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Abstract

Of considerable interest in recent years has been the problem of exchanging correlated data with minimum

communication. We thus consider the problem of exchanging two similar strings held by different hosts. Our

approach involves transforming a string into a multi-set of substrings that are reconciled efficiently using known

multi-set reconciliation algorithms, and then put back together on a remote host using tools from graph theory.

We present analyses, experiments and results to show that the communication complexity of our approach for

high-entropy data compares favorably to existing algorithms including rsync, a widely-used string reconciliation

engine. We also quantify the tradeoff between communication and the computation complexity of our approach.

Index Terms

efficient file synchronization, string reconstruction, rsync

I. INTRODUCTION

We address the problem of reconciling similar strings held by two distinct hosts. The strings may

represent files, web pages, or genomic code residing with similar content on different hosts. Formally,

we consider two distinct hosts A and B, each with a string σA and σB respectively, composed over

some alphabet Σ. The efficient string reconciliation problem is thus for host A to determine σB and for

host B to determine σA with minimum communication.

The problem of string reconciliation appears in a number of applications, most prominently in file

synchronization. In network applications, where frequent updates are made to copies of the same file,

string reconciliation can be used to share the updates among networked computers. For example, it

can be used to reconcile document replicas in replicated file systems, such as Ficus [16], Coda [28]

and Echo [2]. Data distribution systems can leverage the similarity between the current and earlier

versions of data to transmit updates without disrupting normal communication traffic [23]. Mirroring of
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internet web servers also requires the repeated and efficient reconciliation of different versions of the

same files. Finally, image reconciliation can be thought of as a two dimensional generalization of string

reconciliation, and, in general, string reconciliation algorithms can be used as a basis for reconciling

various types of structured data.

A. Approach

The idea behind our approach to string reconciliation is to divide each string into a multi-set of “puzzle

pieces”. These multi-sets are reconciled using CPIsync [1, 20, 28], an efficient distributed algorithm for

set and multi-set reconciliation. In the final step these “puzzle pieces” comprising the multi-set are

put together, like a puzzle, in order to form the original string data. We show that the communication

complexity of our proposed approach scales linearly in edit distance between reconciling strings, rather

than being linear in string length as is the case for conventional reconcilers such as rsync [32]. Recall

that the edit distance between two strings is the minimum number of edit operations (insertion, deletion

or replacement of single characters) required to transform one string into the other, and this quantity

can be significantly smaller than the lengths of either string.

Puzzle pieces are constructed out of proximate characters of the original string by repeatedly applying

a mask. Formally, a mask is a binary array; applying a mask to a string involves computing a dot product

of the mask with a substring of the string. This process is known as ‘shingling’ [3, 4] in the special

case when the mask is comprised of all ones. In other words, applying a mask involves placing it over

the string, beginning at a certain character, and reading off all characters corresponding to 1 bits in the

mask, thus producing one puzzle piece. To divide a string into pieces, one simply applies the mask at

all shifts in the string (i.e. starting at each character).

As a concrete example, consider the string 01010010011 under the mask 111, which has length

lm = 3 . We artificially pad the string with anchors (i.e., characters not in the string alphabet) at the
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beginning and end to get $01010010011$, which is subdivided into the following multi-set of puzzle

pieces:

{$01, 010, 101, 010, 100, 001, 010, 100, 001, 011, 11$}.

The key observation of our approach is that a string edit only affects a small number of puzzle pieces

that are within the local vicinity of the edit. As such, though strings may have many pieces, these

pieces will be mostly the same as long as the strings are mostly the same. This, in turn, means that the

communication needed to synchronize the strings with CPIsync will be small for strings that are very

similar. Once the pieces of a string are known, it can be reconstructed by enumerating Eulerian paths

(similarly to [15]). Unfortunately, the number of such paths (and hence the computational burden of

the algorithm) can be quite large in the general case. As such we provide analytical tools for picking

an appropriate mask length to keep the decoding process feasible

a) Outline: In Section II we briefly discuss some well known string reconciliation bounds proposed

by others. In Section III-A we briefly summarize the CPIsync algorithm and then formally describe

how a string is represented as a multi-set and reconstructed back at the decoding host. In Sections III-B

through III-C we briefly provide some of the necessary graph-theoretic background needed to understand

our approach, which is formally described in Section III-D. Thereafter, in Section IV we analyze the

proposed approach in terms of communication and computation complexity. We provide an experimental

comparison of the proposed approach with the well known open-source rsync [32] incremental file

transfer utility in Section VI and present our conclusions in Section VII.

