
EIDR SYSTEM
VERSION 2.0

Registry User’s Guide
2016-04-28

Copyright © 2012-15 by the Entertainment ID Registry Association (EIDR).
Copyrights in this work are licensed under the Creative Commons Attribution – No
Derivative Works 3.0 United States License.
See http://creativecommons.org/licenses/by-nd/3.0/ for full details.

In addition, the operation and use of EIDR is protected by covenants as described in
the EIDR Intellectual Property Rights Policy, a copy of which can be found at
www.eidr.org.

Registry User’s Guide.
The content of this manual is furnished for information use only and is subject to
change without notice and should not be construed as a commitment by the
Entertainment ID Registry Association. The Entertainment ID Registry Association
assumes no responsibility or liability for any errors or inaccuracies that may appear
in this document.

Products and company names mentioned may be trademarks of their respective
owners.

Feedback on this document can be sent to support@eidr.org

mailto:support@eidr.org

TABLE OF CONTENTS
1 Prerequisites ... 5

2 Overview .. 6
Usage Options for the EIDR Registry .. 8

User Interfaces .. 8
Command Line Tools .. 9
SDK ... 9

3 Catalog Matching and Registration .. 10
Data Model Alignment Process .. 11
Record Matching Process ... 11
Party Matching (Production/Distribution Companies) ... 11
Manual Bulk Registration Process (Not through integrated APIs) ... 12
Bulk Modification Process.. 12
4 Record Types ... 13
Content Records ... 13

Categorization of Objects ... 13
Content Record Creation and Modification ... 16
Alternate ID .. 18
Aliases and Deletion Model.. 18
Virtual Fields .. 20

Parties ... 20
Permissions Model ... 22
Access Control Lists ... 22

5 Content Read Operations .. 24
Resolution .. . 24
Traversals .. . 25
Queries 25
Using Traversals and Queries to Find Records ... 25
6 Using Parties ... 27

7 Deduplication .. 28
Overview ... 28

Matching API.. 29
Tokens and Batches .. 29

Single/Batch ... 30
Immediate/Asynchronous ... 30
Tokens ... 31
Scores ... 33
Polling ... 33

8 Content Create and Modify Operations ... 34
Registration Workflows .. 34

Synchronous Workflow ... 34
API-based Asynchronous Workflow .. 35
Asynchronous Workflow Tools and API .. 36
User Interface Handling .. 36

Modifying Records .. 37
9 Error Types .. 38

Appendix A: DOI Proxy Parameters ... 41

Appendix B: Text Processing and Queries .. 42
Language-specific Filtering ... 42
Field Rules .. 43
Simple Queries .. 44

Search Expressions .. 46
Example Queries ... 50

EIDR Registry User’s Guide 5 2016-04-28

1 Prerequisites
The purpose of this document is to prepare you to use the EIDR system in your production and
development workflows.

This document is intended for EIDR users and developers who are preparing to use the EIDR
system.

EIDR recommends that you also read the following documents, which contain more detailed
information about the topics covered in this guide:

• Registry Programmer’s Guide

• Best Practices Guide

• Data Fields Reference

• REST API Reference

• Schema Documents

• EIDR Glossary

• EIDR: ID Format

See http://eidr.org/technology/ for additional documentation.

http://eidr.org/technology/

EIDR Registry User’s Guide 6 2016-04-28

2 Overview

This document describes the usage of the EIDR Registry for EIDR users and
developers, including how to read, create, and modify records, how to perform
operations on Parties, and how to perform operations on Video Service identifiers.
In addition, reference information for the REST API validation rules and the Digital
Object Identifier (DOI) Proxy is included.
This diagram illustrates the EIDR system architecture:

Each object in the Registry is assigned a unique, universal, persistent identifier, or
EIDR ID. The identifier is a Digital Object Identifier (DOI), a type of Handle
conforming to ISO 26324 (for example, 10.5240/0000-0000-0000-0000-0000-X).
The EIDR ID is composed of a prefix, which indicates the resolution system (in this
case 10.5240 for the EIDR Registry), and a suffix (in this case 0000-0000-0000-
0000-0000-X) identifying an object within that system, separated by a slash (/). For
more information, see EIDR: ID Format.
The EIDR Registry principally identifies commercial audiovisual content. It also
identifies important corporate entities in the ecosystem, such as production
companies and distribution channels.
The EIDR system consists of the following modules:

EIDR Registry User’s Guide 7 2016-04-28

Core Registry: This module is a customization and configuration of the Corporation
for National Research Initiatives (CNRI) Digital Object Repository. It performs
various functions including registration, generation of unique identifiers, indexing,
object storage management, and access control. Each object is assigned a unique ID
upon registration.
Repository: This stores and provides access to registered objects; for EIDR, these
objects are collections of metadata, not the media assets themselves. The metadata
includes standard object information, relationships, and access control settings.
Deduplication: This module is called by the Core Registry to check for uniqueness
of a newly created or modified object. For more information, see Deduplication.
REST API: A REST interface that provides access to the full set of non-
administrative registry features. Using these calls, services can make individual or
batched calls, and request immediate rejection or manual review of potential
duplicate submissions. A Java SDK, .NET SDK, and sample programs built upon the
REST API are available for application and service developers.
Command Line Tools: The command line tools are fairly simple applications, built
on the SDK, each of which provide a single function.
Web User Interface: EIDR provides a Web-based user interface primarily for
search and lookup. The UI also supports the more common workflows for
registration and modification. The Web UI is built with the REST API.
Bulk Registration Service: This application accepts up to 100,000 registration
requests at a time and manages submitting them to the registry. It accepts both flat
datasets and ones that have internal hierarchies (such as seasons, series, and
episodes). This is one of several mechanisms for registering large catalogs after
matching has been completed. For more information, see Catalog Matching and
Registration.
Handle System: The DOI ecosystem is an application of the Handle system, in the
same way that HTTP is built on top of TCP/IP. The Handle system provides
distributed lookup and resolution services. The worldwide DOI system is
implemented using the Handle system from Corporation for National Research
Initiatives (CNRI).
Admin API: This API provides calls to manage accounts, Users, and access control
lists (ACLs).
Admin Console: The console enables the registry operator to perform account and
user management, access control, and other support functions. It is built using
Admin APIs.

EIDR Registry User’s Guide 8 2016-04-28

Usage Options for the EIDR Registry

You can access the EIDR Registry through its user interfaces, SDKs, and applications
such as the bulk registration service and command line tools. The following sections
briefly describe these various forms of support.
There are two instances of the EIDR Registry: Production and Sandbox. The
Production system is the official site, where all officially registered EIDR IDs exist.
The Sandbox is a development and test site where new users can start their practice
registration efforts. Its data will generally not match the production data exactly,
and the EIDR IDs do not necessarily match those in the Production system.
Do not assume that the records from the Sandbox are correct, as some of its data are
transient. In addition, the Sandbox system is periodically wiped clean and replaced
with a copy of the production system as a new starting point, deleting all practice
efforts and corresponding EIDR IDs. Notification of such Sandbox refreshes will be
sent out to the users, and posted on the EIDR Support Site.
Currently, the EIDR Sandbox Registry UI is available for public access at
https://sandboxui.eidr.org. You can search and view currently registered titles, see
EIDR numbers of registered titles, and view other metadata needed for uniqueness.

User Interfaces

The user interface is identical between the two registries, so it is important that you
use the correct one for your work. Examine the URL or the lower right-hand section
of the screen to see the registry and version you are currently viewing.

The production EIDR Registry is available for public access at https://ui.eidr.org/.
You can search and view currently registered titles, see EIDR numbers of registered
titles, and view other metadata needed for uniqueness.
The publicly accessible Web site has a log in, search options, and link to join EIDR.
Through the user interface you can:

https://sandboxui.eidr.org/
https://ui.eidr.org/

EIDR Registry User’s Guide 9 2016-04-28

• Perform searches
• Look up the status of asynchronous requests using tokens returned by the

requests
• Look up the status of transactions initiated by specific users
• Look up the status of transactions initiated by registrants
• Create records
• Modify records
• Access the EIDR Support network

Command Line Tools

With the command line tools you can:
• Resolve EIDR IDs
• Examine the object hierarchy
• Make queries about Content records, Parties, and Video Service Providers
• Create and modify objects (singly and in bulk)
• Manage relationships
• Promote objects
• Delete objects
• Alias objects

SDK

With the SDK you can create Java and .NET applications that make use of Registry
services and perform Registry operations. If necessary, you can use the REST API
directly, but this is not recommended.

EIDR Registry User’s Guide 10 2016-04-28

3 Catalog Matching and Registration

You can match and register back catalogs with EIDR in several ways, but all of them
have some common steps. EIDR’s process for registering bulk content consists of:

• Preparing data in a standard format, either through XML or a spreadsheet
• An iterative process of matching the proposed records against the current

EIDR database
• For records that were not found by the matching process (gap records)

o Serialization: some records (e.g. episodes) may require that other
records be registered first (such as registering a series before an
episode.)

o Registration of new content records
• Making any corrections to existing records based on the matching results.
• Providing the matched and newly registered EIDR IDs to the EIDR user for

inclusion in the EIDR user’s metadata systems.
Most bulk registrations will have to go through the matching process. The matching
process reduces the chance of de-duplication errors caused by the variability in
quality of source material across providers. In some exceptional cases where it is
believed the proposed catalog has minimal overlap with existing EIDR records it is
possible to submit a request to the Bulk Registration Service directly.
API integrations should only be used to register new records or records that have
already been identified by an external matching effort as gap records.
To prepare large registrations:

1. Determine hierarchy compatibility. This includes determining the types of
records you will be registering and how these fit with the types of records in
your system. For example, if you are registering titles, determine which
records represent the original version. If you are registering digital assets,
determine those versions (EIDR edits) from which your asset originated.

