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Abstract. Exceptions are frequently a controversial language feature with both
language designers and programmers. Exceptions are controversial because they
complicate language semantics—and thus program design, testing, and verifica-
tion—and some programmers find them annoying or difficult to use properly. By
examining two programming languages that have very different, even opposing,
exception mechanisms, a set of exception principles is introduced that summarize
the key semantic and social issues surrounding exceptions.

1 Introduction

The designers of future programming languages must decide whether to include excep-
tions in their new languages. If they decide exceptions are warranted, they must then
consider what exceptions represent: (1) a structure for control flow, (2) a structure for
handling abnormal, unpredictable situations, or (3) something in-between. Additionally,
the syntax and meaning of exceptions must be considered.

The syntax of exception mechanisms is also important. Syntax impacts how program
code looks and is comprehended, it influences the design and realization of algorithms,
and it affects the manner in which programmers handle unusual cases and unexpected
situations, and thus indirectly impacts software reliability. And, while the syntax of
exception mechanisms is the aspect most programmers see, tool developers and lan-
guage theoreticians must wrestle with exception semantics. In general, a small, elegant
semantics is desired by all parties.

One way to consider how to design a feature like exceptions in future languages is
to analyze their design in today’s languages. While the analysis of exceptions in niche,
historical, or research languages like Ada, Mesa, PL/I, and CLU reveals an “excep-
tional” gem or two1, examining the contrary designer and user viewpoints that exist in
two modern languages is more relevant to working programmers.

The programming languages Java and Eiffel offer two opposing viewpoints in the de-
sign and use of exceptions. A detailed analysis of exceptions in these two languages, as
expressed through a series of principles: their language design, formal specification and
validation, core library use, and non-technical “social” pressures, helps future language

1 These three languages are frequently cited as the premier languages with innovative exception
mechanisms.
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creators design their own exception mechanisms. This analysis also informs developers,
particularly those that only know one or two programming languages, of the sometimes
radically different viewpoints that exist about exceptions.

While the discussions in this paper focus on two object-oriented languages, it is
expected that the principles herein are not restricted to object-oriented languages. N.B.
It is assumed that the reader is knowledgeable of the basic precepts of exceptions (e.g.,
exception nesting, handlers, etc.).

1.1 Terminology

The terminology used in this paper is the terminology used in the Java programming
community.

A program is composed of a set of threads executing a sequence of method calls on
a set of objects and classes. Objects are instances of classes, and classes are made up
of data fields (or just fields for short) and methods in the Java vernacular. In the Eiffel
vernacular, methods and fields are known generically as routines. The object calling a
method is known as a client; the called object is known as the supplier.

A method’s body specifies a program behavior. The execution behavior of a method
is either normal, abnormal, or divergent. A method that terminates without an excep-
tion exhibits normal behavior; a method that terminates by a thrown exception exhibits
abnormal behavior; and a method that never terminates exhibits divergent behavior.

In program code, a flow control structure is any program structure which diverts the
execution of a program from the next statement. Conditional statements (e.g., an if-then-
else block, a case statement, etc.) are the flow control structures typically associated
with normal behavior. Exception-based program structures like try/catch blocks in Java
are also flow control structures, and are typically related to abnormal behavior.

We characterize a system that behaves in an unexpected fashion as either partial
or total failures. What “unexpected” means is contextual. Finding a file owned by the
program disappear or not readable is an example of a typical unexpected partial failure,
because the program can attempt to change the permissions of, or recreate, the file.
An example total failure is discovering that a vital resource, say a physical device, is
unavailable.

2 Language Design

Language design only partially influences the use of exceptions, and consequently, the
manner in which one handles partial and total failures during system execution. The
other major influence is examples of use, typically in core libraries and code examples
in technical books, magazine articles, and online discussion forums, and in an organiza-
tion’s code standards. This latter “social” effect is clearly seen in the use of exceptions
in Java and Eiffel and is discussed in Section 5.

