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Abstract—In this paper, we show that over the binary erasure
channel, Quasi-Cyclic LDPC codes can efficiently accommodate
the hybrid iterative/ML decoding. We demonstrate that the quasi-
cyclic structure of the parity-check matrix can be advantageously
used in order to significantly reduce the complexity of the ML
decoding. This is achieved by a simple row/column permutation
that transforms a QC matrix into a pseudo-band form. Based on
this approach, we propose a class of QC-LDPC codes with almost
ideal error correction performance under the ML decoding, while
the required number of row/symbol operations scales as k

√
k,

where k is the number of source symbols.

I. PROBLEM POSITION AND RELATED WORKS

In modern communication systems, data is often transmitted
as independent packets. These packets can be subject to losses
(erasures) caused by bad channel conditions, intermittent con-
nectivity, congested routers, or failures. If solutions based
on the retransmission of lost packets are possible (ARQ,
Automatic Repeat Requests), they are not always suitable (e.g.
broadcasting), nor possible (no return link, e.g. satellite com-
munications). In such cases Forward Error Correction (FEC)
schemes represent the foremost alternative. These schemes
rely on erasure codes operating either at the transport or the
application layer of the communication system, which are able
to recover lost data thanks to the transmission of redundant
(repair) packets.

In the family of error-correcting codes, a prominent role
is played by Low-Density Parity-Check (LDPC) codes. They
feature a linear complexity iterative (IT) decoding, and can be
optimized for a broad class of channels, with asymptotically
performance close to the theoretical Shannon limit. Although
iterative and maximum likelihood (ML) are equivalent for
cycle-free codes, for a given finite code (with cycles) the
gap between their performance can be significant. Hence, ML
decoding has been recently considered in order to improve
the correction capacity of LDPC codes over the binary era-
sure channel (BEC) for short to moderate code-length. This
comes at a cost in the decoding complexity; however, efficient
ML decoding algorithms with reduced complexity have been
proposed over the last few years [1].

Before discussing the complexity of the ML decoding, let us
first consider the complexity of the encoding process. Encod-
ing a systematic LDPC code is equivalent to solving a linear
system HpP = HsS, where H = (Hs, Hp) is the parity-
check matrix of the code, and S and P denote respectively

This work was supported by the French ANR grant No 2006 TCOM 019
(CAPRI-FEC project).

the sequences of source and parity bits. This can be done by
Gaussian elimination (GE), whose complexity1, expressed as
the number of row operations2, is expected to scale as k2,
where k denotes the number of source bits. However, it has
been shown in [9] that the GE can take advantage of the
sparseness of the parity check matrix, and it can be efficiently
performed in O((gk)2) row/symbol operations, where g is
called the gap of the code. Roughly speaking, the idea behind
is that if a fraction g of parity bits are resolved, remaining
parity bits can be recovered by performing an iterative erasure
decoding.

Similar considerations apply to the ML decoding over the
BEC, which consists of solving the linear residual system
HeXe = HrXr, where Xr and Xe denote the vectors of
received and of erased bits, respectively, and Hr, He are the
corresponding submatrices of H . Using a GE algorithm that
takes advantage of the sparseness of this system [5], [1], the
decoding complexity scales, in average, as (εk)2 row/symbol
operations, where ε is the average reception overhead neces-
sary to successfully complete the iterative decoding. However,
the decoding complexity is still quadratic in k. As the code
length tends to infinity, ε tends to a positive threshold value,
but even if this asymptotic threshold is close to 0, ε still can
be relatively large for finite codes. Besides, typically, there
is a tradeoff between performance of the IT decoding that
of the ML decoding. Consequently, improvement of the ML
decoding performance comes at the price of some degradation
of the IT performance, which results in an increased average
overhead εIT [7]. For instance, for regular repeat-accumulate
(RRA) codes, it has been shown in [6] that increasing the
degree of source bit-nodes results in an improvement of
the ML performance, but induces a degradation of the IT
performance. Hybrid IT-ML decoding algorithms have also
been considered in [8].

Quasi-Cyclic (QC) LDPC codes [13] are structured LDPC
codes defined by a base matrix B with entries bi,j ∈ N∪{−1}.
Subsequently, parity-check matrices with variable length can
be obtained by expanding the base matrix B by some factor

1We consider here the complexity of the GE, and not of the encoding
process itself. Clearly GE is performed only once, and can be done “offline”,
hence its complexity is irrelevant for the encoding process itself, but it is
relevant in the perspective of the subsequent discussion about ML decoding
complexity.