2. Map your data fields to EIDR’s and validate metadata compatibility.
3. Evaluate metadata for covering required EIDR fields and recommended EIDR

practices (for example, Directors/Actors and Alternate IDs). Develop a plan
to fill in any missing data.

4. Evaluate the quality and consistency of use of the resulting metadata (for
example, release year, first billed vs. any two actors).

5. Match production/distribution companies to those in EIDR’s Party database.
6. If catalog overlap is expected with existing registrations, use an external

matching process before registering the gap records and correcting any
identified discrepancies in matched records. If registrations are known to be
greenfield (no overlap with existing EIDR registrations), prepare a bulk
registration XML file (or use an API integration).

The following describes the steps needed for the matching and registration of titles
with the EIDR service.

EIDR Registry User’s Guide 11 2016-04-28

Data Model Alignment Process

The first step in the process is to make sure that any records being registered align
with the EIDR data model.

1. The EIDR user supplies the data model for the records to be registered in the
EIDR system.

2. Utilizing the defined and required EIDR data fields need to register a record,
the EIDR user iteratively reviews their data model to identify and map to
EIDR fields.

3. If needed, the EIDR user can request a review of the data model mapping of
EIDR, to help validate that the Provider’s data model aligned with EIDR.

4. EIDR user supplies sample set (for example, 10 titles) of data for the fields
identified in an Excel template provided by EIDR.

5. EIDR to review this initial template, sample to confirm mapping and gaps.
6. If there are missing data fields or other anomalous issues, EIDR user to

iterate with EIDR team on how to provide missing fields.
Output: Mapping of EIDR user’s data model and practices to EIDR’s.

Record Matching Process

The next step in the process is to match the EIDR user’s data against the EIDR data.
1. EIDR will provide a data file (flat file) of the EIDR registry to the EIDR user

for matching.
2. EIDR user to review and match titles, and identifies list of titles that are not

matched on the EIDR database file.
3. EIDR user inputs missing or gap records it wished to register on an EIDR

provided template.
4. Using the provided data, the EIDR team performs a spot check gap records to

confirm there are no matches in EIDR.
5. EIDR user then follows the Bulk Registration steps to register records, See

steps below.
Output: Gap titles identified and verified for Bulk Registration process.

Party Matching (Production/Distribution Companies)

The use of Parties for production companies is optional but recommended. Once the
EIDR user’s data model is aligned with EIDR, and all needed data fields for a
registration are available, the next step is to confirm all Production and Distribution
Parties are present in EIDR. This step can be done in parallel with the data model
alignment.

1. The EIDR user builds list of Parties (Production and Distribution companies)
they will need as part of the registration process.

2. EIDR gives the EIDR user a set of possible matches for each party in the list

EIDR Registry User’s Guide 12 2016-04-28

3. For each name in its list, the EIDR user either chooses one of the Parties from
the set of choices, or marks the Party as “new”.

4. The registrant submits a request to register the “new” Parties.
5. Optionally, a EIDR user can request that a new name be added to an existing

Party record
Output: Mapping of the EIDR user’s producer/distributor database to EIDR’s.

Manual Bulk Registration Process (Not through integrated APIs)

After Data Model Alignment, Record Matching, and Party Matching have been
completed, the registration process can start.
1. The EIDR user provides a full set of data fields required for the gap titles

identified in the output of the Matching Process in the template provided.
2. EIDR spot checks records:

a. Identifies records with missing data fields:
i. For records with missing data, those records are reviewed and

missing data manually added.
ii. In some cases, classes of records may be deferred for later

registration.
b. Spot check data quality for those records with full data fields:

i. Of the records spot checked, errors are manually addressed. If
there is a high percentage of records in error during the spot
check, a more thorough review will be needed, and the EIDR
user must perform a manual addition of missing data.

3. Once a final data file is provided to EIDR, it is converted utilizing an EIDR
provided tool into XML.

4. The XML file is ingested into the EIDR sandbox.
5. After ingest, the EIDR user and EIDR spot check the data and fields:

a. Errors corrected in input files if possible; otherwise, record made for
manual correction.

6. Once quality is confirmed, modified ingest files are sent to the Registry.
a. EIDR performs any manual fixes noted in 5a.
b. EIDR spot checks the Registry.

Output: Gap data added to EIDR database.
Note: The EIDR user is then responsible for adding the newly created EIDR content
IDs to its data systems.

Bulk Modification Process

1. After Record Matching, if the EIDR user has additional fields such as alternate
IDs or more accurate metadata, the EIDR user supplies a CSV file with the EIDR
IDs and additional metadata fields.

2. EIDR spot checks metadata for accuracy and alternate IDs for proper granularity.
3. EIDR updates the records.

EIDR Registry User’s Guide 13 2016-04-28

4 Record Types

In EIDR there are various metadata fields and relationships. Usually the nature of a
record is most strongly determined by the set of relationships it has (such as
parental relationships), and those are determined to a great extent by its referent
type (for example, Series, TV, Web, or Movie). If they do not have relationships, they
are root level records.
A Party represents an entity such as a registrant or a producing agent. A User is an
individual (or an abstract thing that can be treated as an individual.)
All Users are associated with a Party. All Registry requests except for Resolution
require authentication information for a User, and all requests allow it.
Only Parties have permissions in the system; a User has all the permissions
associated with its parent Party. For more information, see Parties.
Note: Only the Registry Operator has the ability to create or modify Parties or Users.
The DOI prefixes used by the registry are:

• 10.5237 – Parties
• 10.5238 – Users
• 10.5239 – Video Services
• 10.5240 – Content Records

Content Records

This section describes the underlying concepts used to describe content records in
the EIDR data model, some example applications of these concepts to movie and
television records, and the outline structure of the data model itself. In addition,
refer to the EIDR Best Practices Guide at http://eidr.org/technology/.

Categorization of Objects

All content objects in EIDR are categorized by their types and relationships.
TYPE
At an abstract level, EIDR has three general kinds of type:

• Object Type: Equivalent to the meaning of object type in programming
languages, which encapsulates the data fields needed for a particular object

• Structural Type: Describes the level of abstractness of an object
• Referent Type: Describes the nature of the underlying object

Object Type: This is an extension of the DOI Kernel metadata. When the unqualified
word type is used in EIDR documents, it refers to these object types. See the
appendix in the API Overview for details of mapping EIDR fields to DOI fields.
There are ten different content record types in the Registry, which are divided into
two general classes:

http://eidr.org/technology/

EIDR Registry User’s Guide 14 2016-04-28

• Basic Type: This type covers the minimal possible object. It is sufficient for
describing a wide variety of content.

• Derived Types: These types include all the information in the Basic Type,
and add extra information for describing more complex objects. The nine
Derived Types in EIDR are Edit, Series, Season, Episode, Composite,
Compilation, Clip, Manifestation, and InteractiveMaterial.

The DOI specification provides and requires two other kinds of type – Structural
Type and Referent Type. Both of these are represented as Basic metadata fields:
Structural Type: This is based on a set of four particular structural types provided
by DOI. They correspond to increasingly more specific manifestations of a work.

Structural
Type

Use

Abstraction Used for objects having no reality, such as a series container or the
most basic concept of the original work.

Performance Used for items that are particular manifestations or versions of
something, such as the Director’s Cut of a film or the Welsh-language
version of a TV show.

Digital A particular digital manifestation of a work, such as an MPEG-2
encoding of a movie.

Physical A physical version of an object. EIDR will support this for physical
films and tapes in a future release

Referent Type: In DOI terms, the referent is the item to which the DOI refers and is
independent of any particular instantiation. The DOI handbook says, "referentType
typically describes the abstract nature of the content of a referent irrespective of its
structuralType”. For example, an object created as a movie is a movie whether it is
being shown in a cinema, broadcast as an edited version over terrestrial TV, or
streamed over the Internet.

Referent Type Use

Series An Abstraction that contains ordered or unordered individual
items.

Season A second level of grouping below a Series.

TV Content that first appeared via broadcast.

Movie Long-form content that first appeared in a theater (in the US)
or a cinema (in most of the rest of the world).

Short Loosely defined to cover a work that is 40 minutes or less,
such as music videos, theatrical newsreels, or theatrical or
DTV cartoon shorts.

EIDR Registry User’s Guide 15 2016-04-28

Referent Type Use

Web Content that first appeared on the Web. This is different from
content from elsewhere that has been made available on the
Web.

Interactive
Material

Content that is not strictly audio-visual. It covers DVD menus,
interactive TV overlays, customized players, etc.

Compilation A grouping of discrete multiple assets such as are found on a
home entertainment product.

Supplemental This type is for secondary content whose primary purpose is
to support, augment, or promote other content. Examples
include trailers, outtakes, and promotional documentaries
(“making of” pieces.)

RELATIONSHIPS
A relationship is a casual term for the way in which two objects are connected.
Relationships are described with one or more objects and some metadata. They are
classified as:
Inheritance relationships: The object on which the relationship exists can inherit
basic metadata fields from the object to which the relationship refers. Only one
inheritance relationship may exist on an object. The Inheritance relationships are
isSeasonOf, isEpisodeOf, isEditOf, isManifestationOf, and isClipOf.
Dependence relationships: The objects to which the relationship refers have a
strong bearing on the basic nature of the object on which the relationship exists.
This means that the objects referred to in the relationship must be taken into
account when checking for duplicates when an object is created or modified. The
dependence relationships are isCompositeOf and isCompilationOf
Lightweight relationships: There is no inheritance; the objects to which they refer
do not influence the underlying nature of the object on which the relationship exists.
These relationships are used primarily when moving around the object tree and
connecting object trees to each other. The lightweight relationships are
isPackagingOf, isPromotionFor, isSupplementTo, and isAlternateContentFor.
There is no structural connection between the Supplemental referent type and the
isSupplementTo relationship. Although a content record with referent type
Supplemental will typically have isPromotionFor and isSupplementTo to another
content record, those relationships can exist on any content record, such as a Clip.
Similarly, a Supplemental referent type need not have an isSupplementTo
relationship to anything.

