

www.computer.org/internet computing

OAuth Web Authorization Protocol
Barry Leiba

Vol. 16, No. 1

January/February, 2012

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

© 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

Standards
Editor: Barry Leiba

74 Published by the IEEE Computer Society 1089-7801/12/$31.00 © 2012 IEEE IEEE INTERNET COMPUTING

O ver the previous two magazine issues, this
department has looked at identity man-
agement. In the September/October issue,

ISOC’s Lucy Lynch gave an overview of the
topic and the work standards organizations, the
open source community, and others are doing
to address identity management concerns. In
the November/December issue, Jeremy Grant
from the US National Institute of Standards and
Technology described NIST’s National Strategy
for Trusted Identities in Cyberspace (NSTIC)
initiative. In this third identity management
installment, I’ll look closely at the OAuth Web
authorization protocol, which Lucy mentioned
in her column.

Internet identity management is an umbrella
that covers several related problems, all of which
stem from our use of multiple Internet services
that come from different providers and reside
in different trust domains. For each domain,
we have a separate identity and use separate
authentication. Where NSTIC seeks to consoli-
date these identities through central manage-
ment, and software such as password managers
tries to make it easier to manage authentication
credentials for our various identities, OAuth
takes aim at a different piece of the puzzle.

OAuth began as a community effort among
numerous companies that provide Internet ser-
vices. These organizations recognized the need
to solve a speci!c type of identity management
problem and developed the !rst version of a
mechanism for doing so. The group approached

the IETF in late 2008. After a birds-of-a-feather
session in November, subsequent mailing-list
discussion, and a second session the following
March, the IETF chartered the OAuth Working
Group in May 2009 (see www.ietf.org/dyn/wg/
charter/oauth-charter). Since then, the working
group has been developing an Internet standard
version of OAuth1 that’s just about completed at
this writing.

The OAuth Use Case
We often need one service to interact with
another on our behalf. Consider two scenarios:

1. Alice has a Gmail account with hundreds of
contacts in her contact list. She joins Face-
book and would like to see which of her
Gmail contacts she can befriend in the social
network. She can search Facebook for each
one individually, but allowing Facebook to
read her Gmail contacts directly would be
much easier.

2. Bob has created a private photo album on
Picasa with photos from a family function, and
he would like to use a photo-printing service
to print all the photos and mail the hardcopies
to his grandparents. Bob could print each sep-
arately, of course; better, though, would be to
direct the print service to his Picasa album
and have the photos printed directly.

Services have supported such functions in
the past by asking us to turn our authentication

OAuth Web
Authorization Protocol

Allowing one Web service to act on our behalf with another has become
increasingly important as social Internet services such as blogs, photo sharing,
and social networks have become widely popular. OAuth, a new protocol for
establishing identity management standards across services, provides an alter-
native to sharing our usernames and passwords, and exposing ourselves to
attacks on our online data and identities.

IC-16-01-Standards.indd 74 12/6/11 5:15 PM

OAuth Web Authorization Protocol

JANUARY/FEBRUARY 2012 75

credentials for the target service —
our login username and password —
over to the service we want to use.
Bob might, in example 2, give his
Picasa password to the printing ser-
vice so that it can log on as Bob and
access his private album.

But turning over authentication
credentials creates a major problem:
it gives the service unrestricted
access to the account we’ve given
the credentials for. That service can
now not only perform the action
we’ve asked for but can also do any-
thing with our information. A ser-
vice given access to Alice’s Gmail
account could not only read her
contacts — it could also change or
delete them, add new ones, read her
email, send email on her behalf,
and so on. Worse, because we often
reuse passwords from one service
to another, it could guess that Alice
might use the same username and
password on other sites — perhaps
banking and credit-card sites.

OAuth addresses this exposure by
providing an alternative mechanism
through which we can authorize spe-
ci!c actions, and only those speci!c
actions, without giving unrestricted
or permanent access. It has the target
service create an access token that
we can give out that allows only the
limited access we’ve authorized, per-
haps for a limited time or on a one-
time basis.

