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Abstract 

We present a scheme for exact collision detection between complex mod­
els undergoing rigid motion and deformation. The scheme relies on a hier­
archical model representation using axis-aligned bounding boxes (AABBs). 
In recent work, AABB trees have been shown to be slower than oriented 
bounding box (OBB) trees. In this paper, we describe a way to speed up 
overlap tests between AABBs, such that for collision detection of rigid mod­
els, the difference in performance between the two representations is greatly 
reduced. Furthermore, we show how to quickly update an AABB tree as a 
model is deformed. We thus find AABB trees to be the method of choice 
for collision detection of complex models undergoing deformation. In fact, 
because they are not much slower to test, are faster to build, and use less 
storage than OBB trees, AABB trees might be a reasonable choice for rigid 
models as well. 

Keywords: computer animation, collision detection, hierarchical data struc­
tures, deformable models 
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1 Intr oduction 

Hierarchies of bounding volumes provide a fast way to perform exact collision 
detection between complex models. Examples of volume types that are used for 
this purpose are spheres [8, 5], oriented bounding boxes (OBBs) [4], and discrete­
orientation polytopes (DOPs) [6, 12]. In this paper, we present a collision detec­
tion scheme that relies on a hierarchical model representation using axis-aligned 
bounding boxes (AABBs). In the AABB trees as we use them, the boxes are 
aligned to the axes of the model’s local coordinate system, thus, all the boxes in a 
tree have the same orientation. 

In recent work [4], AABB trees have been shown to yield a worse performance 
than OBB trees for rigid models. In this paper, however, we present a way to 
speed up overlap testing between relatively oriented boxes of a pair of AABB 
trees. This results in a performance for the AABB tree that is close to the OBB 
tree’s performance for collision detection of rigid models. 

Furthermore, we show how to quickly update an AABB tree as a model is 
deformed. Updating an AABB tree after a deformation is considerably faster than 
rebuilding the tree, and results in a tight-fitting hierarchy of boxes for most types 
of deformations. Since updating an OBB tree is significantly more complex, we 
find AABB trees to be the method of choice for collision detection of complex 
models undergoing deformation. In fact, because they are not much slower to 
test, are faster to build, and use less storage than OBB trees, AABB trees might 
be a reasonable choice for rigid models as well. 

In comparison to a previous algorithm for deformable models presented in 
[10], the algorithm presented here is expected to perform better for deformable 
models that are placed in close proximity. For these cases, both algorithms show 
a time complexity that is roughly linear in the number of primitives. However, 
our approach has a smaller constant (asymptoticly 48 arithmetic operations per 
triangle for triangle meshes). Moreover, our algorithm is better suited for collision 
detection among a mix of rigid and deformable models, since it is linear in the 
number of primitives in the deformable models only. 

The C++ source code for the scheme presented here is released as part of the 
Software Library for Interference Detection (SOLID) version 2.01. 

1Information on how to obtain the complete C++ source code and documentation for 
SOLID 2.0 is available at http://www.acm.org/jgt/papers/vanDenBergen98. 
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2 Building an AABB Tree 

The AABB tree that we consider is, as the OBB tree described in [4], a binary 
tree. The two structures differ with respect to the freedom of placement of the 
bounding boxes: AABBs are aligned to the axes of the model’s local coordinate 
system, whereas OBBs can be arbitrarily oriented. The added freedom of an OBB 
is gained at a considerable cost of storage space. An OBB is represented using 
15 scalars (9 scalars for a 3 × 3 matrix representing the orientation, 3 scalars for 
position, and 3 for extent), whereas an AABB only requires 6 scalars (for position 
and extent). Hence, an AABB tree of a model requires roughly half as much 
storage space as an OBB tree of the same model. 

An AABB tree is constructed top-down, by recursive subdivision. At each 
recursion step, the smallest AABB of the set of primitives is computed, and the 
set is split by ordering the primitives with respect to a well-chosen partitioning 
plane. This process continues until each subset contains one element. Thus, an 
AABB tree for a set of n primitives has n leaves and n − 1 internal nodes. 

At each step, we choose the partitioning plane orthogonal to the longest axis 
of the AABB. In this way, we get a ‘fat’ subdivision. In general, fat AABBs, i.e., 
cube-like rather than oblong, yield a better performance in intersection testing, 
since under the assumption that the boxes in a tree mutually overlap as little as 
possible, a given query box can overlap fewer fat boxes than thin boxes. 

