
Technical Report B-3/2000
February 2000

Freie

2

Abstract

1. Introduction

3

4

 the fundamental data types are arrays and tuples of arrays
 the type of the variables does not need to be declared in a special header
 conditionals are processed using guarded commands
 there is a WHILE construct for iteration
 there is no GOTO construct

-

-

-

-

-

5

2.1

-

-

-

-

- n n n
-

- m

-

-

-

-

6

This example refers to the variable Z1 of type 5.0 (five bits). The subindex of the

2.2. Arithmetical and logical statements

7

Here, the component 0 of V0 and the component 2 of the same array are added and
the result is stored into variable Z2, which is an array of eight bits. The component
line of Z2 is left empty, since we want to refer to the whole array of eight bits. Only
V and Z variables (and loop variables) can appear in expressions to the left of the
assignment symbol. Only Z and R variables to its right.

n

8

2.3 Guarded commands

9

This is a block of two instructions, an addition and a multiplication.

Conditions can be tested with the operators =, >, <, which are used to check if the
first argument is equal, larger, or smaller that the second. Any two structures can be
tested for equality, but only structures which can interpreted as numbers (n bits) can
be tested using the other two operators. We can store the larger of two numbers Z1
and Z2 in Z3 using the following instructions:

2.4 Iterations

i

n n

10

special variable with an unspecified default numeric type and can be accessed only
inside the block following the W1 declaration. If nested loops are used, they are
numbered using the index row and their loop variables use also these numbers.

In the example above the first loop has index 0, the second index 1. The loop
variables are i0 and i1. They can only be used within the scope of the respective
While loops.

Zuse defined a built-in function which is very helpful when processing arrays. The
function N applied to a variable yields the number of components of the variable as
result. See below for an example of its application.

2.5

11

2.6 Functions and function calls

n m
n m

complete

12

This is a call to program P3 above which computes two result variables, R0 and R1.
In the call we select variable R0 of type 4.0 from the result tuple. In linearized form
we write for this call: R3(Z1:8.0, Z3:8.0)[0]:4.0 Z4:4.0.

Finally, although Zuse did not signal the end of a program with any special keyword,
we will write END at the end of every program.

2.7 Input and Output

Zuse did not define any primitive instructions for input and output. He seems to have
considered this type of instructions machine specific and they do not belong to the
main language constructs. In our implementation of the language we did not define
any input/output instructions. The user can inspect and modify the state of the
variables stored in memory by opening a memory window, which is specific for

2.8 Implementation problems

13

 The editor

Fig.1: Start window of the syntax directed editor

14

Figure 2: State of the editor after some selections

The editor is written in Java and will be installed as an Applet at our Web site in the
future.

4. The parser

The syntax of

Figure 3: Strutcture of the

Syntax
directed
editor

Parser

Run-time
system

linearized
code

intermediate
code

User
interface

TeX output

15

The parser produces not only the intermediate code for the run-time system, but also
TeX code that can be interpreted and sent to a PostScript printer.

5. The run-time system

The run-time system was written in Java. When the system starts, a window shows
the contents of the memory variables. This can be changed interactively by the user.
Figure 4 is an example of the state of the memory after a run of a sorting program.
The first row in the window shows an array of five numbers, each of 8 bits. The ones
are shown as full circles (the lowest order bits are written to the left). The decimal
equivalent is written below each element of the array. The last row shows the result
of the sorting routine. The rows in the middle are intermediate (Z) variables.

Figure 4: The result (last row) of sorting the V variables (first row)

Before the program starts, the user can modify the values of the V variables by
clicking on the individual bits. After the program runs, the user can inspect the result
variables. The original definition of

6. Example programs

P1 R(V0[:0],V1[:0]) => R0[:0]

V0[:0] & V1[:0] => R0[:0]

END

16

Program P2 computes the expression a+b*c.

P2 R(V0[:16.0],V1[:16.0]) => R0[:16.0]

V0[:16.0] + V1[:16.0] * V1[:16.0] => R0[:16.0]

END

A variation of the program above (to test syntactic alternatives).

P3 R(V0[:16.0],V1[:16.0]) => R0[:16.0]

(V0[:16.0] + V1[:16.0]) * V1[:16.0] => R0[:16.0]

END

Another variation.

P4 R(V0[:16.0],V1[:16.0]) => R0[:16.0]

(V0[:16.0] * 6)+(V1[:16.0]*V1[:16.0]) => R0[:16.0]

END

Program P5 computes the factorial of 5 (the generic type is 32.0):

P5 R(V0[:32.0]) => R0[:32.0]

1 => Z0[:32.0]

W1 (5) [
 i * Z0[:32.0] => Z0[:32.0]
]

Z0[:32.0] => R0[:32.0]

END

17

Program P6 sorts 16 numbers using insertion sort.

