
ATLT Bell Laboratories Technical Journal
Vol. 63, No. 8, October 1984
Printed in U.S.A.

The UNIX System:

The Evolution of the UNIX Time-sharing System

By D. M. RITCHIE*

This paper presents a brief history of the early development of the U N I T
operating system. It concentrates on the evolution of the file system, the
process-control mechanism, and the idea of pipelined commands. Some atten-
tion is paid to social conditions during the development of the system. This
paper is reprinted from Lecture Notes on Computer Science, No. 79, Language
Design and Programming Methodology, Springer-Verlag, 1980.

I. INTRODUCTION

During the past few years, the UNIX operating system has come
into wide use, so wide that its very name has become a trademark of
Bell Laboratories. Its important characteristics have become known
to many people. It has suffered much rewriting and tinkering since
the first publication describing it in 1974,' but few fundamental
changes. However, UNIX was born in 1969 not 1974, and the account
of its development makes a little-known and perhaps instructive story.
This paper presents a technical and social history of the evolution of
the system.

II. ORIGINS

For computer science at Bell Laboratories, the period 1968-1969
was somewhat unsettled. The main reason for this was the slow,
though clearly inevitable, withdrawal of the Labs from the Multics
project. To the Labs computing community as a whole, the problem
was the increasing obviousness of the failure of Multics to deliver
promptly any sort of usable system, let alone the panacea envisioned
earlier. For much of this time, the Murray Hill Computer Center was

* AT&T Bell Laboratories.

also running a costly GE 645 machine that inadequately simulated the
GE 635. Another shake-up that occurred during this period was the
organizational separation of computing services and computing re-
search.

From the point of view of the group that was to be most involved in
the beginnings of UNIX (K. Thompson, Ritchie, M. D. McIlroy, J. F.
Ossanna), the decline and fall of Multics had a directly felt effect. We
were among the last Bell Laboratories holdouts actually working on
Multics, so we still felt some sort of stake in its success. More
important, the convenient interactive computing service that Multics
had promised to the entire community was in fact available to our
limited group, at first under the CTSS system used to develop Multics,
and later under Multics itself. Even though Multics could not then
support many users, it could support us, albeit at exorbitant cost. We
didn't want to lose the pleasant niche we occupied, because no similar
ones were available; even the time-sharing service that would later be
offered under GE's operating system did not exist. What we wanted
to preserve was not just a good environment in which to do program-
ming, but a system around which a fellowship could form. We knew
from experience that the essence of communal computing, as supplied
by remote-access, time-shared machines, is not just to type programs
into a terminal instead of a keypunch, but to encourage close com-
munication.

Thus, during 1969, we began trying to find an alternative to Multics.
The search took several forms. Throughout 1969 we (mainly Ossanna,
Thompson, Ritchie) lobbied intensively for the purchase of a medium-
scale machine for which we promised to write an operating system;
the machines we suggested were the DEC PDP-10 computer and the
SDS (later Xerox) Sigma 7. The effort was frustrating, because our
proposals were never clearly and finally turned down, but yet were
certainly never accepted. Several times it seemed we were very near
success. The final blow to this effort came when we presented an
exquisitely complicated proposal, designed to minimize financial out-
lay, that involved some outright purchase, some third-party lease, and
a plan to turn in a DEC KA-10 processor on the soon-to-be-announced
and more capable KI-10. The proposal was rejected, and rumor soon
had it that W. 0. Baker (then vice-president of Research) had reacted
to it with the comment 'Bell Laboratories just doesn't do business this
way!'

Actually, it is perfectly obvious in retrospect (and should have been
at the time) that we were asking the Labs to spend too much money
on too few people with too vague a plan. Moreover, I am quite sure
that at that time operating systems were not, for our management, an
attractive area in which to support work. They were in the process of

1578 TECHNICAL JOURNAL, OCTOBER 1984

extricating themselves not only from an operating system development
effort that had failed, but from running the local Computation Center.
Thus it may have seemed that buying a machine such as we suggested
might lead on the one hand to yet another Multics, or on the other, if
we produced something useful, to yet another Comp Center for them
to be responsible for.

Besides the financial agitations that took place in 1969, there was
technical work also. Thompson, R. H. Canaday, and Ritchie developed,
on blackboards and scribbled notes, the basic design of a file system
that was later to become the heart of UNIX. Most of the design was
Thompson's, as was the impulse to think about file systems at all, but
I believe I contributed the idea of device files. Thompson's itch for
creation of an operating system took several forms during this period;
he also wrote (on Multics) a fairly detailed simulation of the perform-
ance of the proposed file system design and of paging behavior of
programs. In addition, he started work on a new operating system for
the GE 645, going as far as writing an assembler for the machine and
a rudimentary operating system kernel whose greatest achievement,
so far as I remember, was to type a greeting message. The complexity
of the machine was such that a mere message was already a fairly
notable accomplishment, but when it became clear that the lifetime of
the 645 at the Labs was measured in months, the work was dropped.