II. EXISTING RESULTS

The edit distance between two strings is the minimum number of edits (i.e., insertion, deletion or

replacement of single characters) required to transform one into the other. Orlitsky [24] presented
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some information theoretic bounds on the amount of communication needed for exchanging documents

modelled as random variables with a known joint distribution. He also proposed an efficient one-way

protocol for reconciling documents that differ by at most α string edits. In Orlitsky’s model, host PX

holds string X which differs from the string Y held by PY by at most α edits. It is shown that host

PX requires at least

α log |X| − o(α log |X|) bits

of communication to communicate string X to host PY . Orlitsky and Viswanathan [25] also present an

efficient protocol for transmitting a string X to another host with a string Y , an edit distance k from

X . This protocol succeeds with probability 1 − ε and requires the communication of at most

2k log |X|

(

log |X| + log log |X| + log

(

1

ε

)

+ log k

)

bits. (1)

Cormode, Paterson, S. ahinalp and Vishkin [9] have also proposed protocols that minimize commu-

nication complexity in reconciling similar documents and have come up with bounds on these values

based on the Hamming, LZ and Levenshtein metrics. In their protocols, the amount of communication

needed to correct an edit distance of d between two strings is upper bounded by

4d log(2n/d) log(2d̂) + O

(

d log n log
log n

ln 1/pc

)

bits,

where n is the length of the string, d̂ is the bound on the edit distance and pc is the desired probability of

success. They also show how to identify different pages between two copies of an updated string using

error-correcting codes, a problem addressed earlier by Barbara and Lipton and also by Abdel-Ghaffar

and El Abbadi using Reed-Solomon codes [18].

More recently, Evfimievski [13] presented a probabilistic algorithm for communicating an edited



6

binary string over a communication network with arbitrarily low probability of error. The communication

complexity is upper bounded by

1000k2 log |y|(16 + log |x| + 5 log |y| + log(ε−1)) bits, (2)

where k is the edit distance, |x| and |y| are the lengths of the strings and ε is the error probability. A

graphical comparison of these protocols is presented in Section V.

It should be noted that in many cases it is assumed that an original string is maintained and known

on both hosts and then synchronized at a later date, so that edits can be recorded and compressed upon

reconciliation [9, 31]. Our model, on the other hand, does not presume any a priori information between

the hosts. This kind of scenario occurs, for example, if the hosts were given their strings by a third

party (i.e., without any history of edits, as occurs in some networked settings), or if the strings were

derived by some foreign process that generates related output (e.g., related DNA strings).

III. THEORETICAL BACKGROUND

We next review some theoretical underpinnings of our approach, culminating in Section III-D with a

formal statement of our proposed string reconciler.

A. Overview of CPIsync

The Characteristic Polynomial Interpolation Synchronization protocol [CPIsync] [19–21] reconciles

two sets SA and SB using an algebraic approach based on rational function interpolation in a finite

field. A salient feature of this protocol is that its communication complexity is broadly determined by

the number of differences between reconciling sets, rather than the sizes of the sets.
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More precisely, the probabilistic version of this algorithm [21] requires

2(b + 1)m + b + bmA + m + k bits

to reconcile sets SA and SB of b-bit vectors with a symmetric difference m = |SA ⊕SB|, unidirectional

differences mA = |SA \ SB| and mB = |SB \ SA|, and a confidence parameter k related exponentially

to the expected probability of success.

CPIsync generalizes nicely to multi-set reconciliation and a recent multi-round extension [19] runs

in expected linear-time.

