
Internet Messaging
Frameworks

by J. von Kanel
J. S. Givler
B. Leiba
W. Segmuller

Electronic mail (e-mail) has become an important
tool for companies to use to conduct their
businesses. With the introduction of the World
Wide Web9 awareness of the existence of the
Internet has exponentially increased over the last
two years, and people are starting to realize that
there is more to the Internet than just the Web.
Companies are expanding their use of e-mail
from internal to external. But the large set of
proprietary, noninteroperable e-mail systems
make this more of a trip through a jungle than a
drive along the information highway. Most
approaches to overcome the connectivity
problems use gateways to convert between the
proprietary format and the Internet standards.
These conversions are lossy at best; hence, most
proprietary system vendors are revamping their
systems to base them on Internet standards.
This paper summarizes the current state of the
most important Internet standards related to
e-mail and the general state of proprietary e-mail
systems. It then introduces a set of technologies
we developed to solve the complex problem of
evolving from proprietary to Intemet-standards-
based e-mail systems. We have structured these
technologies into Internet Messaging
Frameworks.

C ompany electronic mail (e-mail), a mere nov-
elty a few years ago, is a mission-critical part

of the company infrastructure today. Proprietary
e-mail systems, like cc:Mail** or Lotus Notes**, have
evolved over time, and users appreciate their nice
user interfaces, rich functionality, security, receipt
notifications, and a multitude of other features. With
the World Wide Web giving easy access to a free-
flowing information exchange, more and more bus-
inesses want to move from the one-way Web to bi-

directional e-mail exchange with their customers and
suppliers. The first step invariably involves setting
up a gateway to connect the proprietary mail system
to the Internet-and then reality sets in. A lot of
things that used to work are not working any longer
or not working quite right. Not all mail gets deliv-
ered, return receipts are a gamble, some of the mail
coming from the Internet gets garbled into many
parts, and puzzling out what the sender intended is
difficult. So what will happen next?

Obviously, some standard way to hook everything
together is needed. The Open Systems Interconnec-
tion (ON) X.400 standard was believed to be such
a standard. However the design became overly com-
plex, and its implementations never interoperated
well. The Internet was built to hook together a vast
number of heterogeneous networks and was de-
signed for commonality and simplicity long before
X.400 was in place. Today the Internet is the world's
largest network, consisting of a set of interconnected
networks spanning the whole planet.

Due to the problems in connecting proprietary sys-
tems to the Internet via gateways satisfactorily, most
e-mail system vendors are abandoning their propri-
etary approaches and are migrating their systems to
become Internet-standards-based. This is done by
adapting their proprietary mail model to the Inter-

"Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

4 VON ~ N E L ET AL. 0018-8670/98/$5.00 B 1998 IBM lBM SYSTEMS JOURNAL. VOL 37, NO 1, 1998

Figure 1 Internet message transport overview

net mail model and by eliminating the need for gate-
ways. Often this cannot be achieved in a single re-
lease, but has to be staged over several releases to
achieve a more or less smooth migration for their
customers.

The body of this paper has two distinct parts. The
first part gives an overview of the most important
e-mail standards of the Internet and the general tech-
nological state of proprietary e-mail systems, pro-
viding a frame of reference for the second part. The
second part of the paper introduces a set of tech-
nologies that we have developed to help build new
Internet e-mail clients and servers, as well as to al-
low existing, proprietary clients and servers to be eas-
ily adapted for Internet standards compliance. In our
conclusions we outline how these technologies have
been used to build the Lotus Java**-based eSuite
Workplace** e-mail client and to migrate cc:Mail
clients to become Lotus Mail clients.

The Internet and electronic mail

The Internet has been designed and built to connect
a large number of heterogeneous systems in an in-

teroperable way. The basic infrastructure of Inter-
net e-mail can be described as a set of synergistic
standards describing message transport, message for-
mats, message access, security, and directory services.
The Internet Engineering Task Force (IETF) pub-
lishes specifications of Internet-standard protocols
and formats, which are agreed upon by the IETF par-
ticipants. These standards, called “RFCs” (requests
for comments), allow systems produced by different
designers to cooperate with each other and exchange
information, including e-mail (see Figure 1).

The message transport model describes how a mes-
sage travels from the originator to the recipient. In
general, a program used to display and create mes-
sages is called a useragent (UA). The originating user
agent submits the message to the mail transfer agent
(MTA). Depending upon where the recipient user
agent is in the network topology, the message might
be relayed one or more times. Once the message
reaches the destination MTA it is delivered into the
message store. The recipient user agent can then ac-
cess the message for display and further user actions.
In the Internet the Simple Mail Transfer Protocol
(SMTP) is used for the submission and relay of mes-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 VON G N E L ET AL. 5

Figure 2 RFC822 message

Figure 3 MIME message

sages. Usually simple file 110 is used to deliver the
messages into the message store. Either POP3 or
I M A P ~ is used to access these message stores.