Also during 1969, Thompson developed the game of 'Space Travel.'
First written on Multics, then transliterated into Fortran for GECOS
(the operating system for the GE, later Honeywell, 635), it was nothing
less than a simulation of the movement of the major bodies of the
Solar System, with the player guiding a ship here and there, observing
the scenery, and attempting to land on the various planets and moons.
The GECOS version was unsatisfactory in two important respects:
first, the display of the state of the game was jerky and hard to control
because one had to type commands at it, and second, a game cost
about $75 for CPU time on the big computer. It did not take long,
therefore, for Thompson to find a little-used PDP-7 computer with an
excellent display processor; the whole system was used as a Graphic-
I1 terminal. He and I rewrote Space Travel to run on this machine.
The undertaking was more ambitious than it might seem; because we
disdained all existing software, we had to write a floating-point arith-
metic package, the pointwise specification of the graphic characters
for the display, and a debugging subsystem that continuously displayed
the contents of typed-in locations in a corner of the screen. All this
was written in assembly language for a cross-assembler that ran under
GECOS and produced paper tapes to be carried to the PDP-7.

Space Travel, though it made a very attractive game, served mainly
as an introduction to the clumsy technology of preparing programs for

TIME-SHARING 1579

the PDP-7. Soon Thompson began implementing the paper file system
(perhaps 'chalk file system' would be more accurate) that had been
designed earlier. A file system without a way to exercise it is a sterile
proposition, so he proceeded to flesh it out with the other requirements
for a working operating system, in particular the notion of processes.
Then came a small set of user-level utilities: the means to copy, print,
delete, and edit files, and of course a simple command interpreter
(shell). Up to this time all the programs were written using GECOS
and files were transferred to the PDP-7 on paper tape; but once an
assembler was completed the system was able to support itself. Al-
though it was not until well into 1970 that Brian Kernighan suggested
the name 'UNIX,' in a somewhat treacherous pun on 'Multics,' the
operating system we know today was born.

Ill. THE PDP-7 UNlX FILE SYSTEM

Structurally, the file system of PDP-7 UNIX was nearly identical
to today's. It had

1. An i-list: a linear array of i-nodes each describing a file. An i-node
contained less than it does now, but the essential information was the
same: the protection mode of the file, its type and size, and the list of
physical blocks holding the contents.

2. Directories: a special kind of file containing a sequence of names
and the associated i-number.

3. Special files describing devices. The device specification was not
contained explicitly in the i-node, but was instead encoded in the
number: specific i-numbers corresponded to specific files.

The important file system calls were also present from the start.
Read, write, open, c r ea t (sk), close: with one very important
exception, discussed below, they were similar to what one finds now.
A minor difference was that the unit of I 0 was the word, not the byte,
because the PDP-7 was a word-addressed machine. In practice this
meant merely that all programs dealing with character streams ignored
null characters, because null was used to pad a file to an even number
of characters. Another minor, occasionally annoying difference was
the lack of erase and kill processing for terminals. Terminals, in effect,
were always in raw moqe. Only a few programs (notably the shell and
the editor) bothered to implement erase-kill processing.

In spite of its considerable similarity to the current file system, the
PDP-7 file system was in one way remarkably different: there were no
path names, and each file-name argument to the system was a simple
name (without '/') taken relative to the current directory. Links, in
the usual UNIX sense, did exist. Together with an elaborate set of

1580 TECHNICAL JOURNAL, OCTOBER 1984

conventions, they were the principal means by which the lack of path
names became acceptable.

The l i n k call took the form
1 ink (dir, file, newname)

where dir was a directory file in the current directory, file an existing
entry in that directory, and newname the name of the link, which was
added to the current directory. Because dir needed to be in the current
directory, it is evident that today's prohibition against links to direc-
tories was not enforced; the PDP-7 UNIX file system had the shape
of a general directed graph.

So that every user did not need to maintain a link to all directories
of interest, there existed a directory called da that contained entries
for the directory of each user. Thus, to make a link to file x in directory
ken, I might do

In dd ken ken
In ken x x
rm ken

This scheme rendered subdirectories sufficiently hard to use as to
make them unused in practice. Another important barrier was that
there was no way to create a directory while the system was running;
all were made during recreation of the file system from paper tape, so
that directories were in effect a nonrenewable resource.