B. Concepts

An Eulerian cycle is a graph cycle that traverses each edge exactly once. The de Bruijn digraph

Glm(Σ) over an alphabet Σ and length lm is defined to contain |Σ|lm−1 vertices, each corresponding to

a length (lm − 1) string over the alphabet. An edge from vertex vi to vj exists with label lij if the string

associated with vj contains the last lm − 2 characters of vi followed by lij . Thus, each edge (vi, vj)

represents a length lm string over Σ defined by the label of vi followed by lij . An example of the de

Bruijn digraph G3({0, 1}), taken from [30], is shown in Fig. 1.

1) Modified de Bruijn Digraph: The following steps transform a de Bruijn digraph Glm(Σ) into a

modified de Bruijn digraph similarly to the construction in [30], for a particular multi-set of pieces of

a string drawn from alphabet Σ and encoded with a mask of length lm:

• parallel edges are added to the digraph for each occurrence of a particular piece in the multi-set.

• edges which represent strings not in the multi-set are deleted.

• vertices with degree zero are deleted.

• two new vertices and edges corresponding to the first and last pieces of the encoded string are
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Fig. 1. The de Bruijn digraph of length 3 binary strings.

added.

• An artificial edge is added between the two new vertices to make their in-degree equal their out-

degree (i.e., one).

There is a one to one correspondence between the edges in this graph and the pieces in the multi-set

except for the artificial edge. The modified de Bruijn digraphs for the strings σA = 01010011 and

σB = 01010010011 (after padding with anchors) on hosts A and B are shown in Fig. 2. The problem

of determining the original string from a multi-set of pieces was shown to be equivalent to finding the

correct Eulerian path in a modified de Bruijn digraph [30].

Note that in our application, the modified de Bruijn digraph necessarily has at least one Eulerian cycle

(and typically several) corresponding to the string that it encodes. By virtue of this fact, in−degree din(i)

of any vertex vi necessarily equals its out − degree dout(i). We may thus define di =̂ din(i) = dout(i)

and form a diagonal matrix M from the degrees of the n vertices of the graph

M = diag(d1, d2, d3, ..., dn).
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Fig. 2. The modified de Bruijn digraphs for the strings on hosts A and B.

When put together with the adjacency matrix A = [ai,j] of the graph, this produces the Kirchhoff matrix

C = M − A.

Theorem 1, a modification of the well-known B.E.S.T. theorem [14], provides the number of Eulerian

cycles in a modified de Bruijn digraph. The Theorem and its proof were presented in [17], and we restate

it for completeness.

Theorem 1 (Modified B.E.S.T.-Theorem)

For a general Eulerian digraph, the total number of Eulerian cycles R is given by

R =
∆Πi(di − 1)!

Πijaij!
.

C. The Backtrack Algorithm

Theorem 1 gives us the number of Eulerian cycles in a graph. In order to enumerate these Eulerian

cycles (corresponding to possible string decodings) we may use the exhaustive Backtrack method [22].

In this method, a path is greedily “grown” into an Eulerian cycle; at each step, the partial path is

examined to see if it could lead to an Eulerian cycle, with the algorithm backtracking to a previous
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vertex if this examination fails. Whenever the path length equals the number of edges in the graph, the

path is output and the algorithm backtracks to the previous vertex in search of another cycle.

D. STRING-RECON

We now have the necessary tools to describe our string reconciliation protocol (STRING-RECON).

Consider two hosts A and B holding strings σA and σB respectively. The mask-length lm is pre-

determined on the basis of the analysis presented in Section IV-B. Host A determines σB and host B

determines σA as follows:

1) Host A transforms string σA into a multi-set of pieces MSA using a mask-length of lm and

constructs a modified de Bruijn digraph from the pieces. Host B transforms string σB into MSB

using the same mask-length lm and constructs a modified de Bruijn digraph from the pieces.

2) A and B determine the index of the desired decoding in the sequential enumeration of all Eulerian

cycles in the graph. Thus, nA corresponds to the index of the Eulerian cycle producing string σA,

and similarly nB corresponds to σB .