We position the partitioning plane along the longest axis, by choosing δ, the 
coordinate on the longest axis where the partitioning plane intersects the axis. We 
then split the set of primitives into a negative and positive subset corresponding 
to the respective halfspaces of the plane. A primitive is classified as positive if 
the midpoint of its projection onto the axis is greater than δ, and negative other­
wise. Figure 1 shows a primitive that straddles the partitioning plane depicted by 
a dashed line. This primitive is classified as positive. It can be seen that by using 
this subdivision method, the degree of overlap between the AABBs of the two 
subsets is kept small. 

For choosing the partitioning coordinate δ we tried several heuristics. Our ex­
periments with AABB trees for a number of polygonal models showed us that, in 
general, the best performance is achieved by simply choosing δ to be the median 
of the AABB, thus splitting the box in two equal halves. Using this heuristic, it 
may take O(n2) time in the worst case to build an AABB tree for n primitives, 
however, in the usual case where the primitives are distributed more or less uni­
formly over the box, building an AABB tree takes only O(n log n) time. Other 
heuristics we have tried, that didn’t perform as well, are: (a) subdividing the set of 
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Figure 1: The primitive is classified as positive, since its midpoint on the coordi­
nate axis is greater than δ. 

primitives in two sets of equal size, thus building an optimally balanced tree, and 
(b) building a halfbalanced tree, i.e., the larger subset is at most twice as large as 
the smaller one, and the overlap of the subsets’ AABBs projected onto the longest 
axis is minimized. 

Occasionally, it may occur that all primitives are classified to the same side of 
the plane. This will happen most frequently when the set of primitives contains 
only a few elements. In this case, we simply split the set in two subsets of (almost) 
equal size, disregarding the geometric location of the primitives. 

Building an AABB tree of a given model is faster than building an OBB tree 
for that model, since the estimation of the best orientation of an OBB for a given 
set of primitives requires additional computations. We found that building an OBB 
tree takes about three times as much time as building an AABB tree, as is shown 
in Section 5. 

3 Intersection Testing 

An intersection test between two models is done by recursively testing pairs of 
nodes. For each visited pair of nodes, the AABBs are tested for overlap. Only the 
nodes for which the AABBs overlap are further traversed. If both nodes are leaves 
then the primitives are tested for intersection and the result of the test is passed 
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back. Otherwise, if one of the nodes is a leaf and the other an internal node, then 
the leaf node is tested for intersection with each of the children of the internal 
node. Finally, if both nodes are internal nodes then the node with smaller volume 
is tested for intersection with the children of the node with the larger volume. The 
latter heuristic choice of unfolding the node with the largest volume results in the 
largest reduction of total volume size in the following AABB tests, thus the lowest 
probability of the following tested boxes overlapping. 

Since the local coordinate systems of a pair of models may be arbitrarily ori­
ented, we need an overlap test for relatively oriented boxes. A fast overlap test 
for oriented boxes is presented by Gottschalk in [4]. We will refer to this test 
as the separating axes test (SAT). A separating axis of two boxes is an axis for 
which the projections of the boxes onto the axis do not overlap. The existence of 
a separating axis for a pair of boxes sufficiently classifies the boxes as disjoint. 
It can be shown that for any disjoint pair of convex three-dimensional polytopes 
a separating axis can be found that is either orthogonal to a facet of one of the 
polytopes, or orthogonal to an edge from each polytope [3]. This results in 15 
potential separating axes that need to be tested for a pair of oriented boxes (3 facet 
orientations per box plus 9 pairwise combinations of edge directions). The SAT 
exits as soon as a separating axis is found. If none of the 15 axes separate the 
boxes, then the boxes overlap. 

We refer to the original paper for details on how the SAT is implemented 
such that it uses the least number of operations. For the following discussion, 
it is important to note that this implementation requires the relative orientation 
represented by a 3 × 3 matrix, and its absolute value, i.e., the matrix of absolute 
values of matrix elements, to be computed before performing the 15 axes tests. 

