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Abstract—In this paper we propose a low-rate coding method,
suited for application-layer forward error correction. Depending
on channel conditions, the coding scheme we propose can switch
from a fixed-rate LDPC code to various low-rate GLDPC codes.
The source symbols are first encoded by using a staircase or
triangular LDPC code. If additional symbols are needed, the
encoder is then switched to the GLDPC mode and extra-repair
symbols are produced, on demand. In order to ensure small
overheads, we consider irregular distributions of extra-repair
symbols optimized by density evolution techniques. We also show
that increasing the number of extra-repair symbols improves the
successful decoding probability, which becomes very close to 1

for sufficiently many extra-repair symbols.

I. INTRODUCTION

Forward Error Correction (FEC) codes are a key building

block for many content distribution applications. FEC codes

can operate at the physical layer (e.g. the LDPC codes of

DVB-S2), just below IP (e.g. the MPE-FEC scheme of DVB-

H), or within the transport or the application layers (e.g.

within the IP-Datacasting service of DVB-H). In this paper

we will focus on application-layer FEC codes, referred as AL-

FEC. AL-FEC codes are complementary and not opposed to

physical layer codes. There are two major differences between

these two classes. A first difference is the block of data

upon which FEC encoding is performed. With physical layer

(respectively sub-IP) FEC codes, FEC encoding is performed

on a sequence of bits (respectively IP datagrams). With AL-

FEC codes, encoding is performed over the whole object

(ideally by using a single block with the so-called “large block

codes”). A second difference is the type of errors these codes

will correct, or equivalently the channel type. With physical

layer FEC codes, we are dealing with a channel that can alter

the received content. With sub-IP and AL-FEC codes, we are

dealing with erasure channels, i.e. a channel in which each

data unit is either transmitted without error or entirely erased.

Indeed, the potential physical layer CRC, or physical layer

FEC codes, or even transport level UDP checksums, lead a

receiver to discard erroneous data units.

For small to medium codeword lengths, Maximum-Distance

Separable (MDS) codes are known to achieve the channel

capacity. However, for large block lengths, their decoding

becomes intractable and thus, iteratively decoded graph-based

codes constitute the main alternative. Low-density parity-

check (LDPC) codes [1][2] with iterative decoding [3] proved

to perform very close to the channel capacity with reasonable
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decoding complexity [4][5]. LDPC codes were generalized

by Tanner [6] by introducing the sparse graph representation

and replacing the Single Parity Check (SPC) constraint nodes

with error correcting block codes. Nowadays, these codes are

known as GLDPC codes and were recently investigated for

different channels in [7][8][9][10][11]. Moreover, “rateless”

codes that are capable of generating an infinite sequence of

repair symbols were proposed in [12][13]. Patent-free LDPC-

staircase and LDPC-triangle codes were proposed in [14][15].

In [16] it was shown that, decoded by a hybrid iterative-

Gaussian elimination algorithm, these codes tightly approach

the performance of an ideal MDS code on the binary erasure

channel.

In this paper, we propose a coding scheme that can produce

on-demand, extra-repair symbols, either to cope with bad

channel conditions, or to be used with fountain-like con-

tent distribution applications, e.g. FLUTE/ALC. The coding

scheme is based on a LDPC code, which can be extended

to various low-rate GLDPC codes. The extra-repair symbols

are produced in an incremental way by the GLDPC codes.

We show that code optimization is possible, by varying the

number of extra-repair symbols from one constraint node to

another (irregular distribution).

The paper is organized as follows: in Section II we describe

the coding scheme; in Section III we propose a code design

exploiting the LDPC-staircase codes. We analyze the asymp-

totic behavior of the proposed coding scheme in Section IV.

Then we provide a performance evaluation of these codes in

Section V. Finally we conclude.

II. PROPOSED CODING SCHEME

Let H be a sparse binary matrix with M rows and N =
K + M columns. We write H = (H1 | H2), where H1 is

the M × K left side of H , and H2 is the M × M right side

of H , and we further assume that H2 is a staircase (double

diagonal) or a lower-triangular matrix. The bipartite (Tanner)

graph associated to H consists of M constraint nodes and N
symbol nodes corresponding respectively to the rows and the

columns of H . A symbol node n is connected to a constraint

node m iff the corresponding element of H is equal to 1. In

this case, we also say that symbol node n is participating in

the constraint node m. The bitwise XOR sum of all the symbol

nodes of a constraint node by definition is equal to zero. Note

that symbols often represent packets (several byte long) rather

than individual bits with AL-FEC codes.
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We further consider a systematic Reed-Solomon (RS) or any

MDS code over a finite field GF(2p). Each symbol of the finite

field corresponds to a group of p bits, and the sum of two GF-

symbols corresponds to the bitwise XOR. Let the parameters

of the RS code be (k + 1 + E, k). Thus, k is the number of

information symbols (the code dimension), k + 1 + E is the

number of coded symbols (the code length), and the number

of repair symbols that can be generated by the code is equal to

1+E. Without losing generality, we may assume that the first

repair symbol is the XOR sum of the k information symbols.

