
Simple Data Format – A Platform
Independent Data Format that
works in Fortran, C, and IDL

George H. Fisher
Space Sciences Lab

UC Berkeley

http://solarmuri.ssl.berkeley.edu/~fisher/public/software/SDF

Abstract
Saving the binary output from large-scale numerical simulations,
especially large multi-dimensional arrays, in a form that can be easily
post-processed and analyzed on many different computing platforms,
has been a challenge for many years.

Here I describe one possible solution for this problem, the “Simple
Data Format” (SDF) file format, and an implementation of this format
that works in Fortran, C, and IDL. The file format and software has
been demonstrated to work for all 3 languages in Linux on x86 and
x86_64 architectures, in Windows XP (x86), and on large-endian
platforms such as SUN-Solaris, and the Mac G4, G5 processors
running the OSX operating system. SDF binary data files can be
passed from one architecture to another transparently.

SDF was designed specifically to allow a clean replacement of
unformatted and direct-access I/O in Fortran 77 or Fortran 90/95
programs with simple subroutine calls, and to accommodate “large”
(over 2GB) file sizes on all platforms. Specific examples of how to
read, write, and edit SDF files in all 3 languages are shown.

Motivation (or - why did I waste my valuable time
as a scientist writing this software?)

This project was born from over 20 years of accumulated frustration
with difficulties in analyzing results from numerical calculations.
While tools such as IDL and OpenDX have come a long way in
improving our ability to visualize simulation results, it is still very
difficult to produce binary output from numerical calculations that
these tools can use in a way that is efficient, transparent, and
independent of OS platform and/or computer hardware. Excellent
platform-independent data formats do exist (FITS and HDF5, for
example) but their user interface is too cumbersome for rapid
analysis, debugging, and code development purposes. Further,
many of these tools have deficiencies in some OS environments,
while they work fine in others. This lack of uniform capability across
languages, hardware, and operating systems greatly diminishes the
generality and usefulness of most existing platform independent data
formats.

And, I’m anal.

How does one get the binary output from a large-scale numerical
simulation (written e.g. in Fortran) from this Beowulf cluster so that
it can be easily analyzed from any computer architecture, running
any operating system?

The Problem:

Possible Solutions
Approach Advantages Disadvantages

Formatted I/O Platform independent Loss of precision,
very inefficient

Unformatted binary
I/O

Efficient and simple Endian, platform, and
language-dependent

Platform independent
file formats (HDF,
HDF5, NetCDF, FITS)

Platform independent Difficult to install,
complicated to use,
not available for all
languages and
platforms

Platform independent file formats are the most logical solution,
yet existing formats can be hard to use and have other
deficiencies…

Summary of several platform independent file formats:

Format Name Advantages Disadvantages
IDL Save file All platforms on which IDL

runs are supported
Proprietary, no support for
C/Fortran

FITS format Heritage in solar physics,
wide software base,
extensions, many
platforms, large file
support recently added

IDL versions not large file
capable, C/Fortran code
not large file capable in
MS Windows.

NetCDF Wide use in atmospheric
sciences, large file support
recently added

Cumbersome user
interface

HDF In wide use in scientific
and engineering
communities

Cumbersome user
interface, no support for
large files

HDF5 In wide use in scientific
and engineering
communities

Cumbersome user
interface, no Fortran 77
support, IDL support only
recently

Design a file format and I/O software that is
easy to use and very portable: Simple Data

Format (SDF).
1. The SDF file structure is open, simple, and easy to understand.
2. Since IDL is the dominant analysis language used in Solar Physics, SDF

was implemented in C and Fortran (on the simulation side) and in IDL (on
the analysis side).

3. Both the C and Fortran user-callable functions (i.e. the “interface”) are
written entirely in C to simplify the compilation and installation of the
library. The code is designed to compile on a wide variety of different
systems.

4. The Fortran interface works in legacy Fortran 77 codes, as well as with
Fortran 95.

5. The C, Fortran, and IDL function calls for reading and writing data can be
done with only 1 statement, sdf_read (or sdf_read_f77), and
sdf_write (or sdf_write_f77)..

6. The SDF functions called from all 3 languages support the reading and
writing of “large” files greater than the 2GB limit.