3) A and B transform multi-sets MSA and MSB into sets with unique (numerical) elements SA and

SB by concatenating each element in the set with the number of times it occurs in the multi-set

and hashing the result; the sets SA and SB store the resulting hashes. Any one way hash function

with a low collision probability (e.g. MD5) can be used; however, a higher number of bits for

the hash function would result in a higher overall communication complexity.

4) The CPIsync algorithm is executed to reconcile the sets SA and SB. In addition, A sends nA to

B and B sends nB to A. At the end of this step, both A and B know SA, SB, nA and nB. Host

A then sends elements corresponding to hashes in the set SA \ SB to B and B sends elements

corresponding to the hashes in the set SB \ SA to A.
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5) A and B construct the multi-sets MSB and MSA respectively from the information obtained in

the previous step. They also generate the corresponding modified de Bruijn digraphs.

6) The decoding algorithm is applied by A and B to determine σB and σA respectively.

IV. ANALYSIS

There are two important measures of the efficiency of the proposed string reconciliation protocol. One

is the communication complexity (i.e., the number of bytes exchanged) and the other is the computation

complexity of the algorithm running on the hosts. Communication complexity depends on the number

of differences in the shingle-sets that CPIsync reconciles. The computation complexity, on the other

hand, is determined by the number of possible Eulerian cycles that the Backtrack algorithm finds in the

modified de Bruijn graph. In this section we provide analytical bounds on the communication complexity

and show how to reduce the number of Eulerian cycles by increasing mask-length. We then analytically

show the tradeoff between these two measures.

A. String Edits and Communication Complexity

Suppose hosts A and B initially have strings σA and σB respectively which are of length n. The hosts

use the same mask of length lm to generate piece multi-sets. The following results bound the number

of differences ∆AB that can occur between the piece multi-sets of A and B in the face of certain edits.

Theorem 2

If two strings σA and σB differ by d non-degenerate edits1 then the number of differences ∆AB between

resulting piece multi-sets is bounded by

d + 2(lm − 1) ≤ ∆AB ≤ min((2lm − 1)d, 2(n − lm + 1) + d).

1We assume the non-degenerate case where edits occur after the lm-th character and before the lm-th character.
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Proof: The best case would be achieved when the d insertions occur at a single location. In this

case, the host that has the augmented string would have d+ lm − 1 different pieces. The other host will

have lm−1 different pieces, totalling up to d+2(lm−1) differences. The worst case would occur when

the insertions are spaced a distance lm apart. One such insertion would cause a difference of 2lm − 1

pieces. d such insertions would cause a difference of d(2lm−1) pieces. When the insertions (so spaced)

span the entire string, all the pieces are different on both the strings and thus the difference becomes

2(n − lm + 1) + d. Note that in this case, (2lm − 1)d exceeds 2(n − lm + 1) + d and thus, we have to

resort to the min function for a tighter bound in the general case.

Deletion on one host can be considered as insertion on the other and replacements can be considered

to be an insertion followed by a deletion, thus providing analogous results to Theorem 2.

Corollary 1

If d edits are made on σB , then the upper bound on the number of symmetrical differences between the

multi-sets A and B can always be expressed as

∆AB ≤ 2lmd.

The proof of Corollary 1, showing that the number of elements in the multi-sets affected by such

edits is linear in the number of edits performed, follows readily by induction on the number of edits.

The following communication bound is also a natural consequence of Theorem 2.

Corollary 2

The amount of communication used by STRING-RECON to reconcile binary strings differing in e edits
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using masks of length lm is bounded by

COMM ≤ 2(b + 1)m + b + bmA + m + k + mlm + log(R1R2)bits

where the symbols have the same meaning as in Section III-A and R1 and R2 are the total number of

Eulerian cycles for the modified de Bruijn digraphs at hosts A and B respectively.