INHERITANCE
Most objects in the registry are related to each other as nodes in a tree. For example,
all of the seasons and episodes of a series form a tree rooted in the series object. The

EIDR Registry User’s Guide 16 2016-04-28

registry also supports additional non-parental relationships, such as one object
being included in a composite with items from outside its own hierarchy.
Items in a tree can inherit certain fields from their parent. See the Data Fields
Reference for full descriptions of these fields. Only metadata from the Basic Type can
be inherited. Furthermore, an object can only be part of one tree, so it has only a
single chain of inheritance. Lightweight and dependence relationships allow records
to interact with objects external to their own hierarchy.
This worldview uses standard computer science terminology: ancestors and
descendants, root objects and leaf nodes. Items with both ancestors and
descendants are called internal nodes.

DEPENDENCE
An object may depend on another object in some way by including a reference to it.
In such cases there is no inheritance, and the metadata of dependents and objects on
which they depend have only coincidental relationship to each other. For example,
when Manifestation A refers to Manifestation B by reference, A is dependent on B,
and when Composite C includes Clip K, C is dependent on K.

Content Record Creation and Modification

Not all combinations of type, inheritance, and dependence are legal. The validation
rules are the normative description of legal and illegal combinations. For more
information, see the Data Fields Reference.
In order to reduce complexity, the REST API for creating and modifying objects is
constrained in several ways, rather than exposing a generic data structure to be
filled in. Nonetheless, all legal combinations of type and inheritance can be created
and modified using the API, and all legitimate relationships to other objects can be
added and removed.
The REST Create() call and its manifestations in the SDK use CreationType as
an argument. This table shows the possible uses of CreationType.

Creation of Objects Creation Type

Basic Objects

Referent type can be: TV,
Movie, Web, Short,
Supplemental CreateBasic

with IsSeasonOf
inheritance relationship

Only way to create Season
referent type CreateSeason

with information for
derived type
InteractiveMaterial

Only way to create
InteractiveMaterial
referent type CreateInteractive

EIDR Registry User’s Guide 17 2016-04-28

Creation of Objects Creation Type

with information for
derived type Series

Only way to create Series
referent type CreateSeries

with IsManifestationOf
inheritance relationship

Only way to create an
object that has
IsManifestationOf
relationship CreateManifestation

with IsEditOf inheritance
relationship

Only way to create an
object that has IsEditOf
relationship CreateEdit

with IsClipOf inheritance
relationship

Only way to create an
object that has IsClipOf
relationship CreateClip

with IsEpisodeOf
inheritance relationship

Only way to create an
object that has IsEpisodeOf
relationship CreateEpisode

with IsCompilationOf
dependent relationship

Only way to create an
object of Compilation
Referent Type CreateCompilation

with IsCompositeOf
dependent relationship

Only way to create an
object of Composite
Referent Type CreateComposite

A Referent Type of Movie, TV, Short, Web, or Supplemental can be changed to
another one of those referent types. Other Referent Types cannot be changed. For
example, the Referent Type of a record can change from TV to Movie, or from Web
to Supplemental, but Series cannot change to Movie nor can Season change to TV.
Here is the summary of how relationships can interact with each other.
Relationship Type Can co-exist

with
Can be added
after creation

Removable?

IsSeasonOf Inheritance No No
IsEpisodeOf Inheritance IsCompositeOf No No
IsEditOf Inheritance No No
IsClipOf Inheritance No No
IsManifestationOf Inheritance

Dependence
 No No

IsCompilationOf Dependence No No

EIDR Registry User’s Guide 18 2016-04-28

Relationship Type Can co-exist
with

Can be added
after creation

Removable?

IsCompositeOf Dependence IsEpisodeOf 1) to episodes
2) to basic objects
not of Composite
referent type

Yes, if the referent
type is not
Composite

IsPromotionOf Lightweight Any Yes Multiple instances
allowed on an object

IsPackagingOf Lightweight Any Yes Multiple instances
allowed on an object

IsAlternateContentFor Lightweight Any Yes Multiple instances
allowed on an object

IsSupplementTo Lightweight Any Yes Multiple instances
allowed on an object

Alternate ID

The Alternate ID field is of particular significance in the EIDR metadata schema. It
plays an important role in ensuring the interoperability of EIDR IDs with other
existing ID systems.
The field consists of a type and a value. For example, an Alternate ID could have a
type of ISRC and a value of FR-UM0-99-12345. Proprietary IDs are supported as
well, with an added attribute giving the domain within which the ID is valid.
As another concrete example, the field could include references to a work’s ISAN,
allowing cross-referencing between ISAN-registered works and the full hierarchy of
commercial edits, manifestations, and other records that may be registered in EIDR
for the same family of records. If the work’s ISAN is given as an alternate ID for an
object at or near the root of an EIDR tree, it can be found from any of that object’s
descendants.
The Alternate ID field can also be used by metadata vendors to link EIDR records to
vendor IDs that reference external sources of commercial metadata for the asset.
Studios or other content producers may cross-reference to internal IDs used for
other distribution or tracking purposes. EIDR serves as a useful cross-referencing
tool for access to a wide variety of external sources of data about each registered
asset.

Aliases and Deletion Model

IDs in DOI registries must be permanent, and the records to which they refer are
intended to be permanent. The EIDR terms of use contain restrictions limiting the
ability to delete a record. All records should be permanent and persistent absent
special circumstances allowing aliasing or other extraordinary changes to the
registry. If a record is inaccurate or otherwise corrupted, there are two ways of
repairing the situation:

• The ID can be aliased to another more correct record. This is used when a
duplicate is registered mistakenly, or when a changed understanding of the

EIDR Registry User’s Guide 19 2016-04-28

underlying assets means that they should now be viewed as identical. Both
IDs will exist, but both will resolve to the same underlying EIDR metadata,

• If an ID really must be deleted (because it was a complete error, such as a
mistaken registration) the underlying metadata is removed and the ID is
aliased to a tombstone record. The ID can still be resolved, which is important
if it ever made its way into external systems, but the requesting entity will
know the underlying object no longer exists.

An alias is a simple indirection from one DOI to another. An alias is not intended as a
general tool; rather, it should only be used for correcting errors. For example, if a
film mistakenly gets two IDs (perhaps because of problems involving workflow and
working titles) the incorrect one can be aliased to the correct one. As a concrete
example, if an incorrect ID is burned onto a BD-Live disk and is subsequently
corrected by aliasing, that ID can still be resolved by the server in response to client
requests for the deprecated ID. The server can treat the content as valid simply
because the ID is resolvable, or add extra checking.

A Series or Season object cannot alias to a record that has any of these relationships:
isEpisode, isEdit, isClip, isCompilation, isComposite. isManifestation.

Deleted objects are aliased to a tombstone. Because the tombstone object is of type
Restricted, only three of its fields have guaranteed values. Other fields are not
used.

Field Value

ID 10.5240/ 0000-0000-0000-0000-0000-X

Structural Type Restricted

Resource Name “EIDR Tombstone Object”

The tombstone object is not indexed, so it will never be returned from queries.

Alias chains: An object may be aliased to an object that is itself an alias. If
followAlias is true when doing a resolution (the normal case) the chain is
followed until it ends up at a resolvable record or the chain is more than five levels
deep, in which case the registry returns an aliasContinuation, which contains
the last object reached and the object to which it is aliased. You can continue
towards a real object by applying a resolve on the item to which the last object is
aliased.
Record resurrection: If an EIDR record is erroneously aliased or deleted, it is
possible to reclaim the ID and restore it to active use once again. This is a special

EIDR Registry User’s Guide 20 2016-04-28

administrative procedure. Requests for restoration of an aliased or deleted ID
should be carefully considered and only made when absolutely necessary.

Virtual Fields

Besides individual fields, an object contains two virtual string fields that combine
multiple other base fields. Both of these are normalized (punctuation stripped,
spaces collapsed) and tokenized using the default (English) rules. Stop-word
filtering and stemming are not applied. This also applies to strings as queries on the
virtual fields. For more information, see Appendix B: Text Processing and Queries.

• Full – composed of these fields from FullObjectMetadataType
o BaseObjectData/ResourceName

o BaseObjectData/AlternateResourceName

o BaseObjectData/DisplayName

o BaseObjectData/Description

o BaseObjectData/Credits/Director/DisplayName

o BaseObjectData/Credits/Actor/DisplayName (using all
that are present)

• SelfDefined – same as FullString, but only those fields that are not
inherited

In queries, the XPath expressions for the virtual fields are:
/VirtualField/Full

/VirtualField/SelfDefined

The order of the tokens within each of the constituent fields is preserved, but the
order in which the constituent fields are added to the virtual field is not defined.
This means that an exact match query (using <field> "<string>") returns
unpredictable results when the exact query might match token sequences that cross
fields. It matches token sequences within individual fields predictably as it would on
the single field.
The values of the virtual fields can be retrieved using GetVirtualFields().
This can be useful for debugging, but is not intended to be used for presentation to
an end user.

Parties

A Party represents an entity such as a Registrant or a producing agent. A User is an
individual (or an abstract thing that can be treated as an individual, such as software
program performing an automated task).
All Users are associated with a Party.
Most Registry requests require authentication information for a User, and all
requests allow it.

