
RC22972 (W0311-039) November 5, 2003
Computer Science

IBM Research Report

Resource Management and User Registration in an eUtility

Barry Leiba, Marion Blount, Wolfgang Segmuller
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Resource Management and User Registration in an
eUtility

Authors
Barry Leiba
Marion Blount
Wolfgang Segmuller

Abstract
A service provider offering an eUtility faces a number of administrative challenges in
deploying that service. We describe a research prototype that addresses two challenging
areas in such a deployment. First, when a service provider offers an eUtility to
enterprises with existing user bases, the process of registering those existing users, as
well as the process of managing user registrations as people come and go in the
enterprise, can be cumbersome and error-prone. Our system takes advantage of the
enterprise's current user-management tools to ease user-registration management for the
eUtility. Existing users can easily be signed up for the eUtility service on organizational
boundaries, as the service is deployed in different parts of the enterprise.

Then, as the eUtility is used to serve many customers, the provider will find itself coping
with varying needs and expectations from the different customers. To avoid dedicating
resources statically, it will need tools to monitor usage and to adjust resource allocations
according to those measurements as compared with the service-level agreements for the
different customers. Our prototype performs those monitor and control functions,
allowing the service provider to make those allocation adjustments automatically.

 1

Introduction
In 2000, as IBM’s interest in the concept of eUtilities grew, the Internet Messaging
Technology group in IBM’s Research Division set out to build a prototype eUtility to
explore the feasibility of providing services to multiple customers in a new way. The
service we chose as the basis for the prototype was e-mail notification, since that gave a
useful function that we could actually deploy to a group of test users, it made use of e-
mail, filtering, and notification technology that we already had developed,1,2 and it
presented the challenge of tying the eUtility service into an existing service that our
customer might already be providing for itself.

The notification service would inspect incoming mail for registered users, would filter
that mail using criteria specified by the user, and would notify the user about mail that
passed the filters – mail that the user, by setting up the filtering criteria, has categorized
as “important”. Each user could have a set of notification “devices”, such as mobile
phones and instant-messaging names, which would be used to send the notifications to
the user.

When an enterprise would sign up for this service, we would have to start inspecting and
filtering mail for a registered set of that enterprise’s users. A new customer might want
to start with a limited set of users as a trial, and then might want to sign users up in
groups over time, perhaps on organizational boundaries.3 This would have to be easily
done, and ought to be done by an administrator of the customer’s choosing, not by the
service provider. That is, we should provide a way for the customer itself to handle
registration of its own users, and that mechanism would have to be flexible enough to
work for many different customers.

Once the service was running and had multiple customers, the service-provider might be
required to meet different Service-Level Agreements (SLAs) for each customer.4 During
periods of peak activity, the service-provider would have to ensure that it provide service
as promised, and, if resources become overcommitted, that it give preference to those
customers with the strictest SLAs.

Building the Service
The first step was to create the service that we would offer. Using our Internet
Messaging Framework toolkit,1 we created modules that would use the Internet Message
Access Protocol (IMAP)5 or Lotus Notes native facilities to read a user’s new mail and
put it through the filters (for this prototype, we set up some “standard” filters; setting up a
user interface to allow users to define filtering criteria was beyond the scope of our
project). We set up the Intelligent Notification Server (INS)2 to perform the
notifications. These two ends were tied together by writing triggers by which the filters
would tell INS to make the notifications. A block diagram of the service design is shown
in . Figure 1

 2

Figure 1 – The Notification eUtility

Lotus
Domino
Server

Domino
eMail

Forwarder

POP or
IMAP
Server

Internet
eMail

Forwarder

eMail
Injector

Device
Transcoding

SMS
Phone

eUtility EnterpriseExternal

Intelligent Notification Server

Intelligent
Filtering

Notification
Dispatcher

Context
Services

Privacy
Manager

components of INS external servicesadjuncts to INS

A test of the system showed that it worked: we could send “urgent” e-mail to a user and
have an SMS message (containing the e-mail’s sender and subject) sent to the user’s
mobile phone. Now we had to make an eUtility out of it.