The original message format used on the Internet is
the basic RFC822 message format. It is structured sim-
ilarly to a memo in the physical world, consisting of
a header and a body. (See Figure 2.) The message
header describes the sender, the recipient, the sub-
ject, the date, and other such items. The body of the
message has no defined structure; it is just text. Both
header and body can contain only 7-bit US-ASCII

6 VON KANEL ET AL.

(United States-American National Standard Code
for Information Interchange) data. The 7-bit
US-ASCII restriction results in limitations in other
countries, where the character set cannot be de-
scribed in us-ASCII.

The MIME format (Figure 3) is an extension to RFC822,
used to bring structure to the body and to allow for
the transport of complex, multipart messages con-
taining text, images, audio, video, and other binary
attachments. It also removes the character-set lim-
itations, allowing character sets other than US-ASCII,
including the multibyte character sets needed to rep-
resent some Asian languages.

MIME adds a few new fields, such as the MIME-version
field, to the header to distinguish the MIME messages
from plain RFC822 messages. The content-type field
describes the data type of the body. Seven basic MIME
types have been defined: text, image, audio, video,
application, message, and multipart. Each type has
several subtypes defined: text/plain and text/html are
two examples of text subtypes. MIME also introduces
“transfer encodings” to allow binary data to travel
as part of a message after being encoded into ASCII
characters in a standard way. MIME introduces def-
initions to allow character sets other than US-ASCII
to be encoded as part of the header text fields or the
body.

The MIME message model is a “recursive parts” mod-
el: the body is a part, and each part can contain other
parts. This recursiveness is very powerful since some
parts can influence the representation of their sub-
parts. For example a multipart/mixed part contains
a series of, not necessarily related, subparts, with the
intent that all subparts be presented to the user. In
contrast, a multipart/alternative part contains a se-
ries of semantically equivalent subparts (for exam-
ple, an image and a textual description of the im-
age), only one of which should be displayed by the
user agent. This multipart/alternative form is quite
commonly used by browsers to include a plain text
and an HTML (HyperText Markup Language) ver-
sion of the message.

Once messages have been delivered into the mail-
box of the recipient’s message store, the recipient
needs message access methods to retrieve and work
with the messages. Currently there are two standard
ways to access message stores.

pop3 is the simple Post Office Protocol (version 3).
It treats the message store as a single in-box. The

IBM SYSTEMS JOURNAL, VOL 37, NO 1 , 1998

user agent can retrieve and delete messages from
this in-box. Once messages are retrieved and deleted
from the POP3 server, it is the user agent’s respon-
sibility, if necessary, to retain messages in some lo-
cal message store. While a POP3 client can leave mail
on the server (by not deleting it), the POP3 protocol
lacks mechanisms to categorize, file, or search the
mail, so the POP3 server message store can quickly
become unmanageable. Also, most large-scale POP3
servers enforce a storage limit, refusing to accept new
mail for a user whose limit has been exceeded. Thus,
the POP3 model strongly encourages the complete
transfer of mail to the client, where a well-designed
client can provide many more capabilities to the user.
This has the advantage that the communication with
the server is simple, but it has the disadvantage that
the user cannot conveniently use more than one com-
puter to read mail: the mail remains on whichever
computer the user reads it.

I M A P ~ , the Internet Mail Access Protocol (version
4), is a newer access protocol that defines a much
richer message store, allowing mail to be stored in
multiple mailboxes. A rich set of message and mail-
box manipulation functions exist. While a POP3 mes-
sage can be handled only as a single block, IMAP4
allows access to individual MIME parts. Provisions
exist to allow message stores to be replicated to a
local store (and resynchronized later) for the mo-
bile user. The IMAP4 model, in contrast to the POP3
model, involves storing mail on the server, where it
may be accessed by any client, and using the client’s
storage only for caching messages for efficiency or
for traveling.

POP3 is currently widely deployed by Internet Ser-
vice Providers (ISPS) for access to users’ mail. Be-
cause of its simplicity, it will probably remain the ma-
jor access protocol for the casual mail user for quite
some time. IMAP4 is not yet widely deployed, but due
to its functionality, which is more suited to the trav-
eling business user, it will increase its deployment
throughout the business community over the next
few years.

The set of standards described so far allows messages
to be transmitted through the Internet, but only “in
the clear.” There is no inherent message security built
into them. In fact, it is relatively simple to send mes-
sages that appear to come from someone else. To
conduct business on the Internet, features such as
authentication and encryption are needed to make
message transmission secure. Authentication allows
messages to be signed, so the recipient can confirm

that the sender is the person claimed. Encryption al-
lows data to be sent in such a fashion that only a re-
cipient with a key can decrypt the data.

The security schema most widely used today on the
Internet is PCP (pretty good privacy). It relies on a
“web of trust” for the publication of keys. This web-
of-trust model is one of PGP‘s major strengths in the
self-governing Internet society. However, it is not
well accepted in the business community, which
would like a hierarchical trust model, with signing
authorities to guarantee keys. SIMIME is currently un-
der discussion by the IETF as an alternative security
mechanism for e-mail.