Design a file format and I/O software that is easy
to use and very portable: Simple Data Format

(SDF) -- (continued).
7. The C/Fortran callable version supports a multi-dimensional

transpose and index reversal function for large arrays,
sdf_transpose, which does the transpose in-place to minimize the
impact on memory.

8. The C/Fortran and IDL interfaces allow one to edit “datasets” (arrays
or variables) anywhere in an SDF File with a single function call,
including deleting, inserting, or replacing existing datasets.

9. The IDL interface contains functions to write and read datasets from
an IDL session directly into an SDF file, sdf_write_all, and
sdf_read_all, very similar to the ‘SAVE’ and ‘RESTORE’
capabilites in IDL.

10. The IDL interface has a function, sdf_read_arr, that can retrieve a
series of saved datasets and re-construct a “time-series” describing
the evolution of a given scalar or multi-dimensional array.

How does one get and install SDF?
• Download the most recent tarball from

http://solarmuri.ssl.berkeley.edu/~fisher/public/software/SDF

• Unpack the tarball (e.g. tar zxvf sdf-0.74.tgz), get into the top level directory
created when unpacking the tarball.

• To create the Fortran/C callable library, type “make”. If you want to install
the library and include file into /usr/local/lib and /usr/local/include, become
root and then type “make install”. Typing “make all” compiles all of the test
programs. You will need to edit the Makefile to make sure that the choice of
C and Fortran compilers matches what you have on your system before you
type “make all”.

• To install the IDL version of the SDF procedures, copy the contents of the
idl folder from the tarball into some location that is in your IDL path. That
should be all that is necessary.

• Much more detail on installation procedure details, and how to link to the
library is in the file INSTALL.txt in the distribution; details on usage of all the
SDF functions are given in the file SDF_USAGE_NOTES.txt, and the
motivation/synopsis for SDF is given in the file SDF_MANIFESTO.txt . And
when I have time, I’m happy to answer emails and phone calls.

http://solarmuri.ssl.berkeley.edu/~fisher/public/software/SDF

Linux
x86
(32-bit)

Linux
x86_64
(64-bit)

Window
s XP
(32-bit)

OSX G4
(32-bit
MAC)

OSX G5
(64-bit
MAC)

SUN
Solaris
(64-bit)

SGI
Altix
64-bit
Itanium2

SGI
Origin
64-bit
IPxx
series

IBM
SP4,SP
5

cc (SGI) xlC_r

xlf_r
xlff95_r

?

f77(SGI)
f90(SGI)

?

icc

ifort

?

gcc, cc

f77, f95

yes

Cray
XD1
64-bit
Opteron
275

gcc, icc gcc,
pgcc, icc

gcc/min
gw,
msvc

gcc gcc pgcc

g77,
g95,
gfortran,
ifort, lf95

g77,
g95,
gfortran,
ifort,
pgf77,
pgf90

g77,
g95,
gfortran

g77, g95 g77, g95 pgf77
pgf90

yes yes yes yes yes ?

C

Fortran

IDL

On what platforms has SDF been tested?

Note that the tests performed included the ability to read and write large
(>2GB) files in all 3 languages. The SDF distribution includes a set of test
programs for Fortran and C.

What is the Structure of an SDF file?
Bytes 0-10: the string “SDF format” including null terminator

Bytes 11-18: 64-bit integer, “hdrpos” – location of next available byte in
header
Bytes 19-26: 64-bit integer, “datapos” – location of next available byte
in data area. This is also equal to the file size.
Bytes 27-30: 32-bit integer, “ndatasets” – number of datasets currently
in file
Bytes 31-38: 64-bit integer, “hdrsize” – The current size of the header
(initially set to HINITSZ, and incremented in blocks of HINITSZ as
necessary. Default value of HINITSZ is 2000, but can be set by user.)
Bytes 39 – 19+hdrsize-1: The header area, containing identifier strings
for all the datasets on the file.
Bytes 19+hdrsize -- datapos: The data area, where all the datasets are
stored.

All the above integers, and all the data in the file, are stored in large-endian byte
order. The SDF software converts to and from small-endian when necessary.