User Registration and Provisioning
We designed a registration tool with interchangeable interfaces, so we could plug into
different directory services on the customer side, and different registries on the eUtility
side. For this prototype, we implemented a configurable LDAP (Lightweight Directory
Access Protocol)6,7 directory service, and a registration service that could contact a
servlet at the eUtility to register users and devices with INS. The registration tool would
read the enterprise directory using LDAP, would look for particular (configurable) fields
that would provide users’ mobile phone numbers and instant-messaging IDs, and would
allow an administrator to choose which users to register with the service. Because we
anticipate that staged registration is likely to be done on organizational boundaries (sign
up the Data Processing department, for instance), the tool is able to traverse the
enterprise’s organizational hierarchy if fields are available in their LDAP directory to do
that.

Of course, while we could make the tool general, some customization would be needed to
deal with each enterprise’s specific LDAP directory. Specifically, we have to map the
data elements we need to LDAP field names, we have to define the LDAP searches
needed to perform the tool’s functions (find a user, traverse the hierarchy both up and
down, etc.), and we have to tell the tool’s user interface what LDAP fields to show the
administrator so that display makes sense. If there is a “typical” setup, we can provide a
typical configuration file, which maps LDAP fields and sets up LDAP searches in a
typical way. Otherwise, an enterprise administrator would have to make changes to the

 3

configuration file suitable to the enterprise’s LDAP directory. shows a block
diagram of the registration tool and associated services and components.

Figure 2

Figure 2 – Provisioning the eUtility

Utility
 Provisioning

Service

Enterprise Administator
Provisioning Tool

Enterprise
Directory

Plugin

Enterprise
Directory

Admin
Provisioning Tool

Configuration

Privisioning
Service

Configuration

eUtility Enterprise

eU
tilityServices

The functions we chose, after experimentation and use, are as follows (the actual names
for the functions, as they appear in the interface, are configurable):

 Expand one level below this user.
 Expand all levels below this user.
 Go one level up from this user.
 Go all levels up from this user, to the top of the hierarchy.
 Find this user’s administrative assistant.
 Find all users this assistant supports.
 Select (and de-select) this user for registration.
 Select (and de-select) this user and one level below.
 Select (and de-select) this user and all levels below.
 Show this user’s entire (formatted) LDAP entry.

That last function is useful for selecting the correct “John Smith” in case there is a doubt.
The tool’s user interface also makes it easy to search for specific users, and to toggle
back and forth between the hierarchical list and a simple list of all selected users. Users
may be selected separately from different parts of the organization, and the selections will
be collected. When the selections are made, the administrator will click a “register now”
button, and the selected users will be processed.

As a test of the configurability, we have configured the tool to work with three different
LDAP directories, all with different layouts and fields. We have also configured the
other end of the tool to talk to different “registration” systems, and we have a
configuration that copies the selected users’ e-mail addresses to the clipboard, so they can

 4

then be pasted into the “to” field of a new message – some of us are using this today as
our normal way of searching our corporate directory.

In the following screen captures, we show an example of registering everyone who works
for “Bill Jackson”; first (,) we search for all names matching
“Jackson, B”…

Figure 3

Figure 3 – The Registration Tool, an Example

Figure 4

Figure 4

…then () we expand one level below Bill (perhaps the administrator is just
making sure that’s the group he wants), by clicking on the “+” symbol that indicates
something to expand (Bill is a manager)…

Figure 5

 5

Figure 5

…and then () we use “select branch” to choose everyone in that part of the
organization (there’s both a button and a pop-up menu item for this; here we show the
pop-up menu).

Figure 6

 6

Figure 6

At this point, Bill Jackson and everyone who reports through him are selected for
registration. We can now do more searches and navigation, select more people, turn off
the selection on some if that’s what we want (by turning off the check box on the right),
or click “Register…” to process the registrations now.