While directory sewices have their own niche in the
set of Internet standards, they are central to many
applications. For e-mail they are needed to access
user information, such as a given user’s e-mail ad-
dress. LDAP, the Lightweight Directory Access Pro-
tocol, is the standard describing how to access di-
rectory data. Directory services will play an even
greater role for storing and accessing public keys to
enable secure messaging. While users can remem-
ber a large number of e-mail addresses or even keep
track of them in personal address books, the same
cannot be said for keys, which are lengthy, seemingly
random character strings.

The state of proprietary e-mail systems. Most pro-
prietary systems have been developed for a homo-
geneous group of users on a single network. They
typically have a large set of features allowing the cre-
ation and manipulation of compound documents.
Their delivery systems often support guaranteed de-
liveries and receipt notifications. Additional inte-
grated functions for calendars and schedules are not
uncommon. On the other hand, they often do not
scale well to large user communities, because they
were developed for a small, homogeneous domain.
They cannot exchange mail with other systems ex-
cept through specially designed gateways, which lose
information in the process of converting between
mail formats.

The mail format in proprietary systems is often the
“cover letter and attachments” model from the phys-
ical world of mail. There is typically a special text
part called “the message” and a set of attachments.
Often the number of possible attachments is very lim-
ited-it can be as few as one, or perhaps as many
as twenty. To integrate these mail systems with the
Internet, the gateways have to perform a conversion
between the Internet format and the proprietary for-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 VON KANEL ET AL. 7

8 VON KANEL ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

mat. Their biggest problem in this area is in handling
the recursive parts described earlier. It has become
increasingly common for an incoming message from
the Internet to have recursive parts, either because
the sender’s user agent provided alternatives (HTML
and plain text, generally) or because the message
contains an embedded message complete with its
own parts (a forwarded message, for example). This
recursive relationship between the parts is usually
lost in the gateway: often the parts will just be con-
verted into a linear set of attachments and the user
has to guess how they fit together. It is also possible
that there is no text part in an Internet message-
perhaps just an image or a sound clip. This will typ-
ically generate an empty message with some attach-
ments, and the empty message may be confusing to
the recipient.

Large companies often have several different such
e-mail systems. Management, administration, and in-
teroperability is difficult and expensive. As e-mail be-
comes critical to the business, such companies need
to install a plethora of gateways to connect all these
systems together. Often the only feasible solution is
to create an SMTP-based “backbone” into which all
proprietary systems connect via gateways. The re-
sults can be very frustrating, due to the loss of in-
formation in the gateways.

Smaller companies usually have just one proprietary
e-mail system, and they may be happy with it for some
time. But once they find it necessary to communi-
cate with the Internet, they must decide how to do
it. It is then a question of whether they should in-
stall a gateway to the Internet, or switch over to an
Internet solution completely.

For builders of proprietary e-mail systems, there are
many questions and problems. To survive, they must
either build gateways between the Internet and their
system (short-term solution), or redesign their sys-
tems to use Internet standards natively (long-term
solution). More likely, they will have to do both: build
gateways to retain their current customers and pro-
vide for migration to their Internet native solution
later.

The first difficulty is the format problem just de-
scribed. More often than not, builders must com-
pletely redesign their graphical user interfaces (to
be able to display and create complex messages in
the recursive Internet style) and their storage mech-
anism (to store MIME data rather than “cover-letter-
and-attachment mail”).

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

The IETF publishes protocols, not APls, as standards.
In some cases APIS for reference implementations are
published, but the APIs are neverThe standard.”

VON GNEL ET AL. 9

Figure 4 Frameworks overview
~ .~

Another significant problem is in the area of APIs.
Many proprietary mail systems claimed to be open,
where “open” was defined as having a published API.
However, this is not what the Internet community
considers open. An API usually just provides access
to a “black-box” implementation of a proprietary
protocol, and so one cannot really write another in-
teroperable client or server: the black box must be
reverse-engineered to make it truly work. This is of-
ten true for the vendors themselves, because the pro-
tocol has never been documented (other than in the
source code behind the API implementation). They
now have to change system architecture to base it
on the Internet standards protocols. The APIS them-
selves become less useful than they seemed at first.

Internet Messaging Frameworks

The job of architecting, designing, and implement-
ing e-mail clients and servers based on Internet stan-
dards is by no means trivial. The main focus of our
research has been to find ways to simplify the work
of the implementers of clients and servers for such
systems. This was achieved by creating the Internet
Messaging Frameworks, which encapsulate a nec-
essary and sufficient set of objects to express an ab-

stract notion of Internet e-mail and its associated pro-
tocols.

We have identified a set of high-level abstractions,
which are used to implement both clients and serv-
ers. The architectural overview can be seen in Fig-
ure 4.