2Each row operation requires k bit operations (corresponding to the k
entries of the row), and one operation on the right-hand side of the system.
In AL-FEC applications, the right-hand side is not a bit, but an entire packet,
also called symbol. Thus, a row operation will be also referred to as symbol
operation
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z ≥ 1. Within the expansion process, each entry of the base
matrix is replaced by a square z × z matrix: a −1 entry is
replaced by the all-zero matrix, while a non-negative entry
bi,j ≥ 0 is replaced by a circulant permutation matrix corre-
sponding to a shift by bi,j . It is known that non-zero entries
of the base-matrix can be chosen such as to avoid unsuitable
topologies in the expanded matrix (as short cycles), which may
cause degradation of the iterative decoding performance [4].

The goal of this paper is to design LDPC codes that
efficiently accommodate the hybrid IT/ML decoding. Com-
plexity and error correction performance of the ML decoding
constitute the primary objectives. IT performance does not
impact the error correction performance of the overall scheme,
but it allows for increasing throughput in the low-loss scenario.
We do not consider QC-LDPC codes for improving the IT
decoding performance, but for decreasing the ML decoding
complexity. This is achieved by using a transformation of the
residual system HeXe = HrXr into a linear system with a
pseudo-band system matrix. This transformation exploits the
quasi-cyclic structure of the parity-check matrix H . Conse-
quently, the ML decoding can be efficiently performed, and
the required number of row/symbol operations scales as a sub-
quadratic power of k, namely k

√
k.

The paper is organized as follows. In Section II, we briefly
review the GE and ML decoding algorithms. Band transforma-
tion and a complexity analysis of ML decoding are presented
in Section III. Section IV describes the proposed design of
regular repeat-accumulate QC-LDPC codes. Finally, Section
V presents the experimental results, and Section VI concludes
the paper.

II. HYBRID IT/ML DECODING

The hybrid IT/ML decoder [6], [8] is an advantageous
combination of the IT and ML decoders, which has the ability
to cope with fluctuating channel conditions, and allows to
tradeoff between complexity and performance.

A. Principles

Consider an LDPC code defined by a parity check matrix
H , and let X be a codeword transmitted over the BEC. The
subset of received symbols3 is submitted to the IT decoder,
which may recover all or only a part of the erased symbols. If
the IT decoding fails, the ML decoder is activated, and tries
to complete decoding by solving the residual system HeXe =
HrXr, as explained in the introduction. The system matrix
He has a number of rows equal to m′ ≤ m−k and a number
of columns4 equal to n′ ≤ n − k. The above inequalities are
generally tight, except when the IT decoding fails in the error
floor region (small stopping sets). This linear system can be
solved by using the Gaussian elimination method, or any other
algorithm available in the literature.

3Entries X of are referred to as symbols, instead of bits. Actually, in AL-
FEC applications, each symbols represents an entire packet, which is either
erased or correctly received

4Each symbol received or recovered by the IT decoding, removes 1 column
and at least 1 row from the system matrix

B. Gaussian elimination

Although many algorithms are known for solving linear
systems, most of them are based on (efficient implementations
of) the Gaussian Elimination (GE) algorithm. This algorithm
consists of two steps.

First, the Forward Elimination (FE) step transforms the
system into an upper triangular system, which can be done
as follows. Starting from i = 0, choose in column i a non null
entry, the pivot, with row-index j ≥ i. Permute rows i and
j, then add the row i to all the rows corresponding to non-
zero sub-diagonal entries of column i. Simultaneously, similar
operations are performed on the right-hand side of the system,
i.e. the right symbol of the i-th row is added to right symbols
of corresponding rows.

The algorithm completes with a Backward Substitution
(BS) step, which recursively recovers the last symbol of
an upper-triangular system: starting from the last column,
the corresponding erased symbol is given the value of the
corresponding right-hand side symbol, and is then substituted
in all the equations it is involved in.

In the remaining of the paper, this algorithm will be referred
to as the “Standard Gaussian Elimination”. Its complexity is
of order O(k2) row/symbol operations.