Precisely, since the RS code is systematic, for any information

symbols (x1, . . . , xk), the repair symbols are computed as:

(y1, y1,1, . . . , y1,E) = (x1, . . . , xk)G (1)

where G is a k × (1 + E) matrix with coefficients in GF(2p).
The first repair symbol y1 is the XOR sum of the source

symbols x1, . . . , xk iff all the coefficients on the first column

of G are equal to 1. This can be obtained by multiplying G at

the left by an appropriate invertible matrix, which will change

the way the encoding is done but not the MDS property of

the code.

For the clarity of the presentation, let us assume for the

moment that each row of the matrix H has k + 1 coefficients

equal to 1 (i.e. each constraint node is of degree k + 1). For

a given sequence of source symbols s1, s2, . . . , sK , we can

compute a sequence of repair symbols by “walking down the

stairs”, as follows:

• Consider the k + 1 symbol nodes participating in the

constraint node corresponding to the first row of H . The first

k symbol nodes represent information symbols. The (k + 1)th

symbol (i.e., the coefficient 1 on the diagonal of H2) is the

XOR sum of the first k symbols. Then encode the sequence

of the first k symbols using the systematic RS code, and let

p1, p1,1, . . . , p1,E be the output repair sequence. Note that p1

is the value of the (k + 1)th symbol (they are both equal

to the XOR sum of the k information symbols). Symbols

p1,1, . . . , p1,E are called extra-repair symbols, and they will

not be used later in the encoding process.

• Consider the k + 1 symbol nodes participating in the

constraint node corresponding to the second row of H . The

first k symbol nodes represent either information symbols, or

the above repair symbol p1. The (k + 1)th symbol (i.e., the

coefficient 1 on the diagonal of H2) is the XOR sum of the first

k symbols. Then encode the sequence of the first k symbols

using the systematic RS code, and let p2, p2,1, . . . , p2,E be

the output repair sequence. Note that p2 is the value of the

(k + 1)th symbol (they are both equal to the XOR sum of

the k information symbols). Symbols p2,1, . . . , p2,E are called

extra-repair symbols, and they will not be used later in the

encoding process.

• Continue the above encoding process until the last row of

matrix H is reached.

We note that the sequence s1, s2, . . . , sK , p1, . . . , pM is simply

a codeword of the LDPC code with parity check matrix H .

The advantage of our approach consists in the availability

of extra-repair symbols that turn this code into a small rate

code. This code is therefore suitable for all the situations that

benefit from low rate (or at the extreme rateless) codes, i.e.

the possibility of generating infinite number of repair symbols.

Moreover, the extra-repair symbols can be computed “just-in-

time”, prior to being transmitted, rather than in advance.

It is also important to note that the assumption of constraint

nodes being of constant degree k+1 is not necessary. Indeed,

in case of constraint nodes with various degrees, we can chose

k such that the maximum constraint degree is equal to k + 1.

Then, for a constraint node of degree k′ + 1, with k′ < k,

we can use zero-padding in order to provide the systematic

RS-encoder with a sequence of length k.

The LDPC code with parity matrix H will be called initial

code, and its coding rate r = K/N will be called base coding

rate. Let us assume that e(m) extra RS repair symbols are

generated for the constraint node of row m, with 0 ≤ e(m) ≤
E and m = 1, . . . , M . Thus, the sequence:

s1, s2, . . . , sK , p1, p1,1, . . . , p1,e(1), . . .
. . . , pM , pM,1, . . . , pM,e(M)

(2)

is the codeword of a GLDPC code. We call this latter the

extended code. We note that the symbol nodes corresponding

to extra RS repair symbols pm,i are all of degree 1 (in the

bipartite graph associated with the extended code).

Let fe denote the fraction of constraint nodes with e extra

RS repair symbols:

fe =
card{m = 1, . . . , M | e(m) = e}

M
(3)

and f̄ be the average number of extra RS repair symbols per

constraint node:

f̄ =

E
∑

e=0

fe · e (4)

The coding rate r̄ of the extended code can then be computed

as:

r̄ =
K

N + Mf̄
=

r

1 + (1 − r)f̄
(5)

For instance, if the initial code rate is r = 1/2 and the average

number of extra RS repair symbols per constraint node is f̄ =
6, we obtain an extended code with coding rate r̄ = 1/8.

III. CODE DESIGN

This section focuses on the design of extended codes. The

initial code are the LDPC-staircase codes described in [15].