The ad convention made the chdir command relatively conven-
ient. It took multiple arguments, and switched the current directory
to each named directory in turn. Thus

chd irddken

would move to directory ken. (Incidentally, chdir was spelled ch;
why this was expanded when we went to the PDP-11 I don't remem-
ber.)

The most serious inconvenience of the implementation of the file
system, aside from the lack of path names, was the difficulty of
changing its configuration; as mentioned, directories and special files
were both made only when the disk was recreated. Installation of a
new device was very painful, because the code for devices was spread
widely throughout the system; for example there were several loops
that visited each device in turn. Not surprisingly, there was no notion
of mounting a removable disk pack, because the machine had only a
single fixed-head disk.

The operating system code that implemented this file system was a
drastically simplified version of the present scheme. One important
simplification followed from the fact that the system was not multi-

TIME-SHARING 1581

programmed; only one program was in memory at a time, and control
was passed between processes only when an explicit swap took place.
So, for example, there was an ige t routine that made a named i-node
available, but it left the i-node in a constant, static location rather
than returning a pointer into a large table of active i-nodes. A precursor
of the current buffering mechanism was present (with about 4 buffers)
but there was essentially no overlap of disk I0 with computation. This
was avoided not merely for simplicity. The disk attached to the PDP-
7 was fast for its time; it transferred one l&bit word every 2 micro-
seconds. On the other hand, the PDP-7 itself had a memory cycle time
of 1 microsecond, and most instructions took 2 cycles (one for the
instruction itself, one for the operand). However, indirectly addressed
instructions required 3 cycles, and indirection was quite common,
because the machine had no index registers. Finally, the DMA con-
troller was unable to access memory during an instruction. The upshot
was that the disk would incur overrun errors if any indirectly-ad-
dressed instructions were executed while it was transferring. Thus
control could not be returned to the user, nor in fact could general
system code be executed, with the disk running. The interrupt routines
for the clock and terminals, which needed to be runnable at all times,
had to be coded in very strange fashion to avoid indirection.

IV. PROCESS CONTROL

By 'process control,' I mean the mechanisms by which processes are
created and used; today the system calls f o r k , exec, w a i t , and e x i t
implement these mechanisms. Unlike the file system, which existed
in nearly its present form from the earliest days, the process control
scheme underwent considerable mutation after PDP-7 UNIX was
already in use. (The introduction of path names in the PDP-11 system
was certainly a considerable notational advance, but not a change in
fundamental structure.)

Today, the way in which commands are executed by the shell can
be summarized as follows:

1. The shell reads a command line from the terminal.
2. It creates a child process by fork.
3. The child process uses exec to call in the command from a file.
4. Meanwhile, the parent shell uses wait to wait for the child

(command) process to terminate by calling ex i t .
5. The parent shell goes back to step 1.
Processes (independently executing entities) existed very early in

PDP-7 UNIX. There were in fact precisely two of them, one for each
of the two terminals attached to the machine. There was no fork,
wait, or exec. There was an ex i t , but its meaning was rather
different, as will be seen. The main loop of the shell went as follows.

1582 TECHNICAL JOURNAL, OCTOBER 1984

1. The shell closed all its open files, then opened the terminal special
file for standard input and output (file descriptors 0 and 1).

2. It read a command line from the terminal.
3. It linked to the file specifying the command, opened the file, and

removed the link. Then it copied a small bootstrap program to the top
of memory and jumped to it; this bootstrap program read in the file
over the shell code, then jumped to the first location of the command
(in effect an exec).

4. The command did its work, then terminated by calling exit. The
exit call caused the system to *ad in a fresh copy of the shell over
the terminated command, then to jump to its start (and thus in effect
to go to step 1).

The most interesting thing about this primitive implementation is
the degree to which it anticipated themes developed more fully later.
True, it could support neither background processes nor shell com-
mand files (let alone pipes and filters); but I 0 redirection (via '<' and
5') was soon there; it is discussed below. The implementation of
redirection was quite straightforward; in step 3 above the shell just
replaced its standard input or output with the appropriate file. Crucial
to subsequent development was the implementation of the shell as a
user-level program stored in a file, rather than a part of the operating
system.