What kind of data can be written into an SDF file?

Floating point datasets, which includes both single precision and double
precision. These data can be of any length, ranging from a single variable to
large arrays with an arbitrary number of dimensions (datatype = ‘f’).

Integer datasets, ranging from 2-byte or short integers to 8-byte or long long
integers. These data can range from a single variable to large arrays with an
arbitrary number of dimensions (datatype = ‘i’).

Complex number datasets, single or double precision, and of arbitary length
and dimensionality (datatype = ‘c’).

Byte array datasets, ranging from a single byte to large arrays with an
arbitrary number of dimensions. These can include strings (but null
terminators are treated the same as any another byte) (datatype = ‘b’).

The reading and writing of structures is currently not supported, though
individual structure members which are arrays of the above types can be
used.

How is the “metadata” for each dataset
stored in the header of an SDF file?

The amount of metadata for each dataset is kept to an absolute minimum.
Each dataset in the SDF file is described by a single linefeed terminated
string stored in the header part of the file. Each string consists of a series
of tokens, separated by blanks. The tokens correspond to the following
quantities:

iorder – the order of this dataset in the file (starts from 0)
label – a short string (no blanks) denoting the dataset – (e.g. a variable name)
datatype – a single character denoting the type of data, i.e. ‘f’, ‘i’, ‘c’, or ‘b’
nbpw – the number of bytes per word
ndim – the number of dimensions of the dataset or array
dims – the ndim values of the array dimensions

For example, the 3-dimensional (100 x 200 x 300) double precision array
“rho” that is the 4th dataset in the SDF file would have an identifier string in
the header that looks like this: 3 rho f 8 3 100 200 300

The identifier strings are stored sequentially starting at byte 39.

fname: string containing sdf file name
lb: short string identifier
dt: datatype (single character, ‘f’, ‘i’, ‘c’ or ‘b’)
nb: no. bytes per word
nd: no. of dimensions
dims: 1-d array of dimensions
data: the array of data
ord: order of dataset in file fname
id: structure containing ord,lb,dt,nb,nd,dims

call sdf_write_f77(fname,lb,dt,nb,nd,dims,data)

Fortran:

id=sdf_create_id(0,lb,dt,nb,nd,dims);
sdf_write(fname,id,data);

C:

sdf_read,fname,ord,lb,data

IDL:

How does one use SDF to write an array from a
Fortran or C program and then read it into IDL?

call sdf_read_f77(fname,ord,lb,dt,nb,nd,dims,data)

Fortran:

id=sdf_read(fname,ord,(void **)&data);

C:

fname: string containing sdf file name
ord: order of dataset in file fname
lb: short string with identifier
dt: datatype (single character, ‘f’, ‘i’, ‘c’ or ‘b’)
nb: no. bytes per word
nd: no. of dimensions
dims: 1-d array of dimensions
data: the array of data
id: structure containing lb, dt, nb, nd, dims

sdf_write,fname,lb,data

IDL:

How does one write an array from IDL and then
read that array into a C or Fortran program?

Navigating the datasets in an SDF file

• The SDF software uses the order of datasets in the file
as the primary means to identify them.

• The SDF software contains several functions to aid in
navigating the contents of an SDF file. sdf_query will
provide a brief summary of all the datasets in a file.
sdf_details will provide all of the details for a single
selected dataset. sdf_labmatch returns the dataset
orders for all datasets whose “label” matches a user-
specified string.

• The C/Fortran version of SDF includes a simple
command-line program, sdf_browse, which allows the
user to interactively examine the various datasets in a
file, and a primitive capability to print out a limited range
of values.

The SDF software contains the ability to edit (insert,
delete, & replace) datasets anywhere in the file

• To delete datasets anywhere in a file, one can use the
functions sdf_delete (IDL and C) and
sdf_delete_f77 (Fortran).

• To insert a new dataset anywhere in an SDF file, the
functions sdf_insert (IDL and C) and
sdf_insert_f77 (Fortran) will do the job. The function
call includes a reference to the new variable or array to
be written, plus the dimensions and other details.

• To replace an existing dataset anywhere in an SDF file,
one uses the functions sdf_replace (IDL and C) and
sdf_replace_f77 (Fortran). These function calls also
include the new data and dimensions as arguments.

