypotheses:
f = @formula (cumgpa ~ 1 + sat + hsperc + tothrs + female + black + white)
xy = getMats(f, gpa3_subset)
reg = sm.OLS (xy[1], xy[2])
hypotheses = ["x5 = 0", "x6 = 0"] # meaning "black = 0" and "white = 0"
# usual VCOV in Python:
results_default = reg.fit()
ftest_py_default = results_default.f_test (hypotheses)
fstat_py_default = ftest_py_default.statistic
fpval_py_default = ftest_py_default.pvalue
println("fstat_py_default = $fstat_py_default\n")
println("fpval_py_default = $fpval_py_default\n")
# classical White VCOV in Python:
results_hc0 = reg.fit(cov_type="HCO")
ftest_py_hc0 = results_hc0.f_test (hypotheses)
fstat_py_hc0 = ftest_py_hc0.statistic
fpval_py_hc0 = ftest_py_hc0.pvalue
println("fstat_py_hc0 = $fstat_py_hc0\n")
println("fpval_py_hc0 = $fpval_py_hc0")
```

Output of Script 8.4: Example-8-2-cont.jl

```
fstat_jl = 0.6796041956073717
fpval_jl = 0.507468362258422
fstat_py_default = 0.6796041956073425
fpval_py_default = 0.5074683622584049
fstat_py_hc0 = 0.7477969818036305
fpval_py_hc0 = 0.4741442714738484
```


8.2. Heteroscedasticity Tests

The Breusch-Pagan (BP) test for heteroscedasticity is easy to implement with basic OLS routines. After a model

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}+u \tag{8.4}
\end{equation*}
$$

is estimated, we obtain the residuals \hat{u}_{i} for all observations $i=1, \ldots, n$. We regress their squared value on all independent variables from the original equation. We can either perform the standard F test of overall significance with ftest. Or we can use an $L M$ test by multiplying the R^{2} from the second regression with the number of observations.

In GLM, this is easily done. Remember that the residuals from a regression can be obtained by the residuals function. Their squared value can be stored in a new variable to be used as a dependent variable in the second stage.

The $L M$ version of the BP test is even more convenient to use with the function WhiteTest from the Hypothesistests package. The computation of the test statistic and corresponding p value is demonstrated in Script 8.5 (Example-8-4.j1).

Wooldridge, Example 8.4: Heteroscedasticity in a Housing Price Equation

Script 8.5 (Example-8-4.jl) implements the F and $L M$ versions of the BP test. The command WhiteTest simply takes the regressor matrix, the regression residuals, and type=:linear for the Breusch-Pagan test as arguments and delivers a test statistic of $L M=14.09$. The corresponding p value is smaller than 0.003 so we reject homoscedasticity for all reasonable significance levels.
The output also shows the manual implementation of a second stage regression where we regress squared residuals on the independent variables. We can directly interpret the reported F statistic of 5.34 and its p value of 0.002 as the F version of the BP test. We can manually calculate the LM statistic by multiplying $R^{2}(=0.16)$ with the number of observations $(n=88)$.
We replicate the test for an alternative model with logarithms discussed by Wooldridge (2019) together with the White test in Example 8.5 and Script 8.6 (Example-8-5.jl).

Script 8.5: Example-8-4.jl

```
using WooldridgeDatasets, GLM, DataFrames, HypothesisTests
hprice1 = DataFrame(wooldridge("hprice1"))
# estimate model:
f = @formula(price ~ 1 + lotsize + sqrft + bdrms)
reg = lm(f, hprice1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
# automatic BP test (LM version),
# type = :linear specifies Breusch-Pagan test:
X = getMats(f, hprice1)[2]
result_bp_lm = WhiteTest(X, residuals(reg), type=:linear)
bp_lm_statistic = result_bp_lm.lm
bp_lm_pval = pvalue(result_bp_lm)
println("bp_lm_statistic = $bp_lm_statistic\n")
println("bp_lm_pval = $bp_lm_pval\n")
# manual BP test (F version):
hpricel.resid_sq = residuals(reg) .^ 2
reg_resid = lm(@formula(resid_sq ~ lotsize + sqrft + bdrms), hprice1)
bp_F = ftest(reg_resid.model)
bp_F_statistic = bp_F.fstat
bp_F_pval = bp_F.pval
println("bp_F_statistic = $bp_F_statistic\n")
println("bp_F_pval = $bp_F_pval")
```

Output of Script 8.5: Example-8-4.jl

table_reg:						
	Coef.	Std. Error	t	Pr ($>\|t\|$)	Lower 95\%	Upper 95\%
(Intercept)	-21.7703	29.475	-0.74	0.4622	-80.3847	36.844
lotsize	0.00206771	0.000642126	3.22	0.0018	0.000790769	0.00334464
sqrft	0.122778	0.0132374	9.28	<1e-13	0.0964541	0.149102
bdrms	13.8525	9.01015	1.54	0.1279	-4.06514	31.7702
bp_lm_statistic $=14.092385504350007$						
bp_lm_pval $=0.0027820595556893894$						
bp_F_statistic $=5.338919363241315$						
bp_F_pval $=0.002047744420936324$						

The White test is a variant of the BP test where in the second stage, we do not regress the squared first-stage residuals on the original regressors only. Instead, we add interactions and polynomials of them or include the fitted values \hat{y} and \hat{y}^{2}. This can easily be done in a manual second-stage regression remembering that the fitted values are computed by predict.

Conveniently, we can also use the WhiteTest command to do the calculations of the $L M$ version of the test including the p values automatically. All we have to do is to explain that in the second stage we want a different set of regressors.

Wooldridge, Example 8.5: BP and White test in the Log Housing Price Equation

Script 8.6 (Example-8-5.jl) implements the BP and the White test for a model that now contains logarithms of the dependent variable and three independent variables. The LM versions of both the BP and the White test do not reject the null hypothesis at conventional significance levels with p values of 0.238 and 0.178 , respectively.

Script 8.6: Example-8-5.jl

```
using WooldridgeDatasets, GLM, DataFrames, HypothesisTests
include("../03/getMats.jl")
hprice1 = DataFrame(wooldridge("hprice1"))
# estimate model:
f = @formula(log(price) ~ 1 + log(lotsize) + log(sqrft) + bdrms)
reg = lm(f, hprice1)
# BP test:
X = getMats(f, hprice1) [2]
result_bp = WhiteTest(X, residuals(reg), type=:linear)
bp_statistic = result_bp.lm
bp_pval = pvalue (result_bp)
println("bp_statistic = $bp_statistic\n")
println("bp_pval = $bp_pval\n")
# White test:
X_wh = hcat (ones(size(X) [1]),
    predict (reg),
    predict (reg) .^ 2)
result_white = WhiteTest(X_wh, residuals(reg), type=:linear)
white_statistic = result_white.lm
white_pval = pvalue(result_white)
println("white_statistic = $white_statistic\n")
println("white_pval = $white_pval")
```

Output of Script 8.6: Example-8-5.jl
bp_statistic $=4.2232457418006355$
bp_pval $=0.2383448263153909$
white_statistic $=3.4472865468700427$
white_pval = 0.17841494794177618

8.3. Weighted Least Squares

Weighted Least Squares (WLS) attempts to provide a more efficient alternative to OLS. It is a special version of a feasible generalized least squares (FGLS) estimator. Instead of the sum of squared residuals, their weighted sum is minimized. If the weights are inversely proportional to the variance, the estimator is efficient. Also the usual formula for the variance-covariance matrix of the parameter estimates and standard inference tools are valid.
We can obtain WLS parameter estimates by multiplying each variable in the model with the square root of the weight as shown by Wooldridge (2019, Section 8.4) and demonstrated in Script 8.7 (Example-8-6.jl).

Wooldridge, Example 8.6: Financial Wealth Equation

Script 8.7 (Example-8-6.j1) implements both OLS and WLS estimation for a regression of financial wealth (nettfa) on income (inc), age (age), gender (male) and eligibility for a pension plan (e401k) using the data set 401 ksubs . Following Wooldridge (2019), we assume that the variance is proportional to the income variable inc. Therefore, the optimal weight is $\frac{1}{\mathrm{inc}}$, which is considered in the identity calls within the formula. The weighting of the constant is implemented by including the weight itself in the regression model ($1 \cdot \frac{1}{\sqrt{\text { inc }}}=\mathbf{w}$ in the formula) and excluding the original constant (0 in the formula).

Script 8.7: Example-8-6.jl
using WooldridgeDatasets, GLM, DataFrames include("calc-white-se.jl")
k401ksubs = DataFrame(wooldridge("401ksubs"))
\# subsetting data:
k401ksubs_sub = subset (k401ksubs, :fsize => ByRow(==(1)))
\# OLS (only for singles, i.e. 'fsize' ==1):
reg_ols = lm(@formula(nettfa ~inc + ((age - 25)^2) + male + e401k), k401ksubs_sub)
hc0 = calc_white_se(reg_ols, k401ksubs_sub)
\# print regression table with hc0:
table_ols = DataFrame (coefficients=coeftable (reg_ols).rownms, b=round. (coef(reg_ols), digits=5), se=round. (hc0, digits=5))
println("table_ols: \n\$table_ols $\backslash n "$)
\# WLS:
k401ksubs_sub.w = (1 ./ sqrt.(k401ksubs_sub.inc))
reg_wls = lm(@formula(identity(nettfa * w) ~ 0 + w + identity(inc * w) +
identity ((age - 25)^2 * w) +
identity (male * w) +
identity (e401k * w)), k401ksubs_sub)
\# print regression table:
table_wls = DataFrame (coefficients=coeftable (reg_wls). rownms, b=round. (coef (reg_wls), digits=5), se=round. (coeftable (reg_wls).cols[2], digits=5))
println("table_wls: \n\$table_wls\n")

Output of Script 8.7: Example-8-6.jl

```
table_ols:
5*3 DataFrame
    Row | coefficients b se
    | String Float64 Float64
    --------------------------------------------------
    1 (Intercept) -20.985 3.49085
    2 inc 0.77058 0.09945
    | (age - 25) ^ 2 0.02513 0.00434
    | male 2.47793 2.05581
    l e401k 6.88622 2.28374
table_wls:
5*3 DataFrame
Row | coefficients b se
    Any Float64 Float64
    W -16.7025 1.95799
        | identity(inc * w) 0.74038 0.0643
        | identity((age - 25) ^ 2 * w) 0.01754 0.00193
        | identity(male * w) 1.84053 1.56359
    | identity(e401k * w) 5.18828 1.70343
```

We can also use heteroscedasticity-robust statistics from Section 8.1 to account for the fact that our variance function might be misspecified. Script 8.8 (WLS-Robust. $j l$) repeats the WLS estimation of Example 8.6 but reports non-robust and robust standard errors. It replicates Wooldridge (2019, Table 8.2) and there is nothing special about the implementation. The fact that we used weights is correctly accounted for in the following calculations.

Script 8.8: WLS-Robust.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("calc-white-se.jl")
k401ksubs = DataFrame(wooldridge("401ksubs"))
# subsetting data:
k401ksubs_sub = subset(k401ksubs, :fsize => ByRow(==(1)))
# WLS:
k401ksubs_sub.w = (1 ./ sqrt.(k401ksubs_sub.inc))
reg_wls = lm(@formula(identity(nettfa * w) ~ 0 + w + identity(inc * w) +
                                    identity((age - 25)^2 * w) +
                                    identity (male * w) +
```

```
# robust results (White SE):
```


robust results (White SE):

hc0 = calc_white_se(reg_wls, k401ksubs_sub)
hc0 = calc_white_se(reg_wls, k401ksubs_sub)

print regression table:

print regression table:

table_default = DataFrame(coefficients=coeftable(reg_wls).rownms,
table_default = DataFrame(coefficients=coeftable(reg_wls).rownms,
b=round. (coef(reg_wls), digits=5),
b=round. (coef(reg_wls), digits=5),
se_default=round. (coeftable(reg_wls).cols[2], digits=5),
se_default=round. (coeftable(reg_wls).cols[2], digits=5),
se_robust=round.(hc0, digits=5))
se_robust=round.(hc0, digits=5))
println("table_default: \n\$table_default")

```
println("table_default: \n$table_default")
```

 identity (e401k * w)) , k401ksubs_sub)
 Output of Script 8.8: WLS-Robust.jl

table_default:

5×4 DataFrame

The assumption made in Example 8.6 that the variance is proportional to a regressor is usually hard to justify. Typically, we don't know the variance function and have to estimate it. This feasible GLS (FGLS) estimator replaces the (allegedly) known variance function with an estimated one.

We can estimate the relation between variance and regressors using a linear regression of the log of the squared residuals from an initial OLS regression $\log \left(\hat{u}^{2}\right)$ as the dependent variable. Wooldridge (2019, Section 8.4) suggests two versions for the selection of regressors:

- the regressors x_{1}, \ldots, x_{k} from the original model similar to the BP test
- \hat{y} and \hat{y}^{2} from the original model similar to the White test

As the estimated error variance, we can use $\exp \left(\widehat{\log \left(\hat{u}^{2}\right)}\right)$. Its inverse can then be used as a weight in WLS estimation.

Wooldridge, Example 8.7: Demand for Cigarettes

Script 8.9 (Example-8-7.jl) studies the relationship between daily cigarette consumption cigs, individual characteristics, and restaurant smoking restrictions restaurn. After the initial OLS regression, a BP test is performed which clearly rejects homoscedasticity (see previous section for the BP test). After the regression of log squared residuals on the regressors, the FGLS weights are calculated and used in the WLS regression. See Wooldridge (2019) for a discussion of the results.

Script 8.9: Example-8-7.jl
using WooldridgeDatasets, GLM, DataFrames, HypothesisTests

```
smoke = DataFrame(wooldridge("smoke"))
```

\# OLS:
reg_ols $=$ lm(@formula(cigs $\sim \log ($ income $)+\log (c i g p r i c)+$
educ + age + age^2 + restaurn), smoke)
table_ols = DataFrame (coefficients=coeftable (reg_ols). rownms,
b=round. (coef (reg_ols), digits=5),
se=round. (stderror (reg_ols), digits=5))
println("table_ols: \n\$table_ols $\backslash n$ ")
\# BP test:
$\mathrm{X}=$ modelmatrix (reg_ols)
result_bp $=$ WhiteTest (X , residuals (reg_ols), type=:linear)
bp_statistic $=$ result_bp.lm
bp_pval = pvalue (result_bp)
println("bp_statistic = \$bp_statistic\n")
println("bp_pval = \$bp_pval\n")
\# FGLS (estimation of the variance function):
smoke.logu2 = log. (residuals (reg_ols) .^ 2)
reg_fgls $=\operatorname{lm}(@ f o r m u l a(l o g u 2 \sim \log (i n c o m e)+\log (c i g p r i c)+$
educ + age + age^2 + restaurn), smoke)
table_fgls = DataFrame (coefficients=coeftable(reg_fgls). rownms,
b=round. (coef (reg_fgls), digits=5),
se=round. (stderror(reg_fgls), digits=5))
println("table_fgls: \n\$table_fgls\n")
\# FGLS (WLS):
smoke.w = (1 ./ sqrt. (exp. (predict(reg_fgls))))
reg_wls $=$ lm(@formula(identity (cigs * w) ~ 0 + w + identity (log(income) * w) +
identity (log(cigpric) * w) +
identity (educ * w) +
identity (age * w) +
identity (age^2 * w) +
identity (restaurn * w)), smoke)
table_wls = DataFrame (coefficients=coeftable (reg_wls). rownms,
b=round. (coef (reg_wls), digits=5),
se=round. (stderror (reg_wls), digits=5))
println("table_wls: \n\$table_wls")

Output of Script 8.9: Example-8-7.jl

```
table_ols:
7\times3 DataFrame
    Row | coefficients b se
        | String Float64 Float64
        --------------------------------------------------
    | (Intercept) -3.63983 24.0787
    2 | log(income) 0.88027 0.72778
    3 | log(cigpric) -0.75086 5.77334
    4 | educ -0.5015 0.16708
    5 | age 0.77069 0.16012
    6 | age ^ 2 -0.00902 0.00174
    7 restaurn -2.82508 1.11179
bp_statistic = 32.25841908120354
bp_pval = 1.4557794830263948e-5
table_fgls:
7\times3 DataFrame
    Row | coefficients b se
        | String Float64 Float64
        1 | (Intercept) -1.92069 2.56303
        2 | log(income) 0.29154 0.07747
        | log(cigpric) 0.19542 0.61454
        4 | educ -0.0797 0.01778
        5 | age 0.20401 0.01704
        | age ^ 2 -0.00239 0.00019
        7 restaurn -0.62701 0.11834
table_wls:
7\times3 DataFrame
    Row | coefficients b se
        | Any Float64 Float64
    --------------------------------------------------
        1 | w 5.63546 17.8031
        2 ~ \| ~ i d e n t i t y ( l o g ( i n c o m e ) ~ * ~ w ) ~ 1 . 2 9 5 2 4 ~ 0 . 4 3 7 0 1 ~
        3 | identity(log(cigpric) * w) -2.94031 4.46014
        | identity(educ * w) -0.46345 0.12016
        5 | identity(age * w) 0.48195 0.09681
        6 | identity(age ^ 2 * w) -0.00563 0.00094
    7 | identity(restaurn * w) -3.46106 0.79551
```


9. More on Specification and Data Issues

This chapter covers different topics of model specification and data problems. Section 9.1 asks how statistical tests can help us specify the "correct" functional form given the numerous options we have seen in Chapters 6 and 7. Section 9.2 shows some simulation results regarding the effects of measurement errors in dependent and independent variables. Sections 9.3 covers missing values and how Julia can deal with them. In Section 9.4, we briefly discuss outliers and Section 9.5, the LAD estimator is presented.

9.1. Functional Form Misspecification

We have seen many ways to flexibly specify the relation between the dependent variable and the regressors. An obvious question to ask is whether or not a given specification is the "correct" one. The Regression Equation Specification Error Test (RESET) is a convenient tool to test the null hypothesis that the functional form is adequate.

Wooldridge (2019, Section 9.1) shows how to implement it using a standard F test in a second regression that contains polynomials of fitted values from the original regression. We already know how to obtain fitted values and run an F test, so the implementation is straightforward.

Wooldridge, Example 9.2: Housing Price Equation

Script 9.1 (Example-9-2.jl) implements the RESET test using the procedure described by Wooldridge (2019) for the housing price model. As previously, we get the fitted values from the original regression using predict. Their polynomials are entered into the formula of the second regression. To avoid numerical problems, predictions are divided by 1000. The F test is easily done using ftest as described in Section 4.3. The test statistic is $F=4.67$ with a p value of $p=0.012$, so we reject the null hypothesis that this equation is correctly specified at a significance level of $\alpha=5 \%$.

Script 9.1: Example-9-2.jl

```
using WooldridgeDatasets, GLM, DataFrames
hprice1 = DataFrame(wooldridge("hprice1"))
# original OLS:
reg = lm(@formula(price ~ lotsize + sqrft + bdrms), hprice1)
# regression for RESET test:
hprice1.fitted_sq = predict(reg) .^ 2 ./ 1000
hprice1.fitted_cub = predict(reg) .^ 3 ./ 1000
reg_reset = lm(@formula(price ~ lotsize + sqrft + bdrms +
    fitted_sq + fitted_cub), hprice1)
table_reg_reset = coeftable(reg_reset)
println("table_reg_reset: \n$table_reg_reset\n")
```

```
# RESET test (HO: all coefficients including "fitted" are zero):
ftest_res = ftest(reg.model, reg_reset.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Output of Script 9.1: Example-9-2.jl
table_reg_reset:

	Coef.	Std. Error	t	Pr $(>\|t\|)$	Lower 95%	Upper 95%
(Intercept)	166.097	317.433	0.52	0.6022	-465.377	797.572
lotsize	0.000153723	0.00520304	0.03	0.9765	-0.0101968	0.0105042
sqrft	0.0175989	0.299251	0.06	0.9532	-0.577706	0.612904
bdrms	2.1749	33.8881	0.06	0.94990	-655.2393	69.5891
fitted_sq	0.353426	7.09894	0.05	0.9604	-13.7686	14.4755
fitted_cub	0.00154557	0.00655431	0.24	0.8142	-0.011493	0.0145842

fstat $=4.6682055349493785$
fpval $=0.01202171144287659$

Wooldridge (2019, Section 9.1-b) also discusses tests of non-nested models. As an example, a test of both models against a comprehensive model containing all regressors is mentioned. Such a test can be implemented in GLM by the command ftest that we already discussed. Script 9.2 (Nonnested-Test.jl) shows this test in action for a modified version of Example 9.2.
The two alternative models for the housing price are

$$
\begin{align*}
& \text { price }=\beta_{0}+\beta_{1} \text { lotsize }+\beta_{2} \text { sqrft }+\beta_{3} \text { bdrms }+u, \tag{9.1}\\
& \text { price }=\beta_{0}+\beta_{1} \log (\text { lotsize })+\beta_{2} \log (\text { sqrft })+\beta_{3} \text { bdrms }+u . \tag{9.2}
\end{align*}
$$

The output shows the test results of testing both models against the encompassing model with all variables. Both models are rejected against this comprehensive model.

Script 9.2: Nonnested-Test.jl
using WooldridgeDatasets, GLM, DataFrames
hprice1 = DataFrame(wooldridge("hprice1"))
\# two alternative models:
reg1 = lm(@formula(price ~ lotsize + sqrft + bdrms), hprice1)

\# encompassing test of Davidson \& MacKinnon:
\# comprehensive model:
reg3 $=$ lm(@formula (price \sim lotsize + sqrft + bdrms +
$\log (l o t s i z e)+\log (s q r f t)), ~ h p r i c e 1)$
\# test model 1:
ftest_res1 = ftest (reg1.model, reg3.model)
fstat1 = ftest_res1.fstat[2]
fpval1 = ftest_res1.pval[2]
println("fstat1 = \$fstat1\n")
println("fpval1 = \$fpval1\n")

```
# test model 2:
ftest_res2 = ftest(reg2.model, reg3.model)
fstat2 = ftest_res2.fstat[2]
fpval2 = ftest_res2.pval[2]
println("fstat2 = $fstat2\n")
println("fpval2 = $fpval2")
```

Output of Script 9.2: Nonnested-Test.jl
fstat $1=7.8612911192328445$
fpval1 $=0.0007526198013482557$
fstat $2=7.050759706344788$
fpval2 $=0.001494264670031476$

9.2. Measurement Error

If a variable is not measured accurately, the consequences depend on whether the measurement error affects the dependent or an explanatory variable. If the dependent variable is mismeasured, the consequences can be mild. If the measurement error is unrelated to the regressors, the parameter estimates get less precise, but they are still consistent and the usual inferences from the results are valid.

The simulation exercise in Script 9.3 (Sim-ME-Dep. jl) draws 10,000 samples of size $n=1,000$ according to the model with measurement error in the dependent variable

$$
\begin{equation*}
y^{*}=\beta_{0}+\beta_{1} x+u, \quad y=y^{*}+e_{0} \tag{9.3}
\end{equation*}
$$

The assumption is that we do not observe the true values of the dependent variable y^{*} but our measure y is contaminated with a measurement error e_{0}.

Script 9.3: Sim-ME-Dep.jl
using Random, Distributions, Statistics, GLM, DataFrames
\# set the random seed:
Random. seed! (12345)
\# set sample size and number of simulations:
$\mathrm{n}=1000$
$r=10000$
\# set true parameters (betas):
beta0 $=1$
beta1 $=0.5$
\# initialize arrays to store results later (b1 without ME, b1_me with ME) :
b1 $=$ zeros (r)
b1_me $=$ zeros (r)
\# draw a sample of x, fixed over replications:
$\mathbf{x}=\operatorname{rand}(\operatorname{Normal}(4,1), n)$

```
# repeat r times:
for i in 1:r
    # draw a sample of u:
    u = rand(Normal (0, 1), n)
    # draw a sample of ystar:
    ystar = beta0 .+ beta1 * x .+ u
    # measurement error and mismeasured y:
    e0 = rand(Normal (0, 1), n)
    y = ystar .+ e0
    df = DataFrame(ystar=ystar, y=y, x=x)
    # regress ystar on x and store slope estimate at position i:
    reg_star = lm(@formula(ystar ~ x), df)
    b1[i] = coef(reg_star)[2]
    # regress y on x and store slope estimate at position i:
    reg_me = lm(@formula(y ~ x), df)
    b1_me[i] = coef(reg_me)[2]
end
# mean with and without ME:
b1_mean = mean (b1)
b1_me_mean = mean(b1_me)
println("b1_mean = $b1_mean\n")
println("b1_me_mean = $b1_me_mean\n")
# variance with and without ME:
b1_var = var(b1)
b1_me_var = var(b1_me)
println("b1_var = $b1_var\n")
println("b1_me_var = $b1_me_var")
```

Output of Script 9.3: Sim-ME-Dep.jl
b1_mean $=0.4998083385316263$
b1_me_mean $=0.49971475891456885$
b1_var $=0.0009211085272951774$
b1_me_var = 0.0018723380569089674

In the simulation, the parameter estimates using both the correct y^{*} and the mismeasured y are stored as the variables b1 and b1_me, respectively. As expected, the simulated mean of both variables is close to the expected value of $\beta_{1}=0.5$. Output 9.3 (Sim-ME-Dep.jl) shows that the variance of $\mathbf{b} 1$ _me is around 0.002 which is twice as high as the variance of $\mathbf{b} 1$. This was expected since in our simulation, u and e_{0} are both independent standard normal variables, so $\operatorname{Var}(u)=1$ and $\operatorname{Var}\left(u+e_{0}\right)=2$.

If an explanatory variable is mismeasured, the consequences are usually more dramatic. Even in the classical errors-in-variables case where the measurement error is unrelated to the regressors, the parameter estimates are biased and inconsistent. This model is

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x^{*}+u, \quad x=x^{*}+e_{1} \tag{9.4}
\end{equation*}
$$

where the measurement error e_{1} is independent of both x^{*} and u. Wooldridge (2019, Section 9.4) shows that if we regress y on x instead of x^{*},

$$
\begin{equation*}
\operatorname{plim} \hat{\beta}_{1}=\beta_{1} \cdot \frac{\operatorname{Var}\left(x^{*}\right)}{\operatorname{Var}\left(x^{*}\right)+\operatorname{Var}\left(e_{1}\right)} . \tag{9.5}
\end{equation*}
$$

The simulation in Script 9.4 (Sim-ME-Explan.jl) draws 10,000 samples of size $n=1,000$ from this model.

Script 9.4: Sim-ME-Explan.jl

```
using Random, Distributions, Statistics, GLM, DataFrames
# set the random seed:
Random.seed!(12345)
# set sample size and number of simulations:
n = 1000
r = 10000
# set true parameters (betas):
beta0 = 1
beta1 = 0.5
# initialize arrays to store results later (b1 without ME, b1_me with ME):
b1 = zeros(r)
b1_me = zeros(r)
# draw a sample of x, fixed over replications:
xstar = rand(Normal (4, 1), n)
# repeat r times:
for i in 1:r
    # draw a sample of u:
    u = rand(Normal (0, 1), n)
    # draw a sample of y:
    y = beta0 .+ beta1 * xstar .+ u
    # measurement error and mismeasured x:
    e1 = rand(Normal (0, 1), n)
    x = xstar .+ e1
    df = DataFrame (y=y, xstar=xstar, x=x)
    # regress y on xstar and store slope estimate at position i:
    reg_star = lm(@formula(y ~ xstar), df)
    b1[i] = coef(reg_star) [2]
    # regress y on x and store slope estimate at position i:
    reg_me = lm(@formula(y ~ x), df)
    b1_me[i] = coef(reg_me)[2]
end
# mean with and without ME:
b1_mean = mean (b1)
b1_me_mean = mean(b1_me)
println("b1_mean = $b1_mean\n")
println("b1_me_mean = $b1_me_mean\n")
```

```
# variance with and without ME:
b1_var = var(b1)
b1_me_var = var(b1_me)
println("b1_var = $b1_var\n")
println("b1_me_var = $b1_me_var")
```

Output of Script 9.4: Sim-ME-Explan.jl
b1_mean $=0.4998083385316263$
b1_me_mean $=0.2586050939287857$
b1_var $=0.0009211085272951774$
b1_me_var $=0.0005148989427600099$
Since in this simulation, $\operatorname{Var}\left(x^{*}\right)=\operatorname{Var}\left(e_{1}\right)=1$, Equation 9.5 implies that plim $\hat{\beta}_{1}=\frac{1}{2} \beta_{1}=0.25$. This is confirmed by the simulation results in Output 9.4 (Sim-ME-Explan.jl). While the mean of the estimates in b1 using the correct regressor again is around 0.5 , the mean parameter estimate using the mismeasured regressor is about 0.25 .

9.3. Missing Data and Nonrandom Samples

In many data sets, we fail to observe all variables for each observational unit. An important case is survey data where the respondents refuse or fail to answer some questions. We can account for missing data in Julia by using the special value missing. For missing numeric values, like the result of a mathematically undefined operation, there is another special value: NaN (not a number). Both indicate that we do not have the information or the value is not defined. ${ }^{1}$

The function ismissing (value) returns true if value is missing and false otherwise. The same applies to the function isnan (value) if value is or is not NaN. The function skipmissing is useful to exclude missings from further analysis. Operations resulting in $\pm \infty$ like $\log (0)$ or $\frac{1}{0}$ are not coded as NaN but as Inf or -Inf. Also note that mathematically undefined operations can result in an ERROR or NaN, but we can always store such a result as NaN with a try statement. Script 9.5 (NaN-Inf-Missing.jl) gives some examples.

[^40]Script 9.5: NaN-Inf-Missing.jl
using Distributions, DataFrames, Statistics
\# NaN, missings and infinite values in Julia:
$\mathbf{x 1}=[0,2, \mathrm{NaN}$, Inf, missing]
$\log x=\log .(x 1)$
invx = 0 ./ x1
isnanx $=$ isnan. $(x 1)$
isinfx = isinf.(x1)
ismissingx $=$ ismissing. (x1)
results $=$ DataFrame ($x 1=x 1$, logx=logx, invx=invx, ismissingx=ismissingx, isnanx=isnanx, isinfx=isinfx)
println("results $=$ \$results $\backslash n$ ")
\# mathematically not defined is not always NaN (like in R or Python) :
test $=$ try
$\log (-1)$ \# results in an ERROR
catch e
NaN
end
println("test $=$ \$test $\ n$ ")
\# handling missings:
$\mathrm{x} 2=[4,2$, missing, 3]
meanx2_1 $=$ mean ($x 2$)
println("meanx2_1 = \$meanx2_1\n")
meanx2_2 = mean(skipmissing(x2))
println("meanx2_2 = \$meanx2_2\n")
$\mathrm{x} 3=[4,2, \mathrm{NaN}, 3]$
meanx3_1 = mean (x3)
println("meanx3_1 = \$meanx3_1\n")
meanx3_2 $=$ mean(x3[.!isnan.(x3)])
println("meanx3_2 = \$meanx3_2")
Output of Script 9.5: NaN-Inf-Missing.jl

```
results = 5 < 6 DataFrame
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Row & \[
\begin{aligned}
& \text { x1 } \\
& \text { Float } 64 ?
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{logx} \\
& \text { Float } 64 ?
\end{aligned}
\] & \[
\begin{aligned}
& \text { invx } \\
& \text { Float } 64 \text { ? }
\end{aligned}
\] & ismissingx Bool & \begin{tabular}{l}
isnanx \\
Bool?
\end{tabular} & \[
\begin{aligned}
& \text { isinfx } \\
& \text { Bool? }
\end{aligned}
\] \\
\hline 1 & 0.0 & -Inf & NaN & false & false & false \\
\hline 2 & 2.0 & 0.693147 & 0.0 & false & false & false \\
\hline 3 & NaN & NaN & NaN & false & true & false \\
\hline 4 & Inf & Inf & 0.0 & false & false & true \\
\hline 5 & missing & missing & missing & true & missing & missing \\
\hline
\end{tabular}
test = NaN
meanx2_1 = missing
meanx2_2 = 3.0
meanx3_1 = NaN
meanx3_2 = 3.0
```

Depending on the data source, real-world data sets can have different rules for indicating missing information. Sometimes, impossible numeric values are used. For example, a survey including the number of years of education as a variable educ might have a value like " 9999 " to indicate missing information. For any software package, it is highly recommended to change these to proper missingvalue codes early in the data-handling process. Otherwise, we take the risk that some statistical method interprets those values as "this person went to school for 9999 years" producing highly nonsensical results. For the education example, if the variable educ is in the data frame mydata this can be done with either of the two lines of code:

```
mydata.educ = ifelse.(mydata.educ .== 9999, missing, mydata.educ)
mydata.educ = ifelse.(mydata.educ .== 9999, NaN, mydata.educ)
```

If missing values are coded as missing, the function ismissing can also be applied to the whole data frame. The output is a data frame with the same dimensions and variable names but full of Boolean variables set as true for missing observations. If we are interested in the missings for each variable, we can use:

```
miss_all = ismissing. (mydata)
freq_missLSAT = mapcols(count, miss_all)
```

The function mapcols applies the count function to each column, i.e. variable, in miss_all. In the latter, each observation is true (treated as 1 by count) or false (treated as 0 by count), which gives the total amount of missing values per variable.
If we are interested in observations, where no variable has a missing value, we can exclude observations with missings by dropmissing. As an alternative, you could also use completecases which gives a vector of true (observation has no missings) and false (observation has at least one missing) values. The total amount of complete observations is then simply computed as:

```
mydata_compl_cases = dropmissing(mydata)
complete_cases1 = nrow(mydata_compl_cases)
compl_cases = completecases(mydata)
complete_cases2 = count(compl_cases)
```

Script 9.6 (Missings.jl) demonstrates these commands for the data set LAWSCH85 which contains data on law schools. Of the 156 schools, 6 do not report median LSAT scores. Looking at all variables, the most missings are found for the age of the school - we don't know it for 45 schools. For only 90 of the 156 schools, we have the full set of variables, for the other 66, one or more variable is missing.

Script 9.6: Missings.jl

```
using WooldridgeDatasets, GLM, DataFrames
lawsch85 = DataFrame(wooldridge("lawsch85"))
lsat = lawsch85.LSAT
# create boolean indicator for missings:
missLSAT = ismissing.(lsat)
# LSAT and indicator for Schools No. 120-129:
preview = DataFrame(lsat=lsat[120:129],
    missLSAT=missLSAT[120:129])
println("preview: \n$preview\n")
```

```
# frequencies of indicator:
tot_missing = count(missLSAT) # same as sum(missLSAT)
tot_nonmissings = count(.!missLSAT)
println("tot_missing = $tot_missing\n")
println("tot_nonmissings = $tot_nonmissings\n")
# missings for all variables in data frame (counts):
miss_all = ismissing.(lawsch85)
freq_missLSAT = mapcols(count, miss_all)
freq_missLSAT_preview = freq_missLSAT[:, 1:9] # print only first nine columns
println("freq_missLSAT_preview: \n$freq_missLSAT_preview\n")
# computing amount of complete cases:
lsat_compl_cases1 = dropmissing(lawsch85)
complete_cases1 = nrow(lsat_compl_cases1)
println("complete_cases1 = $complete_cases1\n")
lsat_compl_cases2 = completecases(lawsch85)
complete_cases2 = count(lsat_compl_cases2)
println("complete_cases2 = $complete_cases2")
```

Output of Script 9.6: Missings.jl

```
preview:
10\times2 DataFrame
    Row | lsat missLSAT
        | Int64? Bool
\begin{tabular}{r|rr}
1 & 156 & false \\
1 & 159 & false \\
2 & 157 & false \\
3 & 167 & false \\
4 & missing & true \\
5 & 158 & false \\
6 & 155 & false \\
7 & 157 & false \\
8 & missing & true \\
9 & 163 & false
\end{tabular}
tot_missing = 6
tot_nonmissings = 150
freq_missLSAT_preview:
1\times9 DataFrame
Row | rank salary cost LSAT GPA libvol faculty age clsize
    | Int64 Int64 Int64 Int64 Int64 Int64 Int64 Int64 Int64
```



```
complete_cases1 = 90
complete_cases2 = 90
```

The question how to deal with missing values is not trivial and depends on many things. For basic functions such as the mean function, we cannot calculate the average, if at least one value is missing. Instead we have to use the function skipmissing as demonstrated in Script 9.5 (NaN-Inf-Missing.jl).
The regression command 1 m removes observations with missings by default considering each variable used in the specified regression model. The number of used observations can be extracted with the function nobs. This shows that it is usually a good idea to check the behavior of each function in the presence of missing data to avoid errors. Script 9.7 (Missings-Analyses.jl) gives examples of these features.

Script 9.7: Missings-Analyses.jl
using WooldridgeDatasets, GLM, DataFrames, Statistics
lawsch85 = DataFrame (wooldridge("lawsch85"))
\# missings:
$\mathbf{x}=$ lawsch85.LSAT
$x_{\text {_bar }}=$ mean (x)
x_bar2 = mean(skipmissing(x))
println("x_bar1 = \$x_bar1\n")
println("x_bar2 = \$x_bar2\n")
\# observations and variables:
nrows = nrow (lawsch85)
ncols = ncol (lawsch85)
println("nrows = \$nrows ${ }^{\text {n" }}$)
println("ncols = \$ncols $\backslash n$ ")
\# regression (missings are taken care of by default):

$\mathrm{n}=$ nobs (reg)
println("n = \$n")

Output of Script 9.7: Missings-Analyses.jl

```
x_barl = missing
x_bar2 = 158.29333333333332
nrows = 156
ncols = 21
n = 95.0
```


9.4. Outlying Observations

Wooldridge (2019, Section 9.5) offers a very useful discussion of outlying observations. One of the important messages from the discussion is that dealing with outliers is a tricky business. To calculate studentized residuals discussed there, we follow the following steps: For each observation $i=1, \cdots, n$, a regression model is estimated, where you use the usual y and x variables. You also use an additional explanatory dummy variable d_{i}, which is 1 for the i-th observation, and compute the studentized residual as the t statistic of d_{i}.
For the 5-th observation, for example, you estimate the model:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\cdots+\beta_{k} x_{k}+d_{5}+u
$$

The t statistic of d_{5} is the studentized residual for observation $i=5$, which describes the impact of that observation on the regression without using that observation. For the R\&D example from Wooldridge (2019), Script 9.8 (Outliers.jl) calculates them in a loop and reports the highest and the lowest number. It also generates the histogram with overlayed density plot in Figure 9.1. Especially the highest value of 4.55 appears to be an extremely outlying value.

Script 9.8: Outliers.jl

```
using WooldridgeDatasets, GLM, DataFrames, LinearAlgebra, Plots
rdchem = DataFrame(wooldridge("rdchem"))
# create dummys for each observation with an identity matrix:
n = nrow (rdchem)
dummys = DataFrame(Matrix(1I, n, n), Symbol.(:d, 1:n)) # colnames d1, ..., d32
# studentized residuals for all observations:
studres = zeros(n)
for i in 1:n
    rdchem.di = dummys[:, i]
    reg_i = lm(@formula(rdintens ~ sales + profmarg + di), rdchem)
    # save t statistic (3rd column) of di (4th element):
    studres[i] = coeftable(reg_i).cols[3][4]
end
# display extreme values:
studres_max = maximum(studres)
studres_min = minimum(studres)
println("studres_max = $studres_max\n")
println("studres_min = $studres_min")
# histogram:
histogram(studres, color="grey", legend=false)
xlabel!("studres")
savefig("JlGraphs/Outliers.pdf")
```

Output of Script 9.8: Outliers.jl
studres_max $=4.555033421514251$
studres_min $=-1.8180393952811695$

Figure 9.1. Outliers: Distribution of Studentized Residuals

9.5. Least Absolute Deviations (LAD) Estimation

As an alternative to OLS, the least absolute deviations (LAD) estimator is less sensitive to outliers. Instead of minimizing the sum of squared residuals, it minimizes the sum of the absolute values of the residuals.

Wooldridge (2019, Section 9.6) explains that the LAD estimator attempts to estimate the parameters of the conditional median $\operatorname{Med}\left(y \mid x_{1}, \ldots, x_{k}\right)$ instead of the conditional mean $\mathrm{E}\left(y \mid x_{1}, \ldots, x_{k}\right)$. This makes LAD a special case of quantile regression which studies general quantiles of which the median (=0.5 quantile) is just a special case. In the package QuantileRegressions, general quantile regression (and LAD as the special case) can easily be implemented with the command qreg. ${ }^{2}$ It works very similar to 1 m for OLS estimation.

Script 9.9 (LAD.jl) demonstrates its application using the example from Wooldridge (2019, Example 9.8) and Script 9.8. Note that LAD inferences are only valid asymptotically, so the results in this example with $n=32$ should be taken with a grain of salt.

Script 9.9: LAD. jl
using WooldridgeDatasets, DataFrames, GLM, QuantileRegressions

```
rdchem = DataFrame(wooldridge("rdchem"))
```

\# OLS regression:
reg_ols = lm(@formula(rdintens ~ sales / 1000 + profmarg), rdchem)
table_reg_ols = coeftable (reg_ols)
println("table_reg_ols: \n\$table_reg_ols\n")
\# LAD regression:
reg_lad = qreg (@formula(rdintens ~ sales / 1000 + profmarg), rdchem, 0.5)
table_reg_lad = coeftable (reg_lad)
println("table_reg_lad: \n\$table_reg_lad")

Output of Script 9.9: LAD. jl

table_reg_ols:				
	Coef.	Std. Error	r t	$\operatorname{Pr}(>\|t\|)$
(Intercept)	2.62526	0.585533	4.48	0.0001
sales / 1000	0.0533782	0.0440745	51.21	0.2356
profmarg	0.0446166	0.0461805	50.97	0.3420
table_reg_lad:				
	Quantile	Estimate S	Std.Error	- t value
(Intercept)	0.5	1.623090	0.701203	2.31472
sales / 1000	0.5	0.0186270	0.0527813	3.352909
profmarg	0.5	0.1179050	0.0553034	2.13196

[^41]
Part II.

Regression Analysis with Time Series Data

10. Basic Regression Analysis with Time Series Data

Time series differ from cross-sectional data in that each observation (i.e. row in a data frame) corresponds to one point or period in time. Section 10.1 introduces the most basic static time series models. In Section 10.2, we look into more technical details how to deal with time series data in Julia. Other aspects of time series models such as dynamics, trends, and seasonal effects are treated in Section 10.3.

10.1. Static Time Series Models

Static time series regression models describe the contemporaneous relation between the dependent variable y and the regressors z_{1}, \ldots, z_{k}. For each observation $t=1, \ldots, n$, a static equation has the form

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} z_{1 t}+\cdots+\beta_{k} z_{k t}+u_{t} . \tag{10.1}
\end{equation*}
$$

For the estimation of these models, the fact that we have time series does not make any practical difference. We can still use lm from GLM to estimate the parameters and the other tools for statistical inference. We only have to be aware that the assumptions needed for unbiased estimation and valid inference differ somewhat. Important differences to cross-sectional data are that we have to assume strict exogeneity (Assumption TS.3) for unbiasedness and no serial correlation (Assumption TS.5) for the usual variance-covariance formula to be valid, see Wooldridge (2019, Section 10.3).

Wooldridge, Example 10.2: Effects of Inflation and Deficits on Interest Rates

The data set Intdef contains yearly information on interest rates and related time series between 1948 and 2003. Script 10.1 (Example-10-2.j1) estimates a static model explaining the interest rate i3 with the inflation rate inf and the federal budget deficit def. There is nothing different in the implementation than for cross-sectional data. Both regressors are found to have a statistically significant relation to the interest rate.

Script 10.1: Example-10-2.j1
using WooldridgeDatasets, GLM, DataFrames
intdef = DataFrame(wooldridge("intdef"))
\# linear regression of static model:
reg = lm(@formula(i3 ~ inf + def), intdef)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 10.1: Example-10-2.jl

table_reg:							
	Coef.	Std. Error	t	Pr (>\|t)	Lower 95\%	Upper 95\%
(Intercept)	1.73327	0.431967	4.01	0.0002	0.86685	2.59968	
inf	0.605866	0.0821348	7.38	<1e-08	0.441124	0.770607	
def	0.513058	0.118384	4.33	<1e-04	0.27561	0.750506	

10.2. Time Series Data Types in Julia

For calculations specific to times series such as lags, trends, and seasonal effects, we will have to explicitly define the structure of our data. In Julia, there are several variable types specific to time series. The most important distinction is whether or not the data are equispaced. The observations of equispaced time series are collected at regular points in time. Typical examples are monthly, quarterly, or yearly data.

Observations of irregular time series have varying distances. An important example are daily financial data which are unavailable on weekends and bank holidays. Another example are financial tick data which contain a record each time a trade is completed which obviously does not happen at regular points in time. Although we will mostly work with equispaced data, we will briefly introduce these types in Section 10.2.2.

10.2.1. Equispaced Time Series in Julia

A convenient way to deal with equispaced time series in linear regression models, is to store them as a data frame (i.e. the type DataFrame). To capture the time dimension, you define an appropriate variable. With equispaced time series this is especially convenient with the data types Date and DateTime from the package Dates. ${ }^{1}$ In combination with the function range they can be used to describe the time structure of equispaced data. It has the two positional arguments start and stop, and the two keyword arguments length and step:

- start / stop: Left/ right bound of first/ last observation is created by providing days, months, days, hours, minutes, seconds, and milliseconds in this order in the following format:

```
DateTime(1978, 2, 1, 14, 35, 59, 2)
```

If you are only interested in days, months and days, you can also use the date type with the same syntax. Other input formats to create date types can also be provided by the argument dateformat, so the following two lines are equivalent:

```
Date(1978, 2, 1)
Date("1978-02-01", dateformat="y-m-d")
```

- length: Number of equispaced points in time you need to generate.
- step: Number of observations per time unit. Examples:
- step=Year (\mathbf{x}): Yearly data (repeating every \mathbf{x} years)
- step=Quarter (\mathbf{x}): Quarterly data (repeating every \mathbf{x} quarters)
- step=Month (x) : Monthly data (repeating every \mathbf{x} months)

[^42]Because the data are equispaced, you have to specify three arguments and the remaining one is implied.

If you just need the start, stop and step argument, you can also use the syntax start: step: stop to create ranges. Therefore, the following two lines are equivalent:

```
range (Date(1978, 2, 1), Date(1978, 10, 1), step=Month(1))
Date(1978, 2, 1):Month(1):Date (1978, 10, 1)
```

It only makes sense to add these kind of variables to a data frame, if two consecutive rows represent two consecutive points in time in an ascending order.

As an example, consider the data set named BARIUM. It contains monthly data on imports of barium chloride from China between February 1978 and December 1988. Wooldridge (2019, Example 10.5) explains the data and background. Script 10.2 (Example-Barium. jl) demonstrates the use of range and how Figure 10.1 was generated. The time axis is automatically formatted appropriately.

Script 10.2: Example-Barium.jl
using WooldridgeDatasets, DataFrames, Dates, Plots
barium = DataFrame(wooldridge("barium"))
$T=$ nrow (barium)
\# monthly time series starting Feb. 1978:
barium.date $=$ range (Date (1978, 2, 1), step=Month (1), length=T)
preview = barium[1:5, ["date", "chnimp"]]
println("preview: \n\$preview")
\# plot chnimp:
plot (barium.date, barium.chnimp, legend=false, color="grey")
ylabel!("chnimp")
savefig("JlGraphs/Example-Barium.pdf")

Output of Script 10.2: Example-Barium.jl
preview:
5×2 DataFrame
Row | date chnimp
| Date Float64

| 1978-02-01 220.462
| 1978-03-01 94.798
3 | 1978-04-01 219.357
4 | 1978-05-01 317.422
5 | 1978-06-01 114.639

Figure 10.1. Time Series Plot: Imports of Barium Chloride from China

10.2.2. Irregular Time Series in Julia

For the remainder of this book, we will work with equispaced time series. But since irregular time series are important for example in finance, we will briefly introduce them here. The only thing changing is that you cannot use range to generate time stamps. Instead, these should be provided in your data.

Daily financial data sets are important examples of irregular time series. Because of weekends and bank holidays, these data are not equispaced and each data point contains a time stamp - usually the date. To demonstrate this, we will briefly look at the package MarketData introduced in Section 1.3.3. It can automatically download financial data from Yahoo Finance and other sources. In order to do so, we must know the ticker symbol of the stock or whatever we are interested in. It can be looked up at https://finance.yahoo.com/lookup.

For example, the symbol for the Dow Jones Industrial Average is ^DJI, Apple stocks have the symbol AAPL and the Ford Motor Company is simply abbreviated as F. Script 10.3 (Example-StockData.jl) demonstrates the import and the format of the imported data. They include information on opening, closing, high, and low prices as well as the trading volume and the adjusted (for events like stock splits and dividend payments) closing prices. We also print the first and last 5 rows of data, and plot the adjusted closing prices over time.

Script 10.3: Example-StockData.jl

```
using DataFrames, Dates, MarketData, Plots
# download data for "F" (= Ford Motor Company) and define start and end:
ticker = "F"
start_date = DateTime(2014, 1, 1)
end_date = DateTime(2016, 1, 1)
# import data:
F_data = yahoo(ticker, YahooOpt(period1=start_date, period2=end_date))
# look at imported data:
F_data_head = first (DataFrame (F_data), 5)
println("F_data_head: \n$F_data_head\n")
F_data_tail = last (DataFrame(F_data), 5)
println("F_data_tail: \n$F_data_tail")
# time series plot of adjusted closing prices:
plot(F_data.AdjClose, legend=false, color="grey")
ylabel!("AdjClose")
savefig("JlGraphs/Example-StockData.pdf")
```

Figure 10.2. Time Series Plot: Stock Prices of Ford Motor Company

Output of Script 10.3: Example-StockData.jl

5×7 DataFrame						
Row \| timestamp \| Date	Open Float64	High Float 64	Low Float 64	Close Float 64	AdjClose Float64	Volume Float64
1 \| 2014-01-02	15.42	15.45	15.28	15.44	9.921	3.15285 e 7
2 \| 2014-01-03	15.52	15.64	15.3	15.51	9.96598	$4.61223 e 7$
3 \| 2014-01-06	15.72	15.76	15.52	15.58	10.011	4.26576 e 7
4 \| 2014-01-07	15.73	15.74	15.35	15.38	9.88244	5.44763 e 7
5 \| 2014-01-08	15.6	15.71	15.51	15.54	9.98525	4.84483 e 7
F_data_tail:						
5×7 DataFrame						
Row \| timestamp	Open	High	Low	Close	AdjClose	Volume
\| Date	Float64	Float 64	Float 64	Float64	Float64	Float 64
1 \| 2015-12-24	14.35	14.37	14.25	14.31	9.87743	9.0001 e 6
2 \| 2015-12-28	14.28	14.34	14.16	14.18	9.7877	$1.36975 e 7$
3 \| 2015-12-29	14.28	14.3	14.15	14.23	9.82221	1.88678 e 7
4 \| 2015-12-30	14.23	14.26	14.12	14.17	9.7808	1.38003 e 7
5 \| 2015-12-31	14.14	14.16	14.04	14.09	9.72558	1.9881 e 7

10.3. Other Time Series Models

10.3.1. Finite Distributed Lag Models

Finite distributed lag (FDL) models allow past values of regressors to affect the dependent variable. A FDL model of order q with an independent variable z can be written as

$$
\begin{equation*}
y_{t}=\alpha_{0}+\delta_{0} z_{t}+\delta_{1} z_{t-1}+\cdots+\delta_{q} z_{t-q}+u_{t} . \tag{10.2}
\end{equation*}
$$

Wooldridge (2019, Section 10.2) discusses the specification and interpretation of such models. For the implementation, we generate the q additional variables that reflect the lagged values z_{t-1}, \ldots, z_{t-q} and include them in the model formula of 1 m . The function $\operatorname{lag}(\mathbf{z}, \mathrm{k})$ allows to generate the lagged variable $z_{t-k} \cdot{ }^{2}$ Be aware that this only works if rows are sorted in an ascending order by the time variable. If your data frame df looks different and time is the time variable, you have to run sort! (df, [:time]) first.

Wooldridge, Example 10.4: Effects of Personal Exemption on Fertility Rates

The data set FERTIL3 contains yearly information on the general fertility rate gfr and the personal tax exemption pe for the years 1913 through 1984. Dummy variables for the second world war ww2 and the availability of the birth control pill pill are also included. Script 10.4 (Example-10-4 . j1) shows the distributed lag model including contemporaneous pe and two lags. All pe coefficients are insignificantly different from zero according to the respective t tests. In Script 10.5 (Example-10-4-cont. jl) a usual F test implemented with ftest reveals that they are jointly significantly different from zero at a significance level of $\alpha=5 \%$ with a p value of 0.012 (see fpval). As Wooldridge (2019) discusses, this points to a multicollinearity problem.

Script 10.4: Example-10-4.jl
using WooldridgeDatasets, GLM, DataFrames
fertil3 = DataFrame(wooldridge("fertil3"))
\# add all lags of pe up to order 2:
fertil3.pe_lag1 = lag(fertil3.pe, 1)
fertil3.pe_lag2 = lag(fertil3.pe, 2)
\# linear regression of model with lags:
reg $=\operatorname{lm}\left(@ f o r m u l a\left(g f r \sim p e+p e _l a g 1+p e _l a g 2+w w 2+p i l l\right), ~ f e r t i l 3\right)$
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

[^43]Output of Script 10.4: Example-10-4.jl
table_reg:

	Coef.		Std. Error	t	Pr $(>\|t\|)$	Lower 95%	Upper 95\%
(Intercept)	95.8705	3.28196	29.21	$<1 e-37$	89.314	102.427	
pe	0.0726718	0.125533	0.58	0.5647	-0.178109	0.323453	
pe_lag1	-0.00577958	0.155663	-0.04	0.9705	-0.316752	0.305193	
pe_lag2	0.0338268	0.126257	0.27	0.7896	-0.218401	0.286055	
ww2	-22.1265	10.732	-2.06	0.0433	-43.5661	-0.68692	
pill	-31.305	3.98156	-7.86	$<1 e-10$	-39.2591	-23.3509	

The long-run propensity (LRP) of FDL models measures the cumulative effect of a change in the independent variable z on the dependent variable y over time and is simply equal to the sum of the respective parameters

$$
\mathrm{LRP}=\delta_{0}+\delta_{1}+\cdots+\delta_{q} .
$$

We can calculate it directly from the estimated regression model. For testing whether it is different from zero, we follow the procedure suggested by Wooldridge (2019): for $q=2$, we substitute $\delta_{0}=$ LRP $-\delta_{1}-\delta_{2}$ into the model allowing to test $H_{0}:$ LRP $=0$ with a t test. For more details, see Wooldridge (2019, Section 10.4) and Script 10.5 (Example-10-4-cont.jl).

Wooldridge, Example 10.4: (continued)

Script 10.5 (Example-10-4-cont.jl) calculates the estimated LRP to be around 0.1.
To test its significance we modify the model

$$
g f r_{t}=\alpha_{0}+\delta_{0} \cdot p e_{t}+\delta_{1} \cdot p e_{t-1}+\delta_{2} \cdot p e_{t-2}+\beta_{1} \cdot w w 2_{t}+\beta_{2} \cdot p i l l_{t}
$$

by substituting $\delta_{0}=\mathrm{LRP}-\delta_{1}-\delta_{2}$. The resulting model is

$$
g f r_{t}=\alpha_{0}+\operatorname{LRP} \cdot p e_{t}+\delta_{1} \cdot \widetilde{p e} e_{t-1}+\delta_{2} \cdot \widetilde{p e}_{t-2}+\beta_{1} \cdot w w 2_{t}+\beta_{2} \cdot \operatorname{pill}_{t}
$$

with the regressors $\widetilde{p e} e_{t-1}=p e_{t-1}-p e_{t}$ and $\widetilde{p e}{ }_{t-2}=p e_{t-2}-p e_{t}$. We can test $H_{0}:$ LRP $=0$ by looking at the respective t test. As a result LRP is significantly different from zero with a p value of around 0.0012 .

Script 10.5: Example-10-4-cont.jl