B. Mask-length and maximum graph node degree

The degrees di form a dominant term in the computation of the number of Eulerian cycles in a graph

(Theorem 1). In order to keep the number of Eulerian cycles low, the maximum degree max(di) should

be as small as possible, ideally 1. We now formalize the intuitive idea that increasing the mask-length

reduces the maximum degree of a Eulerian graph, and hence reduces the general decoding complexity

of the decoding algorithm of Section III-C, at the cost of increased communication complexity of (2).

Our analysis below is based on a simplified model of strings as random sequences of bits, with each

bit being independent and identically distributed (iid), and occuring as 1 with probability p. Though the

results can be simply generated to random sequences of k-ary characters, a full analysis for arbitrarily

modeled strings is left as an open problem.

Theorem 3

Consider the de Bruijn graph of a random binary string σ. If a mask of length lm is used to construct the

de Bruijn graph then the expected degree d(k) of a node whose label has Hamming weight k is given by

d(k) = (n − lm + 1)plm−k−1(1 − p)k. (3)

Proof: If we select any lm−1 consecutive locations in the original string that comprise a node label

in the de Bruijn graph, the probability of the this lm − 1 bit sequence being some particular sequence
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of weight k is pk(1 − p)lm−k−1. This lm − 1 bit node label has out-going edges labeled 0 and 1. The

probability of an lm bit sequence with the first lm − 1 bits being the node label and the last bit being a

0 or a 1 in the original string is given by

pk(1 − p)lm−k + pk+1(1 − p)lm−k−1 = plm−k−1(1 − p)k

The original string is divided into n−lm+1 pieces using the lm bit mask. By the linearity of expectation,

and given that all bits of the string are iid, the out-degree of a node with a label of Hamming weight

k (0 ≤ k ≤ lm − 1) we obtain the expression for the node degree in (3).

Theorem 3 enables us to compute in expectation the maximum node degree in the de Bruijn graph,

giving a rough idea of the number of Eulerian cycles in Theorem 1. This follows from the fact that if

all the graph’s nodes have degree one then there is exactly one Eulerian cycle in the graph. The degree

d(k) in (3) is a monotonically decreasing function of the mask-length and for a sufficiently long mask-

lengths the maximum degree of every node in the graph will become one. Intuitively, by increasing the

mask-length lm we are introducing more and more distinct nodes in the de Bruijn graph and reducing

duplicate edges between nodes, hence decreasing the number of Eulerian cycles.

Theorem 4

The mask-length lm required to reduce to unity the expected maximum out-degree of a de Bruijn graph of

a random binary string σ with bit probability p ≥ 0.5 is

lm =
n ln(p) + ln(p) + W (− ln(p)e−n ln(p))

ln(p)
(4)

Where W is the LambertW function [8] that satisfies

W (x)eW (x) = x
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Fig. 3. String length n versus Mask-length lm for the maximum degree in the De Bruijn graph to be one.

Proof: For p ≥ 0.5 the node(s) with maximum out-degree d(k) correspond to those that have k = 0

in (3), giving

d(0) = (n − lm + 1)plm−1. = 1 (5)

Solving (5) for out-degree equal to one we get the expression in (4).

A similar result can be obtained for the case of p < 0.5 by replacing p by 1 − p in (4).

Corollary 3

The mask length required to maintain the maximum degree at unity grows at most logarithmically with n,

the length of the bitwise random binary string σ.
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Proof: To see this we observe that the lambertW function W(z) can be expanded as in [8]

W (z) = L1 − L2 +
L2

L1
+

L2(−2 + L2)

2L1
2 +

L2(6 − 9L2 + 2L2
2)

6L1
3 +

L2(−12 + 36L2 − 22L2
2 + 3L2

3)

12L1
4

+ O

(

{

L2

L1

}5
)

where L1 = ln(z) and L2 = ln(ln(z)) and ln(·) is the natural log function. Noting that L2
L1

≤ 1 we can

interpret the above LambertW expansion as

W (z) ≤ L1 − L2 + c

(

L2

L1

)

, (6)

where c is a constant. Substituting (6) into the expression for the mask-length in (4) and taking the

limit as n approaches ∞, we get lm = O(ln(n))

Figure 4 shows the mask-length needed to ensure an expected single decoding cycle (from 4) as a

function of the string’s bit-entropy H(p). Clearly, as the value of p approaches 0, the required mask-

length will approach n − lm + 1. On the other hand, when the entropy of the original string is high
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(i.e., p → 0.5) it is more unlikely to find repeating lm bit sequences in the string that would make the

corresponding node degrees higher in the modified de Bruijn graph, resulting in a relatively small mask

length.