Enterprise Security & Privacy Implications
The registration tool and its process of tying the enterprise customer’s employee directory
into the eUtility provisioning is very useful in making the user registration process more
efficient and less error-prone, but does it expose the customer’s internal systems to
security risks and invasion of privacy by allowing such access? We believe it does not:
the registration tool is designed to be used by administrators of the customer’s own
choosing, usually by employees who already have access to the information anyway. Of
course, the utility-provider may offer to do this administration for them, as an optional
service, in which case the customers who choose that must be aware that they are
exposing information about their employees and their business hierarchy to the service
provider. The scope of the exposure is limited by the flexible configuration of the tool;
only the information needed to do useful searches and to select users for registration will
be retrieved, displayed, or sent to the registration server. If a user’s e-mail address is
needed, but not her telephone number, then the tool may be configured so that it never
retrieves the telephone number. LDAP authentication credentials are also hidden from
the administrator through the configuration, and the tool may be run as a servlet, giving

 7

the administrator no access at all to the configuration parameters or to the communication
path between the registration tool and the directory server.

Resource Monitoring
Now that users are registered and the eUtility is running, and as we get a number of
customers signed up, we need to monitor the eUtility’s workload and performance, report
on peaks, bottlenecks, and over- or under-committed resources. We would also like to
make resource adjustments automatically, responding on demand to changes in workload.
To accomplish this we designed a system for monitoring a “farm” of servers, in which
each server may be placed in one of the farm’s “pools”. Servers would be put in pools
and pools given work from customers based on those customers’ Service-Level
Agreements and the effect that the load on the farm has on whether all SLAs can be met.

The monitoring system comprises a set of java classes and components that implement
those programming interfaces, along with user interfaces to give eUtility administrators
feedback and easy ways to set and adjust the controls on the system. A Farm Controller
provides overall monitoring and control of the farm. Each server pool has a Pool
Controller that monitors that pool and reports to the Farm Controller. The control system
defines a listener interface that each controller implements, and the Pool Controller
registers its listener with each server that it’s monitoring, so that it may receive
operational data from that server and the services running there.

We monitor each server’s overall workload using CpuListener and CpuDetailsListener
interfaces. Each service is monitored for throughput using a ThroughputListener
interface, giving us information that may be used to balance the workload among
multiple services that share a single server. The pool collects information from all the
servers. A block diagram of the monitor & control system is shown in . On the
control side, the farm and each pool have Control Monitors and both automatic and
manual Controllers. Control decisions are made by the Controllers, getting feedback
from the Control Monitors. There are Control Managers for each component, which are
responsible for conveying the control signals from the Controllers and executing them.
On the monitoring side, the farm and each pool have Sense Managers and Sensor
Monitors, which collect information and feed it up and into the Controllers, completing
the feedback loop. Each server has a small piece of Server Manager code in it, which
reports monitor information from the service application, and which relays control
requests.

Figure 7

 8

Figure 7 – The Monitor & Control System

Auto Pool
Controller

Auto Farm
Controller

Pool 1 Pool <n>

Pool Plant

Farm
Plant

Pool
Sensor
Monitor

Man Pool Ctl

Manual Farm
Controller

Farm
Sensor
Monitor

Farm Control Mgr

Pool
Control
Monitor

Farm
Control
Monitor

Farm Sense Mgr

...

Farm
Config

Pool Ctl Manager Pool Sense Mgr

server serverserverserver

Each service and each server reports its workload information to the Pool Controller in
charge of the pool to which that server has been assigned. The Pool Controller
aggregates this data and sends overall pool status to the Farm Controller, which keeps
track of the abilities of the pools to provide the desired service levels to the customers
using that pool. The Farm Controller also keeps track of any unassigned servers that are
available. During normal operation, the displays associated with these control elements
simply show the state, and allow administrators to adjust thresholds and other operational
parameters. shows what some of the display and control user interfaces (UI)
look like.