Exceptions in Java are designed to be used as flow control structures. This is also
true of exceptions in most other modern programming languages including Ada, C++,
Modula-3, ML and OCaml, Python, and Ruby.
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Eiffel exceptions, on the other hand, are designed to represent and handle abnormal,
unpredictable, erroneous situations. The languages C#, Common Lisp, and Modula-2
use this interpretation for exceptions as well2.

2.1 Exception Language Design in Java

Exceptions in Java are used to model many types of events; they are not just used
for erroneous behavior. Exceptions sometimes indicate situations that should not be
witnessed during a “typical” execution of a program. Most Java exceptions are meant
to be dealt with at runtime—just because an exception is thrown does not mean that the
program must exit.

Java exceptions are represented by classes that inherit from the abstract classjava.-
lang.Throwable. They are generically called throwables because raising an excep-
tion is Java is accomplished with the throw keyword.

Each Java throwable is one of two (disjoint) kinds: unchecked exceptions or checked
exceptions. The former inherit from either the class java.lang.Runtime-
Exception or the class java.lang.Error, the latter inherit from java.lang.
Exception [3, Section 11.2].

Some of the most commonly witnessed runtime exceptions are NullPointer-
Exception and ClassCastException. Two example errors are Assertion-
Error and ThreadDeath. Examples of normal exceptions are ClassNotFound-
Exception, CloneNotSupportedException, and IOException.

Checked Exceptions in Java. If a method can raise a checked exception, the checked
exception type must be specified as part of the signature of a method. The throws
keyword is used to designate such. A client of a method whose signature includes an
exception E (i.e., the method signature includes “throws E”) must either handle E
with a catch expression or the client also must declare that it can throw E.

Thus, if a new checked exception is introduced or an existing exception is elimi-
nated, all method signatures or method bodies involving these exceptions must change.
Likewise, all methods that call these changed methods must be revised. This exception
signature coupling leads to a fragile and annoying trickle-down effect that is frequently
seen when programming large Java systems.

Checked exceptions are mainly used to characterize partial and total failures dur-
ing method invocations, like a file not being readable or a buffer overflowing. Not
all erroneous situations in Java are represented by exceptions though. Many meth-
ods return special values which indicate failure encoded as constant field of related
classes. This lack of design uniformity leads to the introduction of the Uniformity
Principle.

Principle 1 (Uniformity Principle). Exceptions must have a uniform, consistent infor-
mal semantics for the developer.

2 Note that Modula-2 did not originally have exceptions; their addition caused a great deal of
controversy through the early 1990s (i.e., compare [1] to [2]). See http://cs.ru.ac.za/
homes/cspt/sc22wg13.htm for a historical discussion of such.

http://cs.ru.ac.za/homes/cspt/sc22wg13.htm
http://cs.ru.ac.za/homes/cspt/sc22wg13.htm
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The use of exceptions in Java is contrary to the Uniformity Principle. While some
attempt has obviously been made to use exceptions only for truly unexpected inci-
dences, there are numerous examples of inconsistent use (e.g., ArrayStoreExcep-
tion, FileNotFoundException, and NotSerializableException).
These inconsistencies are sometimes due to more serious language flaws (e.g., in Java’s
type system), but, for the most part, are simply inconsistencies in API design.

Unchecked Exceptions in Java. Unchecked exceptions are either runtime exceptions
or errors.

Runtime exceptions can rarely (but potentially) be corrected at runtime, and thus are
not errors. For example, ArrayIndexOutOfBoundsException, ClassCast-
Exception, and NullPointerException are common runtime exceptions of
this kind.

Errors indicate serious problems that most applications cannot handle. Most er-
rors indicate abnormal situations with either the operating environment or the pro-
gram structure. Examples of errors are AssertionError (thrown when an assertion
fails), No-SuchMethodError (thrown when a method that does not exist is called),
Stack-OverflowError, and OutOfMemoryError. In general, if one of these
errors is raised, the program exits.

Java 5. In Java 5 several new constructs were added to the Java language. Two of these
constructs are parameterized classes and enumerations.