The messaging objects are the fundamental frame-
work. They abstract the notions of message, message
parts, folders, and e-mail recipients. The classes for
messaging objects must be subclassed for any par-
ticular message store implementation. A default im-
plementation of a memory message store, required
for a program to work with messaging objects, is pro-
vided as part of the base framework implementation.

The MIME engzne is a generic parsedgenerator frame-
work. It efficiently parses a MIME stream into any ob-
ject model. The messaging objects create specializa-
tions of the MIME engine to convert between the
MIME stream and the messaging objects.

Protocol objects are different for clients and servers.
On the client side they issue requests to the server
on behalf of the messaging objects. On the server

10 VON KANEL ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 5 Classes for messaging objects
~~~ ~ 

they execute the request from the client on the mes- 
saging objects. 

The extent to which  we  have been able to  separate 
out components into related but independent parts 
goes far beyond  typical approaches, which merge all 
the MIME support in with the message and message- 
part implementation of their mail model. Our ap- 
proach of separating the work into the distinct  pieces 
of protocol, internal representation  (the messaging 
objects), MIME parsing and generating, and backend 
storage gives the implementer enormous flexibility. 
Since the protocol component is isolated, a client or 
server implemented with  this framework can  easily 
be made to  operate with  many different protocols 
(both  standard and proprietary) by providing alter- 
native protocol implementations. Similarly, the iso- 
lation of the message store backend makes it  easy 
to implement multiple backends, allowing the same 
server to store mail  in  many different databases and 
file  systems. By isolating the MIME engine, we have 
a single, robust component, where all  MIME-related 
operations  are encapsulated, and that is  very  easy to 
maintain, debug, extend, and enhance. 

In the next  few sections, the components of the  In- 
ternet Messaging Frameworks and their uses in  im- 

plementing clients  and  servers are described  in  much 
finer detail. 

Messaging objects. The messaging objects (Figure 
5 )  are  the core of the framework, used by both cli- 
ents and servers to model MIME messages and IMAP4 
folders. The base framework contains a memory  im- 
plementation used by programs to manipulate these 
objects. For  permanent storage, the message-store 
interfaces of the framework must be specialized for 
any particular physical  message store.  For example, 
to  store mail  in  cc:Mail’s DB8 format,  a DB8 inter- 
face must be implemented. 

There  are messaging objects to  represent folders, 
messages,  message parts, and e-mail addresses. A 
folder, also called a mailbox,  is a collection of mes- 
sages and (other) folders. Each message is uniquely 
identified in the folder. The Folder class  is an ab- 
stract class,  providing an interface for creating, de- 
leting, retrieving, and searching entries in a folder. 
The Message class is used for objects that represent 
messages  in the folder. 

The Header class  is an abstract class. It provides an 
interface to set and query the unstructured and op- 
tional fields of a message or message-part header. 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 VON U N E L  ET AL. 11 



A messagepart consists of a  header and a body. The 
header contains information describing the contents 
of the body. The body  may be a  stream of data,  a 
container of nested parts, or  an embedded message. 
There  are four distinct categories of methods for a 
message-part object. The first and most important 
group consists of the header methods, which,  among 
other things, allow the setting and querying of the 
content type. The remaining three categories of 
methods are for each of the different content types 
of the body. 

The Messagepart class  is  used for objects that repre- 
sent a message  part. The header  portion is  derived  from 
the Header class,  augmented  with  additional  methods 
to support the content-type  and  content-disposition 
header fields. For the body  portion, three different  cat- 
egories of  types are supported: atomic parts (text/*, 
image/*, etc.), recursive parts (multipart/*), and em- 
bedded messages  (message/rfc822). For atomic parts 
there  are accessor methods to  the  data stream. For 
recursive parts  the methods allow the creation, enu- 
meration, and manipulation of nested parts. For em- 
bedded messages there  are methods to set and get 
the embedded message,  which  is represented by a 
note object. 

The Address class  is  used for objects that represent 
a recipient or  a list of recipients. An address object 
stores  the display name, e-mail address, and com- 
ment, alongwith other information, such as whether 
the message  must be sent to this address or whether 
the message has already been sent to this address. 
When an address object is a list of recipients, the 
object stores an  ordered list of address objects. If it 
is a group, then  a group name is stored, as  well as 
an indication of whether the list should be expanded 
or just the group name included when the message 
is sent. 

A message is represented as a message part. This is 
an important aspect of implementing recursive parts: 
since a message part may  itself be  a complete mes- 
sage (MIME type message/rfc822), by representing 