How the OAuth
Protocol Works
Let’s look at a particular case and
examine its dataf low. First, we’ll
need some terminology:

Client — the service asking for
authorization. In example 1,
Facebook is the client; in exam-
ple 2, it’s the photo-printing
service. Note that this is the
OAuth transaction’s client, not
the end user’s client program.
Resource owner — the entity that
owns the information the client

needs to access. In both exam-
ples, this is the end user (Alice or
Bob).
Resource server — the service
that provides access to the infor-
mation requested. In example 1,
that’s Gmail, and in example 2,
it’s Picasa.
Authorization server — the ser-
vice that verifies the resource
owner’s credentials and performs
the authorization checks. This is
often the same as the resource
server (as it is in both examples),
and is always in its trust domain.
Access token — a piece of data
the authorization server creates
that lets the client request access
from the resource server. This is
the authorization credential the
client will use in place of the
resource owner’s own credentials.
Authentication code — a piece of
data that the authorization server
can check, used during the trans-
action’s request stage.

Now, let’s consider example 1,
in which Alice wants to import her
Gmail contacts into Facebook. This
is how such a transaction might
work using OAuth:

1. Alice (the resource owner) logs
into her Facebook account and
selects an option on the Facebook
website to import contacts from
Gmail.

2. Facebook (the OAuth client) sends
a response to Alice’s Web request.
The response goes to her Web
browser, redirects the browser to
Gmail (the authorization server),
and passes the request to it.

3. Gmail prompts Alice to accept
the requested authorization. She
sees this authorization prompt in
the browser; it’s the !rst apparent
response to her original request.
Such a prompt might say, “Face-
book is requesting access to read
your contact list in Gmail.” The
prompt will come from Gmail and

will ask Alice to log in to Gmail
to approve the request. The client
(Facebook) isn’t involved in this
step.

4. Alice accepts the authorization
request. She might have to log
in !rst, or she might already be
logged into Gmail in the browser.
Typically, she would click a but-
ton that says “Accept,” “Autho-
rize,” “OK,” or the like.

5. Gmai l sends a response to
Alice’s Web browser that con-
tains an authorization code, and
the response redirects the Web
browser back to Facebook (Alice
doesn’t see this).

6. Facebook sends the authorization
code, along with other informa-
tion, directly to the authorization
server, behind the scenes and not
apparent to Alice. Gmail responds
to Facebook with an access token,
if everything checks out.

7. Facebook uses the access token
behind the scenes to contact the
resource server (Gmail) and per-
form the service for Alice — in
this case, retrieve her Gmail con-
tact list and import the contacts
into her Facebook account. Face-
book will give Alice’s browser a
response, and the browser will
show her a visual indication that
the action is in progress.

Figure 1 summarizes this data
"ow graphically.

From Alice’s viewpoint, the inter-
action has been very simple — one
bene!t of OAuth. She’s made a request
from Facebook to access Gmail, she
has seen a prompt from Gmail asking
her to authorize it, and she’s seen Face-
book acknowledge that authorization
was received and that the request is
being handled. But behind that sim-
plicity was a reasonable amount of
behind-the-scenes complexity. As the
user, Alice need not know about nor
understand any of that.

What’s more, the access token
the client (Facebook) receives can be

IC-16-01-Standards.indd 75 12/6/11 5:15 PM

Standards

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

very speci!c in what it authorizes.
Unlike Alice’s normal Gmail login
credentials, which would allow Face-
book to do anything, the access token
can authorize read-only access to the
contact list without permitting addi-
tions or modi!cations, access to her
email, or access to any other Gmail
functions. It can also be limited in
time as well as scope, permitting
access only once, and for only !ve
minutes, say. This lets Alice provide
just the access needed and no more.
Furthermore, it can hide from the
client not only Alice’s password but
also her identity, making attempts
at password guessing more dif!cult.
All this makes OAuth an enormous
improvement over giving Gmail login
credentials directly to Facebook.