III. PSEUDO-BAND MATRIX TRANSFORMATION AND ML
DECODING COMPLEXITY

It is well known that the complexity of the GE algorithm can
be reduced if the system matrix is structured in some specific
way. For instance, the use of a band structure to reduce the ML
decoding complexity has been studied in [11] and [10]. In this
section, we show that the parity check matrix of QC-LDPC
codes features such a “hidden” band structure, that allows for
considerably reducing the complexity of ML decoding with
standard GE.

A. Transformation into a pseudo-band matrix

Consider a base matrix B, of size a× b, with entries from
[0, . . . ,M ]∪{−1}. Let H be a m×n binary matrix, obtained
by expanding B by some factor z > M ; hence, m = za
and n = zb. With an appropriate row/column permutation, the
quasi-cyclic matrix H can be transformed into a matrix H ′

that exhibits a band structure.
The following algorithm performs the appropriate permuta-

tion:

for all (i, j) in [0, . . . ,m− 1]× [0, . . . , n− 1]

a) decompose: i = xiz + yi and j = xjz + yj
b) define: i′ = xi + yia and j′ = xj + yjb
c) set: H ′[i′][j′] = H[i][j]

The resulting matrix H ′ exhibits a pseudo-band structure,
as illustrated at Figure 1. Note that, by convention, the (0, 0)
position of the matrix is the bottom-right position, and the
same convention will be used for the subsequent figures. Two
integers p and q are associated with H ′, which represent
respectively the subdiagonal height and the width of the band.
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Fig. 1. H′, the parity check matrix after row/column permutation

They depend on M , the maximum value of the non-negative
entries of B, and on a and b, the dimensions of B. We have:

p = a(M + 1)

q = b(M + 1)

Proof: Consider the set of z × z circulant matrices
corresponding to a right-shifted identity by k positions, with
k ∈ [0, . . . ,M ], and let cα,β be the element of index (α, β) of
one of these matrices. Then cα,β is potentially non-zero if and
only if (M ≥ β − α ≥ 0) or (α− β ≥ z −M). Now, H[i][j]
is the element with index (yi, yj) of the (xi, yj)-th circulant
matrix composing H . Therefore H[i][j] is potentially non-zero
iff (M ≥ yj − yi ≥ 0) or (yi − yj ≥ z −M).
From the first inequality, we obtain:

M ≥ yj − yi ≥ 0
aM ≥ a

b (byj)− ayi ≥ 0

In addition, we have a ≥ xi − a
bxj ≥ −a; therefore:

a(M + 1) ≥ a
b (byj + xj)− ayi − xi ≥ −a

a(M + 1) ≥ a
b j
′ − i′ ≥ −a

From the second inequality, we obtain:

yi − yj ≥ z −M
ayi − a

b (byj) ≥ az − aM

Again, tacking into account that a ≥ xi− a
bxj ≥ −a, we get:

ayi + xi − a
b (byj + xj) ≥ az − a(M + 1)

i′ − a
b j
′ ≥ az − a(M + 1)

Therefore H ′[i′][j′] is potentially non-zero if and only if
(a(M + 1) ≥ a

b j
′ − i′ ≥ −a) or (i′ − a

b j
′ ≥ m− a(M + 1)),

which implies that (i′, j′) is inside the pseudo-band of H ′.

Although this result holds for any Quasi-Cyclic code, the
pseudo-band structure will be “visible” only if p and q are
significantly smaller than m and n, respectively. This happens
only if M is significantly smaller than z, hence, in Section IV,
we will introduce Quasi-Cyclic codes featuring an appropriate
choice of the base matrix coefficients.

B. Complexity of Gaussian Elimination

During the ML decoding, the linear system to be solved is
represented by the decoding matrix H ′e, which is a m′ × n′
matrix (n′ ≤ m′ ≤ m) composed of a subset of the rows
and columns of H ′. Consequently, H ′e inherits the pseudo-
band structure of H ′, as illustrated at Figure 2. Although the

0

0

m’

n’

b q

q

q

b

q

Fig. 2. H′e, the decoding matrix
obtained from H′.