The structure of this process control scheme, with one process per
terminal, is similar to that of many interactive systems, for example
CTSS, Multics, Honeywell TSS, and IBM TSS and TSO. In general
such systems require special mechanisms to implement useful facilities
such as detached computations and command files; UNIX at that
stage didn't bother to supply the special mechanisms. It also exhibited
some irritating, idiosyncratic problems. For example, a newly recreated
shell had to close all its open files both to get rid of any open files left
by the command just executed and to rescind previous I 0 redirection.
Then it had to reopen the special file corresponding to its terminal, in
order to read a new command line. There was no /dev directory
(because no path names); moreover, the shell could retain no memory
across commands, because it was reexecuted afresh after each com-
mand. Thus a further file system convention was required: each
directory had to contain an entry tty for a special file that referred
to the terminal of the process that opened it. If by accident one
changed into some directory that lacked this entry, the shell would
loop hopelessly; about the only remedy was to reboot. (Sometimes the
missing link could be made from the other terminal.)

Process control in its modern form was designed and implemented
within a couple of days. It is astonishing how easily it fitted into the
existing system; at the same time it is easy to see how some of the

TIME-SHARING 1583

slightly unusual features of the design are present precisely because
they represented small, easily-coded changes to what existed. A good
example is the separation of the fork and exec functions. The most
common model for the creation of new processes involves specifying a
program for the process to execute; in UNIX, a forked process contin-
ues to run the same program as its parent until it performs an explicit
exec. The separation of the functions is certainly not unique to UNIX,
and in fact it was present in the Berkeley time-sharing system: which
was well-known to Thompson. Still, it seems reasonable to suppose
that it exists in UNIX, mainly because of the ease with which fork
could be implemented without changing much else. The system already
handled multiple (i.e. two) processes; there was a process table, and
the processes were swapped between main memory and the disk. The
initial implementation of fork required only

1. Expansion of the process table
2. Addition of a fork call that copied the current process to the disk

swap area, using the already existing swap I 0 primitives, and made
some adjustments to the process table.

In fact, the PDP-7's f or k call required precisely 27 lines of assembly
code. Of course, other changes in the operating system and user
programs were required, and some of them were rather interesting and
unexpected. But a combined f ork-exec would have been considerably
more complicated, if only because exec as such did not exist; its
function was already performed, using explicit 10, by the shell.

The exit system call, which previously read in a new copy of the
shell (actually a sort of automatic exec but without arguments),
simplified considerably; in the new version a process only had to clean
out its process table entry and give up control.

Curiously, the primitives that became wait were considerably more
general than the present scheme. A pair of primitives sent one-word
messages between named processes:

smes(pid, message)
(pid, message) = rmes()

The target process of smes did not need to have any ancestral rela-
tionship with the receiver, although the system provided no explicit
mechanism for communicating process IDS except that fork returned
to each of the parent and child the ID of its relative. Messages were
not queued; a sender delayed until the receiver read the message.

The message facility was used as follows: the parent shell, after
creating a process to execute a command, sent a message to the new
process by smes; when the command terminated (assuming it did not
try to read any messages) the shell's blocked smes call returned an
error indication that the target process did not exist. Thus the shell's

1584 TECHNICAL JOURNAL, OCTOBER 1984

smes became, in effect, the equivalent of wait.
A different protocol, which took advantage of more of the generality

offered by messages, was used between the initialization program and
the shells for each terminal. The initialization process, whose ID was
understood to be 1, created a shell for each of the terminals, and then
issued rmes; each shell, when it read the end of its input file, used
smes to send a conventional 'I am terminating' message to the initial-
ization process, which recreated a new shell process for that terminal.

I can recall no other use of messages. This explains why the facility
was replaced by the wait call of the present system, which is less
general, but more directly applicable to the desired purpose. Possibly
relevant also is the evident bug in the mechanism: if a command
process attempted to use messages to communicate with other proc-
esses, it would disrupt the shell's synchronization. The shell depended
on sending a message that was never received; if a command executed
rmes, it would receive the shell's phony message, and cause the shell
to read another input line just as if the command had terminated. If
a need for general messages had manifested itself, the bug would have
been repaired.

At any rate, the new process control scheme instantly rendered
some very valuable features trivial to implement; for example, de-
tached processes (with '&') and recursive use of the shell as a com-
mand. Most systems have to supply some sort of special 'batch job
submission' facility and a special command interpreter for files distinct
from the one used interactively.