Figure 8

 9

Figure 8 – A Monitor/Control Example, Initial State (Low Load)

In our eUtility, the SLAs specify a threshold value for the latency of a message. The
latency of a message is defined as the time it takes from when the message enters the
system (at the eMail injector in) to when the message is sent to the user’s
device (the Notification Dispatcher sends the message to the SMS phone). Every pool in
the farm has an SLA that it must meet.

Figure 1

The monitor and control system is lightweight; each element runs in its own Java Virtual
Machine (JVM), and all may be run on the same computer, or may be distributed among
several computers for the convenience of the service-provider. The UI elements may be
run in the same way, and, in fact, multiple copies of the same UI element may be run, and
each will be given the same data from the monitors. In the example above, the monitor
and control elements are all being run on one computer, and the UI elements are being
run on another (a “farm operations console”), from which the screen captures have been
taken.

The Auto Farm Controller is constantly monitoring the pools and balancing the servers in
the pools to maximize the difference in predicted latency from the latency threshold.
(LatTh_n – LatPred_n). The latency is predicted from historical data and the last few
readings of CPU utilization, network throughput, and message rates.

When the Auto Farm Controller determines that a server needs to be moved from one
pool to another, it will send control messages to the appropriate Pool Controllers to
reassign servers. These actions may also be triggered manually by an administrator to
allow overrides for anticipated conditions or for servers to be removed for maintenance.

 10

An Operational Example
In the example shown in , we have two pools and three servers. To make the
example simple, we only have two customers, one, with a stricter SLA, assigned to Pool
1 (currently with one server) and the other assigned to Pool 2 (which has the other two
servers). We have also simplified the workload for the purpose of the example, so that
each work element completes very quickly and the monitor and response intervals are
very small; with a normal workload and normal response settings, it may take longer to
create, to detect, and to react to varying load conditions. In fact, the control system must
be balanced in that regard, as too-fast response to a changing load can result in
overreaction, and thrashing (moving a server back and forth between two pools, too
often).

Figure 8

The first UI views show a normal load, with low CPU usage and good throughput. As
the incoming message rate increases (), the workload will increase on the
servers until the server in Pool 1 may no be longer able to handle the requirement of its
SLA. Here, the Farm Controller has determined that Pool 1 is too close to its SLA
threshold, and that the workload in Pool 2 is such that a server may be removed from that
pool without jeopardizing the SLA of the customer in that pool, so the Farm Control
Manager will tell the two Pool Controllers to reassign Server 2 to Pool 1. The Pool
Control Manager for Pool 2 will tell the server to stop work for that pool (),
static information needed to serve Pool 2’s customer will be removed from that server,
and information for Pool 1’s customer will be put on it. When this process is finished,
and Server 2 is no longer working in Pool 2 (), the Pool Control Manager for
Pool 1 will tell Server 2 to start work (), work units will begin to be assigned
to Server 2 from Pool 1 (), and the Pool Sense Manager will register its
listeners with the server. The server will have been switched, the workload soon balances
out (), and all servers are again operating within their capacities.

Figure 9

Figure 9 – Heavy Load, Pool 1 is Overloaded

Figure 10

Figure 11
Figure 12

Figure 13

Figure 14

 11

Figure 10 – Removing Server 2 from Pool 2

Figure 11 – Server 2 has Stopped

 12

Figure 12 – Server 2 Reassigned to Pool 1

Figure 13 – Server 2 is Starting Work for Pool 1

 13

Figure 14 – Server 2 Takes Full Load

For manual changes to the configuration, each manual Controller has an administrative
UI that allows such operations as removing a server from a pool, adding a server to a
pool, and setting operations thresholds. When manual changes are made, the same
operations happen as when the control system detects automatically that a change is
needed.

Related Work
The ideas described in this paper cover the two areas of 1) automatic registration and
provisioning of users in a computer utility environment and 2) dynamic resource control
in a computer utility environment. In this section we position our work with similar work
as reported in the literature. We also compare and contrast our project with the Océano
computing utility project.