In general, testing two AABB trees for intersection requires more box overlap 
tests than testing two OBB trees of the same models, since the smallest AABB of 
a set of primitives is usually larger than the smallest OBB. However, since each 
tested pair of boxes of two OBB trees normally has a different relative orienta­
tion, the matrix operations for computing this orientation and its absolute value 
are repeated for each tested pair of boxes, whereas for AABB trees the relative 
orientation is the same for each tested pair of boxes, and thus needs to be com­
puted only once. Therefore, the performance of an AABB tree might not be as bad 
as we would expect. The empirical results in Section 5 show that, by exploiting 
this feature, intersection testing using AABB trees usually takes only 50% longer 
than using OBB trees in cases where there is a lot of overlap among the models. 

For both tree types, the most time consuming operation in the intersection 
test is the SAT, so let us see if there is room for improvement. We found that, 
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Figure 2: Distribution of axes on which the SAT exits in case of the boxes being

disjoint. Axes 1 to 6 correspond to the facet orientations of the boxes, and axes 7

to 15 correspond to the combinations of edge directions.
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in the case where the boxes are disjoint, the probability of the SAT exiting on 
an axis corresponding to a pair of edge directions is about 15%. Figure 2 shows 
a distribution of the separating axes on which the SAT exits for tests with a high 
probability of the models intersecting. Moreover, for both the OBB and the AABB 
tree we found that about 60% of all box overlap tests resulted in a positive result. 
Thus, if we remove from the SAT the nine axis tests corresponding to the edge 
directions, we will get an incorrect result only 6% (40% of 15%) of the time. 

Since the box overlap test is used for quick rejection of subsets of primitives, 
exact determination of a box overlap is not necessary. Using a box overlap test 
that returns more overlaps than there actually are, results in more nodes being 
visited, and thus more box overlap and primitive intersection tests. Testing fewer 
axes in the SAT reduces the cost of a box overlap test, but increases the number 
of box and primitive pairs being tested. Apparently, there is a trade-off of per-test 
cost against number of tests, when we use a SAT that tests fewer axes. 

In order to examine whether this trade-off is in favor of the performance, we 
repeated the experiment using a SAT that tests only the six facet orientations. 
We refer to this test as the SAT lite. The results of this experiment are shown in 
Section 5. We found that the AABB tree’s performance benefits from a cheaper 
but sloppier box overlap test in all cases, whereas the OBB tree shows hardly any 
change in performance. This is explained by the higher cost of a box overlap test 
for the OBB tree due to extra matrix operations. 

4 AABB Trees and Deformable Models 

AABB trees lend themselves quite easily to be used for deformable models. In 
this context, a deformable model is a set of primitives in which the placements 
and shapes of the primitives within the model’s local coordinate system change 
over time. A typical example of a deformable model is a triangle mesh in which 
the local coordinates of the vertices are time-dependent. 

Instead of rebuilding the tree after a deformation, it is usually a lot faster to 
refit the boxes in the tree. The following property of AABBs allows an AABB 
tree to be refitted efficiently in a bottom-up manner. Let S be a set of primitives 
and S+ , S− , subsets of S such that S+ ∪ S− = S, and let B+ and B− be the 
smallest AABBs of respectively S+ and S−, and B, the smallest AABB enclosing 
B+ ∪ B− . Then, B is also the smallest AABB of S. This property is illustrated 
in Figure 3. Of all bounding volume types we have seen so far, AABBs share this 
property only with DOPs. 
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Figure 3: The smallest AABB of a set of primitives encloses the smallest AABBs 
of the subsets in a partition of the set. 

This property of AABBs yields a straightforward method for refitting a hi­
erarchy of AABBs after a deformation. First the bounding boxes of the leaves 
are recomputed, after which each parent box is recomputed using the boxes of its 
children in a strict bottom-up order. This operation may be implemented as a pos­
torder tree traversal, i.e., for each internal node, the children are visited first, after 
which the bounding box is recomputed. However, in order to avoid the overhead 
of recursive function calls, we implement it differently. 

In our implementation the leaves and the internal nodes of an AABB tree are 
allocated as arrays of nodes. We are able to do this, since the number of primitives 
in the model is static and a priori known. Furthermore, the tree is built such that 
each internal child node’s index number in the array is greater than its parent’s 
index number. In this way, the internal nodes are refitted properly by iterating 
over the array of internal nodes in reversed order. Since refitting an AABB takes 
constant time for both internal nodes and leaves, an AABB tree is refitted in time 
linear to the number of nodes. Refitting an AABB tree of a triangle mesh takes 
less than 48 arithmetic operations per triangle. Experiments have shown that for 
models composed of over 6000 triangles, refitting an AABB tree is about ten times 
as fast as rebuilding it. 