all  messages  as  message parts we ensure that the mes- 
saging objects will behave properly for embedded 
messages,  with no extra work required.  Our Mes- 
sage  class  is a subclass of the Messagepart class and 
extends its interface with methods that deal with 
properties of the message (such as the list of recip- 
ients). 

The MIME engine. The MIME engine is a generic 
module that simplifies the handling of  MIME-encoded 

12 VON KANEL ET AL. 

data.  It presently encapsulates most of the IETF 
e-mail  specifications found in RFCs 822 (e-mail), 1468 
(IS0-2022-JP), 1641 (Unicode), 1642 (UTF-7), 1806 
(Content-Disposition), 2044  (UTF-8),  2045-2049 
(MIME),  a bit of RFC 1138  (X.400), and  a draft pro- 
posal for acknowledgments (receipts). Other emerg- 
ing IETF specifications are being tracked, covering 
issues  such  as  acknowledgments,  encryption, authen- 
tication, and internationalization of character sets. 
Our MIME engine is designed in such a way that it 
does not enforce any particular mail-model imple- 
mentation. The messaging objects introduced in the 
previous section are  one example of a possible  mail 
model. 

Within IBM, there  are applications that make use of 
this parser technology but do not use the messaging 
objects; instead they  specialize the parser framework 
to fit into their own model. This approach, of com- 
pletely separating the MIME engine from the rest of 
the system, is in contrast to  the usual implementa- 
tion that incorporates the knowledge of MIME and 
related message-format standards throughout. With 
this unique separation it is easier  and  less error-prone 
to add support for new and emerging standards (such 
as the receipts proposal described earlier). 

The MIME engine consists of two major pieces: the 
parser (for inbound  messages)  and the generator (for 
outbound messages). The MIME parser and gener- 
ator  are usually compiled and linked into  a single 
module. The engine is thread-safe and does not  re- 
quire multiple threads for its own implementation. 
The engine’s storage requirements are proportional 
to  the complexity of the message and not to  the size 
of the message’s  body or attachments. 

The parser and generator interfaces contain a few 
classes that  are subclassed by the client. These in- 
terfaces are used to pass both information and pro- 
gram control back and forth between the engine and 
various functions in the client. 

TheMIMEparser. It is the responsibility of the parser 
to take an incoming MIME message,  dissect  it into 
its component parts, and inform the client program 
of all  nontrivial components. The parser handles line 
unfolding, transfer decoding, and (optionally) char- 
acter-set conversions of text parts. 

The design  philosophy behind the parser is to cor- 
rect as many errors as  possible when parsing mes- 
sages,  since there  are  a number of “almost-legal” 
MIME messages floating around  the  Internet. This 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 



error  correction makes it impossible to use  table- 
driven  parsing  approaches via lex and yacc, meth- 
ods  commonly used in other MIME parsers.  We have 
found, however, that  there is an  elegant object-ori- 
ented  approach  to this  problem,  and we have encap- 
sulated  that  approach in our MIME parsing  engine. 

The client provides the  parser with an input-stream 
object, which contains  the incoming  message,  and 
one  or  more  output-stream objects, into which the 
parser will place  the body of the message  and its at- 
tachments.  Additionally,  optional  hooks are avail- 
able  for  the  parser  to  report  to  the client the values 
of the MIME header fields (for  example,  “To:” or 
“Subject:”) in the various  parts of the message. 

Creating  an  object  representation of the incoming 
note is the responsibility of the client. One of the 
parser’s more  important design points is that it  must 
not  make  a copy of any arbitrarily large message frag- 
ment (such as  an  entire GIF [Graphics  Interchange 
Format] image),  and  instead use a bounded  amount 
of storage (by processing that GIF image  a buffer at 
a  time).  This necessarily precludes the  alternative 
design point of building an in-memory  object  struc- 
ture holding the  entire message and  then  returning 
that object  structure to  the client. The parser’s de- 
sign takes the client on a guided “tree walk,” as  parser 
and client traverse the message’s abstract syntax tree 
together.  This design allows the  client to efficiently 
map  from  the MIME grammar to the client’s own mes- 
sage-store  structure,  without  making  intermediate 
copies.  This design choice  also implies that  the 
parser, while thread-safe, will itself be  single-thread- 
ed;  the  parser  maps  from a  linear  input  stream to 
a  linear  output call sequence. 

The MIME generator. It is the responsibility of the 
generator  to build and  format  an outgoing MIME 
message, given some  header  information  and  zero 
or  more  body/attachment  streams.  The  generator 
handles  such  things  as  formatting all of the 
keyword/value pairs,  folding any excessively long 
lines, transfer encoding all data,  and (optionally) con- 
verting any text parts  from  the local code  page to 
the most  similar Internet  character set. 

The client  provides the  generator with an  output 
stream  object, which will eventually hold the  outgo- 
ing message, and  zero or  more  input  stream objects, 
from which the  generator will read  the body of the 