Although the multiple-process idea slipped in very easily indeed,
there were some aftereffects that weren't anticipated. The most mem-
orable of these became evident soon after the new system came up
and apparently worked. In the midst of our jubilation, it was discovered
that the chdir (change current directory) command had stopped
working. There was much reading of code and anxious introspection
about how the addition of fork could have broken the chdir call.
Finally the truth dawned; in the old system chdir was an ordinary
command; it adjusted the current directory of the (unique) process
attached to the terminal. Under the new system, the c h d i r command
correctly changed the current directory of the process created to
execute it, but this process promptly terminated and had no effect
whatsoever on its parent shell! It was necessary to make chdir a
special command, executed internally within the shell. I t turns out
that several command-like functions have the same property, for
example login.

Another mismatch between the system as it had been and the new
process control scheme took longer to become evident. Originally, the
readlwrite pointer associated with each open file was stored within

TIME-SHARING 1585

the process that opened the file. (This pointer indicates where in the
file the next read or write will take place.) The problem with this
organization became evident only when we tried to use command files.
Suppose a simple command file contains

1 s
who

and it is executed as follows:

The sequence of events was
1. The main shell creates a new process, which opens o u t f i l e to

receive the standard output and executes the shell recursively.
2. The new shell creates another process to execute IS, which

correctly writes on file output and then terminates.
3. Another process is created to execute the next command. How-

ever, the I 0 pointer for the output is copied from that of the shell,
and it is still 0, because the shell has never written on its output, and
I0 pointers are associated with processes. The effect is that the output
of who overwrites and destroys the output of the preceding 1s com-
mand.

Solution of this problem required creation of a new system table to
contain the I 0 pointers of open files independently of the process in
which they were opened.

V. 10 REDIRECTION

The very convenient notation for I 0 redirection, using the '>' and
'<' characters, was not present from the very beginning of the
PDP-7 UNIX system, but it did appear quite early. Like much else in
UNIX, it was inspired by an idea from Multics. Multics has a rather
general I 0 redirection mechanism8 embodying named I0 streams that
can be dynamically redirected to various devices, files, and even
through special stream-processing modules. Even in version of Multics
we were familiar with a decade ago, there existed a command that
switched subsequent output normally destined for the terminal to a
file, and another command to reattach output to the terminal. Where
under UNIX one might say

to get a listing of the names of one's files in x x , on Multics the notation
was

1586 TECHNICAL JOURNAL, OCTOBER 1984

iocall attachuser-output file xx
list
iocall attach user-output syn user-i/o

Even though this very clumsy sequence was used often during the
Multics days, and would have been utterly straightforward to integrate
into the Multics shell, the idea did not occur to us or anyone else at
the time. I speculate that the reason it did not was the sheer size of
the Multics project: the implementors of the I 0 system were at Bell
Labs in Murray Hill, while the shell was done at MIT. We didn't
consider making changes to the shell (it was their program); corre-
spondingly, the keepers of the shell may not even have known of the
usefulness, albeit clumsiness, of iocall. (The 1969 Multics manual4
lists ioca 11 as an 'author-maintained,' that is non-standard, com-
mand.) Because both the UNIX I 0 system and its shell were under
the exclusive control of Thompson, when the right idea finally sur-
faced, it was a matter of an hour or so to implement it.

VI. THE ADVENT OF THE PDP-11

By the beginning of 1970, PDP-7 UNIX was a going concern.
Primitive by today's standards, it was still capable of providing a more
congenial programming environment than its alternatives. Neverthe-
less, it was clear that the PDP-7, a machine we didn't even own, was
already obsolete, and its successors in the same line offered little of
interest. In early 1970 we proposed acquisition of a PDP-11, which
had just been introduced by Digital. In some sense, this proposal was
merely the latest in the series of attempts that had been made
throughout the preceding year. It differed in two important ways.
First, the amount of money (about $65,000) was an order of magnitude
less than what we had previously asked; second, the charter sought
was not merely to write some (unspecified) operating system, but
instead to create a system specifically designed for editing and for-
matting text, what might today be called a 'word-processing system.'
The impetus for the proposal came mainly from J. F. Ossanna, who
was then and until the end of his life interested in text processing. If
our early proposals were too vague, this one was perhaps too specific;
at first it too met with disfavor. Before long, however, funds were
obtained through the efforts of L. E. McMahon and an order for a
PDP-11 was placed in May.

The processor arrived at the end of the summer, but the PDP-11
was so new a product that no disk was available until December. In
the meantime, a rudimentary, core-only version of UNIX was written
using a cross-assembler on the PDP-7. Most of the time, the machine

TIME-SHARING 1587

sat in a corner, enumerating all the closed Knight's tours on a 6 x 8
chess board-a three-month job.