There is, however, a drawback to this method of refitting. Due to relative 
position changes of primitives in the model after a deformation, the boxes in a 
refitted tree may have a higher degree of overlap than the boxes in a rebuilt tree. 
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Figure 4: Refitting vs. rebuilding the model in Figure 3 after a deformation 

Figure 4 illustrates this effect for the model in Figure 3. A higher degree of overlap 
of boxes in the tree results in more nodes being visited during an intersection test, 
and thus, a worse performance for intersection testing. 

We observe a higher degree of overlap among the boxes in a refitted tree 
mostly for radical deformations such as excessive twists, features blown out of 
proportion, or extreme forms of self-intersection. However, for deformations that 
keep the adjacency relation of triangles in a mesh intact, i.e., the mesh is not 
torn up, we found no significant performance deterioration for intersection test­
ing, even for the more severe deformations. This is due to the fact that the degree 
of overlap increases mostly for the boxes that are maintained high in the tree, 
whereas most of the boxes that are tested are the ones that are maintained close to 
the leaves. 

5 Performance 

The total cost of testing a pair of models represented by bounding volume hierar­
chies is expressed in the following cost function [11, 4]: 

Ttotal = Nb ∗ Cb + Np ∗ C p, 
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(a) X-wing (b) Teapot

Figure 5: Two models that where used in our experiments

where

Ttotal is the total cost of testing a pair of models for intersection,
Nb is the number of bounding volume pairs tested for overlap,
Cb is the cost of testing a pair of bounding volumes for overlap,
Np is the number of primitive pairs tested for intersection, and
C p is the cost of testing a pair of primitives for intersection.

The parameters in the cost function that are affected by the choice of bounding
volume are Nb, Np, and Cb. A tight-fitting bounding volume type, such as the
OBB, results in a low Nb and Np, but has a relatively high Cb, whereas an AABB
will result in more tests being performed, but the value of Cb will be lower.

In order to compare the performances of the AABB tree and the OBB tree, we
have conducted an experiment, in which a pair of models were placed randomly in
a bounded space and tested for intersection. The random orientations of the mod-
els were generated using the method described by Shoemake in [9]. The models
were positioned by placing the origin of each model’s local coordinate system
randomly inside a cube. The probability of an intersection is tuned by changing
the size of the cube. For all tests, the probability was set to approximately 60%.
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OBB tree 

Model Nb Cb Tb N p C p Tp Ttotal 

Torus 10178961 4.9 49.7 197314 15 2.9 52.6 
X-wing 48890612 4.6 223.8 975217 10 10.2 234.0 
Teapot 12025710 4.8 57.6 186329 14 2.7 60.3 

AABB tree 

Model Nb Cb Tb N p C p Tp Ttotal 

Torus 32913297 3.7 122.3 3996806 7.2 28.7 151.0 
X-wing 92376250 3.1 288.8 8601433 7.1 61.3 350.1 
Teapot 25810569 3.3 84.8 1874830 7.4 13.9 98.7 

Table 1: Performance of the AABB tree vs. the OBB tree, both using the SAT. 
Nb and Np are respectively the total number box and triangle intersection tests, 
Cb and C p the per-test times in microseconds for respectively the box and triangle 
intersection test, Tb = Nb ∗ Cb is the total time in seconds spent testing for box 
intersections, Tp = Np ∗ C p is the total time used for triangle intersection tests, 
and finally Ttotal is the total time in seconds for performing 100K intersection tests. 

For this experiment we used Gottschalk’s RAPID package [2] for the OBB tree 
tests. For the AABB tree tests, we used a modified RAPID, in which we removed 
the unnecessary matrix operations. We experimented with three models: a torus 
composed of 5000 triangles, a slenderly shaped X-wing space craft composed of 
6084 triangles, and the archetypical teapot composed of 3752 triangles, as shown 
in Figure 5. Each test performed 100K random placements and intersection tests, 
resulting in approximately 60K collisions for all tested models. Table 1 shows 
the results of the tests for both the OBB tree and the AABB tree. The tests were 
performed on a Sun UltraSPARC-I (167MHz), compiled using the GNU compiler 
with ‘-O2’ optimization. 