EIDR Registry User’s Guide 21 2016-04-28

Only Parties have permissions in the system; a User has all the permissions
associated with its parent Party.
A Party can be either Active or Inactive. An inactive Party may not make any
modifications to the database; that is, it may not be a Registrant or a Writer, and all
Users associated with it are similarly restricted.
There is a predefined Party representing EIDR Operations (10.5237/superparty).
Only the EIDR operator has the ability to create or modify Parties.
A Party can have one or more of the following roles:

• AssociatedOrg: These bring forth the object being registered: a studio in
the case of an abstract work; or an encoding house for the work in a final
digital form; or even an anti-piracy vendor for registering a newly
discovered illegal copy of a work. The important thing to remember about
this field is that it refers to the Party that most recently touched the item.
A party can only be used as an Associated Organization if it has
AssociatedOrg in its AllowedRoles.

• Registrant. A Party, which registers content, may be a studio or an
encoding house, but it may also be a Party doing bulk registration of back-
catalogue items, or a Party acting on behalf of someone else. The User
requesting the creation of a new object must be associated with the
Registrant (a Party) given in the registration data.

• MetadataAuthority: This party may be included optionally by the
registrant to indicate the entity the registrant thinks is most likely to have
some authority over this object. For example, a metadata provider doing
bulk registration may make this field the same as the production
company for objects reasonably sure to be under the control of that entity,
and leave it blank otherwise.

• EncodingAgent: Optional Party used when registering Manifestations.
Additionally, an entity can be registered as:

• Reader: If the entity is on an object’s ACL, it can read objects and
metadata that would otherwise be hidden. This applies only to “in
development” objects.

• Writer: Can read and modify objects, but not create them.

For example, an encoding house that registers new Manifestations is the Registrant
for the object. In the strictest sense, they could be the producer as well, but that is
not mandated; in this example the rights holder could require that the producer for
the Manifestation be the same as that for the parent object. The encoding house may
also be the EncodingAgent for each item, unless some aspect has been
subcontracted to a third party such as a specialist subtitle shop.

EIDR Registry User’s Guide 22 2016-04-28

Permissions Model

A regular record can be created, modified, aliased, or deleted. An in-development
record can also be Promoted. It is also possible to read certain types of
administrative information about a record.
A Party (and its Users) can only create a new record if it has “Registrant” in the
AllowedRoles field.
A Party (and its Users) must be on the object’s ACL in order to be able to create,
modify, or read a record’s ACL or detailed provenance metadata. (Anyone can view
any record or relationship in the Registry along with basic provenance metadata,
except for In-Development records, as noted below).
Other actions are gated by ACLs on the individual records. Each regular record has
an ACL for:

• Modify: Can contain Parties that are of type Registrant or Writer. Required
to modify an object.

• Delete: Can contain Parties that are of type Registrant or Writer. Required
to alias or delete an object.

• ReadACL: Can contain Parties that are of type Registrant, Writer, or Reader.
Required to read any ACL.

• WriteACL: Can contain Parties that are of type Registrant. Required to
modify any ACL.

• ReadProvenance: Can contain Parties that are of type Registrant, Writer,
or Reader. Required to read the provenance metadata. Only the Registration
Authority can modify a record’s Provenance information.

In-Development records have two more ACLs:

• Promote: Contains Parties of type Registrant. Required to promote an In
Development object to Valid.

• View: Contains Parties of any type. Required to view In Development objects
or have them returned from a query.

Access Control Lists

The following table summarizes possible permissions based on the Role. For a given
object, the associated permissions for a particular Party (with a Role) may be more
restrictive than what is specified in the table.

Role\Permission View Read
ACL

Read
Provenance

Modify Delete Write
ACL

Promote

Registrant Yes Yes Yes Yes Yes Yes Yes

EIDR Registry User’s Guide 23 2016-04-28

Role\Permission View Read
ACL

Read
Provenance

Modify Delete Write
ACL

Promote

Writer Yes Yes Yes Yes Yes Yes Yes

Reader Yes Yes Yes No No No No

AssociatedOrg Yes No No No No No No

MetadataAuthority Yes No No No No No No

EncodingAgent Yes No No No No No No

If a Role is removed from a Party, any ACL that depends on the presence of that role
will disallow the action, even if the Party is in the ACL. For example, if the Writer
role is removed from a Party, that Party and its associated Users will not be able to
modify records for which it was already on the ACLs for Modify, Delete, WriteACL,
and Promote, and will not subsequently be able to be added to the ACLs for Modify,
Delete, WriteACL, or Promote on any other objects.
In development records, as opposed to valid records, are records that are registered
but not officially released. It is not recommended that records be in this state. They
have two more ACLs than valid records:

• Promote: Entities on this list must be of type Registrant. Entities on this list
can promote an In Development object to Valid.

• View: Entities on this list can be of any type. Entities on this list can view an
in-development object or have them returned from a query.

EIDR Registry User’s Guide 24 2016-04-28

5 Content Read Operations

There are several ways of getting information about an EIDR ID:

• Resolution provides the metadata associated with a particular EIDR ID in
various formats, which are:

o Full
o Self-defined
o DOI Kernel
o Inherited

• Provenance returns information about the ID’s creation and modification. It is
a special case of resolution.

• Traversal provides information about how the record fits into the object
hierarchy, using inheritance, lightweight, and dependence relationships.

• Queries return records with metadata matching certain criteria.
• Matching returns information regarding potential duplicates for a given

candidate record. Matching can be used prior to creating a new record as
part of an external deduplication process to help prevent duplicate
registrations from reaching the registry.

Resolution

Resolution provides various views of the metadata associated with a particular ID.
Content metadata can be requested in these formats:

Full: This gives an object’s complete metadata, filling in inherited fields and
fully realizing any language additions or replacements.
DOIKernel: Returns metadata formatted according to the DOI Kernel
metadata for a referentCreation. Please see EIDR Data Fields Reference for full
details.
SelfDefined: Returns metadata found on the object itself, ignoring
inheritance and language accumulation.
Inherited: Returns only metadata which has been inherited from an
ancestor.
Simple: Returns minimal information, including the name, structural type,
referent type, primary language, release date, and status of an object, along
with skeletal descriptions of its relationships.
Provenance: Returns information about an object’s creation and
modification history.

Party and Video Service Provider metadata can be requested as Full or DOIKernel.
See the EIDR DOI Mapping for details on the latter.

EIDR Registry User’s Guide 25 2016-04-28

Traversals

Traversals are used for discovering how the content record fits into the graph that
represents its relationship to other objects.
Traversals stop at the first object for which the requester does not have read
permission. The standard Permission error is used only for permission errors on the
ID in the original request.
Traversals always follow aliases.
All traversals return results in depth-first order. With traversals you can perform
the following operations:

• Find ancestors
• Get series ancestry
• Get remotest ancestor
• Find descendants
• Get leaf descendants
• Get parent
• Get children
• Get dependent objects
• Get lightweight relationships.

Queries

The query facility takes a set of metadata criteria as input and returns
eidr:simpleDataInfoType for all objects that match those criteria. The
simplest query tests a single metadata field. More complex queries can be built up
by grouping simple queries together with standard logical expressions.
Queries can be based on the content record's metadata, its modification history
(provenance), and its virtual fields. For more information and examples of queries,
see Appendix B: Text Processing and Queries.

Using Traversals and Queries to Find Records

This query finds all records with “Kung Fu” in the title:
(/FullMetadata/BaseObjectData/ResourceName "Kung Fu")

This query finds all records modified in 2013:
(/ProvenanceMetadata/LastModificationDate = 2013)

You can perform a rooted query to get the descendants of a specified object, such as
the Episodes for a Series or Season, as shown in the following example using the
EIDR command line tools:
To find all the Episodes registered for a Series with EIDR content ID 10.524/301C-
0DFA-B184-5448-BB3E-I as the root object, create the file query-ep.txt containing
 (/FullMetadata/ExtraObjectMetadata/EpisodeInfo EXISTS)

EIDR Registry User’s Guide 26 2016-04-28

and run
 QueryTool -i query-ep.txt -r 10.5240/301C-0DFA-B184-5448-BB3E-I-t full

to see the full metadata for all the episodes of the Series.
Similarly,
 QueryTool -i query-ep.txt -r 10.5240/301C-0DFA-B184-5448-BB3E-I -n

will tell you how many episodes the Series contains.
This example finds all items that are packaging of a particular record:
(/FullMetadata/ExtraObjectMetadata/PackagingInfo/ID
10.5240/259A-5359-3425-8B6E-C169-A)
Other lightweight relationships (such as Promotion) are analogous. You can find
anything that is a packaging of something else with
(/FullMetadata/ExtraObjectMetadata/PackagingInfo EXISTS)

EIDR Registry User’s Guide 27 2016-04-28

6 Using Parties

Parties are used as Production or Distribution companies in content records and as
the entities to which Users are attached and give them permissions (both registry-
wide, such as registration, and record-specific, such as write access to a particular
record).
The public Party API allows you to retrieve information about Parties and Users in
several ways:

• Search for Parties by name
• Retrieve results from an alphabetized catalog of all the Parties
• Resolve a Party (as EIDR or DOI kernel metadata)
• Resolve a User (as EIDR metadata)

There is a separate administrative API used by the Registry Operator for creating
and modifying Parties.
Because there are tens of thousands of production companies, some of which
existed to produce a single movie, and because many production companies are
related to each other, it is often hard to get reliable information. This in turn can
lead to incorrect creation of Party records – for example, “XYZZY Films” may or may
not be the same entity as “XYZZY Productions”, or they both could be one-time
subsidiaries of “XYZZY LLC”.
To correct this, EIDR has a process to deprecate duplicate or erroneous Parties.
After the request to deprecate a party (containing a preferred party to be used
instead) is submitted to the Registry Operator, the deprecated Party is marked
Inactive.
In both cases, the names associated with the deprecated Party are added as
alternate names to the preferred (correct) party and uses of the deprecated Party
are replaced by the preferred Party. Applications should make sure they do not use
(or allow users to use) deprecated Parties when registering or modifying content
records.