Not a Perfect Answer
Of course, even “an enormous
improvement” isn’t perfection, and

OAuth st i l l leaves some things
exposed. The Web server redirections
that are central to the mechanism
provide places for attackers to target,
and implementations that aren’t care-
ful to secure these points or don’t ade-
quately secure the tokens themselves
are vulnerable. The OAuth Working
Group is developing a set of token
types2,3 that will allow implemen-
tations to choose different security
characteristics that might be appro-
priate for different use cases and
operational environments. Another
working group document describes
the “Threat Model and Security Con-
siderations” in some detail.4

But perhaps the most troublesome
problem that OAuth doesn’t solve
is the need for users to understand
what they’re authorizing and to be
relied on not to compromise their own
security. When faced with security-
related questions, many — perhaps

most — users are simply used to
clicking “OK” or whatever they need
to click to get things to continue. A
user visiting his or her bank’s website
will, if faced with a browser popup
warning of an expired or otherwise
suspicious security certi!cate, tell the
browser to accept the certi!cate and
continue. Most of the time, the bank
has made an error, and accepting the
certi!cate is the right thing to do. In
any case, the user is unaware of the
risks and wants to go to the bank’s
website; accepting the certi!cate is
the only way to make that happen.

Such is the case with OAuth. If
you refer back to the numbered list
of steps in the OAuth transaction
example, you’ll see that Alice is pre-
sented with a message in step 3 that
asks for authorization. To proceed to
step 4, she must decide to authorize
the request, which implies that she
must understand what she’s being
asked. The user interface is critical
at this point.

A user might need to understand
the following questions, and know
the answers to them.

Who is requesting the access?
This can be a tricky point. The autho-
rization server might know only
the domain name, or even just the
IP address of the client making the
request. Alice might be able to make
some sense of the domain name, but
would really do better with a real,
human-readable name that matches
what she calls the service. But the
authorization server has no cause to
trust any human-readable string the
client gives.

Who will be granting the access?
It’s easy to leave this out, with the
idea that it should be self-evident.
The problem is that if a client is
requesting access beyond what it
should be asking for, it might be ask-
ing the wrong entity as well. If Bob
(from example 2) asks for a photo
to be printed, the requested autho-
rization shouldn’t be to his email
account.

Resource
owner

Resource
owner’s

user agent

Client

Authorization
server

1. Resource owner (user) requests a service from client

2. Client redirects user agent (UA) to authorization server

3,4. Authorization server authenticates resource owner and
 gets approval

5. Authorization server redirects UA back to client, and includes
 authorization code

6. Client uses authorization code to request authorization token
 from authorization server

7. Authorization server authenticates client, validates
 authorization code, and returns authorization token1

1 2 5

6

7

3,4

3,4

2

5

IC-16-01-Standards.indd 76 12/6/11 5:15 PM

OAuth Web Authorization Protocol

JANUARY/FEBRUARY 2012 77

What specific access is being
requested? This might not always be
obvious, depending on the request
and on how the prompt is worded.
“Print a photo for me” will likely
translate into read access to the
photo. For “Auto-adjust the contrast
before printing, and save the adjusted
version,” the service will need access
to update the photo or to save a new
copy. “Send e-cards to my family
on their birthdays” might trans-
late into authority to send email on
Bob’s behalf, plus gain read access to
his address book. The address book
access is somewhat less evident and
opens an avenue for abuse.

What is the access’s scope? If Bob
wants to print a single photo, then
read access to just that photo will
do. If he wants to print all photos in
an album, he’ll need to grant read
access to the whole album.

What is the access’s duration? If
Bob just wants to print a photo, then
one-time read access to the photo
should be enough. If he wants the
service to automatically print all
his new photos every week, persis-
tent, long-term read access to a “new
uploads” photo album might work.