VII. THE FIRST PDP-11 SYSTEM

Once the disk arrived, the system was quickly completed. In internal
structure, the first version of UNIX for the PDP-11 represented a
relatively minor advance over the PDP-7 system; writing it was largely
a matter of transliteration. For example, there was no multiprogram-
ming; only one user program was present in core at any moment. On
the other hand, there were important changes in the interface to the
user: the present directory structure, with full path names, was in
place, along with the modern form of exec and wait, and conveniences
like character-erase and line-kill processing for terminals. Perhaps the
most interesting thing about the enterprise was its small size: there
were 24K bytes of core memory (16K for the system, 8K for user
programs), and a disk with 1K blocks (512K bytes). Files were limited
to 64K bytes.

At the time of the placement of the order for the PDP-11, it had
seemed natural, or perhaps expedient,' to promise a system dedicated
to word processing. During the protracted arrival of the hardware, the
increasing usefulness of PDP-7 UNIX made it appropriate to justify
creating PDP-11 UNIX as a development tool, to be used in writing
the more special-purpose system. By the spring of 1971, it was gener-
ally agreed that no one had the slightest interest in scrapping UNIX.
Therefore, we transliterated the roff text formatter into PDP-11
assembler language, starting from the PDP-7 version that had been
transliterated from McIlroy's BCPL version on Multics, which had in
turn been inspired by J. Saltzer's runoff program on CTSS. In early
summer, editor and formatter in hand, we felt prepared to fulfill our
charter by offering to supply a text-processing service to our Patent
department for preparing patent applications. At the time, they were
evaluating a commercial system for this purpose; the main advantages
we offered (besides the dubious one of taking part in an in-house
experiment) were two in number: first, we supported Teletype's model
37 terminals, which, with an extended type-box, could print most of
the math symbols they required; second, we quickly endowed roff
with the ability to produce line-numbered pages, which the Patent
department required and which the other system could not handle.

During the last half of 1971, we supported three typists from the
Patent department, who spent the day busily typing, editing, and
formatting patent applications, and meanwhile tried to carry on our
own work. UNIX has a reputation for supplying interesting services
on modest hardware, and this period may mark a high point in the
benefit/equipment ratio; on a machine with no memory protection

1588 TECHNICAL JOURNAL, OCTOBER 1984

and a single 0.5-MB disk, every test of a new program required care
and boldness, because it could easily crash the system, and every few
hours' work by the typists meant pushing out more information onto
DECtape, because of the very small disk.

The experiment was trying but successful. Not only did the Patent
department adopt UNIX, and thus become the first of many groups
at the Laboratories to ratify our work, but we achieved sufficient
credibility to convince our own management to acquire one of the first
PDP 11/45 systems made. We have accumulated much hardware since
then, and labored continuously on the software, but because most of
the interesting work has already been published (e.g., on the system
i t ~ e l f l * ~ + ~ and the text processing application^^*^*^), it seems unnecessary
to repeat it here.

VIII. PIPES

One of the most widely admired contributions of UNIX to the
culture of operating systems and command languages is the pipe, as
used in a pipeline of commands. Of course, the fundamental idea was
by no means new; the pipeline is merely a specific form of coroutine.
Even the implementation was not unprecedented, although we didn't
know it at the time; the 'communication files' of the Dartmouth Time-
Sharing System1' did very nearly what UNIX pipes do, though they
seem not to have been exploited so fully.

Pipes appeared in UNIX in 1972, well after the PDP-11 version of
the system was in operation, at the suggestion (or perhaps insistence)
of M. D. McIlroy, a long-time advocate of the non-hierarchical control
flow that characterizes coroutines. Some years before pipes were
implemented, he suggested that commands should be thought of as
binary operators, whose left and right operand specified the input and
output files. Thus a 'copy' utility would be commanded by

input f i lecopy ou tpu t f i l e

To make a pipeline, command operators could be stacked up. Thus, to
sort input, paginate it neatly, and print the result off-line, one
would write

i n p u t s o r t p a g i n a t e o f f p r i n t

In today's system, this would correspond to

s o r t input I p r 1 opr

The idea, explained one afternoon on a blackboard, intrigued us but
failed to ignite any immediate action. There were several objections
to the idea as put: the infix notation seemed too radical (we were too

TIME-SHARING 1589

accustomed to typing 'cp x y' to copy x to y) ; and we were unable to
see how to distinguish command parameters from the input or output
files. Also, the one-input one-output model of command execution
seemed too confining. What a failure of imagination!