Programmers can use either of these language mechanisms to express richer excep-
tion semantics. For example, a enumeration can denote a precise set of distinct excep-
tions legal in a given context.

There is no evidence that the Java 1.5 team has considered either of these alternatives.
There are no parameterized exception types in Java 1.5, no new exception types of note,
and no use of enumerations and exceptions.

2.2 Exceptions in Eiffel

The fundamental exception principle in Eiffel is that a routine3 must either succeed or
fail: either it fulfills its contract4 or it does not. It the latter case an exception is always
raised [4,5]. Thus, exceptions are, by design, meant to be used in Eiffel exclusively to
signal when a contract is broken.

Eiffel exceptions are not specified as part of the type signature of a routine, nor are
they mentioned in routine contracts. In fact, there is no way to determine if a routine
can raise an exception other than by an inspection of the routine’s source code, and all
the source code on which it depends.

Eiffel exceptions are represented by INTEGER5 and STRING values—there are no
exception classes6. Exceptions that are part of the language definition are represented

3 An Eiffel routine is a method of a class.
4 An Eiffel routine contract is a precondition/postcondition pair.
5 Eiffel class names are always capitalized.
6 The new ECMA standard for Eiffel introduces exception classes perhaps, in part, due to articles

such as this one [6].
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by INTEGER values, developer-defined exceptions by STRING values7. This limited
and non-uniform representation of Eiffel exceptions inspires a new principle.

Principle 2 (Representation Principle). Exceptions should have a uniform represen-
tation, and that representation should be amenable to refinement.

Eiffel exceptions have two representations which causes design impedance when deal-
ing with them. Additionally, because they are basic values and not objects, they have no
inherent semantics beyond that which is expressed in a helper routine which necessarily
cannot be foolproof because of the representation overloading in effect (e.g., one cannot
differentiate two integers of the same value).

Contract Failure. Contracts are violated in several ways, all of which are considered
faults, but only some faults are under programmer control.

Operating environment problems, such as running out of memory, are one situation
in which exceptions are raised. In these cases a contract fails, but not necessarily be-
cause the client (the caller) or the supplier (the callee) did something wrong. Certainly,
intentionally allocating too much memory, or otherwise using an extraordinary amount
of system resources, is the fault of the program, but such situations are more malicious
than typical.

Software infrastructure failures cause exceptions also. E.g., some operating system
signals raise an exception. Failures in non-Eiffel libraries that are used by an Eiffel ap-
plication cause these kinds of exceptions as well. For example, Eiffel programs that link
with Microsoft Windows COM components witness an exception when a COM routine
fails and Eiffel programs that use UNIX libraries see an exception raised when an ex-
ternal library fails and did not set the errno system variable. Additionally, a floating
point exception is raised on some architectures when a division by zero is attempted.

But most exceptions used in Eiffel are not due to external factors, but instead are
assertion violations or developer exceptions, both of which are used to indicate program
errors.

If assertion checking is enabled during compilation, assertion violations cause an
exception to be raised. These exceptions are classified according to the type of assertion
that has been violated8.

For example, the check instruction, which is equivalent to C or Java’s assert
statement, cause a Check instruction exception to be raised. A Loop variant
exception is another assertion violation. This exception is raised when a loop variant
does not monotonically decrease during loop execution.

Violating a contract, either by failing to fulfill a class invariant, a method precon-
dition or postcondition, or a loop invariant, is the final kind of exception. Contract vi-
olations fall into two categories: those that are the fault of the client of a class, and
those that are the fault of the supplier of a class. The classification of an exception is
determined by the context of the failure during program execution.

7 Earlier versions of the Eiffel language standard permitted developer-defined integer exception
values, but this seems to no longer be the case. It is unclear when and why this change was
made.

8 JML uses the same assertion failure exception design [7].
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If a contract is broken at the time a method is called, regardless of whether the caller
is another object or the current object (in the case of a callback, or the use of the retry
keyword, see below), then the blame lies with the caller.