EIDR Registry User’s Guide 28 2016-04-28

7 Deduplication

A good ID is unique; an ID represents a single object, and a single object is
represented by only one ID. In order to guarantee universal uniqueness, EIDR
content registrations go through a central system that uses a deduplication module
to guarantee that an object is unique. Once a unique ID is assigned to an object, the
ID becomes a persistent and permanent part of the registry, available for use by the
media and entertainment ecosystem.

Overview

The deduplication module responds to a registry request with one of four outcomes.
• No Duplicate: The record submitted is unique.
• Duplicate: The record submitted is a duplicate of an existing object in the

registry.
• Potential Duplicate: There is a high likelihood that the record submitted is a

duplicate of a record or one of many records in the registry. Each request
specifies whether a potential duplicate is rejected or sent for manual review.

• Rejected: The submitted record was erroneous or ambiguous and could not
be processed further by the registry operator. After correcting the errors or
omissions, the record may be re-submitted.

When an attempt is made to register or modify an EIDR content record, the system
first decides if the action would result in there being duplicate records in the
database. This may occur, for example, if two back-catalogs contain records for the
same movie or TV show. Allowing the registration or modification would violate the
principal of one record/one ID.
There are sets of rules for determining candidates that match the newly created or
modified record, from which a matching system generates scores. Different referent
types and relationships have different scoring rules. Scores are computed against
two thresholds:

• Low threshold: Anything below this is presumably not a potential duplicate
• High threshold: Anything greater than or equal to this is almost certainly an

exact duplicate of the requested registration or modification
The normal operational mode for registration and modification is the asynchronous
path. If there is only one candidate and it is above the High Threshold, the system
automatically rejects the registration or modification attempt and communicates
the ID of the duplicate. The item returned as the duplicate is probably good enough
for the registry to use as the EIDR ID for the requested registration. However, if you
are certain that the submitted record is unique, despite its apparent similarity to the
identified duplicate, you may provide additional metadata sufficient to disambiguate
the record and re-submit the registry request or request a manual review by setting
the Operation element’s dedupMode flag to “manual”.

EIDR Registry User’s Guide 29 2016-04-28

If there are no candidates above the Low Threshold, then the registration or
modification is allowed to complete. Upon successful registration, you receive a new
EIDR ID; otherwise, for modification requests, the underlying metadata is modified
accordingly.
In all other cases having candidates above the Low Threshold for the asynchronous
workflow, the attempted registration or modification is manually reviewed by EIDR
to determine if it is an exact duplicate or new item registration.
In the synchronous workflow, which includes basic UI interaction, there are three
possible outcomes:

• Success with no matches
• Fail with 1 high match
• Fail with multiple candidate matches.

When reviewing the results after a failure, the user takes one of the following
actions:

• Identifies an exact match and uses that ID. In this case the user has
completed the task, though updating the existing record with expanded
metadata – including alternate IDs – is recommended practice.

• The metadata must be modified (e.g., fields added) to avoid a match: the user
resubmits.

• The metadata is correct: the user submits asynchronously to trigger manual
review and returns later for status from the token.

• There is a metadata or validation error: the user fixes the metadata and
resubmits.

Matching API

It is possible to obtain deduplication results without submitting a create or modify
request to the registry by using the Match API. This API call is similar to the Register
API, but the response is more like a query. If there are no errors, then the response
(Operation Status) will show “success”. If there are no entries in the duplicate
results list, then no existing records were found that scored above the low threshold
and the submitted record would be accepted as a new registration. If there are one
or more entries in the duplicate results list, then potential duplicates were found.
Each item in the duplicate list includes matching scores to indicate what would
happen at registration time (records above the low threshold go into manual de-
duplication and a single duplicate above the high threshold should be considered a
perfect match).

Tokens and Batches

The EIDR REST API has several calls, referred to as batchable operations, that can
modify the contents of the Registry. These are Create, Modify,
AddRelationship, RemoveRelationship, ReplaceRelationship,
Delete, Alias, and Promote.

EIDR Registry User’s Guide 30 2016-04-28

The EIDR API uses two approaches: single/batch requests and the immediate/async
response flag.

• In reality, all EIDR requests are batch requests. What is often called a single
or non-batch request is just a batch containing one request.

• The immediate/async response is a general mechanism, but can only be used
for a batch size of one (a single request).

Additionally, the EIDR API uses tokens to track the status of batchable operations.
This section contains a short overview describing how batch/single requests,
immediate/async responses, and tokens interact with each other, with examples of
the Registry responses for the various combinations.
Note: It is important to distinguish the Response returned by the Registry from the
value returned by a call through the SDK. In particular, the SDK provides some help
with various errors and the registry’s occasionally inconsistent error replies, but the
objects returned by the SDK have a direct mapping to the Registry Response
elements.

Single/Batch

All requests are submitted through the REST API as a batch. Batches of one (single
requests) are treated somewhat differently from batches with multiple requests.
All the operations in a batch must be the same (for example, all Create or all
Modify). The registry returns an Invalid Request Error for a batch that violates this
constraint.

Immediate/Asynchronous

In order to guarantee uniqueness, EIDR sends requests for modifying an object’s
metadata to the deduplication system. In most cases this automatically returns a
result. If there is ambiguity that cannot be resolved by the software, one of two
things will happen:

• If the request is marked as immediate-response, the registry immediately
returns an error to the application, giving details of the potential problems.
In some cases, immediate-response requests return more detailed status
information than asynchronous requests.

• If the request is not marked as immediate-response, it is sent for manual
deduplication. Registry operators make a decision, which is returned to the
application. This process is not real-time, and these requests are usually
referred to as asynchronous.

Immediate response applies only to single requests, and all multiple-request batches
are non-immediate. If an application requests immediate response for a batch of
more than one item, the registry returns an Invalid Request error. For example:

EIDR Registry User’s Guide 31 2016-04-28

<Response xmlns="http://www.eidr.org/schema" version="2.0">
 <Status>
 <Code>3</Code>
 <Type>invalid request</Type>
 </Status>
</Response>

Tokens

Every batchable request generates a token for the request; a multi-item request
additionally generates a token for each operation in the batch. This is done with two
kinds of tokens

• Operation tokens, which refer to individual Create, Modify, etc. requests and
are returned in the
/Response/RequestStatusResults/OperationStatus/Token
XML element.

• Batch tokens, which refer to the status of a batch request. These are returned
in the /Response/RequestStatus/Token element.

In addition, the user can assign a User Token to any batchable operation, generally
the user’s internal ID for the associated transaction. This may simplify certain
integrated system workflows, since the user’s system will not have to store the EIDR
token.
Information is extracted from tokens with the StatusLookup request. Operation
Tokens have detailed information about the status of an individual request (for
example, a single Create or Modify). Batch tokens have information about the status
of the batch and any available information about the individual items within the
batch. This information includes the Operation Token and current state for each
item in the batch.
Batches with a single item generate only a single token. This is treated as an
Operation Token whenever information relating to it is returned from the Registry
(for example, when it is initially generated, and when it is requested via
StatusLookup).

Operation Tokens

The /RequestStatusResults/OperationStatus/Status element will not
change once it has reached a terminal state. Anything other than Pending is a
terminal state. The
/RequestStatusResults/OperationStatus/Status/Code is a numeric
value from 0-5 with corresponding OperationStatus/Status/Type strings.
These elements, as well as the codes and types for other fields, are defined in api-
common.xsd.

EIDR Registry User’s Guide 32 2016-04-28

OperationStatus Code OperationStatus Type

0 success

1 duplicate

2 pending

3 authorization error

4 validation error

5 other error

For retrying error states:

• Duplicate Error should not be retried until something has changed (the
metadata in the request or the metadata of the object(s) that were found as
duplicates).

• Authorization Error should not be retried until something has changed (the
credentials in the request, ACL of any objects involved, or the roles allowed
to the requester).

• Validation Error should not be retried until something has changed (the
metadata in the request or the metadata on related object(s) that caused the
problem).

• Other Error is returned for various transient problems (such as bad
communication with the deduplication system) and can be retried. Since it
may reflect some other error, and transient does not necessarily mean short-
lived, some caution should be used – if this error is returned a second time, it
may not be productive to try it a third time.

Batch Tokens

For batches containing more than one item, once a batch has passed top-level
authentication, syntax checking, etc., there are two possible states:

• 1 (batch received) means that the batch has passed the preliminary
validation and is being turned into individual requests. No further
information is available at this point.

• 2 (batch queued) means that the individual requests have all been submitted.
In this state the individual tokens and the current state for each are returned
when you call StatusLookup with the batch token.

Batch queued is the only terminal state for a batch token.

EIDR Registry User’s Guide 33 2016-04-28

Scores

Scores can be returned in the response to immediate-mode requests to indicate how
close any duplicate items are to the requested registration. Scores are valid only for
immediate-mode requests. If they are present in the response to an async request,
they should be ignored.

Polling

You must poll on a token using StatusLookup until it reaches one of the possible end
states. For an Operation Token, there is really only one way to do it.
For a Batch Token you can extract all the Operation Tokens once the batch has
reached the “batch queued” state and manage them all individually, or you can poll
on the Batch Token, dealing with each Operation Token as it reaches an end state or
after all of them have reached an end state. The former is usually preferable, since
you do not have to continually poll on the Batch Token; the latter is less efficient but
may be preferable when you do not want the complexity of managing multiple
tokens. Using the Web UI, you can only submit one record at a time but can poll any
token. If you search for a batch token you will see the operation’s token results, and
you can look up each operation token separately.

EIDR Registry User’s Guide 34 2016-04-28

8 Content Create and Modify Operations

This section provides information on registration workflows, modifying records,
alias operations, and delete operations.