Transposing arrays and changing index
directions in SDF

Frequently, one needs to change the indexing order of large, multi-dimensional
arrays, and/or to reverse the direction of one or more of the array indices. The SDF
library for C/Fortran has functions sdf_transpose (C) and sdf_transpose_f77
(Fortran) which perform these operations in place, which means the operation is
done in memory without creating a temporary copy of the array. This is important
when one is near the maximum memory limit. Here is how sdf_transpose is
used from a C program:

sdf_transpose(ind,rev,id,data);

Here, ind and rev are integer arrays that describe the new index order and directions
for the transposed array in terms of the original order. The structure “id” contains
the information about the array dimension, etc. and “data” is a pointer to the array.
On output, both id and data are changed to reflect the changed dimensions and
reshuffled array values.

The vacancy-cycle tracking method of C. H. Q. Ding, "An Optimal Index Reshuffle
Algorithm for Multidimensional Arrays and its Applications for Parallel Architectures",
IEEE Transactions on Parallel and Distributed Systems, vol. 12, No. 3, pp 306-315,
2001 is used to perform the in-place transpose.

The IDL version of SDF allows one to “save” and
“restore” variables in an IDL session to, and from,

an SDF file:
To write all of the variables and arrays in your current IDL
session into an SDF file, enter the command
sdf_write_all,’fname.sdf’
where it is assumed in this example that the output file is fname.sdf .

There are some restrictions – IDL strings must be converted to byte
arrays with the byte () function before they will be written, and IDL
structures will not be written out.

To read in all of the IDL variables from the SDF file in the above
example, enter the command
sdf_read_all,’fname.sdf’
To convert byte arrays back into IDL strings, just use the IDL string()
function.

In contrast to IDL save files, SDF files are not
proprietary and can be used in any other application, in
addition to being platform independent.

The SDF Library includes other
useful low-level I/O functionality
The sdf_wb and sdf_rb (sdf_wb_f77 and sdf_rb_f77 in Fortran)
functions will perform large endian binary writes and reads without
metadata, which for some applications is more useful than a formal file
format. These functions are also large-file capable and platform-
independent.

Functions for detecting platform endian-ness (is_big_endian and
ibe_f77 in Fortran), and for byte-swapping (byteswap and
byteswap_f77 in Fortran) are included in the SDF library, and
callable from both C and Fortran.

The Fortran-callable part of the library includes wrappers for most of
the low-level C disk I/O functions, such as fopen, fclose,
fread, fwrite, fseek, and ftell. These functions allow one to
develop low-level I/O capability within Fortran programs without
resorting to the pitfalls of Fortran unformatted disk I/O.

Details can be found in the SDF_USAGE_NOTES.txt file in the SDF
distribution.

Summary

The Simple Data Format platform-
independent data format, and associated
software, now exist as a working
prototype. I welcome comments,
criticisms, and especially, people willing to
try it out. If you find bugs, I will try to fix
them.

This work was supported by the DoD MURI grant, “Understanding
Magnetic Eruptions on the Sun and their Interplanetary Consequences”,
and by a grant from NASA’s Heliophysics Theory Program.

	Simple Data Format – A Platform Independent Data Format that works in Fortran, C, and IDL
	Abstract
	Motivation (or - why did I waste my valuable time as a scientist writing this software?)
	Possible Solutions
	Summary of several platform independent file formats:
	Design a file format and I/O software that is easy to use and very portable: Simple Data Format (SDF).
	Design a file format and I/O software that is easy to use and very portable: Simple Data Format (SDF) -- (continued).
	How does one get and install SDF?
	What is the Structure of an SDF file?
	What kind of data can be written into an SDF file?
	How is the “metadata” for each dataset stored in the header of an SDF file?
	Navigating the datasets in an SDF file
	The SDF software contains the ability to edit (insert, delete, & replace) datasets anywhere in the file
	Transposing arrays and changing index directions in SDF
	The IDL version of SDF allows one to “save” and “restore” variables in an IDL session to, and from, an SDF file:
	The SDF Library includes other useful low-level I/O functionality
	Summary