```
using WooldridgeDatasets, GLM, DataFrames, Distributions
fertil3 = DataFrame(wooldridge("fertil3"))
# add all lags of pe up to order 2:
fertil3.pe_lag1 = lag(fertil3.pe, 1)
fertil3.pe_lag2 = lag(fertil3.pe, 2)
# handle missings due to lagged data manually (important for ftest):
fertil3 = fertil3[Not([1, 2]), :]
# linear regression of model with lags:
reg_ur = lm(@formula(gfr ~ pe + pe_lag1 + pe_lag2 + ww2 + pill), fertil3)
# F test (HO: all pe coefficients are zero):
reg_r = lm(@formula(gfr ~ ww2 + pill), fertil3)
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval\n")
# calculating the LRP:
b_pe_tot = sum(coef(reg_ur) [[2, 3, 4]])
println("b_pe_tot = $b_pe_tot\n")
# testing LRP=0:
fertil3.ptm1pt = fertil3.pe_lag1 - fertil3.pe
fertil3.ptm2pt = fertil3.pe_lag2 - fertil3.pe
reg_LRP = lm(@formula(gfr ~ pe + ptm1pt + ptm2pt + ww2 + pill), fertil3)
table_res_LRP = coeftable(reg_LRP)
println("table_res_LRP: \n$table_res_LRP")
```

Output of Script 10.5: Example-10-4-cont.jl
fstat $=3.9729640469785976$
fpval $=0.011652005303125688$
b_pe_tot $=0.10071909027975678$
table_res_LRP:
Coef. Std. Error $t \operatorname{Pr}(>|t|)$ Lower 95\% Upper 95\%

(Intercept)	95.8705	3.28196	29.21	$<1 e-37$	89.314	102.427
pe	0.100719	0.0298027	3.38	0.0012	0.0411814	0.160257
ptm1pt	-0.00577958	0.155663	-0.04	0.9705	-0.316752	0.305193
ptm2pt	0.0338268	0.126257	0.27	0.7896	-0.218401	0.286055
ww2	-22.1265	10.732	-2.06	0.0433	-43.5661	-0.68692
pill	-31.305	3.98156	-7.86	$<1 e-10$	-39.2591	-23.3509

10.3.2. Trends

As pointed out by Wooldridge (2019, Section 10.5), deterministic linear (and exponential) time trends are accounted for by adding the time measure as another independent variable.

Wooldridge, Example 10.7: Housing Investment and Prices

The data set hSEInv provides annual observations on housing investments invpc and housing prices price for the years 1947 through 1988. Using a double-logarithmic specification, Script 10.6 (Example-10-7.j1) estimates a regression model with and without a linear trend. The variable t is used to capture the time trend in the second regression. Forgetting to add the trend leads to the spurious finding that investments and prices are related.
Because of the logarithmic dependent variable, the trend in invpc (as opposed to log invpc) is exponential. The estimated coefficient implies a 1% yearly increase in investments.

Script 10.6: Example-10-7.jl

```
using WooldridgeDatasets, GLM, DataFrames
hseinv = DataFrame(wooldridge("hseinv"))
# linear regression without time trend:
reg_wot = lm(@formula(log(invpc) ~ log(price)), hseinv)
table_reg_wot = coeftable(reg_wot)
println("table_reg_wot: \n$table_reg_wot\n")
# linear regression with time trend (data set includes a time variable t):
reg_wt = lm(@formula(log(invpc) ~ log(price) + t), hseinv)
table_reg_wt = coeftable(reg_wt)
println("table_reg_wt: \n$table_reg_wt")
```

Output of Script 10.6: Example-10-7.j1

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\% Upp	Upper 95\%
(Intercept)	-0.550235	0.0430266	-12.79	<1e-14	-0.637195 -	-0.463275
$\log (\mathrm{price})$	1.24094	0.382419	3.24	0.0024	0.468045	2.01384
table_reg_wt:						
	Coef.	Std. Error	- t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	\% Upper 95\%
(Intercept)	-0.91306	0.135613	-6.73	$<1 \mathrm{e}-07$	-1.18736	-0.638756
log(price)	-0.380961	0.678835	-0.56	0.5779	-1.75404	0.992113
t	0.00982873	0.00351221	2.80	0.0079	0.00272461	10.0169328

10.3.3. Seasonality

To account for seasonal effects, we add dummy variables for all but one (the reference) "season". So with monthly data, we can include eleven dummies, see Chapter 7 for a detailed discussion.

Wooldridge, Example 10.11: Effects of Antidumping Filings

The data in BARIUM were used in an antidumping case. They are monthly data on barium chloride imports from China between February 1978 and December 1988. Wooldridge (2019, Example 10.5) explains the data and background. When we estimate a model with monthly dummies, they do not have significant coefficients except the dummy for April which is marginally significant. An F test which is not reported reveals no joint significance.

Script 10.7: Example-10-11.j1
using WooldridgeDatasets, GLM, DataFrames
barium = DataFrame(wooldridge("barium"))
\# linear regression with seasonal effects:
reg $=1 m(@ f o r m u l a(\log (c h n i m p) ~ \sim ~ l o g(c h e m p i) ~+~ l o g(g a s) ~+~$ log(rtwex) + befile6 + affile6 + afdec6 + feb + mar + apr + may + jun + jul + aug + sep + oct + nov + dec), barium)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 10.7: Example-10-11.jl

table_reg:						
	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	16.7792	32.4286	0.52	0.6059	-47.4678	81.0262
$\log (\mathrm{chempi})$	3.26506	0.49293	6.62	<1e-08	2.28848	4.24165
$\log (\mathrm{gas})$	-1.27814	1.38901	-0.92	0.3594	-4.03002	1.47374
\log (rtwex)	0.663045	0.471304	1.41	0.1622	-0.270692	1.59678
befile6	0.139703	0.266808	0.52	0.6016	-0.388891	0.668297
affile6	0.0126324	0.278687	0.05	0.9639	-0.539496	0.564761
afdec6	-0.5213	0.30195	-1.73	0.0870	-1.11952	0.0769169
feb	-0.417711	0.304444	-1.37	0.1728	-1.02087	0.185448
mar	0.059052	0.264731	0.22	0.8239	-0.465427	0.583531
apr	-0.451483	0.268386	-1.68	0.0953	-0.983205	0.0802389
may	0.033309	0.269242	0.12	0.9018	-0.500109	0.566727
jun	-0.206332	0.269252	-0.77	0.4451	-0.739767	0.327104
jul	0.00383659	0.278767	0.01	0.9890	-0.54845	0.556124
aug	-0.157064	0.277993	-0.56	0.5732	-0.707818	0.393689
sep	-0.134161	0.267656	-0.50	0.6172	-0.664435	0.396114
oct	0.0516925	0.266851	0.19	0.8467	-0.476988	0.580373
nov	-0.24626	0.262827	-0.94	0.3508	-0.766968	0.274448
dec	0.132838	0.271423	0.49	0.6255	-0.404901	0.670576

11. Further Issues in Using OLS with Time Series Data

This chapter introduces important concepts for time series analyses. Section 11.1 discusses the general conditions under which asymptotic analyses work with time series data. An important requirement will be that the time series exhibit weak dependence. In Section 11.2, we study highly persistent time series and present some simulation exercises. One solution to this problem is first differencing as demonstrated in Section 11.3. How this can be done in the regression framework is the topic of Section 11.4.

11.1. Asymptotics with Time Series

As Wooldridge (2019, Section 11.2) discusses, asymptotic arguments also work with time series data under certain conditions. Importantly, we have to assume that the data are stationary and weakly dependent (Assumption TS.1). On the other hand, we can relax the strict exogeneity assumption TS. 3 and only have to assume contemporaneous exogeneity (Assumption TS.3'). Under the appropriate set of assumptions, we can use standard OLS estimation and inference.

Wooldridge, Example 11.4: Efficient Markets Hypothesis

The efficient markets hypothesis claims that we cannot predict stock returns from past returns. In a simple $\operatorname{AR}(1)$ model in which returns are regressed on lagged returns, this would imply a population slope coefficient of zero. The data set nyse contains data on weekly stock returns and we use the function lag (data, k) to compute the k^{\prime} th lag.
Script 11.1 (Example-11-4.j1) shows the analyses. Regression 1 is the AR(1) model also discussed by Wooldridge (2019). Models 2 and 3 add second and third lags to estimate higher-order AR (p) models. In all models, no lagged value has a significant coefficient and also the F tests for joint significance (not included in the script) do not reject the efficient markets hypothesis.

Script 11.1: Example-11-4.jl

```
using WooldridgeDatasets, GLM, DataFrames, RegressionTables
nyse = DataFrame(wooldridge("nyse"))
nyse.ret = nyse.return
# add all lags up to order 3:
nyse.ret_lag1 = lag(nyse.ret, 1)
nyse.ret_lag2 = lag(nyse.ret, 2)
nyse.ret_lag3 = lag(nyse.ret, 3)
# linear regression of model with lags:
reg1 = lm(@formula(ret ~ ret_lag1), nyse)
reg2 = lm(@formula(ret ~ ret_lag1 + ret_lag2), nyse)
reg3 = lm(@formula(ret ~ ret_lag1 + ret_lag2 + ret_lag3), nyse)
# print results with RegressionTables:
regtable(reg1, reg2, reg3)
```

Output of Script 11.1: Example-11-4.j1

ret			
	(1)	(2)	(3)
(Intercept)	$\begin{gathered} 0.180 * \\ (0.081) \end{gathered}$	$\begin{gathered} 0.186 * \\ (0.081) \end{gathered}$	$\begin{gathered} 0.179 * \\ (0.082) \end{gathered}$
ret_lag1	0.059	0.060	0.061
	(0.038)	(0.038)	(0.038)
ret_lag2		-0.038	$\begin{aligned} & -0.040 \\ & \hline(0.038) \end{aligned}$
			$\begin{array}{r} (0.038) \\ 0.031 \end{array}$
			(0.038)
Estimator	OLS	OLS	OLS
N	689 0.003	${ }^{688}$	${ }_{6}^{687}$
	0.003	0.005	0.006

We can do a similar analysis for daily data. The package MarketData introduced in Section 1.3.3 allows us to directly download daily stock prices from Yahoo Finance. Script 11.2 (Example-EffMkts.jl) downloads daily stock prices of Apple (ticker symbol AAPL) and stores them as a DataFrame object. From the prices p_{t}, daily returns r_{t} are calculated using the standard formula

$$
r_{t}=\log \left(p_{t}\right)-\log \left(p_{t-1}\right) \approx \frac{p_{t}-p_{t-1}}{p_{t-1}}
$$

Note that in the script, we calculate the difference using the function diff. It calculates the difference from trading day to trading day, ignoring the fact that some of them are separated by weekends or holidays. Obviously, this procedure only works, if two consecutive rows represent two consecutive points in time. Figure 11.1 plots the returns of the Apple stock. Even though we now have $n=2267$ observations of daily returns, we cannot find any relation between current and past returns which supports (this version of) the efficient markets hypothesis.

Script 11.2: Example-EffMkts.jl

```
using DataFrames, GLM, Dates, MarketData, Plots, RegressionTables
# download data for "AAPL" (= Apple) and define start and end:
ticker = "AAPL"
start_date = DateTime(2007, 12, 31)
end_date = DateTime(2017, 01, 01)
# import data as DataFrame:
AAPL_data = DataFrame (yahoo(ticker,
    YahooOpt (period1=start_date, period2=end_date)))
# calculate return as the difference of logged prices:
AAPL_data.ret = vcat(missing, diff(log.(AAPL_data.AdjClose)))
# time series plot of returns:
plot(AAPL_data.timestamp, AAPL_data.ret, legend=false, color="grey")
ylabel!("returns")
savefig("JlGraphs/Example-EffMkts.pdf")
# linear regression of models with lags:
AAPL_data.ret_lag1 = lag(AAPL_data.ret, 1)
AAPL_data.ret_lag2 = lag(AAPL_data.ret, 2)
AAPL_data.ret_lag3 = lag(AAPL_data.ret, 3)
reg1 = lm(@formula(ret ~ ret_lag1), AAPL_data)
reg2 = lm(@formula(ret ~ ret_lag1 + ret_lag2), AAPL_data)
reg3 = lm(@formula(ret ~ ret_lag1 + ret_lag2 + ret_lag3), AAPL_data)
# print results with RegressionTables:
regtable(reg1, reg2, reg3)
```

Output of Script 11.2: Example-EffMkts.jl

	ret		
	(1)	(2)	(3)
(Intercept)	$\begin{array}{r} 0.001 \\ (0.000) \end{array}$	$\begin{array}{r} 0.001 \\ (0.000) \end{array}$	$\begin{array}{r} 0.001 \\ (0.000) \end{array}$
ret_lag1	-0.003	$\begin{gathered} -0.004 \\ (0.021) \end{gathered}$	$\begin{gathered} -0.003 \\ (0.021) \end{gathered}$
ret_lag2		-0.029	-0.030
		(0.021)	(0.021)
ret_lag3			$\begin{array}{r} 0.005 \\ (0.021) \end{array}$
Estimator	OLS	OLS	OLS
N	2,266	2,265	2,264
R2	0.000	0.001	0.001

Figure 11.1. Time Series Plot: Daily Stock Returns 2008-2016, Apple Inc.

11.2. The Nature of Highly Persistent Time Series

The simplest model for highly persistent time series is a random walk. It can be written as

$$
\begin{align*}
y_{t} & =y_{t-1}+e_{t} \tag{11.1}\\
& =y_{0}+e_{1}+e_{2}+\cdots+e_{t-1}+e_{t} \tag{11.2}
\end{align*}
$$

where the shocks e_{1}, \ldots, e_{t} are i.i.d. with a zero mean. It is a special case of a unit root process. Random walk processes are strongly dependent and nonstationary, violating assumption TS1' required for the consistency of OLS parameter estimates. As Wooldridge (2019, Section 11.3) shows, the variance of y_{t} (conditional on y_{0}) increases linearly with t :

$$
\begin{equation*}
\operatorname{Var}\left(y_{t} \mid y_{0}\right)=\sigma_{e}^{2} \cdot t \tag{11.3}
\end{equation*}
$$

This can be easily seen in a simulation exercise. Script 11.3 (Simulate-RandomWalk.jl) draws 30 realizations from a random walk process with i.i.d. standard normal shocks e_{t}. After initializing the random number generator, an empty figure with the right dimensions is produced. Then, the realizations of the time series are drawn in a loop. ${ }^{1}$ In each of the 30 draws, we first obtain a sample of the $n=50$ shocks e_{1}, \ldots, e_{50}. The random walk is generated as the cumulative sum of the shocks according to Equation 11.2 with an initial value of $y_{0}=0$. The respective time series are then added to the plot. In the resulting Figure 11.2, the increasing variance can be seen easily.

Script 11.3: Simulate-RandomWalk.jl
using Random, Distributions, Statistics, Plots
\# set the random seed:
Random. seed! (12345)
\# initialize plot:
x_range $=$ range ($0,50,51$)
plot (xlims $=(0,50), y \operatorname{lims}=(-25,25))$
\# loop over draws:
for r in 1:30
\# i.i.d. standard normal shock:
$e=\operatorname{rand}(\operatorname{Normal}(0,1), 51)$
\# set first entry to 0 (gives $y _0=0$):
$e[1]=0$
\# random walk as cumulative sum of shocks:
$y=$ cumsum (e)
\# add line to graph:
plot! (x_range, y, color="lightgrey", legend=false)
end
hline! ([0], color="black", linewidth=2, linestyle=:dash)
xlabel! ("time")
ylabel! ("y")
savefig("JlGraphs/Simulate-RandomWalk.pdf")

[^44]Figure 11.2. Simulations of a Random Walk Process

A simple generalization is a random walk with drift:

$$
\begin{align*}
y_{t} & =\alpha_{0}+y_{t-1}+e_{t} \tag{11.4}\\
& =y_{0}+\alpha_{0} \cdot t+e_{1}+e_{2}+\cdots+e_{t-1}+e_{t} . \tag{11.5}
\end{align*}
$$

Script 11.4 (Simulate-RandomWalkDrift.jl) simulates such a process with $\alpha_{0}=2$ and i.i.d. standard normal shocks e_{t}. The resulting time series are plotted in Figure 11.3. The values fluctuate around the expected value $\alpha_{0} \cdot t$. But unlike weakly dependent processes, they do not tend towards their mean, so the variance increases like for a simple random walk process.

Figure 11.3. Simulations of a Random Walk Process with Drift

Script 11.4: Simulate-RandomWalkDrift.jl

```
using Random, Distributions, Statistics, Plots
# set the random seed:
Random.seed!(12345)
# initialize plot:
x_range = range(0, 50, 51)
plot(xlims=(0, 50), ylims=(0, 100))
# loop over draws:
for r in 1:30
    # i.i.d. standard normal shock:
    e = rand (Normal (0, 1), 51)
    # set first entry to 0 (gives y_0 = 0):
    e[1] = 0
    # random walk as cumulative sum of shocks:
    y = cumsum(e) + 2 * x_range
    # add line to graph:
    plot!(x_range, y, color="lightgrey", legend=false)
end
plot!(x_range, 2 * x_range, color="black", linewidth=2, linestyle=:dash)
xlabel!("time")
ylabel!("y")
savefig("JlGraphs/Simulate-RandomWalkDrift.pdf")
```

An obvious question is whether a given sample is from a unit root process such as a random walk. We will cover tests for unit roots in Section 18.2.

11.3. Differences of Highly Persistent Time Series

The simplest way to deal with highly persistent time series is to work with their differences rather than their levels. The first difference of the random walk with drift is:

$$
\begin{align*}
y_{t} & =\alpha_{0}+y_{t-1}+e_{t} \tag{11.6}\\
\Delta y_{t} & =y_{t}-y_{t-1}=\alpha_{0}+e_{t} \tag{11.7}
\end{align*}
$$

This is an i.i.d. process with mean α_{0}. Script 11.5 (Simulate-RandomWalkDrift-Diff.jl) repeats the same simulation as Script 11.4 (Simulate-RandomWalkDrift.jl) but calculates the differences using y $[2: 51]$.- y [1:50]. From now on, we will use the more convenient function diff for the same task. The resulting series are shown in Figure 11.4. They have a constant mean of 2 , a constant variance of $\sigma_{e}^{2}=1$, and are independent over time.

Script 11.5: Simulate-RandomWalkDrift-Diff.jl
using Random, Distributions, Statistics, Plots
\# set the random seed:
Random. seed! (12345)
\# initialize plot:
x_range $=$ range (1, 50, 50)
plot (xlims $=(0,50)$, ylims $=(-1,5))$
\# loop over draws:
for r in 1:30
\# i.i.d. standard normal shock:
$e=\operatorname{rand}(\operatorname{Normal}(0,1), 51)$
\# set first entry to 0 (gives $y _0=0$):
$e[1]=0$
\# random walk as cumulative sum of shocks:
$\mathrm{y}=$ cumsum (2 .+e)
\# first difference:
$\mathrm{Dy}=\mathrm{y}[2: 51]$. $\mathrm{y}[1: 50]$
\# add line to graph:
plot!(x_range, Dy, color="lightgrey", legend=false)
end
hline!([2], color="black", linewidth=2, linestyle=:dash)
xlabel! ("time")
ylabel!("Dy")
savefig("JlGraphs/Simulate-RandomWalkDrift-Diff.pdf")

Figure 11.4. Simulations of a Random Walk Process with Drift: First Differences

11.4. Regression with First Differences

Adding first differences to regression models is straightforward. You have to add the dependent or independent variable var as a first difference to your data before starting the usual 1 m command. The same holds, if you want to combine differences with lags in your specifications. This is demonstrated in Example 11.6.
As already mentioned, the functions lag and diff are helpful, but they require that consecutive rows represent two consecutive points in time. These commands do not use any time stamp you may have provided before.

Wooldridge, Example 11.6: Fertility Equation

We continue Example 10.4 and specify the fertility equation in first differences. Script 11.6 (Example-11-6.j1) shows the analyses. While the first difference of the tax exemptions has no significant effect, its second lag has a significantly positive coefficient in the second model. This is consistent with fertility reacting two years after a change of the tax code.

Script 11.6: Example-11-6.jl
using WooldridgeDatasets, GLM, DataFrames
fertil3 = DataFrame(wooldridge("fertil3"))
\# compute first differences (first difference is always missing):
fertil3.gfr_diff1 = vcat(missing, diff(fertil3.gfr))
fertil3.pe_diff1 = vcat (missing, diff(fertil3.pe))
preview = fertil3[1:5, ["gfr", "gfr_diff1", "pe", "pe_diffi"]]
println("preview: \n\$preview\n")
\# linear regression of model with first differences:
reg1 = lm(@formula (gfr_diff1 ~ pe_diff1), fertil3)
table_reg1 = coeftable (reg1)
println("table_reg1: \n\$table_reg1 \n")
\# linear regression of model with lagged differences:
fertil3.pe_diff1_lag1 = lag(fertil3.pe_diff1, 1)
fertil3.pe_diff1_lag2 = lag(fertil3.pe_diff1, 2)
reg2 $=$ lm(@formula(gfr_diff1 \sim pe_diff1 + pe_diff1_lag1 + pe_diff1_lag2), fertil3)
table_reg2 = coeftable (reg2)
println("table_reg2: \n\$table_reg2")

Output of Script 11.6: Example-11-6.j1

```
preview:
5\times4 DataFrame
    Row | gfr gfr_diff1 pe pe_diff1
        | Float64 Float64? Float64 Float64?
    -------------------------------------------------------
    1 124.7 missing 0.0 missing
    2 1 126.6 1.9 0.0 0.0
    3 125.0 -1.6 0.0 0.0
    4 123.4 -1.6 0.0 0.0
    5 121.0 -2.4 19.27 19.27
table_reg1:
    Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
(Intercept) 
table_reg2:
    Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
\begin{tabular}{lcccccr} 
(Intercept) & -0.963679 & 0.46776 & -2.06 & 0.0434 & -1.89786 & -0.0294976 \\
pe_diff1 & -0.0362021 & 0.0267737 & -1.35 & 0.1810 & -0.089673 & 0.0172687 \\
pe_diff1_lag1 & -0.0139706 & 0.0275539 & -0.51 & 0.6139 & -0.0689997 & 0.0410584 \\
pe_diff1_lag2 & 0.10999 & 0.0268797 & 4.09 & 0.0001 & 0.0563071 & 0.163672
\end{tabular}
```


12. Serial Correlation and Heteroscedasticity in Time Series Regressions

In Chapter 8, we discussed the consequences of heteroscedasticity in cross-sectional regressions. In the time series setting, similar consequences and strategies apply to both heteroscedasticity (with some specific features) and serial correlation of the error term. Unbiasedness and consistency of the OLS estimators are unaffected. But the OLS estimators are inefficient and the usual standard errors and inferences are invalid.

We first discuss how to test for serial correlation in Section 12.1. Section 12.2 introduces efficient estimation using feasible GLS estimators. As an alternative, we can still use OLS and calculate standard errors that are valid under both heteroscedasticity and autocorrelation as discussed in Section 12.3. Finally, Section 12.4 covers heteroscedasticity and autoregressive conditional heteroscedasticity (ARCH) models.

12.1. Testing for Serial Correlation of the Error Term

Suppose we are worried that the error terms u_{1}, u_{2}, \ldots in a regression model of the form

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} x_{t 1}+\beta_{2} x_{t 2}+\cdots+\beta_{k} x_{t k}+u_{t} \tag{12.1}
\end{equation*}
$$

are serially correlated. A straightforward and intuitive testing approach is described by Wooldridge (2019, Section 12.3). It is based on the fitted residuals $\hat{u}_{t}=y_{t}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{t 1}-\cdots-\hat{\beta}_{k} x_{t k}$ which can be obtained in GLM with the residuals function, see Section 2.2.

To test for $\operatorname{AR}(1)$ serial correlation under strict exogeneity, we regress \hat{u}_{t} on their lagged values \hat{u}_{t-1}. If the regressors are not necessarily strictly exogenous, we can adjust the test by adding the original regressors $x_{t 1}, \ldots, x_{t k}$ to this regression. Then we perform the usual t test on the coefficient of \hat{u}_{t-1}.

For testing for higher order serial correlation, we add higher order lags $\hat{u}_{t-2}, \hat{u}_{t-3}, \ldots$ as explanatory variables and test the joint hypothesis that they are all equal to zero using either an F test or a Lagrange multiplier (LM) test. Especially the latter version is often called Breusch-Godfrey test.

Wooldridge, Example 12.2: Testing for AR(1) Serial Correlation

We use this example to demonstrate the "pedestrian" way to test for autocorrelation which is actually straightforward and instructive. We estimate two versions of the Phillips curve: a static model

$$
\text { inf }_{t}=\beta_{0}+\beta_{1} \text { unem }_{t}+u_{t}
$$

and an expectation-augmented Phillips curve

$$
\Delta \mathrm{inf}_{t}=\beta_{0}+\beta_{1} \text { unem }_{t}+u_{t} .
$$

Scripts 12.1 (Example-12-2-Static.jl) and 12.2 (Example-12-2-ExpAug.jl) show the analyses. After the estimation, the residuals are extracted by calling residuals and regressed on their lagged values. We report standard errors and t statistics. While there is strong evidence for autocorrelation in the static equation with a t statistic of $\frac{0.573}{0.116} \approx 4.93$, the null hypothesis of no autocorrelation cannot be rejected in the second model with a t statistic of $\frac{-0.036}{0.124} \approx-0.29$.

Script 12.1: Example-12-2-Static.jl
using WooldridgeDatasets, GLM, DataFrames
phillips = DataFrame(wooldridge("phillips"))
yt96 = subset(phillips, :year => ByRow(<=(1996)))
\# estimation of static Phillips curve:
reg_s = lm(@formula(inf ~ unem), yt96)
\# residuals and AR(1) test:
yt96.resid_s = residuals(reg_s)
yt96.resid_s_lag1 = lag(yt96.resid_s, 1)
reg $=$ lm(@formula(resid_s ~ resid_s_lag1), yt96)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 12.1: Example-12-2-Static.jl

table_reg:						
	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95%	Upper 95%
(Intercept)	-0.113397	0.359404	-0.32	0.7538	-0.836839	0.610046
resid_s_lag1	0.572969	0.116133	4.93	$<1 e-04$	0.339205	0.806734

Script 12.2: Example-12-2-ExpAug.jl
using WooldridgeDatasets, GLM, DataFrames
phillips = DataFrame(wooldridge("phillips"))
yt96 = subset(phillips, :year => ByRow(<=(1996)))
\# estimation of expectations-augmented Phillips curve:
yt96.inf_diff1 = vcat(missing, diff(yt96.inf))
yt96 = yt96[Not (1), :]
reg_ea $=1 \mathrm{l}$ (@formula(inf_diff1 \sim unem), yt96)
yt96.resid_ea $=$ residuals (reg_ea)
yt96.resid_ea_lag1 = lag(yt96.resid_ea, 1)
reg = lm (@formula(resid_ea ~ resid_ea_lag1), yt96)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Output of Script 12.2: Example-12-2-ExpAug.jl
table_reg:

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	0.194166	0.300384	0.65	0.5213	-0.410839	0.79917
resid_ea_lag1	-0.0355928	0.123891	-0.29	0.7752	-0.285122	0.213936

The F test of $\operatorname{AR}(q)$ serial correlation can be performed by the function ftest in GLM as demonstrated in the following example.

Wooldridge, Example 12.4: Testing for AR(3) Serial Correlation

We already used the monthly data set BARIUM and estimated a model for barium chloride imports in Example 10.11. Script 12.3 (Example-12-4.jl) estimates the model and tests for $\operatorname{AR}(3)$ serial correlation. This gives exactly the results reported by Wooldridge (2019).

Script 12.3: Example-12-4.j1
using WooldridgeDatasets, GLM, DataFrames
barium = DataFrame (wooldridge ("barium"))
reg $=\operatorname{lm}(@ f o r m u l a(\log ($ chnimp $) \sim \log (c h e m p i)+\log (g a s)+\log (r t w e x)+$ befile6 + affile6 + afdec6), barium)

```
# testing resid_lag1 = 0, resid_lag2 = 0 and resid_lag3 = 0:
```

barium.resid = residuals (reg)
barium.resid_lag1 = lag (barium.resid, 1)
barium.resid_lag2 $=$ lag (barium.resid, 2)
barium.resid_lag3 $=$ lag (barium.resid, 3)
barium $=$ barium [Not (1:3), :]
reg_manual_ur $=1 \mathrm{~m}\left(@ f o r m u l a\left(r e s i d ~ \sim ~ r e s i d _l a g 1 ~+~ r e s i d _l a g 2 ~+~ r e s i d _l a g 3 ~+~\right.\right.$
$\log ($ chempi $)+\log (g a s)+\log ($ rtwex $)+$
befile6 + affile6 + afdec6), barium)

```
reg_manual_r = lm(@formula(resid ~ log(chempi) + log(gas) + log(rtwex) +
    befile6 + affile6 + afdec6), barium)
ftest_manual_res = ftest(reg_manual_r.model, reg_manual_ur.model)
fstat_manual = ftest_manual_res.fstat[2]
fpval_manual = ftest_manual_res.pval[2]
println("fstat_manual = $fstat_manual\n")
println("fpval_manual = $fpval_manual")
```

Output of Script 12.3: Example-12-4. jl
fstat_manual $=5.12290705407486$
fpval_manual $=0.00228980283295059$

Another popular test is the Durbin-Watson test for $\operatorname{AR}(1)$ serial correlation. While the test statistic is pretty straightforward to compute, its distribution is non-standard and depends on the data. The package Hypothesistests provides the function DurbinWatsonTest, which calculates test statistic and p value. The test statistic ranges from 0 to 4 , where 2 represents the case of no serial correlation. A value towards 0 indicates positive serial correlation, a value towards 4 negative serial correlation.
Script 12.4 (Example-DWtest.jl) repeats Example 12.2 but conducts DW tests instead of the t tests. The conclusions are the same: For the static model, no serial correlation can be rejected at a 1% level with a test statistic of $D W=0.8027$, because the p value is very small. For the expectation augmented Phillips curve, the null hypothesis cannot be rejected on any reasonable significance level because the p value is 0.3567 .

Script 12.4: Example-DWtest.jl
using WooldridgeDatasets, GLM, DataFrames, HypothesisTests
include(". ./03/getMats.jl")
phillips = DataFrame(wooldridge("phillips"))
yt96 = subset (phillips, :year => ByRow(<=(1996)))
\# estimation of both Phillips curve models and
\# extraction of regressor matrices and residuals:
reg_s = lm(@formula(inf ~ unem), yt96)
X_s = getMats (formula(reg_s), yt96) [2]
resid_s = residuals(reg_s)
yt96.inf_diff1 = vcat(missing, diff(yt96.inf))
yt96 = yt96[Not(1), :]
reg_ea = lm(@formula(inf_diff1 ~ unem), yt96)
x_ea = getMats (formula(reg_ea), yt96) [2]
resid_ea $=$ residuals (reg_ea)
\# DW tests:
DW_s = DurbinWatsonTest (X_s, resid_s)
DW_ea = DurbinWatsonTest (X_ea, resid_ea)
println("DW_s: \n\$DW_s $\backslash n$ ")
println("DW_ea: \n\$DW_ea")

Output of Script 12.4: Example-DWtest.jl
DW_s:
Durbin-Watson autocorrelation test
Population details:
parameter of interest: sample autocorrelation parameter
value under h_0: "0"
point estimate: 0.59865
Test summary:
outcome with 95\% confidence: reject h_0
two-sided p-value: <1e-05
Details:
number of observations: 49
DW statistic: 0.8027

DW_ea:
Durbin-Watson autocorrelation test
Population details:
parameter of interest: sample autocorrelation parameter
value under h_0: "0"
point estimate: 0.115176
Test summary:
outcome with 95\% confidence: fail to reject h_0
two-sided p-value: 0.3567
Details:
number of observations: 48
DW statistic: 1.76965

12.2. FGLS Estimation

In this subsection we demonstrate the Cochrane-Orcutt estimator to do the FGLS estimation. Since we are not aware of an available implementation in Julia with this functionality, we switch to Python's statsmodels module in this case. There is a simple way with the command GLSAR. It expects matrices of dependent and independent variables and reports the Cochrane-Orcutt estimator as demonstrated in Example 12.5.

Wooldridge, Example 12.5: Cochrane-Orcutt Estimation

We once again use the monthly data set BARIUM and the same model as before. Script 12.5 (Example-12-5.j1) estimates the model with OLS and then calls GLSAR. As expected, the results are very close to the Prais-Winsten estimates reported by Wooldridge (2019).

Script 12.5: Example-12-5.jl

```
using PyCall, WooldridgeDatasets, GLM, DataFrames
# install Python's statsmodels with: using Conda; Conda.add("statsmodels")
sm = pyimport("statsmodels.api")
include("../03/getMats.jl")
barium = DataFrame(wooldridge("barium"))
# definition of model and hypotheses:
f = @formula(log(chnimp) ~ 1 + log(chempi) + log(gas) + log(rtwex) +
                                    befile6 + affile6 + afdec6)
xy = getMats(f, barium)
y = xy[1]
x = xy[2]
# perform the Cochrane-Orcutt estimation (iterative procedure):
reg = sm.GLSAR (Y, X)
CORC_results = reg.iterative_fit (maxiter=100)
reg_rho = reg.rho
table = DataFrame(
    coefnames=["Intercept", "log(chempi)", "log(gas)", "log(rtwex)",
        "befile6", "affile6", "afdec6"],
    b_CORC=CORC_results.params,
    se_CORC=round.(CORC_results.bse, digits=5))
println("reg_rho = $reg_rho\n")
println("table: \n$table")
```

Output of Script 12.5: Example-12-5.jl

```
reg_rho = [0.29585312847400064]
```

table:
7×3 DataFrame
Row | coefnames b_CORC se_CORC
| String Float64 Float64
| Intercept -37.513 23.239
| log(chempi) $2.94545 \quad 0.6477$
$3 \mid \log ($ gas $) \quad 1.06332 \quad 0.99156$
4 | \log (rtwex) $1.1384 \quad 0.51491$
5 | befile6 $-0.0173144 \quad 0.32139$
6 | affile6 $-0.0331082 \quad 0.32381$
7 | afdec6 $-0.577328 \quad 0.34407$

12.3. Serial Correlation-Robust Inference with OLS

Unbiasedness and consistency of OLS are not affected by heteroscedasticity or serial correlation, but the standard errors are. Similar to the heteroscedasticity-robust standard errors discussed in Section 8.1, we can use a formula for the variance-covariance matrix, often referred to as NeweyWest standard errors. Wooldridge (2019, Section 12.5) shows how to calculate these standard errors and we implement it in Script 12.6 (calc-hac-se.jl). Script 12.7 (Example-12-1.jl) compares usual and Newey-West standard errors with an example.

Script 12.6: calc-hac-se.jl

```
using LinearAlgebra
# for details, see Equations 12.41 - 12.43 in Wooldridge (2019)
function calc_hac_se(reg, g)
    n = nobs (reg)
    X = reg.mm.m
    n = size(X, 1)
    K = size(X, 2)
    u = residuals(reg)
    ser = sqrt (sum(u .^ 2) / (n - K))
    se_ols = coeftable(reg).cols[2]
    se_hac = zeros(K)
    for k in 1:K
        yk = X[:, k]
        Xk = X[:, (1:K).!=k]
        bk = inv(transpose(Xk) * Xk) * transpose(Xk) * yk
        rk = yk .- Xk * bk
        ak = rk .* u
        vk = sum(ak .^ 2)
        for h in 1:g
            sum_h = 2 * (1-h / (g + 1)) * sum(ak[(h+1):n] .* ak[1:(n-h)])
                vk = vk + sum_h
            end
        se_hac[k] = (se_ols[k] / ser)^2 * sqrt(vk)
    end
    return se_hac
end
```


Wooldridge, Example 12.1: The Puerto Rican Minimum Wage

Script 12.7 (Example-12-1.j1) estimates a model for the employment rate depending on the minimum wage as well as the GNP in Puerto Rico and the US. After the model has been fitted by OLS, we call the function calc_hac_se on the regression object. With $g=2$ we get the results for the HAC variancecovariance formula reported in Wooldridge (2019). Both results imply a significantly negative relation between the minimum wage and employment.

Script 12.7: Example-12-1.jl
using WooldridgeDatasets, GLM, DataFrames
include ("calc-hac-se.jl")
prminwge = DataFrame (wooldridge ("prminwge"))
prminwge.time $=$ prminwge.year .- 1949
\# OLS with regular SE :
reg $=\operatorname{lm}(@ f o r m u l a(\log (p r e p o p) \sim \log (m i n c o v)+\log (p r g n p)+$
$\log (u s g n p)+$ time), prminwge)
\# OLS with HAC SE:
hac_se = calc_hac_se(reg, 2)
\# print different SEs:
table = DataFrame (coefficients=coeftable (reg). rownms, $\mathrm{b}=$ round. (coef (reg), digits=5) , se_default=round. (coeftable (reg). cols[2], digits=5), hac_se=round. (hac_se, digits=5))
println("table: \n\$table")

```
table:
5\times4 DataFrame
    Row | coefficients b se_default hac_se
        | String Float64 Float64 Float64
        |-------------------------------------------------
    2 | log(mincov) -0.21226 0.04015 0.0426
    3 | log(prgnp) 0.28524 0.08049 0.09285
    4 | log(usgnp) 0.48605 0.22198 0.2601
    5 | time -0.02666 0.00463 0.00536
```


12.4. Autoregressive Conditional Heteroscedasticity

In time series, especially in financial data, a specific form of heteroscedasticity is often present. Autoregressive conditional heteroscedasticity (ARCH) and related models try to capture these effects.

Consider a basic linear time series equation

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} x_{t 1}+\beta_{2} x_{t 2}+\cdots+\beta_{k} x_{t k}+u_{t} . \tag{12.2}
\end{equation*}
$$

The error term u follows an ARCH process if

$$
\begin{equation*}
\mathrm{E}\left(u_{t}^{2} \mid u_{t-1}, u_{t-2}, \ldots\right)=\alpha_{0}+\alpha_{1} u_{t-1}^{2} . \tag{12.3}
\end{equation*}
$$

As the equation suggests, we can estimate α_{0} and α_{1} by an OLS regression of the residuals \hat{u}_{t}^{2} on \hat{u}_{t-1}^{2}.

Wooldridge, Example 12.9: ARCH in Stock Returns

Script 12.8 (Example-12-9.j1) estimates a simple AR(1) model for weekly NYSE stock returns, already studied in Example 11.4. After the squared residuals are obtained, they are regressed on their lagged values. The coefficients from this regression are estimates for α_{0} and α_{1}.

Script 12.8: Example-12-9.jl
using WooldridgeDatasets, GLM, DataFrames
nyse $=$ DataFrame (wooldridge ("nyse"))
nyse.ret $=$ nyse.return
nyse. ret_lag1 = lag (nyse.ret, 1)
nyse $=$ nyse $[\operatorname{Not}(1,2)$, :]
\# linear regression of model:
reg $=$ lm(@formula (ret \sim ret_lag1), nyse)
\# squared residuals:
nyse.resid_sq = residuals (reg) .^ 2
nyse.resid_sq_lag1 = lag(nyse.resid_sq, 1)
\# model for squared residuals:
ARCHreg = lm(@formula(resid_sq ~ resid_sq_lag1), nyse)
table_ARCHreg = coeftable (ARCHreg)
println("table_ARCHreg: \n\$table_ARCHreg")

Output of Script 12.8: Example-12-9.j1
table_ARCHreg:
Coef. Std. Error $t \operatorname{Pr}(>|t|)$ Lower 95\% Upper 95\%

(Intercept)	2.94743	0.440234	6.70	$<1 e-10$	2.08306	3.8118

$\begin{array}{lllllll}\text { resid_sq_lag1 } 0.337062 & 0.0359468 & 9.38 & <1 e-19 & 0.266483 & 0.407641\end{array}$

As a second example, let us reconsider the daily stock returns from Script 11.2 (Example-EffMkts.jl). We again download the daily Apple stock prices from Yahoo Finance and calculate their returns. Figure 11.1 on page 200 plots them. They show a very typical pattern for an ARCH-type of model: there are periods with high (such as fall 2008) and other periods with low volatility (fall 2010). In Script 12.9 (Example-ARCH.jl), we estimate an $\operatorname{AR}(1)$ process for the squared residuals. The t statistic is larger than 8 , so there is very strong evidence for autoregressive conditional heteroscedasticity.

Script 12.9: Example-ARCH.jl
using DataFrames, GLM, Dates, MarketData
\# download data for "AAPL" (= Apple) and define start and end:
ticker = "AAPL"
start_date $=$ DateTime (2007, 12, 31)
end_date $=$ DateTime (2017, 01, 01)
\# import data as DataFrame:
AAPL_data = DataFrame (yahoo (ticker,
YahooOpt (period1=start_date, period2=end_date)))
\# calculate return as the difference of logged prices:
AAPL_data.ret = vcat (missing, diff(log. (AAPL_data.AdjClose)))
AAPL_data.ret_lag1 = lag (AAPL_data.ret, 1)
AAPL_data $=$ AAPL_data $[\operatorname{Not}(1,2),:]$
\# AR(1) model for returns:
reg $=\operatorname{lm}(@ f o r m u l a(r e t \sim$ ret_lag1), AAPL_data)
\# squared residuals:
AAPL_data.resid_sq = residuals(reg) .^ 2
AAPL_data.resid_sq_lag1 = lag(AAPL_data.resid_sq, 1)
\# model for squared residuals:
ARCHreg = lm(@formula (resid_sq ~ resid_sq_lag1), AAPL_data)
table_ARCHreg = coeftable (ARCHreg)
println("table_ARCHreg: \n\$table_ARCHreg")

Output of Script 12.9: Example-ARCH.jl
table_ARCHreg:
Coef. Std. Error $t \operatorname{Pr}(>|t|)$ Lower 95\% Upper 95\%
$\begin{array}{llllllll}\text { (Intercept) } & 0.000345268 & 2.84054 e-5 & 12.16 & <1 e-32 & 0.000289565 & 0.000400971\end{array}$

| resid_sq_lag1 0.172245 | 0.0207069 | 8.32 | $<1 e-15$ | 0.131639 | 0.212852 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Part III.

Advanced Topics

13. Pooling Cross Sections Across Time: Simple Panel Data Methods

Pooled cross sections consist of random samples from the same population at different points in time. Section 13.1 introduces this type of data set and how to use it for estimating changes over time. Section 13.2 covers difference-in-differences estimators, an important application of pooled cross sections for identifying causal effects.

Panel data resemble pooled cross-sectional data in that we have observations at different points in time. The key difference is that we observe the same cross-sectional units, for example individuals or firms. Panel data methods require the data to be organized in a systematic way, as discussed in Section 14.1. Section 13.4 introduces the first panel data method, first differenced estimation.

13.1. Pooled Cross Sections

If we have random samples at different points in time, this does not only increase the overall sample size and thereby the statistical precision of our analyses. It also allows to study changes over time and shed additional light on relationships between variables.

Wooldridge, Example 13.2: Changes to the Return to Education and the Gender Wage Gap

The data set cps $78 _85$ includes two pooled cross sections for the years 1978 and 1985. The dummy variable y85 is equal to one for observations in 1985 and to zero for 1978. We estimate a model for the log wage lwage of the form

$$
\begin{aligned}
& \text { lwage }=\beta_{0}+\delta_{0 y} 85+\beta_{1} \text { educ }+\delta_{1}(\mathrm{y} 85 \cdot \text { educ })+\beta_{2} \text { exper }+\beta_{3} \frac{\text { exper }^{2}}{100} \\
&+\beta_{4} \text { union }+\beta_{5} \text { female }+\delta_{5}(\text { y } 85 \cdot \text { female })+u .
\end{aligned}
$$

Note that we divide exper ${ }^{2}$ by 100 and thereby multiply β_{3} by 100 compared to the results reported in Wooldridge (2019). The parameter β_{1} measures the return to education in 1978 and δ_{1} is the difference of the return to education in 1985 relative to 1978. Likewise, β_{5} is the gender wage gap in 1978 and δ_{5} is the change of the wage gap.
Script 13.1 (Example-13-2.jl) estimates the model. The return to education is estimated to have increased by $\hat{\delta}_{1}=0.0185$ and the gender wage gap decreased in absolute value from $\hat{\beta}_{5}=-0.3167$ to $\hat{\beta}_{5}+\hat{\delta}_{5}=-0.2316$, even though this change is only marginally significant. The interpretation and implementation of interactions were covered in more detail in Section 6.1.6.

Script 13.1: Example-13-2.j1

```
using WooldridgeDatasets, GLM, DataFrames
cps78_85 = DataFrame(wooldridge("cps78_85"))
# OLS results including interaction terms:
reg = lm(@formula(lwage ~ y85 * (educ + female) + exper +
    ((exper^2) / 100) + union), cps78_85)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Output of Script 13.1: Example-13-2 .jl

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95%
(Intercept)	0.458933	0.0934485	4.91	<1e-05	0.275571	0.642295
y85	0.117806	0.123782	0.95	0.3415	-0.125075	0.360687
educ	0.0747209	0.00667643	11.19	<1e-26	0.0616206	0.0878212
female	-0.316709	0.0366215	-8.65	<1e-16	-0.388566	-0.244851
exper	0.0295843	0.00356731	8.29	<1e-15	0.0225846	0.036584
exper ^ 2 / 100	-0.0399428	0.00775391	-5.15	<1e-06	-0.0551573	-0.0247283
union	0.202132	0.0302945	6.67	<1e-10	0.142689	0.261575
y85 \& educ	0.0184605	0.00935417	1.97	0.0487	0.000106032	0.036815
y85 \& female	0.085052	0.051309	1.66	0.0977	-0.0156251	0.185729

13.2. Difference-in-Differences

Wooldridge (2019, Section 13.2) discusses an important type of application for pooled cross sections. Difference-in-differences (DiD) estimators estimate the effect of a policy intervention (in the broadest sense) by comparing the change over time of an outcome of interest between an affected and an unaffected group of observations.

In a regression framework, we regress the outcome of interest on a dummy variable for the affected ("treatment") group, a dummy indicating observations after the treatment and an interaction term between both. The coefficient of this interaction term can then be a good estimator for the effect of interest, controlling for initial differences between the groups and contemporaneous changes over time.

Wooldridge, Example 13.3: Effect of a Garbage Incinerator's Location on Housing Prices

We are interested in whether and how much the construction of a new garbage incinerator affected the value of nearby houses. Script 13.2 (Example-13-3-1.jl) uses the data set kielmc. We first estimate separate models for 1978 (before there were any rumors about the new incinerator) and 1981 (when the construction began). In 1981, the houses close to the construction site were cheaper by an average of $\$ 30,688.27$. But this was not only due to the new incinerator since even in 1978 , nearby houses were cheaper by an average of $\$ 18,824.37$. The difference of these differences $\hat{\delta}=\$ 30,688.27-\$ 18,824.37=\$ 11,863.90$ is the DiD estimator and is arguably a better indicator of the actual effect.
The DiD estimator can be obtained more conveniently using a joint regression model with the interaction term as described above. The estimator $\hat{\delta}=\$ 11,863.90$ can be directly seen as the coefficient of the
interaction term. Conveniently, standard regression tables include t tests of the hypothesis that the actual effect is equal to zero. For a one-sided test, the p value is $\frac{1}{2} \cdot 0.113=0.056$ (not reported in the output), so there is some statistical evidence of a negative impact.
The DiD estimator can be improved. A logarithmic specification is more plausible since it implies a constant percentage effect on the house values. We can also add additional regressors to control for incidental changes in the composition of the houses traded. Script 13.3 (Example-13-3-2.j1) implements both improvements. The model including features of the houses implies an estimated decrease in the house values of about 13.2%. This effect is also significantly different from zero.

Script 13.2: Example-13-3-1.jl
using WooldridgeDatasets, GLM, DataFrames, RegressionTables
kielmc = DataFrame (wooldridge("kielmc"))
kielmc.is1981 = kielmc.year . == 1981
\# separate regressions for 1978 and 1981:
y78 = subset (kielmc, : year => ByRow (==(1978)))
reg78 = lm(@formula(rprice ~ nearinc), y78)
y81 = subset (kielmc, :year => ByRow(==(1981)))
reg81 = lm(@formula(rprice ~ nearinc), y81)
\# joint regression including an interaction term:
reg_joint $=$ lm(@formula(rprice ~ nearinc * is1981), kielmc)
\# print results with RegressionTables:
regtable(reg78, reg81, reg_joint)

Output of Script 13.2: Example-13-3-1. j1

	rprice		
	(1)	(2)	(3)
(Intercept)	$\begin{array}{r} 82517.228 * * * \\ (2653.790) \end{array}$	$\begin{array}{r} 101307.514 * * * \\ (3093.027) \end{array}$	$\begin{array}{r} 82517.228 * * * \\ (2726.910) \end{array}$
nearinc	$\begin{array}{r} -18824.370 * * * \\ (4744.594) \end{array}$	$\begin{array}{r} -30688.274 \star * * \\ (5827.709) \end{array}$	$\begin{array}{r} -18824.370 * * * \\ (4875.322) \end{array}$
is1981			$\begin{array}{r} 18790.286 * * * \\ (4050.065) \end{array}$
nearinc \& is1981			$\begin{aligned} & -11863.903 \\ & (7456.646) \end{aligned}$
Estimator	OLS	OLS	OLS
N	179	142	321
R2	0.082	0.165	0.174

Script 13.3: Example-13-3-2.j1

```
using WooldridgeDatasets, GLM, DataFrames
kielmc = DataFrame(wooldridge("kielmc"))
kielmc.is1981 = kielmc.year .== 1981
# difference in difference (DiD):
reg_did = lm(@formula(log(rprice) ~ nearinc * is1981), kielmc)
table_did = coeftable(reg_did)
println("table_did: \n$table_did\n")
# DiD with control variables:
reg_didC = lm(@formula(log(rprice) ~ nearinc * is1981 + age + (age^2) +
    log(intst) + log(land) + log(area) +
    rooms + baths), kielmc)
table_didC = coeftable(reg_didC)
println("table_didC: \n$table_didC")
```

Output of Script 13.3: Example-13-3-2.j1
table_did:

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\% Upper 95\%	
(Intercept)	11.2854	0.0305145	369.84	$<1 e-99$	11.2254	11.3455
nearinc	-0.339923	0.0545555	-6.23	$<1 e-08$	-0.44726	-0.232587
is1981	0.193094	0.0453207	4.26	$<1 e-04$	0.103926	0.282261
nearinc \& is1981	-0.062649	0.0834408	-0.75	0.4533	-0.226817	0.101519

table_didC:
(Intercept)

Coef.	Std. Error	t	Pr $(>\|t\|)$	Lower 95\%	Upper 95\%
7.6517	0.415884	18.40	$<1 e-50$	6.83339	8.47001
0.0322389	0.0474875	0.68	0.4977	-0.0611997	0.125678
0.162074	0.0284999	5.69	$<1 e-07$	0.105997	0.218152
-0.00835901	0.00141115	-5.92	$<1 e-08$	-0.0111356	-0.00558237
$3.76343 e-5$	$8.66848 e-6$	4.34	$<1 e-04$	$2.05778 e-5$	$5.46908 e-5$
-0.0614386	0.0315075	-1.95	0.0521	-0.123434	0.000557068
0.0998402	0.0244909	4.08	$<1 e-04$	0.0516508	0.14803
0.350774	0.0514866	6.81	$<1 e-10$	0.249467	0.452081
0.0473335	0.0173274	2.73	0.0067	0.0132392	0.0814278
0.0942765	0.0277257	3.40	0.0008	0.0397221	0.148831
-0.131514	0.0519713	-2.53	0.0119	-0.233775	-0.0292527

13.3. Organizing Panel Data

A panel data set includes several observations at different points in time t for the same (or at least an overlapping) set of cross-sectional units i. A simple "pooled" regression model could look like

$$
\begin{equation*}
y_{i t}=\beta_{0}+\beta_{1} x_{i t 1}+\beta_{2} x_{i t 2}+\cdots+\beta_{k} x_{i t k}+v_{i t} ; \quad t=1, \ldots, T ; \quad i=1, \ldots, n, \tag{13.1}
\end{equation*}
$$

where the double subscript now indicates values for individual (or other cross-sectional unit) i at time t. We could estimate this model by OLS, essentially ignoring the panel structure. But at least the assumption that the error terms are unrelated is very hard to justify since they contain unobserved individual traits that are likely to be constant or at least correlated over time. Therefore, we need specific methods for panel data.
For the calculations used by panel data methods, we have to make sure that the data set is systematically organized and the estimation routines understand its structure. Usually, a panel data set
comes in a "long" form where each row of data corresponds to one combination of i and t. We have to define which observations belong together by introducing a variable for the cross-sectional units i and preferably also the time index t. In Script 13.4 (Example-FD.jl), for example, we use the variables id to identify cross-sectional units and year as the time variable.