Registration Workflows

This section contains a description of synchronous and asynchronous registration
workflows, including the usage of the user interface and automated processes.
This is how people are encouraged to use the registry for new title registration
(conservative for title level records, e.g. episodes in a season, new root level records
such as movies, one-time-only television, new series). For Edits and Manifestations,
any difference in metadata is probably distinguishing and does not require manual
review (for example, a special version made for international release as opposed to
domestic, MPEG4 instead of MPEG2).
In the case of someone performing a manual registration with the user interface, the
process is somewhat transparent. If an asynchronous workflow requiring manual
review fails with a list of potential candidates, someone using the Web UI can review
the list of candidates and choose one that matches, or make their metadata distinct
and proceed to manual review.

Synchronous Workflow

The synchronous workflow results in immediate success or immediate failure
(which then requires manual review). To prevent repeated attempts by people
anxious for an EIDR while accommodating automated workflows, avoid the
asynchronous approach. If there are no candidates (nothing above Low Threshold),
the result is immediate success with a new registration. If there is a system error,
validation error, or record rejection, the user must fix the submission and resubmit.
Otherwise, the system returns either a high single match or multiple candidates for
consideration.
When reviewing after a failure, the user takes one of the following actions:

• Identifies an exact match. In this case the user has completed the task, though
updating the existing record with expanded metadata – including alternate
IDs – is recommended practice. If the user does not concur with the exact
match identified, the record can be submitted for manual review by setting
the dedupMode flag on the Operation element.

• The metadata must be modified: the user resubmits synchronously.
• The metadata is correct: the user submits asynchronously to trigger manual

review and returns later for status from the token.
• There is a metadata or validation error: the user fixes the metadata and

resubmits. There is always the chance of a system error as well, though
unlikely.

EIDR Registry User’s Guide 35 2016-04-28

API-based Asynchronous Workflow

The following diagram illustrates the asynchronous registration process using an
automated API-based workflow:

An API-based application submits asynchronously and polls the result for a status of
complete or incomplete. If the status is incomplete, the application waits (≈24 hours
or one business day) and polls again. If the request is resolved automatically it will
likely be returned within 10 seconds. It is advised to program a “back off” for slower
polling.
If there is invalid metadata or a system error a manual workflow may be used,
registering in the UI may be attempted, or code logic errors may be identified.
There are three possible outcomes:

• An exact match is found. Compare the metadata for differences. If there is no
difference, the process is complete (done). Otherwise, determine if the
differences are significant. If they are not, the process is complete (done). In
such cases the EIDR user corrects their own catalog, or EIDR has incorrect
information and the EIDR metadata must be fixed either through the UI or an
EIDR support request.

• If the user has additional data such as an internal studio identifier (alternate
IDs) to be placed on the EIDR record, the additional data are noted.

• Process modifications are needed. The EIDR user makes an administrative
request to EIDR to add the User to the ACL. After the User is added to the ACL,
the UI, API, or an Admin request to EIDR may be used to modify records.

In the case of new registration, there should be no corrections to the metadata and
alternate IDs are part of the new registration request. The process is complete
(done).

EIDR Registry User’s Guide 36 2016-04-28

Asynchronous Workflow Tools and API

API calls can be immediate, in which case the result is returned immediately; or
asynchronous, in which case the call returns a token which is used to discover the
status of the request. Not all calls support asynchronous results; those that do have
a flag in the interface specifying which mode to use.

User Interface Handling

The EIDR Web user interface supports common workflows for registration and
modification of objects as well as search and lookup. The Web UI is built on the EIDR
REST API. The following are some of the use cases supported by the UI.

• Resolve an ID: View its metadata and relationships
• Search for records based on one or more know object attributes (for example,

metadata fields)
• Create objects, with special screens for common cases (such as OTO)
• Modify objects
• Add or remove relationships for a selected object
• Create objects similar to or related to an existing object in the registry
• Check status of submitted registrations.

This example shows the Create screen of the Web UI with the list of Root and Child
Objects that one can register in the EIDR system:

EIDR Registry User’s Guide 37 2016-04-28

Modifying Records

Modifying objects is done by retrieving current information on the object, modifying
it, and re-submitting it, which must pass validation and deduplication. There are
APIs for retrieving object metadata and modifying an object.
If the object has multiple inheritance relationships and the parent field is changed,
the parent field in other inheritance relationships is changed as well.
Objects having a status of “in development” are not checked by the deduplication
service. They are sent for deduplication when they are promoted to a status
of ”valid”.

Here are the permitted ways to add relationships after object creation:

Addition of IsCompositeOf Dependent Relationship

Basic
Object

with IsEpisodeOf inheritance
relationship

Base object will not be of Referent Type
Composite

The lightweight relationships (IsPromotionOf, IsPackagingOf, IsAlternateContentFor,
and IsSupplementTo) can be added to any object at any time.
Any relationship that can be added can be removed, with the following exceptions:

• IsCompositeOf is not removable if the object’s referent type is Composite.
This will be the case when the composite information was supplied at
creation time.

Modifying objects has two components:

• Changing metadata for the type with which the object was created or could
have been created.

• Changing metadata for relationships which have been added or could have
been added to the object.

This table gives some examples of legal modification bases for records as they are
created and modified. This table is informative, and is not exhaustive.

Initial
creationType

Subsequent additions Legal modification
bases

Legal replace/remove
relationship

CreateBasic none CreateBasic none

CreateSeries none CreateBasic, CreateSeries none

CreateClip CreateBasic, CreateClip,
CreateManifestation

EIDR Registry User’s Guide 38 2016-04-28

9 Error Types

The following Status Codes apply to all operations:

Status
Code Status Type Note

0 success Indicates that the API request succeeded.

1 system error Should be reported to EIDR support

2 registry in
read-only error

Should be reported to EIDR support unless this
Registry is a mirror or is scheduled to be read-
only.

3 invalid request An API (URI) that does not exist including
missing a required parameter. Remember that
parameters (such as type=Simple) are case
sensitive. Could also be POST data that is
syntactically invalid such as missing required
headers or if the end-of-line characters are not
CR-LF.

4 authentication
error

Invalid credentials including an Inactive
account.

5 authorization
error

The operation requires credentials. Or the
credentials provided are not authorized to
perform this operation. Check with EIDR
support about this operation.

6 bad token error There is a problem with the token ID such as
one that is not syntactically valid or does not
exist.

7 bad query error There is a problem with a content record query.
This could include a typographical error in an
EIDR field name.

8 bad id error There is a problem with the content ID such as
one that is not syntactically valid or does not
exist.

EIDR Registry User’s Guide 39 2016-04-28

Status
Code Status Type Note

9 syntax error Invalid XML in a query or write operation.
Examples: an incorrect namespace declaration;
an element not closed; or incorrect case for an
enumerated value.

10 result too long A result was too large to fit in a REST response.
This can be caused by requesting too large a
page size in queries.

11 duplicate party An Administration API error

12 duplicate user An Administration API error

13 bad party There is a problem with the Party ID such as it
does not exist

14 bad user There is a problem with the User ID such as it is
syntactically invalid or does not exist.

15 all valid An Administration API error

16 wrong group An Administration API error

17 Invalid An Administration API error

18 no parent The object of a GetParent request is itself the
root of a content record tree.

19 no children The object of a GetChildren request is itself a
leaf of a content record tree.

20 has dependents The content record cannot be deleted because it
has dependent relationships.

21 duplicate
service

An Administration API error.

22 bad service Invalid Video Service ID.

23 compatibility
error

The operation cannot be supported with the
requested value in the EIDR-Version header.

When the Request is a content Operation, the Response also includes an Operation
Status code as described in the Operation Tokens section. The “validation error”
usually includes a Details field. Examples of Details text include:

EIDR Registry User’s Guide 40 2016-04-28

Details Text Note
ID must be an
identifier of a valid
record

An operation was attempted on an invalid ID. For
example to Modify an aliased record or deleting a
record that is already deleted.

Must be a <Type>
object

Attempt to modify an object with an incompatible
data type. See the Modifying Records section.

EIDR Registry User’s Guide 41 2016-04-28

Appendix A: DOI Proxy Parameters

EIDR resolutions can be requested from the standard DOI proxy. Resolution
requests are of the form:
http://dx.doi.org/<Handle prefix>/<Handle suffix>

Object resolutions have the standard optional resolution type specifier, e.g.,
http://dx.doi.org/10.5240/F85A-E100-B068-5B8F-B1C8-T?locatt=type:Full

In the following table, “Resolution Type” is the string after the colon in
the ?locatt=type: construction. A (none) means that the type specifier is not
provided.
Proxy resolutions follow alias chains, and behave like the Resolve() call with
followAlias set to true. See Resolve() for information on special cases for
deleted objects, over-nested aliases, etc.

EIDR item Prefix Resolution Type Returns

Party 10.5237 (none) doi:kernelMetadata with a
doi:referentParty element

User 10.5238 (none) doi:kernelMetadata with referent type of
Restricted
doi:referentParty element with a name of
“EIDR User”

Object 10.5240 (none) Returns metadata formatted as
eidr:fullObjectInfoType.

Object 10.5240 Full Returns metadata formatted as
eidr:fullObjectInfoType.

Object 10.5240 SelfDefined Returns metadata formatted as eidr:
allSelfDefinedInfoType.

Object 10.5240 Simple Returns metadata formatted as
eidr:simpleDataInfoType

Object 10.5240 DOIKernel Returns metadata formatted as
doi:kernelMetadata.

EIDR Registry User’s Guide 42 2016-04-28

Appendix B: Text Processing and Queries

Language-specific Filtering

There are language-specific lists for English, French, Spanish, Italian, and German
for:

• Punctuation that turns into spaces
• Punctuation that collapses two words together
• Stop words that get filtered out

Language-specific rules are given in the table below. If a field has a language
attribute, then the language-specific rules are applied; otherwise, English rules are
applied. The query string is processed based on the language field in the queried
field; if there is no language attribute, English rules are applied.
Note that the dash in language fields (e.g. de-CH) is not removed.