Automatic provisioning of users: We have not found any approach to user registration
and provisioning, as reported in the literature, that is the same as that reported here.
There are overall systems management frameworks or infrastructure in place that handle
billing, SLA setup and monitoring, service sign-up, status reports, and similar ongoing
interaction between utility service providers and enterprises that use the utility services.
Our user provisioning mechanisms fit within such systems management frameworks,
extending them. There is a lot of work on multi-service management systems.3,8,9,10 The
discussions on provisioning are generally limited to providing a web-based way for
enterprise administrators to view the services offered, sign users up for services, and
monitor the SLA metrics. None of them talk about how individual users within an
enterprise are provisioned for services that require user-specific data.

Dynamic Resource Control: The resource control scheme used is based on feedback
control theory and is similar to a set of emerging resource control mechanisms for multi-

 14

service, shared resource systems. The ControlWare system11 includes middleware for
constructing feedback controls to meet quality-of-service (QoS) guarantees. Whereas the
control mechanism we used was built from scratch to meet our needs, the goal of
ControlWare is to build resource controls, based on feedback control theory, in a
systematic manner. Adaptive control theory for QoS-aware computing has also been
explored.12

Relation to Océano: The control system relates to work done on the Océano project,13,14
in that they are solving similar problems from different directions. Where Océano
focuses on monitoring dedicated machines, and switching machines from one service to
another, our focus was on monitoring and adjusting a diverse set of applications that
share processors, and this presented a different set of challenges.

First, since we don’t attempt to install and remove software (though we do move
configuration information and transient data required to handle a particular workload), all
software must be installed and operational on all servers in the farm, so that any server
may be moved quickly to another pool without manual intervention. Joining this with
Océano could mitigate this situation and add flexibility to both systems.

Second, because Océano entirely replaces all data on a server when it moves that server,
there are no inter-enterprise privacy issues involved. We did have to deal with those
issues, as we shared computers between different customers, and such privacy questions
must be further addressed in continuing work in this area.

Third, the measurements used to monitor different services are different. While there are
common aspects of the system that we could and did monitor (CPU utilization in our
example; others include memory usage, paging, total disk I/O, and those sorts of system-
wide measurements), the best way to monitor any service is service-specific. We solved
that by designing pluggable monitoring modules, implemented through a monitor API.
The example here shows one service for simplicity, but in our work we used two services
(the second was an information subscription service15,16), and using this API we could
have separate monitors tracking the effective throughput of each service.

Conclusions
Our early research into building eUtilities showed that it is feasible to provide a common
service to multiple enterprise customers, to isolate customers by putting the privacy-
sensitive functions on the customer’s side of the system, and to monitor service levels
and system activity automatically, taking automated action to help ensure that agreements
are met. Both components described here fit into IBM’s Utility Management
Infrastructure17 in the subscriber management and enablement areas.

By allowing the customer to tie into its own existing employee directory, and to do user
registration from there, we keep the portion of the system most likely to expose privacy
and security concerns isolated and under the customer’s own control. In addition, the
customer has a convenient, efficient way to register users for the eUtility service, a way
that allows traversal of the organizational structure and eliminates much of the error-

 15

 16

prone re-entry of information that’s been common with registration for new services.
Because we built the registration tool with plug-in modules, it’s easy to add registration
modules for several services, allowing a common interface for registration to a number of
services that might be offered.

The monitor and control system we describe gives the eUtility administration an easy
way to see what’s happening with the services from a number of levels: overall in the
server “farm”, for each set of customers in server “pools”, or for each individual service.
The plug-ins here must, to be most effective, be tailored for the specific service provided
(“throughput” measurements vary by service, for instance), but for any service we can
measure CPU usage and other performance-related items (such as memory usage and
paging) and provide notification or take action accordingly. This automated monitoring
and control is important for providing a service that supports many customers, with a
variety of needs and service contracts.