13.4. First Differenced Estimator

Wooldridge (2019, Sections 13.3 - 13.5) discusses basic unobserved effects models and their estimation by first-differencing (FD). Consider the model

$$
\begin{equation*}
y_{i t}=\beta_{0}+\beta_{1} x_{i t 1}+\cdots+\beta_{k} x_{i t k}+a_{i}+u_{i t} ; \quad t=1, \ldots, T ; \quad i=1, \ldots, n, \tag{13.2}
\end{equation*}
$$

which differs from Equation 13.1 in that it explicitly involves an unobserved effect a_{i} that is constant over time (since it has no t subscript). If it is correlated with one or more of the regressors $x_{i t 1}, \ldots, x_{i t k}$, we cannot simply ignore a_{i}, leave it in the composite error term $v_{i t}=a_{i}+u_{i t}$ and estimate the equation by OLS. The error term $v_{i t}$ would be related to the regressors, violating assumption MLR. 4 (and MLR.4') and creating biases and inconsistencies. Note that this problem is not unique to panel data, but possible solutions are.

The first differenced (FD) estimator is based on the first difference of the whole equation:

$$
\begin{align*}
\Delta y_{i t} & \equiv y_{i t}-y_{i t-1} \\
& =\beta_{1} \Delta x_{i t 1}+\cdots+\beta_{k} \Delta x_{i t k}+\Delta u_{i t} ; \quad t=2, \ldots, T ; \quad i=1, \ldots, n . \tag{13.3}
\end{align*}
$$

Note that we cannot evaluate this equation for the first observation $t=1$ for any i since the lagged values are unknown for them. The trick is that a_{i} drops out of the equation by differencing since it does not change over time. No matter how badly it is correlated with the regressors, it cannot hurt the estimation anymore. This estimating equation is then analyzed by OLS. We simply regress the differenced dependent variable $\Delta y_{i t}$ on the differenced independent variables $\Delta x_{i t 1}, \ldots, \Delta x_{i t k}$.

Script 13.4 (Example-FD.jl) opens the data set CRIME 2 already described above. We describe the data preparation required for the manual estimation. First, we need to sort the data by id and year to make sure the same temporal difference is calculated for each city. Before we can use the function diff to calculate first differences of the dependent variable crime rate (crmrte) and the independent variable unemployment rate (unem), we have to make sure that these calculations are performed per individual with grouped_df = groupby (crime2, :id). With the following line of code, we calculate the differences for the variable crmrte and combine the results in a data frame:

```
combine(grouped_df, :crmrte => diff).crmrte_diff
```

The first five observations reveal that there is only one difference for each city, which makes sense, because there are only two years in the data set. For example the change of the crime rate for city 1 is $70.11729-74.65756=-4.54027$ and the change of the unemployment rate for city 2 is $5.4-8.1=-2.7$. The FD estimator can now be calculated by simply applying OLS to these differenced values. The observations for the first year with missing information are automatically dropped from the estimation sample. The results show a significantly positive relation between unemployment and crime. Script 13.5 (Example-13-9.jl) gives another example.

Script 13.4: Example-FD.jl
using WooldridgeDatasets, GLM, DataFrames
crime2 = DataFrame (wooldridge("crime2"))
\# create an index in this balanced data set by combining two vectors:
id_tmp = 1:46
crime2.id = sort (vcat (id_tmp, id_tmp))
\# sort data by id and year:
sort! (crime2, [:id, :year])
\# manually calculate first differences per entity for crmrte and unem:
grouped_df = groupby (crime2, :id)
diff_df = DataFrame (id=id_tmp)
diff_df.crmrte_diff1 = combine (grouped_df, :crmrte => diff).crmrte_diff diff_df.unem_diff1 = combine (grouped_df, :unem => diff). unem_diff
preview = diff_df[1:5, :]
println("preview: \n\$preview\n")
\# estimate FD model with OLS on differenced data:
reg_sm = lm(@formula (crmrte_diff1 ~ unem_diffi), diff_df)
table_sm = coeftable (reg_sm)
println("table_sm: \n\$table_sm")

Output of Script 13.4: Example-FD.jl

```
preview:
5\times3 DataFrame
    Row | id crmrte_diff1 unem_diff1
        Int64 Float64 Float64
        --------------------------------------------------
        l:llll
table_sm:
    Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
\begin{tabular}{lcccccc} 
(Intercept) & 15.4022 & 4.70212 & 3.28 & 0.0021 & 5.92571 & 24.8787 \\
unem_diff1 & 2.218 & 0.877866 & 2.53 & 0.0152 & 0.448777 & 3.98722
\end{tabular}
```


Wooldridge, Example 13.9: County Crime Rates in North Carolina

Script 13.5 (Example-13-9.jl) analyzes the data CRIME4. We estimate the model in first differences using the same approach as in Script 13.4 (Example-FD. jl), but for more variables.
Note that in this specification, all variables are differenced, so they have the intuitive interpretation in the level equation. In the results reported by Wooldridge (2019), the year dummies are not differenced which only makes a difference for the interpretation of the year coefficients.

```
            Script 13.5: Example-13-9.jl
using WooldridgeDatasets, GLM, DataFrames
crime4 = DataFrame(wooldridge("crime4"))
crime4.lcrmrte = log.(crime4.crmrte)
# sort data by county and year:
sort!(crime4, [:county, :year])
# manually calculate first differences for multiple variables:
vars_to_diff = ["lcrmrte", "d83", "d84", "d85", "d86", "d87",
    "lprbarr", "lprbconv", "lprbpris", "lavgsen", "lpolpc"]
grouped_df = groupby(crime4, :county)
diff_df = DataFrame()
for i in vars_to_diff
    tmp_diff_i = combine(grouped_df, Symbol(i) => diff)[:, 2]
    diff_df[!, i] = tmp_diff_i
end
# estimate FD model:
reg = lm(@formula(lcrmrte ~ d83 + d84 + d85 + d86 + d87 +
    lprbarr + lprbconv + lprbpris +
    lavgsen + lpolpc), diff_df)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Output of Script 13.5: Example-13-9.j1

```
table_reg:
```

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	0.00771336	0.0170579	0.45	0.6513	-0.0257961	0.0412229
d83	-0.0998658	0.0238953	-4.18	<1e-04	-0.146807	-0.0529246
d84	-0.147803	0.0412794	-3.58	0.0004	-0.228895	-0.0667117
d85	-0.152414	0.0584	-2.61	0.0093	-0.267139	-0.0376901
d86	-0.1249	0.0760042	-1.64	0.1009	-0.274207	0.024407
d87	-0.0840734	0.0940003	-0.89	0.3715	-0.268733	0.100586
lprbarr	-0.327494	0.0299801	-10.92	<1e-24	-0.386389	-0.268599
lprbconv	-0.238107	0.0182341	-13.06	$<1 e-33$	-0.273927	-0.202286
lprbpris	-0.165046	0.025969	-6.36	<1e-09	-0.216061	-0.114031
lavgsen	-0.0217606	0.0220909	-0.99	0.3251	-0.0651573	0.0216361
lpolpc	0.398426	0.026882	14.82	<1e-41	0.345618	0.451235

14. Advanced Panel Data Methods

In this chapter, we look into additional panel data models and methods. We start with the widely used fixed effects (FE) estimator in Section 14.2, followed by random effects (RE) in Section 14.3. The dummy variable regression and correlated random effects approaches presented in Section 14.4 can be used as alternatives and generalizations of FE. We will come back to panel data in combination with instrumental variables in Section 15.6.

14.1. Getting Started with Panel Data

We will use the package Econometrics, which is a comprehensive collection of commands dealing with regression models including panel data estimators. ${ }^{1}$ After installing it, the following line of code loads the package:

```
using Econometrics
```

The routines often require a data frame including two variables, which describe the individual and time dimensions.

14.2. Fixed Effects Estimation

We start from the same basic unobserved effects models as Equation 13.2. Instead of first differencing, we get rid of the unobserved individual effect a_{i} using the within transformation:

$$
\begin{align*}
y_{i t} & =\beta_{0}+\beta_{1} x_{i t 1}+\cdots+\beta_{k} x_{i t k}+a_{i}+u_{i t} ; \quad t=1, \ldots, T ; \quad i=1, \ldots, n, \\
\bar{y}_{i} & =\beta_{0}+\beta_{1} \bar{x}_{11}+\cdots+\beta_{k} \bar{x}_{i k}+a_{i}+\bar{u}_{i} \\
\ddot{y}_{i t}=y_{i t}-\bar{y}_{i} & =\quad \beta_{1} \ddot{x}_{i t 1}+\cdots+\beta_{k} \ddot{x}_{i t k} \quad+\ddot{u}_{i t}, \tag{14.1}
\end{align*}
$$

where \bar{y}_{i} is the average of $y_{i t}$ over time for cross-sectional unit i and for the other variables accordingly. The within transformation subtracts these individual averages from the respective observations $y_{i t}$.

The fixed effects (FE) estimator simply estimates the demeaned Equation 14.1 using pooled OLS. Instead of applying the within transformation to all variables and running lm, we can simply use fit (EconometricModel, formula, dataframe) in the package Econometrics. The within transformation is considered by adding absorb (id) to the formula, where id is the variable identifying an individual. This has the additional advantage that the degrees of freedom are adjusted to the demeaning and the variance-covariance matrix and standard errors are adjusted accordingly. We will come back to different ways to get the same estimates in Section 14.4. This is shown in Script 14.1 (Example-14-2.jl).

[^45]
Wooldridge, Example 14.2: Has the Return to Education Changed over Time?

We estimate the change of the return to education over time using a fixed effects estimator. Script 14.1 (Example-14-2.jl) shows the implementation. The data set WAGEPAN is a balanced panel for $n=545$ individuals over $T=8$ years. The panel structure is described by the variables nr and year for individuals and years, respectively. We implement the demeaning on the individual level by including absorb (nr) in the formula. The formula is a little longer than necessary, because we could also use year $=>$ DummyCoding (), to get rid of all the year dummys (see Script 14.2 (Example-14-4.jl) for an alternative implementation). But with this specification we get the same results as Wooldridge (2019). Since educ does not change over time, we cannot estimate its overall impact in the estimation. However, we can interact it with time dummies to see how the impact changes over time.

Script 14.1: Example-14-2.jl

```
using WooldridgeDatasets, DataFrames, Econometrics
wagepan = DataFrame(wooldridge("wagepan"))
# FE model estimation:
reg = fit(EconometricModel,
    @formula(lwage ~ married + union +
        d81 + d81 + d82 + d83 + d84 + d85 + d86 + d87 +
        d81 & educ + d81 & educ + d82 & educ + d83 & educ +
        d84 & educ + d85 & educ + d86 & educ + d87 & educ +
        absorb(nr)),
    wagepan)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Output of Script 14.1: Example-14-2.jl

table_reg:							
	PE	SE	t-value	Pr > \|t		2.50\%	97.50%
(Intercept)	1.36246	0.0162385	83.9031	<1e-99	1.33062	1.3943	
married	0.0548205	0.0184126	2.97734	0.0029	0.018721	0.09092	
union	0.0829785	0.0194461	4.2671	<1e-04	0.0448527	0.121104	
d81	-0.0224158	0.145888	-0.15365	0.8779	-0.308443	0.263611	
d82	-0.00576106	0.145856	-0.0394983	0.9685	-0.291724	0.280202	
d83	0.0104297	0.145858	0.071506	0.9430	-0.275538	0.296397	
d84	0.0843743	0.145852	0.578493	0.5630	-0.201581	0.37033	
d85	0.0497253	0.14586	0.340911	0.7332	-0.236247	0.335697	
d86	0.0656064	0.145892	0.449693	0.6530	-0.220427	0.35164	
d87	0.0904448	0.145851	0.62012	0.5352	-0.195508	0.376398	
d81 \& educ	0.0115854	0.0122625	0.944788	0.3448	-0.0124562	0.0356271	
d82 \& educ	0.0147905	0.0122635	1.20605	0.2279	-0.00925326	0.0388342	
d83 \& educ	0.0171182	0.0122633	1.39589	0.1628	-0.00692509	0.0411615	
d84 \& educ	0.0165839	0.0122657	1.35206	0.1764	-0.00746404	0.0406319	
d85 \& educ	0.0237085	0.0122738	1.93163	0.0535	-0.000355375	0.0477725	
d86 \& educ	0.0274123	0.012274	2.23337	0.0256	0.00334806	0.0514765	
d87 \& educ	0.0304332	0.0122723	2.47982	0.0132	0.00637217	0.0544942	

14.3. Random Effects Models

We again base our analysis on the basic unobserved effects model in Equation 13.2. The random effects (RE) model assumes that the unobserved effects a_{i} are independent of (or at least uncorrelated with) the regressors $x_{i t j}$ for all t and $j=1, \ldots, k$. Therefore, our main motivation for using FD or FE disappears: OLS consistently estimates the model parameters under this additional assumption.

However, like the situation with heteroscedasticity (see Section 8.3) and autocorrelation (see Section 12.2), we can obtain more efficient estimates if we take into account the structure of the variances and covariances of the error term. Wooldridge (2019, Section 14.2) shows that the GLS transformation that takes care of their special structure implied by the RE model leads to a quasi-demeaned specification

$$
\begin{equation*}
\grave{y}_{i t}=y_{i t}-\theta \bar{y}_{i}=\beta_{0}(1-\theta)+\beta_{1} \check{x}_{i t 1}+\cdots+\beta_{k} \check{x}_{i t k}+\stackrel{\circ}{v}_{i t} \tag{14.2}
\end{equation*}
$$

where $\dot{y}_{i t}$ is similar to the demeaned $\ddot{y}_{i t}$ from Equation 14.1 but subtracts only a fraction θ of the individual averages. The same holds for the regressors $x_{i t j}$ and the composite error term $v_{i t}=a_{i}+u_{i t}$.

The parameter $\theta=1-\sqrt{\frac{\sigma_{u}^{2}}{\sigma_{u}^{2}+T \sigma_{a}^{2}}}$ depends on the variances of $u_{i t}$ and a_{i} and the length of the time series dimension T. It is unknown and has to be estimated. With the variable id describing the individual and t the time dimension in the data frame sample, we can estimate the RE model parameters in Econometrics using the following syntax:

```
fit(RandomEffectsEstimator, @formula(y ~ x1 + x2 + x3),
    sample,
    panel=:id,
    time=:t)
```

Unlike with FD and FE estimators, we can include variables in our model that are constant over time for each cross-sectional unit.

Wooldridge, Example 14.4: A Wage Equation Using Panel Data

The data set wagepan was already used in Example 14.2. We get estimates using OLS, RE, and FE estimators in Script 14.2 (Example-14-4.j1). We use lm, fit (RandomEffectsEstimator,...) and fit (EconometricModel, ...), respectively.

Script 14.2: Example-14-4.jl
using WooldridgeDatasets, GLM, DataFrames, Econometrics
wagepan $=$ DataFrame (wooldridge ("wagepan"))
\# estimate different models:
reg_ols $=\operatorname{lm}(@ f o r m u l a(l w a g e ~ \sim ~ e d u c ~+~ b l a c k ~+~ h i s p ~+~ e x p e r ~+~(e x p e r \wedge 2) ~+~$ married + union + year),
wagepan, contrasts=Dict (:year => DummyCoding()))
reg_re $=$ fit (RandomEffectsEstimator, @formula(lwage ~ educ + black + hisp + exper + (exper^2) + married + union + year),
wagepan,
panel=:nr, time=:year, contrasts=Dict(:year => DummyCoding()))

```
reg_fe = fit(EconometricModel,
    @formula(lwage ~ (exper^2) + married + union + year + absorb(nr)),
    wagepan,
    contrasts=Dict(:year => DummyCoding()))
# print results:
table_ols = coeftable(reg_ols)
println("table_ols: \n$table_ols\n")
table_re = coeftable(reg_re)
println("table_re: \n$table_re\n")
table_fe = coeftable(reg_fe)
println("table_fe: \n$table_fe")
```

Output of Script 14.2: Example-14-4.jl

	PE	SE	t-value	$\operatorname{Pr}>\|t\|$	2.50%	97.50\%
(Intercept)	1.42602	0.0183415	77.7484	$<1 e-99$	1.39006	1.46198
exper ^ 2	-0.0051855	0.000704437	-7.3612	<1e-12	-0.00656661	-0.00380439
married	0.0466804	0.0183104	2.54939	0.0108	0.0107811	0.0825796
union	0.0800019	0.0193103	4.14296	<1e-04	0.0421423	0.117861
year: 1981	0.151191	0.0219489	6.88832	<1e-11	0.108158	0.194224
year: 1982	0.252971	0.0244185	10.3598	<1e-24	0.205096	0.300845
year: 1983	0.354444	0.0292419	12.1211	<1e-32	0.297113	0.411775
year: 1984	0.490115	0.0362266	13.5291	<1e-40	0.419089	0.56114
year: 1985	0.617482	0.0452435	13.648	<1e-40	0.528778	0.706186
year: 1986	0.765497	0.0561277	13.6385	$<1 e-40$	0.655453	0.87554
year: 1987	0.925025	0.0687731	13.4504	$<1 e-39$	0.790189	1.05986

The RE estimator needs stronger assumptions to be consistent than the FE estimator. On the other hand, it is more efficient if these assumptions hold and we can include time constant regressors. A widely used test of this additional assumption is the Hausman test, which is based on the comparison between the FE and RE parameter estimates.

14.4. Dummy Variable Regression and Correlated Random Effects

It turns out that we can get the FE parameter estimates in two other ways than the within transformation we used in Section 14.2. The dummy variable regression uses OLS on the original variables in Equation 13.2 instead of the transformed ones. But it adds $n-1$ dummy variables (or n dummies and removes the constant), one for each cross-sectional unit $i=1, \ldots, n$. The simplest (although not the computationally most efficient) way to implement this in Julia is to use the cross-sectional index as another categorical variable.

The third way to get the same results is the correlated random effects (CRE) approach. Instead of assuming that the individual effects a_{i} are independent of the regressors $x_{i t j}$, we assume that they only depend on the averages over time $\bar{x}_{i j}=\frac{1}{T} \sum_{t=1}^{T} x_{i t j}$:

$$
\begin{align*}
a_{i} & =\gamma_{0}+\gamma_{1} \bar{x}_{i 1}+\cdots+\gamma_{k} \bar{x}_{i k}+r_{i} \tag{14.3}\\
y_{i t} & =\beta_{0}+\beta_{1} x_{i t 1}+\cdots+\beta_{k} x_{i t k}+a_{i}+u_{i t} \\
& =\beta_{0}+\gamma_{0}+\beta_{1} x_{i t 1}+\cdots+\beta_{k} x_{i t k}+\gamma_{1} \bar{x}_{i 1}+\cdots+\gamma_{k} \bar{x}_{i k}+r_{i}+u_{i t} . \tag{14.4}
\end{align*}
$$

If r_{i} is uncorrelated with the regressors, we can consistently estimate the parameters of this model using the RE estimator. In addition to the original regressors, we include their averages over time.

Script 14.3 (Example-Dummy-CRE.jl) uses WAGEPAN again. We estimate the FE parameters using the within transformation (reg_we), the dummy variable approach (reg_dum), and the CRE approach (reg_cre). We also estimate the RE version of this model (reg_re). The results confirm that the first three methods deliver exactly the same parameter estimates, while the RE estimates differ.

Script 14.3: Example-Dummy-CRE.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Statistics
wagepan = DataFrame(wooldridge("wagepan"))
# include group specific means:
grouped_means = combine(groupby(wagepan, :nr), [:married, :union] .=> mean)
wagepan = innerjoin(grouped_means, wagepan, on=:nr)
# estimate FE parameters in 3 different ways:
reg_we = fit(EconometricModel,
    @formula(lwage ~ married + union + absorb(nr) +
                        d81 + d81 + d82 + d83 + d84 + d85 + d86 + d87 +
                        d81 & educ + d81 & educ + d82 & educ + d83 & educ +
                        d84 & educ + d85 & educ + d86 & educ + d87 & educ),
    wagepan)
reg_dum = lm(@formula(lwage ~ married + union + year * educ + nr),
    wagepan,
    contrasts=Dict(:year => DummyCoding(), :nr => DummyCoding()))
```

reg_cre $=$ fit (RandomEffectsEstimator,
@formula(lwage ~ married + union + year * educ +
married_mean + union_mean),
wagepan,
panel=:nr,
time=:year,
contrasts=Dict (:year => DummyCoding()))
\# compare to RE estimates:
reg_re $=$ fit (RandomEffectsEstimator,
@formula(lwage ~ married + union + year * educ),
wagepan,
panel=:nr,
time=:year,
contrasts=Dict (:year => DummyCoding()))
\# print results for married and union:
table = DataFrame (coef_names=["married", "union"],
b_we=round. (coef (reg_we) [[2, 3]], digits=5),
b_dum=round. (coef (reg_dum) [[2, 3]], digits=5),
b_cre=round. (coef (reg_cre) [[2, 3]], digits=5),
b_re=round. (coef(reg_re) $[$ [2, 3]], digits=5))
println("table:\n \$table")

Output of Script 14.3: Example-Dummy-CRE.jl

```
table:
    2\times5 DataFrame
    Row | coef_names b_we b_dum b_cre b_re
        String Float64 Float64 Float64 Float64
    | married 0.05482 0.05482 0.05482 0.07293
    2 | union 0.08298
```

An advantage of the CRE approach is that we can add time-constant regressors to the model. Since we cannot control for average values $\bar{x}_{i j}$ for these variables, they have to be uncorrelated with a_{i} for consistent estimation of their coefficients. For the other coefficients of the time-varying variables, we still don't need these additional RE assumptions.

Script 14.4 (Example-CRE.jl) estimates another version of the wage equation using the CRE approach. The variables married and union vary over time, so we can control for their between effects. The variables educ, black, and hisp do not vary. For a causal interpretation of their coefficients, we have to rely on uncorrelatedness with a_{i}. Given a_{i} includes intelligence and other labor market success factors, this uncorrelatedness is more plausible for some variables (like gender or race) than for other variables (like education).

Script 14.4: Example-CRE.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Statistics
wagepan = DataFrame(wooldridge("wagepan"))
# include group specific means:
grouped_means = combine(groupby(wagepan, :nr), [:married, :union] .=> mean)
wagepan = innerjoin(grouped_means, wagepan, on=:nr)
# estimate CRE:
reg_CRE = fit(RandomEffectsEstimator,
    @formula(lwage ~ married + union + educ + black +
                        hisp + married_mean + union_mean),
    wagepan,
    panel=:nr,
    time=:year)
table_reg = coeftable(reg_CRE)
println("table_reg: \n$table_reg")
```

Output of Script 14.4: Example-CRE.jl

table_reg:						
	PE	SE	t-value	$\operatorname{Pr}>\|t\|$	2.50\%	97.50\%
(Intercept)	0.632563	0.108154	5.8487	$<1 \mathrm{e}-08$	0.420525	0.844601
married	0.241684	0.0176735	13.675	<1e-40	0.207036	0.276333
union	0.0700438	0.020724	3.37985	0.0007	0.0294143	0.110673
educ	0.0760374	0.00877868	8.6616	<1e-17	0.0588267	0.0932481
black	-0.129516	0.0488981	-2.6487	0.0081	-0.225381	-0.0336511
hisp	0.01167	0.0428188	0.272543	0.7852	-0.0722767	0.0956167
married_mean	-0.0797386	0.0442674	-1.80129	0.0717	-0.166525	0.00704806
union_mean	0.191855	0.0506522	3.78769	0.0002	0.0925505	0.291159

15. Instrumental Variables Estimation and Two Stage Least Squares

Instrumental variables are potentially powerful tools for the identification and estimation of causal effects. We start the discussion in Section 15.1 with the simplest case of one endogenous regressor and one instrumental variable. Section 15.2 shows how to implement models with additional exogenous regressors. In Section 15.3, we will introduce two stage least squares which efficiently deals with several endogenous variables and several instruments.

Tests of the exogeneity of the regressors and instruments are presented in Sections 15.4 and 15.5, respectively. Finally, Section 15.6 shows how to conveniently combine panel data estimators with instrumental variables.

15.1. Instrumental Variables in Simple Regression Models

We start the discussion of instrumental variables (IV) regression with the most straightforward case of only one regressor and only one instrumental variable. Consider the simple linear regression model for cross-sectional data

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+u \tag{15.1}
\end{equation*}
$$

The OLS estimator for the slope parameter is $\hat{\beta}_{1}^{\text {ols }}=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}$, see Equation 2.3. Suppose the regressor x is correlated with the error term u, so OLS parameter estimators will be biased and inconsistent.

If we have a valid instrumental variable z, we can consistently estimate β_{1} using the IV estimator

$$
\begin{equation*}
\hat{\beta}_{1}^{\mathrm{VV}}=\frac{\operatorname{Cov}(z, y)}{\operatorname{Cov}(z, x)} . \tag{15.2}
\end{equation*}
$$

A valid instrument is correlated with the regressor x ("relevant"), so the denominator of Equation 15.2 is nonzero. It is also uncorrelated with the error term u ("exogenous"). Wooldridge (2019, Section 15.1) provides more discussion and examples.

To implement IV regression in Julia, the package Econometrics provides the functionality including the convenient formula syntax we know from GLM.

In the formula specification, the endogenous regressor(s) \mathbf{x} _end and instruments \mathbf{z} are provided in the following way:

```
y ~ (x_end ~ z)
```


Wooldridge, Example 15.1: Return to Education for Married Women

Script 15.1 (Example-15-1.jl) uses data from MROZ. We only analyze women with non-missing wage, so we use the function ismissing to extract them. We want to estimate the return to education (educ) for these women. As an instrumental variable for education, we use the education of her father (fatheduc).
First, we calculate the OLS and IV slope parameters according to Equations 2.3 and 15.2. Then, the full OLS and IV estimates are calculated using the boxed routines lm and fit (EconometricModel, . . .), respectively. Not surprisingly, the slope parameters match the manual results.

Script 15.1: Example-15-1.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Statistics
mroz_wm = DataFrame(wooldridge("mroz"))
# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
# OLS slope parameter manually:
cov_yz = cov(mroz.lwage, mroz.fatheduc)
cov_xy = cov(mroz.educ, mroz.lwage)
cov_xz = cov(mroz.educ, mroz.fatheduc)
var_x = var(mroz.educ)
x_bar = mean(mroz.educ)
y_bar = mean(mroz.lwage)
b_ols_man = cov_xy / var_x
println("b_ols_man = $b_ols_man\n")
# IV slope parameter manually:
b_iv_man = cov_yz / cov_xz
println("b_iv_man = $b_iv_man\n")
# OLS automatically:
reg_ols = lm(@formula(lwage ~ educ), mroz)
table_ols = coeftable(reg_ols)
println("table_ols: \n$table_ols\n")
# IV automatically:
reg_iv = fit(EconometricModel,
    @formula(lwage ~ (educ ~ fatheduc)), mroz)
table_iv = coeftable(reg_iv)
println("table_iv: \n$table_iv")
```

```
b_ols_man = 0.1086486551746753
b_iv_man = 0.05917347999936603
table_ols:
```

| | Coef. | Std. Error | t | Pr (>\|t|) | Lower 95\% | Upper 95\% |
| :--- | ---: | :---: | ---: | ---: | ---: | ---: |
| (Intercept) | -0.185197 | 0.185226 | -1.00 | 0.3180 | -0.549267 | 0.178874 |
| educ | 0.108649 | 0.0143998 | 7.55 | $<1 \mathrm{e}-12$ | 0.0803451 | 0.136952 |

table_iv:

	PE	SE	t-value	Pr $>\|t\|$	2.50%	97.50%
(Intercept)	0.441103	0.446626	0.987634	0.3239	-0.436768	1.31897
educ	0.0591735	0.0351831	1.68187	0.0933	-0.00998105	0.128328

15.2. More Exogenous Regressors

The IV approach can easily be generalized to include additional exogenous regressors, i.e. regressors that are assumed to be unrelated to the error term. In the formula specification of fit (EconometricModel,...), the exogenous regressor(s) x_exg, the endogenous regressor(s) \mathbf{x} _end and instruments \mathbf{z} are provided in the following way:

```
y ~ x_exg + (x_end ~ z)
```


Wooldridge, Example 15.4: Using College Proximity as an IV for Education

In Script 15.2 (Example-15-4.jl), we use CARD to estimate the return to education. Education is allowed to be endogenous and instrumented with the dummy variable nearc4 which indicates whether the individual grew up close to a college. In addition, we control for experience, race, and regional information. These variables are assumed to be exogenous and act as their own instruments. We first check for relevance by regressing the endogenous independent variable educ on all exogenous variables including the instrument nearc4. Its parameter is highly significantly different from zero, so relevance is supported. We then estimate the log wage equation with OLS and IV.

Script 15.2: Example-15-4.jl
using WooldridgeDatasets, GLM, DataFrames, Econometrics
card = DataFrame(wooldridge("card"))
\# checking for relevance with reduced form:
reg_redf $=1 m(@ f o r m u l a(e d u c) \sim$ nearc4 + exper + (exper^2) + black + smsa + south + smsa66 + reg662 + reg663 + reg664 + reg665 + reg666 + reg667 + reg668 + reg669), card)
table_redf = coeftable(reg_redf)
println("table_redf: \n\$table_redf $\backslash n$ ")

```
# OLS:
reg_ols = lm(@formula(log(wage) ~ educ + exper + (exper^2) + black +
    smsa + south + smsa66 + reg662 +
    reg663 + reg664 + reg665 + reg666 +
    reg667 + reg668 + reg669), card)
table_ols = coeftable(reg_ols)
println("table_ols: \n$table_ols\n")
# IV automatically:
reg_iv = fit(EconometricModel,
    @formula(log(wage) ~ exper + (exper^2) + black + smsa +
                        south + smsa66 + reg662 + reg663 +
                        reg664 + reg665 + reg666 + reg667 +
                                reg668 + reg669 + (educ ~ nearc4)), card)
table_iv = coeftable(reg_iv)
println("table_iv: \n$table_iv")
```

table_redf:						
	Coef.	Std. Error		$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	16.6383	0.24063	69.14	$<1 e-99$	16.1664	17.1101
nearc4	0.319899	0.0878638	3.64	0.0003	0.147619	0.492179
exper	-0.412533	0.0336996	-12.24	$<1 e-32$	-0.47861	-0.346457
exper ^ 2	0.000868574	0.00165038	0.53	0.5987	-0.00236742	0.00410457
black	-0.935529	0.0937348	-9.98	<1e-22	-1.11932	-0.751738
smsa	0.402182	0.104811	3.84	0.0001	0.196673	0.607692
south	-0.0516126	0.135428	-0.38	0.7032	-0.317155	0.21393
smsa66	0.0254805	0.105769	0.24	0.8096	-0.181907	0.232868
reg 662	-0.0786363	0.187115	-0.42	0.6743	-0.445524	0.288251
reg663	-0.027939	0.183375	-0.15	0.8789	-0.387492	0.331614
reg664	0.117182	0.217253	0.54	0.5897	-0.308798	0.543162
reg 665	-0.272616	0.21842	-1.25	0.2121	-0.700886	0.155653
reg666	-0.302815	0.237071	-1.28	0.2016	-0.767654	0.162024
reg667	-0.216818	0.234388	-0.93	0.3550	-0.676395	0.24276
reg668	0.523891	0.267475	1.96	0.0502	-0.00056176	1.04834
reg669	0.210271	0.202457	1.04	0.2991	-0.186698	0.60724
table_ols:						
	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	4.62081	0.0742327	62.25	$<1 e-99$	4.47525	4.76636
educ	0.0746933	0.00349835	21.35	$<1 e-93$	0.0678339	0.0815527
exper	0.084832	0.00662422	12.81	$<1 e-35$	0.0718435	0.0978205
exper ^ 2	-0.00228704	0.000316626	-7.22	$<1 e-12$	-0.00290787	-0.00166621
black	-0.199012	0.0182483	-10.91	$<1 e-26$	-0.234793	-0.163232
smsa	0.136385	0.0201005	6.79	$<1 \mathrm{e}-10$	0.0969724	0.175797
south	-0.147955	0.0259799	-5.69	$<1 \mathrm{e}-07$	-0.198895	-0.0970148
smsa66	0.0262417	0.0194477	1.35	0.1773	-0.0118905	0.0643739
reg662	0.0963672	0.0358979	2.68	0.0073	0.0259801	0.166754
reg663	0.14454	0.0351244	4.12	<1e-04	0.0756696	0.21341
reg664	0.0550756	0.0416573	1.32	0.1862	-0.0266043	0.136755
reg665	0.128025	0.0418395	3.06	0.0022	0.0459878	0.210062
reg666	0.140517	0.0452469	3.11	0.0019	0.0517992	0.229236
reg 667	0.117981	0.0448025	2.63	0.0085	0.0301343	0.205828
reg668	-0.0564361	0.0512579	-1.10	0.2710	-0.15694	0.0440682
reg669	0.11857	0.0388301	3.05	0.0023	0.0424335	0.194706

	PE	SE	t-value	$\operatorname{Pr}>\|t\|$	2.50\%	97.50\%
(Intercept)	3.66615	0.924984	3.96348	$<1 \mathrm{e}-04$	1.85248	5.47982
exper	0.108271	0.0236625	4.57564	$<1 \mathrm{e}-05$	0.0618746	0.154668
exper ^ 2	-0.00233494	0.000333553	-7.0002	<1e-11	-0.00298895	-0.00168092
black	-0.146776	0.0539089	-2.72266	0.0065	-0.252478	-0.0410736
smsa	0.111808	0.0316673	3.53072	0.0004	0.0497165	0.1739
south	-0.144671	0.0272892	-5.30142	<1e-06	-0.198179	-0.091164
smsa66	0.0185311	0.0216122	0.857437	0.3913	-0.0238452	0.0609074
reg662	0.100768	0.037692	2.67345	0.0075	0.0268629	0.174673
reg663	0.148259	0.0368203	4.02655	<1e-04	0.0760632	0.220454
reg664	0.0498971	0.0437471	1.14058	0.2541	-0.0358804	0.135675
reg665	0.146272	0.0470718	3.10742	0.0019	0.0539755	0.238568
reg666	0.162903	0.0519182	3.13768	0.0017	0.0611039	0.264702
reg667	0.134572	0.0494106	2.72355	0.0065	0.0376901	0.231454
reg668	-0.083077	0.0593413	-1.39999	0.1616	-0.199431	0.0332768
reg669	0.107814	0.0418207	2.57801	0.0100	0.0258141	0.189814
educ	0.131504	0.0549729	2.39216	0.0168	0.0237154	0.239292

15.3. Two Stage Least Squares

Two stage least squares (2SLS) is a general approach for IV estimation when we have one or more endogenous regressors and at least as many additional instrumental variables. Consider the regression model

$$
\begin{equation*}
y_{1}=\beta_{0}+\beta_{1} y_{2}+\beta_{2} y_{3}+\beta_{3} z_{1}+\beta_{4} z_{2}+\beta_{5} z_{3}+u_{1} . \tag{15.3}
\end{equation*}
$$

The regressors y_{2} and y_{3} are potentially correlated with the error term u_{1}, the regressors z_{1}, z_{2}, and z_{3} are assumed to be exogenous. Because we have two endogenous regressors, we need at least two additional instrumental variables, say z_{4} and z_{5}.

The name of 2SLS comes from the fact that it can be performed in two stages of OLS regressions:
(1) Separately regress y_{2} and y_{3} on z_{1} through z_{5}. Obtain fitted values \hat{y}_{2} and \hat{y}_{3}.
(2) Regress y_{1} on \hat{y}_{2}, \hat{y}_{3}, and z_{1} through z_{3}.

If the instruments are valid, this will give consistent estimates of the parameters β_{0} through β_{5}. Generalizing this to more endogenous regressors and instrumental variables is obvious.

This procedure can of course easily be implemented using lm in GLM, remembering that fitted values are obtained by predict. One of the problems of this manual approach is that the resulting variance-covariance matrix and analyses based on them are invalid. Conveniently, fit (EconometricModel, . .) will automatically do these calculations and calculate correct standard errors and the like.

Wooldridge, Example 15.5: Return to Education for Married Women

We continue Example 15.1 and still want to estimate the return to education for women using the data in MROZ. Now, we use both mother's and father's education as instruments for their own education.
In Script 15.3 (Example-15-5.j1), we obtain 2SLS estimates in two ways: First, we do both stages manually, including fitted education as educ_fitted as a regressor in the second stage. Econometrics does this automatically and delivers the same parameter estimates as the output table reveals. But the standard errors differ slightly because the manual two stage version did not correct them.

Script 15.3: Example-15-5.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics
mroz_wm = DataFrame(wooldridge("mroz"))
# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
# 1st stage (reduced form):
reg_redf = lm(@formula(educ ~ exper + (exper^2) +
                                    motheduc + fatheduc), mroz)
mroz.educ_fitted = predict(reg_redf)
table_redf = coeftable(reg_redf)
println("table_redf: \n$table_redf\n")
# 2nd stage:
reg_secstg = lm(@formula(log(wage) ~ educ_fitted + exper +
                                    (exper^2)), mroz)
table_reg_secstg = coeftable(reg_secstg)
println("table_reg_secstg: \n$table_reg_secstg\n")
# IV automatically:
reg_iv = fit(EconometricModel,
    @formula(log(wage) ~ exper + (exper^2) +
                            (educ ~ motheduc + fatheduc)), mroz)
table_iv = coeftable(reg_iv)
println("table_iv: \n$table_iv")
```

Output of Script 15.3: Example-15-5.jl

15.4. Testing for Exogeneity of the Regressors

There is another way to get the same IV parameter estimates as with 2SLS. In the same setup as above, this "control function approach" also consists of two stages:
(1) Like in 2SLS, regress y_{2} and y_{3} on z_{1} through z_{5}. Obtain residuals \hat{v}_{2} and \hat{v}_{3} instead of fitted values \hat{y}_{2} and \hat{y}_{3}.
(2) Regress y_{1} on $y_{2}, y_{3}, z_{1}, z_{2}, z_{3}$, and the first stage residuals \hat{v}_{2} and \hat{v}_{3}.

This approach is as simple to implement as 2SLS and will also result in the same parameter estimates and invalid OLS standard errors in the second stage (unless the dubious regressors y_{2} and y_{3} are in fact exogenous).

After this second stage regression, we can test for exogeneity in a simple way assuming the instruments are valid. We just need to do a t or F test of the null hypothesis that the parameters of the first-stage residuals are equal to zero. If we reject this hypothesis, this indicates endogeneity of y_{2} and y_{3}.

Wooldridge, Example 15.7: Return to Education for Married Women

In Script 15.4 (Example-15-7.j1), we continue Example 15.5 using the control function approach. Again, we use both mother's and father's education as instruments. The first stage regression is identical as in Script 15.3 (Example-15-5.j1). The second stage adds the first stage residuals to the original list of regressors. The parameter estimates are identical to both the manual 2SLS and the automatic results. We can perform a t test based on the regression table as a test for exogeneity. Here, $t=\frac{0.058}{0.035} \approx 1.67$ with a two-sided p value of $p=0.095$, indicating a marginally significant evidence for endogeneity.

Script 15.4: Example-15-7.jl
using WooldridgeDatasets, GLM, DataFrames
mroz_wm = DataFrame(wooldridge("mroz"))
\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
\# 1st stage (reduced form):
reg_redf $=\operatorname{lm}(@ f o r m u l a(e d u c) ~$ exper $+($ exper^2) +
motheduc + fatheduc), mroz)
mroz.resid $=$ residuals (reg_redf)
\# 2nd stage:
reg_secstg = lm(@formula(log(wage) ~ resid + educ + exper + (exper^2)), mroz)
table_reg_secstg = coeftable (reg_secstg)
println("table_reg_secstg: \n\$table_reg_secstg")
Output of Script 15.4: Example-15-7.j1
table_reg_secstg:

	Coef.	Std. Error	t	$r(>\|t\|)$	Lower 95\%	Upper 95%
(Intercept)	0.0481003	0.394575	0.12	0.9030	-0.727472	0.823673
resid	0.0581666	0.0348073	1.67	0.0954	-0.0102502	0.126583
educ	0.0613966	0.0309849	1.98	0.0482	0.000492999	0.1223
exper	0.0441704	0.0132394	3.34	0.0009	0.0181471	0.0701937
exper ^ 2	-0.00089897	0.000395913	-2.27	0.0237	-0.00167717	-0.000120767

15.5. Testing Overidentifying Restrictions

If we have more instruments than endogenous variables, we can use either all or only some of them. If all are valid, using all improves the accuracy of the 2SLS estimator and reduces its standard errors. If the exogeneity of some is dubious, including them might cause inconsistency. It is therefore useful to test for the exogeneity of a set of dubious instruments if we have another (large enough) set that is undoubtedly exogenous. The procedure is described by Wooldridge (2019, Section 15.5):
(1) Estimate the model by 2SLS and obtain residuals \hat{u}_{1}.
(2) Regress \hat{u}_{1} on all exogenous variables and calculate R_{1}^{2}.
(3) The test statistic $n R_{1}^{2}$ is asymptotically distributed as χ_{q}^{2}, where q is the number of overidentifying restrictions, i.e. number of instruments minus number of endogenous regressors.

Wooldridge, Example 15.8: Return to Education for Married Women

We will again use the data and model of Examples 15.5 and 15.7. Script 15.5 (Example-15-8.jl) estimates the model using fit (EconometricModel, . . .). The results are stored in variable reg_iv. We then run the auxiliary regression and compute its R^{2} as $\mathbf{R 2}$. The test statistic teststat is computed to be 0.378 . We also compute the p value from the χ_{1}^{2} distribution. We cannot reject exogeneity of the instruments using this test. But be aware of the fact that the underlying assumption that at least one instrument is valid might be violated here.

Script 15.5: Example-15-8.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Distributions
```

mroz_wm = DataFrame (wooldridge ("mroz"))
\# restrict to non-missing wage observations:
mroz $=$ mroz_wm[.!ismissing. (mroz_wm.wage), :]
\# IV regression:
reg_iv $=$ fit (EconometricModel,
@formula(log(wage) ~ exper $+\left(\right.$ exper $\left.^{\wedge} 2\right)+$
(educ ~ motheduc + fatheduc)), mroz)
table_iv = coeftable (reg_iv)
println("table_iv: \n\$table_iv\n")
\# auxiliary regression:
mroz.resid_iv = residuals (reg_iv)
reg_aux $=$ lm (@formula(resid_iv ~ exper + (exper^2) +
motheduc + fatheduc), mroz)
\# calculations for test:
R2 = r2 (reg_aux)
$\mathrm{n}=$ nobs (reg_aux)
teststat $=\mathrm{n}$ * R2
pval = 1 - cdf(Chisq(1), teststat)
println("R2 = \$R2\n")
println("n = $\$ n \backslash n ")$
println("teststat $=$ \$teststat\n")
println("pval = \$pval")

table_iv:						
	PE	SE	t-value	$\operatorname{Pr}>\|t\|$	2.50\%	97.50\%
(Intercept)	0.0481003	0.401276	0.119868	0.9046	-0.740648	0.836848
exper	0.0441704	0.0134643	3.28056	0.0011	0.017705	0.0706358
exper ^ 2	-0.00089897	0.000402636	-2.23271	0.0261	-0.00169039	-0.000107547
educ	0.0613966	0.0315111	1.94841	0.0520	-0.000541636	0.123335
$R 2=0.0008833444088020004$						
$\mathrm{n}=428.0$						
teststat $=0.37807140696725616$						
pval $=0.5386371981604867$						

15.6. Instrumental Variables with Panel Data

Instrumental variables can be used for panel data, too. In this way, we can get rid of time-constant individual heterogeneity by first differencing or within transformations and then fix remaining endogeneity problems with instrumental variables.

We know how to get panel data estimates using OLS on the transformed data, so we can easily use IV as before. Script 15.6 (Example-15-10.j1) demonstrates such a procedure. Also note that the Econometrics package supports IV estimation with other implemented panel data methods. For example, the following works as expected:

```
fit(RandomEffectsEstimator, @formula(y ~ x_exg + (x_end ~ z)), data,
    panel = :id,
    time = :t)
```


Wooldridge, Example 15.10: Job Training and Worker Productivity

We use the data set JTRAIN to estimate the effect of job training hrsemp on the scrap rate. In Script 15.6 (Example-15-10.jl), we load the data, choose a subset of the years 1987 and 1988 with subset and store the data with correct index variables fcode and year, see Section 14.1. Then we estimate the parameters using first-differencing with the instrumental variable grant.

Script 15.6: Example-15-10.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics
jtrain = DataFrame(wooldridge("jtrain"))
# define panel data (for 1987 and 1988 only) and sort:
jtrain_8788 = subset(jtrain, :year => ByRow(<=(1988)))
sort!(jtrain_8788, [:fcode, :year])
# manual computation of deviations of entity means:
grouped_df = groupby(jtrain_8788, :fcode)
diff_df = DataFrame(fcode=unique(jtrain_8788.fcode))
diff_df.lscrap_diff1 = combine(grouped_df, :lscrap => diff).lscrap_diff
diff_df.hrsemp_diff1 = combine(grouped_df, :hrsemp => diff).hrsemp_diff
diff_df.grant_diff1 = combine(grouped_df, :grant => diff).grant_diff
# IV regression:
reg_iv = fit(EconometricModel,
    @formula(lscrap_diff1 ~ (hrsemp_diff1 ~ grant_diff1)), diff_df)
table_iv = coeftable(reg_iv)
println("table_iv: \n$table_iv")
```

Output of Script 15.6: Example-15-10.jl

```
table_iv:
    PE SE t-value Pr > |t| 2.50% 97.50%
lllllll
```


16. Simultaneous Equations Models

In simultaneous equations models (SEM), both the dependent variable and at least one regressor are determined jointly. This leads to an endogeneity problem and inconsistent OLS parameter estimators. The main challenge for successfully using SEM is to specify a sensible model and make sure it is identified, see Wooldridge (2019, Sections 16.1-16.3). We briefly introduce a general model and the notation in Section 16.1.

As discussed in Chapter 15, 2SLS regression can solve endogeneity problems if there are enough exogenous instrumental variables. This also works in the setting of SEM, an example is given in Section 16.2. We implement more advanced estimation commands using the module linearmodels in Python, because so far there is no implementation in Julia. ${ }^{1}$ We will show this for three-stage-leastsquares (3SLS) estimation in Section 16.3 with the help of the PyCall package. Check Section 1.2.5 to review the installation of Python modules for the use in PyCall.

16.1. Setup and Notation

Consider the general SEM with q endogenous variables y_{1}, \ldots, y_{q} and k exogenous variables x_{1}, \ldots, x_{k}. The system of equations is:

$$
\begin{array}{rlr}
y_{1} & =\alpha_{12} y_{2}+\alpha_{13} y_{3}+\cdots+\alpha_{1 q} y_{q} & +\beta_{10}+\beta_{11} x_{1}+\cdots+\beta_{1 k} x_{k}+u_{1} \\
y_{2} & =\alpha_{21} y_{1}+\alpha_{23} y_{3}+\cdots+\alpha_{2 q} y_{q} & +\beta_{20}+\beta_{21} x_{1}+\cdots+\beta_{2 k} x_{k}+u_{2} \\
\vdots & & \\
y_{q} & =\alpha_{q 1} y_{1}+\alpha_{q 2} y_{2}+\cdots+\alpha_{q q-1} y_{q-1}+\beta_{q 0}+\beta_{q 1} x_{1}+\cdots+\beta_{q k} x_{k}+u_{q}
\end{array}
$$

As discussed in more detail in Wooldridge (2019, Section 16), this system is not identified without restrictions on the parameters. The order condition for identification of any equation is that if we have m included endogenous regressors (i.e. α parameters that are not restricted to 0), we need to exclude at least m exogenous regressors (i.e. restrict their β parameters to 0). They can then be used as instrumental variables.

[^46]
Wooldridge, Example 16.3: Labor Supply of Married, Working Women

We have the two endogenous variables hours and wage which influence each other.

$$
\begin{array}{r}
\text { hours }=\alpha_{12} \log (\text { wage })+\beta_{10}+\beta_{11} \text { educ }+\beta_{12} \text { age }+\beta_{13} \text { kidslt } 6+\beta_{14} \text { nwifeinc } \\
+\beta_{15 \text { exper }}+\beta_{16} \text { exper }^{2}+u_{1} \\
\log (\text { wage })=\alpha_{21} \text { hours } \quad+\beta_{20}+\beta_{21} \text { educ }+\beta_{22} \text { age }+\beta_{23} \text { kidslt } 6+\beta_{24 \text { nifeinc }} \\
+\beta_{25} \text { exper }+\beta_{26} \text { exper }^{2}+u_{2}
\end{array}
$$

For both equations to be identified, we have to exclude at least one exogenous regressor from each equation. Wooldridge (2019) discusses a model in which we restrict $\beta_{15}=\beta_{16}=0$ in the first and $\beta_{22}=\beta_{23}=\beta_{24}=0$ in the second equation.

16.2. Estimation by 2 SLS

Estimation of each equation separately by 2SLS is straightforward once we have set up the system and ensured identification. The excluded regressors in each equation serve as instrumental variables. As shown in Chapter 15, the command fit (EconometricModel, . . .) from the package Econometrics provides convenient 2SLS estimation. Script 16.1 (Example-16-5-2SLS-1.j1) gives an example and Script 16.2 (Example-16-5-2SLS-2.jl) shows the implementation with Python's linearmodels. The naming in the output is a bit hard to read, which is due to the cumbersome passing of matrices. ${ }^{2}$ A pure Python solution does not have this problem.

Wooldridge, Example 16.5: Labor Supply of Married, Working Women

Script 16.1 (Example-16-5-2SLS-1.jl) estimates the parameters of the two equations from Example 16.3 separately using Econometrics. Script 16.2 (Example-16-5-2SLS-2.jl) repeats the exercise using the method IV2SLS and gives identical point estimates.