0

0

m’

n’

qq + b

2 q + b

n’-q

Fig. 3. The decoding matrix after
the Forward Elimination (FE) step.

subdiagonal height and width of the band of H ′e are less than or
equal to the above p and q parameters, for simplicity reasons,
we consider that they are both equal to q (note that q ≥ p). The
same convention holds for the supradiagonal height and width
of the band, which are both considered equal to b. The effect
of this pseudo-band structure on the GE algorithm (Section
II-B) is described below.

Thanks to the band structure of the matrix, each FE iteration
(i.e. elimination of non-zero subdiagonal entries in a column)
requires only O(q) symbol operations5 per iteration. The cost
of FE is therefore O(qn′) symbol operations. After the FE
step, the system has a band of width q + b over the diagonal
(because of row permutation), and a column block composed
of the q last columns of the system (see figure 3).

Now, erased symbols are recursively recovered by the BS
step, starting from the erased symbol corresponding to the
last column, back to the erased symbol corresponding to the
first column. Each recovered symbol has to be substituted in
the equations it is involved in. Symbols corresponding to the
last q columns are each one involved in m′ equations, while
symbols corresponding to the first n′−q−b symbols are each
one involved in q equations. Therefore, the overall cost of the
BS is O(qm′ + (n′ − q − b)(q + b)) = O(q(m′ + n′)− q2 −
2qb− n′b− b2)) symbol operations.

Since q and b are negligible with respect to m′ and n′,
and m′ ≈ n′ ≈ m, we conclude that the resolution of the
system requires O(qm) symbol operations. Therefore the QC
structure yields a complexity gain by a factor of m/q with
respect to unstructured matrices.

IV. CODE DESIGN

This section focuses on the design of QC-LDPC codes,
by trading-off performance and complexity constraints. Fix
some base matrix B with size a × b, and let M be the
maximum value of its non-negative entries. Using the pseudo-
band transformation of expanded matrices, it follows from
the above section that the complexity of the ML decoding
scales linearly with the code dimension k (or, equivalently,
the expansion factor z). Although this is an excellent result in
terms of decoding complexity, we will see later (Section V)
that for long codes such a code design yields poor performance

5Remind that a symbol operation corresponds to a sum between two rows,
right-hand side term included.
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with both IT and ML decodings. This is explained by the
fact that the width of the pseudo-band, which depend only
on a, b, and M , becomes too thin with respect to the matrix
dimensions for large values of z. Such a thin band results
in inappropriate graph topologies6 for the IT decoding (more
short cycles and smaller stopping sets) and, simultaneously, it
reduces the probability of He (the ML decoding matrix) being
full-rank. In order to avoid such a situation, we propose the
use of a base matrix with variable non-negative entries. Within
such a matrix, only the −1 entries are fixed. Equivalently,
the indexes of non-negative entries are fixed, but not their
values, which may vary with the expansion factor z, such that
to ensure that the width of the pseudo-band is not too thin.

Pseudo-band width: In [11], [12], Studholm and Blake
conjectured that a matrix with a band of width 2

√
k, filled

with 2 log k symbols per column, is full rank with probability
close to that of fully random matrices. Following this idea, we
set q = C

√
k. This implies M = C

√
zR
b , where R = k/n is

the code rate, and C is a positive constant. The ML decoding
with standard GE of such a code therefore requires O(k

√
k)

row/symbol operations. Even if the column degree does not
follow the recommendation of loc. cit., it is chosen sufficiently
large (see below) to provide excellent correction capabilities
(Section V). In addition the C parameter can be adjusted
to find a trade-off between error correction capabilities and
complexity.

Base matrix structure: We use a Regular Repeat Accu-
mulate [3] (RRA) quasi-cyclic structure in order to benefit
a linear time encoding. The parity side of the base matrix
has a double-diagonal structure, which will be referred to
as staircase. Consequently, the extended parity-check matrix
inherits a staircase structure by blocks, which allows to re-
cursively build all the parity symbols with a linear number
of symbol operations. Hybrid IT/ML decoding for Regular
Repeat Accumulate LDPC codes has been studied in [2], and
more particularly the impact of the source node degree on the
performances. A value of 5 for this degree is considered as
a good compromise, as it allows excellent performance under
the ML decoding, with good enough performance under IT.

Base matrix entries: The values of non-negative entries of
the base-matrix are randomly chosen from {0, . . . ,M}, where
the maximum value M depends on the expansion factor z, as
explained above. Such a random choice simplifies the code
generation and does not require an expensive optimization for
the non-negative entry values. This is an asset when codes
need to be produced on the fly, in real time.