Thus, H = (H1 | H2), where each column of H1 has 3
coefficients equal to 1, and H2 is a staircase (double diagonal)

matrix. We further assume that the degree of constraint nodes

is constant (which is true with the coding rate considered).

We consider a base coding rate r = 1/2. Thus the constraint

nodes must be of degree 5 and then k = 4.

For the extended codes, we consider two kinds of extra-

repair symbol distributions:

• regular (A.K.A. “skyscraper”) distributions: fE = 1, and

fe = 0 for e ∈ {0, 1, . . . , E − 1}. Thus, each constraint

node has the same number E of extra-repair symbols.
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• uniform distributions: fe = 1/(E + 1), for e ∈
{0, 1, . . . , E}. The average number of extra-repair sym-

bols is f̄ = E/2.

An irregular distribution is one for which the number of extra

RS repair symbols varies from one constraint node to another.

Thus, the uniform distribution is an irregular one. Obviously,

additional irregular distributions can be considered, but we will

show that the performance of the uniform distribution is very

close to that of optimal irregular distributions. Another reason

for considering these distributions is that they can be nested

when E increases from 0 up to some maximum value. This

allows for incremental redundancy, as explained below for the

case of uniform distribution:

• Send the LDPC repair symbols. Set E = 0.

• If more repair-symbols are needed:

– choose M/2 random rows of H ;

– send one extra RS repair symbol for each of these

rows.

Set E = 1.

• . . .
• If more repair-symbols are needed, for each e ∈

{0, 1, . . . , E}:

– choose M/(E+1)−M/(E+2) random rows among

the M/(E+1) rows with e extra RS repair symbols;

– for each of these rows send E +1−e more extra RS

repair symbols (thus, each of these rows have now

E + 1 extra-repair symbols).

Set E = E + 1.

• . . .

We will show in next section that the extended codes

perform very close to the capacity if the number of extra-

repair symbols is sufficiently large. This property ensures that

by sending a sufficient number of extra-repair symbols, the

erased source symbols will be successfully recovered with

probability 1.

IV. DENSITY EVOLUTION

In this section we use a density evolution approach [17]

in order to optimize the extra-symbols distribution f for a

given base matrix H and target extended rate r̄. The iterative

decoding of the extended codes is similar to the one of the base

LDPC code, the only exception being that each constraint node

m can recover from e(m) + 1 erased symbols. It is important

to note that the extra RS repair symbols provide information

to a single constraint node, the one they participate in, and

they cannot relay any information during the iterative decoding

itself. Moreover, once all the source symbols of a constraint

node have been decoded, there is no need to decode the extra-

repair symbols since they no longer have any utility.

The degree of a constraint node will always be considered

with respect to the base LDPC code (i.e. we omit the extra-

repair symbols). The maximum constraint node degree is

denoted by dc and the maximum (base) symbol node degree

by ds. As usual, we denote by λ and ρ the degree distribution

polynomials of respectively symbol and constraint nodes of

the base LDPC code:

• λd is the fraction of edges connected to LDPC symbol

nodes of degree d, and λ(X) =

ds
∑

d=1

λdXd−1

• ρd is the fraction of edges connected to constraint nodes

of degree d, and ρ(X) =

dc
∑

d=1

ρdX
d−1

We also note:

• Pℓ, the probability of a LDPC symbol node sending an

erasure at iteration ℓ
• Qℓ, the probability of a constraint node sending an

erasure at iteration ℓ

Thus P0 is just the channel erasure probability, since we

assume that each symbol is either received or completely

erased.

Consider a constraint node m of degree k + 1, and let

e(m) = e be the number of extra RS repair symbols of m.

Let n, n1, . . . , nk, t1, . . . te be the symbols participating in m,

the first k +1 of which are LDPC repair symbols (source and

repair), while the last e represent extra RS repair symbols.

The constraint node m can recover the value of the LDPC

symbol n if and only if the number or erasures in the sequence

n1, . . . , nk, t1, . . . te is less than or equal to e. At iteration ℓ,

the LDPC repair symbols are erased with probability Pℓ, while

extra RS repair symbols are always erased with probability P0,

the channel erasure probability. It follows that the probability

of the constraint node m recovering the value of a LDPC

symbol n at iteration ℓ + 1, denoted by Q̄ℓ+1(k, e), can be

computed as:

Q̄ℓ+1(k, e) =
∑

0≤i≤k,0≤j≤e

i+j≤e

(

k

i

)

P i
ℓ (1 − Pℓ)

k−i

(

e

j

)

P j
0 (1 − P0)

e−j

(6)

Hence, the probability of the constraint node m sending an era-

sure to a LDPC symbol n at iteration ℓ+1 is (1−Q̄ℓ+1(k, e)),
and averaging over all possible values of k and e, we get:

Qℓ+1 = 1 −

dc−1
∑

k=0

ρk+1

E
∑

e=0

feQ̄ℓ+1(k, e) (7)