Because end users are accepting
or rejecting the authorization that
the client service is requesting, their
understanding of what they’re being
asked is important to the system’s
overall security. Because such users
often know nothing about computer
security, the way these various points
are presented to them is a critical
piece of the security design — that is,
we must consider the prompts and
users’ understanding of and response
to them as part of the security model.

This is especially important because
a user thinks in terms of a task,
whereas the authorization system
works in terms of what accesses it
needs for that task. The mapping
between the two often isn’t clear to
the user, and his or her trust of the
service requesting access (the client)
might be tenuous.

We must avoid asking users ques-
tions they’re not prepared or quali-
!ed to answer. Unfortunately, most
security-related questions fall into
this category. The more we can put
the request into plain language, and
the better we can explain in clear,
simple terms what’s being asked and
what the rami!cations are, the more
likely it is that we’ll be working with
informed consent and will be able to
fend off attacks on the system.

A prompt such as

Give printpix.example r/w access to
http://photoshare.example/usr213554/

will likely be unintelligible to most
users. One that says

The Print My Pix service (printpix.
example) is asking PhotoShare for access
to all your photo albums. Granting access
will allow Print My Pix to read, alter, and
delete your photos. Access will be allowed
permanently. For a more detailed expla-
nation of what this means, [click here].

might seem excessive, but it conveys
the scope of what’s being asked and
makes it evident that Print My Pix
is probably asking for more than it
needs. Speci!c warnings might also
be added for such atypical access
requests, ones that seem to be over-
stepping. Even so, it might well be
a lost cause: expecting end users to
understand and respond correctly
to any security-related question is
probably asking too much.

So, although OAuth removes the
need for users to give away their
login credentials in the use cases it
supports, it still leaves an avenue for
unethical or outright malicious ser-
vices to fool users into authorizing
nearly anything.

T he OAuth Working Group has
recently approved the OAuth 2.0

protocol speci!cation, which is mov-
ing through the IETF’s process. We’ll
likely see it published as a proposed

standard in the !rst quarter of 2012.
The !rst two token speci!cations
won’t be far behind. Several OAuth 1.0
implementations — the pre-standard
version, published as an informa-
tional specif ication5 — have been
updated to be compatible with OAuth
2.0. Google, Yahoo, Facebook, Twit-
ter, and other services already use
OAuth, and we expect it to see even
broader deployment after the pro-
posed standard version is published.

At this writing, the working
group is about to begin discussing
re-chartering and deciding what to
work on next. The discussions should
be !nished and the new charter in
force by the time this column is
published, so see the current OAuth
Working Group charter (www.ietf.
org/dyn/wg/charter/oauth-charter)
for the results.

References
1. The OAuth 2.0 Authorization Protocol,

IETF OAuth Working Group draft, work
in progress, Sept. 2011.

2. The OAuth 2.0 Authorization Protocol:
Bearer Tokens, IETF OAuth Working
Group draft, work in progress, Oct. 2011.

3. HTTP Authentication: MAC Access
Authentication, IETF OAuth Working
Group draft, work in progress, May 2011.

4. OAuth 2.0 Threat Model and Security
Considerations, IETF OAuth Working
Group draft, work in progress, July 2011.

5. The OAuth 1.0 Protocol, IETF RFC 5849,
Apr. 2010; http://tools.ietf.org/html/rfc5849.

Barry Leiba is a standards manager at Hua-
wei Technologies. He currently focuses
on the Internet of Things, messaging and
collaboration on mobile platforms, secu-
rity and privacy of Internet applications,
and Internet standards development and
deployment. Leiba has been active in the
IETF for roughly 15 years, is an author
of several current and pending proposed
standards, chairs numerous working
groups (including OAuth), and served on
the Internet Architecture Board from 2007
to 2009. He edits this column, and can be
reached at barryleiba@computer.org.

IC-16-01-Standards.indd 77 12/6/11 5:15 PM