Exactly one kind of exception, called Void call target, can be the blame of
either the caller or the callee. If a method is invoked on an object reference with value
Void, a Void call target is raised. If the caller set the value to Void, or did not
check the reference prior to making the invocation attempt, then the blame lies with
the caller. In situations where the reference was obtained via a routine call, either via a
formal parameter or a return value, and the value is Void, the blame lies with the callee,
as the specification of the routine is not strong enough to eliminate the possibility of the
Void value9.

The uniform design for signaling assertion failure with exceptions in Eiffel is con-
trary to that which exists in Java. Several languages exist for the formal specification
of contract for Java code, and the Java Modeling Language (JML) is the de facto stan-
dard for such [8]. Unfortunately, because assertion violation semantics is so primitive
in Java, there is no uniformity in exception specification across different assertion tools
and specification languages. This muddle inspires the next principle.

Principle 3 (Language Specification Principle). If exceptions are used to represent
assertion failure, their design and semantics should be incorporated into the core lan-
guage specification.

Java programmers and JML specification authors have suffered because the creators of
Java ignored this key point in language design, particularly because an assert statement
was not introduced to Java until seven years into the evolution of the language.

2.3 Comparing Eiffel Exceptions to Unchecked Exceptions in Java

Given the above analysis, Eiffel exceptions and Java unchecked exceptions are exclu-
sively focused on unexpected, erroneous behavior that an application should not try to
handle. Thus, one might expect every Eiffel exception to map to a single Java unchecked
exception. This is not the case.

Some of Eiffel’s built-in exception types are equivalent to standard checked excep-
tions in Java. For example, Eiffel’s Io exception, Runtime io exception, and
Retrieve exception are similar to IOException and some of its children.

A number of unchecked exceptions are equivalent to standard Eiffel exceptions.
For example,Void call target is equivalent to NullPointerException, and
Floating point exception is equivalent to ArithmeticException.

Finally, some errors are equivalent to the remaining Eiffel exceptions:Assertion-
Error is equivalent to the set of specification-centric Eiffel exceptions (Check -
instruction, Class invariant, Loop invariant, Loop variant,
Postcondition, and Precondition), and No more memory subsumes Out-
OfMemoryError and StackOverflowError.

Missing Mappings. Several exceptions that exist in each language have no peer in the
other language.

9 The new ECMA standard for Eiffel introduces non-void types to deal with these issues.
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Rescue exception has no mapping, as Java does not perform any special han-
dling of exceptions thrown in a finally clause. An extended discussion on this point
is below in Section 2.3.

An equivalent for Signal exception is not part of the core Java language as
Java’s definition focuses on multi-platform development and not all platforms have sig-
nals10. The original Eiffel language specification states that such system-specific excep-
tions should be contained in system-specific classes, but no compilers implement this
suggestion [10].

An error like Void assigned to expanded is not possible in Java as Java has
no expanded types and the type system prohibits assignment of null to built-in types
like int and boolean11.

The Eiffel literature claims that Eiffel has no casting (cf., [11, page 194]), thus there
is no equivalent to Java’s ClassCastException. This claim is a bit disingenu-
ous because Eiffel’s assignment attempt operator ‘?=’ is simply a built-in conditional
downcast in the form of an operator12.
Routine failure is a generic exception in Eiffel that indicates a routine has

failed for some reason. The reason is sometimes recorded (as a STRING) in the mea-
ning associated with the exception, but this is not mandatory. This is also true of
Java exceptions, each of which has an optional message associated with it obtainable
via the Throwable.getMessage() method. Unfortunately, there is absolutely no
uniformity to the use of these representations in either language, which motivates the
introduction of the following principle.

Principle 4 (Meaning Principle). When defining a new type of exception, the avail-
ability of a human and unambiguous machine comprehensible representations (e.g., a
string value and a predicate) is mandatory.

For the most part, exception design in both Java and Eiffel fail to fulfill the Meaning
Principle.

None of the various Java exceptions involving out-of-bounds array access and strings
exist in Eiffel because the contracts of accessor routines for these types prohibit such.
Cloning-related exceptions do not exist because all objects can be cloned in Eiffel. In
fact, in general numerous exception types simply do not exist in Eiffel because routine
contracts prohibit the situations that must be manually dealt with in Java catch blocks.
This evidence inspires a principle on contracts.