message and its attachments.  Additional  “hooks” are 
required  for  the  generator  to  obtain  from  the client 
the values of the MIME header fields (such  as  “To:” 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 

1 MIME Message structure MIME parser calls 

VON KANEL ET AL. 13 



or “Subject:”) in the various parts of the message, 
and other hooks obtain the recursive structure of the 
note. 

In general, the generator’s API is the inverse of the 
parser’s API. Where  the parser offers to  the client all 
information that was gleaned from the input stream, 
the  generator polls the client for the corresponding 
information, which  it then formats and writes to  the 
output stream object. Where  the parser takes the cli- 
ent on a  tree walk  over the  structure of the incom- 
ing note,  the client guides the  generator over the 
structure of the outgoing note. 

Client  considerations. To build new Internet clients 
or  to enable legacy  clients, the messaging  objects  and 
the MIME engine are coupled with client-side pro- 
tocol objects. (See Figure 6.) For legacy clients that 
use a proprietary API (Microsoft’s MAPI [Messaging 
API], VIM [Vendor Independent Messaging], and 
X/Open** API are examples of such proprietary 
APIS),  the framework must be specialized to map be- 
tween the object-oriented paradigm and function- 
ality of the framework and  the procedural paradigm 
and (usually  less  flexible) functionality of the  API. 
These API-mapping  subclasses of the framework  typ- 
ically operate at a loss of information, especially 
structural information, since the  Internet e-mail 
model is structurally much richer than  that of most 
proprietary systems. 

The protocol objects can be put  into two distinct 
functionality classes: one for accessing a message 
store  or mail server, the  other for submitting mes- 
sages to  a mail transfer agent (MTA). The messaging 
objects are used by the protocol objects to manip- 
ulate and store  a message. The MIME engine is used 
by the protocol objects to convert between a MIME 
stream and the messaging objects as needed. 

The interface for accessing a message store is de- 
fined by the Protocol class. This interface allows the 
retrieval of messages, either as a whole (POP3) or in 
parts (IMAP4), and provides folder (mailbox) oper- 
ations. There  are two implementations of this inter- 
face; one for the POP3 protocol, the  other for the 
IMAP4 protocol. 

The ProtocolSend class  defines the interface for sub- 
mitting a message to  an MTA. This interface allows 
a connection to be established with the mail trans- 
fer agent and  one  or more messages to be submitted 
on the connection. There is an implementation of 

14 VON KANEL ET AL. 

this interface for SMTP with extensions (ESMTP) 
where appropriate for clients. 

To allow MI-based legacy clients access to  the  In- 
ternet,  one can  build a framework specialization that 
maps the API to  the framework objects. This is done 
by mapping the API calls to  the  appropriate messag- 
ing objects and protocol-engine methods. We  have 
built such a framework specialization for MAPI, Mi- 
crosoft’s  messaging  subsystem in Windows 95**. 

Due to mail-model restrictions in the APIs, partic- 
ular restrictions may have to be enforced on the mes- 
sage store. If so, classes for the messaging objects 
must  be  subclassed for that particular message store. 
This was the case for MAPI, which has a mail model 
that is incompatible with the  Internet mail model. 
New clients, or clients intending to become native 
Internet e-mail clients, will  typically  use the frame- 
works directly, rather  than going through the usu- 
ally  lossy API layer. This allows the clients complete 
access to all information in the messaging and pro- 
tocol objects. 

Server considerations. As with client implementa- 
tions, server implementations will have different is- 
sues depending upon whether they interface with 
new or existing  message stores. (See Figure 7.) In 
either case, classes for the messaging objects must 
be  subclassed to implement the access methods for 
the specific storage system (the file  system or  a da- 
tabase, usually).  Existing  message stores often 
present problems with data storage. Messages may 
be stored in a manner that makes it  difficult or im- 
possible to store some information required by the 
standard protocol. The message store may make re- 
trieval of certain information more expensive than 
expected. The implementer may have to be  very 
clever  in order  to get around some of the limitations 
imposed. The framework makes this job much eas- 
ier than it would otherwise be; by centralizing these 
concerns in the message store classes, the imple- 
menter has a clean, canonical interface, common to 
all protocols, and need do the mapping only once. 

We  have implemented IMAP4 and POP3 servers on 
top of an existing proprietary mail server, based on 
earlier work, as a research project to validate the vi- 
ability of the server frameworks. That implementa- 
tion  ran into many  of the kinds of problems  described 
above. In some cases a single protocol was  used to 
transfer information between the proprietary client 
and the server and to transfer the same information 
from the server’s  memory to the message store. We 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 



i j  
found,  therefore,  that we were  not  able to  change  plement it quickly because of the flexibilityprovided 