[^47]Script 16.1: Example-16-5-2SLS-1.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Statistics
mroz_wm = DataFrame(wooldridge("mroz"))
# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
# 2SLS regressions:
reg_iv1 = fit(EconometricModel,
    @formula(hours ~ educ + age + kidslt6 + nwifeinc +
        (log(wage) ~ exper + (exper^2))), mroz)
table_iv1 = coeftable(reg_iv1)
println("table_iv1: \n$table_iv1\n")
reg_iv2 = fit(EconometricModel,
    @formula(log(wage) ~ educ + exper + (exper^2) +
                        (hours ~ age + kidslt6 + nwifeinc)), mroz)
table_iv2 = coeftable(reg_iv2)
println("table_iv2: \n$table_iv2\n")
cor_u1u2 = cor(residuals(reg_iv1), residuals(reg_iv2))
println("cor_u1u2 =$cor_u1u2")
```

Output of Script 16.1: Example-16-5-2SLS-1.j1

cor_u1u2 =-0.9037694196299592

Script 16.2: Example-16-5-2SLS-2.jl
using WooldridgeDatasets, GLM, DataFrames, PyCall
include(". ./03/getMats.jl")
\# install Python's linearmodels with: using Conda; Conda.add("linearmodels") iv = pyimport("linearmodels.iv")
mroz_wm = DataFrame(wooldridge("mroz"))
\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
\# prepare for equation 1:
f1 = @formula(hours ~ 1 + educ + age + kidslt6 + nwifeinc)
yexog $=$ getMats (f1, mroz) y_eq1 = yexog[1]
exog_mat_eq1 = yexog[2]
f2 = @formula(1~0 \quad + log(wage))
endo_mat_eq1 = getMats (f2, mroz) [2]
f 3 = @formula(1~0 + exper $+\left(\right.$ exper^$\left.{ }^{\wedge}\right)$)
iv_mat_eq1 = getMats (f3, mroz) [2]
\# prepare for equation 2 :
f1 = @formula(log(wage) ~ $1+$ educ + exper $+($ exper^2))
yexog = getMats(f1, mroz)
y_eq2 = yexog[1]
exog_mat_eq2 = yexog[2]
f2 = @formula(1~0 + hours)
endo_mat_eq2 = getMats (f2, mroz) [2]
f3 = @formula(1 ~ 0 + age + kidslt6 + nwifeinc)
iv_mat_eq2 = getMats(f3, mroz) [2]
\# use Python's linearmodels:
reg_iv1 = iv.IV2SLS (y_eq1, exog_mat_eq1, endo_mat_eq1, iv_mat_eq1)
results_iv1 = reg_iv1.fit(cov_type="unadjusted", debiased=true)
println("results_iv1: \n\$results_iv1\n")
reg_iv2 = iv.IV2SLS (y_eq2, exog_mat_eq2, endo_mat_eq2, iv_mat_eq2)
results_iv2 = reg_iv2.fit (cov_type="unadjusted", debiased=true)
println("results_iv2: \n\$results_iv2")

Output of Script 16.2: Example-16-5-2SLS-2.jl
results_iv1:
Pyobject
IV-2SLS Estimation Summary

Dep. Variable:	dependent	R-squared:	-2.0076
Estimator:	IV-2SLS	Adj. R-squared:	-2.0433
No. Observations:	428	F-statistic:	3.4410
Date:	Tue, Mar 212023	P-value (F-stat)	0.0046
Time:	$08: 39: 59$	Distribution:	F(5,422)
Cov. Estimator:	unadjusted		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
exog. 0	2225.7	574.56	3.8737	0.0001	1096.3	3355.0
exog. 1	-183.75	59.100	-3.1092	0.0020	-299.92	-67.585
exog. 2	-7.8061	9.3780	-0.8324	0.4057	-26.240	10.627
exog. 3	-198.15	182.93	-1.0832	0.2793	-557.72	161.41
exog. 4	-10.170	6.6147	-1.5374	0.1249	-23.172	2.8324
endog	1639.6	470.58	3.4841	0.0005	714.59	2564.5

Endogenous: endog
Instruments: instruments.0, instruments.1
Unadjusted Covariance (Homoskedastic)
Debiased: True
IVResults, id: 0x2c2f0f430
results_iv2:
Pyobject IV-2SLS Estimation Summary

Dep. Variable:	dependent R -squared:				0.1257
Estimator:	IV-2SLS	R-squared:Adj. R-squared:			0.1174
No. Observations:	428	F-statistic:			19.028
Date:	Tue, Mar 212023	P-value (F-stat)			0.0000
Time:	08:39:59	9 Distribution:			F (4,423)
Cov. Estimator:	unadjusted				
Parameter Estimates					
Parameter	Std. Err. T	T-stat	P-value	Lower CI	Upper CI
exog.0 -0.6557	0.3378 -1	-1.9412	0.0529	-1.3197	0.0082
exog.1 0.1103	0.0155	7.1069	0.0000	0.0798	0.1408
exog.2 0.0346	0.0195	1.7742	0.0767	-0.0037	0.0729
exog.3 -0.0007	$0.0005-1$	-1.5543	0.1209	-0.0016	0.0002
endog 0.0001	0.0003	0.4945	0.6212	-0.0004	0.0006

Endogenous: endog
Instruments: instruments.0, instruments.1, instruments. 2
Unadjusted Covariance (Homoskedastic)
Debiased: True
IVResults, id: 0x2c2f4e800

16.3. Outlook: Estimation by 3SLS

An interesting piece of information in Script 16.1 (Example-16-5-2SLS-1.jl) is the correlation between the residuals of the equations. In the example, it is reported to be a substantially negative 0.90. We can account for the correlation between the error terms to derive a potentially more efficient parameter estimator than 2SLS. Without going into details here, the three stage least squares (3SLS) estimator adds another stage to 2SLS by estimating the correlation and accounting for it using a FGLS approach. For a detailed discussion of this and related methods, see for example Wooldridge (2010, Chapter 8).
Using 3SLS in Python's linearmodels is simple: The function IV3SLS is all we need as the output of Script 16.3 (Example-16-5-3SLS.jl) shows. Again, PyCall helps us to call this function within Julia.

Script 16.3: Example-16-5-3SLS.jl
using WooldridgeDatasets, GLM, DataFrames, PyCall include(". /03/getMats.jl")
iv3 = pyimport("linearmodels.system")
mroz_wm = DataFrame (wooldridge("mroz"))
\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
\# prepare for equation 1:
f1 = @formula (hours ~ 1 + educ + age + kidslt6 + nwifeinc)
yexog = getMats (f1, mroz)
y_eq1 = yexog[1]
exog_mat_eq1 = yexog[2]
f2 = @formula(1 ~ $0+\log ($ wage $))$
endo_mat_eq1 = getMats(f2, mroz) [2]
f 3 = @formula(1 ~ 0 + exper $+\left(\right.$ exper^$\left.^{\wedge} 2\right)$)
iv_mat_eq1 = getMats (f3, mroz) [2]
\# prepare for equation 2:
f1 = @formula(log(wage) ~ $1+$ educ + exper $+\left(\right.$ exper^^2) $\left.^{\wedge}\right)$)
yexog = getMats(f1, mroz)
y_eq2 = yexog[1]
exog_mat_eq2 $=$ yexog[2]
f2 = @formula(1 ~ 0 + hours)
endo_mat_eq2 $=$ getMats (f2, mroz) [2]
f3 = @formula(1 ~ 0 + age + kidslt6 + nwifeinc)
iv_mat_eq2 $=$ getMats (f3, mroz) [2]
\# use Python's linearmodels:
reg_3sls = iv3.IV3SLS (Dict ([
("eq1", (y_eq1, exog_mat_eq1, endo_mat_eq1, iv_mat_eq1)),
("eq2", (y_eq2, exog_mat_eq2, endo_mat_eq2, iv_mat_eq2))]))
results_3sls = reg_3sls.fit (cov_type="unadjusted", debiased=true) println("results_3sls: \n\$results_3sls")

Output of Script 16.3: Example-16-5-3SLS.jl

17. Limited Dependent Variable Models and Sample Selection Corrections

A limited dependent variable (LDV) can only take a limited set of values. An extreme case are binary variables that can only take two values. We already used such dummy variables as regressors in Chapter 7. Section 17.1 discusses how to use them as dependent variables. Another example for LDV are counts that take only non-negative integers, they are covered in Section 17.2. Similarly, Tobit models discussed in Section 17.3 deal with dependent variables that can only take positive values (or are restricted in a similar way), but are otherwise continuous.
The Sections 17.4 and 17.5 are concerned with continuous dependent variables but are not perfectly observed. For some units of the censored, truncated, or selected observations we only know that they are above or below a certain threshold or we don't know anything about them.

17.1. Binary Responses

Binary dependent variables are frequently studied in applied econometrics. Because a dummy variable y can only take the values 0 and 1 , its (conditional) expected value is equal to the (conditional) probability that $y=1$:

$$
\begin{align*}
\mathrm{E}(y \mid \mathbf{x}) & =0 \cdot \mathrm{P}(y=0 \mid \mathbf{x})+1 \cdot \mathrm{P}(y=1 \mid \mathbf{x}) \\
& =\mathrm{P}(y=1 \mid \mathbf{x}) \tag{17.1}
\end{align*}
$$

So when we study the conditional mean, it makes sense to think about it as the probability of outcome $y=1$. Likewise, the predicted value \hat{y} should be thought of as a predicted probability.

17.1.1. Linear Probability Models

If a dummy variable is used as the dependent variable y, we can still use OLS to estimate its relation to the regressors \mathbf{x}. These linear probability models are covered by Wooldridge (2019) in Section 7.5. If we write the usual linear regression model

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k} \tag{17.2}
\end{equation*}
$$

and make the usual assumptions, especially MLR.4: $E(u \mid \mathbf{x})=0$, this implies for the conditional mean (which is the probability that $y=1$) and the predicted probabilities:

$$
\begin{align*}
& \mathrm{P}(y=1 \mid \mathbf{x})=\mathrm{E}(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k} \tag{17.3}\\
& \hat{\mathrm{P}}(y=1 \mid \mathbf{x})=\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\cdots+\hat{\beta}_{k} x_{k} \tag{17.4}
\end{align*}
$$

The interpretation of the parameters is straightforward: β_{j} is a measure of the average change in probability of a "success" $(y=1)$ as x_{j} increases by one unit and the other determinants remain constant. Linear probability models automatically suffer from heteroscedasticity, so with OLS, we should use heteroscedasticity-robust inference, see Section 8.1.

Wooldridge, Example 17.1: Married Women's Labor Force Participation

We study the probability that a woman is in the labor force depending on socio-demographic characteristics. Script 17.1 (Example-17-1-1.jl) estimates a linear probability model using the data set mroz. The estimated coefficient of educ can be interpreted as: an additional year of schooling increases the probability that a woman is in the labor force ceteris paribus by 0.038 on average. We used White's robust standard errors as discussed in Chapter 8.

Script 17.1: Example-17-1-1.jl
using WooldridgeDatasets, GLM, DataFrames
include("../08/calc-white-se.jl")
mroz = DataFrame(wooldridge("mroz"))
\# estimate linear probability model:
reg_lin = lm(@formula(inlf ~nwifeinc + educ + exper + (exper^2) +
age + kidslt6 + kidsge6), mroz)
hc0 = calc_white_se(reg_lin, mroz)
table_reg_lin = DataFrame (
coefficients=coeftable (reg_lin). rownms,
b=round. (coef(reg_lin), digits=5),
se_white=hc0)
println("table_reg_lin: \n\$table_reg_lin")

table_reg_lin:		
8×3 DataFrame		
Row \| coefficients	b	se_white
\| String	Float 64	Float 64
1 \| (Intercept)	0.58552	0.151449
2 \| nwifeinc	-0.00341	0.00151681
3 \| educ	0.038	0.00722734
4 \| exper	0.03949	0.00577907
5 \| exper ^ 2	-0.0006	0.000188992
6 \| age	-0.01609	0.00238623
7 \| kidslt6	-0.26181	0.0316139
8 \| kidsge6	0.01301	0.0134609

One problem with linear probability models is that $\mathrm{P}(y=1 \mid \mathbf{x})$ is specified as a linear function of the regressors. By construction, there are (more or less realistic) combinations of regressor values that yield $\hat{y}<0$ or $\hat{y}>1$. Since these are probabilities, this does not really make sense.
As an example, Script 17.2 (Example-17-1-2.jl) calculates the predicted values for two women (see Section 6.2 for how to predict after OLS estimation): Woman 1 is 20 years old, has no work experience, 5 years of education, two children below age 6 and has additional family income of 100,000 USD. Woman 2 is 52 years old, has 30 years of work experience, 17 years of education, no children and no other source of income. The predicted "probability" for woman 1 is -41%, the probability for woman 2 is 104% as can also be easily checked with a calculator.

```
                                    Script 17.2: Example-17-1-2.jl
using WooldridgeDatasets, GLM, DataFrames
mroz = DataFrame(wooldridge("mroz"))
# estimate linear probability model:
reg_lin = lm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) +
        age + kidslt6 + kidsge6), mroz)
# predictions for two "extreme" women:
X_new = DataFrame (nwifeinc=[100, 0], educ=[5, 17],
    exper=[0, 30], age=[20, 52],
    kidslt6=[2, 0], kidsge6=[0, 0])
predictions = round.(predict(reg_lin, x_new), digits=5)
print("predictions = $predictions")
```

Output of Script 17.2: Example-17-1-2.jl
predictions $=[-0.41046,1.04281]$

17.1.2. Logit and Probit Models: Estimation

Specialized models for binary responses make sure that the implied probabilities are restricted between 0 and 1 . An important class of models specifies the success probability as

$$
\begin{equation*}
\mathrm{P}(y=1 \mid \mathbf{x})=G\left(\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}\right)=G(\mathbf{x} \boldsymbol{\beta}) \tag{17.5}
\end{equation*}
$$

where the "link function" $G(z)$ always returns values between 0 and 1 . In the statistics literature, this type of models is often called generalized linear model (GLM) because a linear part $x \boldsymbol{\beta}$ shows up within the nonlinear function G.

For binary response models, by far the most widely used specifications for G are

- the probit model with $G(z)=\Phi(z)$, the standard normal CDF and
- the logit model with $G(z)=\Lambda(z)=\frac{\exp (z)}{1+\exp (z)}$, the CDF of the logistic distribution.

Wooldridge (2019, Section 17.1) provides useful discussions of the derivation and interpretation of these models. Here, we are concerned with the practical implementation. In the GLM package, many generalized linear models can be estimated with the function glm working similar as lm. In the following, we will use two of them frequently:

- LogitLink for the logit model and
- ProbitLink for the probit model.

Given the data set sample contains variables $\mathbf{y}, \mathbf{x 1} \mathbf{x} \mathbf{2}, \mathbf{x} 3$, with the respective data of our sample, we can estimate these models with the following code:

```
reg_logit = glm(@formula(y ~ x1 + x2 + x3), sample, Binomial(), LogitLink())
reg_probit = glm(@formula(y ~ x1 + x2 + x3), sample, Binomial(), ProbitLink())
```

Maximum likelihood estimation (MLE) of the parameters is done automatically and the coeftable command gives the regression table. Scripts 17.3 (Example-17-1-3.j1) and 17.4 (Example-17-1-4.jl) implement the logit and probit model, respectively. The log likelihood value $\mathscr{L}(\hat{\boldsymbol{\beta}})$ can be computed by deviance (reg) / -2 with reg as the output of the glm command. We can also calculate \mathscr{L}_{0}, which is the log likelihood of a model with an intercept only.

Scripts 17.3 (Example-17-1-3.jl) and 17.4 (Example-17-1-4.jl) demonstrate these computations to calculate McFadden's pseudo R-squared as

$$
\begin{equation*}
\text { pseudo } R^{2}=1-\frac{\mathscr{L}(\hat{\boldsymbol{\beta}})}{\mathscr{L}_{0}} \text {. } \tag{17.6}
\end{equation*}
$$

Script 17.3: Example-17-1-3.j1

```
using WooldridgeDatasets, GLM, DataFrames
mroz = DataFrame(wooldridge("mroz"))
# estimate logit model:
reg_logit = glm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                        kidslt6 + kidsge6),
    mroz, Binomial(), LogitLink())
table_reg_logit = coeftable(reg_logit)
println("table_reg_logit: \n$table_reg_logit\n")
# log likelihood value:
ll = deviance(reg_logit) / -2
println("ll = $ll\n")
# McFadden's pseudo R2:
reg_logit_null = glm(@formula(inlf ~ 1), mroz, Binomial(), LogitLink())
ll_null = deviance(reg_logit_null) / -2
pr2 = 1 - ll / ll_null
println("pr2 = $pr2")
```

Output of Script 17.3: Example-17-1-3.jl

```
table_reg_logit:
Coef. Std. Error z Pr(>|z|) Lower 95% Upper 95%
(Intercept) 0.425452 0.860365 0.49 0.6210 -1.26083 2.11174
nwifeinc -0.0213452 0.00842138 -2.53 0.0.0113 
l 0.22117 0.0434393 5.09 <le-06 0.136031 0.30631
lrlrlrer 0.20587 0.0320567 6.42 <le-09 0.14304 0.2687
exper ^ 2 -0.0031541 0.00101611 -3.10 0.0019 -0.00514564 -0.00116257
age -0.0880244 0.0145729 -6.04 <1e-08 -0.116587 -0.059462
kidslt6 -1.44335 0.203583 -7.09 <le-11 -1.84237 -1.04434
kidsge6 0.0601122 0.0747893 0.80 0.4215 -0.0864721 0.206697
ll = -401.7651511343817
pr2 = 0.2196813748112092
```

Script 17.4: Example-17-1-4.jl

```
using WooldridgeDatasets, GLM, DataFrames
mroz = DataFrame(wooldridge("mroz"))
# estimate probit model:
reg_probit = glm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                                    kidslt6 + kidsge6),
    mroz, Binomial(), ProbitLink())
table_reg_probit = coeftable(reg_probit)
println("table_reg_probit: \n$table_reg_probit\n")
# log likelihood value:
ll = deviance(reg_probit) / -2
println("ll=$ll\n")
# McFadden's pseudo R2:
reg_probit_null = glm(@formula(inlf ~ 1), mroz, Binomial(), ProbitLink())
ll_null = deviance(reg_probit_null) / -2
pr2 = 1 - ll / ll_null
println("pr2 = $pr2")
```

Output of Script 17.4: Example-17-1-4.jl

```
table_reg_probit:
                    Coef. Std. Error z Pr(>|z|) Lower 95% Upper 95%
\begin{tabular}{lclrrrc} 
(Intercept) & \multicolumn{1}{c}{0.270074} & 0.508078 & 0.53 & 0.5950 & -0.725741 & 1.26589 \\
nwifeinc & -0.0120236 & 0.00493917 & -2.43 & 0.0149 & -0.0217042 & -0.00234304 \\
educ & 0.130904 & 0.0253987 & 5.15 & \(<1 e-06\) & 0.0811234 & 0.180685 \\
exper & 0.123347 & 0.0187587 & 6.58 & \(<1 e-10\) & 0.0865808 & 0.160114 \\
exper & 2 & -0.00188707 & 0.000599927 & -3.15 & 0.0017 & -0.0030629 \\
age & -0.0528524 & 0.00846236 & -6.25 & \(<1 e-09\) & -0.0694384 & -0.0362665 \\
kidslt6 & -0.868325 & 0.118377 & -7.34 & \(<1 e-12\) & -1.10034 & -0.636309 \\
kidsge6 & 0.0360056 & 0.0440303 & 0.82 & 0.4135 & -0.0502921 & 0.122303
\end{tabular}
ll=-401.3021931756048
pr2 = 0.22058054368360436
```


17.1.3. Inference

The output of the logit or probit results contains a standard regression table with parameters and (asymptotic) standard errors. The next column is labeled \mathbf{z} instead of t in the output of coeftable. The interpretation is the same. The difference is that the standard errors only have an asymptotic foundation and the distribution used for calculating p values is the standard normal distribution (which is equal to the t distribution with very large degrees of freedom). The bottom line is that tests for single parameters can be done as before, see Section 4.1.

For testing multiple hypotheses similar to the F test (see Section 4.3), the likelihood ratio test is popular. It is based on comparing the log likelihood values of the unrestricted and the restricted model. The test statistic is

$$
\begin{equation*}
L R=2\left(\mathscr{L}_{u r}-\mathscr{L}_{r}\right) \tag{17.7}
\end{equation*}
$$

where $\mathscr{L}_{u r}$ and \mathscr{L}_{r} are the log likelihood values of the unrestricted and restricted model, respectively. Under H_{0}, the $L R$ test statistic is asymptotically distributed as χ^{2} with the degrees of freedom equal to the number of restrictions to be tested. The test of overall significance is a special case just like with F tests. The null hypothesis is that all parameters except the constant are equal to zero. With the notation above, the test statistic is

$$
\begin{equation*}
L R=2\left(\mathscr{L}(\hat{\boldsymbol{\beta}})-\mathscr{L}_{0}\right) \tag{17.8}
\end{equation*}
$$

For other hypotheses, you can compute $L R$ based on the log likelihood of a restricted model. Script 17.5 (Example-17-1-5.jl) implements the test of overall significance for the probit model. It also tests the joint null hypothesis that experience and age are irrelevant.

Script 17.5: Example-17-1-5.jl
using WooldridgeDatasets, GLM, DataFrames, Distributions

```
mroz = DataFrame(wooldridge("mroz"))
```

\# estimate probit model:
reg_probit $=$ glm(@formula(inlf \sim nwifeinc + educ + exper $+($ exper^2) + age +
kidslt6 + kidsge6),
mroz, Binomial(), ProbitLink())
11 = deviance (reg_probit) / -2
\# test of overall significance (test statistic and p value):
reg_probit_null = glm(@formula(inlf ~ 1), mroz, Binomial(), ProbitLink())
ll_null = deviance(reg_probit_null) / -2
lr1 = 2 * (ll - ll_null)
pval_all = 1 - cdf(Chisq(7), lr1)
println("lr1 = \$lr1 \n")
println("pval_all = \$pval_all\n")
\# likelihood ratio statistic test of $H 0$ (experience and age are irrelevant):
reg_probit_hyp = glm(@formula(inlf ~ nwifeinc + educ + kidslt6 + kidsge6),
mroz, Binomial(), ProbitLink())
ll_hyp = deviance (reg_probit_hyp) / -2
lr2 = 2 * (ll - ll_hyp)
pval_hyp $=1$ - cdf(Chisq(3), lr2)
println("lr2 = \$lr2\n")
println("pval_hyp = \$pval_hyp")

```
lr1 = 227.1420227830812
pval_all = 0.0
lr2 = 127.03401046039562
pval_hyp = 0.0
```


17.1.4. Predictions

The command predict can calculate predicted values for the estimation sample ("fitted values") or arbitrary sets of regressor values also for binary response models. Given the results of the glm function are stored in the variable reg, we can calculate:

- $\hat{y}=G\left(\mathbf{x}_{i} \hat{\boldsymbol{\beta}}\right)$ for the estimation sample with predict (reg)
- $\hat{y}=G\left(\mathbf{x}_{i} \hat{\boldsymbol{\beta}}\right)$ for the regressor values stored in xpred with predict (reg, xpred)

The predictions for the two hypothetical women introduced in Section 17.1.1 are repeated for the linear probability, logit, and probit models in Script 17.6 (Example-17-1-6.j1). Unlike the linear probability model, the predicted probabilities from the logit and probit models remain between 0 and 1.

Script 17.6: Example-17-1-6.j1
using WooldridgeDatasets, GLM, DataFrames

```
mroz = DataFrame (wooldridge("mroz"))
```

\# estimate models:
reg_lin $=\operatorname{lm}(@ f o r m u l a(i n l f \sim$ nwifeinc + educ + exper + (exper^2) + age +
kidslt6 + kidsge6), mroz)
reg_logit $=$ glm(@formula(inlf \sim nwifeinc + educ + exper $+($ exper^2) + age +
kidslt6 + kidsge6),
mroz, Binomial(), LogitLink())
reg_probit $=$ glm(@formula(inlf \sim nwifeinc + educ + exper $+($ exper^2) + age +
kidslt6 + kidsge6),
mroz, Binomial(), ProbitLink())
\# predictions for two "extreme" women:
X_new $=$ DataFrame (nwifeinc=[100, 0], educ=[5, 17],
exper $=[0,30]$, age $=[20,52]$,
kidslt6=[2, 0], kidsge6=[0, 0])
predictions_lin $=$ round. (predict (reg_lin, x_new), digits=5)
predictions_logit $=$ round. (predict(reg_logit, x_new), digits=5)
predictions_probit $=$ round. (predict(reg_probit, X_new), digits=5)
println("predictions_lin = \$predictions_lin\n")
println("predictions_logit $=$ \$predictions_logit\n")
println("predictions_probit = \$predictions_probit")

Output of Script 17.6: Example-17-1-6. $\mathfrak{j l}$

```
predictions_lin = [-0.41046, 1.04281]
predictions_logit = [0.00522, 0.95005]
predictions_probit = [0.00107, 0.95987]
```

Figure 17.1. Predictions from Binary Response Models (Simulated Data)

If we only have one regressor, predicted values can nicely be plotted against it. Figure 17.1 shows such a figure for a simulated data set. For interested readers, the script used for generating the data and the figure is printed as Script 17.7 (Binary-Predictions.jl) in Appendix IV (p. 374). In this example, the linear probability model clearly predicts probabilities outside of the "legal" area between 0 and 1. The logit and probit models yield almost identical predictions. This is a general finding that holds for most data sets.

17.1.5. Partial Effects

The parameters of linear regression models have straightforward interpretations: β_{j} measures the ceteris paribus effect of x_{j} on $\mathrm{E}(y \mid \mathbf{x})$. The parameters of nonlinear models like logit and probit have a less straightforward interpretation since the linear index $\mathbf{x} \boldsymbol{\beta}$ affects \hat{y} through the link function G.
A useful measure of the influence is the partial effect (or marginal effect) which in a graph like Figure 17.1 is the slope and has the same interpretation as the parameters in the linear model. Because of the chain rule, it is

$$
\begin{align*}
\frac{\partial \hat{y}}{\partial x_{j}} & =\frac{\partial G\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\cdots+\hat{\beta}_{k} x_{k}\right)}{\partial x_{j}} \tag{17.9}\\
& =\hat{\beta}_{j} \cdot g\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\cdots+\hat{\beta}_{k} x_{k}\right), \tag{17.10}
\end{align*}
$$

where $g(z)$ is the derivative of the link function $G(z)$. So

- for the probit model, the partial effect is

$$
\frac{\partial \hat{y}}{\partial x_{j}}=\hat{\beta}_{j} \cdot \phi(\mathbf{x} \hat{\boldsymbol{\beta}})
$$

- for the logit model, it is

$$
\frac{\partial \hat{y}}{\partial x_{j}}=\hat{\beta}_{j} \cdot \lambda(\mathbf{x} \hat{\boldsymbol{\beta}})
$$

Figure 17.2. Partial Effects for Binary Response Models (Simulated Data)

where $\phi(z)$ and $\lambda(z)$ are the PDFs of the standard normal and the logistic distribution, respectively.
The partial effect depends on the value of $\mathbf{x} \hat{\boldsymbol{\beta}}$. The PDFs have the famous bell-shape with highest values in the middle and values close to zero in the tails. This is already obvious from Figure 17.1. Depending on the value of x, the slope of the probability differs. For our simulated data set, Figure 17.2 shows the estimated partial effects for all 100 observed x values. Interested readers can see the complete code for this as Script 17.8 (Binary-Margeff. $j 1$) in Appendix IV (p. 375).

The fact that the partial effects differ by regressor values makes it harder to present the results in a concise and meaningful way. There are two common ways to aggregate the partial effects:

- Partial effects at the average: $P E A=\hat{\beta}_{j} \cdot g(\overline{\mathbf{x}} \hat{\boldsymbol{\beta}})$
- Average partial effects: $A P E=\frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_{j} \cdot g\left(\mathbf{x}_{i} \hat{\boldsymbol{\beta}}\right)=\hat{\beta}_{j} \cdot \overline{g(\mathbf{x} \hat{\boldsymbol{\beta}})}$
where $\overline{\mathbf{x}}$ is the vector of sample averages of the regressors and $\overline{g(\mathbf{x} \hat{\boldsymbol{\beta}})}$ is the sample average of g evaluated at the individual linear index $\mathbf{x}_{i} \hat{\beta}$. Both measures multiply each coefficient $\hat{\beta}_{j}$ with a constant factor.

The first part of Script 17.9 (Example-17-1-7.jl) implements the APE calculations for our labor force participation example using already known functions:

1. The linear indices $\mathbf{x}_{i} \hat{\beta}$ are calculated by using the regressor matrix in reg.mm.m and the point estimates obtained with coef.
2. The factors $\overline{g(x \hat{\boldsymbol{\beta}})}$ are calculated by using the PDF functions pdf. (Logistic (), xb_logit) and pdf. (Normal (), xb_probit) from the Distributions package and then averaging over the sample with mean.
3. The APEs are calculated by multiplying the coefficients with the corresponding factor. Note that for the linear probability model, the partial effects are constant and simply equal to the coefficients.
The APEs for all variables (except the constant) don't differ too much between the models. Note that APEs for the constant do not have a direct meaningful interpretation. As a general observation, as long as we are interested in APEs only and not in individual predictions or partial effects and as
long as not too many probabilities are close to 0 or 1, the linear probability model often works well enough.

Script 17.9: Example-17-1-7.jl

```
using WooldridgeDatasets, GLM, DataFrames, Statistics,
    Distributions, LinearAlgebra
mroz = DataFrame(wooldridge("mroz"))
# estimate models:
reg_lin = lm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                kidslt6 + kidsge6), mroz)
reg_logit = glm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                    kidslt6 + kidsge6),
    mroz, Binomial(), LogitLink())
reg_probit = glm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                    kidslt6 + kidsge6),
    mroz, Binomial(), ProbitLink())
# average partial effects:
APE_lin = coef(reg_lin)
coefs_logit = coef(reg_logit)
xb_logit = reg_logit.mm.m * coefs_logit
factor_logit = mean(pdf.(Logistic(), xb_logit))
APE_logit = coefs_logit * factor_logit
coefs_probit = coef(reg_probit)
xb_probit = reg_probit.mm.m * coefs_probit
factor_probit = mean(pdf.(Normal(), xb_probit))
APE_probit = coefs_probit * factor_probit
# print results:
table_manual = DataFrame(
    coef_names=coeftable(reg_lin).rownms,
    APE_lin=round.(APE_lin, digits=5),
    APE_logit=round.(APE_logit, digits=5),
    APE_probit=round.(APE_probit, digits=5))
println("table_manual: \n$table_manual")
```

Output of Script 17.9: Example-17-1-7.j1

table_manual:			
8×4 DataFrame			
Row \| coef_names	APE_lin	APE_logit	APE_probit
\| String	Float 64	Float 64	Float 64
1 \| (Intercept)	0.58552	0.07598	0.08123
2 \| nwifeinc	-0.00341	-0.00381	-0.00362
3 \| educ	0.038	0.0395	0.03937
4 \| exper	0.03949	0.03676	0.0371
5 \| exper ^ 2	-0.0006	-0.00056	-0.00057
6 \| age	-0.01609	-0.01572	-0.0159
7 \| kidslt6	-0.26181	-0.25775	-0.26115
8 \| kidsge6	0.01301	0.01073	0.01083

17.2. Count Data: The Poisson Regression Model

Instead of just $0 / 1$-coded binary data, count data can take any non-negative integer $0,1,2, \ldots$. If they take very large numbers (like the number of students in a school), they can be approximated reasonably well as continuous variables in linear models and estimated using OLS. If the numbers are relatively small (like the number of children of a mother), this approximation might not work well. For example, predicted values can become negative.

The Poisson regression model is the most basic and convenient model explicitly designed for count data. The probability that y takes any value $h \in\{0,1,2, \ldots\}$ for this model can be written as

$$
\begin{equation*}
\mathrm{P}(y=h \mid \mathbf{x})=\frac{e^{-e^{x \beta}} \cdot e^{h \cdot \mathbf{x} \beta}}{h!} \tag{17.11}
\end{equation*}
$$

The parameters of the Poisson model are much easier to interpret than those of a probit or logit model. In this model, the conditional mean of y is

$$
\begin{equation*}
\mathrm{E}(y \mid \mathbf{x})=e^{x \beta} \tag{17.12}
\end{equation*}
$$

so each slope parameter β_{j} has the interpretation of a semi elasticity:

$$
\begin{align*}
\frac{\partial \mathrm{E}(y \mid \mathbf{x})}{\partial x_{j}} & =\beta_{j} \cdot e^{x \beta}=\beta_{j} \cdot \mathrm{E}(y \mid \mathbf{x}) \tag{17.13}\\
\Leftrightarrow \beta_{j} & =\frac{1}{\mathrm{E}(y \mid \mathbf{x})} \cdot \frac{\partial \mathrm{E}(y \mid \mathbf{x})}{\partial x_{j}} . \tag{17.14}
\end{align*}
$$

If x_{j} increases by one unit (and the other regressors remain the same), $\mathrm{E}(y \mid \mathbf{x})$ will increase roughly by $100 \cdot \beta_{j}$ percent (the exact value is once again $100 \cdot\left(e^{\beta_{j}}-1\right)$).

A problem with the Poisson model is that it is quite restrictive. The Poisson distribution implicitly restricts the variance of y to be equal to its mean. If this assumption is violated but the conditional mean is still correctly specified, the Poisson parameter estimates are consistent, but the standard errors and all inferences based on them are invalid. A solution is to interpret the Poisson estimators as quasi-maximum likelihood estimators (QMLE). Similar to the heteroscedasticity-robust inference for OLS discussed in Section 8.1, the standard errors can be adjusted.

Estimating Poisson regression models in GLM is straightforward. Given the data set sample contains variables $\mathbf{y}, \mathbf{x} \mathbf{1}, \mathbf{x} \mathbf{2}, \mathbf{x} \mathbf{3}$, with the respective data of our sample, we can estimate the model with the following code:

```
reg_poisson = glm(@formula(y ~ x1 + x2 + x3), sample, Poisson())
```

For the more robust QMLE standard errors, we use the procedure described in Wooldridge (2019, Chapter 17.3) and adjust the standard errors in reg_poisson.

Wooldridge, Example 17.3: Poisson Regression for Number of Arrests

We apply the Poisson regression model to study the number of arrests of young men in 1986. Script 17.10 (Example-17-3.j1) imports the data and first estimates a linear regression model using OLS. Then, a Poisson model is estimated using Poisson. Finally, we adjust the standard errors for a potential violation of the Poisson distribution using the QMLE specification. By construction, the parameter estimates are the same, but the standard errors are larger.

Script 17.10: Example-17-3.jl

```
using WooldridgeDatasets, GLM, DataFrames
crime1 = DataFrame(wooldridge("crime1"))
# estimate linear model:
reg_lin = lm(@formula(narr86 ~ ponv + avgsen + tottime + ptime86 + qemp86 +
    inc86 + black + hispan + born60), crime1)
table_lin = coeftable(reg_lin)
println("table_lin: \n$table_lin\n")
# estimate Poisson model:
reg_poisson = glm(@formula(narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 +
                                    inc86 + black + hispan + born60),
    crime1, Poisson())
table_poisson = coeftable(reg_poisson)
println("table_poisson: \n$table_poisson\n")
# estimate Quasi-Poisson model:
yhat = predict(reg_poisson)
resid = crime1.narr86 .- yhat
sigma_sq = 1 / (2725 - 9 - 1) * sum(resid .^ 2 ./ yhat)
table_qpoisson = coeftable(reg_poisson)
table_qpoisson.cols[2] = table_qpoisson.cols[2] * sqrt(sigma_sq)
println("table_qpoisson: \n$table_qpoisson")
```

Output of Script 17.10: Example-17-3. jl

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	0.576566	0.0378945	15.22	<1e-49	0.502261	0.650871
penv	-0.131886	0.0404037	-3.26	0.0011	-0.211111	-0.0526609
avgsen	-0.0113316	0.0122413	-0.93	0.3547	-0.0353348	0.0126717
tottime	0.0120693	0.00943641	1.28	0.2010	-0.00643401	0.0305725
ptime86	-0.0408735	0.00881303	-4.64	<1e-05	-0.0581544	-0.0235925
qemp86	-0.0513099	0.0144862	-3.54	0.0004	-0.079715	-0.0229047
inc86	-0.0014617	0.000343021	-4.26	<1e-04	-0.00213431	-0.000789092
black	0.32701	0.0454264	7.20	$<1 \mathrm{e}-12$	0.237936	0.416083
hispan	0.193809	0.0397156	4.88	<1e-05	0.115933	0.271685
born60	-0.022465	0.0332945	-0.67	0.4999	-0.0877502	0.0428202
table_poisson:						
	Coef.	Std. Error	z	$\operatorname{Pr}(>\|z\|)$	Lower 95\%	Upper 95\%
(Intercept)	-0.599589	0.067229	-8.92	$<1 \mathrm{e}-18$	-0.731355	-0.467822
penv	-0.401571	0.0849386	-4.73	$<1 \mathrm{e}-05$	-0.568047	-0.235094
avgsen	-0.0237723	0.0199427	-1.19	0.2332	-0.0628592	0.0153146
tottime	0.0244904	0.0147467	1.66	0.0968	-0.00441267	0.0533934
ptime 86	-0.0985584	0.0206858	-4.76	<1e-05	-0.139102	-0.058015
qemp86	-0.0380188	0.0290172	-1.31	0.1901	-0.0948916	0.0188539
inc86	-0.0080807	0.00104053	-7.77	<1e-14	-0.0101201	-0.00604129
black	0.660837	0.0738187	8.95	$<1 \mathrm{e}-18$	0.516155	0.805519
hispan	0.499813	0.073907	6.76	$<1 \mathrm{e}-10$	0.354958	0.644668
born60	-0.0510287	0.064036	-0.80	0.4255	-0.176537	0.0744795

table_qpoisson:

| | Coef. | Std. Error | z | Pr $(>\|z\|)$ | Lower 95\% | Upper 95\% |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| (Intercept) | -0.599589 | 0.0827979 | -8.92 | $<1 e-18$ | -0.731355 | -0.467822 |
| pcnv | -0.401571 | 0.104609 | -4.73 | $<1 e-05$ | -0.568047 | -0.235094 |
| avgsen | -0.0237723 | 0.024561 | -1.19 | 0.2332 | -0.0628592 | 0.0153146 |
| tottime | 0.0244904 | 0.0181617 | 1.66 | 0.0968 | -0.00441267 | 0.0533934 |
| ptime86 | -0.0985584 | 0.0254762 | -4.76 | $<1 e-05$ | -0.139102 | -0.058015 |
| qemp86 | -0.0380188 | 0.035737 | -1.31 | 0.1901 | -0.0948916 | 0.0188539 |
| inc86 | -0.0080807 | 0.0012815 | -7.77 | $<1 e-14$ | -0.0101201 | -0.00604129 |
| black | 0.660837 | 0.0909135 | 8.95 | $<1 e-18$ | 0.516155 | 0.805519 |
| hispan | 0.499813 | 0.0910224 | 6.76 | $<1 e-10$ | 0.354958 | 0.644668 |
| born60 | -0.0510287 | 0.0788654 | -0.80 | 0.4255 | -0.176537 | 0.0744795 |

17.3. Corner Solution Responses: The Tobit Model

Corner solutions describe situations where the variable of interest is continuous but restricted in range. Typically, it cannot be negative. A significant share of people buy exactly zero amounts of alcohol, tobacco, or diapers. The Tobit model explicitly models dependent variables like this. It can be formulated in terms of a latent variable y^{*} that can take all real values. For it, the classical linear regression model assumptions MLR.1-MLR. 6 are assumed to hold. If y^{*} is positive, we observe $y=y^{*}$. Otherwise, $y=0$. Wooldridge (2019, Section 17.2) shows how to derive properties and the likelihood function for this model.

The problem of interpreting the parameters is similar to logit or probit models. While β_{j} measures the ceteris paribus effect of x_{j} on $\mathrm{E}\left(y^{*} \mid \mathbf{x}\right)$, the interest is typically in y instead. The partial effect of interest can be written as

$$
\begin{equation*}
\frac{\partial \mathrm{E}(y \mid \mathbf{x})}{\partial x_{j}}=\beta_{j} \cdot \Phi\left(\frac{\mathbf{x} \boldsymbol{\beta}}{\sigma}\right) \tag{17.15}
\end{equation*}
$$

and again depends on the regressor values \mathbf{x}. To aggregate them over the sample, we can either calculate the partial effects at the average (PEA) or the average partial effect (APE) just like with the binary variable models.

Figure 17.3 depicts these properties for a simulated data set with only one regressor. Whenever $y^{*}>0, y=y^{*}$ and the symbols \times and + are on top of each other. If $y^{*}<0$, then $y=0$. Therefore, the slope of $\mathrm{E}(y \mid x)$ gets close to zero for very low x values. The code that generated the data set and the graph is hidden as Script 17.11 (Tobit-CondMean.jl) in Appendix IV (p. 376).

Since there is no boxed routine of the Tobit model in Julia, we implement our own estimator. To do this, we have to come up with our own definition of a log likelihood. The function ll_tobit in Script 17.12 (Example-17-2.j1) uses the definition of the log likelihood in Wooldridge (2019). To keep things simple, we make no use of formula syntax and provide the data as matrices \mathbf{x} and \mathbf{y}. The function optim from the package optim finds a minimum of the provided negative log likelihood, i.e. a maximum of the log likelihood. ${ }^{1}$ We provide OLS results as a start solution for this optimization procedure. We finally print the estimated coefficients with Optim.minimizer (optimum) and the respective \log likelihood with -optimum.minimum.

[^48]Figure 17.3. Conditional Means for the Tobit Model

Wooldridge, Example 17.2: Married Women's Annual Labor Supply

We have already estimated labor supply models for the women in the data set mroz, ignoring the fact that the hours worked is necessarily non-negative. Script 17.12 (Example-17-2.j1) estimates a Tobit model accounting for this fact.

Script 17.12: Example-17-2. jl
using WooldridgeDatasets, GLM, DataFrames, Statistics, Distributions, LinearAlgebra, Optim
include("../03/getMats.jl")
\# load data and build data matrices:
mroz = DataFrame (wooldridge("mroz"))
$\mathrm{f}=$ @formula (hours $\sim 1+$ nwifeinc + educ + exper + (exper^2) + age + kidslt6 + kidsge6)
$x y=$ getMats (f, mroz)
$y=x y[1]$
$\mathrm{x}=\mathrm{xy}[2]$
\# define a function that returns the negative log likelihood per observation
\# (for details on the implementation see Wooldridge (2019), formula 17.22):
function ll_tobit (params, y, x)
$\mathrm{p}=\operatorname{size}(\mathrm{X}, 2)$
beta $=$ params $[1: p]$
sigma $=\exp ($ params $[p+1])$
y_hat $=\mathrm{X}$ * beta
$y_{\text {_eq }}=(y .==0)$
$y_{-g}=(y .>0)$
$11=$ zeros (length (y))
$11\left[y _e q\right]=\log .\left(c d f .\left(N o r m a l(),-y _h a t\left[y _e q\right] /\right.\right.$ sigma) $)$
11 [y_g] = log.(pdf. (Normal(), (y.-y_hat) [y_g] / sigma)) .- log(sigma)
\# return the negative sum of log likelihoods for each observation: return -sum(11)
end
\# generate starting solution:
reg_ols = lm(@formula(hours ~ nwifeinc + educ + exper + (exper^2) + age + kidslt6 + kidsge6), mroz)
resid_ols $=$ residuals (reg_ols)
sigma_start = log(sum(resid_ols .^ 2) / length(resid_ols))
params_start = vcat (coef(reg_ols), sigma_start)
\# maximize the log likelihood = minimize the negative of the log likelihood:
optimum = optimize (par -> ll_tobit (par, y, X), params_start, Newton())
mle_est $=$ Optim.minimizer (optimum)
11 = -optimum.minimum
\# print results:
table_mle = DataFrame (
coef_names=vcat (coeftable (reg_ols). rownms, "exp_sigma"),
mle_est=round. (mle_est, digits=5))
println("table_mle: \n\$table_mle\n")
println("ll = \$ll")

```
table_mle:
9*2 DataFrame
Row | coef_names mle_est
    | String Float64
        | (Intercept) 965.305
    | nwifeinc -8.81424
    3 educ 80.6456
    4 exper 131.564
    5 | exper ^ 2 -1.86416
    6 age -54.405
    | kidslt6 -894.022
    8 | kidsge6 -16.218
    9 exp_sigma 7.02289
ll=-3819.094558766155
```


17.4. Censored and Truncated Regression Models

Censored regression models are closely related to Tobit models. In fact, their parameters can be estimated with nearly the same procedure discussed in the previous section. General censored regression models also start from a latent variable y^{*}. The observed dependent variable y is equal to y^{*} for some (the uncensored) observations. For the other observations, we only know an upper or lower bound for y^{*}. In the basic Tobit model, we observe $y=y^{*}$ in the "uncensored" cases with $y^{*}>0$ and we only know that $y^{*} \leq 0$ if we observe $y=0$. The censoring rules can be much more general. There could be censoring from above or the thresholds can vary from observation to observation.

The main difference between Tobit and censored regression models is the interpretation. In the former case, we are interested in the observed y, in the latter case, we are interested in the underlying $y^{*} .{ }^{2}$ Censoring is merely a data problem that has to be accounted for instead of a logical feature of the dependent variable. We already know how to estimate Tobit models. With censored regression, we can use the same tools. The problem of calculating partial effects does not exist in this case since we are interested in the linear $\mathrm{E}\left(y^{*} \mid \mathbf{x}\right)$ and the slope parameters are directly equal to the partial effects of interest.

Wooldridge, Example 17.4: Duration of Recidivism

We are interested in the criminal prognosis of individuals released from prison. We model the time it takes them to be arrested again. Explanatory variables include demographic characteristics as well as a dummy variable workprg indicating the participation in a work program during their time in prison. The 1445 former inmates observed in the data set recid were followed for a while.
During that time, 893 inmates were not arrested again. For them, we only know that their true duration y^{*} is at least durat, which for them is the time between the release and the end of the observation period, so we have right censoring. The threshold of censoring differs by individual depending on when they were released.
In Script 17.13 (Example-17-4.jl) we implement the log likelihood optimization similar to Script 17.12 (Example-17-2.j1). Because of the more complicated selection rule, we have to add a parameter cens, which is a dummy variable indicating censored observations. Details on the foundation of the implementation for the log likelihood with right censored data is provided in Wooldridge (2019).

[^49]Estimates can directly be interpreted. Because of the logarithmic specification, they represent semielasticities. For example, do married individuals take around $100 \cdot \hat{\beta}=34 \%$ longer to be arrested again. (Actually, the accurate number is $100 \cdot\left(e^{\hat{\beta}}-1\right)=40 \%$.)

Script 17.13: Example-17-4. jl

```
using WooldridgeDatasets, GLM, DataFrames, Statistics, Distributions,
        LinearAlgebra, Optim
# load data and build data matrices:
recid = DataFrame(wooldridge("recid"))
f = @formula(ldurat ~ 1 + workprg + priors + tserved +
        felon + alcohol + drugs + black +
        married + educ + age)
xy = getMats(f, recid)
y = xy[1]
x = xy[2]
# define dummy for censored observations:
censored = recid.cens .!= 0
# generate starting solution:
reg_ols = lm(@formula(ldurat ~ workprg + priors + tserved +
    felon + alcohol + drugs +
    black + married +
    educ + age), recid)
resid_ols = residuals(reg_ols)
sigma_start = log(sum(resid_ols .^ 2) / length(resid_ols))
params_start = vcat(coef(reg_ols), sigma_start)
# define a function that returns the negative log likelihood per observation:
function ll_censreg(params, Y, X, cens)
    p = size(X, 2)
    beta = params[1:p]
    sigma = exp (params [p+1])
    y_hat = X * beta
    ll = zeros(length(y))
    # uncensored:
    ll[.!cens] = log.(pdf.(Normal(),
        (y.-y_hat)[.!cens] / sigma)) .- log(sigma)
    # censored:
    ll[cens] = log.(cdf.(Normal(), -(y.-y_hat)[cens] / sigma))
    # return the negative sum of log likelihoods for each observation:
    return -sum(ll)
```

end
\# maximize the log likelihood = minimize the negative of the log likelihood:
optimum = optimize (par -> ll_censreg (par, Y, X, censored), params_start, Newton())
mle_est $=$ Optim.minimizer (optimum)
11 = -optimum.minimum
\# print results of MLE:
table_mle = DataFrame (
coef_names=vcat (coeftable(reg_ols).rownms, "exp_sigma"),
mle_est=round. (mle_est, digits=5))
println("table_mle: \n\$table_mle\n")
println("ll = \$ll")

```
table_mle:
12\times2 DataFrame
    Row | coef_names mle_est
        | String Float64
        | (Intercept) 4.09938
        | workprg -0.06257
        | priors -0.13725
        | tserved -0.01933
        | felon 0.44399
        | alcohol -0.63491
        | drugs -0.29816
        | black -0.54272
        | married 0.34068
        | educ 0.02292
        | age 0.00391
        | exp_sigma 0.59359
ll = -1597.058962306061
```

Truncation is a more serious problem than censoring since our observations are more severely affected. If the true latent variable y^{*} is above or below a certain threshold, the individual is not even sampled. We therefore do not even have any information. Classical truncated regression models rely on parametric and distributional assumptions to correct this problem. In Julia they can be implemented by providing an adjusted log likelihood just as discussed above. We will not go into details here, but Wooldridge (2019) describes how to implement the log likelihood.
Figure 17.4 shows results for a simulated data set. Because it is simulated, we actually know the values for everybody (hollow and solid dots). In our sample, we only observe those with $y>0$ (solid dots). When applying OLS to this sample, we get a downward biased slope (dashed line). Truncated regression fixes this problem and gives a consistent slope estimator (solid line). Script 17.14 (TruncReg-Simulation.jl) which generated the data set and the graph is shown in Appendix IV (p. 379).

17.5. Sample Selection Corrections

Sample selection models are related to truncated regression models. We do have a random sample from the population of interest, but we do not observe the dependent variable y for a non-random sub-sample. The sample selection is not based on a threshold for y but on some other selection mechanism.
Heckman's selection model consists of a probit-like model for the binary fact whether y is observed and a linear regression-like model for y. Selection can be driven by the same determinants as y but should have at least one additional factor excluded from the equation for y. Wooldridge (2019, Section 17.5) discusses the specification and estimation of these models in more detail.
The classical Heckman selection model can be estimated in two steps using software for probit and OLS as discussed by Wooldridge (2019). We will demonstrate this two-step approach with GLM.

Figure 17.4. Truncated Regression: Simulated Example

Wooldridge, Example 17.5: Wage offer Equation for Married Women

We once again look at the sample of women in the data set mROz. Of the 753 women, 428 worked (inlf=1) and the rest did not work (inlf=0). For the latter, we do not observe the wage they would have gotten had they worked. Script 17.15 (Example-17-5.j1) estimates the Heckman selection model using two formulas: one for the selection and one for the wage equation.

Script 17.15: Example-17-5.jl

```
using WooldridgeDatasets, GLM, DataFrames, Distributions
# load data and build data matrices:
mroz = DataFrame(wooldridge("mroz"))
# step 1 (use all n observations to estimate a probit model of s_i on z_i):
reg_probit = glm(@formula(inlf ~ educ + exper +
                                    (exper^2) + nwifeinc +
                                    age + kidslt6 + kidsge6),
    mroz, Binomial(), ProbitLink())
pred_inlf_linpart = quantile.(Normal(), fitted(reg_probit))
mroz.inv_mills = pdf.(Normal(), pred_inlf_linpart) ./
    cdf.(Normal(), pred_inlf_linpart)
# step 2 (regress y_i on x_i and inv_mills in sample selection):
mroz_subset = subset(mroz, :inlf => ByRow(==(1)))
reg_heckit = lm(@formula(lwage ~ educ + exper + (exper^2) +
                        inv_mills), mroz_subset)
# print results:
table_reg_heckit = coeftable(reg_heckit)
println("table_reg_heckit: \n$table_reg_heckit")
```

Output of Script 17.15: Example-17-5.jl

```
table_reg_heckit:
```

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	-0.578102	0.306723	-1.88	0.0601	-1.18099	0.0247893
educ	0.109065	0.0156096	6.99	<1e-10	0.0783835	0.139748
exper	0.0438873	0.0163534	2.68	0.0076	0.0117433	0.0760313
exper ^ 2	-0.000859113	0.000441396	-1.95	0.0523	-0.00172672	$8.48967 \mathrm{e}-6$
inv_mills	0.0322614	0.134388	0.24	0.8104	-0.23189	0.296413

18. Advanced Time Series Topics

After we have introduced time series concepts in Chapters $10-12$, this chapter touches on some more advanced topics in time series econometrics. Namely, we look at infinite distributed lag models in Section 18.1, unit roots tests in Section 18.2, spurious regression in Section 18.3, cointegration in Section 18.4 and forecasting in Section 18.5.

18.1. Infinite Distributed Lag Models

We have covered finite distributed lag models in Section 10.3. We have estimated those and related models in Julia using the package GLM. In infinite distributed lag models, shocks in the regressors z_{t} have an infinitely long impact on y_{t}, y_{t+1}, \ldots. The long-run propensity is the overall future effect of increasing z_{t} by one unit and keeping it at that level.

Without further restrictions, infinite distributed lag models cannot be estimated. Wooldridge (2019, Section 18.1) discusses two different models. The geometric (or Koyck) distributed lag model boils down to a linear regression equation in terms of lagged dependent variables

$$
\begin{equation*}
y_{t}=\alpha_{0}+\gamma z_{t}+\rho y_{t-1}+v_{t} \tag{18.1}
\end{equation*}
$$

and has a long-run propensity of

$$
\begin{equation*}
L R P=\frac{\gamma}{1-\rho} . \tag{18.2}
\end{equation*}
$$

The rational distributed lag model can be written as a somewhat more general equation

$$
\begin{equation*}
y_{t}=\alpha_{0}+\gamma_{0} z_{t}+\rho y_{t-1}+\gamma_{1} z_{t-1}+v_{t} \tag{18.3}
\end{equation*}
$$

and has a long-run propensity of

$$
\begin{equation*}
L R P=\frac{\gamma_{0}+\gamma_{1}}{1-\rho} . \tag{18.4}
\end{equation*}
$$

In terms of the implementation of these models, there is nothing really new compared to Section 10.3. The only difference is that we include lagged dependent variables as regressors.

Wooldridge, Example 18.1: Housing Investment and Residential Price Inflation

Script 18.1 (Example-18-1.j1) implements the geometric and the rational distributed lag models for the housing investment equation. The dependent variable is detrended by simply using the residual of a regression on a linear time trend. We store this detrended variable in the data frame.
The two models are estimated using the 1 lm function and a regression table very similar to Wooldridge (2019, Table 18.1) is produced. Finally, we estimate the LRP for both models using the formulas given above. We extract the respective coefficients and do the calculations. For example, coef (reg_koyck) [2] is the coefficient for γ in the geometric distributed lag model.

Script 18.1: Example-18-1.jl

```
using WooldridgeDatasets, GLM, DataFrames
hseinv = DataFrame(wooldridge("hseinv"))
# add lags and detrend:
reg_trend = lm(@formula(linvpc ~ t), hseinv)
hseinv.linvpc_det = residuals(reg_trend)
hseinv.gprice_lag1 = lag(hseinv.gprice, 1)
hseinv.linvpc_det_lag1 = lag(hseinv.linvpc_det, 1)
# Koyck geometric d.l.:
reg_koyck = lm(@formula(linvpc_det ~ gprice +
                            linvpc_det_lag1), hseinv)
table_koyck = coeftable(reg_koyck)
println("table_koyck: \n$table_koyck\n")
# rational d.l.:
reg_rational = lm(@formula(linvpc_det ~ gprice + linvpc_det_lag1 +
    gprice_lag1), hseinv)
table_rational = coeftable(reg_rational)
println("table_rational: \n$table_rational\n")
# calculate LRP as...
# gprice / (1 - linvpc_det_lag1):
lrp_koyck = coef(reg_koyck) [2] / (1 - coef(reg_koyck)[3])
println("lrp_koyck = $lrp_koyck\n")
# and (gprice + gprice_lag1) / (1 - linvpc_det_lag1):
lrp_rational = (coef(reg_rational)[2] + coef(reg_rational)[4]) /
    (1 - coef(reg_rational) [3])
println("lrp_rational = $lrp_rational")
```

Output of Script 18.1: Example-18-1.jl

Coef. Std. Error $t \operatorname{Pr}(>|t|)$ Lower 95\% Upper 95\%

(Intercept)	-0.00996294	0.017916	-0.56	0.5814	-0.046232	0.0263062
gprice	3.09483	0.933327	3.32	0.0020	1.20541	4.98425
linvpc_det_lag1	0.339901	0.131588	2.58	0.0138	0.0735153	0.606288

table_rational:
Coef. Std. Error $t \operatorname{Pr}(>|t|)$ Lower 95\% Upper 95\%

(Intercept)	0.00586852	0.0169326	0.35	0.7309	-0.0284725	0.0402095
gprice	3.25635	0.970323	3.36	0.0019	1.28845	5.22426
linvpc_det_lag1	0.547171	0.151671	3.61	0.0009	0.239567	0.854774
gprice_lag1	-2.93634	0.973186	-3.02	0.0047	-4.91006	-0.962632

lrp_koyck $=4.688434194769012$
lrp_rational $=0.7066808046888278$

18.2. Testing for Unit Roots

We have covered strongly dependent unit root processes in Chapter 11 and promised to supply tests for unit roots later. There are several tests available. Conceptually, the Dickey-Fuller (DF) test is the simplest. If we want to test whether variable y has a unit root, we regress Δy_{t} on y_{t-1}. The test statistic is the usual t test statistic of the slope coefficient. One problem is that because of the unit root, this test statistic is not t or normally distributed, not even asymptotically. Instead, we have to use special distribution tables for the critical values. The distribution also depends on whether we allow for a time trend in this regression.

The augmented Dickey-Fuller (ADF) test is a generalization that allows for richer dynamics in the process of y. To implement it, we add lagged values $\Delta y_{t-1}, \Delta y_{t-2}, \ldots$ to the differenced regression equation.

Of course, working with the special (A)DF tables of critical values is somewhat inconvenient. The package Hypothesistests offers automated DF and ADF tests for models with time trends. The command ADFTest (y , : trend, lag) performs an ADF test with selecting the number of lags in Δy as the integer lag. The argument :trend includes a time trend and other options are available. For example, ADFTest (\mathbf{y}, : none, 0) requests zero lags without a constant and time trend, i.e. a simple DF test.

Wooldridge, Example 18.4: Unit Root in Real GDP

Script 18.2 (Example-18-4.jl) implements an ADF test for the logarithm of U.S. real GDP including a linear time trend. For a test with one lag in Δy and time trend, the equation to estimate is

$$
\Delta y=\alpha+\theta y_{t-1}+\gamma_{1} \Delta y_{t-1}+\delta t+e_{t} .
$$

We already know how to implement such a regression using $\mathbf{l m}$, so we demonstrate the use of ADFTest. The relevant test statistic is $t=-2.42073$ and the critical values are also given in the output. More conveniently, the script also reports a p value of 0.3687 . So the null hypothesis of a unit root cannot be rejected with any reasonable significance level.

Script 18.2: Example-18-4.jl
using WooldridgeDatasets, DataFrames, HypothesisTests
inven = DataFrame (wooldridge("inven"))
inven.lgdp $=\log$. (inven.gdp)
\# automated ADF:
adf_lag = 1
res_ADF_aut = ADFTest (inven.lgdp, :trend, adf_lag)
println("res_ADF_aut: \n\$res_ADF_aut")

Output of Script 18.2: Example-18-4.j1