Principle 5 (Contract Principle). Integrated contracts significantly decrease the
number and complexity of exceptions.

The Contract Principle is critical with regards to the development of complex mod-
ern applications and components, particularly with respect to component and system
testing, verification, and evolution.
10 One can catch and handle signals in Java, but internal classes like sun.misc.Signal and
sun.misc.SignalHandler, or a package like that seen in [9], are needed.

11 And, in fact, this error cannot occur with the introduction of autoboxing in Java 5.
12 This is not the only “pragmatic circumvention” in Eiffel. Other examples include the dual

semantics of routine calls (with and without an explicit “Current”) and the semantics of the
equal and clone routines of ANY.
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This principle is supported by the quantitative analysis of Section 4.
The Eiffel language standard does not have several features of Java: reflection, in-

trospection, concurrency, and sandboxing. While these features contribute significantly
to the complexity of Java’s exception class hierarchy it is expected that the continued
application of the Contract Principle will see Eiffel’s exception hierarchy change little
with the adoption of such features13.

Controlling Exceptions in Eiffel. Exceptions are primarily controlled in Eiffel using
rescue clauses and the retry instruction. Exceptions are also indirectly controlled by
the choice made in compilation mode during application development.

A routine may end with a rescue clause. A rescue clause of a routine is a block of
code that will execute if any exception is raised during the execution of the routine.

The rescue clause does not discriminate between different types of exceptions. In this
respect, it is functionally equivalent to the surrounding every Java method body with
a try/catch block where the catch expression’s type java.lang.Throwable.
The rescue clause is not equivalent to Java’s finally construct. The code enclosed
in a finally block is always executed when a method completes, whether it completes
normally or abnormally, while a rescue clause only executes when a routine fails.

The retry instruction in Eiffel causes a routine to restart its execution. This instruc-
tion may only be used within a rescue clause. If a rescue clause does not contain a retry
instruction, then the routine fails and the current exception is raised in the immediate
caller. The details of finally and rescue are discussed in the sequel.

Exceptions are manipulated in Eiffel using the EXCEPTIONS class. Using this
class one can find out information about the latest raised exception (much like errno in
C), handle certain kinds of exceptions in a special way, raise special developer-defined
exceptions, and prescribe that certain exceptions must be ignored at run-time. The EX-
CEPTIONS class is part of the Eiffel Kernel Library, thus is available in all Eiffel
compilers.

3 Exceptional Specifications and Validation

The key difference between the use of exceptions in specifications in the two languages
in that exceptions are part of a method contract in Java and are not part of a routine con-
tract in Eiffel. Thus, a fundamental notion of “Design by Contract,” that of exceptions
exclusively indicating contract failure, has a different interpretation in Java.

3.1 Contracts with Exceptions in Java

As mentioned previously, the Java Modeling Language is used to write formal speci-
fications of Java components [12]. The discussion in this section is based upon expe-
rience in participating in the development and application of a denotational semantics
for Java and JML and the design, specification, and verification of several Java sys-
tems [13,14,15].

13 This claim is supported by the recent addition of reflection and concurrency in commercial
and experimental Eiffel compilers.
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The semantics of Java, and thus JML, are significantly complicated by the possibility
of abrupt method termination. Verification proofs must cover three cases in Java: nor-
mal termination, abrupt termination, and divergent behavior, sometimes tripling proof
size.

The default specification for a failure is simply true, which means that the routine
guarantees nothing in particular when a failure takes place. Usually something stronger
is specified and, in fact, exceptional cases are often the first part of a formal specification
written.

This information, what is true of the system when an exception is thrown, helps the
caller deal with the exceptional cases rather than just halting. In fact, the specification of
a postcondition for abrupt termination is mandatory for reasoning about systems during
abrupt termination. Without such assertions, class invariants can become significantly
more complex because, for example, specification variables are needed to represent
failure states for all of the routines of a class.