the way that information was stored because the by the framework,  and  once the backend  trade-offs 
change  would  break the  proprietary  clients. In or-  were  made for IMAP, the POP implementation was 
der  to  support both IMAP4 clients  and  proprietary  a trivial extension. 
clients on  the  same server, we had to make choices 
and trade-offs, and we had  to sacrifice efficiency in Server implementations also involve two components 
some  operations.  Nevertheless, we were  able to im- not  considered on the client side:  administration  and 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 VON GNEL ET AL. 15 



dispatching. In addition to mail handling, a server 
must authenticate users and allow administrators to 
do various things with the system. The protocols do 
not always provide the mechanism for server admin- 
istration, so much of this is left to  the implementa- 
tion. For instance, an IMAP4 server administrator 
must be able to define users and  create default mail- 
boxes for those users, and this is completely outside 
the protocol (and  the framework). Once the users 
are defined and a user tries to log on, the framework 
must  allow the implementation to  authenticate  the 
user. This is done through the framework’s admin- 
istration component, which the implementation spe- 
cializes to access the user-identification database cre- 
ated during the user-definition stage. For  the IMAP4 
protocol, the administration component also han- 
dles mailbox subscription operations. 

A server is  used by many users at once, and  the con- 
nections from these users to  the server require some 
management. With the POP3 protocol each user may 
have  exactly one connection to  the server at  a time, 
and these are short-lived connections. (With POP3, 
one typically connects, logs in, downloads and de- 
letes mail,  logs out, and disconnects.)  But  with IMAP4, 
one client may  have  many server connections and 
these connections may persist for a long time. A cli- 
ent  that allows a user to view several mailboxes at 
once, for instance, will  have one connection per mail- 
box, and these connections may remain open and 
active for days at a time. The framework provides 
a dispatcher component to handle the management 
of these connections. Rather  than dedicating one 
thread  to each port,  the dispatcher will listen for ac- 
tivity on a set of ports. The implementation sub- 
classes the dispatcher’s abstract class to handle data 
coming  in on a  port.  The  standard implementation 
will  assign a “worker” thread from a pool of such 
threads,  and will queue  the request if there  are no 
available threads in the work pool. 

The dispatcher component feeds information from 
the clients into  the protocol component, which an- 
alyzes the request. In IMAP4 and POP3, each trans- 
mission from the client begins  with a command. The 
protocol component looks at  the command, turns 
the request into  one or more calls into  the admin- 
istration component or  into  the messaging objects 
(or rejects the request directly, as  with an improp- 
erly formed command), and passes the work on to 
those components, which ultimately return  data  to 
the protocol component (from memory, from the 
message store,  or from the administration process). 
The protocol component then packages that infor- 

16 VON KANEL ET AL. 

mation, as defined by the protocol, and sends it  back 
to  the client. 

Making the dispatcher a  separate, distinct compo- 
nent was an innovation that evolved  over time. Ini- 
tial  versions of the server framework portions had 
dispatching as an internal core function. This ap- 
proach, while conventional, was not at all  useful in 
helping to convert existing servers to IMAP or POP, 
since the existing servers already had their own dis- 
patch mechanisms. A novel approach was needed, 
where the dispatcher is  almost external to  the frame- 
work and can be specialized to  take advantage of the 
existing dispatching system  in a given server. 

Conclusions 

The Internet Messaging  Frameworks are  the distilled 
results of six years’ experience in building elegant, 
reusable, and highly  efficient Internet e-mail tech- 
nology components. These frameworks, especially 
the MIME engine, incorporate not only the strict stan- 
dards as defined in the RFCS, but also a fair amount 
of error-correcting behavior to cope with the real- 
ities of ill-behaved mail agents on the  Internet. 

The early implementation of IMAP4 clients and serv- 
ers as research projects has led to  a  better  under- 
standing of the problems associated with incorpo- 
rating this complex protocol into IBM’s e-mail 
products. By learning “where the rocks are,” we are 
able to guide the product development groups, shar- 
ing our knowledge and sharing our experiences, to 
produce better, more reliable product-level clients 
and servers. 

All of the  Internet Messaging Frameworks for cli- 
ents were used to build the “Lotus Mail 4.5” mail 
client. This is a special version of cc:Mail’s 
MAPI-based R8 client, which operates as a  standard 
Internet POP3 client with  all the power of cc:Mail’s 
feature set. 

The Java version of this framework is being used to 
build the mail components of Lotus’s Java-based 
eSuite component architecture. (For more infor- 
mation regarding eSuite Workplace see http: 
//www.esuite.lotus.com.) 

Since the  intent for the  Internet Messaging Frame- 
works  is modularity, other groups have used them 
selectively-just the MIME parser, to boost their 
MIME parsing capabilities, for example-to write 