Language Spacing Punctuation Collapsing
Punctuation

Stop Words

English . , ; : ^ & ! + - = () [] { }
< > ~ # $ / * @ € £
" (double quote)
- (hyphen)

' (single quote)
’ (apostrophe)

a, the, this, that, these, some,
is, are, and, or, but, so, as, at,
by, of, on, for, in, into, to,
with, I, you, he, she, it, we,
they, them, its, theirs

French . , ; : ^ & ! + - = () [] { }
< > ~ # $ / * @ € £
" (double quote)
- (hyphen)
« »

' (single quote)
’ (apostrophe)

un, une, le, la, les, l, ce, ces, c,
de, du, des, d, est, sont, a, ont,
ne, pas, n, et, ou, mais, que,
qui, qu, à, aux, sur, dans, en,
par, avec, y, il, elle, ils, elles,
lui, leurs, son, sa, ses, leur

Italian . , ; : ^ & ! + - = () [] { }
< > ~ # $ / * @ € £
" (double quote)
- (hyphen)
« »

' (single quote)
’ (apostrophe)

ad, al, allo, ai, agli, all, agl,
alla, alle, con, col, coi, da, dal,
dallo, dai, dagli, dall, dagl,
dalla, dalle, di, del, dello, dei,
degli, dell, degl, della, delle,
in, nel, nello, nei, negli, nell,
negl, nella, nelle, su, sul, sullo,
sui, sugli, sull, sugl, sulla,
sulle, per, tra, contro, lui, lei,
noi, loro, suo, sua, suoi, sue,
lo, la, li, le, gli, ne, il, un, uno,
una, ma, ed, se, perché,
anche, come, dov, dove, che,

EIDR Registry User’s Guide 43 2016-04-28

Language Spacing Punctuation Collapsing
Punctuation

Stop Words

chi, cui, non, più, quale,
quanto, quanti, quanta,
quante, quello, quelli, quella,
quelle, questo, questi, questa,
queste, si, a, c, e, i, l, o, sono, è

Spanish . , ; : ^ & ! + - = () [] { }
< > ~ # $ / * @ € £
" (double quote)
- (hyphen)
« »
¿
¡

' (single quote)
’ (apostrophe,
but it is not used
in Spanish)

un, unos, una, unas, el, los, la,
las, este, esta, esto, estos,
estas, ese, esa, eso, esos, esas,
es, son, está, están, hay, y, o,
pero, de, en, para, como, con,
por, sobre, el, ella, ellos, ellas,
se, su, sus, suyo, suya, suyos,
suyas

German

. , ; : ^ & ! + - = () [] { }
< > ~ # $ / * @ € £
" (double quote)
- (hyphen)
„ “
« »

' (single quote)
’ (apostrophe)
[Note: this
means that an
apostrophe at
the end of a
word is dropped,
and one in the
middle of a word
for
abbreviations
collapses the
two parts
together.]

ein, einer, eine, eines, einem,
einen, der, die, das, den ist,
sein und, oder durch, als,
von, mit, für, am, in, aus er,
sie, es, sie ihn ihm, ihr, ihnen
sein, siene, ihre

Field Rules

There are three kinds of matches:

• Token Match – the check is made for the existence of the tokens in any order
in the candidate string. This uses the <field> <string> <string>
syntax.

• Exact Match – the check is done for the existence of an ordered sequence of
tokens in the candidate string. This uses the <field> "<string>" syntax.

• Complete Match – checks for the exact existence of the exact query string or
not. This is generally used for fields containing controlled vocabulary or IDs,

EIDR Registry User’s Guide 44 2016-04-28

but can also be used on some text fields. For a non-tokenized field, the query
string and the field must be identical. A tokenized field must be identical to
the tokenized query string. This uses the IS and ISNOT operators.

Controlled vocabulary fields have punctuation replaced by a space, and are then
tokenized.

Field Match type Normalize Filter
Stop
Words

Stem

ResourceName Token Yes No No

Exact Yes No No

AlternateResourceName Token Yes No No

Exact Yes No No

Any field called DisplayName Token Yes No No

Exact Yes No No

VirtualField (Full and self-defined)
See description of Virtual Fields.

Token Yes No No

Exact Yes No No

Description Token Yes Yes Yes

Exact Yes No No

HouseSequence Complete No No No

RegistrantExtra Complete No No No

RegistrantPrivate Complete No No No

AlternateID Complete No No No

FindPartiesByName See function
definition

Yes No No

FindPartiesFromCatalog See function
definition

Yes No No

Simple Queries

The metadata fields to be tested are represented with a subset of XPath notation
that supports only complete paths to elements and attributes. (For more
information on XPath, see http://www.w3.org/TR/xpath20/.) The XPath used in
query requests can be based on:

http://www.w3.org/TR/xpath20/

EIDR Registry User’s Guide 45 2016-04-28

• /FullMetadata, which is of type fullObjectInfoType: This queries
across the objects’ inherited metadata.

• /ProvenanceMetadata, which is of type provenanceInfoType:
This queries across the objects’ provenance metadata.

In these examples the parentheses are not strictly necessary, but improve legibility.
Note that XML, at the protocol level, requires escaping of special characters (<, >,
etc.), although procedural implementations of the API may hide that from the
application.

 This query finds all objects longer than 20 minutes and shorter than 40 minutes:
(/FullMetadata/BaseObjectData/ApproximateLength > PT20M00S) AND
(/FullMetadata/BaseObjectData/ApproximateLength < PT40M00S)

This finds all records modified in 2010. (See below for the precision of date
comparisons.)
(/ProvenanceMetadata/LastModificationDate = 2010)

There are several kinds of simple queries, not all of which are applicable to all
fields.

Exact Value: These queries use IS and ISNOT. They are applicable to

• Fields containing DOIs
• Fields containing controlled vocabulary
• Certain text fields.

Note that for a non-existent field, ISNOT returns TRUE.

Exact Value-language: This special case of Exact Value fields for language fields
uses IS and ISNOT and behaves as follows:

• If only a pre-dash component is supplied in the query, it matches anything
with that prefix.

• If the language code in the query has a – in it, it only matches another field
that is exactly the same.

• Examples:
o es matches objects that have es, es-ES, and es-419
o de-CH matches de-CH, but not de or de-DE.

Order: Queries can be done using comparisons (<, <=, >=, >) as well as equality and
inequality (=, <>) for fields that contain:

• Integers
• Dates
• Durations.

Existence: The existence of a field can be queried. This is useful for optional
elements that represent large optional sub-blocks (e.g. the subtitle tracks of a
Manifestation).

EIDR Registry User’s Guide 46 2016-04-28

For example, this finds all objects that have information about separately encoded
subtitles:
(/FullMetadata/ExtraObjectMetadata/ManifestationInfo/Digital/Track/
Subtitle EXISTS)

Text Matching:

• Text queries are case-insensitive.
• Both the text in the query string and the text stored in the registry are

generally processed into tokens before matching. Tokenization consists of
one or more of the following steps.
o Normalization: Sequences of whitespace are collapsed into a single

space; some punctuation is converted to spaces; and some punctuation is
removed (causing concatenation of the string before it with the string
after it). This gives a series of tokens.

o Two filters can be applied to the tokens that result from normalization:
o Stop words (small, common words, such as “the” or “in” in English

or “la” and “en” in Spanish) are filtered.
o Words are stemmed; stemming removes plurals, turns inflected

words into the appropriate root, and so on.
• Strings represented using the Latin alphabet can be searched with or without

diacritic significance. ASCII-based searches ignore diacritic marks (“ü” is
equivalent “u”), while non-ASCII searches treat characters with different
diacritics as distinct.

Search Expressions

There are two kinds of text queries:
• The form <field> <string1>…<stringN> is true for any field that has one or

more of the strings. It is equivalent to <field> <string1> OR <field>
<string2> OR ... OR <field> <stringN>

• The form <field> "<string>" is true for any field that has exactly <string>
in it. <string> is tokenized before the comparison. Stated another way, the
token sequence generated by <string> must appear exactly in <field>. The
tokenization rules applied to applied to <string> are those applied to
<field>.

The grammar for query expressions is:

<expression> ::= <term>
 | <expression> OR <term>
 | <expression> AND <term>
 | NOT <term>
 | ASCII (<expression>)

<term> ::= <field> EXISTS
 | <field> <string> <string>*

EIDR Registry User’s Guide 47 2016-04-28

 | <field> "<string>"
 | <field> IS "<string>"
 | <field> ISNOT "<string>"
 | <field> <logop> <value>
 | (<expression>)

Note: * is the equivalent of EBNF {} and "<term> || NOT <term>" could be EBNF
"[NOT]<term>"

<field> ::= legal xpath attribute
 | legal xpath element

<value> ::= number | date | time | duration
<logop> ::= = | <> | < | <= | > | >=

ASCII Searches

Using the ASCII operator in a query string changes the way Latin alphabet-based
text strings are compared so that characters with and without diacritic marks are
evaluated identically by mapping them all to their ASCII equivalents. The mapping is
based on Unicode NFKD decomposition plus the Latin supplement (Latin-ASCII.xml)
from the Unicode Common Locale Data Repository. When searching in this mode, “ü”
is equivalent “u” and “ł” is equivalent to “l”. This means that in most cases, ASCII
versions of Latin content titles no longer need to be created manually.
To search in this mode include an ASCII modifier to one or more query Expression
clauses:
ASCII((/FullMetadata/BaseObjectData/Credits/Actor/DisplayName Martín)
OR (/FullMetadata/BaseObjectData/Credits/Actor/DisplayName Jose))

This would find actors named Martin or José.
Note: ASCII searches do not automatically account for locale-dependent forms, such
the “ü” in German which may be represented as “ue” in English or Latin
transliterations (Romanization) of non-Latin scripts such as Cyrillic, Chinese, or
Arabic, which must still be produced manually.