Some time later, thanks to McIlroy's persistence, pipes were finally
installed in the operating system (a relatively simple job), and a new
notation was introduced. It used the same characters as for I 0 redi-
rection. For example, the pipeline above might have been written

sort input >pr>opr>

The idea is that following a '>' may be either a file, to specify
redirection of output to that file, or a command into which the output
of the preceding command is directed as input. The trailing '>' was
needed in the example to specify that the (nonexistent) output of opr
should be directed to the console; otherwise the command opr would
not have been executed at all; instead a file opr would have been
created.

The new facility was enthusiastically received, and the term 'filter'
was soon coined. Many commands were changed to make them usable
in pipelines. For example, no one had imagined that anyone would
want the sort or pr utility to sort or print its standard input if given
no explicit arguments.

Soon some problems with the notation became evident. Most an-
noying was a silly lexical problem: the string after '>' was delimited
by blanks, so, to give a parameter to pr in the example, one had to
quote:

Second, in attempt to give generality, the pipe notation accepted '4
as an input redirection in a way corresponding to '9; this meant that
the notation was not unique. One could also write, for example,

or even

The pipe notation using '-2 and '9 survived only a couple of months;
it was replaced by the present one that uses a unique operator to
separate components of a pipeline. Although the old notation had a
certain charm and inner consistency, the new one is certainly superior.
Of course, it too has limitations. It is unabashedly linear, though there
are situations in which multiple redirected inputs and outputs are
called for. For example, what is the best way to compare the outputs

1590 TECHNICAL JOURNAL, OCTOBER 1984

of two programs? What is the appropriate notation for invoking a
program with two parallel output streams?

I mentioned above in the section on I 0 redirection that Multics
provided a mechanism by which I 0 streams could be directed through
processing modules on the way to (or from) the device or file serving
as source or sink. Thus it might seem that stream-splicing in Multics
was the direct precursor of UNIX pipes, as Multics I 0 redirection
certainly was for its UNIX version. In fact I do not think this is true,
or is true only in a weak sense. Not only were coroutines well-known
already, but their embodiment as Multics spliceable I 0 modules re-
quired that the modules be specially coded in such a way that they
could be used for no other purpose. The genius of the UNIX pipeline
is precisely that it is constructed from the very same commands used
constantly in simplex fashion. The mental leap needed to see this
possibility and to invent the notation is large indeed.

IX. HIGH-LEVEL LANGUAGES

Every program for the original PDP-7 UNIX was written in assem-
bly language, and bare assembly language it was-for example, there
were no macros. Morever, there was no loader or link-editor, so every
program had to be complete in itself. The first interesting language to
appear was a version of McClure7s TMG1' that was implemented by
McIlroy. Soon after TMG became available, Thompson decided that
we could not pretend to offer a real computing service without Fortran,
so he sat down to write a Fortran in TMG. As I recall, the intent to
handle Fortran lasted about a week. What he produced instead was a
definition of and a compiler for the new language B.12 B was much
influenced by the BCPL language;13 other influences were Thompson's
taste for spartan syntax, and the very small space into which the
compiler had to fit. The compiler produced simple interpretive code;
although it and the programs it produced were rather slow, it made
life much more pleasant. Once interfaces to the regular system calls
were made available, we began once again to enjoy the benefits of
using a reasonable language to write what are usually called 'systems
programs': compilers, assemblers, and the like. (Although some might
consider the PL/I we used under Multics unreasonable, it was much
better than assembly language.) Among other programs, the PDP-7 B
cross-compiler for the PDP-11 was written in B, and in the course of
time, the B compiler for the PDP-7 itself was transliterated from
TMG into B.

When the PDP-11 arrived, B was moved to it almost immediately.
In fact, a version of the multi-precision 'desk calculator' program &
was one of the earliest programs to run on the PDP-11, well before

TIME-SHARING 1591

the disk arrived. However, B did not take over instantly. Only passing
thought was given to rewriting the operating system in B rather than
assembler, and the same was true of most of the utilities. Even the
assembler was rewritten in assembler. This approach was taken mainly
because of the slowness of the interpretive code. Of smaller but still
real importance was the mismatch of the word-oriented B language
with the byte-addressed PDP-11.

Thus, in 1971, work began on what was to become the C language.'*
The story of the language developments from BCPL through B to C
is told elsewhere,15 and need not be repeated here. Perhaps the most
important watershed occurred during 1973, when the operating system
kernel was rewritten in C. It was at this point that the system assumed
its modern form; the most far-reaching change was the introduction
of multi-programming. There were few externally-visible changes, but
the internal structure of the system became much more rational and
general. The success of this effort convinced us that C was useful as a
nearly universal tool for systems programming, instead of just a toy
for simple applications.

