
Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Microkernel Construction

Introduction

SS2012

2

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Class GoalsClass Goals

Provide deeper understanding of OS mechanisms

Introduce L4 principles and concepts

Make you become enthusiastic L4 hackers

Propaganda for OS research at TU Dresden

3

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

AdministrationAdministration
 Thursday, 4th DS, 2 SWS

 Slides: http://www.tudos.org → Teaching →
Microkernel Construction

 Subscribe to our mailing list:

http://www.tudos.org/mailman/listinfo/mkc2012

 In winter term:
– Construction of Microkernel-based Systems (2 SWS)

– Various Labs

http://www.tudos.org/
http://www.tudos.org/mailman/listinfo/mkc2012

4

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

„„Monolithic“ Kernel System DesignMonolithic“ Kernel System Design

Process
Management

Drivers

File
Systems

Network
Subsystem

Memory
Management

Monolithic Kernel

Privileged
Mode

ApplicationApplication Unprivileged
Mode

Hardware

Application Application

5

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Monolithic Kernel OS (Propaganda)Monolithic Kernel OS (Propaganda)

 System components run in privileged mode
➔ No protection between system components

– Faulty driver can crash the whole system

– More than 2/3 of today's OS code are drivers

➔ No need for good system design
– Direct access to data structures

– Undocumented and frequently changing interfaces

➔ Big and inflexible
– Difficult to replace system components

Why something different?
 More and more difficult to manage increasing OS

complexity

6

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Microkernel System DesignMicrokernel System Design

Tasks Threads IPC Scheduling

Microkernel

Privileged
Mode

Unprivileged
Mode

Drivers

File
Systems

Network
Stacks

Memory
Management

Process
Management

System Services

Hardware

Application Application Application

7

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example – IBM Workplace OS / MachExample – IBM Workplace OS / Mach

ARM PowerPC MIPS AlphaIA32

Mach Microkernel

Default Pager Device Support Bootstrap Name Service

File Server Network Service Security Power Management

OS/2
Personality

DOS
Personality

OS/400
Personality AIX Personality

Windows
Personality

OS/2
Application

DOS
Application

OS/400
Application

AIX
Application

Windows
Application

8

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example – QNX / NeutrinoExample – QNX / Neutrino

 Embedded systems
 Message passing system (IPC)
 Network transparency

IPC Scheduler
Interrupt

Redirector
Network
Driver

Neutrino - Microkernel

Filesystem
Manager

Network
Manager

Device
Manager

Process
Manager

Hardware

Privileged
Mode

Unprivileged
Mode

Application Application Application

9

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

More InterestingMore Interesting

10

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example: VPNExample: VPN

11

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

12

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

13

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

14

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

15

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

More On Critical ApplicationsMore On Critical Applications

16

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

17

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

18

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Virtual Private File SystemVirtual Private File System

19

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

20

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

ShoppingShopping

21

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

22

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Microkernel OS - The Vision (1)Microkernel OS - The Vision (1)
 System components run as user-level servers
 Protection and isolation between system components

– More secure / safe systems

– Less error prone

– Small Trusted Computing Base

 „Enforces“ clear system design
– Well defined interfaces to system services

– No dependencies between system services other than
explicitly specified through service interfaces

 Small and flexible
– Small OS kernel

– Easier to replace system components

23

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Visions vs. RealityVisions vs. Reality

 Flexibility and Customizable
– Monolithic kernels are modular

 Maintainability and complexity
– Monolithic kernel have layered architecture

✔Robustness
– Microkernels are superior due to isolated system

components

– Trusted code size (i386)

• Fiasco kernel: about 15.000 loc

• Linux kernel: about 300.000 loc (without drivers)

✗ Performance
– Application performance degraded

– Communication overhead (see next slides)

24

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Robustness vs. Performance (1)Robustness vs. Performance (1)

 System calls
– Monolithic kernel: 2 kernel entries/exits

– Microkernel: 4 kernel entries/exits + 2 context switches

Microkernel

Driver

Application

Hardware

Monolithic kernel

Driver

Application

HardwareHardware

1

2 3

4

25

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Network
Subsystem

Robustness vs. Performance (2)Robustness vs. Performance (2)

 Calls between system services
– Monolithic kernel: 1 function call

– Microkernel: 4 kernel entries/exits + 2 context switches

Microkernel

Driver

Hardware

Monolithic kernel

Network
Subsystem

Hardware

Driver

1 2 34

26

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Challenges Challenges

 Build functional powerful and fast microkernels
– Provide abstractions and mechanisms

– Fast communication primitive (IPC)

– Fast context switches and kernel entries/exits

➔ Subject of this lecture

 Build efficient OS services
– Memory Management
– Synchronization
– Device Drivers
– File Systems

– Communication Interfaces

➔ Subject of lecture “Construction of Microkernel-based
systems” (in winter term)

27

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4 Microkernel FamilyL4 Microkernel Family

 Originally developed by Jochen Liedtke

(GMD / IBM Research)
 Current development:

– Uni Karlsruhe: Pistachio

– UNSW/NICTA/OKLABS: OKL4, SEL4, L4Verified

– TU Dresden: Fiasco.OC, Nova

 Support for hardware architectures:
– X86, ARM, ...

28

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

More Microkernels (Incomplete list)More Microkernels (Incomplete list)

 Commercial kernels
– Singularity @ Microsoft Research

– K42 @ IBM Research

– velOSity/INTEGRITY @ Green Hills Software

– Chorus/ChorusOS @ Sun Microsystems

– PikeOS @ SYSGO AG

– OKL4

 Research kernels
– EROS/CoyotOS @ John Hopkins University

– Minix @ FU Amsterdam

– Amoeba @ FU Amsterdam

– Pebble @ Bell Labs

– Grasshopper @ University of Sterling

– Flux/Fluke @ University of Utah

29

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4 - ConceptsL4 - Concepts

 Jochen Liedtke: “A microkernel does no real work”
– Kernel provides only inevitable mechanisms

– No policies implemented in the kernel

 Abstractions
– Tasks with address spaces

– Threads executing programs/code

 Mechanisms
– Resource access control

– Scheduling

– Communication (IPC)

30

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Threads and TasksThreads and Tasks

Microkernel

User
Stack

Kernel
Stack

Thread3

Task A Task B

User
Code

User
Code

Kernel
Code

Kernel
Stack

User
Stack

User
Stack

Kernel
Stack

Thread2

Thread1

31

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Threads (1)Threads (1)
 Represent unit of execution

– Execute user code (application)

– Execute kernel code (system calls, page faults, interrupts,
exceptions)

 Subject to scheduling
– Quasi-parallel execution on one CPU

– Parallel execution on multiple CPUs

– Voluntarily switch to another thread possible

– Preemptive scheduling by the kernel according to certain
parameters

 Associated with an address space
– Executes code in one task at one point in time

• Migration allows threads move to another task

– Several threads can execute in one task

32

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Tasks (1)Tasks (1)

 Represent domain of protection and isolation
 Container for code, data and resources
 Address space: capabilities + memory pages
 Three management operations:

– Map: share page with other address space

– Grant: give page to other address space

– Unmap: revoke previously mapped page

X

map

X

X

grant

X

X

unmap

X

33

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Pager 3

Application 1

Pager 1

Recursive Address SpacesRecursive Address Spaces

Physical Memory

Initial Pager

Pager 2

Application 2

34

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Messages: Copy DataMessages: Copy Data

 Direct and indirect data copy
 UTCB message (special area)
 Special case: register-only message
 Pagefaults during user-level memory access possible

send(msg,…)
receive(msg, …)

copy

data area

Task A Task B

data word 2
data word 1

send string receive string
data word 2
data word 1

data area

msg msg

35

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Message: Map ReferencesMessage: Map References

 Used to transfer memory pages and capabilities
 Kernel manipulates page tables
 Used to implement the map/grant operations

Task A Task B

send(msg,…)

send flexpage

receive(msg, …)

flexpage

flexpage

map

memory page

received flexpage

receive window
msg msg

36

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Communication and Resource ControlCommunication and Resource Control

 Need to control who can send data to whom
– Security and isolation

– Access to resources

 Approaches
– IPC-redirection/introspection

– Central vs. Distributed policy and mechanism

– ACL-based vs. capability-based

IPC?

Task A Task B

Hardware
Resources

Resource Access?

Thread Thread

37

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

CapabilitiesCapabilities

Kernel
Object1

Kernel
Object2

Kernel
Object3

Kernel
Object4

Kernel
Object5

Task A Task B

C3 C5 C1 C2 C4C1 C3 C5

Capability Table Capability Table

13 1 2 1 2 2

Capability Handles Capability Handles

38

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Capabilities - DetailsCapabilities - Details
 Kernel objects represent resources and

communication channels
 Capability

– Reference to kernel object

– Associated with access rights

– Can be mapped from task to another task

 Capability table is task-local data structure inside the
kernel
– Similar to page table

– Valid entries contain capabilities

 Capability handle is index number to reference entry
into capability table
– Similar to file handle (in POSIX)

 Mapping capabilities establishes a new valid entry into
the capability table

39

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Page Faults and PagersPage Faults and Pagers

 Page Faults are mapped to IPC
– Pager is special thread that receives page faults

– Page fault IPC cannot trigger another page fault

 Kernel receives the flexpage from pager and inserts
mapping into page table of application

 Other faults normally terminate threads

L4 Microkernel

Privileged
Mode

Unnprivileged
Mode

Application Pager

2.receive1.Page Fault 3.send(X)4.Resume

X X
map

40

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Device DriversDevice Drivers

 Hardware interrupts: mapped to IPC
 I/O memory & I/O ports: mapped via flexpages

L4 Microkernel

1. Interrupt

Driver

2.receive(irq-id, …)

IO-Memory

IO-Memory

map

41

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4Linux
Server

L4 Applications - LL4 Applications - L44LinuxLinux

 Paravirtualized Linux kernel and native Linux
applications run as user-level L4 tasks

 System calls / page faults are mapped to L4 IPC

L4 Microkernel

Linux
Application

System Services

Linux
Application

L4 Interface

Privileged
Mode

Unprivileged
Mode

42

Microkernel
Construction

Hermann
Härtig
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Lecture OutlineLecture Outline

 Introduction
 Address spaces, threads, thread switching
 Kernel entry and exit
 Thread synchronization
 IPC
 Address space management
 Scheduling
 Portability
 Platform optimizations
 Virtualization