Notes and Examples

• The types on each side of a <logop> must be compatible.

• Wildcards are not currently supported; normalization and stemming cover
the problems for which wildcards are generally used.

• Comparison operations for dates and times truncate to the lowest precision
in the expression.

• Although ranges are not directly supported, they can be implemented using
two simple queries combined by AND.

EIDR Registry User’s Guide 48 2016-04-28

• Fields that contain controlled vocabulary are tokenized, with punctuation
characters removed.

• The empty string matches nothing, rather than everything.

• For non-existent fields, all ISNOT comparisons evaluate as True. For
example, if there is no CountryOfOrigin field,
(/FullMetadata/BaseObjectData/CountryOfOrigin ISNOT fr) is True.

• IS and ISNOT apply to Value, Value-language, and Text fields.

o For Value fields, they are useful for testing for controlled vocabulary
words, equality of DOIs, and equality of non-tokenized fields such as
HouseSequence, AlternateID, and the various private data fields.

o For Value-language, they are used as described above.

o For text fields, the field and the string have the same tokenization
rules applied (see Appendix B: Text Processing and Queries for
individual fields).

• Comparisons are done to the precision of the least precise argument. For
example, a date field containing 2010 is >=, <=, and = to 10-10-2010. Using
>=2012-01-01 would return the records in 2012 and later.

• Some applications may want to do queries across only metadata on the
object itself, as opposed to the full metadata. This can be useful for
applications whose main purpose is dealing with the metadata, rather than
dealing with the objects defined by the metadata. This can be done by doing
a regular query, calling Resolve() to return only self-defined metadata,
and then examining those results.

• As an example, imagine a Registry that has objects with the following titles
in the ResourceName fields:

o Batman: The Dark Knight
o Knight of Dark Stories
o Dancing In The Dark
o Darkness At Noon
o Darkness Waits
o The Ghost and The Darkness
o Shanghai Knights
o Shanghai Noon
o Sinbad: The Battle of the Dark Knights
o First Knight

Querying on /FullMetadata/BaseObjectData/ResourceName (abbreviated field in
the table) gives these results:

EIDR Registry User’s Guide 49 2016-04-28

Expression Results Notes

field Dark Batman: The Dark Knight
Knight of Dark Stories
Dancing In The Dark
Sinbad: The Battle of the Dark
Knights

Anything with “Dark”.

field "Dark
Knight"

Batman: The Dark Knight

Anything with exactly
the sequence “Dark
Knight”. Sinbad: The
Battle of the Dark
Knights is not included
because titles are not
stemmed.

field Dark Knight Batman: The Dark Knight
Knight of Dark Stories
Dancing In The Dark
Sinbad: The Battle of the Dark
Knights
First Knight

Any title that has “Dark”
or “Knight”.

field Knights Shanghai Knights
Sinbad: The Battle of the Dark
Knights

Any title with “Knights”.

(field Dark) AND
(field Knight)

Batman: The Dark Knight
Knight of Dark Stories

Any title with both
“Dark” and “Knight”, in
any order and any
position.

(field Dark) AND
NOT (field The)

Knight of Dark Stories

Sinbad: The Battle of
the Dark Knights is not
included because
comparison is case-
insensitive.

Note: The ISNOT, NOT and <> operators can be inefficient when applied globally.

EIDR Registry User’s Guide 50 2016-04-28

Example Queries

Finding Types of Objects

Find all Series, 1
Also works with “Season”

(/FullMetadata/BaseObjectData/ReferentType Series)

Find all Series, 2
Also works with SeasonInfo,
EpisodeInfo, ClipInfo,
CompilationInfo,
CompositeInfo,
ManifestationInfo,
PackagingInfo, PromotionInfo,
AlternateContentInfo,
SupplementalContentInfo

(/FullMetadata/BaseObjectData/SeriesInfo EXISTS)

Find all records (/FullMetadata EXISTS)

Find all root objects.
This is done by checking for
the absence of any relationship
that requires a Parent.

(NOT ((/FullMetadata/ExtraObjectMetadata/SeasonInfo EXISTS)
OR (/FullMetadata/ExtraObjectMetadata/EpisodeInfo EXISTS) OR
(/FullMetadata/ExtraObjectMetadata/EditInfo EXISTS) OR
(/FullMetadata/ExtraObjectMetadata/CompilationInfo EXISTS) OR
(/FullMetadata/ExtraObjectMetadata/ClipInfo EXISTS) OR
(/FullMetadata/ExtraObjectMetadata/ManifestationInfo EXISTS)))

Registrant and AssociatedOrg

Find all ”in
development”
records for a
Registrant.

(/FullMetadata/BaseObjectData/Administrators/Registrant 10.52337/ABCD-
EF01) AND (/FullMetadata/BaseObjectData/Status Dev)

Find all valid
records with a
particular
AssociatedOrg.

(/FullMetadata/BaseObjectData/AssociatedOrg@organizationID
10.52337/ABCD-EF01) AND (/FullMetadata/BaseObjectData/Status valid)

Find all valid
records with one or
the other of two
AssociatedOrg IDs.

Generalization is
left to the reader.

((/FullMetadata/BaseObjectData/AssociatedOrg@organizationID
10.52337/ABCD-EF01) OR
(FullMetadata/BaseObjectData/AssociatedOrg@organizationID 10.52337/2345-
6789)) AND (/FullMetadata/BaseObjectData/Status Valid)

EIDR Registry User’s Guide 51 2016-04-28

Registrant and AssociatedOrg

Find things
registered by the
EIDR Operations.

(/ProvenanceMetadata/Administrators/Registrant IS 10.5237/superparty)

Find things not
registered by the
EIDR Operations.

(/ProvenanceMetadata/Administrators/Registrant ISNOT 10.5237/superparty)

Looking for Possible Data Quality Problems

All Items with English title
and non-English primary
language.

The records may be
correct (The Hangover
was released as Very Bad
Trip in France) but is
quite often not, so it is
worth investigating,
especially for bulk
registration.

Method 1:

(/FullMetadata/BaseObjectData/ResourceName@lang en) AND
(/FullMetadata/BaseObjectData/PrimaryLanguage/Language ISNOT en)

Method 2:
(/FullMetadata/BaseObjectData/ResourceName@lang en) AND NOT
(/FullMetadata/BaseObjectData/PrimaryLanguage/Language en)

Find everything from
before 1936 that is not a
Movie.

(/FullMetadata/BaseObjectData/ReleaseDate <= 1936)

 AND (/FullMetadata/BaseObjectData/ReferentType ISNOT Movie)

AND (/FullMetadata/BaseObjectData/ReferentType ISNOT Series)

Bad Season End date
These can creep in if an
export program uses a
silly default when there is
no date in the database.
Change SeasonInfo to
SeriesInfo for bad Series
end dates.
You can also generate
queries like this for
checking consistency for
series, using either tools

(/FullMetadata/ExtraObjectMetadata/SeasonInfo/EndDate > 2014)

EIDR Registry User’s Guide 52 2016-04-28

Looking for Possible Data Quality Problems

and scripts or the SDK.
-- Do a Full resolution
-- Extract the end date
-- Construct the query,
using the series as the
root of the query

Find things with EIDR
Operations as
AssociatedOrg.

(/FullMetadata/BaseObjectData/AssociatedOrg@organizationID
10.52337/Superparty)

Statistics

(The –n flag in QueryTool is useful here)

Find all records modified
since 31 December 2010.
Use this to do incremental
backups, setting the date
to be the day before you
started the last one (to
avoid race conditions and
time zone issues).

(/ProvenanceMetadata/LastModificationDate >= 2010-12-31)

Find anything registered
in February, 2013.

(/ProvenanceMetadata/CreationDate >= 2013-02-01) AND
(/ProvenanceMetadata/CreationDate < 2013-03-01)

Find all records registered
by Registrant
10.5237/ABCD-EF01 in
August, 2012.

(/ProvenanceMetadata/Administrators/Registrant IS 10.5237/ABCD-
EF01) AND ((/ProvenanceMetadata/CreationDate >= 2012-08-01) AND
(/ProvenanceMetadata/CreationDate < 2012-09-01))

	1 Prerequisites
	2 Overview
	Usage Options for the EIDR Registry
	User Interfaces
	Command Line Tools
	SDK

	3 Catalog Matching and Registration
	Data Model Alignment Process
	Record Matching Process
	Party Matching (Production/Distribution Companies)
	Manual Bulk Registration Process (Not through integrated APIs)
	Bulk Modification Process

	4 Record Types
	Content Records
	Categorization of Objects
	Inheritance
	Dependence

	Content Record Creation and Modification
	Alternate ID
	Aliases and Deletion Model
	Virtual Fields

	Parties
	Permissions Model
	Access Control Lists

	5 Content Read Operations
	Resolution
	Traversals
	Queries
	Using Traversals and Queries to Find Records

	6 Using Parties
	7 Deduplication
	Overview
	Matching API
	Tokens and Batches
	Single/Batch
	Immediate/Asynchronous
	Tokens
	Operation Tokens
	Batch Tokens

	Scores
	Polling

	8 Content Create and Modify Operations
	Registration Workflows
	Synchronous Workflow
	API-based Asynchronous Workflow
	Asynchronous Workflow Tools and API
	User Interface Handling

	Modifying Records

	9 Error Types
	Appendix A: DOI Proxy Parameters
	Appendix B: Text Processing and Queries
	Language-specific Filtering
	Field Rules
	Simple Queries
	Search Expressions
	ASCII Searches
	Notes and Examples

	Example Queries