3.2 Specifications of Eiffel Exceptions

In Eiffel, the semantics of exceptional-correct routines is rolled into the definition of
class correctness [11, Chapter 15 and Section 9.16].

The definition [11, Section 15.10] of exception-correct is:

A routine r of a class C is exception-correct if and only if, for every branch b
of its rescue block:
1. If b ends with a Retry: {true} b {INV_C and pre_r}
2. If b does not end in a Retry: {true} b {INV_C}

where INV C is the class invariant of C; pre r is the precondition of routine r.

This semantics is problematic in practice because it means that an Eiffel routine must
always have a rescue block that “puts everything right” (fulfills the normal precondi-
tion). But how does the routine know what went wrong and how to change the current
state to fulfill the postcondition14?

Some programmers weaken the postcondition of retryable routines because one can
barely state anything is true if the routine can either fail or succeed. Another solution is
to write complex postconditions using a set of disjuncts with error-flag guarded expres-
sions15. For example,

method_call_failed implies (F || G || H)
|| not method_call_failed implies (I || J || K)

This kind of specification is evident in the very few places where exceptions are handled
in Eiffel code, and we speculate this is true because of the inherent complexity in such
specifications.

Specifications in JML that use keywords like exsures and exceptional -
behavior that are simply shorthand for these more complex expressions. E.g., an

14 The new ECMA-367 standard no longer forces the restoration of the precondition.
15 It should be noted that the new ECMA Eiffel standard changes this definition and no longer

forces a restoration of the precondition.



Exceptions in Java and Eiffel: Two Extremes in Exception Design and Application 297

exsures assertion specifies exactly what is true when a particular exception is thrown.
Eiffel will benefit from such assertion expressions as well.

This semantics significantly complicates contracts and weakens their application.
Neither case is surprising: either (in case 1) a rescue clause must fulfill the invariant
and the precondition of the retried routine or, (in case 2) a retry does not happen so
the routine has to leave the object in a legitimate state by fulfilling its invariant. What is
surprising is that nothing is know about when or why the exception happened in the first
place, since both preconditions are as weak as possible, and nothing new can be speci-
fied about the state of the objects when a failure takes place, since the postcondition is
exactly the invariant.

JML, on the other hand, provides the ability to state a stronger postcondition in
these exceptional cases, and this information is essential to verifying programs with
exceptions. These observations provide evidence for a principle about exceptional post-
conditions.

Principle 6 (Abrupt Termination Principle). The specification of object state when
an assertion is raised, either via an exceptional postcondition or an exception predicate,
is mandatory if programs are to be formally verified.

The Java Modeling Language fulfills this principle admirably, while Eiffel fails in this
regard.

4 Qualitative and Quantitative Comparisons

In the end, it is unclear how important exceptions are in the Eiffel world. This might
be due to exception’s perceived second-class nature in the Eiffel universe of “correct”
software, as evidenced by their rare use (see below).

If exceptions in Eiffel are equivalent to unchecked exceptions in Java, and if library
programmers for the two languages equally careful and capable of handling unexpected
circumstances, then an analysis of exception usage in the two core code bases should
yield comparable results.

The data in Table 1 is the result of such an analysis. The specific large Eiffel sys-
tems chosen for this analysis are four of the largest, highest-quality Open Source Eiffel
systems available today.

In the case of the Gobo and SmartEiffel systems, all code, library and applications,
was analyzed for this data. In Java 1.4.1, all source under the top-level package java
was examined. The number of declared exceptions is determined by counting and clas-
sifying all calls to EXCEPTIONS.raise and EXCEPTIONS.die, in the case of Eiffel,
and counting all descendants of java.lang.Throwable, in the case of Java. The
number of raised exceptions is determined by a count of the number of calls to EXCEP-
TIONS.raise and EXCEPTIONS.die, in the case of Eiffel, and the number of throw
statements, in the case of Java. The data on stack traces is determined by counting
and analyzing all calls to routines exception name, tag name, meaning, and
developer exception name of class EXCEPTIONS. All numbers are approxi-
mate and measured using the wc command.
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Table 1. Use of Exceptions in Eiffel and Java