While the results hold for uniformly distributed random binary strings (and can be generalized for

uniformly distributed k-ary strings), we leave as open the question of bounding the number of Eulerian

cycles in strings from more complicated models (e.g., natural English text). In our experiments we

found that suitably long mask-lengths have the same desirous effect on English language strings of

reducing the number of Eulerian cycles to a small number (usually 1), although the required increase

in mask-length significantly impacts the communication size.

V. COMPARISON WITH EXISTING RESULTS

The theoretical communication complexity upper bound of STRING-RECON was compared to the

theoretical upper bound by Evfimievski [13] and the theoretical upper bound by Orlitsky and Viswanathan

[25]. The results are summarized in Figure 5. The string on both hosts was an English language string
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of size 1000 characters, encoded with 8 bits per character. An edit distance of k between two English

language strings would, in general, translate to an edit distance of at least k in the binary representations

of the strings.

We used a mask-length of 11 corresponding to length predicted in Equation (4) for unique decoding

of the modified de Bruijn digraph. In order to put all methods on an equal footing, we set the error

probability ε to the error probability of CPIsync:

ε = m

(

|SA| + |SB| − 1

2b

)k

,

with the confidence parameter k = 3 set arbitrarily. Note that Evfimievski’s protocol in [13] and Orlitsky

and Viswanathan’s protocol in [25] are only for one-way reconciliation, and we have adapted them to

make a fair comparison to STRING-RECON, which performs a full reconciliation of the strings.

Though the STRING-RECON upper bound appears the best, all the bounds are still clearly weak and

not necessarily representative of actual performance, which is much harder to quantify.

VI. EXPERIMENTS AND COMPARISON TO RSYNC

In the first set of experiments we implemented the proposed scheme and studied the communication

performance for randomly generated binary strings. In Figure 6 we see that the communication complex-

ity grows linearly with the number of edits since CPIsync requires more rational function evaluations.

For a constant number of uniformly distributed random edits, the communication grows logarithmically

with the string length because the mask-length has to be be increased logarithmically with string length

in order to expect only one Eulerian cycle.

We next compared our algorithm to the popular rsync [32] utility, an open-source incremental file-

transfer program. In the most common setting host A wants to copy string σA onto host B that already

has a similar string σB . Rsync works as follows: host B first divides string σB into S byte disjoint
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blocks and sends a strong 128-bit MD4 [27] checksum as well as a weaker 32-bit rolling checksum of

each block to Host A. Host A then determines the blocks at all offsets that match the checksums and

determines string σA’s data and block indices that need to be sent to host B for the latter to reconstruct

string σA. If σA and σB are very similar then the overhead of sending the hashes is more than offset

by the savings of only sending the literal data corresponding to the differing parts. Note that sending

hashes of disjoint blocks corresponds to communication complexity that is linear in the length of the

input string.

Our input data included varying length snippets of the text of Winston Churchill’s ‘Their finest hour’

speech [6] over the English alphabet with punctuation. We introduced ‘edit bursts’ of changes in order

to mimic a human editing the text of the speech. Each edit burst was 5 characters long and placed

randomly in the text. We computed the number of bytes communicated by the proposed scheme based

on the communication bound of Corollary 2 for non-binary alphabets and explicitly verified that the

running time was small for the chosen mask length by decoding and enumerating all the Eulerian cycles

using the backtrack algorithm discussed in Section III-C.
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Fig. 7. Comparison to rsync; The input string was snippets of varying length taken from Winston Churchill’s ‘Their finest hour’ speech.
There was one edit burst that introduced an edit distance of 5 in the text.