```
res_ADF_aut:
Augmented Dickey-Fuller unit root test
Population details:
    parameter of interest: coefficient on lagged non-differenced variable
    value under h_0: 0
    point estimate: -0.209621
Test summary:
    outcome with 95% confidence: fail to reject h_0
    p-value: 0.3687
Details:
    sample size in regression: 35
    number of lags: 1
    ADF statistic: -2.42073
    Critical values at 1%, 5%, and 10%: [-4.22686 -3.53665 -3.20024]
```


18.3. Spurious Regression

Unit roots generally destroy the usual (large sample) properties of estimators and tests. A leading example is spurious regression. Suppose two variables x and y are completely unrelated but both follow a random walk:

$$
\begin{aligned}
& x_{t}=x_{t-1}+a_{t} \\
& y_{t}=y_{t-1}+e_{t},
\end{aligned}
$$

where a_{t} and e_{t} are i.i.d. random innovations. If we want to test whether they are related from a random sample, we could simply regress y on x. A t test should reject the (true) null hypothesis that the slope coefficient is equal to zero with a probability of α, for example 5%. The phenomenon of spurious regression implies that this happens much more often.

Script 18.3 (Simulate-Spurious-Regression-1.jl) simulates this model for one sample. Remember from Section 11.2 how to simulate a random walk in a simple way: with a starting value of zero, it is just the cumulative sum of the innovations. The time series for this simulated sample of size $n=50$ is shown in Figure 18.1. When we regress y on x, the t statistic for the slope parameter is larger than 3 with a p value much smaller than 1%. So we would reject the (correct) null hypothesis that the variables are unrelated.

Figure 18.1. Spurious Regression: Simulated Data from Script 18.3

Script 18.3: Simulate-Spurious-Regression-1.jl
using Random, Distributions, Statistics, Plots, GLM, DataFrames
\# set the random seed:
Random. seed! (12345)
\# i.i.d. $N(0,1)$ innovations:
$n=51$
$e=\operatorname{rand}(\operatorname{Normal}(), n)$
$e[1]=0$
$\mathrm{a}=\mathrm{rand}($ Normal ($), \mathrm{n})$
$a[1]=0$
\# independent random walks:
$\mathbf{x}=$ cumsum (a)
$y=$ cumsum (e)
sim_data $=$ DataFrame $(y=y, x=x)$
\# regression:
reg $=\operatorname{lm}(@ f o r m u l a(y \sim x)$, sim_data)
reg_table = coeftable (reg)
println("reg_table: \n\$reg_table")
\# graph:
plot (x, color="black", linewidth=2, linestyle=:solid, label="x")
plot! (y, color="black", linewidth=2, linestyle=:dash, label="y")
ylabel! ("y")
xlabel! ("x")
savefig ("JlGraphs/Simulate-Spurious-Regression-1.pdf")

Output of Script 18.3: Simulate-Spurious-Regression-1.jl
reg_table:

	Coef.	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	Lower 95\%	Upper 95\%
(Intercept)	1.75017	0.610701	2.87	0.0061	0.522923	2.97742
x	0.430938	0.123895	3.48	0.0011	0.181963	0.679914

We know that by definition, a valid test should reject a true null hypothesis with a probability of α, so maybe we were just unlucky with the specific sample we took. We therefore repeat the same analysis with 10,000 samples from the same data generating process in Script 18.4 (Simulate-Spurious-Regression-2.jl). For each of the samples, we store the p value of the slope parameter in a vector named pvals. After these simulations are run, we simply check how often we would have rejected $H_{0}: \beta_{1}=0$ by comparing these p values with 0.05 .

We find that in 6,721 of the samples, so in 67% instead of $\alpha=5 \%$, we rejected H_{0}. So the t test seriously screws up the statistical inference because of the unit roots.

Script 18.4: Simulate-Spurious-Regression-2.jl
using Random, Distributions, Statistics, Plots, GLM, DataFrames
\# set the random seed:
Random.seed! (12345)
pvals $=$ zeros (10000)
for i in 1:10000
\# i.i.d. $N(0,1)$ innovations:
$\mathrm{n}=51$
e $=\operatorname{rand}(\operatorname{Normal}(), n)$
$e[1]=0$
a $=\operatorname{rand}(\operatorname{Normal}(), n)$
$a[1]=0$
\# independent random walks:
$\mathbf{x}=$ cumsum (a)
$y=$ cumsum (e)
sim_data $=$ DataFrame $(y=y, x=x)$
\# regression:
reg $=$ lm(@formula $(\mathrm{y} \sim \mathrm{x})$, sim_data)
reg_table = coeftable (reg)
\# save the p value of x :
pvals[i] = reg_table.cols[4][2]
end
\# how often is $\mathrm{p}<=5 \%$:
count_pval_smaller $=$ sum (pvals.$<=0.05$) \# counts true elements
println("count_pval_smaller = \$count_pval_smaller\n")
\# how often is $\mathrm{p}>5 \%$:
count_pval_greater $=$ sum (pvals .> 0.05) \# counts true elements
println("count_pval_greater = \$count_pval_greater")

18.4. Cointegration and Error Correction Models

In Section 18.3, we just saw that it is not a good idea to do linear regression with integrated variables. This is not generally true. If two variables are not only integrated (i.e. they have a unit root), but cointegrated, linear regression with them can actually make sense. Often, economic theory suggests a stable long-run relationship between integrated variables which implies cointegration. Cointegration implies that in the regression equation

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t},
$$

the error term u does not have a unit root, while both y and x do. A test for cointegration can be based on this finding: We first estimate this model by OLS and then test for a unit root in the residuals \hat{u}. Again, we have to adjust the distribution of the test statistic and critical values. This approach is called Engle-Granger test in Wooldridge (2019, Section 18.4) or Phillips-Ouliaris (PO) test. If we find cointegration, we can estimate error correction models. In the Engle-Granger procedure, these models can be estimated in a two-step procedure using OLS.

18.5. Forecasting

One major goal of time series analysis is forecasting. Given the information we have today, we want to give our best guess about the future and also quantify our uncertainty. Given a time series model for y, the best guess for y_{t+1} given information I_{t} is the conditional mean of $\mathrm{E}\left(y_{t+1} \mid I_{t}\right)$. For a model like

$$
\begin{equation*}
y_{t}=\delta_{0}+\alpha_{1} y_{t-1}+\gamma_{1} z_{t-1}+u_{t}, \tag{18.5}
\end{equation*}
$$

suppose we are at time t and know both y_{t} and z_{t} and want to predict y_{t+1}. Also suppose that $\mathrm{E}\left(u_{t} \mid I_{t-1}\right)=0$. Then,

$$
\begin{equation*}
\mathrm{E}\left(y_{t+1} \mid I_{t}\right)=\delta_{0}+\alpha_{1} y_{t}+\gamma_{1} z_{t} \tag{18.6}
\end{equation*}
$$

and our prediction from an estimated model would be $\hat{y}_{t+1}=\hat{\delta}_{0}+\hat{\alpha}_{1} y_{t}+\hat{\gamma}_{1} z_{t}$.
We already know how to get in-sample and (hypothetical) out-of-sample predictions including forecast intervals from linear models using the command predict. It can also be used for our purposes.

There are several ways how the performance of forecast models can be evaluated. It makes a lot of sense not to look at the model fit within the estimation sample but at the out-of-sample forecast performances. Suppose we have used observations y_{1}, \ldots, y_{n} for estimation and additionally
have observations y_{n+1}, \ldots, y_{n+m}. For this set of observations, we obtain out-of-sample forecasts f_{n+1}, \ldots, f_{n+m} and calculate the m forecast errors

$$
\begin{equation*}
e_{t}=y_{t}-f_{t} \quad \text { for } t=n+1, \ldots, n+m . \tag{18.7}
\end{equation*}
$$

We want these forecast errors to be as small (in absolute value) as possible. Useful measures are the root mean squared error (RMSE) and the mean absolute error (MAE):

$$
\begin{align*}
\text { RMSE } & =\sqrt{\frac{1}{m} \sum_{h=1}^{m} e_{n+h}^{2}} \tag{18.8}\\
M A E & =\frac{1}{m} \sum_{h=1}^{m}\left|e_{n+h}\right| \tag{18.9}
\end{align*}
$$

Wooldridge, Example 18.8: Forecasting the U.S. Unemployment Rate

Script 18.5 (Example-18-8.jl) estimates two simple models for forecasting the unemployment rate. The first one is a basic AR(1) model with only lagged unemployment as a regressor, the second one adds lagged inflation. We generate the data frame yt 96 with subset to restrict the estimation sample to years until 1996. After the estimation, we make predictions with predict.
Script 18.5 (Example-18-8.j1) also calculates the forecast errors of the unemployment rate for the two models used in Example 18.8. Predictions are made for the other seven available years until 2003. The actual unemployment rate and the forecasts are plotted - the result is shown in Figure 18.2. Finally, we calculate the RMSE and MAE for both models. Both measures suggest that the second model including the lagged inflation performs better.

Script 18.5: Example-18-8.jl

```
using WooldridgeDatasets, GLM, DataFrames, Statistics, Plots
phillips = DataFrame(wooldridge("phillips"))
# estimate models:
yt96 = subset(phillips, :year => ByRow(<=(1996)))
reg_1 = lm(@formula(unem ~ unem_1), yt96)
reg_2 = lm(@formula(unem ~ unem_1 + inf_1), yt96)
# predictions for 1997-2003:
yf97 = subset(phillips, :year => ByRow(> (1996)))
pred_1 = round.(predict(reg_1, yf97), digits=5)
println("pred_1 = $pred_1\n")
pred_2 = round.(predict(reg_2, yf97), digits=5)
println("pred_2 = $pred_2\n")
# forecast errors:
e1 = yf97.unem .- pred_1
e2 = yf97.unem .- pred_2
# RMSE and MAE:
rmse1 = sqrt (mean (e1 .^ 2))
println("rmse1 = $rmse1\n")
rmse2 = sqrt (mean (e2 .^ 2))
println("rmse2 = $rmse2\n")
mae1 = mean (abs. (e1))
println("mae1 = $mae1\n")
mae2 = mean (abs. (e2))
println("mae2 = $mae2")
# graph:
plot(yf97.year, yf97.unem, color="black", linewidth=2,
    linestyle=:solid, label="unem", legend=:topleft)
plot!(yf97.year, pred_1, color="black", linewidth=2,
    linestyle=:dash, label="forecast without inflation")
plot!(yf97.year, pred_2, color="black", linewidth=2,
    linestyle=:dashdot, label="forecast with inflation")
ylabel!("unemployment")
xlabel!("time")
savefig("JlGraphs/Example-18-8.pdf")
```

Output of Script 18.5: Example-18-8.jl

```
pred_1 = [5.52645, 5.16028,4.86733,4.64763,4.50116, 5.08704, 5.81939]
pred_2 = [5.34847, 4.89645,4.50914,4.42518,4.51606,4.92354, 5.35027]
rmse1 = 0.5761201545128691
rmse2 = 0.5217548847805118
mae1 = 0.5420143538338797
mae2 = 0.48419578240530825
```

Figure 18.2. Out-of-sample Forecasts for Unemployment

19. Carrying Out an Empirical Project

We are now ready for serious empirical work. Chapter 19 of Wooldridge (2019) discusses the formulation of interesting theories, collection of raw data, and the writing of research papers. We are concerned with the data analysis part of a research project and will cover some aspects of using Julia for real research.

This chapter is mainly about a few tips and tricks that might help to make our life easier by organizing the analyses and the output of Julia in a systematic way. While we have worked with Julia scripts throughout this book, Section 19.1 gives additional hints for using them effectively in larger projects. Section 19.2 shows how the results of our analyses can be written to a text file instead of just being displayed on the screen.

Section 19.3 discusses how Jupyter Notebooks can be used to generate nicely formatted documents that present Julia code and output at least in a more structured way, potentially even ready for publication. Therefore we introduce Markdown, a straightforward markup language and $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ a widely used system which was for example used to generate this book. Jupyter Notebooks efficiently use Julia, Markdown and $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ together to generate anything between clearly laid out results documentations and complete little research papers that automatically include the analysis results.

19.1. Working with Julia Scripts

We already argued in Section 1.1.2 that anything we do in Julia or any other statistical package should be done in scripts or the equivalent. In this way, it is always transparent how we generated our results. A typical empirical project has roughly the following steps:

1. Data Preparation: import raw data, recode and generate new variables, create sub-samples, ...
2. Generation of descriptive statistics, distribution of the main variables, ...
3. Estimation of the econometric models
4. Presentation of the results: tables, figures, ...

If we combine all these steps in one Julia script, it is very easy for us to understand how we came up with the regression results even a year after we have done the analysis. At least as important: It is also easy for our thesis supervisor, collaborators or journal referees to understand where the results came from and to reproduce them. If we made a mistake at some point or get an updated raw data set, it is easy to repeat the whole analysis to generate new results.

It is crucial to add helpful comments to the Julia scripts explaining what is done in each step. Scripts should start with an explanation like the following:

Script 19.1: ultimate-calcs.jl

```
########################################################################
# Project X:
# "The Ultimate Question of Life, the Universe, and Everything"
# Project Collaborators: Mr. H, Mr. B
#
# Julia Script "ultimate-calcs"
# by: F Heiss
# Date of this version: December 1, 2022
########################################################################
# load packages:
using Dates
# create a time stamp:
ts = now()
# print to logfile.txt (write=true resets the logfile before writing output)
# in the provided path (make sure that the folder structure
# you may provide already exists):
open("Jlout/19/logfile.txt", write=true) do io
    println(io, "This is a log file from: \n $ts\n")
end
# the first calculation using the square root function:
result1 = sqrt(1764)
# print to logfile.txt but with keeping the previous results (append=true):
open("Jlout/19/logfile.txt", append=true) do io
    println(io, "result1: $result1\n")
end
# the second calculation reverses the first one:
result2 = result1^2
# print to logfile.txt but with keeping the previous results (append=true):
open("Jlout/19/logfile.txt", append=true) do io
    println(io, "result2: $result2")
end
```

In the next section, we will explain the details of Script 19.1 (ultimate-calcs.jl). If a project requires many and/or time-consuming calculations, it might be useful to separate them into several Julia scripts. For example, we could have four different scripts corresponding to the steps listed above:

- data.jl
- descriptives.jl
- estimation.jl
- results.jl

So once the potentially time-consuming data cleaning is done, we don't have to repeat it every time we run regressions. Instead, we save the cleaned data as an intermediary step and load it in subsequent analyses. To avoid confusion, it is highly advisable to document interdependencies. Both descriptives.jl and estimation. jl should at the beginning have a comment like:

```
# Depends on data.jl
```

And results.jl could have a comment like:

[^50]
19.2. Logging Output in Text Files

Having the results appear on the screen and being able to copy and paste from there might work for small projects. For larger projects, this is impractical. A straightforward way for writing all results to a file is to use the command print (or println) and route the output not to the console but a log file. If we want to write the output of a print command to a file logfile.txt, the basic syntax is:

```
open("logfile.txt", write=true) do io
    print(io, result)
end
```

Script 19.1 (ultimate-calcs.jl) gives a demonstration and also explains that the second argument of open controls for giving writing access and resetting the log file (write=true) or append the results to an existing one (append=true). See the documentation for other available options. end closes the connection to the \log file. We also include a time stamp, to document when we performed our analyses as the following log file resulting from Script 19.1 (ultimate-calcs.jl) shows:

File logfile.txt

```
This is a log file from:
    2023-03-22T09:47:57.299
result1: 42.0
result2: 1764.0
```

You could also direct all outputs to the log file by only calling open once at the beginning. Script 19.2 (ultimate-calcs2.jl) demonstrates this alternative and produces the same log file.

Script 19.2: ultimate-calcs2.jl

```
# load packages:
using Dates
# create a time stamp:
ts = now()
# print to logfile2.txt (write=true resets the logfile before writing output)
# in the provided path (make sure that the folder structure
# you may provide already exists):
open("Jlout/19/logfile2.txt", write=true) do io
        println(io, "This is a log file from: \n $ts\n")
        # the first calculation using the square root function:
        result1 = sqrt(1764)
        # print to logfile2.txt:
        println(io, "result1: $result1\n")
        # the second calculation reverses the first one:
        result2 = result1^2
        # print to logfile2.txt:
        println(io, "result2: $result2")
end
```

Figure 19.1. Creating a Jupyter Notebook

Select File Type...	
Jupyter Notebook	
New File (Jupyter Notebook) Built-In	File
Jupyter Notebook .ipynb support	Notebook 绿

Figure 19.2. An Empty Jupyter Notebook

19.3. Formatted Documents with Jupyter Notebook

Jupyter Notebook is an open source and web based environment that is maintained by the Project Jupyter. ${ }^{1}$ A Jupyter Notebook is used to produce documents containing code, formatted text including equations and graphs. You can choose among many formats to export a Jupyter Notebook. Note that although we will use it for Julia code only, many other languages like R or Python are supported. ${ }^{2}$

Visual Studio Code already comes with everything we need to create a Jupyter Notebook. You can also install it manually as explained on https://jupyter.org/. In the following, we introduce the interface of Jupyter Notebook and the two important building blocks: Code and Markdown cells.

19.3.1. Getting Started

To create a new Jupyter Notebook in Visual Studio Code, use File \rightarrow New File, type Jupyter Notebook and click on the .ipynb entry (also see Figure 19.1). ${ }^{3}$ You may be asked to install additional software by Visual Studio Code, if it is your first Jupyter Notebook. This creates an empty Notebook similar as in Figure 19.2. To work with Julia, we have to set the right kernel, which can easily be done by clicking on 且 Python 3.9 .664 -bit in the top right in Figure 19.2. The resulting list of languages is shown in Figure 19.3, where Julia must be selected to continue.

[^51]Figure 19.3. Select Julia in an Empty Jupyter Notebook

19.3.2. Cells

Let's start to enter some Julia code into the displayed box in Figure 19.3. This box is referred to as a "cell" in a Jupyter Notebook and we choose $3^{\wedge} 2$ as an exemplary input for such a cell in the upper screenshot in Figure 19.4. You can execute the code by clicking on \triangleright to the left of the box and immediately inspect the output in the appearing lines below the cell box (also shown in Figure 19.4). By default, Jupyter Notebook expects you to enter Julia code in a cell, which is also visualized by the field in the bottom right saying "Julia". You can add more code cells by clicking on + code .

In the next step we create another cell by clicking on + Markdown. We can now enter text and use Markdown commands to format it. The lower two screenshots of Figure 19.4 give an example. Here we use $* *$ some text $* *$ to print bold text and $*$ to create a list with bullet points. More useful Markdown commands are explained in the next subsection. After entering the Markdown text click on \checkmark in the top left of the box to apply your formatting commands. Instead of printing an output, the cell you previously worked on is replaced by the formatted text. To edit the cell later, just double click on it.

19.3.3. Markdown Basics

Markdown cells include normal text, formatting instructions and $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ equations. ${ }^{4}$ There are countless possibilities to create appealing Markdown cells. We can only give a few examples for the most important formatting instructions:

- \# Header 1, \#\# Header 2, and \#\#\# Header 3 produce different levels of headers.
- *word* prints the word in italics.
- **word** prints the word in bold.
- ' 'word ' ' prints the word in code-like typewriter font (obviously not for Julia code you want to execute).
- We can create lists with bullets using * at the beginning of a line followed by a whitespace.
- If you are familiar with AATEX_{E}, displayed and inline formulas can be inserted using $\$ \ldots$. . and \$\$. . . \$\$ and the usual $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ syntax, respectively.

[^52]Figure 19.4. Cells in Jupyter Notebook

Code Cell Input:

Code Cell Output:

Markdown Cell Input:

Markdown Cell Output:

Different formatting options are demonstrated in the following Jupyter Notebook. It can be downloaded in the .ipynb format from http://www. UPfIE. net. We start by showing you a collection of all Code and Markdown cells we entered in our Jupyter Notebook:

File markdown-cell-1.txt

```
# Working with Jupyter Notebook
The following example is based on Script '`Descr-Figures'` from Chapter 1 and
demonstrates the use of **Jupyter Notebooks** to document your work step by step.
We will describe the two most important building blocks:
* basic Markdown commands to format your text in '`Markdown'` cells
* how to import and run Julia code in '`Code`` cells
## Import and Prepare Data
Let's start by loading all packages:
```

File code-cell-1.txt
using WooldridgeDatasets, Statistics, DataFrames, FreqTables, Plots
File markdown-cell-2 .txt
In the next step, we import our data and define important variables:
File code-cell-2.txt

```
affairs = DataFrame(wooldridge("affairs"))
```

counts = freqtable(affairs.kids)
labels = ["no", "yes"]
print (counts)

File markdown-cell-3.txt

```
## Analyse Data
### View your Data
To get an overview you could use '`first(affairs, 5)'`.
### Calculate Descriptive Statistics
Now we are interested in printing out the average age.
We start with its definition and use LaTeX to enter
the equation:
$$ \bar{x} = \frac{1}{N} \sum_{i=1}^N x_{i} $$
The resulting Julia code gives:
```

File code-cell-3.txt

```
age_mean = mean(affairs.age)
print (age_mean)
```

File markdown-cell-4.txt

```
### Produce Graphic Results
In Chapter 1, we saw how to produce a pie chart. Let's repeat it here:
```

File code-cell-4.txt

```
pie(labels, counts)
```

File markdown-cell-5.txt
You can also show Julia code without executing it. You can use '`inline code'`, or for longer paragraphs
` `julia

```
bar(labels, counts)
```

…

We exported the Jupyter Notebook into PDF and produced the following document:

Figure 19.5. Example of an Exported Jupyter Notebook

Working with Jupyter Notebook

The following example is based on Script Descr-Figures from Chapter 1 and demonstrates the use of Jupyter Notebooks to document your work step by step. We will describe the two most important building blocks:

- basic Markdown commands to format your text in Markdown cells
- how to import and run Julia code in Code cells

Import and Prepare Data

Let's start by loading all packages:

In 「 1: using WooldridgeDatasets, Statistics, DataFrames, FreqTables, Plots
In the next step, we import our data and define important variables:

In []: affairs = DataFrame(wooldridge("affairs"))
counts $=$ freqtable(affairs.kids)
labels = ["no", "yes"]
print(counts)
[171, 430]

Analyse Data

View your Data

To get an overview you could use first(affairs, 5).

Calculate Descriptive Statistics

Now we are interested in printing out the average age. We start with its definition and use LaTeX to enter the equation:

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

The resulting Julia code gives:

In []: age_mean = mean(affairs.age)
print(age_mean)
32.48752079866888

Figure 19.6. Example of an Exported Jupyter Notebook (cont'ed)

Produce Graphic Results

In Chapter 1, we saw how to produce a pie chart. Let's repeat it here:

In []: pie(labels, counts)

You can also show Julia code without executing it. You can use inline code, or for longer paragraphs
bar(labels, counts)

Part IV.

Appendices

Julia Scripts

1. Scripts Used in Chapter 01

Script 1.1: First-Julia-Script.jl
\# This is a comment.
\# in the next line, we try to enter Shakespeare:
"To be, or not to be: that is the question"
\# let's try some sensible math:
sqrt (16)
print ($(1+2)$ * 5)

Script 1.2: Julia-as-a-Calculator.jl

```
result1 = 1 + 1
print("result1 = $result1\n")
result2 = 5 * (4 - 1)^2
println("result2 = $result2")
result3 = [result1, result2]
print("result3:\n $result3")
```

Script 1.3: Package-Statistics.jl

```
using Statistics
a = [2, 6, 4, 9, 1]
a_mean = mean(a)
println("a_mean = $a_mean")
a_var = Statistics.var(a)
println("a_var = $a_var")
```

```
result1 = 1 + 1
# determine the type:
type_result1 = typeof(result1)
# print the result:
println("type_result1: $type_result1\n")
result2 = 2.5
type_result2 = typeof(result2)
println("type_result2: $type_result2\n")
result3 = "To be, or not to be: that is the question"
type_result3 = typeof(result3)
println("type_result3: $type_result3")
```


Script 1.5: Arrays.jl

```
# define arrays:
testarray1D = [1, 5, 41.3, 2.0]
println("type(testarray1D): $(typeof(testarray1D))\n")
testarray2D = [llllll
    2 6 3
    1 1 7 4]
# same as:
#testarray2D = [4 9 8 3; 2 6 3 2; 1 1 7 4]
#testarray2D = [[4 9 8 3]
# [ 2 6 3 2]
# [[ 1 1 1 7 4]]
#testarray2D = [[4, 2, 1] [9, 6, 1] [8, 3, 7] [3, 2, 4]]
# get dimensions of testarray2D:
dim = size(testarray2D)
println("dim: $dim\n")
# access elements by indices:
third_elem = testarray1D[3]
println("third_elem = $third_elem\n")
second_third_elem = testarray2D[2, 3] # element in 2nd row and 3rd column
println("second_third_elem = $second_third_elem\n")
second_to_third_col = testarray2D[:, 2:3] # each row in the 2nd and 3rd column
println("second_to_third_col = $second_to_third_col\n")
last_col = testarray2D[:, end] # each row in the last column
println("last_col = $last_col\n")
# access elements by array:
first_third_elem = testarray1D[[1, 3]]
println("first_third_elem: $first_third_elem\n")
# same with Boolean array:
first_third_elem2 = testarray1D[[true, false, true, false]]
println("first_third_elem2 = $first_third_elem2\n")
k = [[true false false false]
    [false false true false]
    [true false true false]]
elem_by_index = testarray2D[k] # 1st elem in 1st row, 1st elem in 3rd row...
print("elem_by_index: $elem_by_index")
```

Script 1.6: Array-Copy.jl

```
# define arrays:
testarray = [1, 5, 41.3, 2.0]
# be careful with changes on variables pointing on testarray:
duplicate_array = testarray
duplicate_array[3] = 10000
println("duplicate_array: $duplicate_array\n")
println("testarray: $testarray\n")
# work on a copy of example_list:
testarray = [1, 5, 41.3, 2.0]
```

```
duplicate_array = deepcopy(testarray)
duplicate_array[3] = 10000
println("duplicate_array: $duplicate_array\n")
println("testarray: $testarray")
```

Script 1.7: Array-Functions.jl

```
# define arrays:
vec1 = [1, 4, 64, 36]
mat1 = [4 9 8 3
    2 6 3 2
    1 1 7 4]
# apply some functions:
sort!(vec1)
println("vec1: $vec1\n")
vec2 = sqrt. (vec1)
vec3 = vec1 .+ vec2
println("vec3: $vec3\n")
# get dimensions of mat1:
dim_mat1 = size(mat1)
println("dim_mat1: $dim_mat1")
```

Script 1.8: Array-SpecialCases.jl

```
# initialize matrix with each element set to zero:
zero_mat = zeros(4, 3)
println("zero_mat: \n$zero_mat\n")
# initialize matrix with each element set to one:
one_mat = ones(2, 5)
println("one_mat: \n$one_mat\n")
# uninitialized matrix (filled with arbitrary nonsense elements):
empty_mat = Array{Float64}(undef, 2, 2)
println("empty_mat: \n$empty_mat")
```

Script 1.9: Dicts.jl

```
# define and print a dict:
var1 = ["Florian", "Daniel"]
var2 = [96, 49]
example_dict = Dict("name" => var1, "points" => var2)
println("example_dict: \n$example_dict\n")
# get data type:
type_example_dict = typeof(example_dict)
println("type_example_dict: $type_example_dict\n")
# access "points":
points_all = example_dict["points"]
println("points_all: $points_all\n")
# access "points" of Daniel:
points_daniel = example_dict["points"][2]
println("points_daniel: $points_daniel\n")
# add 4 to "points" of Daniel:
```

```
example_dict["points"][2] = example_dict["points"][2] + 4
println("example_dict: \n$example_dict\n")
# add a new component "grade":
example_dict["grade"] = [1.3, 4.0]
# delete component "points":
delete!(example_dict, "points")
print("example_dict: \n$example_dict\n")
```

Script 1.10: Matrix-Operations.jl
\# define matrices:
mat1 $=\left[\begin{array}{ll}4 & 9\end{array}\right.$
26 3]
mat2 $=\left[\begin{array}{lll}1 & 5 & 2\end{array}\right.$
660
4 81]
\# use exp() and apply it to each element:
result1 = exp. (mat1)
result1_rounded = round. (result1, digits=4)
println("result1_rounded: \n\$result1_rounded $\backslash n$ ")
result2 $=$ mat1 .+ mat2[1:2, :]
println("result2: \$result2\n")
\# use another function:
mat1_tr = transpose(mat1) \#or simply: mat1'
println("mat1_tr: \$mat1_tr ${ }^{\prime} \mathrm{n}^{\prime}$)
\# matrix algebra:
matprod $=$ mat1 * mat2
println("matprod: \$matprod")

Script 1.11: DataFrames.jl

```
using DataFrames
# define a DataFrame:
icecream_sales = [30, 40, 35, 130, 120, 60]
weather_coded = [0, 1, 0, 1, 1, 0]
customers = [2000, 2100, 1500, 8000, 7200, 2000]
df = DataFrame(
    icecream_sales=icecream_sales,
    weather_coded=weather_coded,
    customers=customers
)
# print the DataFrame
println("df: \n$df\n")
# access columns by variable reference:
subset1 = df[!, [:icecream_sales, :customers]]
println("subset1: \n$subset1\n")
# access second to fourth row:
subset2 = df[2:4, :]
println("subset2: \n$subset2\n")
```

```
# access rows and columns by variable integer positions:
subset3 = df[2:4, 1:2]
println("subset3: \n$subset3\n")
# access rows by variable integer positions:
subset4 = df[2:4, [:icecream_sales, :weather_coded]]
println("subset4: \n$subset4")
```

Script 1.12: DataFrames-Functions.jl

```
using DataFrames, CategoricalArrays, Statistics
# define a DataFrame:
icecream_sales = [30, 40, 35, 130, 120, 60]
weather_coded = [0, 1, 0, 1, 1, 0]
customers = [2000, 2100, 1500, 8000, 7200, 2000]
df = DataFrame(
    icecream_sales=icecream_sales,
    weather_coded=weather_coded,
    customers=customers
)
# get some descriptive statistics:
descr_stats = describe(df)
println("descr_stats: \n$descr_stats\n")
# add one observation at the end in-place:
push!(df, [50, 1, 3000])
println("df: \n$df\n")
# extract observations with more than 2500 customers:
subset_df = subset(df, :customers => ByRow(> (2500)))
println("subset_df: \n$subset_df\n")
# use a CategoricalArray object to attach labels (0 = bad; 1 = good):
df.weather = recode(df[!, :weather_coded], 0 => "bad", 1 => "good")
println("df \n$df\n")
# mean sales for each weather category by
# grouping and splitting data:
grouped_data = groupby(df, :weather)
# apply the mean to icecream_sales and combine the results:
group_means = combine(grouped_data, :icecream_sales => mean)
println("group_means: \n$group_means")
```

using PyCall
\# define a block of Python Code:
py"" "
import numpy as np
\# define arrays in numpy:
mat1 $=$ np.array $([4,9,8]$,
$[2,6,3]])$
mat2 $=$ np.array $([1,5,2]$,
$[6,6,0]$,
$[4,8,3]])$
matrix algebra:

```
matprod_py = mat1 @ mat2
"""
# automatic type conversion from Python to Julia:
matprod = py"matprod_py"
matprod_type = typeof (matprod)
println("matprod_type: $matprod_type\n")
println("matprod: $matprod")
```

Script 1.14: PyCall-Alternative.jl

```
using PyCall
# using pyimport to work with modules:
np = pyimport("numpy")
# define matrices in Julia:
mat1 = [4 9 8
    2 6 3]
mat2 = [1 5 2
    6 6 0
    4 8 3]
# ... and pass them to numpys dot function:
matprod = np.dot (mat1, mat2)
println("matprod: $matprod\n")
matprod_type = typeof (matprod)
println("matprod_type: $matprod_type")
```

Script 1.15: Wooldridge.jl

```
using WooldridgeDatasets, DataFrames
# load data:
wage1 = DataFrame(wooldridge("wage1"))
# get type:
type_wage1 = typeof(wage1)
println("type_wage1: $type_wage1\n")
# get first four observations and first eight variables:
preview_wage1 = wage1[1:4, 1:8]
println("preview_wage1: \n$preview_wage1")
```


Script 1.16: Import-Export.jl

```
using DataFrames, CSV
# import a .CSV file with CSV.read:
df1 = CSV.read("data/sales.csv", DataFrame, delim=",",
    header=["year", "product1", "product2", "product3"])
println("df1: \n$df1\n")
# import a .txt file with CSV.read:
df2 = CSV.read("data/sales.txt", DataFrame, delim=" ")
println("df2: \n$df2\n")
# add a row to df1:
push!(df1, [2014, 10, 8, 2])
```

```
println("df1: \n$df1")
# export with CSV.write:
CSv.write("data/sales2.csv", df1)
```

Script 1.17: Import-StockData.jl

```
using DataFrames, Dates, MarketData
# download data for "F" (= Ford) and define start and end:
ticker = "F"
start_date = DateTime(2007, 12, 31)
end_date = DateTime(2017, 01, 01)
# import data as DataFrame:
F_data = DataFrame (yahoo(ticker,
    YahooOpt(period1=start_date, period2=end_date)))
preview_F_data = first(F_data, 5)
println("preview_F_data: \n$preview_F_data")
```

Script 1.18: Graphs-Basics.jl

```
using Plots
# create data:
x = [1, 3, 4, 7, 8, 9]
y = [0, 3, 6, 9, 7, 8]
# plot and save:
plot(x, y, color=:black)
savefig("JlGraphs/Graphs-Basics-a.pdf")
# scatter and save:
scatter(x, y, color=:black, markershape=:dtriangle, legend=false)
savefig("JlGraphs/Graphs-Basics-b.pdf")
```

Script 1.19: Graphs-Basics2.jl

```
using Plots
# create data:
x = [1, 3, 4, 7, 8, 9]
y = [0, 3, 6, 9, 7, 8]
# plot and save:
plot(x, y, color=:black, linestyle=:dash, legend=false)
savefig("JlGraphs/Graphs-Basics-c.pdf")
plot(x, y, color=:black, linestyle=:dot, legend=false)
savefig("JlGraphs/Graphs-Basics-d.pdf")
plot(x, y, color=:black, linestyle=:solid, linewidth=3, legend=false)
savefig("JlGraphs/Graphs-Basics-e.pdf")
plot(x, y, color=:black, markershape=:circle, legend=false)
savefig("JlGraphs/Graphs-Basics-f.pdf")
```

Script 1.20: Graphs-Functions.jl

```
using Plots, Distributions
# support of quadratic function
# (creates an array with 100 equispaced elements from -3 to 2):
x1 = range(start=-3, stop=2, length=100)
# function values for all these values:
y1 = x1 .^ 2
# plot quadratic function:
plot(x1, y1, linestyle=:solid, color=:black, legend=false)
savefig("JlGraphs/Graphs-Functions-a.pdf")
# same for normal density:
x2 = range(-4, 4, length=100)
y2 = pdf.(Normal(), x2)
# plot normal density:
plot(x2, y2, linestyle=:solid, color=:black, legend=false)
savefig("JlGraphs/Graphs-Functions-b.pdf")
```

Script 1.21: Graphs-BuildingBlocks.jl

```
using Plots, Distributions
# support for all normal densities:
x = range (-4, 4, length=100)
# get different density evaluations:
y1 = pdf. (Normal(), x)
y2 = pdf. (Normal (1, 0.5), x)
y3 = pdf.(Normal (0, 2), x)
# plot:
plot(x, y1, linestyle=:solid, color=:black, label="standard normal")
plot!(x, y2, linestyle=:dash, color=:black,
    linealpha=0.6, label="mu = 1, sigma = 0.5")
plot!(x, y3, linestyle=:dot, color=:black,
    linealpha=0.3, label="mu = 0, sigma = 2")
xlims!(-3, 4)
title!("Normal Densities")
ylabel!("phi(x)")
xlabel!("x")
savefig("JlGraphs/Graphs-BuildingBlocks.pdf")
```

Script 1.22: Graphs-Export.jl

```
using Plots, Distributions
# support for all normal densities:
x = range (-4, 4, length=100)
# get different density evaluations:
y1 = pdf.(Normal(), x)
y2 = pdf. (Normal (0, 3), x)
# plot (a):
plot(legend=false, size=(400, 600))
plot!(x, y1, linestyle=:solid, color=:black)
plot!(x, y2, linestyle=:dash, color=:black, linealpha=0.3)
savefig("JlGraphs/Graphs-Export-a.pdf")
```

```
# plot (b):
plot(legend=false, size=(600, 400))
plot!(x, y1, linestyle=:solid, color=:black)
plot!(x, y2, linestyle=:dash, color=:black, linealpha=0.3)
savefig("JlGraphs/Graphs-Export-b.png")
```

Script 1.23: Descr-Tables.jl
using WooldridgeDatasets, DataFrames, CategoricalArrays, FreqTables
affairs = DataFrame(wooldridge("affairs"))
\# attach labels to kids and convert it to a categorical variable:
affairs.haskids = categorical(
recode(affairs.kids, 0 => "no", 1 => "yes")
)
\# ... and ratemarr (for example: 1 = "very unhappy", 2 = "unhappy",...):
affairs.marriage = categorical (recode (affairs.ratemarr,

1 => "very unhappy",
2 => "unhappy", 3 => "average", 4 => "happy", 5 => "very happy")
)
\# frequency table (alphabetical order of elements):
ft_marriage = freqtable (affairs.marriage)
println("ft_marriage: \n\$ft_marriage\n")
\# frequency table with groupby:
ft_groupby = combine (
groupby (affairs, :haskids), nrow)
println("ft_groupby: \n\$ft_groupby\n")
\# contingency tables with absolute and relative values:
ct_all_abs = freqtable(affairs.marriage, affairs.haskids)
println("ct_all_abs: \n\$ct_all_abs\n")
Ct_all_rel = proptable (affairs.marriage, affairs.haskids)
println("ct_all_rel: \n\$ct_all_rel\n")
\# share within "marriage" (i.e. within a row):
ct_row = proptable(affairs.marriage, affairs.haskids, margins=1)
println("ct_row: \n\$ct_row $\backslash n$ ")
\# share within "haskids" (i.e. within a column):
ct_col = proptable(affairs.marriage, affairs.haskids, margins=2)
println("ct_col: \n\$ct_col")

Script 1.24: Descr-Figures.jl
using WooldridgeDatasets, DataFrames, Plots, StatsPlots, FreqTables, CategoricalArrays
affairs = DataFrame(wooldridge("affairs"))

```
# attach labels to kids and convert it to a categorical variable:
affairs.haskids = categorical(
        recode(affairs.kids, 0 => "no", 1 => "yes")
)
# ... and ratemarr (for example: 1 = "very unhappy", 2 = "unhappy",...):
affairs.marriage = categorical(
    recode(affairs.ratemarr,
        1 => "very unhappy",
        2 => "unhappy",
        3 => "average",
        4 => "happy",
        5 => "very happy"
    )
)
# counts for all graphs:
counts_m = sort(freqtable(affairs.marriage), rev=true)
levels_counts_m = String.(collect(keys(counts_m.dicts[1])))
colors_m = [:grey60, :grey50, :grey40, :grey30, :grey20]
ct_all_abs = freqtable(affairs.marriage, affairs.haskids)
levels_counts_all = String.(collect(keys(ct_all_abs.dicts[1])))
colors_all = [:grey80 :grey50]
# pie chart (a):
pie(levels_counts_m, counts_m, color=colors_m)
savefig("JlGraphs/Descr-Pie.pdf")
# bar chart (b):
bar(levels_counts_m, counts_m, color=:grey, legend=false)
savefig("JlGraphs/Descr-Bar1.pdf")
# stacked bar plot (c):
groupedbar(ct_all_abs, bar_position=:stack,
    color=colors_all, label=["no" "yes"])
xticks!(1:5, levels_counts_all)
savefig("JlGraphs/Descr-Bar2.pdf")
# grouped bar plot (d) :
groupedbar(ct_all_abs, bar_position=:dodge,
    color=colors_all, label=["no" "yes"])
xticks!(1:5, levels_counts_all)
savefig("JlGraphs/Descr-Bar3.pdf")
```

Script 1.25: Histogram.jl

```
using WooldridgeDatasets, Plots, DataFrames
ceosal1 = DataFrame(wooldridge("ceosal1"))
# extract roe:
roe = ceosal1.roe
# histogram with counts (a):
histogram(roe, color=:grey, legend=false)
ylabel!("Counts")
xlabel!("roe")
savefig("JlGraphs/Histogram1.pdf")
```

```
# histogram with density and explicit breaks (b):
breaks = [0, 5, 10, 20, 30, 60]
histogram(roe, color=:grey,
    bins=breaks,
    normalize=true,
    legend=false)
xlabel!("roe")
ylabel!("Density")
savefig("JlGraphs/Histogram2.pdf")
```

Script 1.26: KDensity.jl

```
using WooldridgeDatasets, DataFrames, Plots, KernelDensity
ceosal1 = DataFrame(wooldridge("ceosal1"))
# extract roe:
roe = ceosall.roe
# estimate kernel density:
kde_est = KernelDensity.kde(roe)
# kernel density (a):
plot(kde_est.x, kde_est.density, color=:black, linewidth=2, legend=false)
ylabel!("density")
xlabel!("roe")
savefig("JlGraphs/Density1.pdf")
# kernel density with overlayed histogram (b) :
histogram(roe, color="grey", normalize=true, legend=false)
plot!(kde_est.x, kde_est.density, color=:black, linewidth=2)
ylabel!("density")
xlabel!("roe")
savefig("JlGraphs/Density2.pdf")
```

Script 1.27: Descr-ECDF.jl

using WooldridgeDatasets, DataFrames, Plots

```
ceosal1 = DataFrame(wooldridge("ceosal1"))
```

\# extract roe:
roe $=$ ceosall.roe
\# calculate ECDF:
x = sort (roe)
$\mathrm{n}=$ length (x)
$\mathrm{y}=$ range (start=1, stop=n) / n
\# plot a step function:
plot(x, y, linetype=:steppre, color=:black, legend=false)
xlabel!("roe")
savefig("JlGraphs/ecdf.pdf")

Script 1.28: Descr-Stats.jl
using WooldridgeDatasets, DataFrames, Statistics
ceosal1 = DataFrame(wooldridge("ceosal1"))

```
# extract roe and salary:
roe = ceosal1.roe
salary = ceosal1.salary
# sample average:
roe_mean = mean(roe)
println("roe_mean = $roe_mean\n")
# sample median:
roe_med = median(roe)
println("roe_med = $roe_med\n")
# corrected standard deviation (n-1 scaling):
roe_std = std(roe)
println("roe_st = $roe_std\n")
# correlation with roe:
roe_corr = cor(roe, salary)
println("roe_corr = $roe_corr\n")
# correlation matrix with roe:
roe_corr_mat = cor(hcat (roe, salary))
println("roe_corr_mat: \n$roe_corr_mat")
```

Script 1.29: Descr-Boxplot.jl
using WooldridgeDatasets, DataFrames, StatsPlots
ceosal1 = DataFrame(wooldridge("ceosal1"))
\# extract roe and salary:
roe $=$ ceosall.roe
consprod = ceosall.consprod
\# plotting descriptive statistics:
boxplot (roe, orientation=:h,
linecolor=:black, color=:white, legend=false)
yticks!([1], [""])
ylabel! ("roe")
savefig("JlGraphs/Boxplot1.pdf")
\# plotting descriptive statistics (logical indexing):
roe_cp0 = roe[consprod.==0]
roe_cp1 = roe[consprod.==1]
boxplot([roe_cp0, roe_cp1], linecolor=:black, color=:white, legend=false)
xticks!([1, 2], ["consprod=0", "consprod=1"])
ylabel! ("roe")
savefig("JlGraphs/Boxplot2.pdf")
Script 1.30: PMF-binom.jl

```
using Distributions
# pedestrian approach:
p1 = binomial (10, 2) * (0.2^2) * (0.8^8)
println("p1 = $p1\n")
# package function:
p2 = pdf(Binomial(10, 0.2), 2)
println("p2 = $p2")
```

Script 1.31: PMF-example.jl

```
using Distributions, DataFrames, Plots
# PMF for all values between 0 and 10:
x = 0:10
fx = pdf.(Binomial(10, 0.2), x)
# collect values in DataFrame:
result = DataFrame(x=x, fx=fx)
println("result: \n$result")
# plot:
bar(x, fx, color=:grey, alpha=0.6, legend=false)
xlabel!("x")
ylabel!("fx")
savefig("JlGraphs/PMF-example.pdf")
```

Script 1.32: PDF-example.jl
using Plots, Distributions
\# support of normal density:
x_range $=$ range $(-4,4$, length $=100$)
\# PDF for all these values:
pdf_normal $=$ pdf. (Normal(), x_range)
\# plot:
plot (x_range, pdf_normal, color=:black, legend=false)
xlabel! ("x")
ylabel!("dx")
savefig("JlGraphs/PDF-example.pdf")

Script 1.33: CDF-example.jl

```
using Distributions
# binomial CDF:
p1 = cdf(Binomial(10, 0.2), 3)
println("p1 = $p1\n")
# normal CDF:
p2 = cdf(Normal(), 1.96) - cdf(Normal(), -1.96)
println("p2 = $p2")
```

```
using Distributions
# first example using the transformation:
p1_1 = cdf(Normal(), 2 / 3) - cdf(Normal(), -2 / 3)
println("p1_1 = $p1_1\n")
# first example working directly with the distribution of X:
p1_2 = cdf(Normal (4, 3), 6) - cdf(Normal (4, 3), 2)
println("p1_2 = $p1_2\n")
# second example:
p2 = 1 - cdf(Normal (4, 3), 2) + cdf(Normal (4, 3), -2)
println("p2 = $p2")
```

Script 1.35: CDF-figure.jl

```
using Distributions, Plots
# binomial CDF:
x_binom = range(-1, 10, length=100)
cdf_binom = cdf.(Binomial(10, 0.2), x_binom)
plot(x_binom, cdf_binom, linetype=:steppre, color=:black, legend=false)
xlabel!("x")
ylabel!("Fx")
savefig("JlGraphs/CDF-figure-discrete.pdf")
# normal CDF:
x_norm = range(-4, 4, length=1000)
cdf_norm = cdf.(Normal(), x_norm)
plot(x_norm, cdf_norm, color=:black, legend=false)
xlabel!("x")
ylabel!("Fx")
savefig("JlGraphs/CDF-figure-cont.pdf")
```

Script 1.36: Quantile-example.jl

```
using Distributions
q_975 = quantile(Normal(), 0.975)
println("q_975 = $q_975")
```

using Distributions
sample $=$ rand (Bernoulli(0.5), 10)
println("sample: \$sample")

Script 1.38: Sample-Norm.jl

```
using Distributions
sample = rand(Normal(), 6)
sample_rounded = round.(sample, digits=5)
println("sample_rounded: $sample_rounded")
```

Script 1.39: Random-Numbers.jl

```
using Distributions, Random
Random.seed! (12345)
# sample from a standard normal RV with sample size n=3:
sample1 = rand(Normal(), 3)
println("sample1: $sample1\n")
# a different sample from the same distribution:
sample2 = rand(Normal(), 3)
println("sample2: $sample2\n")
# set the seed of the random number generator and take two samples:
Random.seed!(54321)
sample3 = rand(Normal(), 3)
println("sample3: $sample3\n")
```

```
sample4 = rand(Normal(), 3)
println("sample4: $sample4\n")
# reset the seed to the same value to get the same samples again:
Random.seed!(54321)
sample5 = rand(Normal(), 3)
println("sample5: $sample5\n")
sample6 = rand(Normal(), 3)
println("sample6: $sample6")
```

```
using Distributions
# manually enter raw data from Wooldridge, Table C.3:
SR87 = [10, 1, 6, 0.45, 1.25, 1.3, 1.06, 3, 8.18, 1.67,
    0.98, 1, 0.45, 5.03, 8, 9, 18, 0.28, 7, 3.97]
SR88 = [3, 1, 5, 0.5, 1.54, 1.5, 0.8, 2, 0.67, 1.17, 0.51,
    0.5, 0.61, 6.7, 4, 7, 19, 0.2, 5, 3.83]
# calculate change:
Change = SR88 .- SR87
# ingredients to CI formula:
avgCh = mean(Change)
println("avgCh = $avgCh\n")
n = length(Change)
sdCh = std(Change)
se = sdCh / sqrt(n)
println("se = $se\n")
c = quantile(TDist(n - 1), 0.975)
println("c = $c\n")
# confidence interval:
lowerCI = avgCh - c * se
println("lowerCI = $lowerCI\n")
upperCI = avgCh + c * se
println("upperCI = $upperCI")
```

Script 1.41: Example-C-3.jl

```
using WooldridgeDatasets, DataFrames, Distributions
```

audit = DataFrame (wooldridge("audit"))
$\mathrm{y}=$ audit. y
\# ingredients to CI formula:
avgy $=\operatorname{mean}(y)$
$\mathrm{n}=$ length (y)
sdy $=$ std (y)
se $=$ sdy / sqrt (n)
c95 = quantile(Normal(), 0.975)
c99 = quantile (Normal (), 0.995)
\# 95\% confidence interval:
lowerCI95 = avgy - c95 * se
println("lowerCI95 = \$lowerCI95\n")

```
upperCI95 = avgy + c95 * se
println("upperCI95 = $upperCI95\n")
# 99% confidence interval:
lowerCI99 = avgy - c99 * se
println("lowerCI99 = $lowerCI99\n")
upperCI99 = avgy + c99 * se
println("upperCI99 = $upperCI99")
```

Script 1.42: Critical-Values-t.jl

```
using Distributions, DataFrames
# degrees of freedom = n-1:
df = 19
# significance levels:
alpha_one_tailed = [0.1, 0.05, 0.025, 0.01, 0.005, 0.001]
alpha_two_tailed = alpha_one_tailed * 2
# critical values & table:
CV = quantile.(TDist(df), 1 .- alpha_one_tailed)
table = DataFrame(alpha_one_tailed=alpha_one_tailed,
    alpha_two_tailed=alpha_two_tailed,
    CV=CV)
println("table: \n$table")
```

Script 1.43: Example-C-5.jl

```
using WooldridgeDatasets, DataFrames, Distributions, HypothesisTests
audit = DataFrame(wooldridge("audit"))
y = audit.y
# automated calculation of t statistic for HO (mu=0):
test_auto = OneSampleTTest (y, 0)
t_auto = test_auto.t # access test statistic
p_auto = pvalue(test_auto, tail=:left) # access one-sided p value
println("t_auto = $t_auto\n")
println("p_auto = $p_auto\n")
# manual calculation of t statistic for HO (mu=0):
avgy = mean(y)
n = length(y)
sdy = std(y)
se = sdy / sqrt(n)
t_manual = avgy / se
println("t_manual = $t_manual\n")
# critical values for t distribution with n-1=240 d.f.:
alpha_one_tailed = [0.1, 0.05, 0.025, 0.01, 0.005, 0.001]
CV = quantile(TDist(n - 1), 1 .- alpha_one_tailed)
table = DataFrame (alpha_one_tailed=alpha_one_tailed, CV=CV)
println("table: \n$table")
```

Script 1.44: Example-C-6.jl
using Distributions, HypothesisTests

```
# manually enter raw data from Wooldridge, Table C.3:
SR87 = [10, 1, 6, 0.45, 1.25, 1.3, 1.06, 3, 8.18, 1.67,
        0.98, 1, 0.45, 5.03, 8, 9, 18, 0.28, 7, 3.97]
SR88 = [3, 1, 5, 0.5, 1.54, 1.5, 0.8, 2, 0.67, 1.17, 0.51,
    0.5, 0.61, 6.7, 4, 7, 19, 0.2, 5, 3.83]
Change = SR88 .- SR87
# automated calculation of t statistic for HO (mu=0):
test_auto = OneSampleTTest (Change, 0)
t_auto = test_auto.t
p_auto = pvalue(test_auto, tail=:left)
println("t_auto = $t_auto\n")
println("p_auto = $p_auto\n")
# manual calculation of t statistic for HO (mu=O):
avgCh = mean (Change)
n = length (Change)
sdCh = std(Change)
se = sdCh / sqrt(n)
t_manual = avgCh / se
println("t_manual = $t_manual\n")
# manual calculation of p value for HO (mu=0):
p_manual = cdf(TDist(n - 1), t_manual)
println("p_manual = $p_manual")
```

Script 1.45: Example-C-7.jl
using WooldridgeDatasets, DataFrames, Distributions, HypothesisTests
audit = DataFrame (wooldridge("audit"))
$\mathrm{y}=$ audit. y
\# automated calculation of t statistic for $H 0$ ($m u=0$):
test_auto $=$ OneSampleTTest (y, O)
t_auto = test_auto.t
p_auto = pvalue (test_auto, tail=:left)
println("t_auto = \$t_auto\n")
println("p_auto $=\$ p$ _auto $\backslash n "$)