Conversely, a LDPC symbol node n of degree d, partici-

pating in constraint nodes m, m1, . . . , md−1, sends an erasure

to the constraint node m iff it was erased by the channel,

and it received erased messages from all constraint nodes

m1, . . . , md−1. Since this happens with probability P0 ·Q
d−1
ℓ+1 ,

and averaging over all possible degrees d, we get:

Pℓ+1 = P0

ds
∑

d=1

λdQ
d−1
ℓ+1 = P0λ(Qℓ+1) (8)

Thus, we can track the erasure probability Pℓ at each iter-

ation l ≥ 0 using equations (6), (7), (8), and the decoder can

recover from a fraction of P0 erased symbols iff lim
ℓ→+∞

Pl = 0.
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The threshold probability Pth is defined by:

Pth = max{P0 | lim
ℓ→+∞

Pl = 0} (9)

and the gap to capacity is:

∆ = 1 − r̄ − Pth. (10)

where r̄ is the coding rate of the extended code. The decoding

inefficiency is defined as the ratio between the number of

symbols needed for decoding and the number of source

symbols. The threshold inefficiency may be computed by:

µth =
1 − Pth

r̄
=

1 − Pth

r
(1 + (1 − r)f̄ ) (11)

where r is the initial code rate.

Theoretical performances of the regular and the uniform

distributions are shown in terms of inefficiency threshold and

gap to capacity in Fig. 1 and Fig. 2. The bottom horizontal axis

shows the average number of extra RS repair symbols per row

(f̄ ), while the top axis gives the corresponding extended code

rate (r̄). The inefficiency of the initial code (without extra-

repair symbols) is µ = 1.1023. By increasing the number of

extra-repair symbols, the extended code rate decreases down to

0.059, while the inefficiency increases up to 1.1604 for regular

distributions and up to 1.1205 for uniform distributions, which

is only at 2% from the initial code inefficiency. It is important

to note that the decoding inefficiency is biased by the coding

rate. In fact, from Fig. 2, we see that the gap to capacity, i.e.

distance between extended-codes and ideal codes, decreases

down to 0.0071 when the average number of extra RS repair

symbols becomes equal to 15.
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Fig. 1. Inefficiency threshold as a function of the average number of extra-
repair symbols per row.

We note that it is possible to optimize the extra-repair sym-

bol distribution f , by optimizing the function that associates

to f the corresponding gap to capacity using the differential

evolution algorithm [17]. We have performed this optimization

for different average number of extra-repair symbols f̄ . For

each f̄ , the performance of the optimized distribution was only

insignificantly better than the one of the uniform distribution.
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Fig. 2. Gap to capacity as a function of the average number of extra-repair
symbols per row.

For instance, for f̄ = 3 the gap to capacity of the optimized

distribution was 0.0213 (instead of 0.0219 for the uniform dis-

tribution), and for f̄ = 10 the gap to capacity of the optimized

distribution was 0.0092 (instead of 0.0099 for the uniform

distribution). Thus, we think that the uniform distribution is the

best choice, since it also allows for incremental redundancy as

explained in Section III. The table bellow gives an example of

irregular distribution, with f̄ = 3, obtained after 100 iterations

of the differential evolution algorithm.

f0 f1 f2 f3 f4 f5 f6 f̄ ∆

0.2382 0.0511 0.0047 0.2446 0.1614 0.2405 0.0595 3 0.0213

V. SIMULATION RESULTS

We performed Monte-Carlo simulations for both the regular

and uniform distributions with various K values. Performance

in terms of average inefficiency is shown in Fig. 3 for the

regular and in Fig. 4 for the uniform distribution. Fig. 5 shows

the gap to capacity of the uniform distribution for various K

values. These tests confirm the good performance of extended

GLDPC codes using a uniform distribution while generating

extra-repair symbols.

VI. CONCLUSIONS

In this paper we proposed a coding scheme than can produce

incremental redundancy in order to cope with bad channel con-

ditions or with fountain like content distribution applications

(e.g. FLUTE/ALC). The coding scheme is based on a LDPC-

Staircase code, and extra-repair symbols are produced on-

demand by extending the initial code to a GLDPC code. Per-

formances of various extra-repair symbols distributions were

considered. Tests have showed that the uniform distribution

performs very close to optimized distributions, while easily

allowing for incremental redundancy. We also showed that, by

increasing the number of extra-repair symbols, the extended
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Fig. 4. Simulated average inefficiency as a function of the average number
of extra-symbols per row, uniform distribution case.
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codes approach the performance of ideal maximum-distance-

separable codes. Our proposal can therefore be used to build

efficient small-rate, large block AL-FEC codes. Moreover, it is

very likely that the gap between our extended codes and ideal

codes can be tighten by using a hybrid iterative-maximum

likelihood decoding.
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