Additional optimization: If the last element of the stair-
case is expanded into a circulant matrix, the corresponding
z columns of H are all of degree one. In order to avoid
the negative impact of degree one columns on the decoding
performance, the last element of the staircase is itself expanded
into a staircase z×z matrix. An example of such a parity check
matrix is represented at figure 4.

6Remind that the pseudo-band structure is obtained by a simple row/column
permutation of H .

Fig. 4. Example of a QC parity check matrix (NB: the bottom right block
is a staircase matrix).

V. EXPERIMENTAL RESULTS

We have performed experiments to assess the gains provided
by the QC structure both from an erasure correction capability
and decoding complexity points of view.

A. Experimental setup

The QC-LDPC codes considered are using a base matrix
having a size 5×15 matrix (Figure 4), which is the minimum
size for a rate-2/3 RRA matrix with a source node degree
equal to 5.

In order to identify the influence of the QC structure
and band width on the decoding performance, we consider
four code ensembles. These codes are built from the same
base matrix, but using different choices for the non-negative
entries of B (and also a different expansion technique for
the protograph codes, see below). There are two reasons for
using a small base matrix. First, the length of the extended
code is a multiple of b, hence, small a and b allow the finest
grain for the length and the dimension of the extended codes.
Second, the band width linearly depends on the base matrix
dimensions and M , which should be large enough to produce
a sufficiently large range for the random distribution of the
base matrix coefficients. Therefore, for a given bandwidth, b
is chosen as small as possible to maximize M .
The considered codes are the following:
• band QC LDPC codes, our proposal. The non-negative

entries bi,j can take any value in the range [0, . . . , 3
√
z],

i.e. the maximum value M = 3
√
z. The factor 3 has

been chosen following a tradeoff between error correction
capabilities and complexity. These codes are QC-LDPC
featuring a “visible” pseudo-band structure, with a width
that depends on the code dimension (Section IV).

• unconstrained QC LDPC codes. The non-negative entries
bi,j can take any value in the range [0, . . . , z], i.e. M =
z. These codes does not exhibit a “visible” pseudo-band
structure.

• constant band-width QC LDPC codes. The non-negative
entries bi,j can take any value in the range [0, . . . ,M ],
where M is a fixed constant, which does not depend on
the code dimension. We chose the value M = 42 that is
equal to the corresponding value for the band QC LDPC of
dimension k = 2000. These codes are QC-LDPC featuring
a very thin pseudo-band structure, for large values of k.

• protograph LDPC codes. They are built from the same
base matrix B, but non-negative entries are expanded into
random z × z permutation matrices, instead of circulant
matrices. These codes do not have a pseudo-band structure.
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For the reason presented in section IV, all these codes feature
a z × z staircase matrix at the bottom right. In order to avoid
consideration on the loss model, the symbols are randomly
permuted before the transmission on a memoryless erasure
channel. For each test the results of at least 500 experiments
is averaged. Since we are considering code ensembles, the
seed used to construct the parity check matrix is different for
each experiment.

B. Erasure recovery capabilities

The average inefficiency ratio, defined as the number of
symbols required to complete decoding over the code di-
mension, is presented as a function of the code dimension
at figure 5 for the IT decoding, and at figure 6 for the ML
decoding.

First of all, we observe that the constant band-with QC
LDPC codes exhibit the worst performance, under both IT
and ML decodings. This is explained by the fact that the parity
check matrix is concentrated on a pseudo-band, which is too
thin with respected to the matrix dimensions. Consequently,
codes from the constant band-with QC LDPC ensemble con-
tain more short cycles and small stopping sets than codes from
the other ensembles, which leads to a degraded performance
under the IT decoding. On the other hand, the concentration
of the parity check matrix on a thin pseudo-band decreases the
probability of the ML decoding matrix being full-rank, which
explains the performance under the ML decoding.