P6 sort (V0[:6.8.0]) => R0[:6.8.0]

W1[0](4)[
 V0[i0:8.0] => Z0[i0:8.0]
 1 => Z4[:32.0]
 W1[1](i0)
 [
 (V0[i0:8.0] < Z0[i1:8.0]) & (Z4[:32.0]=1) ->
 [
 i0-i1 => Z1[:32.0]
 W1[2](Z1[:32.0])
 [
 i0 - i2 - 1 => Z3[:32.0]
 i0 - i2 => Z2[:32.0]
 Z0[Z3[:32.0]:8.0] => Z0[Z2[:32.0]:8.0]
]
 V0[i0:8.0] => Z0[i1:8.0]
 0 => Z4[:32.0]
]
]
]
END

7. Conclusions

We have described in this paper the architecture of a compiler for a subset of the

18

Appendix A

19

---------- Function call

zv-call-arg ::= v-variable | z-variable | call | constant | loop-var | type-var

call-all ::= R digits [:type] (zv-call-arg {,zv-call-arg}*)|
 identifier [:type] (zv-call-arg {,zv-call-arg}*)
call-one ::= R digits [component : type] (zv-call-arg {,zv-call-arg}*) |
 identifier [component : type] (zv-call-arg {,zv-call-arg}*)
call ::= call-all | call-one

---------- Arithmetical operations
arith-argument-left ::= v-variable | z-variable | constant | loop-var | type-var | call |
arith-operation | (arith-operation)
arith-argument-right ::= v-variable | z-variable | pos-constant | (neg-constant) | loop-
var | type-var | call | arith-operation | (arith-operation)
arith-argument ::= arith-argument-left | arith-argument-right
arith-operation ::= arith-argument-left {+ | - | | / } arith-argument-right

---------- Logical operations

log-constant ::= + | -
condition ::= arith-argument = arith-argument |

arith-argument > arith-argument |
arith-argument < arith-argument |
zv-tuple = zv-tuple

pos-literal ::= v-variable | z-variable | log-constant | call | condition | (condition)
neg-literal ::= !v-variable | !z-variable | !call | ! (condition)
logic-argument ::= pos-literal | neg-literal | logic-operation | (logic-operation)
logic-binary ::= logic-argument { "|" | & | ~ | /~} logic-argument
logic-operation ::= pos-literal | neg-literal | logic-binary | !(logic-binary)

---------- Assignment

assignment0 ::= arith-argument => {z-variable | r-variable}
assignment1 ::= logic-argument => {z-variable | r-variable}
assignment2 ::= zv-tuple => zr-tuple
assignment3 ::= zv-tuple => {z-variable | r-variable}

zv-tuple ::= (zv-arg, zv-arg {comma zv-arg}*)
zv-arg ::= v-variable | z-variable | constant | call | loop-var | type-var | zv-tuple
zr-tuple ::= (zr-arg, zr-arg {comma zr-arg}*)
zr-arg ::= r-variable | z-variable | zr-tuple

assignment ::= assignment0 | assignment1 | assignment2 | assignment 3

20

---------- IF-THEN

if-then ::= logic-argument -> statement

---------- While

block ::= [statement{; statement}*]
while ::= w block | w [digits] block | w1 (arith-arg) block | w1[digits] (arith-arg)
block

---------- Statements

built-ins ::= FIN | FIN digits
statement ::= assignment | if-then | while | block | built-ins

---------- Programs

program ::= P digits randauszug {statement }* END

---------- Randauszug

randauszug ::= identifier v-tuple => r-tuple

v-tuple ::= v-variable | (v-variable {, v-variable}*)
r-tuple ::= r-variable | (r-variable {, r-variable}*)

// The variables are numbered sequentially, starting with 0

// constant, indices, N(), have generic type

21

Appendix B

The run-time system receives an array of strings with the following meaning:

Line Meaning Contents
0 Program number integer 0
1 Program identifier string
2 number of V variables integer 0
. TypID’s see below
. number of Z variables integer 0
. TypID’s see below
. number of R variables integer 0
. TypID’s see below
. number of loop variables integer 0
. <Plan> see below
. END

TypID ::= <numl>[.<numl>]*|
[<numl>][.<numl>]*(’_’<num>’_’<numl>[.<numl>]*{,<TypID>})

numl ::= <num> | <type-letter>

type-letter ::= a|b|...h|j|...|z

<Plan> ::= [<planline>]*
<planline> ::= <statement>’\n’
<statement> ::= <assignment> | <if-then> | <while> |

 <w1> | <wx> | <wd> | <built-ins>
<assignment> ::= =’_’<term>’_’<factor>
<if-then> ::= ?’_’<term>{’_’<statement>}’_’$
<while> ::= W’_’{<statement>’_’}M
<wd> ::= WD’_’<num>’_’{<statement>’_’}DW
<w1> ::= W1’_’<term>’_’{<statement>’_’}1W
<wx> ::= WX’_’<num>’_’<term>’_’{<statement>’_’}XW
<built-ins> ::= FIN’_’<num>
<call> ::= <call-r> | <call-i>
<call-r> ::= C’_’R’_’<num>’_’{<term>’_’}’_’<typ>’_’-|<num0>
<call-i> ::= C’_’I’_’<string>’_’{<term>’_’}’_’<typ>’_’-|<num0>
<term> ::= <factor>| <op>’_’<factor>[’_’<factor>]| <call>|

(’_’<num>’_’<term>{’_’,’_’<term>}’_’)
<factor> ::= <var>|<index>|<typevar>|<const>|<term>
<var> ::= V|Z|R’_’<num0>’_’<component>
<const> ::= K’_’[-]<num0>
<index> ::= I’_’<num0>

22

<typevar> ::= T’_’<letter>
<component> ::= <factor>[’_’<factor>]*’_’.
<op> ::= +|*|-|/|==|<|>|!|&|’|’|x|nx
<string> ::= {<letter>|<num0>}
<letter> ::= a|b|...|z|A|B|...|Z
<num> ::= natural number
<num0> ::= natural number or 0

References

Arefi, F.,
Communications of the ACM

Generators for High-Speed Front-Ends

Die Rechenmaschinen von Konrad Zuse

Communications of the ACM

, Berichte der Gesellschaft