```
# manual calculation of t statistic for HO (mu=0):
```

$\operatorname{avgy}=\operatorname{mean}(\mathrm{y})$
$\mathrm{n}=$ length (y)
sdy $=\operatorname{std}(\mathrm{y})$
se $=$ sdy / sqrt (n)
t_manual = avgy / se
println("t_manual = \$t_manual\n")
\# manual calculation of p value for $H 0$ ($m u=0$) :
p_manual = cdf(TDist (n - 1), t_manual)
println("p_manual = \$p_manual")

Script 1.46: Adv-Loops.jl

```
seq = [1, 2, 3, 4, 5, 6]
for i in seq
    if i < 4
        println(i^3)
    else
        println(i^2)
```

```
end
end
```

Script 1.47: Adv-Loops2.j1

```
seq = [1, 2, 3, 4, 5, 6]
for i in eachindex(seq)
    if seq[i] < 4
        println(seq[i]^3)
    else
        println(seq[i]^2)
    end
end
```


Script 1.48: Adv-Functions.jl

```
# define function:
function mysqrt(x)
    if x >= 0
        result = x^0.5
    else
        result = "You fool!"
    end
    return result
end
# call function and save result:
result1 = mysqrt(4)
println("result1 = $result1\n")
result2 = mysqrt (-1.5)
println("result2 = $result2")
```

Script 1.49: Adv-Functions-MultArg.jl
\# define function (only positional arguments):
function mysqrt_pos (x, add)
if $x>=0$
result $=x^{\wedge} 0.5+$ add
else
result = "You fool!"
end
return result
end
\# define function ("x" as positional and "add" as keyword argument):
function mysqrt_kwd(x ; add)
if $x>=0$
result $=x^{\wedge} 0.5+$ add
else
result = "You fool!"
end
return result
end
\# call functions:
result1 = mysqrt_pos (4, 3)
println("result1 = \$result1")
\# mysqrt_pos(4, add $=3$) is not valid

```
result2 = mysqrt_kwd(4, add=3)
println("result2 = $result2")
# mysqrt_kwd(4, 3) is not valid
```

Script 1.50: Adv-Performance.jl

```
using Random, Distributions
# set the random seed:
Random.seed! (12345)
function simMean(n, reps)
    ybar = zeros(reps)
    for j in 1:reps
        # sample from normal distribution of size n
        sample = rand(Normal(), n)
        ybar[j] = mean(sample)
    end
    return ybar
end
# call the function and measure time:
n = 100
reps = 10000
stats = @timed simMean(n, reps);
runTime = stats.time
println("runTime = $runTime")
```

Script 1.51: Adv-Performance-Jl-Figure.jl

```
using Random, DataFrames, Distributions, Plots, BenchmarkTools, CSV
# set the random seed:
Random.seed!(12345)
function simMean(n, reps)
    ybar = zeros(reps)
    for j in 1:reps
        # sample from normal distribution of size n
        sample = rand(Normal(), n)
        ybar[j] = mean(sample)
    end
    return ybar
end
# call the function r times and measure times:
n = 100
R = 10000
step_length = 100
reps = range (100, R, step=100)
runTimeJl = zeros(Int(R / step_length))
for i in eachindex(reps)
    t = @benchmark simMean($n, $reps[$i])
    runTimeJl[i] = mean(t).time / le9 # mean(t).time in nanoseconds
end
runtimeDf = DataFrame(runtime=runTimeJl)
CSV.write("Jlprocessed/01/Adv-Performance-Jl.csv", runtimeDf)
import results (all in seconds):
```

```
R = CSV.read("Jlprocessed/01/Adv-Performance-R.csv", DataFrame)
Py = CSV.read("Jlprocessed/01/Adv-Performance-Py.csv", DataFrame)
Jl = CSV.read("Jlprocessed/01/Adv-Performance-Jl.csv", DataFrame)
# plot results
x_range = collect(reps)
plot(x_range, Jl.runtime, linestyle=:solid, color=:black,
    label="Julia", legend=:topleft)
plot!(x_range, R.runtime, linestyle=:dash, color=:black, label="R")
plot!(x_range, Py.runtime, linestyle=:dot, color=:black, label="Python")
xlabel!("Repetitions")
ylabel!("Runtime [seconds]")
savefig("JlGraphs/Adv-CompSpeed.pdf")
### Python-Code
# import random
# import numpy as np
# import timeit
# import pandas as pd
# import scipy.stats as stats
# np.random.seed(12345)
# def simMean(n, reps):
# ybar = np.empty(reps)
# for j in range(1, reps):
# sample = stats.norm.rvs(0,1,size=n)
# ybar[j] = np.mean(sample)
# return(ybar)
# # call the function R times and measure times:
# n = 100
# R = 10000
# step_length = 100
# reps = range (100, R+1, step_length)
# runTime = np.empty(len(reps))
# number = 100
# for i in range(len(reps)):
# runTime[i] = timeit.repeat (lambda: simMean(
# n, reps[i]), number=100, repeat=1) [0] / number
# # repeat gives total time, i.e. number * single iteration time
# dfruntime = pd.DataFrame({"runtime": runTime})
# dfruntime.to_csv("Jlprocessed/01/Adv-Performance-Py.csv")
### R-Code
# library(microbenchmark)
# library(rio)
# set.seed(12345)
# simMean <- function(n, reps) {
# ybar <- numeric(reps)
# for(j in 1:reps){
```

```
        sample <- rnorm(n)
        ybar[j] <- mean(sample)
    }
    return(ybar)
# call the function R times and measure times:
n <- 100
R <- 10000
step_length <- 100
reps <- seq(100, R, by=100)
runtime <- numeric(R/step_length)
for (i in 1:length(reps)){
    t <- microbenchmark( simMean(n,reps[i]), unit = "s")
    runtime[i] <- mean(t$time) / 1e9 # t$time in nanoseconds
}
export(as.data.frame(runtime),file="Jlprocessed/01/Adv-Performance-R.csv")
```

\# \}

Script 1.52: Simulate-Estimate.jl

```
using Distributions, Random
# set the random seed:
Random.seed!(12345)
# set sample size:
n = 100
# draw a sample given the population parameters:
sample1 = rand(Normal (10, 2), n)
# estimate the population mean with the sample average:
estimate1 = mean(sample1)
println("estimate1 = $estimate1\n")
# draw a different sample and estimate again:
sample2 = rand(Normal(10, 2), n)
estimate2 = mean(sample2)
println("estimate2 = $estimate2\n")
# draw a third sample and estimate again:
sample3 = rand(Normal (10, 2), n)
estimate3 = mean(sample3)
print("estimate3: $estimate3")
```

Script 1.53: Simulation-Repeated.jl

```
using Distributions, Random
# set the random seed:
Random.seed!(12345)
# set sample size:
n = 100
# initialize ybar to an array of length r=10000 to later store results:
r = 10000
```

```
ybar = zeros(r)
# repeat r times:
for j in 1:r
    # draw a sample and store the sample mean in pos. j=1,... of ybar:
    sample = rand(Normal (10, 2), n)
    ybar[j] = mean(sample)
end
```

Script 1.54: Simulation-Repeated-Results.jl

```
using Distributions, Random, KernelDensity, Plots
```

\# set the random seed:
Random. seed! (12345)
\# set sample size:
$\mathrm{n}=100$
\# initialize ybar to an array of length $r=10000$ to later store results:
$r=10000$
ybar = zeros (r)
\# repeat r times:
for j in 1:r
\# draw a sample and store the sample mean in pos. $j=1, \ldots$ of ybar:
sample $=\operatorname{rand}(\operatorname{Normal}(10,2), n)$
ybar[j] = mean(sample)
end
\# the first 8 of 10000 estimates:
ybar_preview $=$ round. (ybar[1:8], digits=4)
println("ybar_preview: \n\$ybar_preview\n")
\# simulated mean:
mean_ybar = mean(ybar)
println("mean_ybar = \$mean_ybar\n")
\# simulated variance:
var_ybar = var (ybar)
println("var_ybar = \$var_ybar")
\# simulated density:
kde $=$ KernelDensity.kde (ybar)
\# normal density:
$x_{\text {_range }}=$ range (9, 11, length=100)
$\mathrm{y}=\mathrm{pdf}$. (Normal (10, sqrt (0.04)), x _range)
\# create graph:
plot(kde.x, kde.density, color=:black, label="ybar", linewidth=2)
plot! (x_range, y, linestyle=:dash, color=:black,
label="normal distribution", linewidth=2)
ylabel! ("density")
xlabel! ("ybar")
savefig("JlGraphs/Simulation-Repeated-Results.pdf")

Script 1.55: Simulation-Inference-Figure.jl

```
using Distributions, HypothesisTests, Plots, Random
# set the random seed:
Random.seed! (12345)
# set sample size and MC simulations:
r = 10000
n = 100
# initialize arrays to later store results:
CIlower = zeros(r)
CIupper = zeros(r)
pvalue1 = zeros(r)
pvalue2 = zeros(r)
# repeat r times:
for j in 1:r
    # draw a sample
    sample = rand(Normal (10, 2), n)
    sample_mean = mean(sample)
    sample_sd = std(sample)
    # test the (correct) null hypothesis mu=10:
    testres1 = OneSampleTTest(sample, 10)
    pvalue1[j] = pvalue(testres1)
    cv = quantile(TDist(n - 1), 0.975)
    CIlower[j] = sample_mean - cv * sample_sd / sqrt(n)
    CIupper[j] = sample_mean + cv * sample_sd / sqrt(n)
    # test the (incorrect) null hypothesis mu=9.5 & store the p value:
    testres2 = OneSampleTTest(sample, 9.5)
    pvalue2[j] = pvalue(testres2)
```

end
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\# correct HO \#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
plot(legend=false, size=(300, 500)) \# initialize plot and set figure ratio
ylims! (0,101))
xlims! ((9, 11))
vline! ([10], linestyle=:dash, color=:black, linewidth=0.5)
ylabel!("Sample No.")
for j in 1:100
if 10 > CIlower[j] \&\& 10 < CIupper[j]
plot!([CIlower[j], CIupper[j]], [j, j], linestyle=:solid, color=:grey)
else
plot!([CIlower[j], CIupper[j]], [j, j], linestyle=:solid, color=:black)
end
end
savefig("JlGraphs/Simulation-Inference-Figure1.pdf")
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\# incorrect H0 \#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
plot (legend=false, size=(300, 500)) \# initialize plot and set figure ratio

```
ylims!((0, 101))
xlims!((9, 11))
vline!([9.5], linestyle=:dash, color=:black, linewidth=0.5)
ylabel!("Sample No.")
for j in 1:100
    if 9.5 > CIlower[j] && 9.5 < CIupper[j]
        plot!([CIlower[j], CIupper[j]], [j, j], linestyle=:solid, color=:grey)
    else
        plot!([CIlower[j], CIupper[j]], [j, j], linestyle=:solid, color=:black)
    end
end
savefig("JlGraphs/Simulation-Inference-Figure2.pdf")
```

Script 1.56: Simulation-Inference.jl

```
using Distributions, Random, HypothesisTests
# set the random seed:
Random.seed!(12345)
# set sample size and MC simulations:
r = 10000
n = 100
# initialize arrays to later store results:
CIlower = zeros(r)
CIupper = zeros(r)
pvaluel = zeros(r)
pvalue2 = zeros(r)
# repeat r times:
for j in 1:r
    # draw a sample
    sample = rand(Normal (10, 2), n)
    sample_mean = mean(sample)
    sample_sd = std(sample)
    # test the (correct) null hypothesis mu=10
    testres1 = OneSampleTTest(sample, 10)
    pvalue1[j] = pvalue(testres1)
    cv = quantile(TDist(n - 1), 0.975)
    CIlower[j] = sample_mean - cv * sample_sd / sqrt(n)
    CIupper[j] = sample_mean + cv * sample_sd / sqrt(n)
    # test the (incorrect) null hypothesis mu=9.5 & store the p value:
    testres2 = OneSampleTTest(sample, 9.5)
    pvalue2[j] = pvalue(testres2)
end
# test results as logical value:
reject1 = pvalue1 .<= 0.05
count1_true = count(reject1) # counts true
count1_false = r - count1_true
println("count1_true: $count1_true\n")
println("count1_false: $count1_false\n")
reject2 = pvalue2 .<= 0.05
```

```
count2_true = count(reject2)
count2_false = r - count2_true
println("count2_true: $count2_true\n")
println("count2_false: $count2_false")
```


2. Scripts Used in Chapter 02

Script 2.1: Example-2-3.j1
using WooldridgeDatasets, DataFrames, Statistics
ceosal1 = DataFrame (wooldridge ("ceosal1"))
x = ceosall.roe
$y=$ ceosal1.salary
\# ingredients to the OLS formulas:
cov_xy $=\operatorname{cov}(x, y)$
var_x $=\operatorname{var}(x)$
$x _b a r=\operatorname{mean}(x)$
y_bar $=\operatorname{mean}(y)$
\# manual calculation of OLS coefficients:
b1 = cov_xy / var_x
$\mathrm{b} 0=\mathrm{y}$ _bar - b1 * x_bar
println("b1 = \$b1\n")
println("b0 = \$b0")

Script 2.2: Example-2-3-2.jl
using WooldridgeDatasets, DataFrames, GLM
ceosal1 = DataFrame(wooldridge("ceosal1"))

b = coef (reg)
println("b = \$b")

```
            Script 2.3: Example-2-3-3.jl
using WooldridgeDatasets, DataFrames, GLM, Plots
ceosal1 = DataFrame(wooldridge("ceosal1"))
reg = lm(@formula(salary ~ roe), ceosal1)
# scatter plot and fitted values:
fitted_values = predict(reg)
scatter(ceosal1.roe, ceosal1.salary, color=:grey80, label="observations")
plot!(ceosal1.roe, fitted_values, color=:black, linewidth=3, label="OLS")
xlabel!("roe")
ylabel!("salary")
savefig("JlGraphs/Example-2-3-3.pdf")
# instead of scatter, you can also use:
# plot(ceosal1.roe, ceosall.salary, label="observations", seriestype=:scatter)
```

Script 2.4: Example-2-4.jl
using WooldridgeDatasets, DataFrames, GLM
wage1 = DataFrame(wooldridge("wage1"))

$\mathrm{b}=\operatorname{coef}(\mathrm{reg})$
println("b = \$b")

Script 2.5: Example-2-5.jl

```
using WooldridgeDatasets, DataFrames, GLM, Plots
vote1 = DataFrame(wooldridge("vote1"))
# OLS regression:
reg = lm(@formula(voteA ~ shareA), vote1)
b = coef(reg)
println("b = $b")
# scatter plot and fitted values:
fitted_values = predict(reg)
scatter(vote1.shareA, vote1.voteA,
    color=:grey, label="observations", legend=:topleft)
plot!(vote1.shareA, fitted_values, color=:black, linewidth=3, label="OLS")
xlabel!("shareA")
ylabel!("voteA")
savefig("JlGraphs/Example-2-5.pdf")
```

Script 2.6: Example-2-6.jl

```
using WooldridgeDatasets, DataFrames, GLM
```

ceosal1 = DataFrame(wooldridge("ceosal1"))
\# OLS regression:
reg = lm(@formula(salary ~ roe), ceosal1)
table_reg = coeftable(reg)
println("table_reg: \n\$table_reg\n")
\# obtain predicted values and residuals:
salary_hat = predict (reg)
u_hat = residuals(reg)
\# Wooldridge, Table 2.2 :
table = DataFrame (roe=ceosall.roe,
salary=ceosall.salary,
salary_hat=salary_hat,
u_hat=u_hat)
table_preview $=$ first (table, 10)
println("table_preview: \n\$table_preview")

Script 2.7: Example-2-7.jl
using WooldridgeDatasets, DataFrames, GLM, Statistics
wage1 = DataFrame (wooldridge("wage1"))
reg $=\operatorname{lm}$ (@formula(wage \sim educ), wage1)
\# obtain coefficients, predicted values and residuals:

```
b = coef (reg)
wage_hat = predict(reg)
u_hat = residuals(reg)
# confirm property (1):
u_hat_mean = mean(u_hat)
println("u_hat_mean = $u_hat_mean\n")
# confirm property (2):
educ_u_cov = cov(wage1.educ, u_hat)
println("educ_u_cov = $educ_u_cov\n")
# confirm property (3):
educ_mean = mean(wage1.educ)
wage_pred = b[1] + b[2] * educ_mean
println("wage_pred = $wage_pred\n")
wage_mean = mean(wage1.wage)
println("wage_mean = $wage_mean")
```

Script 2.8: Example-2-8.jl
using WooldridgeDatasets, DataFrames, GLM, Statistics
ceosal1 = DataFrame(wooldridge("ceosal1"))
\# OLS regression:
reg = lm(@formula(salary ~ roe), ceosal1)
\# obtain predicted values and residuals:
sal_hat = predict (reg)
u_hat = residuals (reg)
\# calculate $\mathrm{R}^{\wedge} 2$ in three different ways:
sal = ceosall.salary
R2_a = var(sal_hat) / var(sal)
R2_b = 1 - var (u_hat) / var(sal)
R2_c = cor(sal, sal_hat)^2
println("R2_a = \$R2_a\n")
println("R2_b = \$R2_b\n")
println("R2_c = \$R2_c")

Script 2.9: Example-2-9.jl

```
using WooldridgeDatasets, DataFrames, GLM
vote1 = DataFrame(wooldridge("vote1"))
# OLS regression:
reg = lm(@formula(voteA ~ shareA), vote1)
# print results using coeftable:
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
# accessing R^2:
r2_automatic = r2(reg)
println("r2_automatic = $r2_automatic")
```

Script 2.10: Example-2-10.jl
using WooldridgeDatasets, DataFrames, GLM
wage1 = DataFrame(wooldridge("wage1"))
\# estimate log-level model:
reg $=\operatorname{lm}(@$ formula(log (wage) \sim educ), wage1)
$\mathrm{b}=\operatorname{coef}(\mathrm{reg})$
println("b = \$b")

Script 2.11: Example-2-11.jl
using WooldridgeDatasets, DataFrames, GLM
ceosal1 = DataFrame(wooldridge("ceosal1"))
\# estimate log-log model:
reg $=\operatorname{lm}(@ f o r m u l a(\log (s a l a r y) \sim \log (s a l e s)), ~ c e o s a l 1)$
b = coef (reg)
println("b = \$b")

Script 2.12: SLR-Origin-Const.jl

```
using WooldridgeDatasets, DataFrames, GLM, Plots, Statistics
ceosal1 = DataFrame(wooldridge("ceosal1"))
# usual OLS regression:
reg1 = lm(@formula(salary ~ roe), ceosal1)
b1 = coef(reg1)
println("b1 = $b1\n")
# regression without intercept (through origin):
reg2 = lm(@formula(salary ~ 0 + roe), ceosal1)
b2 = coef(reg2)
println("b2 = $b2\n")
# regression without slope (on a constant):
reg3 = lm(@formula(salary ~ 1), ceosal1)
b3 = coef(reg3)
println("b3 = $b3\n")
# average y:
sal_mean = mean(ceosal1.salary)
println("sal_mean = $sal_mean")
# scatter plot and fitted values:
scatter(ceosal1.roe, ceosall.salary, color="grey85", label="observations")
plot!(ceosal1.roe, predict(reg1), linewidth=2,
    color="black", label="full")
plot!(ceosal1.roe, predict(reg2), linewidth=2,
    color="dimgrey", label="trough origin")
plot!(ceosal1.roe, predict(reg3), linewidth=2,
    color="lightgrey", label="const only")
xlabel!("roe")
ylabel!("salary")
savefig("JlGraphs/SLR-Origin-Const.pdf")
```

Script 2.13: Example-2-12.jl

```
using WooldridgeDatasets, DataFrames, GLM, Statistics
meap93 = DataFrame(wooldridge("meap93"))
# estimate the model and save the results as reg:
reg = lm(@formula(math10 ~ lnchprg), meap93)
# number of obs.:
n = nobs (reg)
# SER:
u_hat_var = var(residuals(reg))
SER = sqrt(u_hat_var) * sqrt((n - 1) / (n - 2))
println("SER = $SER\n")
# SE of b0 and b1, respectively:
lnchprg_sq_mean = mean(meap93.lnchprg .^ 2)
lnchprg_var = var(meap93.lnchprg)
b0_se = SER / (sqrt(lnchprg_var) * sqrt (n - 1)) * sqrt(lnchprg_sq_mean)
b1_se = SER / (sqrt(lnchprg_var) * sqrt (n - 1))
println("b0_se = $b0_se\n")
println("b1_se = $b1_se\n")
# automatic calculations:
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 2.14: SLR-Sim-Sample.jl

```
using Random, GLM, DataFrames, Distributions, Statistics, Plots
# set the random seed:
Random.seed! (12345)
# set sample size:
n = 1000
# set true parameters (betas and sd of u):
beta0 = 1
beta1 = 0.5
su = 2
# draw a sample of size n:
x = rand (Normal (4, 1), n)
u = rand(Normal (0, su), n)
y = beta0 .+ beta1 .* x .+ u
df = DataFrame (y=y, x=x)
# estimate parameters by OLS:
reg = lm(@formula(y ~ x), df)
b = coef(reg)
println("b = $b\n")
# features of the sample for the variance formula:
x_sq_mean = mean(x .^ 2)
println("x_sq_mean = $x_sq_mean\n")
x_var = sum((x . - mean(x)) .^ 2)
println("x_var = $x_var")
```

```
# graph:
x_range = range(0, 8, length=100)
scatter(x, y, color="lightgrey", ylim=[-2, 10],
    label="sample", alpha=0.7, markerstrokecolor=:white)
plot!(x_range, beta0 .+ beta1 .* x_range, color="black",
    linestyle=:solid, linewidth=2, label="pop. regr. fct.")
plot!(x_range, coef(reg) [1] .+ coef(reg) [2] .* x_range, color="grey",
    linestyle=:solid, linewidth=2, label="OLS regr. fct.")
xlabel!("x")
ylabel!("y")
savefig("JlGraphs/SLR-Sim-Sample.pdf")
```

Script 2.15: SLR-Sim-Model. jl

```
using Random, GLM, DataFrames, Distributions, Statistics
# set the random seed:
Random.seed!(12345)
# set sample size and number of simulations:
n = 1000
r = 10000
# set true parameters (betas and sd of u):
beta0 = 1
beta1 = 0.5
su = 2
sx = 1
ex = 4
# initialize b0 and b1 to store results later:
b0 = zeros(r)
b1 = zeros(r)
# repeat r times:
for i in 1:r
    # draw a sample:
    x = rand(Normal (ex, sx), n)
    u = rand(Normal (0, su), n)
    y = beta0 .+ beta1 . * x .+ u
    df = DataFrame(y=y, x=x)
    # estimate OLS:
    reg = lm(@formula(y ~ x), df)
    b0[i] = coef(reg) [1]
    b1[i] = coef(reg) [2]
end
```

Script 2.16: SLR-Sim-Model-Condx. jl

```
using Random, GLM, DataFrames, Distributions, Statistics, Plots
# set the random seed:
Random.seed! (12345)
# set sample size and number of simulations:
n = 1000
r = 10000
# set true parameters (betas and sd of u):
beta0 = 1
```

```
beta1 = 0.5
su = 2
# initialize b0 and b1 to store results later:
b0 = zeros(r)
b1 = zeros(r)
# draw a sample of x, fixed over replications:
x = rand(Normal (4, 1), n)
# repeat r times:
for i in 1:r
    # draw a sample of y:
    u = rand(Normal (0, su), n)
    y = beta0 .+ beta1 .* x .+ u
    df = DataFrame(y=y, x=x)
    # estimate and store parameters by OLS:
    reg = lm(@formula(y ~ x), df)
    b0[i] = coef(reg)[1]
    b1[i] = coef(reg)[2]
end
# MC estimate of the expected values:
b0_mean = mean (b0)
b1_mean = mean (b1)
println("b0_mean = $b0_mean\n")
println("b1_mean = $b1_mean\n")
# MC estimate of the variances:
b0_var = var(b0)
b1_var = var(b1)
println("b0_var = $b0_var\n")
println("b1_var = $b1_var")
# graph:
x_range = range(0, 8, length=100)
# add population regression line:
plot(x_range, beta0 .+ beta1 .* x_range, ylim=[0, 6],
    color="black", linewidth=2, label="Population")
# add first OLS regression line (to attach a label):
plot!(x_range, b0[1] .+ b1[1] .* x_range,
    color="grey", linewidth=0.5, label="OLS regressions")
# add OLS regression lines no. 2 to 10:
for i in 2:10
    plot!(x_range, b0[i] .+ b1[i] .* x_range,
                                    color="grey", linewidth=0.5, label=false)
end
ylabel!("y")
xlabel!("x")
savefig("JlGraphs/SLR-Sim-Model-Condx.pdf")
```

Script 2.17: SLR-Sim-Model-ViolSLR4.jl
using Random, GLM, DataFrames, Distributions, Statistics
\# set the random seed:
Random. seed! (12345)

```
# set sample size and number of simulations:
n = 1000
r = 10000
# set true parameters (betas and sd of u):
beta0 = 1
beta1 = 0.5
su = 2
# initialize b0 and b1 to store results later:
b0 = zeros(r)
b1 = zeros(r)
# draw a sample of x, fixed over replications:
x = rand(Normal (4, 1), n)
# repeat r times:
for i in 1:r
    # draw a sample of y:
    u_mean = (x .- 4) ./ 5
    u = rand.(Normal.(u_mean, su), 1)
    u = reduce(vcat, u)
    y = beta0 .+ beta1 .* x .+ u
    df = DataFrame(y=y, x=x)
    # estimate and store parameters by OLS:
    reg = lm(@formula(y ~ x), df)
    b0[i] = coef(reg) [1]
    b1[i] = coef(reg) [2]
end
# MC estimate of the expected values:
b0_mean = mean (b0)
b1_mean = mean (b1)
println("b0_mean = $b0_mean\n")
println("b1_mean = $b1_mean\n")
# MC estimate of the variances:
b0_var = var(b0)
b1_var = var(b1)
println("b0_var = $b0_var\n")
println("b1_var = $b1_var")
```

Script 2.18: SLR-Sim-Model-ViolSLR5.jl

```
using Random, GLM, DataFrames, Distributions, Statistics
```

\# set the random seed:
Random. seed! (1234567)
\# set sample size and number of simulations:
$\mathrm{n}=1000$
$r=10000$
\# set true parameters (betas and sd of u):
beta0 $=1$
beta1 $=0.5$
su $=2$
\# initialize b0 and b1 to store results later:

```
b0 = zeros(r)
b1 = zeros(r)
# draw a sample of x, fixed over replications:
x = rand (Normal (4, 1), n)
# repeat r times:
for i in 1:r
    # draw a sample of y:
    u_var = 4 / exp(4.5) .* exp.(x)
    u = rand.(Normal.(0, sqrt.(u_var)), 1)
    u = reduce (vcat, u)
    y = beta0 .+ beta1 .* x .+ u
    df = DataFrame (y=y, x=x)
    # estimate and store parameters by OLS:
    reg = lm(@formula(y ~ x), df)
    b0[i] = coef(reg) [1]
    b1[i] = coef(reg)[2]
end
# MC estimate of the expected values:
b0_mean = mean (b0)
b1_mean = mean (b1)
println("b0_mean = $b0_mean\n")
println("b1_mean = $b1_mean\n")
# MC estimate of the variances:
bO_var = var(b0)
b1_var = var(b1)
println("b0_var = $b0_var\n")
println("b1_var = $b1_var")
```


3. Scripts Used in Chapter 03

Script 3.1: Example-3-1.j1
using WooldridgeDatasets, GLM, DataFrames
gpa1 = DataFrame(wooldridge("gpa1"))
reg $=\operatorname{lm}(@ f o r m u l a(c o l G P A \sim h s G P A+A C T), ~ g p a 1)$
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg\n")
r2_automatic = r2(reg)
println("r2_automatic = \$r2_automatic")

Script 3.2: Example-3-2.jl
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame (wooldridge ("wage1"))

table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Script 3.3: Example-3-3.jl
using WooldridgeDatasets, DataFrames, GLM
k401k = DataFrame(wooldridge("401k"))
reg $=\operatorname{lm}(@$ formula (prate \sim mrate + age), $k 401 k$) table_reg = coeftable (reg) println("table_reg: \n\$table_reg")

Script 3.4: Example-3-5a.jl
using WooldridgeDatasets, DataFrames, GLM
crime1 = DataFrame (wooldridge("crime1"))
\# model without avgsen:
reg $=\operatorname{lm}(@ f o r m u l a(n a r r 86 \sim$ pcnv + ptime $86+$ qemp86), crime1)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Script 3.5: Example-3-5b.jl

```
using WooldridgeDatasets, DataFrames, GLM
crime1 = DataFrame(wooldridge("crime1"))
# model with avgsen:
reg = lm(@formula(narr86 ~ pcnv + avgsen + ptime86 + qemp86), crime1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 3.6: Example-3-6.jl

```
using WooldridgeDatasets, DataFrames, GLM
wage1 = DataFrame(wooldridge("wage1"))
reg = lm(@formula(log(wage) ~ educ), wage1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 3.7: OLS-Matrices.jl

```
using WooldridgeDatasets, DataFrames, LinearAlgebra
```

gpa1 = DataFrame(wooldridge("gpa1"))
\# determine sample size \& no. of regressors:
n = size (gpa1) [1]
$\mathrm{k}=2$
\# extract y :
$\mathrm{y}=$ gpal.colGPA
\# extract X and add a column of ones:
$\mathrm{X}=$ hcat (ones(n), gpal.hsGPA, gpal.ACT)
\# display first rows of X :
X_preview $=$ round. (X[1:3, :], digits=5)
println("X_preview = \$X_preview n ")
\# parameter estimates:

```
b = inv(transpose(X) * X) * transpose(X) * Y
println("b = $b\n")
# residuals, estimated variance of }u\mathrm{ and SER:
u_hat = Y - X * b
sigsq_hat = (transpose (u_hat) * u_hat) / (n - k - 1)
SER = sqrt(sigsq_hat)
println("SER = $SER\n")
# estimated variance of the parameter estimators and SE:
Vbeta_hat = sigsq_hat .* inv(transpose(X) * X)
se = sqrt.(diag(Vbeta_hat))
println("se = $se")
```

Script 3.8: OLS-Matrices-Formula.jl

```
using WooldridgeDatasets, DataFrames, StatsModels, LinearAlgebra
include("getMats.jl")
gpa1 = DataFrame(wooldridge("gpa1"))
# build Y and X from a formula:
f = @formula(colGPA ~ 1 + hsGPA + ACT)
xy = getMats(f, gpa1)
y = xy[1]
x = xy[2]
# parameter estimates:
b = inv(transpose(X) * X) * transpose(X) * Y
println("b = $b")
```

Script 3.9: getMats.jl

```
# for details, see https://juliastats.org/StatsModels.jl/stable/internals/
using StatsModels
function getMats(formula, df)
    f = apply_schema(formula, schema(formula, df))
    resp, pred = modelcols(f, df)
    return (resp, pred)
end
```

Script 3.10: Omitted-Vars.jl
using WooldridgeDatasets, DataFrames, GLM
gpa1 = DataFrame(wooldridge("gpa1"))
\# parameter estimates for full and simple model:
reg $=\operatorname{lm}(@ f o r m u l a(c o l G P A \sim A C T+h s G P A), ~ g p a 1)$
$\mathrm{b}=\operatorname{coef}(\mathrm{reg})$
println("b = \$b\n")
\# relation between regressors:
reg_delta $=$ lm(@formula(hsGPA ~ ACT), gpa1)
delta_tilde = coef(reg_delta)
println("delta_tilde = \$delta_tilde\n")
\# omitted variables formula for b1_tilde:
b1_tilde = b[2] + b[3] * delta_tilde[2]

```
println("b1_tilde = $b1_tilde\n")
# actual regression with hsGPA omitted:
reg_om = lm(@formula(colGPA ~ ACT), gpa1)
b_om = coef(reg_om)
println("b_om = $b_om")
```

Script 3.11: MLR-SE.jl

```
using WooldridgeDatasets, DataFrames, GLM, Statistics
gpa1 = DataFrame(wooldridge("gpa1"))
# full estimation results including automatic SE:
reg = lm(@formula(colGPA ~ hsGPA + ACT), gpa1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
# calculation of SER via residuals:
n = nobs(reg)
k = length(coef(reg))
SER = sqrt(sum(residuals(reg) .^ 2) / (n - k))
# regressing hsGPA on ACT for calculation of R2 & VIF:
reg_hsGPA = lm(@formula(hsGPA ~ ACT), gpa1)
R2_hsGPA = r2(reg_hsGPA)
VIF_hsGPA = 1 / (1 - R2_hsGPA)
println("VIF_hsGPA = $VIF_hsGPA\n")
# manual calculation of SE of hsGPA coefficient:
sdx = std(gpa1.hsGPA) * sqrt((n - 1) / n)
SE_hsGPA = 1 / sqrt(n) * SER / sdx * sqrt(VIF_hsGPA)
println("SE_hsGPA = $SE_hsGPA")
```


4. Scripts Used in Chapter 04

Script 4.1: Example-4-3-cv.jl

```
using Distributions
# CV for alpha=5% and 1% using the t distribution with 137 d.f.:
alpha = [0.05, 0.01]
cv_t = round.(quantile.(TDist(137), 1 .- alpha ./ 2), digits=5)
println("cv_t = $cv_t\n")
# CV for alpha=5% and 1% using the normal approximation:
cv_n = round.(quantile.(Normal(), 1 .- alpha ./ 2), digits=5)
println("cv_n = $cv_n")
```

Script 4.2: Example-4-3.jl

```
using WooldridgeDatasets, GLM, DataFrames, Distributions
gpa1 = DataFrame(wooldridge("gpa1"))
# store and display results:
reg = lm(@formula(colGPA ~ hsGPA + ACT + skipped), gpa1)
table_reg = coeftable(reg)
```

```
println("table_reg: \n$table_reg\n")
# manually confirm the formulas, i.e. extract coefficients and SE:
b = coef(reg)
se = stderror(reg)
# reproduce t statistic:
tstat = round.(b ./ se, digits=5)
println("tstat = $tstat\n")
# reproduce p value:
pval = round.(2 * cdf.(TDist(137), -abs.(tstat)), digits=5)
println("pval = $pval")
```

Script 4.3: Example-4-1-cv.jl

```
using Distributions
# CV for alpha=5% and 1% using the t distribution with 522 d.f.:
alpha = [0.05, 0.01]
cv_t = round.(quantile.(TDist(522), 1 .- alpha), digits=5)
println("cv_t = $cv_t\n")
# CV for alpha=5% and 1% using the normal approximation:
cv_n = round.(quantile.(Normal(), 1 .- alpha), digits=5)
println("cv_n = $cv_n")
```

Script 4.4: Example-4-1.jl

```
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame(wooldridge("wage1"))
reg = lm(@formula(log(wage) ~ educ + exper + tenure), wage1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

```
            Script 4.5: Example-4-8.jl
using WooldridgeDatasets, GLM, DataFrames, Distributions
rdchem = DataFrame(wooldridge("rdchem"))
# OLS regression:
reg = lm(@formula(log(rd) ~ log(sales) + profmarg), rdchem)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
# replicating 95% CI:
alpha = 0.05
CI95_upper = coef(reg) .+ stderror(reg) .* quantile(TDist(32 - 3), alpha / 2)
CI95_lower = coef(reg) .- stderror(reg) .* quantile(TDist(32 - 3), alpha / 2)
println("CI95_upper = $CI95_upper\n")
println("CI95_lower = $CI95_lower\n")
# calculating 99% CI:
alpha = 0.01
CI99_upper = coef(reg) .+ stderror(reg) .* quantile(TDist(32 - 3), alpha / 2)
CI99_lower = coef(reg) .- stderror(reg) .* quantile(TDist (32 - 3), alpha / 2)
println("CI99_upper = $CI99_upper\n")
println("CI99_lower = $CI99_lower")
```


Script 4.6: F-Test.jl

```
using WooldridgeDatasets, GLM, DataFrames, Distributions
mlb1 = DataFrame(wooldridge("mlb1"))
# unrestricted OLS regression:
reg_ur = lm(@formula(log(salary) ~
    years + gamesyr + bavg + hrunsyr + rbisyr), mlb1)
r2_ur = r2(reg_ur)
println("r2_ur = $r2_ur\n")
# restricted OLS regression:
reg_r = lm(@formula(log(salary) ~ years + gamesyr), mlb1)
r2_r = r2(reg_r)
println("r2_r = $r2_r\n")
# F statistic:
n = nobs(reg_ur)
fstat = (r2_ur - r2_r) / (1 - r2_ur) * (n - 6) / 3
println("fstat = $fstat\n")
# CV for alpha=1% using the F distribution with 3 and 347 d.f.:
cv = quantile(FDist(3, 347), 1 - 0.01)
println("cv = $cv\n")
# p value = 1-cdf of the appropriate F distribution:
fpval = 1 - cdf(FDist(3, 347), fstat)
println("fpval = $fpval")
```

Script 4.7: F-Test-Automatic.jl

```
using WooldridgeDatasets, GLM, DataFrames
mlb1 = DataFrame(wooldridge("mlb1"))
# OLS regression:
reg_ur = lm(@formula(log(salary) ~
    years + gamesyr + bavg + hrunsyr + rbisyr), mlb1)
reg_r = lm(@formula(log(salary) ~
    years + gamesyr), mlb1)
# automated F test:
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Script 4.8: F-Test-Automatic2.jl

```
using WooldridgeDatasets, GLM, DataFrames
mlb1 = DataFrame(wooldridge("mlb1"))
# OLS regression:
reg_ur = lm(@formula(log(salary) ~
    years + gamesyr + bavg + hrunsyr + rbisyr), mlb1)
# restrictions "bavg = 0" and "hrunsyr = 2*rbisyr":
```

```
mlb1.newvar = 2 * mlb1.hrunsyr + mlb1.rbisyr
reg_r = lm(@formula(log(salary) ~ years + gamesyr + newvar), mlb1)
# automated F test:
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Script 4.9: Example-4-8-2.jl

```
using WooldridgeDatasets, GLM, DataFrames
rdchem = DataFrame(wooldridge("rdchem"))
# OLS regression:
reg_ur = lm(@formula(log(rd) ~ log(sales) + profmarg), rdchem)
reg_r = lm(@formula(log(rd) ~ 1), rdchem)
# automated F test:
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Script 4.10: Example-4-10.jl

```
using WooldridgeDatasets, GLM, DataFrames, RegressionTables
meap93 = DataFrame(wooldridge("meap93"))
meap93.b_s = meap93.benefits ./ meap93.salary
# estimate three different models:
reg1 = lm(@formula(log(salary) ~ b_s), meap93)
reg2 = lm(@formula(log(salary) ~ b_s + log(enroll) + log(staff)), meap93)
reg3 = lm(@formula(log(salary) ~
    b_s + log(enroll) + log(staff) + droprate + gradrate), meap93)
# print results with RegressionTables:
regtable(reg1, reg2, reg3)
```


5. Scripts Used in Chapter 05

Script 5.1: Sim-Asy-OLS-norm.jl
using Distributions, DataFrames, GLM, Random
\# set the random seed:
Random. seed! (12345)
\# set sample size and number of simulations:
$\mathrm{n}=100$
$r=10000$
\# set true parameters:

```
beta0 = 1
beta1 = 0.5
sx = 1
ex = 4
# initialize b1 to store results later:
b1 = zeros(r)
# draw a sample of x, fixed over replications:
x = rand(Normal (ex, sx), n)
# repeat r times:
for i in 1:r
    # draw a sample of u (std. normal):
    u = rand(Normal (0, 1), n)
    y = beta0 .t beta1 . * x . + u
    df = DataFrame (y=y, x=x)
    # estimate conditional OLS:
    reg = lm(@formula(y ~ x), df)
    b1[i] = coef(reg) [2]
end
```

Script 5.2: Sim-Asy-OLS-chisq.jl
using Distributions, DataFrames, GLM, Random
\# set the random seed:
Random. seed! (12345)
\# set sample size and number of simulations:
$\mathrm{n}=100$
$r=10000$
\# set true parameters:
beta0 $=1$
beta1 $=0.5$
sx $=1$
$e x=4$
\# initialize b1 to store results later:
b1 $=$ zeros (r)
\# draw a sample of x, fixed over replications:
$\mathbf{x}=\operatorname{rand}(\operatorname{Normal}(e x, s x), n)$
\# repeat r times:
for in in r
\# draw a sample of u (standardized chi-squared[1]):
$\mathrm{u}=($ rand (Chisq(1), n) .- 1) ./ sqrt (2)
$\mathrm{y}=$ beta0 .+ beta1 .* x .+ u
df = DataFrame ($y=y, x=x$)
\# estimate conditional OLS:
reg $=\operatorname{lm}(@$ formula $(\mathrm{y} \sim \mathrm{x})$, df)
b1[i] = coef(reg) [2]
end

Script 5.3: Sim-Asy-OLS-uncond.jl
using Distributions, DataFrames, GLM, Random
\# set the random seed:
Random. seed! (12345)

```
# set sample size and number of simulations:
n = 100
r = 10000
# set true parameters:
beta0 = 1
beta1 = 0.5
sx = 1
ex = 4
# initialize b1 to store results later:
b1 = zeros(r)
# repeat r times:
for i in 1:r
    # draw a sample of x, varying over replications:
    x = rand(Normal (ex, sx), n)
    # draw a sample of u (std. normal):
    u = rand (Normal (0, 1), n)
    y = beta0 .+ beta1 .* x .+ u
    df = DataFrame(y=y, x=x)
    # estimate unconditional OLS:
    reg = lm(@formula(y ~ x), df)
    b1[i] = coef(reg)[2]
end
```

Script 5.4: Example-5-3.jl

```
using WooldridgeDatasets, GLM, DataFrames, Distributions
crime1 = DataFrame(wooldridge("crime1"))
# 1. estimate restricted model:
reg_r = lm(@formula(narr86 ~ pcnv + ptime86 + qemp86), crime1)
r2_r = r2(reg_r)
println("r2_r = $r2_r\n")
# 2. regression of residuals from restricted model:
crime1.utilde = residuals(reg_r)
reg_LM = lm(@formula(utilde ~
    pcnv + ptime86 + qemp86 + avgsen + tottime), crime1)
r2_LM = r2(reg_LM)
println("r2_LM = $r2_LM\n")
# 3. calculation of LM test statistic:
LM = r2_LM * nobs(reg_LM)
println("LM = $LM\n")
# 4. critical value from chi-squared distribution, alpha=10%:
cv = quantile(Chisq(2), 1 - 0.10)
println("cv = $cv\n")
# 5. p value (alternative to critical value):
pval = 1 - cdf(Chisq(2), LM)
println("pval = $pval\n")
# 6. compare to F test:
reg_ur = lm(@formula(narr86 ~
    pcnv + ptime86 + qemp86 + avgsen + tottime), crime1)
```

```
# hypotheses: "avgsen = 0" and "tottime = 0"
reg_r = lm(@formula(narr86 ~ pcnv + ptime86 + qemp86), crime1)
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```


6. Scripts Used in Chapter 06

```
Script 6.1: Data-Scaling.jl
using WooldridgeDatasets, GLM, DataFrames, RegressionTables
bwght = DataFrame (wooldridge("bwght"))
\# regress and report coefficients:
reg \(=\operatorname{lm}(@ f o r m u l a(b w g h t \quad \sim\) cigs + faminc), bwght)
\# weight in pounds, manual way:
bwght.bwght_lbs = bwght.bwght ./ 16
reg_lbs1 = lm(@formula(bwght_lbs ~ cigs + faminc), bwght)
\# weight in pounds, direct way:
reg_lbs2 = lm(@formula((bwght / 16) ~ cigs + faminc), bwght)
\# packs of cigaretts:
reg_packs = lm(@formula (bwght ~ (cigs / 20) + faminc), bwght)
\# weight in ounces using bwght_lbs:
reg_pds = lm(@formula(identity (bwght_lbs * 16) ~ cigs + faminc), bwght)
\# print results with RegressionTables:
regtable(reg, reg_lbs1, reg_lbs2, reg_packs, reg_pds)
```

Script 6.2: Example-6-1.jl
using WooldridgeDatasets, GLM, DataFrames, Statistics
hprice2 = DataFrame(wooldridge("hprice2"))
\# define a function for the standardization:
function scale(x)
$x_{\text {_mean }}=$ mean (x)
x^{x} var $=\operatorname{var}(x)$
x_scaled = (x .- $x_{\text {_mean) }}$./ sqrt. (x_var) return x _scaled
end
\# standardize and estimate:
hprice2.price_sc = scale(hprice2.price)
hprice2.nox_sc = scale(hprice2.nox)
hprice2.crime_sc = scale(hprice2.crime)
hprice2.rooms_sc = scale(hprice2.rooms)
hprice2.dist_sc = scale(hprice2.dist)
hprice2.stratio_sc = scale(hprice2.stratio)

```
reg = lm(@formula(price_sc ~
    O + nox_sc + crime_sc + rooms_sc + dist_sc + stratio_sc),
    hprice2)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 6.3: Formula-Logarithm.jl

```
using WooldridgeDatasets, GLM, DataFrames
hprice2 = DataFrame(wooldridge("hprice2"))
reg = lm(@formula(log(price) ~ log(nox) + rooms), hprice2)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 6.4: Example-6-2.jl
using WooldridgeDatasets, GLM, DataFrames

```
hprice2 = DataFrame(wooldridge("hprice2"))
```

reg $=\operatorname{lm}(@ f o r m u l a(\log ($ price $) ~ \sim ~$
$\log ($ nox $)+\log ($ dist $)+$ rooms $+($ rooms^2) + stratio), hprice2)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Script 6.5: Example-6-2-Ftest.jl

```
using WooldridgeDatasets, GLM, DataFrames
hprice2 = DataFrame(wooldridge("hprice2"))
reg_ur = lm(@formula(log(price) ~
    log(nox) + log(dist) + rooms + (rooms^2) + stratio), hprice2)
# testing hypotheses rooms = 0 and rooms^2 = 0:
reg_r = lm(@formula(log(price) ~
    log(nox) + log(dist) + stratio), hprice2)
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Script 6.6: Example-6-3.jl
using WooldridgeDatasets, GLM, DataFrames
attend = DataFrame (wooldridge ("attend"))
reg_ur $=\operatorname{lm}(@ f o r m u l a(s t n d f n l \sim$ atndrte $*$ priGPA + ACT + (priGPA^2) $+\left(A C T^{\wedge} 2\right)$), attend)
table_reg_ur = coeftable (reg_ur)
println("table_reg_ur: \n\$table_reg_ur\n")
\# estimate for partial effect at priGPA=2.59:
b = coef (reg_ur)
partial_effect $=b[2]+2.59$ * $b[7]$
println("partial_effect = \$partial_effect\n")

```
# F test for partial effect at priGPA=2.59:
attend.pe = -2.59 .* attend.atndrte .+ attend.atndrte .* attend.priGPA
reg_r = lm(@formula(stndfnl ~ pe + priGPA + ACT +
                                (priGPA^2) + (ACT^2)), attend)
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Script 6.7: Predictions.jl

```
using WooldridgeDatasets, GLM, DataFrames
gpa2 = DataFrame(wooldridge("gpa2"))
reg = lm(@formula(colgpa ~ sat + hsperc + hsize + (hsize^2)), gpa2)
# print regression table:
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
# generate data set containing the regressor values for predictions:
cvalues1 = DataFrame(id="newPerson1", sat=1200, hsperc=30, hsize=5)
println("cvalues1: \n$cvalues1\n")
# point estimate of prediction (cvalues1):
colgpa_pred1 = round. (predict(reg, cvalues1), digits=5)
println("colgpa_pred1 = $colgpa_pred1\n")
# define three sets of regressor variables:
cvalues2 = DataFrame(id=["newPerson1", "newPerson2", "newPerson3"],
    sat=[1200, 900, 1400],
    hsperc=[30, 20, 5], hsize=[5, 3, 1])
println("cvalues2: \n$cvalues2\n")
# point estimate of prediction (cvalues2):
colgpa_pred2 = round.(predict(reg, cvalues2), digits=5)
println("colgpa_pred2 = $colgpa_pred2")
```

Script 6.8: Example-6-5.jl
using WooldridgeDatasets, GLM, DataFrames
gpa2 = DataFrame (wooldridge("gpa2"))

```
reg = lm(@formula(colgpa ~ sat + hsperc + hsize + (hsize^2)), gpa2)
```

\# define three sets of regressor variables:
cvalues2 = DataFrame (
id=["newPerson1", "newPerson2", "newPerson3"],
sat $=[1200, ~ 900, ~ 1400]$,
hsperc $=[30,20,5]$,
hsize $=[5,3,1]$)
\# point estimates and 95\% confidence and prediction intervals:
colgpa_CI_95 = predict (reg, cvalues2, interval=:confidence)
println("colgpa_CI_95: \n\$colgpa_CI_95\n")
colgpa_PI_95 = predict(reg, cvalues2, interval=:prediction)

```
println("colgpa_PI_95: \n$colgpa_PI_95\n")
# point estimates and 99% confidence and prediction intervals:
colgpa_CI_99 = predict(reg, cvalues2, interval=:confidence, level=0.99)
println("colgpa_CI_99: \n$colgpa_CI_99\n")
colgpa_PI_99 = predict(reg, cvalues2, interval=:prediction, level=0.99)
println("colgpa_PI_99: \n$colgpa_PI_99")
```

Script 6.9: Effects-Manual.jl

```
using WooldridgeDatasets, GLM, DataFrames, Plots, Statistics
hprice2 = DataFrame(wooldridge("hprice2"))
# repeating the regression from Example 6.2:
reg = lm(@formula(log(price) ~
    log(nox) + log(dist) + rooms + (rooms^2) + stratio), hprice2)
# predictions with rooms = 4-8, all others at the sample mean:
nox_mean = mean(hprice2.nox)
dist_mean = mean(hprice2.dist)
stratio_mean = mean(hprice2.stratio)
X = DataFrame(
    rooms=4:8,
    nox=nox_mean,
    dist=dist_mean,
    stratio=stratio_mean)
println("X: \n$X\n")
# calculate 95% confidence interval:
lpr_CI = predict(reg, x, interval=:confidence)
println("lpr_CI: \n$lpr_CI\n")
# plot:
plot(X.rooms, lpr_CI.prediction, color="black", label=false, legend=:topleft)
plot!(X.rooms, lpr_CI.upper, color="lightgrey", linestyle=:dash, label="upper CI")
plot!(X.rooms, lpr_CI.lower, color="darkgrey", linestyle=:dash, label="lower CI")
ylabel!("lprice")
xlabel!("rooms")
savefig("JlGraphs/Effects-Manual.pdf")
```


7. Scripts Used in Chapter 07

Script 7.1: Example-7-1.jl
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame(wooldridge("wage1"))
reg = lm(@formula(wage ~ female + educ + exper + tenure), wage1)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Script 7.2: Example-7-6.jl
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame(wooldridge("wage1"))

```
reg = lm(@formula(log(wage) ~
    married * female + educ + exper + (exper^2) +
    tenure + (tenure^2)), wage1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 7.3: Example-7-1-Boolean.jl

```
using WooldridgeDatasets, GLM, DataFrames
wage1 = DataFrame(wooldridge("wage1"))
# regression with boolean variable:
wage1.isfemale = Bool.(wage1.female)
reg = lm(@formula(wage ~ isfemale + educ + exper + tenure), wage1,
    contrasts=Dict(:isfemale => DummyCoding()))
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 7.4: Regr-Categorical.jl
using WooldridgeDatasets, GLM, DataFrames, FreqTables, CSV
CPS1985 = DataFrame (CSV.File("data/CPS1985.csv"))
\# rename variable to make outputs more compact:
rename! (CPS1985, : occupation => : OC)
\# table of categories and frequencies for two categorical variables:
freq_gender $=$ freqtable(CPS1985.gender)
println("freq_gender: \n\$freq_gender\n")
freq_occupation $=$ freqtable (CPS1985.oc)
println("freq_occupation: \n\$freq_occupation\n")
\# directly using categorical variables in regression formula
\# (the formula automatically interprets string
\# columns as categorical variables and dummy codes them):
 table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")
\# rerun regression with different reference category:
reg_newref = lm(@formula(log(wage) ~ education + experience + gender + oc),
CPS1985,
contrasts=Dict (:gender => DummyCoding(base="male"), :oc => DummyCoding (base="technical")))
table_newref = coeftable(reg_newref)
println("table_newref: \n\$table_newref")

Script 7.5: Example-7-8.jl
using WooldridgeDatasets, GLM, DataFrames, CategoricalArrays, FreqTables
lawsch85 = DataFrame (wooldridge("lawsch85"))
\# define cut points for the rank:
cutpts $=[1,11,26,41,61,101,176]$
\# note that "cut" takes intervals only in the form of [lower, upper)