An AABB tree requires approximately twice as much box intersection tests as 
an OBB tree, however, the time used for intersection testing is in most cases only 
50% longer for AABB trees. The exception here is the torus model, for which the 
AABB tree uses almost three times as much time as the OBB tree. Apparently, 
the OBB tree excels in fitting models that have a smooth surface composed of 
uniformly distributed primitives. Furthermore, we observe that, due to its tighter 
fit, the OBB tree requires much fewer triangle intersection tests (less than two 
triangle intersection tests per placement, for the torus and the teapot). 
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OBB tree 

Model Nb Cb Tb N p C p Tp Ttotal 

Torus 13116295 3.7 47.9 371345 12 4.4 52.3 
X-wing 65041340 3.4 221.4 2451543 9.3 22.9 244.3 
Teapot 14404588 3.5 50.8 279987 13 3.5 54.3 

AABB tree 

Model Nb Cb Tb N p C p Tp Ttotal 

Torus 40238149 2.4 96.1 5222836 7.4 38.4 134.5 
X-wing 121462120 1.9 236.7 13066095 7.0 91.3 328.0 
Teapot 30127623 2.1 62.5 2214671 7.0 15.6 78.1 

Table 2: Performance of AABB tree vs. OBB tree, both using the SAT lite 

We repeated the experiment using a separating axes test that tests only the axes 
corresponding to the six facet orientations, referred to as SAT lite. The results of 
this experiment are shown in Table 2. We see a performance increase of about 
15% on average for the AABB tree, whereas the change in performance for the 
OBB tree is only marginal. 

We also ran some tests to see how the time used for refitting an AABB tree 
for a deformable model compares to the intersection testing time. We found that 
on our testing platform, refitting a triangle mesh composed of a large number 
(> 1000) of triangles takes 2.9 microseconds per triangle. For instance, for a pair 
of models composed of 5000 triangles each, refitting takes 29 milliseconds, which 
is more than 10 times the amount of time it takes to test the models for intersection. 
Hence, refitting is likely to become the bottleneck if many of the models in a 
simulated environment are deformed and refitted in each frame. However, for 
environments with many moving models, in which only a few are deformed in 
each frame, refitting will not take much more time in total than intersection testing. 

We conclude with a comparison of the performance of the AABB tree vs. the 
OBB tree for deformable models. Table 3 presents an overview of the times we 
found for operations on the two tree types. We see that for deformable models, 
the OBB’s faster intersection test is not easily going to make up for the high cost 
of rebuilding the OBB trees, even if only a few of the models are deformed. For 
these cases, AABB trees, which are refitted in less than 5% of the time it takes 
to rebuild an OBB tree, will yield a better performance, and are therefore the 
preferred method for collision detection of deformable models. 
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Operation Torus X-wing Teapot 
Build an OBB tree 0.35 s 0.46 s 0.27 s 
Build an AABB tree 0.11 s 0.18 s 0.08 s 
Refit an AABB tree 15 ms 18 ms 11 ms 
Test a pair of OBB trees 0.5 ms 2.3 ms 0.6 ms 
Test a pair of AABB trees 1.3 ms 3.3 ms 0.8 ms 

Table 3: Comparing the times for a number of operations 

6 Implementation Notes 

In SOLID 2.0, AABB trees are used both for rigid and deformable models. In 
order to comply with the structures and motions specified in VRML [1], SOLID 
allows, besides translations and rotations, also nonuniform scalings on models. 
Note that a nonuniform scaling is not considered a deformation, and hence, does 
not require refitting. However, in order to be able to use nonuniformly scaled 
models, some changes in the AABB overlap test are needed. 

Let T(x) = Bx + c be the relative transformation from a model’s local coor­
dinate system to the local coordinate system of another model, where B is a 3 × 3 
matrix, representing the orientation and scaling, and c is a vector representing the 
translation. For nonuniformly scaled models, we can not rely on the matrix B 
being orthogonal, i.e., B−1 = BT. However, for the SAT lite both B and B−1, 
and their respective absolute values are needed. Hence, in our implementation 
we compute these four matrices for each intersection test of a pair of models, and 
use them for each tested pair of boxes. The added cost of allowing nonuniformly 
scaled models is negligible, since B−1 and its absolute value is computed only 
once for each tested pair of models. 

Finally, it is worth mentioning that for AABB trees a larger percentage of the 
time is used for primitive intersection tests than for OBB trees (28% vs. 5%). In 
this respect, it might be good idea to use the triangle intersection test presented by 
Möller in [7], which is shown to be faster than the one used in RAPID. 
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