Library Gobo 3.1 ePosix 1.0.0 ISE Eiffel 5.3 SmartEiffel 1.0 JDK 1.4.1
Number of direct/indirect
mentions of EXCEPTIONS,
or unchecked exceptions 18 3 17 0 525/15,000
Number of unchecked/checked
exceptions declared 3/- 6/- 5/- 0/- 50/150
Number of raised unchecked/
checked exceptions 66/- 87/- 13/- 0/- 3,000/2,650
Number of rescue or
finally clauses 6 10 29 0 50
Number of retry commands 81 3 15 0 N/A
Number of times a stack trace
is (a) checked or manipulated,
or (b) printed or ignored 0/0 0/0 0/0 0/0 8/79
Total lines of code
and documentation 250,000 25,000 372,000 115,000 421,000

To summarize the result of this analysis: in Java an unchecked exception is thrown
for approximately every 140 lines of code, where in Eiffel one is used for every (ap-
proximately) 4,600 lines of code. This represents a difference of over thirty times in
frequency. The above statistics clearly show that either or both (a) exceptions in Eiffel,
either through technical issues or social pressure, have a second-class (or perhaps even
ignored) status, or (b) the (built-in) existence of reasonable specification technologies
inherently leads to fewer assertions being thrown. Given the preponderance of quality
Eiffel software available, the latter point holds much more weight. This fact is especially
highlighted in the complete lack of exception use and support in the GNU SmartEiffel
system.

This data should be carefully considered by the language standardization commit-
tees for Eiffel and Java. It also provides evidence for potential avenues for language
refinement, particularly with regards to the specification of abnormal behavior.

5 Exception Equivalency

Both languages have exceptions mechanisms that can be treated as equivalent. For ex-
ample, a hierarchy is representable by integer or string values in a number of ways
(e.g., De Bruijn indices or simple lexical encodings), so one can define an artificial type
hierarchy for Eiffel exceptions if necessary.

Likewise, the minimal exception interface of Eiffel, embodied in the EXCEPTIONS
class, is possible in Java. In fact, some Java developers advocate avoiding checked
exceptions entirely, instead inheriting exclusively from RuntimeException [16].
Programming in this fashion pushes Java toward a more dynamic style, akin to pro-
gramming in Objective-C.
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We can find no evidence of the converse, that of Eiffel programmers using excep-
tions as flow control mechanisms. While Eiffel exceptions can be used in such a way,
programmers simply do not use them in this way.

As any Java programmer knows, the volume of try/catch code in a typical Java
application is sometimes larger than the comparable code necessary for explicit for-
mal parameter and return value checking in other languages that do not have checked
exceptions.

In fact, the general consensus among in-the-trenches Java programmers is that deal-
ing with checked exceptions is nearly as unpleasant a task as writing documentation.
Thus, many programmers report that they “resent” checked exceptions. This leads to an
abundance of checked-but-ignored exceptions, as evidenced by the next to the last line
of the table of the previous section.

Additionally, the presence of checked exceptions percolates through the system, as
discussed in Section 2.1. As discussed by the designers of C# [17]:

Examination of small programs leads to the conclusion that requiring exception
specifications could both enhance developer productivity and enhance code
quality, but experience with large software projects suggests a different result
– decreased productivity and little or no increase in code quality.

This attitude guides the design of error handling in the .NET framework as well [18,
see Section “Error Raising and Handling Guidelines”].

These issues lead to our last, and perhaps crucial principle.

Principle 7 (Checked Exception Principle). Checked exceptions generally increase
system fragility (because of signature refactoring), increase code size (due to explicit,
localized, mandatory handling), and cause programmer angst (as evidenced by the
number of empty or spiteful catch blocks in public Java code), so their inclusion
in a language should be considered carefully.

In the end, so long as an exception mechanism has a simple semantics, is consistently
used, and provides a tool which programmers can understand, depend upon, and not
resent, then they can be included in future languages.
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