```
# create categorical variable containing ranges for the rank:
lawsch85.rc = cut(lawsch85.rank, cutpts,
        labels=["[1,11)", "[11,26)", "[26,41)",
            "[41,61)", "[61,101)", "[101,176)"])
# display frequencies:
freq = freqtable(lawsch85.rc)
println("freq: \n$freq\n")
# run regression:
reg = lm(@formula(log(salary) ~ rc + LSAT + GPA + log(libvol) + log(cost)),
    lawsch85,
    contrasts=Dict(:rc => DummyCoding(base="[101,176)",
        levels=["[1,11)", "[11,26)", "[26,41)",
                            "[41,61)", "[61,101)", "[101,176)"])))
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 7.6: Dummy-Interact.jl

```
using WooldridgeDatasets, GLM, DataFrames
gpa3 = DataFrame(wooldridge("gpa3"))
# model with full interactions with female dummy (only for spring data):
reg_ur = lm(@formula(cumgpa ~ female * (sat + hsperc + tothrs)),
    subset(gpa3, :spring => ByRow(==(1))))
table_reg_ur = coeftable(reg_ur)
println("table_reg_ur: \n$table_reg_ur\n")
# F test for HO (the interaction coefficients of "female" are zero):
reg_r = lm(@formula(cumgpa ~ sat + hsperc + tothrs),
    subset(gpa3, :spring => ByRow(==(1))))
ftest_res = ftest(reg_r.model, reg_ur.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Script 7.7: Dummy-Interact-Sep.jl
using WooldridgeDatasets, GLM, DataFrames
gpa3 = DataFrame (wooldridge("gpa3"))
\# estimate model for males (\& spring data):
reg_m = lm(@formula (cumgpa ~ sat + hsperc + tothrs),
subset (gpa3, :spring => ByRow(==(1)), :female => ByRow(==(0))))
table_reg_m = coeftable (reg_m)
println("table_reg_m: \n\$table_reg_m")
\# estimate model for females (\& spring data):
reg_f = lm(@formula (cumgpa ~ sat + hsperc + tothrs),
subset (gpa3, :spring => ByRow(==(1)), :female => ByRow(==(1))))
table_reg_f = coeftable (reg_f)
println("table_reg_f: \n\$table_reg_f")

8. Scripts Used in Chapter 08

Script 8.1: calc-white-se.jl

```
using LinearAlgebra
include("../03/getMats.jl")
# for details, see Wooldridge (2010), p. 57
function calc_white_se(reg, df)
    f = formula(reg)
    xy = getMats(f, df)
    y = xy[1]
    X = xy[2]
    u = residuals(reg)
    invXx = inv(X' * X)
    sumterm = (X .* u)' * (X .* u)
    avar = invXX' * sumterm * invXX
    std_white = sqrt.(diag(avar))
    return std_white
end
```

Script 8.2: Example-8-2-manual.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("../03/getMats.jl")
gpa3 = DataFrame(wooldridge("gpa3"))
reg_default = lm(@formula(cumgpa ~ sat + hsperc + tothrs +
                                    female + black + white),
    subset(gpa3, :spring => ByRow(==(1))))
# extract formula parts for SE calculation:
f = formula(reg_default)
xy = getMats(f, subset(gpa3, :spring => ByRow(==(1))))
y = xy[1]
x = xy[2]
u = residuals(reg_default)
df = DataFrame(X, :auto)
# calculate all rij:
ri1 = residuals(lm(@formula(x1 ~ 0 + x2 + x3 + x4 + x5 + x6 + x7), df))
ri2 = residuals(lm(@formula(x2 ~ 0 + x1 + x3 + x4 + x5 + x6 + x7), df))
ri3 = residuals(lm(@formula(x3 ~ 0 + x1 + x2 + x4 + x5 + x6 + x7), df))
ri4 = residuals(lm(@formula(x4 ~ 0 + x1 + x2 + x3 + x5 + x6 + x7), df))
ri5 = residuals(lm(@formula(x5 ~ 0 + x1 + x2 + x3 + x4 + x6 + x7), df))
ri6 = residuals(lm(@formula(x6 ~ 0 + x1 + x2 + x3 + x4 + x5 + x7), df))
ri7 = residuals(lm(@formula(x7 ~ 0 + x1 + x2 + x3 + x4 + x5 + x6), df))
# calculate SE according to Wooldridge (2019), Ch. 8.2:
se1 = sqrt(sum((ri1 .^ 2) .* (u .^ 2)) / (sum((ri1 .^ 2))^2))
se2 = sqrt(sum((ri2 .^ 2) .* (u .^ 2)) / (sum((ri2 .^ 2))^2))
se3 = sqrt (sum((ri3 .^ 2) .* (u .^ 2)) / (sum((ri3 .^ 2))^2))
se4 = sqrt(sum((ri4 .^ 2) .* (u .^ 2)) / (sum((ri4 .^ 2))^2))
se5 = sqrt (sum((ri5 .^ 2) .* (u .^ 2)) / (sum((ri5 .^ 2))^2))
se6 = sqrt(sum((ri6 .^ 2) .* (u .^ 2)) / (sum((ri6 .^ 2))^2))
se7 = sqrt(sum((ri7 .^ 2) .* (u .^ 2)) / (sum((ri7 .^ 2))^2))
se_white = round.([se1, se2, se3, se4, se5, se6, se7], digits=5)
println("se_white = $se_white")
```

Script 8.3: Example-8-2.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("calc-white-se.jl")
gpa3 = DataFrame(wooldridge("gpa3"))
reg_default = lm(@formula(cumgpa ~ sat + hsperc + tothrs +
    female + black + white),
    subset(gpa3, :spring => ByRow(==(1))))
hc0 = calc_white_se(reg_default, subset(gpa3, :spring => ByRow(==(1))))
table_se = DataFrame(coefficients=coeftable(reg_default).rownms,
    b=round. (coef(reg_default), digits=5),
    se_default=round.(coeftable(reg_default).cols[2], digits=5),
    se_white=hc0)
println("table_se: \n$table_se")
```

Script 8.4: Example-8-2-cont.jl
using PyCall, WooldridgeDatasets, GLM, DataFrames

```
include("../03/getMats.jl")
```

\# install Python's statsmodels with: using Conda; Conda.add("statsmodels")
sm = pyimport("statsmodels.api")
gpa3 = DataFrame (wooldridge ("gpa3"))
gpa3_subset $=$ subset (gpa3, :spring => ByRow (==(1)))
\# F test using usual VCOV in Julia:
reg_ur = lm(@formula (cumgpa ~ sat + hsperc + tothrs + female + black + white),
gpa3_subset)
reg_r = lm(@formula (cumgpa \sim sat + hsperc + tothrs + female),
gpa3_subset)
ftest_res = ftest (reg_r.model, reg_ur.model)
fstat_jl = ftest_res.fstat[2]
fpval_jl = ftest_res.pval[2]
println("fstat_jl = \$fstat_jl\n")
println("fpval_jl = \$fpval_jl\n")
\# F test using different variance-covariance formulas:
\# definition of model and hypotheses:
$\mathrm{f}=$ @formula(cumgpa $\sim 1+$ sat + hsperc + tothrs + female + black + white)
$x y=$ getMats (f, gpa3_subset)
reg $=$ sm. OLS (xy[1], xy[2])
hypotheses $=[" x 5=0 ", " x 6=0 "] \#$ meaning "black $=0 "$ and "white $=0 "$
\# usual vcov in Python:
results_default = reg.fit()
ftest_py_default = results_default.f_test (hypotheses)
fstat_py_default = ftest_py_default.statistic
fpval_py_default $=$ ftest_py_default.pvalue
println("fstat_py_default = \$fstat_py_default\n")
println("fpval_py_default = \$fpval_py_default\n")
\# classical White VCOV in Python:
results_hcO = reg.fit(cov_type="HCO")
ftest_py_hc0 = results_hco. $\mathbf{f}_{\text {_test (hypotheses) }}$
fstat_py_hc0 $=$ ftest_py_hc0.statistic
fpval_py_hc0 = ftest_py_hc0.pvalue

```
println("fstat_py_hc0 = $fstat_py_hc0\n")
println("fpval_py_hc0 = $fpval_py_hc0")
```

Script 8.5: Example-8-4.jl

```
using WooldridgeDatasets, GLM, DataFrames, HypothesisTests
hprice1 = DataFrame(wooldridge("hprice1"))
# estimate model:
f = @formula(price ~ 1 + lotsize + sqrft + bdrms)
reg = lm(f, hprice1)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg\n")
# automatic BP test (LM version),
# type = :linear specifies Breusch-Pagan test:
X = getMats(f, hprice1)[2]
result_bp_lm = WhiteTest(X, residuals(reg), type=:linear)
bp_lm_statistic = result_bp_lm.lm
bp_lm_pval = pvalue(result_bp_lm)
println("bp_lm_statistic = $bp_lm_statistic\n")
println("bp_lm_pval = $bp_lm_pval\n")
# manual BP test (F version):
hprice1.resid_sq = residuals(reg) .^ 2
reg_resid = lm(@formula(resid_sq ~ lotsize + sqrft + bdrms), hprice1)
bp_F = ftest(reg_resid.model)
bp_F_statistic = bp_F.fstat
bp_F_pval = bp_F.pval
println("bp_F_statistic = $bp_F_statistic\n")
println("bp_F_pval = $bp_F_pval")
```

Script 8.6: Example-8-5.jl

```
using WooldridgeDatasets, GLM, DataFrames, HypothesisTests
include("../03/getMats.jl")
hprice1 = DataFrame(wooldridge("hprice1"))
# estimate model:
f = @formula(log(price) ~ 1 + log(lotsize) + log(sqrft) + bdrms)
reg = lm(f, hprice1)
# BP test:
X = getMats(f, hprice1) [2]
result_bp = WhiteTest(X, residuals(reg), type=:linear)
bp_statistic = result_bp.lm
bp_pval = pvalue(result_bp)
println("bp_statistic = $bp_statistic\n")
println("bp_pval = $bp_pval\n")
# White test:
x_wh = hcat(ones(size(X)[1]),
    predict(reg),
    predict(reg) .^ 2)
result_white = WhiteTest(X_wh, residuals(reg), type=:linear)
white_statistic = result_white.lm
white_pval = pvalue(result_white)
```

```
println("white_statistic = $white_statistic\n")
println("white_pval = $white_pval")
```

Script 8.7: Example-8-6.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("calc-white-se.jl")
k401ksubs = DataFrame(wooldridge("401ksubs"))
# subsetting data:
k401ksubs_sub = subset(k401ksubs, :fsize => ByRow(==(1)))
# OLS (only for singles, i.e. 'fsize'==1):
reg_ols = lm(@formula(nettfa ~ inc + ((age - 25)^2) + male + e401k),
    k401ksubs_sub)
hc0 = calc_white_se(reg_ols, k401ksubs_sub)
# print regression table with hcO:
table_ols = DataFrame(coefficients=coeftable(reg_ols).rownms,
    b=round. (coef(reg_ols), digits=5),
    se=round.(hc0, digits=5))
println("table_ols: \n$table_ols\n")
# WLS:
k401ksubs_sub.w = (1 ./ sqrt.(k401ksubs_sub.inc))
reg_wls = lm(@formula(identity(nettfa * w) ~ 0 + w + identity(inc * w) +
                                    identity((age - 25)^2 * w) +
                                    identity(male * w) +
                                    identity(e401k * w)), k401ksubs_sub)
# print regression table:
table_wls = DataFrame(coefficients=coeftable(reg_wls).rownms,
    b=round. (coef(reg_wls), digits=5),
    se=round.(coeftable(reg_wls).cols[2], digits=5))
println("table_wls: \n$table_wls\n")
```

Script 8.8: WLS-Robust.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("calc-white-se.jl")
k401ksubs = DataFrame(wooldridge("401ksubs"))
# subsetting data:
k401ksubs_sub = subset(k401ksubs, :fsize => ByRow(==(1)))
# WLS:
k401ksubs_sub.w = (1 ./ sqrt.(k401ksubs_sub.inc))
reg_wls = lm(@formula(identity(nettfa * w) ~ 0 + w + identity(inc * w) +
                                    identity((age - 25)^2 * w) +
                                    identity(male * w) +
                                    identity(e401k * w)), k401ksubs_sub)
# robust results (White SE):
hc0 = calc_white_se(reg_wls, k401ksubs_sub)
# print regression table:
table_default = DataFrame(coefficients=coeftable(reg_wls).rownms,
    b=round.(coef(reg_wls), digits=5),
```

```
    se_default=round. (coeftable(reg_wls).cols[2], digits=5),
    se_robust=round.(hc0, digits=5))
println("table_default: \n$table_default")
```

Script 8.9: Example-8-7.jl

```
using WooldridgeDatasets, GLM, DataFrames, HypothesisTests
```

smoke = DataFrame (wooldridge("smoke"))
\# OLS:
reg_ols = lm(@formula(cigs ~ log(income) + log(cigpric) +
educ + age + age^2 + restaurn), smoke)
table_ols = DataFrame (coefficients=coeftable (reg_ols) .rownms,
$\mathrm{b}=$ round. (coef (reg_ols), digits=5),
se=round. (stderror (reg_ols), digits=5))
println("table_ols: \n\$table_ols $\backslash n "$)
\# BP test:
$\mathrm{X}=$ modelmatrix(reg_ols)
result_bp = WhiteTest (X, residuals (reg_ols), type=:linear)
bp_statistic $=$ result_bp.lm
bp_pval = pvalue (result_bp)
println("bp_statistic = \$bp_statistic\n")
println("bp_pval = \$bp_pval\n")
\# FGLS (estimation of the variance function):
smoke.logu2 = log. (residuals (reg_ols) .^ 2)
reg_fgls = lm(@formula(logu2 ~ log(income) + log(cigpric) +
educ + age + age^2 + restaurn), smoke)
table_fgls = DataFrame (coefficients=coeftable(reg_fgls). rownms,
b=round. (coef(reg_fgls), digits=5),
se=round. (stderror(reg_fgls), digits=5))
println("table_fgls: \n\$table_fgls\n")
\# FGLS (WLS):
smoke.w = (1 ./ sqrt. (exp. (predict(reg_fgls))))
reg_wls = lm(@formula(identity(cigs * w) ~ 0 + w + identity (log(income) * w) +
identity(log(cigpric) * w) +
identity (educ * w) +
identity (age * w) +
identity (age^2 * w) +
identity (restaurn * w)), smoke)
table_wls = DataFrame (coefficients=coeftable (reg_wls). rownms,
b=round. (coef(reg_wls), digits=5),
se=round. (stderror (reg_wls), digits=5))
println("table_wls: \n\$table_wls")

9. Scripts Used in Chapter 09

Script 9.1: Example-9-2.j1
using WooldridgeDatasets, GLM, DataFrames
hprice1 = DataFrame(wooldridge("hprice1"))

```
# original OLS:
reg = lm(@formula(price ~ lotsize + sqrft + bdrms), hprice1)
# regression for RESET test:
hprice1.fitted_sq = predict(reg) .^ 2 ./ 1000
hprice1.fitted_cub = predict(reg) .^ 3 ./ 1000
reg_reset = lm(@formula(price ~ lotsize + sqrft + bdrms +
fitted_sq + fitted_cub), hprice1)
table_reg_reset = coeftable(reg_reset)
println("table_reg_reset: \n$table_reg_reset\n")
# RESET test (HO: all coefficients including "fitted" are zero):
ftest_res = ftest(reg.model, reg_reset.model)
fstat = ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat = $fstat\n")
println("fpval = $fpval")
```

Script 9.2: Nonnested-Test.jl

```
using WooldridgeDatasets, GLM, DataFrames
hprice1 = DataFrame(wooldridge("hprice1"))
# two alternative models:
reg1 = lm(@formula(price ~ lotsize + sqrft + bdrms), hprice1)
reg2 = lm(@formula(price ~ log(lotsize) + log(sqrft) + bdrms), hprice1)
# encompassing test of Davidson & MacKinnon:
# comprehensive model:
reg3 = lm(@formula(price ~ lotsize + sqrft + bdrms +
                                    log(lotsize) + log(sqrft)), hprice1)
# test model 1:
ftest_res1 = ftest(reg1.model, reg3.model)
fstat1 = ftest_res1.fstat[2]
fpval1 = ftest_res1.pval[2]
println("fstat1 = $fstat1\n")
println("fpval1 = $fpval1\n")
# test model 2:
ftest_res2 = ftest(reg2.model, reg3.model)
fstat2 = ftest_res2.fstat[2]
fpval2 = ftest_res2.pval[2]
println("fstat2 = $fstat2\n")
println("fpval2 = $fpval2")
```

Script 9.3: Sim-ME-Dep.jl
using Random, Distributions, Statistics, GLM, DataFrames
\# set the random seed:
Random.seed! (12345)
\# set sample size and number of simulations:
$\mathrm{n}=1000$

```
r = 10000
# set true parameters (betas):
beta0 = 1
beta1 = 0.5
# initialize arrays to store results later (b1 without ME, b1_me with ME):
b1 = zeros(r)
b1_me = zeros(r)
# draw a sample of x, fixed over replications:
x = rand(Normal (4, 1), n)
# repeat r times:
for i in 1:r
    # draw a sample of u:
    u = rand(Normal (0, 1), n)
    # draw a sample of ystar:
    ystar = beta0 .+ beta1 * x .+ u
    # measurement error and mismeasured y:
    e0 = rand(Normal (0, 1), n)
    y = ystar .+ e0
    df = DataFrame(ystar=ystar, y=y, x=x)
    # regress ystar on x and store slope estimate at position i:
    reg_star = lm(@formula(ystar ~ x), df)
    b1[i] = coef(reg_star)[2]
    # regress y on x and store slope estimate at position i:
    reg_me = lm(@formula(y ~ x), df)
    b1_me[i] = coef(reg_me)[2]
end
# mean with and without ME:
b1_mean = mean (b1)
b1_me_mean = mean(b1_me)
println("b1_mean = $b1_mean\n")
println("b1_me_mean = $b1_me_mean\n")
# variance with and without ME:
b1_var = var(b1)
b1_me_var = var(b1_me)
println("b1_var = $b1_var\n")
println("b1_me_var = $b1_me_var")
```

Script 9.4: Sim-ME-Explan.jl

```
using Random, Distributions, Statistics, GLM, DataFrames
# set the random seed:
Random.seed! (12345)
# set sample size and number of simulations:
n = 1000
r = 10000
# set true parameters (betas):
beta0 = 1
```

```
beta1 = 0.5
# initialize arrays to store results later (b1 without ME, b1_me with ME):
b1 = zeros(r)
b1_me = zeros(r)
# draw a sample of x, fixed over replications:
xstar = rand(Normal(4, 1), n)
# repeat r times:
for i in 1:r
    # draw a sample of u:
    u = rand (Normal (0, 1), n)
    # draw a sample of y:
    y = beta0 .+ beta1 * xstar .+ u
    # measurement error and mismeasured x:
    e1 = rand(Normal(0, 1), n)
    x = xstar .+ e1
    df = DataFrame(y=y, xstar=xstar, x=x)
    # regress y on xstar and store slope estimate at position i:
    reg_star = lm(@formula(y ~ xstar), df)
    b1[i] = coef(reg_star) [2]
    # regress y on x and store slope estimate at position i:
    reg_me = lm(@formula(y ~ x), df)
    b1_me[i] = coef(reg_me)[2]
end
# mean with and without ME:
b1_mean = mean (b1)
b1_me_mean = mean(b1_me)
println("b1_mean = $b1_mean\n")
println("b1_me_mean = $b1_me_mean\n")
# variance with and without ME:
b1_var = var(b1)
b1_me_var = var(b1_me)
println("b1_var = $b1_var\n")
println("b1_me_var = $b1_me_var")
```

Script 9.5: NaN-Inf-Missing.jl

```
using Distributions, DataFrames, Statistics
# NaN, missings and infinite values in Julia:
x1 = [0, 2, NaN, Inf, missing]
logx = log.(x1)
invx = 0 ./ x1
isnanx = isnan.(x1)
isinfx = isinf.(x1)
ismissingx = ismissing.(x1)
results = DataFrame(x1=x1, logx=logx, invx=invx, ismissingx=ismissingx,
    isnanx=isnanx, isinfx=isinfx)
println("results = $results\n")
# mathematically not defined is not always NaN (like in R or Python):
```

```
test = try
    log(-1) # results in an ERROR
catch e
    NaN
end
println("test = $test\n")
# handling missings:
x2 = [4, 2, missing, 3]
meanx2_1 = mean(x2)
println("meanx2_1 = $meanx2_1\n")
meanx2_2 = mean(skipmissing(x2))
println("meanx2_2 = $meanx2_2\n")
x3 = [4, 2, NaN, 3]
meanx3_1 = mean(x3)
println("meanx3_1 = $meanx3_1\n")
meanx3_2 = mean(x3[.!isnan.(x3)])
println("meanx3_2 = $meanx3_2")
```

Script 9.6: Missings.jl

```
using WooldridgeDatasets, GLM, DataFrames
lawsch85 = DataFrame(wooldridge("lawsch85"))
lsat = lawsch85.LSAT
# create boolean indicator for missings:
missLSAT = ismissing.(lsat)
# LSAT and indicator for Schools No. 120-129:
preview = DataFrame(lsat=lsat[120:129],
    missLSAT=missLSAT[120:129])
println("preview: \n$preview\n")
# frequencies of indicator:
tot_missing = count(missLSAT) # same as sum(missLSAT)
tot_nonmissings = count(.!missLSAT)
println("tot_missing = $tot_missing\n")
println("tot_nonmissings = $tot_nonmissings\n")
# missings for all variables in data frame (counts):
miss_all = ismissing. (lawsch85)
freq_missLSAT = mapcols(count, miss_all)
freq_missLSAT_preview = freq_missLSAT[:, 1:9] # print only first nine columns
println("freq_missLSAT_preview: \n$freq_missLSAT_preview\n")
# computing amount of complete cases:
lsat_compl_cases1 = dropmissing(lawsch85)
complete_cases1 = nrow(lsat_compl_cases1)
println("complete_cases1 = $complete_cases1\n")
lsat_compl_cases2 = completecases(lawsch85)
complete_cases2 = count(lsat_compl_cases2)
println("complete_cases2 = $complete_cases2")
```

Script 9.7: Missings-Analyses.jl
using WooldridgeDatasets, GLM, DataFrames, Statistics
lawsch85 = DataFrame(wooldridge("lawsch85"))
\# missings:
$\mathbf{x}=$ lawsch85.LSAT
x_bar1 $=$ mean (x)
x_bar2 $=$ mean (skipmissing (x))
println("x_bar1 = \$x_bar1\n")
println("x_bar2 = \$x_bar2\n")
\# observations and variables:
nrows = nrow (lawsch85)
ncols = ncol (lawsch85)
println("nrows = \$nrows $\backslash n$ ")
println("ncols = \$ncols\n")
\# regression (missings are taken care of by default):

$\mathrm{n}=$ nobs (reg)
println("n = n^{n} ")
Script 9.8: Outliers.jl

```
using WooldridgeDatasets, GLM, DataFrames, LinearAlgebra, Plots
rdchem = DataFrame(wooldridge("rdchem"))
# create dummys for each observation with an identity matrix:
n = nrow (rdchem)
dummys = DataFrame(Matrix(1I, n, n), Symbol.(:d, 1:n)) # colnames d1, ..., d32
# studentized residuals for all observations:
studres = zeros(n)
for i in 1:n
    rdchem.di = dummys[:, i]
    reg_i = lm(@formula(rdintens ~ sales + profmarg + di), rdchem)
    # save t statistic (3rd column) of di (4th element):
    studres[i] = coeftable(reg_i).cols[3][4]
end
# display extreme values:
studres_max = maximum(studres)
studres_min = minimum(studres)
println("studres_max = $studres_max\n")
println("studres_min = $studres_min")
# histogram:
histogram(studres, color="grey", legend=false)
xlabel!("studres")
savefig("JlGraphs/Outliers.pdf")
```

Script 9.9: LAD.jl

```
using WooldridgeDatasets, DataFrames, GLM, QuantileRegressions
rdchem = DataFrame(wooldridge("rdchem"))
# OLS regression:
```

```
reg_ols = lm(@formula(rdintens ~ sales / 1000 + profmarg), rdchem)
table_reg_ols = coeftable(reg_ols)
println("table_reg_ols: \n$table_reg_ols\n")
# LAD regression:
reg_lad = qreg(@formula(rdintens ~ sales / 1000 + profmarg), rdchem, 0.5)
table_reg_lad = coeftable(reg_lad)
println("table_reg_lad: \n$table_reg_lad")
```


10. Scripts Used in Chapter 10

Script 10.1: Example-10-2.j1

```
using WooldridgeDatasets, GLM, DataFrames
intdef = DataFrame(wooldridge("intdef"))
# linear regression of static model:
reg = lm(@formula(i3 ~ inf + def), intdef)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 10.2: Example-Barium.jl
using WooldridgeDatasets, DataFrames, Dates, Plots
barium = DataFrame (wooldridge("barium"))
$T=$ nrow (barium)
\# monthly time series starting Feb. 1978:
barium. date $=$ range (Date (1978, 2, 1), step=Month(1), length=T)
preview = barium[1:5, ["date", "chnimp"]]
println("preview: \n\$preview")
\# plot chnimp:
plot (barium.date, barium.chnimp, legend=false, color="grey")
ylabel! ("chnimp")
savefig("JlGraphs/Example-Barium.pdf")

Script 10.3: Example-StockData.jl

```
using DataFrames, Dates, MarketData, Plots
# download data for "F" (= Ford Motor Company) and define start and end:
ticker = "F"
start_date = DateTime(2014, 1, 1)
end_date = DateTime(2016, 1, 1)
# import data:
F_data = yahoo(ticker, YahooOpt(period1=start_date, period2=end_date))
# look at imported data:
F_data_head = first(DataFrame(F_data), 5)
println("F_data_head: \n$F_data_head\n")
F_data_tail = last (DataFrame(F_data), 5)
println("F_data_tail: \n$F_data_tail")
```

```
# time series plot of adjusted closing prices:
plot(F_data.AdjClose, legend=false, color="grey")
ylabel!("AdjClose")
savefig("JlGraphs/Example-StockData.pdf")
```

Script 10.4: Example-10-4.jl

```
using WooldridgeDatasets, GLM, DataFrames
fertil3 = DataFrame(wooldridge("fertil3"))
# add all lags of pe up to order 2:
fertil3.pe_lag1 = lag(fertil3.pe, 1)
fertil3.pe_lag2 = lag(fertil3.pe, 2)
# linear regression of model with lags:
reg = lm(@formula(gfr ~ pe + pe_lag1 + pe_lag2 + ww2 + pill), fertil3)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 10.5: Example-10-4-cont.jl
using WooldridgeDatasets, GLM, DataFrames, Distributions

```
fertil3 = DataFrame(wooldridge("fertil3"))
```

\# add all lags of pe up to order 2:
fertil3.pe_lag1 = lag(fertil3.pe, 1)
fertil3.pe_lag2 = lag(fertil3.pe, 2)
\# handle missings due to lagged data manually (important for ftest):
fertil3 = fertil3[Not([1, 2]), :]
\# linear regression of model with lags:
reg_ur $=1 \mathrm{~m}\left(@ f o r m u l a\left(g f r \sim p e+p e _l a g 1+p e _l a g 2+w w 2+p i l l\right), f e r t i l 3\right)$
\# F test (HO: all pe coefficients are zero):
reg_r = lm(@formula(gfr ~ ww2 + pill), fertil3)
ftest_res $=$ ftest (reg_r.model, reg_ur.model)
fstat $=$ ftest_res.fstat[2]
fpval = ftest_res.pval[2]
println("fstat $=\$$ fstat $\backslash n ")$
println("fpval = \$fpval\n")
\# calculating the LRP:
b_pe_tot $=\operatorname{sum}\left(c o e f\left(r e g _u r\right)[[2, ~ 3, ~ 4]]\right)$
println("b_pe_tot $=\$ b$ _pe_tot $\backslash n ")$
\# testing LRP=0:
fertil3.ptm1pt = fertil3.pe_lag1 - fertil3.pe
fertil3.ptm2pt $=$ fertil3.pe_lag2 - fertil3.pe
reg_LRP $=$ lm(@formula (gfr \sim pe + ptm1pt + ptm2pt + ww2 + pill), fertil3)
table_res_LRP = coeftable (reg_LRP)
println("table_res_LRP: \n\$table_res_LRP")

Script 10.6: Example-10-7.jl
using WooldridgeDatasets, GLM, DataFrames
hseinv = DataFrame(wooldridge("hseinv"))

```
# linear regression without time trend:
reg_wot = lm(@formula(log(invpc) ~ log(price)), hseinv)
table_reg_wot = coeftable(reg_wot)
println("table_reg_wot: \n$table_reg_wot\n")
# linear regression with time trend (data set includes a time variable t):
reg_wt = lm(@formula(log(invpc) ~ log(price) + t), hseinv)
table_reg_wt = coeftable (reg_wt)
println("table_reg_wt: \n$table_reg_wt")
```

Script 10.7: Example-10-11.jl

```
using WooldridgeDatasets, GLM, DataFrames
barium = DataFrame (wooldridge("barium"))
# linear regression with seasonal effects:
reg = lm(@formula(log(chnimp) ~ log(chempi) + log(gas) +
    log(rtwex) + befile6 + affile6 + afdec6 +
    feb + mar + apr + may + jun + jul +
    aug + sep + oct + nov + dec), barium)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```


11. Scripts Used in Chapter 11

Script 11.1: Example-11-4.jl
using WooldridgeDatasets, GLM, DataFrames, RegressionTables
nyse = DataFrame (wooldridge ("nyse"))
nyse.ret $=$ nyse.return
\# add all lags up to order 3:
nyse.ret_lag1 = lag (nyse.ret, 1)
nyse.ret_lag2 = lag (nyse.ret, 2)
nyse.ret_lag3 = lag (nyse.ret, 3)
\# linear regression of model with lags:

reg2 $=$ lm(@formula (ret \sim ret_lag1 + ret_lag2), nyse)

\# print results with RegressionTables:
regtable(reg1, reg2, reg3)

Script 11.2: Example-EffMkts.jl

```
using DataFrames, GLM, Dates, MarketData, Plots, RegressionTables
# download data for "AAPL" (= Apple) and define start and end:
ticker = "AAPL"
start_date = DateTime(2007, 12, 31)
end_date = DateTime(2017, 01, 01)
# import data as DataFrame:
AAPL_data = DataFrame(yahoo(ticker,
```

```
    YahooOpt(period1=start_date, period2=end_date)))
# calculate return as the difference of logged prices:
AAPL_data.ret = vcat(missing, diff(log.(AAPL_data.AdjClose)))
# time series plot of returns:
plot(AAPL_data.timestamp, AAPL_data.ret, legend=false, color="grey")
ylabel!("returns")
savefig("JlGraphs/Example-EffMkts.pdf")
# linear regression of models with lags:
AAPL_data.ret_lag1 = lag(AAPL_data.ret, 1)
AAPL_data.ret_lag2 = lag(AAPL_data.ret, 2)
AAPL_data.ret_lag3 = lag(AAPL_data.ret, 3)
reg1 = lm(@formula(ret ~ ret_lag1), AAPL_data)
reg2 = lm(@formula(ret ~ ret_lag1 + ret_lag2), AAPL_data)
reg3 = lm(@formula(ret ~ ret_lag1 + ret_lag2 + ret_lag3), AAPL_data)
# print results with RegressionTables:
regtable(reg1, reg2, reg3)
```

Script 11.3: Simulate-RandomWalk.jl

```
using Random, Distributions, Statistics, Plots
# set the random seed:
Random.seed!(12345)
# initialize plot:
x_range = range (0, 50, 51)
plot(xlims=(0, 50), ylims=(-25, 25))
# loop over draws:
for r in 1:30
    # i.i.d. standard normal shock:
    e = rand (Normal (0, 1), 51)
    # set first entry to 0 (gives y_0 = 0):
    e[1] = 0
    # random walk as cumulative sum of shocks:
    y = cumsum(e)
    # add line to graph:
    plot!(x_range, y, color="lightgrey", legend=false)
end
hline!([0], color="black", linewidth=2, linestyle=:dash)
xlabel!("time")
ylabel!("y")
savefig("JlGraphs/Simulate-RandomWalk.pdf")
```

Script 11.4: Simulate-RandomWalkDrift.jl
using Random, Distributions, Statistics, Plots
\# set the random seed:
Random.seed! (12345)

```
# initialize plot:
x_range = range(0, 50, 51)
plot(xlims=(0, 50), ylims=(0, 100))
# loop over draws:
for r in 1:30
    # i.i.d. standard normal shock:
    e = rand (Normal (0, 1), 51)
    # set first entry to 0 (gives y_0 = 0):
    e[1] = 0
    # random walk as cumulative sum of shocks:
    y = cumsum(e) + 2 * x_range
    # add line to graph:
    plot!(x_range, y, color="lightgrey", legend=false)
end
plot!(x_range, 2 * x_range, color="black", linewidth=2, linestyle=:dash)
xlabel!("time")
ylabel!("y")
savefig("JlGraphs/Simulate-RandomWalkDrift.pdf")
```

Script 11.5: Simulate-RandomWalkDrift-Diff.jl

```
using Random, Distributions, Statistics, Plots
```

\# set the random seed:
Random. seed! (12345)
\# initialize plot:
x_range $=$ range (1,50 , 50)
plot (xlims $=(0,50), y \operatorname{lims}=(-1,5))$
\# loop over draws:
for r in 1:30
\# i.i.d. standard normal shock:
$e=\operatorname{rand}(\operatorname{Normal}(0,1), 51)$
\# set first entry to 0 (gives $y_{-} 0=0$):
$e[1]=0$
\# random walk as cumulative sum of shocks:
$y=$ cumsum (2 . $+e$)
\# first difference:
Dy $=\mathrm{y}[2: 51]$. $-\mathrm{y}[1: 50]$
\# add line to graph:
plot!(x_range, Dy, color="lightgrey", legend=false)
end
hline! ([2], color="black", linewidth=2, linestyle=:dash)
xlabel! ("time")
ylabel! ("Dy")
savefig("JlGraphs/Simulate-RandomWalkDrift-Diff.pdf")

Script 11.6: Example-11-6.jl
using WooldridgeDatasets, GLM, DataFrames

```
fertil3 = DataFrame(wooldridge("fertil3"))
```

\# compute first differences (first difference is always missing):
fertil3.gfr_diff1 = vcat (missing, diff(fertil3.gfr))
fertil3.pe_diffl = vcat (missing, diff(fertil3.pe))
preview = fertil3[1:5, ["gfr", "gfr_diff1", "pe", "pe_diff1"]]
println("preview: \n\$preview\n")
\# linear regression of model with first differences:
reg1 = lm(@formula(gfr_diff1 ~ pe_diff1), fertil3)
table_reg1 = coeftable (reg1)
println("table_reg1: \n\$table_reg1\n")
\# linear regression of model with lagged differences:
fertil3.pe_diff1_lag1 = lag(fertil3.pe_diff1, 1)
fertil3.pe_diff1_lag2 = lag(fertil3.pe_diff1, 2)
reg2 $=$ lm(@formula(gfr_diff1 \sim pe_diff1 + pe_diff1_lag1 + pe_diff1_lag2),
fertil3)
table_reg2 = coeftable (reg2)
println("table_reg2: \n\$table_reg2")

12. Scripts Used in Chapter 12

Script 12.1: Example-12-2-Static.jl
using WooldridgeDatasets, GLM, DataFrames
phillips = DataFrame (wooldridge ("phillips"))
yt96 = subset (phillips, :year => ByRow (<=(1996)))
\# estimation of static Phillips curve:

\# residuals and $A R(1)$ test:
yt96.resid_s = residuals (reg_s)
yt96.resid_s_lag1 = lag(yt96.resid_s, 1)
reg $=$ lm(@formula(resid_s \sim resid_s_lag1), yt96)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Script 12.2: Example-12-2-ExpAug.jl
using WooldridgeDatasets, GLM, DataFrames
phillips = DataFrame (wooldridge("phillips"))
yt96 = subset (phillips, :year => ByRow(<=(1996)))
\# estimation of expectations-augmented Phillips curve:
yt96.inf_diff1 = vcat(missing, diff(yt96.inf))
yt96 = yt96[Not(1), :]
reg_ea = lm(@formula(inf_diff1 \sim unem), yt96)
yt96.resid_ea $=$ residuals $($ reg_ea)

```
yt96.resid_ea_lag1 = lag(yt96.resid_ea, 1)
reg = lm(@formula(resid_ea ~ resid_ea_lag1), yt96)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```

Script 12.3: Example-12-4.jl
using WooldridgeDatasets, GLM, DataFrames
barium = DataFrame (wooldridge("barium"))
reg $=\operatorname{lm}(@ f o r m u l a(\log ($ chnimp $) \sim \log ($ chempi $)+\log (g a s)+\log ($ rtwex $)+$ befile6 + affile6 + afdec6), barium)
\# testing resid_lag1 $=0$, resid_lag2 $=0$ and resid_lag3 $=0$:
barium.resid = residuals (reg)
barium.resid_lag1 = lag(barium.resid, 1)
barium.resid_lag2 = lag (barium.resid, 2)
barium.resid_lag3 = lag(barium.resid, 3)
barium = barium[Not(1:3), :]
reg_manual_ur = lm(@formula(resid ~ resid_lag1 + resid_lag2 + resid_lag3 + $\log ($ chempi) $+\log (g a s)+\log (r$ twex $)+$ befile6 + affile6 + afdec6), barium)
reg_manual_r = lm(@formula(resid ~ log(chempi) + log(gas) + log(rtwex) + befile6 + affile6 + afdec6), barium)
ftest_manual_res = ftest(reg_manual_r.model, reg_manual_ur.model)
fstat manual = ftest manual_res.fstat [2]
fpval_manual = ftest_manual_res.pval[2]
println("fstat_manual = \$fstat_manual\n")
println("fpval_manual = \$fpval_manual")

Script 12.4: Example-DWtest.jl
using WooldridgeDatasets, GLM, DataFrames, HypothesisTests include(". ./03/getMats.jl")
phillips = DataFrame(wooldridge("phillips"))
yt96 = subset (phillips, :year => ByRow(<=(1996)))
\# estimation of both Phillips curve models and
\# extraction of regressor matrices and residuals:
reg_s = lm(@formula(inf ~ unem), yt96)
$x_{-s}=$ getMats (formula(reg_s), yt96) [2]
resid_s = residuals(reg_s)
yt96.inf_diff1 = vcat(missing, diff(yt96.inf))
yt96 = yt96[Not(1), :]
reg_ea = lm(@formula(inf_diff1 ~ unem), yt96)
x_ea = getMats (formula(reg_ea), yt96) [2]
resid_ea = residuals (reg_ea)
\# DW tests:
DW_s = DurbinWatsonTest (X_s, resid_s)
DW_ea = DurbinWatsonTest (X_ea, resid_ea)
println("DW_s: \n\$DW_s\n")
println("DW_ea: \n\$DW_ea")

Script 12.5: Example-12-5.jl

```
using PyCall, WooldridgeDatasets, GLM, DataFrames
# install Python's statsmodels with: using Conda; Conda.add("statsmodels")
sm = pyimport("statsmodels.api")
include("../03/getMats.jl")
barium = DataFrame (wooldridge("barium"))
# definition of model and hypotheses:
f = @formula(log(chnimp) ~ 1 + log(chempi) + log(gas) + log(rtwex) +
                befile6 + affile6 + afdec6)
xy = getMats (f, barium)
y = xy[1]
x = xy[2]
# perform the Cochrane-Orcutt estimation (iterative procedure):
reg = sm.GLSAR (y, X)
CORC_results = reg.iterative_fit(maxiter=100)
reg_rho = reg.rho
table = DataFrame(
    coefnames=["Intercept", "log(chempi)", "log(gas)", "log(rtwex)",
        "befile6", "affile6", "afdec6"],
    b_CORC=CORC_results.params,
    se_CORC=round. (CORC_results.bse, digits=5))
println("reg_rho = $reg_rho\n")
println("table: \n$table")
```

Script 12.6: calc-hac-se.jl

```
using LinearAlgebra
# for details, see Equations 12.41 - 12.43 in Wooldridge (2019)
function calc_hac_se(reg, g)
    n = nobs (reg)
    X = reg.mm.m
    n = size(X, 1)
    K = size(X, 2)
    u = residuals(reg)
    ser = sqrt(sum(u .^ 2) / (n - K))
    se_ols = coeftable(reg).cols[2]
    se_hac = zeros(K)
    for k in 1:K
        yk = x[:, k]
        Xk = X[:, (1:K).!=k]
        bk = inv(transpose(Xk) * Xk) * transpose(Xk) * yk
        rk = yk .- Xk * bk
        ak = rk .* u
        vk = sum(ak .^ 2)
        for h in 1:g
            sum_h = 2 * (1-h / (g + 1)) * sum(ak[(h+1):n] .* ak[1:(n-h)])
            vk = vk + sum_h
            end
        se_hac[k] = (se_ols[k] / ser)^2 * sqrt(vk)
    end
```

```
    return se_hac
end
```

Script 12.7: Example-12-1.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("calc-hac-se.jl")
prminwge = DataFrame(wooldridge("prminwge"))
prminwge.time = prminwge.year .- 1949
# OLS with regular SE:
reg = lm(@formula(log(prepop) ~ log(mincov) + log(prgnp) +
                                log(usgnp) + time), prminwge)
# OLS with HAC SE:
hac_se = calc_hac_se(reg, 2)
# print different SEs:
table = DataFrame(coefficients=coeftable(reg).rownms,
    b=round. (coef(reg), digits=5),
    se_default=round. (coeftable(reg).cols[2], digits=5),
    hac_se=round. (hac_se, digits=5))
println("table: \n$table")
```

Script 12.8: Example-12-9.jl

```
using WooldridgeDatasets, GLM, DataFrames
nyse = DataFrame(wooldridge("nyse"))
nyse.ret = nyse.return
nyse.ret_lag1 = lag(nyse.ret, 1)
nyse = nyse[Not(1, 2), :]
# linear regression of model:
reg = lm(@formula(ret ~ ret_lag1), nyse)
# squared residuals:
nyse.resid_sq = residuals(reg) .^ 2
nyse.resid_sq_lag1 = lag(nyse.resid_sq, 1)
# model for squared residuals:
ARCHreg = lm(@formula(resid_sq ~ resid_sq_lag1), nyse)
table_ARCHreg = coeftable(ARCHreg)
println("table_ARCHreg: \n$table_ARCHreg")
```

Script 12.9: Example-ARCH.jl

```
using DataFrames, GLM, Dates, MarketData
# download data for "AAPL" (= Apple) and define start and end:
ticker = "AAPL"
start_date = DateTime(2007, 12, 31)
end_date = DateTime(2017, 01, 01)
# import data as DataFrame:
AAPL_data = DataFrame (yahoo(ticker,
    YahooOpt(period1=start_date, period2=end_date)))
# calculate return as the difference of logged prices:
```

```
AAPL_data.ret = vcat(missing, diff(log.(AAPL_data.AdjClose)))
AAPL_data.ret_lag1 = lag(AAPL_data.ret, 1)
AAPL_data = AAPL_data[Not (1, 2), :]
# AR(1) model for returns:
reg = lm(@formula(ret ~ ret_lag1), AAPL_data)
# squared residuals:
AAPL_data.resid_sq = residuals(reg) .^ 2
AAPL_data.resid_sq_lag1 = lag(AAPL_data.resid_sq, 1)
# model for squared residuals:
ARCHreg = lm(@formula(resid_sq ~ resid_sq_lag1), AAPL_data)
table_ARCHreg = coeftable(ARCHreg)
println("table_ARCHreg: \n$table_ARCHreg")
```


13. Scripts Used in Chapter 13

Script 13.1: Example-13-2.j1
using WooldridgeDatasets, GLM, DataFrames

```
cps78_85 = DataFrame(wooldridge("cps78_85"))
```

\# OLS results including interaction terms:
reg $=\operatorname{lm}(@ f o r m u l a(l w a g e ~ \sim y 85 *(e d u c+$ female) + exper +
((exper^2) / 100) + union), cps78_85)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

```
using WooldridgeDatasets, GLM, DataFrames, RegressionTables
kielmc = DataFrame (wooldridge("kielmc"))
kielmc.is1981 = kielmc.year . == 1981
# separate regressions for 1978 and 1981:
y78 = subset(kielmc, :year => ByRow(== (1978)))
reg78 = lm(@formula(rprice ~ nearinc), y78)
y81 = subset (kielmc, :year => ByRow(== (1981)))
reg81 = lm(@formula(rprice ~ nearinc), y81)
# joint regression including an interaction term:
reg_joint = lm(@formula(rprice ~ nearinc * is1981), kielmc)
# print results with RegressionTables:
regtable(reg78, reg81, reg_joint)
```

Script 13.3: Example-13-3-2.j1
using WooldridgeDatasets, GLM, DataFrames
kielmc = DataFrame (wooldridge ("kielmc"))
kielmc.is1981 = kielmc.year . == 1981
\# difference in difference (DiD):

```
reg_did = lm(@formula(log(rprice) ~ nearinc * is1981), kielmc)
table_did = coeftable(reg_did)
println("table_did: \n$table_did\n")
# DiD with control variables:
reg_didC = lm(@formula(log(rprice) ~ nearinc * is1981 + age + (age^2) +
    log(intst) + log(land) + log(area) +
    rooms + baths), kielmc)
table_didC = coeftable(reg_didC)
println("table_didC: \n$table_didC")
```

Script 13.4: Example-FD.jl

```
using WooldridgeDatasets, GLM, DataFrames
crime2 = DataFrame(wooldridge("crime2"))
# create an index in this balanced data set by combining two vectors:
id_tmp = 1:46
crime2.id = sort(vcat(id_tmp, id_tmp))
# sort data by id and year:
sort!(crime2, [:id, :year])
# manually calculate first differences per entity for crmrte and unem:
grouped_df = groupby(crime2, :id)
diff_df = DataFrame(id=id_tmp)
diff_df.crmrte_diff1 = combine(grouped_df, :crmrte => diff).crmrte_diff
diff_df.unem_diff1 = combine(grouped_df, :unem => diff).unem_diff
preview = diff_df[1:5, :]
println("preview: \n$preview\n")
# estimate FD model with OLS on differenced data:
reg_sm = lm(@formula(crmrte_diff1 ~ unem_diff1), diff_df)
table_sm = coeftable(reg_sm)
println("table_sm: \n$table_sm")
```

Script 13.5: Example-13-9.j1

```
using WooldridgeDatasets, GLM, DataFrames
crime4 = DataFrame(wooldridge("crime4"))
crime4.lcrmrte = log.(crime4.crmrte)
# sort data by county and year:
sort!(crime4, [:county, :year])
# manually calculate first differences for multiple variables:
vars_to_diff = ["lcrmrte", "d83", "d84", "d85", "d86", "d87",
    "lprbarr", "lprbconv", "lprbpris", "lavgsen", "lpolpc"]
grouped_df = groupby(crime4, :county)
diff_df = DataFrame()
for i in vars_to_diff
    tmp_diff_i = combine(grouped_df, Symbol(i) => diff)[:, 2]
    diff_df[!, i] = tmp_diff_i
end
    estimate FD model:
```

```
reg = lm(@formula(lcrmrte ~ d83 + d84 + d85 + d86 + d87 +
    lprbarr + lprbconv + lprbpris +
    lavgsen + lpolpc), diff_df)
table_reg = coeftable(reg)
println("table_reg: \n$table_reg")
```


14. Scripts Used in Chapter 14

Script 14.1: Example-14-2.jl
using WooldridgeDatasets, DataFrames, Econometrics
wagepan = DataFrame (wooldridge ("wagepan"))
\# FE model estimation:
reg $=$ fit (EconometricModel,
@formula(lwage ~ married + union +
$\mathrm{d} 81+\mathrm{d} 81+\mathrm{d} 82+\mathrm{d} 83+\mathrm{d} 84+\mathrm{d} 85+\mathrm{d} 86+\mathrm{d} 87+$ $\mathrm{d} 81 \&$ educ $+\mathrm{d} 81 \&$ educ $+\mathrm{d} 82 \&$ educ $+\mathrm{d} 83 \&$ educ + $\mathrm{d} 84 \&$ educ $+\mathrm{d} 85 \&$ educ $+\mathrm{d} 86 \&$ educ $+\mathrm{d} 87 \&$ educ + absorb(nr)),
wagepan)
table_reg = coeftable (reg)
println("table_reg: \n\$table_reg")

Script 14.2: Example-14-4.jl
using WooldridgeDatasets, GLM, DataFrames, Econometrics
wagepan $=$ DataFrame (wooldridge ("wagepan"))
\# estimate different models:
reg_ols $=\operatorname{lm}(@ f o r m u l a(l w a g e ~ \sim ~ e d u c ~+~ b l a c k ~+~ h i s p ~+~ e x p e r ~+~(e x p e r \wedge 2) ~+~$ married + union + year),
wagepan,
contrasts=Dict (:year => DummyCoding()))
reg_re $=$ fit (RandomEffectsEstimator,
@formula(lwage ~ educ + black + hisp + exper + (exper^2) + married + union + year),
wagepan,
panel=:nr,
time=:year,
contrasts=Dict(:year => DummyCoding()))
reg_fe $=$ fit (EconometricModel,
@formula(lwage ~ (exper^2) + married + union + year + absorb(nr)),
wagepan,
contrasts=Dict (:year => DummyCoding()))
\# print results:
table_ols = coeftable(reg_ols)
println("table_ols: \n\$table_ols\n")
table_re = coeftable (reg_re)
println("table_re: \n\$table_re\n")

```
table_fe = coeftable(reg_fe)
println("table_fe: \n$table_fe")
```

Script 14.3: Example-Dummy-CRE.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Statistics
wagepan = DataFrame(wooldridge("wagepan"))
# include group specific means:
grouped_means = combine(groupby (wagepan, :nr), [:married, :union] .=> mean)
wagepan = innerjoin(grouped_means, wagepan, on=:nr)
# estimate FE parameters in 3 different ways:
reg_we = fit(EconometricModel,
    @formula(lwage ~ married + union + absorb(nr) +
                        d81 + d81 + d82 + d83 + d84 + d85 + d86 + d87 +
                        d81 & educ + d81 & educ + d82 & educ + d83 & educ +
                        d84 & educ + d85 & educ + d86 & educ + d87 & educ),
    wagepan)
reg_dum = lm(@formula(lwage ~ married + union + year * educ + nr),
    wagepan,
    contrasts=Dict(:year => DummyCoding(), :nr => DummyCoding()))
```

reg_cre $=$ fit (RandomEffectsEstimator,
@formula(lwage ~ married + union + year * educ +
married_mean + union_mean),
wagepan,
panel=:nr,
time=:year,
contrasts=Dict (:year => DummyCoding()))
\# compare to RE estimates:
reg_re $=$ fit (RandomEffectsEstimator,
@formula(lwage ~ married + union + year * educ),
wagepan,
panel=:nr,
time=:year,
contrasts=Dict(:year => DummyCoding()))
\# print results for married and union:
table = DataFrame (coef_names=["married", "union"],
b_we=round. (coef (reg_we) [[2, 3]], digits=5),
b_dum=round. (coef(reg_dum) [[2, 3]], digits=5),
b_cre=round. (coef(reg_cre) [[2, 3]], digits=5),
b_re=round. (coef (reg_re) $[$ [2, 3]], digits=5))
println("table: \n \$table")

Script 14.4: Example-CRE.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Statistics
wagepan = DataFrame(wooldridge("wagepan"))
# include group specific means:
grouped_means = combine(groupby (wagepan, :nr), [:married, :union] .=> mean)
wagepan = innerjoin(grouped_means, wagepan, on=:nr)
```

```
# estimate CRE:
reg_CRE = fit(RandomEffectsEstimator,
    @formula(lwage ~ married + union + educ + black +
                        hisp + married_mean + union_mean),
    wagepan,
    panel=:nr,
    time=:year)
table_reg = coeftable(reg_CRE)
println("table_reg: \n$table_reg")
```


15. Scripts Used in Chapter 15

Script 15.1: Example-15-1. jl
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Statistics
mroz_wm = DataFrame (wooldridge("mroz"))
\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
\# OLS slope parameter manually:
cov_yz = cov(mroz.lwage, mroz.fatheduc)

cov_xz $=\operatorname{cov}($ mroz.educ, mroz.fatheduc)
var_x $=$ var (mroz.educ)
x_bar $=$ mean (mroz.educ)
y_bar $=$ mean (mroz.lwage)
b_ols_man $=\operatorname{cov}$ _xy / var_x
println("b_ols_man = \$b_ols_man $\backslash \mathrm{n}$ ")
\# IV slope parameter manually:
b_iv_man = cov_yz / cov_xz
println("b_iv_man = \$b_iv_man\n")
\# OLS automatically:
reg_ols = lm(@formula(lwage ~ educ), mroz)
table_ols = coeftable (reg_ols)
println("table_ols: \n\$table_ols $\backslash n "$)
\# IV automatically:
reg_iv = fit(EconometricModel,
@formula(lwage ~ (educ ~ fatheduc)), mroz)
table_iv = coeftable (reg_iv)
println("table_iv: \n\$table_iv")

Script 15.2: Example-15-4.jl
using WooldridgeDatasets, GLM, DataFrames, Econometrics
card = DataFrame (wooldridge ("card"))
\# checking for relevance with reduced form:
reg_redf = lm(@formula (educ ~ nearc4 + exper + (exper^2) + black + smsa + south + smsa66 + reg662 + reg663 + reg664 + reg665 + reg666 + reg667 + reg668 + reg669), card)
table_redf = coeftable(reg_redf)

```
println("table_redf: \n$table_redf\n")
# OLS:
reg_ols = lm(@formula(log(wage) ~ educ + exper + (exper^2) + black +
    smsa + south + smsa66 + reg662 +
    reg663 + reg664 + reg665 + reg666 +
    reg667 + reg668 + reg669), card)
table_ols = coeftable(reg_ols)
println("table_ols: \n$table_ols\n")
# IV automatically:
reg_iv = fit(EconometricModel,
    @formula(log(wage) ~ exper + (exper^2) + black + smsa +
                                    south + smsa66 + reg662 + reg663 +
                                    reg664 + reg665 + reg666 + reg667 +
                                    reg668 + reg669 + (educ ~ nearc4)), card)
table_iv = coeftable(reg_iv)
println("table_iv: \n$table_iv")
```

Script 15.3: Example-15-5.jl
using WooldridgeDatasets, GLM, DataFrames, Econometrics

```
mroz_wm = DataFrame(wooldridge("mroz"))
```