In Figure 7 we show the comparison of the proposed scheme with rsync. As expected the communi-

cation complexity of the proposed scheme grows very slowly with increasing string length for a fixed

number of differences. Note that the communication complexity could have been decreased substantially

by reducing the mask-length, although at the cost of higher running time corresponding to more Eulerian

cycles in the de Bruijn graph.

Rsync performed well for larger number of edits as Figure 8 illustrates. The text of Shakespeare’s

famous play ‘Hamlet’ (About 175 kB) was used in this experiment. The communication complexity of

the proposed scheme grows linearly with the number of differences. This is also true in the case of rsync

because differing text has to be transmitted from one host to the other irrespective of any algorithm.

The difference is primarily in the order constant.

Table I compares the performance of the proposed algorithm with rsync on various strings for a fixed

edit distance. The proposed algorithm performed well for higher entropy strings but communicated

more bytes as compared to rsync while reconciling lower entropy strings such as human genome data.

Bitorrent’s Python source code and the Contig NT-079585.2 (from Human Y chromosome) strings were
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Fig. 8. Comparison to rsync; The input string was of constant length (Shakespeare’s play ‘Hamlet’). Each edit burst added an edit
distance of 10 in the text.

String description String length Proposed algorithm Rsync
60,000 lexicographically ordered English words 523,373 6473 8,759

Concatenated string of MD5 hashes 380,834 4,563 6,299
Java source code samples from [11] 371,330 5,234 6,456
C++ source code samples from [12] 318,254 4,470 5,820
Bitorrent’s Python source code [7] 270,880 4,234 5,382

Contig NT-079585.2 of Human Y chromosome [5] 263,614 8,244 4,999
HTML (300 Google results for ‘Turing machine’) 250,556 4,006 5,052
Tex source of Shannon’s seminal 1948 paper [29] 176,048 917 3,692

HTML (RFCs 793 [10] and 768 [26]) 151,302 2,262 3,097
TABLE I

COMPARISON (IN BYTES COMMUNICATED) OF THE PROPOSED ALGORITHM WITH RSYNC FOR VARIOUS TYPES OF STRINGS

of approximately of the same length, but the proposed approach communicated lesser bytes in the

former case because of higher entropy as compared to the genomic string in the latter case. Rsync’s

communication complexity increased linearly with the size of the input string, irrespective of the entropy

of the strings being reconciled. We found our scheme outperformed rsync for many other common strings

such as English text, source code, and HTML.

In general, our approach works best for strings with a relatively small number of string differences and
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relatively high entropy. The results in Section IV-B imply a communication complexity of O(m log2(n))

bits, which compares favorably to the Θ(n) communication of rsync.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a novel string reconciliation algorithm that efficiently reconciles strings differing

by a relatively small number of edits. The key to our proposed solution was to effectively translate the

string reconciliation problem to a comparable set reconciliation problem, for which efficient algorithms

exist. As such, our reconciliation algorithm trades communication efficiency with computation efficiency,

allowing it to adapt to a variety of network conditions in a heterogeneous system.

Another feature of the protocol was that it can be implemented with just few transmission rounds

of communication, thereby avoiding latency overheads that arise from interaction in protocols such as

rsync. This feature is extremely useful while reconciling strings over high latency links such as deep

space communication. Our analysis showed that computation costs can be limited to the computational

needs of set reconciliation while communication costs grow logarithmically in string size even when

the algorithm runs in ‘computation-saving’ mode by using increased mask-lengths. We showed through

several experiments that this can be significantly better than existing string-reconciliation programs

whose communication needs grow linearly with string size.

We believe that the proposed algorithm is particularly well-suited for a host of applications where

large high entropy strings are changed slowly but asynchronously, for example application mirroring

compressed data on the web, peer-to-peer file maintenance, or incremental software updates. It should

also be suitable for weakly-connected or high-latency systems, such as deep-space communication where

interaction is not feasible.
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