Tools similar to these, together with those that fill needs in the other areas of the Utility
Management Infrastructure, will form the backbone of the developing “on demand”
technology.

Acknowledgements
Much of the design of the monitoring and control system and the implementation of most
of the components that were not specific to the notification service were due to our
colleague Mike Spreitzer. Mike continues to work on performance management issues
for large-scale services.18

Cited references

1. J. von Kanel, J. S. Givler, B. Leiba, W. Segmuller, “Internet Messaging

Frameworks”, IBM Systems Journal, Vol. 37, No. 1, 1998.

2. V. Bazinette, N. Cohen, M. Ebling, G. Hunt, A. Purakayastha, G. Sewart, L. Wong,

D. Yeh, “INS: an Intelligent Notification System”, IBM Research Report RC #22089,
2001.

3. “Service Creation: Mixing Up the Right Blend – Special Section”,

Telecommunications Magazine, Vol. 34, No. 1, January 2003.

4. A. Hiles, “E-Business Service Level Agreements”, Rothstein Associates Inc.,

Brookfield, Conn. 2002.

5. Internet Engineering Task Force, “Internet Message Access Protocol – Version

4rev1”, RFC 3501, Network Working Group, March 2003.

6. Internet Engineering Task Force, “Lightweight Directory Access Protocol”, RFC

1777, Network Working Group, March 1995.

 17

7. T. Howes, M. Smith, “LDAP Programming: Directory-Enabled Appplications with

Lightweight Directory Access Protocol”. McMillan Technical Publishing,
Indianapolis, Indiana, 1997.

8. G. Rokosek, L. Lewis, “Dynamic Service Provisioning: A User-Centric Approach”,

12th Int. Workshop on Distributed Systems: Operations and Management, October
2001.

9. D. Lewis, “A Review of Approaches to Developing Service Management Systems”,

Journal of Network and Systems Management, Vol. 8, No. 2, 2000.

10. G. Chen, Q. Kong, “Integrated Management Solution Architecture”, IEEE/IFIP

Network Management and Operations Symposium, Honolulu, Hawaii, July 2000.

11. R. Zhang, C. Lu, T. F. Abdelzaher, J. Stankovic, “ControlWare: A Middleware

Architecture for Feedback Control of Software Performance”, International
Conference on Distributed Computing Systems, 2002.

12. Y. Lu, T. Abdelzaher, C. Lu, G. Tao, “An Adaptive Control Framework for QoS

Guarantees and its Application to Differentiated Caching Services”, 10th International
Workshop on Quality of Service, 2002.

13. K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalanter, S. Krishnakumar, D.

P. Pazel, J. Pershing, and B. Rochwerger, “Océano: SLA based management of a
computing utility”, Proceedings of 2001 International Symposium on Integrated
Network Management, pp. 14-18, May 2001.

14. D. Pazel, T. Eilam, L. Fong, M. Kalantar, K. Appleby, G. Goldszmidt, “A dynamic

resource allocation and planning system for a cluster computing utility”, Proceedings
of International Symposium on Cluster Computing and the Grid, Berlin, Germany,
May 2002.

15. R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Sturman,

M. Ward, “Gryphon: An Information Flow Based Approach to Message Brokering”,
International Symposium on Software Reliability Engineering, 1998.

16. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, D. Sturman, “An

Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems”,
International Conference on Distributed Computing Systems, 1999.

17. J. Nash, “The U Word at Big Blue”, Newsweek, Vol. 140, No. 25, December 16,

2002.

18. R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, A. Youssef,

“Performance Management for Cluster Based Web Services”, International
Symposium on Integrated Network Management, March 2003.

	Resource Management and User Registration in an eUtility
	Authors
	Abstract
	Introduction
	Building the Service
	User Registration and Provisioning
	Enterprise Security & Privacy Implications
	Resource Monitoring
	An Operational Example
	Related Work
	Conclusions
	Acknowledgements