\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing. (mroz_wm.wage), :]
\# 1st stage (reduced form):
reg_redf = lm(@formula (educ ~ exper + (exper^2) +
motheduc + fatheduc), mroz)
mroz.educ_fitted = predict (reg_redf)
table_redf = coeftable (reg_redf)
println("table_redf: \n\$table_redf $\backslash n$ ")
\# 2nd stage:
reg_secstg = lm(@formula(log(wage) ~ educ_fitted + exper +
(exper^2)), mroz)
table_reg_secstg = coeftable (reg_secstg)
println("table_reg_secstg: \n\$table_reg_secstg $\backslash n$ ")
\# IV automatically:
reg_iv = fit (EconometricModel,
@formula(log(wage) ~ exper $+($ exper^2) +
(educ ~ motheduc + fatheduc)), mroz)
table_iv = coeftable (reg_iv)
println("table_iv: \n\$table_iv")

Script 15.4: Example-15-7.jl
using WooldridgeDatasets, GLM, DataFrames

```
mroz_wm = DataFrame(wooldridge("mroz"))
```

\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing. (mroz_wm.wage), :]
\# 1st stage (reduced form) :
reg_redf = lm(@formula(educ ~ exper + (exper^2) +

```
            motheduc + fatheduc), mroz)
mroz.resid = residuals(reg_redf)
# 2nd stage:
reg_secstg = lm(@formula(log(wage) ~ resid + educ +
    exper + (exper^2)), mroz)
table_reg_secstg = coeftable (reg_secstg)
println("table_reg_secstg: \n$table_reg_secstg")
```


Script 15.5: Example-15-8.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Distributions
mroz_wm = DataFrame (wooldridge("mroz"))
# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
# IV regression:
reg_iv = fit(EconometricModel,
    @formula(log(wage) ~ exper + (exper^2) +
                (educ ~ motheduc + fatheduc)), mroz)
table_iv = coeftable(reg_iv)
println("table_iv: \n$table_iv\n")
# auxiliary regression:
mroz.resid_iv = residuals(reg_iv)
reg_aux = lm(@formula(resid_iv ~ exper + (exper^2) +
                                    motheduc + fatheduc), mroz)
# calculations for test:
R2 = r2 (reg_aux)
n = nobs (reg_aux)
teststat = n * R2
pval = 1 - cdf(Chisq(1), teststat)
println("R2 = $R2\n")
println("n = $n\n")
println("teststat = $teststat\n")
println("pval = $pval")
```

Script 15.6: Example-15-10.jl
using WooldridgeDatasets, GLM, DataFrames, Econometrics
jtrain = DataFrame (wooldridge ("jtrain"))
\# define panel data (for 1987 and 1988 only) and sort:
jtrain_8788 = subset (jtrain, :year => ByRow (<=(1988)))
sort! (jtrain_8788, [:fcode, :year])
\# manual computation of deviations of entity means:
grouped_df $=$ groupby (jtrain_8788, : fcode)
diff_df = DataFrame (fcode=unique (jtrain_8788.fcode))
diff_df.lscrap_diff1 = combine(grouped_df, :lscrap $=>$ diff).lscrap_diff
diff_df.hrsemp_diff1 = combine (grouped_df, :hrsemp => diff).hrsemp_diff
diff_df.grant_diff1 = combine (grouped_df, :grant => diff).grant_diff
\# IV regression:
reg_iv $=$ fit (EconometricModel,

16. Scripts Used in Chapter 16

Script 16.1: Example-16-5-2SLS-1.jl

```
using WooldridgeDatasets, GLM, DataFrames, Econometrics, Statistics
```

mroz_wm = DataFrame(wooldridge("mroz"))
\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing. (mroz_wm.wage), :]
\# 2SLS regressions:
reg_iv1 = fit(EconometricModel,
@formula(hours ~ educ + age + kidslt6 + nwifeinc +
(log(wage) ~ exper + (exper^2))), mroz)
table_iv1 = coeftable(reg_iv1)
println("table_iv1: \n\$table_iv1 \n")
reg_iv2 = fit(EconometricModel,
@formula(log(wage) ~ educ + exper + (exper^2) +
(hours ~ age + kidslt6 + nwifeinc)), mroz)
table_iv2 = coeftable(reg_iv2)
println("table_iv2: \n\$table_iv2\n")
cor_u1u2 = cor(residuals(reg_iv1), residuals(reg_iv2))
println("cor_u1u2 =\$cor_u1u2")

Script 16.2: Example-16-5-2SLS-2.jl
using WooldridgeDatasets, GLM, DataFrames, PyCall
include("../03/getMats.jl")
\# install Python's linearmodels with: using Conda; Conda.add("linearmodels")
iv = pyimport("linearmodels.iv")
mroz_wm = DataFrame(wooldridge("mroz"))
\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
\# prepare for equation 1:
f1 = @formula(hours ~ 1 + educ + age + kidslt6 + nwifeinc)
yexog = getMats (f1, mroz)
y_eq1 = yexog[1]
exog_mat_eq1 = yexog[2]
f2 = @formula(1 ~ 0 + log(wage))
endo_mat_eq1 = getMats(f2, mroz) [2]
f 3 = @formula(1~0 0 exper $+\left(\right.$ exper^$\left.^{\wedge} 2\right)$)
iv_mat_eq1 = getMats (f3, mroz) [2]
\# prepare for equation 2 :
f1 = @formula(log(wage) ~ $1+$ educ + exper $+($ exper^2))

```
yexog = getMats(f1, mroz)
y_eq2 = yexog[1]
exog_mat_eq2 = yexog[2]
f2 = @formula(1 ~ 0 + hours)
endo_mat_eq2 = getMats(f2, mroz)[2]
f3 = @formula(1 ~ 0 + age + kidslt6 + nwifeinc)
iv_mat_eq2 = getMats(f3, mroz)[2]
# use Python's linearmodels:
reg_iv1 = iv.IV2SLS (y_eq1, exog_mat_eq1, endo_mat_eq1, iv_mat_eq1)
results_iv1 = reg_iv1.fit(cov_type="unadjusted", debiased=true)
println("results_iv1: \n$results_iv1\n")
reg_iv2 = iv.IV2SLS(y_eq2, exog_mat_eq2, endo_mat_eq2, iv_mat_eq2)
results_iv2 = reg_iv2.fit(cov_type="unadjusted", debiased=true)
println("results_iv2: \n$results_iv2")
```

Script 16.3: Example-16-5-3SLS.jl
using WooldridgeDatasets, GLM, DataFrames, PyCall include(". ./03/getMats.jl")
iv3 = pyimport("linearmodels.system")
mroz_wm = DataFrame (wooldridge("mroz"))
\# restrict to non-missing wage observations:
mroz = mroz_wm[.!ismissing.(mroz_wm.wage), :]
\# prepare for equation 1:
f1 = @formula(hours ~ 1 + educ + age + kidslt6 + nwifeinc)
yexog $=$ getMats (f1, mroz)
y_eq1 = yexog[1]
exog_mat_eq1 = yexog[2]
f2 = @formula(1 ~ 0 + log(wage))
endo_mat_eq1 = getMats (f2, mroz) [2]
f3 = @formula(1 ~ $0+$ exper $+($ exper^2))
iv_mat_eq1 = getMats (f3, mroz) [2]
\# prepare for equation 2:
f1 = @formula(log(wage) ~ $1+$ educ + exper $+($ exper^2))
yexog $=$ getMats (f1, mroz)
y_eq2 = yexog[1]
exog_mat_eq2 = yexog[2]
f2 = @formula(1 ~ 0 + hours)
endo_mat_eq2 = getMats(f2, mroz) [2]
f3 = @formula(1 ~ 0 + age + kidslt6 + nwifeinc)
iv_mat_eq2 $=$ getMats (f3, mroz) [2]
\# use Python's linearmodels:
reg_3sls $=$ iv3.IV3SLS (Dict ([
("eq1", (y_eq1, exog_mat_eq1, endo_mat_eq1, iv_mat_eq1)),
("eq2", (y_eq2, exog_mat_eq2, endo_mat_eq2, iv_mat_eq2))]))

```
results_3sls = reg_3sls.fit(cov_type="unadjusted", debiased=true)
println("results_3sls: \n$results_3sls")
```


17. Scripts Used in Chapter 17

Script 17.1: Example-17-1-1.jl

```
using WooldridgeDatasets, GLM, DataFrames
include("../08/calc-white-se.jl")
mroz = DataFrame(wooldridge("mroz"))
# estimate linear probability model:
reg_lin = lm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) +
                                age + kidslt6 + kidsge6), mroz)
hc0 = calc_white_se(reg_lin, mroz)
table_reg_lin = DataFrame(
    coefficients=coeftable(reg_lin).rownms,
    b=round.(coef(reg_lin), digits=5),
    se_white=hc0)
println("table_reg_lin: \n$table_reg_lin")
```

Script 17.2: Example-17-1-2.jl

```
using WooldridgeDatasets, GLM, DataFrames
mroz = DataFrame(wooldridge("mroz"))
# estimate linear probability model:
reg_lin = lm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) +
    age + kidslt6 + kidsge6), mroz)
# predictions for two "extreme" women:
X_new = DataFrame(nwifeinc=[100, 0], educ=[5, 17],
    exper=[0, 30], age=[20, 52],
    kidslt6=[2, 0], kidsge6=[0, 0])
predictions = round.(predict(reg_lin, X_new), digits=5)
print("predictions = $predictions")
```

Script 17.3: Example-17-1-3.jl

```
using WooldridgeDatasets, GLM, DataFrames
mroz = DataFrame(wooldridge("mroz"))
# estimate logit model:
reg_logit = glm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                                    kidslt6 + kidsge6),
    mroz, Binomial(), LogitLink())
table_reg_logit = coeftable(reg_logit)
println("table_reg_logit: \n$table_reg_logit\n")
# log likelihood value:
ll = deviance(reg_logit) / -2
println("ll = $ll\n")
```

```
# McFadden's pseudo R2:
reg_logit_null = glm(@formula(inlf ~ 1), mroz, Binomial(), LogitLink())
ll_null = deviance(reg_logit_null) / -2
pr2 = 1 - ll / ll_null
println("pr2 = $pr2")
```

Script 17.4: Example-17-1-4.jl
using WooldridgeDatasets, GLM, DataFrames
mroz = DataFrame(wooldridge("mroz"))
\# estimate probit model:
reg_probit $=$ glm(@formula(inlf \sim nwifeinc + educ + exper $+($ exper^ 2$)+$ age + kidslt6 + kidsge6),
mroz, Binomial(), ProbitLink())
table_reg_probit = coeftable (reg_probit)
println("table_reg_probit: \n\$table_reg_probit\n")
\# log likelihood value:
11 = deviance (reg_probit) / -2
println("ll=\$ll\n")
\# McFadden's pseudo R2:
reg_probit_null = glm(@formula(inlf ~ 1), mroz, Binomial(), ProbitLink())
ll_null = deviance(reg_probit_null) / -2
pr2 = 1 - ll / ll_null
println("pr2 = \$pr2")

Script 17.5: Example-17-1-5.j1
using WooldridgeDatasets, GLM, DataFrames, Distributions

```
mroz = DataFrame(wooldridge("mroz"))
```

\# estimate probit model:
reg_probit $=$ glm(@formula(inlf \sim nwifeinc + educ + exper $+($ exper^ 2$)+$ age +
kidslt6 + kidsge6),
mroz, Binomial(), ProbitLink())
11 = deviance (reg_probit) / -2
\# test of overall significance (test statistic and p value):
reg_probit_null = glm(@formula(inlf ~ 1), mroz, Binomial(), ProbitLink())
ll_null = deviance (reg_probit_null) / -2
$\operatorname{lr} 1=2$ * (ll - ll_null)
pral_all = 1 - cdf(Chisq(7), lr1)
println("lr1 = \$lr1\n")
println("pval_all = \$pval_all\n")
\# likelihood ratio statistic test of $H 0$ (experience and age are irrelevant):
reg_probit_hyp = glm(@formula(inlf ~ nwifeinc + educ + kidslt6 + kidsge6),
mroz, Binomial(), ProbitLink())
ll_hyp = deviance (reg_probit_hyp) / -2
lr2 = 2 * (ll - ll_hyp)
pval_hyp $=1-\operatorname{cdf}(C h i s q(3), \quad \operatorname{lr} 2)$
println("lr2 = \$lr2\n")
println("pval_hyp = \$pval_hyp")

Script 17.6: Example-17-1-6.jl

```
using WooldridgeDatasets, GLM, DataFrames
mroz = DataFrame(wooldridge("mroz"))
# estimate models:
reg_lin = lm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                    kidslt6 + kidsge6), mroz)
reg_logit = glm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                    kidslt6 + kidsge6),
    mroz, Binomial(), LogitLink())
reg_probit = glm(@formula(inlf ~ nwifeinc + educ + exper + (exper^2) + age +
                                    kidslt6 + kidsge6),
    mroz, Binomial(), ProbitLink())
# predictions for two "extreme" women:
X_new = DataFrame (nwifeinc=[100, 0], educ=[5, 17],
    exper=[0, 30], age=[20, 52],
    kidslt6=[2, 0], kidsge6=[0, 0])
predictions_lin = round.(predict(reg_lin, X_new), digits=5)
predictions_logit = round.(predict(reg_logit, X_new), digits=5)
predictions_probit = round.(predict(reg_probit, x_new), digits=5)
println("predictions_lin = $predictions_lin\n")
println("predictions_logit = $predictions_logit\n")
println("predictions_probit = $predictions_probit")
```

Script 17.7: Binary-Predictions.jl
using Distributions, GLM, Random, Plots, DataFrames
\# set the random seed:
Random. seed! (12345)
$y=\operatorname{rand}(B i n o m i a l(1,0.5), 100)$
$\mathrm{x}=\mathrm{rand}(\operatorname{Normal}(), 100)+2 * y$
sim_data $=$ DataFrame $(y=y, x=x)$
\# estimation:
reg_lin = lm(@formula $(\mathrm{y} \sim \mathrm{x})$, sim_data)
reg_logit = glm(@formula(y ~ x), sim_data, Binomial(), LogitLink())
reg_probit $=$ glm(@formula(y ~ x), sim_data, Binomial(), ProbitLink())
\# prediction for regular grid of x values:
X_new = DataFrame (x=range (minimum (x), maximum (x), length=50))
predictions_lin = predict (reg_lin, X_new)
predictions_logit = predict (reg_logit, X_new)
predictions_probit = predict(reg_probit, X_new)
\# scatter plot and fitted values:
scatter (x, y, label=false, color="black", legend=:topleft)
plot! (X_new.x, predictions_lin, linewidth=2,
label="linear", color="black")
plot! (X_new.x, predictions_logit, linewidth=2,
label="logit", color="black", linestyle=:dash)
plot! (X_new.x, predictions_probit, linewidth=2,
label="probit", color="black", linestyle=:dot)
ylabel! ("y")
xlabel!("x")
savefig("JlGraphs/Binary-Predictions.pdf")

Script 17.8: Binary-Margeff.jl

```
using Distributions, GLM, Random, Plots, DataFrames
# set the random seed:
Random.seed!(12345)
y = rand(Binomial(1, 0.5), 100)
x = rand (Normal(), 100) + 2 * y
sim_data = DataFrame (y=y, x=x)
# estimation:
reg_lin = lm(@formula(y ~ x), sim_data)
reg_logit = glm(@formula(y ~ x), sim_data, Binomial(), LogitLink())
reg_probit = glm(@formula(y ~ x), sim_data, Binomial(), ProbitLink())
# partial effects:
PE_lin = range(coef(reg_lin) [2], coef(reg_lin) [2], length=100)
coefs_logit = coeftable(reg_logit).cols[1]
xb_logit = reg_logit.mm.m * coefs_logit
factor_logit = pdf.(Logistic(), xb_logit)
PE_logit = coefs_logit[2] * factor_logit
coefs_probit = coeftable(reg_probit).cols[1]
xb_probit = reg_probit.mm.m * coefs_probit
factor_probit = pdf.(Normal(), xb_probit)
PE_probit = coefs_probit[2] * factor_probit
# plot PE's:
scatter(x, PE_lin, markershape=:circle, label="linear",
    color="black", legend=:topleft)
scatter!(x, PE_logit, markershape=:cross, label="logit",
    color="black", legend=:topleft)
scatter!(x, PE_probit, markershape=:star, label="probit",
    color="black", legend=:topleft)
ylabel!("partial effects")
xlabel!("x")
savefig("JlGraphs/Binary-margeff.pdf")
```

Script 17.9: Example-17-1-7.jl
using WooldridgeDatasets, GLM, DataFrames, Statistics, Distributions, LinearAlgebra

```
mroz = DataFrame(wooldridge("mroz"))
```

\# estimate models:
reg_lin = lm(@formula(inlf \sim nwifeinc + educ + exper $+($ exper^2) + age +
kidslt6 + kidsge6), mroz)
reg_logit $=$ glm(@formula(inlf ~ nwifeinc + educ + exper $+($ exper^2) + age +
kidslt6 + kidsge6),
mroz, Binomial(), LogitLink())
reg_probit $=$ glm(@formula(inlf \sim nwifeinc + educ + exper $+($ exper^2) + age +
kidslt6 + kidsge6),
mroz, Binomial(), ProbitLink())

```
# average partial effects:
APE_lin = coef(reg_lin)
coefs_logit = coef(reg_logit)
xb_logit = reg_logit.mm.m * coefs_logit
factor_logit = mean(pdf.(Logistic(), xb_logit))
APE_logit = coefs_logit * factor_logit
coefs_probit = coef(reg_probit)
xb_probit = reg_probit.mm.m * coefs_probit
factor_probit = mean(pdf.(Normal(), xb_probit))
APE_probit = coefs_probit * factor_probit
# print results:
table_manual = DataFrame(
    coef_names=coeftable(reg_lin).rownms,
    APE_lin=round.(APE_lin, digits=5),
    APE_logit=round.(APE_logit, digits=5),
    APE_probit=round.(APE_probit, digits=5))
println("table_manual: \n$table_manual")
```

Script 17.10: Example-17-3.jl

```
using WooldridgeDatasets, GLM, DataFrames
crime1 = DataFrame(wooldridge("crime1"))
# estimate linear model:
reg_lin = lm(@formula(narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 +
    inc86 + black + hispan + born60), crime1)
table_lin = coeftable(reg_lin)
println("table_lin: \n$table_lin\n")
# estimate Poisson model:
reg_poisson = glm(@formula(narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 +
                        inc86 + black + hispan + born60),
    crime1, Poisson())
table_poisson = coeftable(reg_poisson)
println("table_poisson: \n$table_poisson\n")
# estimate Quasi-Poisson model:
yhat = predict(reg_poisson)
resid = crimel.narr86 .- yhat
sigma_sq = 1 / (2725 - 9 - 1) * sum(resid .^ 2 ./ yhat)
table_qpoisson = coeftable(reg_poisson)
table_qpoisson.cols[2] = table_qpoisson.cols[2] * sqrt(sigma_sq)
println("table_qpoisson: \n$table_qpoisson")
```

Script 17.11: Tobit-CondMean.jl
using Random, Distributions, Statistics, Plots
\# set the random seed:
Random.seed! (12345)
$\mathrm{x}=\operatorname{sort}($ rand $($ Normal ($), 100) .+4)$
$\mathrm{xb}=-4$.+ 1 * x
y_star $=\mathrm{xb} .+\operatorname{rand}(\operatorname{Normal}(), 100)$
$\mathrm{y}=$ copy (y_star)
y[y_star.<0] .= 0

```
# conditional means:
Eystar = xb
Ey = cdf.(Normal(), xb) .* xb .+ pdf.(Normal(), xb)
# plot data and conditional means:
hline([0], color="grey", label=false, legend=:topleft)
scatter!(x, y_star, color="black", markershape=:xcross, label="y*")
scatter!(x, y, color="black", markershape=:cross, label="y")
plot!(x, Eystar, color="black", linewidth=2, linestyle=:solid, label="E(y*)")
plot!(x, Ey, color="black", linewidth=2, linestyle=:dash, label="E(y)")
ylabel!("y")
xlabel!("x")
savefig("JlGraphs/Tobit-CondMean.pdf")
```

Script 17.12: Example-17-2.jl

```
using WooldridgeDatasets, GLM, DataFrames, Statistics, Distributions,
    LinearAlgebra, Optim
include("../03/getMats.jl")
# load data and build data matrices:
mroz = DataFrame(wooldridge("mroz"))
f = @formula(hours ~ 1 + nwifeinc + educ + exper +
    (exper^2) + age + kidslt6 + kidsge6)
xy = getMats(f, mroz)
y = xy[1]
x = xy[2]
# define a function that returns the negative log likelihood per observation
# (for details on the implementation see Wooldridge (2019), formula 17.22):
function ll_tobit(params, y, X)
    p = size(X, 2)
    beta = params[1:p]
    sigma = exp(params[p+1])
    y_hat = X * beta
    y_eq = (y .== 0)
    y_g = (y .> 0)
    ll = zeros(length(y))
    ll[y_eq] = log.(cdf.(Normal(), -y_hat[y_eq] / sigma))
    ll[y_g] = log.(pdf.(Normal(), (y.-y_hat) [y_g] / sigma)) .- log(sigma)
    # return the negative sum of log likelihoods for each observation:
    return -sum(ll)
end
```

\# generate starting solution:
reg_ols = lm(@formula(hours ~ nwifeinc + educ + exper + (exper^2) +
age + kidslt6 + kidsge6), mroz)
resid_ols = residuals (reg_ols)
sigma_start = log(sum(resid_ols .^ 2) / length(resid_ols))
params_start $=$ vcat (coef(reg_ols), sigma_start)
\# maximize the log likelihood = minimize the negative of the log likelihood:
optimum = optimize (par \rightarrow ll_tobit(par, y, X), params_start, Newton())
mle_est = Optim.minimizer (optimum)
11 = -optimum.minimum
\# print results:
table_mle $=$ DataFrame (

```
    coef_names=vcat(coeftable(reg_ols).rownms, "exp_sigma"),
    mle_est=round.(mle_est, digits=5))
println("table_mle: \n$table_mle\n")
println("ll = $ll")
```

Script 17.13: Example-17-4.jl

```
using WooldridgeDatasets, GLM, DataFrames, Statistics, Distributions,
        LinearAlgebra, Optim
# load data and build data matrices:
recid = DataFrame(wooldridge("recid"))
f = @formula(ldurat ~ 1 + workprg + priors + tserved +
                        felon + alcohol + drugs + black +
        married + educ + age)
xy = getMats(f, recid)
y = xy[1]
X = xy[2]
# define dummy for censored observations:
censored = recid.cens .!= 0
# generate starting solution:
reg_ols = lm(@formula(ldurat ~ workprg + priors + tserved +
    felon + alcohol + drugs +
    black + married +
    educ + age), recid)
resid_ols = residuals(reg_ols)
sigma_start = log(sum(resid_ols .^ 2) / length(resid_ols))
params_start = vcat(coef(reg_ols), sigma_start)
# define a function that returns the negative log likelihood per observation:
```

function ll_censreg (params, Y, X, cens)
p = size (X, 2)
beta $=$ params $[1: p]$
sigma $=\exp ($ params $[p+1])$
y_hat = X * beta
ll $=$ zeros (length (y))
\# uncensored:
ll[.!cens] = log. (pdf. (Normal(),
(y.-y_hat) [.!cens] / sigma)) .- log(sigma)
\# censored:
ll[cens] = log.(cdf. (Normal(), -(y.-y_hat)[cens] / sigma))
\# return the negative sum of log likelihoods for each observation:
return -sum(ll)
end
\# maximize the log likelihood = minimize the negative of the log likelihood:
optimum = optimize (par -> ll_censreg(par, y, X, censored), params_start, Newton())
mle_est $=$ Optim.minimizer (optimum)
11 = -optimum.minimum
\# print results of MLE:
table_mle = DataFrame (
coef_names=vcat (coeftable(reg_ols).rownms, "exp_sigma"),
mle_est=round. (mle_est, digits=5))
println("table_mle: \n\$table_mle\n")
println("ll = \$ll")

Script 17.14: TruncReg-Simulation.jl

```
using GLM, Random, Distributions, Statistics, Plots, DataFrames
# set the random seed:
Random.seed!(12345)
x = sort (rand(Normal(), 100) . + 4)
y = -4 . + 1 * x . + rand (Normal (), 100)
compl = DataFrame (x=x, y=y)
sample = (y .> 0)
# complete observations and observed sample:
x_sample = x[sample]
Y_sample = y[sample]
sample = DataFrame (x=x_sample, y=y_sample)
# predictions OLS:
reg_ols = lm(@formula(y ~ x), sample)
yhat_ols = fitted(reg_ols)
# predictions truncated regression:
reg_tr = lm(@formula(y ~ x), compl)
yhat_tr = fitted(reg_tr)
# plot data and conditional means:
hline([0], color="grey", label=false, legend=:topleft)
scatter!(compl.x, compl.y, color="black", markershape=:circle,
    markercolor=:white, label="all data")
scatter!(sample.x, sample.y, color="black", markershape=:circle,
    label="sample data")
plot!(sample.x, yhat_ols, color="black", linewidth=2,
    linestyle=:dash, label="OLS fit")
plot!(compl.x, yhat_tr, color="black", linewidth=2,
    linestyle=:solid, label="Trunc. Reg. fit")
ylabel!("y")
xlabel!("x")
savefig("JlGraphs/TruncReg-Simulation.pdf")
```

Script 17.15: Example-17-5.jl
using WooldridgeDatasets, GLM, DataFrames, Distributions
\# load data and build data matrices:
mroz = DataFrame (wooldridge("mroz"))
\# step 1 (use all n observations to estimate a probit model of s _i on $z_{\text {_ }}$):
reg_probit $=$ glm(@formula(inlf \sim educ + exper +
(exper^2) + nwifeinc +
age + kidslt6 + kidsge6),
mroz, Binomial(), ProbitLink())
pred_inlf_linpart = quantile. (Normal(), fitted(reg_probit))
mroz.inv_mills = pdf. (Normal(), pred_inlf_linpart) ./
cdf. (Normal(), pred_inlf_linpart)
\# step 2 (regress $y_{\text {_i }}$ i on $x_{\text {_i }}$ and inv_mills in sample selection): mroz_subset $=$ subset (mroz, :inlf => ByRow (==(1)))
reg_heckit $=\operatorname{lm}(@ f o r m u l a(l w a g e ~ \sim ~ e d u c ~+~ e x p e r ~+~(e x p e r \wedge 2) ~+~$
inv_mills), mroz_subset)

```
# print results:
```

table_reg_heckit = coeftable (reg_heckit)
println("table_reg_heckit: \n\$table_reg_heckit")

18. Scripts Used in Chapter 18

Script 18.1: Example-18-1.jl

```
using WooldridgeDatasets, GLM, DataFrames
hseinv = DataFrame(wooldridge("hseinv"))
# add lags and detrend:
reg_trend = lm(@formula(linvpc ~ t), hseinv)
hseinv.linvpc_det = residuals(reg_trend)
hseinv.gprice_lag1 = lag(hseinv.gprice, 1)
hseinv.linvpc_det_lag1 = lag(hseinv.linvpc_det, 1)
# Koyck geometric d.l.:
reg_koyck = lm(@formula(linvpc_det ~ gprice +
                                    linvpc_det_lag1), hseinv)
table_koyck = coeftable(reg_koyck)
println("table_koyck: \n$table_koyck\n")
# rational d.l.:
reg_rational = lm(@formula(linvpc_det ~ gprice + linvpc_det_lag1 +
                                    gprice_lag1), hseinv)
table_rational = coeftable(reg_rational)
println("table_rational: \n$table_rational\n")
# calculate LRP as...
# gprice / (1 - linvpc_det_lag1):
lrp_koyck = coef(reg_koyck)[2] / (1 - coef(reg_koyck)[3])
println("lrp_koyck = $lrp_koyck\n")
# and (gprice + gprice_lag1) / (1 - linvpc_det_lag1):
lrp_rational = (coef(reg_rational)[2] + coef(reg_rational)[4]) /
    (1 - coef(reg_rational) [3])
println("lrp_rational = $lrp_rational")
```

Script 18.2: Example-18-4.jl
using WooldridgeDatasets, DataFrames, HypothesisTests

```
inven = DataFrame(wooldridge("inven"))
```

inven.lgdp $=\log$. (inven.gdp)
\# automated ADF:
adf_lag = 1
res_ADF_aut = ADFTest (inven.lgdp, :trend, adf_lag)
println("res_ADF_aut: \n\$res_ADF_aut")

Script 18.3: Simulate-Spurious-Regression-1.jl

```
# set the random seed:
Random.seed!(12345)
# i.i.d. N(0,1) innovations:
n = 51
e = rand(Normal(), n)
e[1] = 0
a = rand(Normal(), n)
a[1] = 0
# independent random walks:
x = cumsum(a)
y = cumsum(e)
sim_data = DataFrame(y=y, x=x)
# regression:
reg = lm(@formula(y ~ x), sim_data)
reg_table = coeftable(reg)
println("reg_table: \n$reg_table")
# graph:
plot(x, color="black", linewidth=2, linestyle=:solid, label="x")
plot!(y, color="black", linewidth=2, linestyle=:dash, label="y")
ylabel!("y")
xlabel!("x")
savefig("JlGraphs/Simulate-Spurious-Regression-1.pdf")
```

Script 18.4: Simulate-Spurious-Regression-2.jl using Random, Distributions, Statistics, Plots, GLM, DataFrames
\# set the random seed:
Random. seed! (12345)
pvals = zeros(10000)
for i in 1:10000
\# i.i.d. $N(0,1)$ innovations:
$\mathrm{n}=51$
$\mathrm{e}=\operatorname{rand}(\operatorname{Normal}(), \mathrm{n})$
$e[1]=0$
$\mathrm{a}=\operatorname{rand}(\operatorname{Normal}(), \mathrm{n})$
$a[1]=0$
\# independent random walks:
$\mathbf{x}=$ cumsum (a)
$y=$ cumsum (e)
sim_data $=$ DataFrame $(y=y, x=x)$
\# regression:
reg $=$ lm(@formula $(y \sim x)$, sim_data)
reg_table = coeftable (reg)
\# save the p value of x :
pvals[i] = reg_table.cols[4][2]
end
\# how often is $\mathrm{p}<=5 \%$:
count_pval_smaller $=$ sum(pvals.$<=0.05$) \# counts true elements
println("count_pval_smaller = \$count_pval_smaller\n")

```
# how often is p>5%:
count_pval_greater = sum(pvals .> 0.05) # counts true elements
println("count_pval_greater = $count_pval_greater")
```

Script 18.5: Example-18-8.jl
using WooldridgeDatasets, GLM, DataFrames, Statistics, Plots
phillips = DataFrame(wooldridge("phillips"))
\# estimate models:
yt96 = subset (phillips, :year => ByRow(<=(1996)))
reg_1 = lm(@formula(unem ~ unem_1), yt96)
reg_2 = lm(@formula(unem ~ unem_1 + inf_1), yt96)
\# predictions for 1997-2003:
yf97 = subset (phillips, :year => ByRow(>(1996)))
pred_1 = round. (predict (reg_1, yf97), digits=5)
println("pred_1 = \$pred_1\n")
pred_2 = round. (predict (reg_2, yf97), digits=5)
println("pred_2 = \$pred_2\n")
\# forecast errors:
e1 = yf97. unem .- pred_1
e2 = yf97. unem .- pred_2
\# RMSE and MAE:
rmse1 = sqrt (mean (e1 .^ 2))
println("rmse1 = \$rmse1 \n")
rmse2 $=\operatorname{sqrt}(\operatorname{mean}(e 2$.^ 2))
println("rmse2 = \$rmse2\n")
mae1 $=$ mean (abs. (e1))
println("mae1 = \$mae1 \n")
mae2 $=$ mean (abs. (e2))
println("mae2 = \$mae2")
\# graph:
plot (yf97.year, yf97.unem, color="black", linewidth=2, linestyle=:solid, label="unem", legend=:topleft)
plot! (yf97.year, pred_1, color="black", linewidth=2,
linestyle=:dash, label="forecast without inflation")
plot! (yf97.year, pred_2, color="black", linewidth=2, linestyle=:dashdot, label="forecast with inflation")
ylabel! ("unemployment")
xlabel! ("time")
savefig("JlGraphs/Example-18-8.pdf")

19. Scripts Used in Chapter 19

Script 19.1: ultimate-calcs.jl

```
########################################################################
# Project X:
# "The Ultimate Question of Life, the Universe, and Everything"
```

```
# Project Collaborators: Mr. H, Mr. B
#
# Julia Script "ultimate-calcs"
# by: F Heiss
# Date of this version: December 1, }202
########################################################################
# load packages:
using Dates
# create a time stamp:
ts = now()
# print to logfile.txt (write=true resets the logfile before writing output)
# in the provided path (make sure that the folder structure
# you may provide already exists):
open("Jlout/19/logfile.txt", write=true) do io
    println(io, "This is a log file from: \n $ts\n")
end
# the first calculation using the square root function:
result1 = sqrt(1764)
# print to logfile.txt but with keeping the previous results (append=true):
open("Jlout/19/logfile.txt", append=true) do io
        println(io, "result1: $result1\n")
end
# the second calculation reverses the first one:
result2 = result1^2
# print to logfile.txt but with keeping the previous results (append=true):
open("Jlout/19/logfile.txt", append=true) do io
    println(io, "result2: $result2")
end
```

Script 19.2: ultimate-calcs2.jl

```
# load packages:
using Dates
# create a time stamp:
ts = now()
# print to logfile2.txt (write=true resets the logfile before writing output)
# in the provided path (make sure that the folder structure
# you may provide already exists):
open("Jlout/19/logfile2.txt", write=true) do io
    println(io, "This is a log file from: \n $ts\n")
    # the first calculation using the square root function:
    result1 = sqrt(1764)
    # print to logfile2.txt:
    println(io, "result1: $result1\n")
    # the second calculation reverses the first one:
    result2 = result1^2
    # print to logfile2.txt:
    println(io, "result2: $result2")
end
```


Bibliography

Bates, D. and other contributors (2012): GLM.jl Manual: Linear and generalized linear models in Julia, https://juliastats.org/GLM.jl/stable/.
Bates, D., J. M. White, J. Bezanson, S. Karpinski, V. B. Shah, and other contributors (2012): Distributions.jl, https://juliastats.org/Distributions.jl/stable/.
Bhardwaj, A. (2020): WooldridgeDatasets.jl, https://docs.juliahub.com/WooldridgeDatasets/.
Boeнm, J. (2017): RegressionTables.jl, https://github.com/jmboehm/RegressionTables.jl.
Bouchet-Valat, M. (2014): FreqTables.jl, https://github.com/nalimilan/FreqTables.jl.
Breloff, T. (2015): Plots.jl, https://docs.juliaplots.org/stable/.

- (2016): StatsPlots.jl, https://docs.juliaplots.org/latest/generated/statsplots/.

Byrne, S. (2014): KernelDensity.jl, https://docs.juliahub.com/KernelDensity / .
Calderón, S. and J. Bayoán (2020): Econometrics.jl, vol. 1, The Open Journal.
Harris, H., EPRI, C. DuBois, J. M. White, M. Bouchet-Valat, B. Kamiński, and other contributors (2022): DataFrames Documentation, https://dataframes.juliadata.org/stable/.
Heiss, F. (2020): Using R for Introductory Econometrics, CreateSpace Independent Publishing Platform, 2 ed.

Heiss, F. and D. Brunner (2020): Using Python for Introductory Econometrics, CreateSpace Independent Publishing Platform, 2 ed.
Johnson, S. G. (2015): PyCall.jl, https://docs.juliahub.com/PyCall/.
Kleinschmidt, D. (2016): StatsModels.jl Documentation, https://juliastats.org/StatsModels.jl/.
Kluyver, T., B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and J. development team (2016): "Jupyter Notebooks - a publishing format for reproducible computational workflows," in Positioning and Power in Academic Publishing: Players, Agents and Agendas, ed. by F. Loizides and B. Schmidt, IOS Press, 87-90.
Kornblith, S. and other contributors (2012): HypothesisTests.jl, https://juliastats.org/HypothesisTests.jl/stable/.
Mogensen, P. K., A. N. Riseth, J. M. White, T. Holy, and other contributors (2017): Optim.jl, https://docs.juliahub.com/Optim/R5uoh/1.2.2/.
Quinn, J. and other contributors (2015): CSV.jl, https://csv.juliadata.org/stable/.
Revels, J. (2015): BenchmarkTools.jl, https://juliaci.github.io/BenchmarkTools.jl/stable/.
Segal, D. (2020): MarketData.jl, https://juliaquant.github.io/MarketData.jl/stable/.
Silverman, B. W. (1986): Density Estimation for Statistics and Data Analysis, Chapman \& Hall.
Storopoli, J., R. Huijzer, and L. Alonso (2021): Julia Data Science, https://juliadatascience.io.
Taylor, J. E. (2006): QuantileRegressions.jl, https://github.com/pkofod/QuantileRegressions.jl.

White, J. M., M. Bouchet-Valat, and other contributors (2016): CategoricalArrays.jl, https:/ /categoricalarrays.juliadata.org/stable/.
Wooldridge, J. M. (2010): Econometric Analysis of Cross Section and Panel Data, MIT Press.
_ (2014): Introduction to Econometrics, Cengage Learning.
(2019): Introductory Econometrics: A Modern Approach, Cengage Learning, 7th ed.

List of Wooldridge (2019) Examples

Example 2.3, 79, 81
Example 2.4, 82
Example 2.5, 83
Example 2.6, 85
Example 2.7, 86
Example 2.8, 87
Example 2.9, 88
Example 2.10, 89
Example 2.11, 90
Example 2.12, 93
Example 3.1, 102, 106, 108
Example 3.2, 102
Example 3.3, 102
Example 3.4, 102
Example 3.5, 102
Example 3.6, 102
Example 4.1, 117
Example 4.3, 114
Example 4.8, 118
Example 4.10, 123
Example 5.3, 131
Example 6.1, 135
Example 6.2, 137
Example 6.3, 139
Example 6.5, 142
Example 7.1, 148
Example 7.6, 149
Example 7.8, 153
Example 8.2, 158
Example 8.4, 161
Example 8.5, 163
Example 8.6, 164
Example 8.7, 166
Example 9.2, 169
Example 10.2, 185
Example 10.4, 191, 192
Example 10.7, 194
Example 10.11, 195
Example 11.4, 197

Example 11.6, 206
Example 12.1, 215
Example 12.2, 210
Example 12.4, 211
Example 12.5, 213
Example 12.9, 216
Example 13.2, 221
Example 13.3, 222
Example 13.9, 227
Example 14.2, 230
Example 14.4, 231
Example 15.1, 238
Example 15.4, 239
Example 15.5, 241
Example 15.7, 243
Example 15.8, 244
Example 15.10, 245
Example 16.3, 248
Example 16.5, 248
Example 17.1, 256
Example 17.2, 269
Example 17.3, 265
Example 17.4, 270
Example 17.5, 274
Example 18.1, 275
Example 18.4, 277
Example 18.8, 282
Example B.6, 51
Example C.2, 55
Example C.3, 56
Example C.5, 58
Example C.6, 60
Example C.7, 61

Index

2SLS, 241, 248
3SLS, 252
401ksubs, 164
affairs, 37, 39
ARCH models, 216
argument modification, 16
arguments, 64
asymptotics, 69, 125
AUDIT, 56
augmented Dickey-Fuller (ADF) test, 277
autocorrelation, see serial correlation
average partial effects (APE), 263, 267
BARIUM, 187, 195, 211, 213
Beta Coefficients, 134
Bool, 13
Boolean variable, 150
Breusch-Godfrey test, 209
Breusch-Pagan test, 161
CARD, 239
CDF, see cumulative distribution function
CDF in Distributions
Bernoulli, 48
Binomial, 48
Chisq, 48
Exponential, 48
FDist, 48
Geometric, 48
Hypergeometric, 48
LogNormal, 48
Logistic, 48
Normal, 48
Poisson, 48
TDist, 48
Uniform, 48
cell, 289
censored regression models, 270
central limit theorem, 70

CEOSAL1, 42, 44, 79
classical linear model (CLM), 113
Cochrane-Orcutt estimator, 213
coefficient of determination, see R^{2}
cointegration, 281
confidence interval, 55, 71
for parameter estimates, 118
for predictions, 140
for the sample mean, 55
control function, 243
convergence in distribution, 70
convergence in probability, 69
correlated random effects, 233
count data, 265
CPS1985, 151
cps78_85,221
CRIME2, 225
CRIME 4, 227
critical value, 57
cumulative distribution function (CDF), 51
data
example data sets, 27
data types
Any, 13
Array, 13
Bool, 13
DataFrame, 20
Dict, 17
Float64,13
Int64, 13
Matrix, 13
NamedTuple, 19
Pair, 19
Range, 18
String, 13
Symbol, 19
Tuple, 19
Vector, 13
definition, 13

Dickey-Fuller (DF) test, 277
difference-in-differences, 222
distributed lag
finite, 191
geometric (Koyck), 275
infinite, 275
rational, 275
distributions, 48
dummy variable, 147
dummy variable regression, 233
Durbin-Watson test, 212
elasticity, 89
Engle-Granger procedure, 281
Engle-Granger test, 281
error correction model, 281
errors, 10
errors-in-variables, 172
F test, 119
feasible GLS, 166
FERTIL3, 191
FGLS, 166
first differenced estimator, 225
fixed effects, 229
for loop, 62
frequency table, 36
function plot, 31
functions, 63
generalized linear model (GLM), 257
getMats, 107
global variables, 64
GPA1, 114
graph
export, 35
Heckman selection model, 272
heteroscedasticity, 157
autoregressive conditional (ARCH), 216
histogram, 42
HSEINV, 194
identity, 133
if else, 62
import
MarketData, 30
include, 107
infinity (Inf), 174
instrumental variables, 237

INTDEF, 185
interactions, 138

JTRAIN, 245
Jupyter Notebook, 288
kernel density plot, 42
keyword argument, 64
KIELMC, 222
LATEX, 289
law of large numbers, 69
LAWSCH85, 153, 176
least absolute deviations (LAD), 181
likelihood ratio (LR) test, 260
linear probability model, 255
LM Test, 131
local variables, 64
log files, 287
logarithmic model, 89
logit, 257
long-run propensity (LRP), 192, 275
macro, 65
marginal effect, 262
matrix
multiplication, 19
matrix algebra, 19
maximum likelihood estimation (MLE), 257
mean absolute error (MAE), 282
MEAP 93, 93
measurement error, 171
missing (missing), 174
missing data, 174
MLB1, 119
Monte Carlo simulation, 66, 95, 125
MROZ, 238, 241, 274
mroz, 256, 269
multicollinearity, 110
Newey-West standard errors, 215
not a number, 174
NYSE, 197
object, 11
OLS
asymptotics, 125
coefficients, 83
estimation, 80, 101
matrix form, 105
on a constant, 90
sampling variance, 92,109
through the origin, 90
variance-covariance matrix, 105
omitted variables, 108
outliers, 179
overall significance test, 122
overidentifying restrictions test, 244
p value, 59
package manager, 8
package mode, 8
packages, 8
DataFrames, 20
LinearAlgebra, 19
PyCall, 25
CSV, 28
CategoricalArrays, 23
Econometrics, 229
FreqTables, 36
GLM, 80
HypothesisTests, 57
KernelDensity, 43
MarketData, 30
Plots, 30
StatsPlots, 39
WooldridgeDatasets, 27
Distributions, 48
panel data, 224
partial effect, 108, 262
partial effects at the average (PEA), 263, 267
PDF, see probability density function
Phillips-Ouliaris (PO), 281
plot, 31
PMF, see probability mass function
PMF in Distributions
Bernoulli, 48
Binomial, 48
Chisq, 48
Exponential, 48
FDist, 48
Geometric, 48
Hypergeometric, 48
LogNormal, 48
Logistic, 48
Normal, 48
Poisson, 48
TDist, 48
Uniform, 48

Poisson regression model, 265
polynomial, 136
pooled cross section, 221
Prais-Winsten estimator, 213
predict, 84
prediction, 140
prediction interval, 140
probability density function (PDF), 50
probability distributions, see distributions
probability mass function (PMF), 48
probit, 257
pseudo R-squared, 258
quadratic functions, 136
quantile, 52
quantile regression, 181
Quantiles in Distributions
Bernoulli, 48
Binomial, 48
Chisq, 48
Exponential, 48
FDist, 48
Geometric, 48
Hypergeometric, 48
LogNormal, 48
Logistic, 48
Normal, 48
Poisson, 48
TDist, 48
Uniform, 48
quasi-maximum likelihood estimators (QMLE), 265
$R^{2}, 87$
random effects, 231
random numbers, 53
random seed, 54
random walk, 201
recid, 270
RESET, 169
residuals, 84
root mean squared error (RMSE), 282
sample, 53
sample selection, 272
scatter plot, 31
scientific notation, 61, 86
script, 5
scripts, 285
seasonal effects, 195
semi-logarithmic model, 89
serial correlation, 209
FGLS, 213
robust inference, 215
tests, 209
simultaneous equations models, 247
skipmissing (skipmissing), 174
spurious regression, 278
standard error
heteroscedasticity and autocorrelationrobust, 215
heteroscedasticity-robust, 157
of multiple linear regression parameters, 106
of predictions, 140
of simple linear regression parameters, 93
of the regression, 92
of the sample mean, 55
standardization, 134
t test, 57, 71, 113
three stage least squares, 252
time series, 185
time trends, 194
Tobit model, 267
transpose, 105
truncated regression models, 272
two stage least squares, 241
two-way graphs, 31
unit root, 201, 277
unobserved effects model, 225
variable, 12
variance inflation factor (VIF), 110
vectorized functions, 16
Visual Studio Code, 4
votel, 83
WAGE1, 82
WAGEPAN, 230, 231, 233
Weighted Least Squares (WLS), 164
White standard errors, 157
White test for heteroscedasticity, 162
working directory, 10

[^0]: ${ }^{1}$ The complete text is available under https://julialang.org/blog/2012/02/why-we-created-julia/.

[^1]: ${ }^{1}$ You may add Julia to the path of your platform to make this work. On a MAC, for example, you have to execute sudo \ln
 -s /Applications/Julia-1.8.app/Contents/Resources/julia/bin/julia /usr/local/bin/julia first.

[^2]: ${ }^{2}$ Often these Julia files are called modules. When several modules are linked together, they are usually referred to as a package. For the sake of simplicity, we always refer to a package in the following.
 ${ }^{3}$ For more information, see https://pkgdocs. julialang.org/v1/.

[^3]: ${ }^{4}$ For working with data sets, see Section 1.3.

[^4]: ${ }^{5}$ The number 64 in Int 64 or Float 64 refers to the required memory of 64 bits to store such an object.

[^5]: ${ }^{6}$ The strippped-down European and African textbook Wooldridge (2014) does not include the Appendix on matrix algebra.

[^6]: ${ }^{8}$ Note that some functionality is available even without loading the package.

[^7]: ${ }^{9}$ For more information about the package, see Harris, EPRI, DuBois, White, Bouchet-Valat, Kamiński, and other contributors (2022) or https://dataframes.juliadata.org/stable/.

[^8]: ${ }^{10} \mathrm{df}[$!, : varname1] implements in-place modification of the variable varname1, while df [:, :varname1] works on a copy.

[^9]: ${ }^{11}$ For more information about the package, see White, Bouchet-Valat, and other contributors (2016).

[^10]: ${ }^{12}$ For more information about the package, see Johnson (2015).

[^11]: ${ }^{13}$ The address is https://econpapers.repec.org/paper/bocbocins/.
 ${ }^{14}$ For more information about the package, see Bhardwaj (2020).

[^12]: ${ }^{15}$ For more information about the package, see Quinn and other contributors (2015).

[^13]: ${ }^{16}$ For more information about the package, see Segal (2020).
 ${ }^{17}$ For more information about the package, see Breloff (2015) or https://docs.juliaplots.org/stable/.

[^14]: ${ }^{18}$ The package Distributions will be introduced in Section 1.6.

[^15]: ${ }^{19}$ The RGB color model defines colors as a mix of the components red, green, and blue. a is optional and controls for transparency.
 ${ }^{20}$ The package Distributions will be introduced in Section 1.6.

[^16]: ${ }^{21}$ For more information about the package, see Bouchet-Valat (2014).

[^17]: ${ }^{22}$ For more information about the package, see Breloff (2016).

[^18]: ${ }^{23}$ For more information about the package, see Byrne (2014).

[^19]: ${ }^{24}$ The stripped-down textbook for Europe and Africa Wooldridge (2014) does not include this appendix. But the material is pretty standard.
 ${ }^{25}$ For more information about the package, see Bates, White, Bezanson, Karpinski, Shah, and other contributors (2012) or https://juliastats.org/Distributions.jl/stable/.
 ${ }^{26}$ The parameters of the distribution are defined as follows: f is the total number of unmarked balls in an urn, s is the total number of marked balls in this urn, n is the number of drawn balls and x is number of drawn marked balls.
 ${ }^{27} x$ is the total number of trials, i.e. the number of failures in a sequence of Bernoulli trials before a success occurs plus the success trial.

[^20]: ${ }^{28}$ see Wooldridge (2019, Equation (B.14))

[^21]: ${ }^{29}$ The stripped-down textbook for Europe and Africa Wooldridge (2014) does not include the discussion of this material.

[^22]: ${ }^{30}$ Note that Wooldridge (2019) has a typo in the discussion of this example, therefore the numbers don't quite match for the 95% CI.

[^23]: ${ }^{31}$ For more information about the package, see Kornblith and other contributors (2012) or https://juliastats.org/ HypothesisTests.jl/stable/.

[^24]: ${ }^{32}$ The p value is often misinterpreted. It is for example not the probability that the null hypothesis is true. For a discussion, see for example https://www.nature.com/news/scientific-method-statistical-errors-1.14700.

[^25]: ${ }^{33}$ For more information about the package, see Revels (2015).
 ${ }^{34}$ The code is included in Script 1.51 (Adv-Performance-Jl-Figure. $j l$) in the Appendix.
 ${ }^{35}$ The stripped-down textbook for Europe and Africa Wooldridge (2014) does not include this either.

[^26]: ${ }^{36}$ See Section 1.6.4 for the basics of random number generation.

[^27]: ${ }^{37}$ A motivated reader will already have figured out that this graph was generated by pdf. (Chisq (df), \mathbf{x}) from the Distributions package.

[^28]: ${ }^{38}$ For the sake of completeness, the code for generating these graphs is shown in Appendix IV, Script 1.55 (Simulation-Inference-Figure.jl), but most readers will probably not find it important to look at it at this point.

[^29]: ${ }^{1}$ For more information about the package, see Bates and other contributors (2012) or https://juliastats.org/GLM. jl/stable/.

[^30]: ${ }^{2}$ In Script 2.15 (SLR-Sim-Model.jl) shown on page 326, we implement the joint sampling from x and y. The results are essentially the same.

[^31]: ${ }^{3}$ Since $x \sim \operatorname{Normal}(4,1), e^{x}$ is log-normally distributed and has a mean of $e^{4.5}$.

[^32]: ${ }^{1}$ For more information about the package, see Kleinschmidt (2016).

[^33]: ${ }^{2}$ Note that here, we use the population variance formula $\operatorname{Var}\left(x_{j}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{j i}-\bar{x}_{j}\right)^{2}$.

[^34]: ${ }^{3}$ We could have calculated these values manually like in Scripts 2.8 (Example-2-8.jl), 2.13 (Example-2-12.jl) or 3.7 (OLS-Matrices.jl).

[^35]: ${ }^{1}$ For more information about the package, see Boehm (2017).

[^36]: ${ }^{1}$ We need to find rooms* to minimize β_{3} rooms $+\beta_{4}$ rooms ${ }^{2}$. Setting the first derivative $\beta_{3}+2 \beta_{4}$ rooms equal to zero and solving for rooms delivers the result.

[^37]: ${ }^{2}$ Section 4.1 discusses t tests.

[^38]: ${ }^{1}$ The data set is included in the R package AER, see https://cran.r-project.org/web/packages/AER/index. html.

[^39]: ${ }^{1}$ We are aware of several packages like CovarianceMatrices implementing different forms of robust standard errors. However, these packages are either no longer maintained, no longer work in the current Julia version, or are documented in a way that beginners may find difficult. Therefore, we have decided against the black box approach.

[^40]: ${ }^{1}$ A very illustrative comparison of these particular values can be found here: https://miguelraz.github.io/blog/ nothingforbeginners/index.html.

[^41]: ${ }^{2}$ For more information about the package, see Taylor (2006).

[^42]: ${ }^{1}$ For more information and useful examples, see https://docs.julialang.org/en/v1/stdlib/Dates/.

[^43]: ${ }^{2}$ We have encountered some problems with the lag function on different systems. You may load the ShiftedArrays package explicitly and then use the function ShiftedArrays.lag.

[^44]: ${ }^{1}$ For a review of random number generation, see Section 1.6.4.

[^45]: ${ }^{1}$ For more information about the package, see Calderón and Bayoán (2020) or https://docs.juliahub.com/ Econometrics/XQPLt/0.2.7/getting_started/.

[^46]: ${ }^{1}$ For details, see the module documentation https://bashtage.github.io/linearmodels/ or Chapter 16 in Heiss and Brunner (2020).

[^47]: ${ }^{2}$ The module linearmodels also supports formula syntax. However passing the formula via PyCall does not work at this time.

[^48]: ${ }^{1}$ For more information about the package, see Mogensen, Riseth, White, Holy, and other contributors (2017).

[^49]: ${ }^{2}$ Wooldridge (2019, Section 17.4) uses the notation w instead of y and y instead of y^{*}.

[^50]: \# Depends on estimation.jl

[^51]: ${ }^{1}$ For more information, see Kluyver, Ragan-Kelley, Pérez, Granger, Bussonnier, Frederic, Kelley, Hamrick, Grout, Corlay, Ivanov, Avila, Abdalla, Willing, and development team (2016).
 ${ }^{2}$ Actually, the name Jupyter is based on the three languages Julia, Python and \mathbf{R}.
 ${ }^{3}$ Visit https://code.visualstudio.com/docs/datascience/jupyter-notebooks for a more detailed introduction.

[^52]: ${ }^{4} \mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ is a powerful and free system for generating documents. In economics and other fields with a lot of math involved, it is widely used - in many areas, it is the de facto standard. It is also popular for typesetting articles and books. This book is an example for a complex document created by $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$. At least basic knowledge of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ is needed to follow the equation related parts.