SMTP gateways and POP3 and IMAP4 servers. These 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 



Any POP3 or IMAP4 client will 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 VON KANEL ET  AL. 17 



decisions  were  often  based on  the success of our 
MIME engine  in  handling all the MIME test  cases in 
the  Mailconnect 1 interoperability  test  event  orga- 
nized by the  Internet Mail Consortium, including the 
particularly difficult job of splitting and reassembling 
partial messages. 

Other subsets of the frameworks are  under consid- 
eration by many  groups  for  use in converting  pro- 
prietary  mail systems to Internet-standards-based 
ones.  The messaging objects, especially, are of in- 
terest  as  a  good  foundation  for  native  Internet-mail 
object  handling. 

At this  point  the  Internet e-mail  community is very 
active in driving the  standardization of many miss- 
ing features:  authentication,  encryption,  receipts, di- 
rectory access, and  others.  We  are  participating in 
the  standards  development  and  are tracking and in- 
tegrating  these  emerging  technologies into  the 
frameworks as  part of our ongoing  research  and  par- 
ticipation in these  areas. 

**Trademark  or registered trademark  ofcc:Mail, Inc., Lotus De- 
velopment Corporation, Sun Microsystems, Inc., Xiopen Co., 
Ltd., or Microsoft Corporation. 

Bibliography 

Internet messaging is rapidly changing. Printed  information, if 
available, is usually outdated. As with all Internet standards in- 
formation,  the only up-to-date  sources are available on the In- 
ternet itself. Following is a list of Web sites that are major in- 
formation  sources  for topics related to  Internet e-mail standards. 
All requests for comments (RFCs)  and drafts are published by 
the  IETF. Access to  these can be found from the main IETF site 
http://www.ietf.org/. 
The  Internet Mail Consortium (IMC) maintains a thematically 
ordered list  of e-mail-related RFCs  and drafts at their site-http: 
//www.imc.org/. This is the best site to  start with for Internet e- 
mail-related information. 
For information about  IMAP  a good starting  point is: http: 
//www.imap.org/. 
Information  about Microsoft’s  Messaging API  (MAPI) can be 
found at http://www.microsoft.com/ win32devimapii. 
The X.400 specification was published by the  CCITT  (Comite 
Consultatif International Telegraphique et Telephonique) in 1992 
in Data Communication Networks:  Message  Handling  System  X.400. 
Information  about  the X.400 publications can be found at the 
International Telecommunication Union (ITU) Web  site http: 
//www.itu.ch/. 
For information about  S/MIME  a good starting point is: http: 
//www.rsa.com/smime/. 
For information about  PGP good  starting  points are: http: 
//www.pgp.com/ and http://bs.mit.edu:8001/-jis/pgp.html. 

Accepted for publication September 5, 1997. 

18 VON KANEL ET AL. 

Jurg  von Kanel IBM Research  Division, Thomas J. Watson Re- 
search  Center, P.O. Box 704, Yorktown Heights, New York  10598 
(electronic mail:jvk@watson.ibm.com). Dr. Von Kanel is the man- 
ager of the Multimedia Messaging group, which he helped  found 
in 1991, at the Watson Research  Center.  Before  that, he worked 
in the IBM Zurich Research  Laboratory,  where he worked on 
graphical user interfaces for  an X.400 e-mail system, as well as 
a graphical editor  for protocol flow-diagram specifications. He 
holds a master’s degree in mathematics and a  Ph.D.  degree in 
computer science from the Swiss Federal  Institute of Technol- 
ogy in Zurich (ETHZ). 

John S. Givler IBM  Research  Division, Thomas J. Watson Re- 
search  Center, P.O. Box  704, Yorktown Heights,  New York 10598 
(electronic  mail:  givler@watson.ibm.com). Dr. Givler has worked 
in the Multimedia Messaging group at the Watson Research  Cen- 
ter since 1994 and is the chief architect for the Internet Messag- 
ing Frameworks MIME engine. Previously he worked on the for- 
mal semantics of programs and  the theory of term rewriting 
systems. He holds a bachelor’s degree in mathematics from the 
University of Illinois, Urbana-Champaign, and a  Ph.D. in com- 
puter science from the State University of  New York at Stony 
Brook. 

Barry  Leiba IBM  Research  Division, Thomas J. Watson Research 
Center, P.O. Box  704, Yorktown Heights,  New  York  10598 (elec- 
tronic  mail: leiba@watson.ibm.com). Mr. Leiba has worked in the 
Multimedia Messaging group  at  the Watson Research Center 
since 1991 as the chief architect  for the e-mail server work. He 
has worked on  the VM/ESA@ (Virtual  Machine/Enterprise Sys- 
tems Architecture), VM/XATM (Extended  Architecture), and 
VMi370 operating systems since joining IBM in 1977. Mr. Leiba 
holds a B.S. degree in mathematics  from the University of Flor- 
ida and  a  master of science degree in computer science from 
George Washington University, Washington, DC. 

Wolfgang  Segmuller IBM  ResearchDivision, ThomasJ. Watson 
Research  Center, P.O. Box  704, Yorktown Heights,  New  York  10598 
(electronic mail: werewolf@watson.ibm.com). Mr. Segmuller has 
worked in the Multimedia Messaging group  at  the Watson Re- 
search  Center since 1994. He is currently the chief architect  for 
the e-mail client work. Since joining IBM in 1981, he has worked 
on  mainframe system management  and network management. 
He holds a B.S. degree in computer science and chemistry from 
Rensselaer Polytechnic Institute, Troy, New York. 

Reprint Order No. G321-5660. 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 