Today, the only important UNIXprogram still written in assembler
is the assembler itself; virtually all the utility programs are in C, and
so are most of the applications programs, although there are sites with
many in Fortran, Pascal, and Algol 68 as well. It seems certain that
much of the success of UNIX follows from the readability, m&~abil-
ity, and portability of its software that in turn follows from its
expression in high-level languages.

X. CONCLUSION

One of the comforting things about old memories is their tendency
to take on a rosy glow. The programming environment provided by
the early versions of UNIX seems, when described here, to be ex-
tremely harsh and primitive. I am sure that if forced back to the PDP-
7 I would find it intolerably limiting and lacking in conveniences.
Nevertheless, it did not seem so at the time; the memory fixes on what
was good and what lasted, and on the joy of helping to create the
improvements that made life better. In ten years, I hope we can look
back with the same mixed impression of progress combined with
continuity.

XI. ACKNOWLEDGMENTS

I am grateful to S. P. Morgan, K. Thompson, and M. D. McIlroy
for providing early documents and digging up recollections.

Because I am most interested in describing the evolution of ideas,
this paper attributes ideas and work to individuals only where it seems

1592 TECHNICAL JOURNAL, OCTOBER 1984

most important. The reader will not, on the average, go far wrong if
he reads each occurrence of 'we' with unclear antecedent as 'Thomp-
son, with some assistance from me.'

REFERENCES

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Comm. Assoe.
Comp. Mach., 17, No. 7 (July 1974), pp. 365-75.

2. L. P. Deutsch and B. W. Lampson, "SDS 930 Time-sharin System Preliminary
Reference Manual," Doc. 30.10.10, Project GENIE, Univ. 8al. at Berkeley (April
1965).

3. R. J . Feiertag and E. I. Organick, "The Multics In ut Output System," Proc. Third
Symposium on Operating Systems Principles, &t&r 1&20, 1971, pp. 35-41.

4. The Multiplexed Information and Computing Service; Programmers' Manual, Mas-
sachusetts Inttitute of Technology Project MAC, Cambridge, MA (1969).

5. K. Thompson, UNIX Time-Sharing System: UNIX Implementation," B.S.T.J.,
57, No. 6 (July-August 1978), pp. 1931-46.

6. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C
Programs and the UNIX System," B.S.T.J., 57, No. 6 (July-August 1978), pp.
2021-48.

7. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, "UNIX Time-Sharing System:
Document Preparation," B.S.T.J., 57, No. 6 (July-Au s t 1978), p 2115-35.

8. B. W. Kerni han and L. L. Cherry, "A System for G e s e t t i n g Ibathematics,"
Cornmun. ~ C M 18, No. 3 (March 1975), pp. 151-7.

9. M. E. Lesk and B. W. Kerni han, "Computer Typesetting of Technical Journals on
UNIX," Proc. AFIPS NCE 46, (1977), pp. 879-88:

10. Systems Programmers Manual for the Dartmouth Tzme Sharing System for the GE
635 Com uter, Dartmouth College, Hanover, New Hampshire: 1971.

11. R. M. ~ c & u r e , "TMG-a Syntax Directed Compiler," Proc. 20th ACM National
Conf. (1965), pp. 262-74.

12. S. C. Johnson and B. W. Kernighan, "The Programming Language B," Comp. Sci.
Tech. Rep. No. 8, Bell Laboratories, Murray Hill, New Jersey (January 1973).

13. M. Richards, "BCPL: A Tool for Compiler Writing and Systems Programming,"
Proc. AFIPS SJCC 34 (1969), pp. 557-66.

14. B. W. Kerni han and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, rentice- ice- all, 1978.

15. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, "UNIX Time-
Sharing System: The C Programming Language, B.S.T.J., 57, No. 6 (July-
August 1978), pp. 1991-2019.

AUTHOR

Dennis M. Ritchie, B.A. (Physics), 1963, Ph.D. (Applied Mathematics),
1968, Harvard University; AT&T Bell Laboratories, 1968-. The subject of
Mr. Ritchie's doctoral thesis was subrecursive hierarchies of functions. Since
joining AT&T Bell Laboratories, he has worked on the design of computer
languages and operating systems. After contributing to the Multics" project,
he joined K. Thompson in the creation of the UNIX operating system, and
designed and implemented the C language, in which the system is written. In
1982 he shared the IEEE Emmanuel Piore aware with Thompson, and in 1983
he and Thompson won the ACM Turing award. His current research is
concerned with the structure of operating systems.

TIME-SHARING 1593

	77.pdf
	78.pdf
	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf

