
Paths, Trees, and Flowers

“Jack Edmonds has been one of the creators of the
field of combinatorial optimization and polyhedral
combinatorics. His 1965 paper ‘Paths, Trees, and
Flowers’ [1] was one of the first papers to suggest the
possibility of establishing a mathematical theory of
efficient combinatorial algorithms . . . ” [from the
award citation of the 1985 John von Neumann Theory
Prize, awarded annually since 1975 by the Institute
for Operations Research and the Management
Sciences].

In 1962, the Chinese mathematician Mei-Ko Kwan
proposed a method that could be used to minimize the
lengths of routes walked by mail carriers. Much earlier,
in 1736, the eminent Swiss mathematician Leonhard
Euler, who had elevated calculus to unprecedented
heights, had investigated whether there existed a walk
across all seven bridges that connected two islands in
the river Pregel with the rest of the city of Königsberg
on the adjacent shores, a walk that would cross each
bridge exactly once.

Different as they may sound, these two inquiries have
much in common. They both admit schematic represen-
tations based on the concept of graphs. Thus they are
problems in graph theory, a twentieth century discipline
which combines aspects of combinatorics and topology.

Given a set of items called nodes and a second set of
items called arcs, a graph is defined as a relationship
between such sets: For each arc, two of the nodes are
specified to be joined by this arc. The actual, say
physical, meaning of such nodes and arcs is not what
distinguishes graphs. Only formal relationships count.
In particular, the bridges of Königsberg may be consid-

ered as arcs, each joining a pair of the four nodes which
correspond to the two islands and the two shores.

The commonality between the two graph-theoretical
problem formulations reaches deeper. Given any graph,
for one of its nodes, say i0, find an arc a1 that joins node
i0 and another node, say i1. One may try to repeat this
process and find a second arc a2 which joins node i1 to
a node i2 and so on. This process would yield a
sequence of nodes—some may be revisited—successive
pairs of which are joined by arcs (Fig. 3). The first and
the last node in that sequence are then connected by this

“path.”

Fig. 2. The graph of the bridges of Königsberg.

Fig. 1. The bridges of Köningsberg.

Fig. 3. Open and closed paths in the graph.
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(Think of a route along street segments joining inter-
sections.) If each pair of nodes in a graph can be con-
nected by a path, then the whole graph is considered
connected. A path in a graph is called closed if it returns
to its starting point (Fig. 3).

Mei-Ko Kwan’s “Chinese Postman Problem,” as it is
now generally called (since first suggested by Alan
Goldman, then of NBS), is to determine, in a given
connected graph, a shortest closed path which traverses
every arc at least once—delivers mail on every assigned
street block. Euler also considers closed paths meeting
all arcs, but aims at characterizing all graphs which
accommodate an Euler tour, a closed path that crosses
each arc exactly once. As Euler found, they are precisely
those connected graphs in which each node attaches to
an even number of arcs, or in other words, every node is
of even degree. By this result, there can be no Euler tour

over the bridges of Königsberg. Euler’s examination
typifies the classical combinatorial query: Do certain
constructs exist and if so, how many?

The following question also illustrates the flavor of
classical combinatorics: how many isomers are there of
the hydrocarbon Cn H2n+2? Each such isomer (Fig. 4) is
characterized by the joining patterns of the carbon
atoms as nodes and bonds as arcs. The corresponding
arrangements, therefore, represent graphs. These graphs
have a very special property: For any two of their nodes
there exists a unique connecting path without repeat
arcs. Such a graph is called a

“tree.”

Every isomer defines a tree of carbon atoms whose
nodes are of degree four or less. Conversely, every such
tree uniquely characterizes an isomer. In graph-theoret-
ical terms, the question is: How many trees with n nodes
are there with node degrees not exceeding four? (For
n = 40, the number is 62,481,801,147,341, as deter-
mined by ingenious use of “generating functions.”)

Here is one more topic in the same vein. A match-
maker has a list of k single men and l single women. Her
experience of many years enables her to discern which
pairs are compatible. She considers a number of com-
patible matches that might be arranged simultaneously.
How can she be sure that she arrived at the largest
possible number of such matches?

A theorem by one of the founders of graph theory,
the Hungarian mathematician Dénes König in 1931,
suggests an answer to that question. He considered the

Fig. 4. The carbon graphs of the isomers of C6 H14.

Fig. 5. A matching in a graph; two of the augmenting paths are
highlighted by . . . . . . . .
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graph whose nodes are the matchmaker’s clients and
whose arcs join the compatible pairs, leading to the
graph-theoretical concept of matching. A matching in a
graph is any subset of its arcs such that no two arcs in
the matching meet at a common node (Fig. 5).

Similar concepts are that of a packing or independent
set, namely, a subset of the nodes no two of which are
connected by an arc, and of a cover, namely, a subset of
the nodes that meets every arc.

The matchmaker’s graph has the special property that
each of its nodes is of one of two kinds, male or female,
and every arc connects nodes of different gender. For
such a bipartite graph, König’s theorem states that the
number of arcs in a maximum matching equals the
number of nodes in a minimum cover. However, this
deep result ignores the problem of actually finding a
minimum cover in order to prove the optimality of a
matching.

Given a particular matching in any graph, an exposed
node is one that is not met by any arc of the matching.

An alternating path, that is, a path whose every other
arc is part of the matching, is called augmenting if it
connects two exposed nodes. Indeed, switching arcs
in and out of the matching along an augmenting path
results in a new matching with one more arc in it. It is
a 1957 theorem by the French mathematician Claude
Berge that a larger matching exists not merely if, but
also only if, the current matching admits an augmenting
path. The classical graph theorist would look at this
elegant characterization of maximum matchings and
ask: what more needs to be said?

That outlook had been changing during and after
World War II. The extensive planning needs, military
and civilian, encountered during the war and post-war
years now required finding actual solutions to many
graph-theoretical and combinatorial problems, but with
a new slant: Instead of asking questions about existence
or numbers of solutions, there was now a call for
“optimal” solutions, crucial in such areas as logistics,
traffic and transportation planning, scheduling of jobs,
machines, or airline crews, facility location, microchip
design, just to name a few. George B. Dantzig’s
celebrated “Simplex Algorithm” for linear program-
ming was a key achievement of this era.

The Chinese Postman is a case in point. He does not
care about how many tours of his street blocks there are
to choose from nor whether there are indeed Euler tours.
He cares about delivering his mail while walking the
shortest possible distance. (Admittedly, mail carriers,
Chinese and otherwise, don’t really think in terms of the
Chinese Postman Problem. But how about garbage
collection in a big city?)

And then there were computers, and the expectation
that those electronic wizards would handle applied
combinatorial optimizations even if faced with the large
numbers of variables which typically rendered manual
computations impractical.

Enter Jack Edmonds. Edmonds did his undergradu-
ate work at the George Washington University. He
recounts—as one of the pioneers featured in the volume
History of Mathematical Programming: A Collection
of Personal Reminiscences [20]� his varied interests
and activities of that period. Thus he designed toys
and games with expectations of monetary rewards,
which unfortunately did not materialize. A stint as
a copy boy at the Washington Post found him at the
night desk during President Eisenhower’s heart attack
in 1955. Mathematics, however, survived as his over-
riding interest. Fascinated by the study of polytopes
by the Canadian Mathematician H. S. M. Coxeter,
Edmonds’ master thesis at the University of Maryland
(1959) addressed the problem of embedding graphs
into surfaces [6].

Fig. 6. Jack Edmonds.
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In 1959 he joined NBS, became a founding member
of Alan Goldman’s newly created Operations Research
Section in 1961, and was steered towards precisely
the endeavor of developing optimization algorithms
for problems in graph theory and combinatorics. In
particular, he was drawn to two fundamental problems:
the “Maximum Packing Problem” and the “Minimum
Cover Problem” of determining largest packings and
smallest covers, respectively, in a given graph [2].

Edmonds quickly recognized the major challenge
of that task, a challenge that he called “the curse of
exponentiality.” While plainly “finite,” many of the
known graph-theoretical algorithms required exponen-
tial effort, or their authors had not detailed their proce-
dures in a way that avoided such exponentiality.

Consider the “Maximum Matching Problem” of
finding the largest matching in a given graph. Recall that
a matching can be enlarged whenever there is an
augmenting path, that is, an alternating path connecting
two exposed nodes. As a consequence, there exists an
“algorithm” which in a finite number of steps—every-
thing is finite here—determines whether a matching is
maximum or shows how to improve it. “All” that’s
needed is to examine, at each step, the alternating paths
originating at exposed nodes. It’s just that there are so
darn many of them!

In a general framework, computational problems have
a natural size, for instance, the number of nodes or arcs
in a graph. For algorithms, computational effort can
then be defined as the number of basic computational
steps, such as individual additions or multiplications,
and depends on problem size. If computational effort
increases as fast or faster than exponentially with
problem size, then it is said to require exponential effort.
Polynomial time, by contrast,—Edmonds used the term
good—prevails if computational effort is bounded by a
power d of problem size n. The notation O (n d) is used
to indicate that level of complexity.

Regardless of technological progress, computers are
helpless when faced with exponential effort. To wit,
the “Traveling Salesman Problem.” Here a connected
graph is given along with a particular length for each
arc. What is wanted is a closed path of least total length
that visits every node. The sequence of visits essentially
defines such a round trip. Consider, for instance, the
48 state capitals of the contiguous United States and
Washington, DC, as nodes of a graph with an arc
between any two of them. From a base in Washington,
all those capitals are to be visited while minimizing
the total distance traveled. Thus there are 48! (factorial)
round trips in the running. A future supercomputer,
spending 1 nanosecond per trip, would require more
than 3�1044 years to examine all possible trips.

Stressing the integral role of complexity, Edmonds
became the leading proponent of a new direction: to
develop good algorithms for problems in graph theory
and combinatorics (or to identify problems for which
such algorithms can be proven not to exist). This has
spawned a new area of research that has grown and
flourished for four decades and is still going strong. It is
not by accident that a graph-theoretical optimization
problem, namely, the Traveling Salesman Problem, is
now frequently used as a complexity standard, calling a
problem NP-complete if it requires computational effort
equivalent to that of the Traveling Salesman Problem.

In 1961, while attending a summer workshop at the
RAND corporation in Santa Monica, California,
Jack Edmonds discovered a good algorithm for the
Maximum Matching Problem, whose complexity he
conservatively pegged at O (n 4).

That algorithm is described in the paper Paths, Trees,
and Flowers [1]. In its title, the words “paths” and
“trees” refer to the standard graph-theoretical concepts.
The algorithms augmenting paths are found by a “tree
search” combined with a sophisticated process of
shrinking certain subgraphs called blossoms into single
nodes of a reduced graph. Hence the term

“flowers”

in the title.
Why was it a breakthrough? The answer is that all

good graph-theoretical algorithms known at the time
addressed “unimodular” problems such as the “Shortest
Path” and “Network Flow” problems, the rigorous proof
for the latter having been given by Edmonds with collab-
oration by Richard M. Karp [13]. These are problems
that could be formulated as integrality-preserving linear
programs, which by themselves did not create good
algorithms but indicated the potential for such.
Edmonds’ matching algorithm was the very first
instance of a good algorithm for a problem outside that
mold.

In addition, Paths, Trees, and Flowers contributed a
major theoretical result: a generalization of König’s
theorem that holds for matchings in all kinds of graphs,
not just bipartite ones.

Edmonds also conjectured in this paper that both the
Maximum Packing Problem and the Minimum Cover
Problem were intrinsically harder than the Maximum
Matching Problem. Indeed, both of the former problems
were subsequently shown to be NP-complete.

In one of his seminal papers [3-10] published in
the Journal of Research of the National Bureau of
Standards, Edmonds [7] extended his algorithm to find
matchings that optimize the sum of given arc weights,
and, perhaps more importantly, he laid the foundation
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for a polyhedral interpretation of matching theory which
was pursued, for instance, in the doctoral thesis by
William R. Pulleyblank [15] advised by Edmonds.

Subsequently, Edmonds found other good algorithms,
for instance, in his path-breaking research on combina-
torial abstractions of matrices, called matroids [4, 12,
14-17, 19]. And, last but not least, he and Ellis L.
Johnson used the matching paradigm to arrive at a first
good algorithm for the Chinese Postman Problem [18].

In 1969, Edmonds accepted a professorship of
mathematics at the University of Waterloo, where a list
of distinguished doctoral students is testament to his
special gift of guiding and motivating young mathemati-
cians. He remains to this day an active and highly
influential researcher in the field of graph theory and
combinatorics.

Why is it important to identify even a few graph-
theoretical and combinatorial problems with good
solution algorithms, when there is such a great variety of
real-life optimization tasks, most of them defined in a
less clear-cut fashion? The utility of good algorithms
for idealized problems and their theory is that they sug-
gest generalizations, variations, promising avenues of
attack, treatable approximations, iterative applications,
and also flag problem formulations best to avoid. In all
these roles, Edmonds’ matching algorithm has been an
indispensable and inspirational part of the toolkit for
combinatorial optimization and its multiple applications
to modern technology.

Prepared by Christoph Witzgall with help by Ronald
Boisvert, Geraldine Cheok, Saul Gass, Alan Goldman,
and James Lawrence.
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