We also observe that under the ML decoding, the average
inefficiencies of Band QC LDPC, unconstrained QC LDPC
and protograph LDPC are very close. Thus, even if Band
QC LDPC codes are more constrained, they are still random
enough, such that to provide ML performance close to that
of unconstrained codes. This also confirms the conjectures in
[11], [12], in the sense that the band width should depend
on the code dimension in order to provide ML performance
close to that of unconstrained codes. Under the IT decoding,
the Band QC LDPC codes show a slightly better inefficiency
ratio than the other two code ensembles.
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Figure 7 shows the failure probability of the ML decoding
(codeword error rate) as a function of the loss percentage for a
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Fig. 6. Inefficiency ratio as a function of the code dimension, ML decoding
(R = 2/3).

code dimension k = 2000. In the waterfall region, the different
curves are almost indiscernible and close to the theoretical
limit. While no error floor is visible (down to 10−6) for
unconstrained QC LDPC codes, the band QC LDPC, constant
band width QC LDPC and protograph LDPC codes present
an error floor at a failure probability of 10−5. However, this
error floor is sufficiently low for practical applications, and it
is offset by a lower decoding complexity, as shown below.
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Fig. 7. Block error rate W.R.T. channel loss percentage, ML decoding (k =
2000, R = 2/3).

C. Algorithmic complexity

The algorithmic complexity is evaluated by mean of number
of row/symbol operations. At figure 8, one can see that for low
channel loss percentage, the number of row/symbol operations
is low (the IT decoding is sufficient). When the channel loss
percentage increases, the number of row/symbol operations
increases because the ML decoding is activated more and more
often. The number of operation under IT decoding is similar
for all the codes, since there parity check matrix have the
same number of ones. However, once the ML decoding is
activated, the Band QC LDPC codes clearly outperform the
protograph LDPC and unconstrained QC LDPC codes. This
is a direct consequence of the “visible” pseudo-band structure
of the decoding matrix, that allows to reduce the complexity
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of ML decoding. For constant band width QC LDPC codes
the number of operations is even smaller, as their bandwidth
(q = 42 × 15 = 630) is significantly smaller than that of the
Band QC LDPC codes (q = 164× 15 = 2460).

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 22  24  26  28  30  32  34

nb
. s

ym
bo

l o
pe

ra
tio

n

loss percentage

Band QC LDPC
unconstrained QC LDPC

constant band width QC LDPC
Protograph LDPC

Fig. 8. Number of row/symbol operation performed during decoding W.R.T
loss percentage, hybrid IT/ML decoding (k = 30000, R = 2/3).

We have plotted on figure 9 the number of row/symbol
operations performed by the ML decoding in the worst case
(minimum number of symbols received for which the ML
decoding succeeds). As expected, Band QC LDPC and con-
stant band width QC LDPC codes require fewer row/symbol
operations than the other codes. The curves of protograph
LDPC and unconstrained QC LDPC codes are almost identi-
cal, and they do not exhibit a specific structure that may reduce
the complexity of standard GE (the pseudo-band structure of
unconstrained QC LDPC codes is not “visible”). This curves
are also compatible with the theoretical complexity : O(k) for
the constant band width QC LDPC codes, O(k

√
k) for the

Band QC LDPC codes, and O(k2) for the protograph LDPC
and unconstrained QC LDPC codes.

Thus, under the ML decoding, the proposed band QC LDPC
codes perform very close to the channel capacity (overhead of
only 0.5% with respect to “the ideal code”), with tractable
complexity even for large code dimension.
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Fig. 9. Number of row/symbol operations performed during ML decoding
W.R.T. the code dimension (R = 2/3).

VI. CONCLUSIONS

In this paper we presented an analysis of the ML decoding
of QC-LDPC codes over the erasure channel. We showed
that any QC matrix can be transformed into a pseudo-band
form, which allows for reducing the complexity of the ML
decoding. The complexity gain depends on the “visibility”
(width) of the pseudo-band, and the thinner is the band,
the less complex is the decoding. However, the band width
has to tradeoff between performance and complexity gain.
For this end, we proposed an ensemble of QC-LDPC codes
that possess excellent correction capabilities under the ML
decoding (overhead of only 0.5%), while decoded with a
complexity of O(k

√
k) in terms of row/symbol operations.

The gain in complexity increases significantly with the code
dimension, which allows ML decoding to be a realistic option
for longer LDPC codes.

Additionally, the quasi-cyclic construction and the pseudo-
band transformation can be generalized to any linear code (i.e.
need not be low-density) in order to reduce the complexity of
the ML decoding.
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