
PARTNER’S GUIDE TO
XMP FOR DYNAMIC MEDIA

© November 2008 Adobe Systems Incorporated. All rights reserved.

Partner’s Guide to XMP for Dynamic Media: An introduction to models for dynamic-media metadata

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law
even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under
copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of
the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe, the Adobe logo, After Effects, Audition, Flash, Flex, Illustrator, OnLocation, Photoshop, Premiere, Soundbooth,
and XMP are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or
other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Apple, Mac, Mac OS, and Macintosh are trademarks of Apple Computer, Incorporated, registered
in the United States and other countries. Sun and Java are trademarks or registered trademarks of Sun Microsystems,
Incorporated in the United States and other countries. UNIX is a registered trademark of The Open Group in the US and
other countries.

All other trademarks are the property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users.
The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of
“Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48
C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through
227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software Documentation are
being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights as are granted
to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright
laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S.
Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the
provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act
of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR
Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and regulations contained in the preceding
sentence shall be incorporated by reference.

 3

Contents

Preface . 4
How this document is organized . 4

Additional documentation . 4

The metadata workflow . 5

1 Asset Management for Composed Documents . 6
Composed-document metadata . 6

Resource references . 7
Document parts . 7
Retaining metadata from ingredients . 9
Finding metadata for an ingredient . 12

Tracking document history . 14
Using document history . 14
Recording change events . 15
Maintaining the history list . 15

Identifying documents and parts uniquely . 16
Assigning document identifiers . 16
Generating identifiers . 19

2 Temporal Information in Dynamic Media . 21
Timed ingredients . 21

Specifying time values for parts . 21
Mapping times from source to target parts . 22

Representing temporal markers in metadata . 23
Tracks and markers . 24
Marker types . 25
Specifying time values for markers . 27

Retaining markers from nested ingredients . 28

3 Code Example: Walking the Ingredient/Pantry Tree . 30

 4

Preface

This document discusses additions to the Extensible Metadata Platform (XMP), that provide a model for
dealing with digital dynamic media, such as movies that contain many audio and video elements. The
document model for dynamic media requires asset management, to allow tracking the history and
composition of complex resources. Further, dynamic media objects contain time-related elements, and
the metadata for these must be able to model temporal values such as start-time and duration.

This document provides guidance to developers writing applications that read, write, and modify dynamic
media documents, so that those applications can maintain the integrity of the composition and editing
history and temporal metadata in composed documents, and assign document identifiers correctly and
unambiguously.

How this document is organized
This document has the following sections:

➤ Chapter 1, “Asset Management for Composed Documents,” explains how XMP schema properties and
types are used in dynamic-media documents to track the composition and history of a composed
document and retain the metadata of the components.

➤ Chapter 2, “Temporal Information in Dynamic Media,” explains how XMP schema properties and types
are used to represent timing information in dynamic-media documents and their components.

Additional documentation
For complete details of the XMP model, schemas, and file format, see the XMP Specification. The
specification has three parts:

➤ Part 1, Data and Serialization Model, covers the basic metadata representation model that is the
foundation of the XMP standard format. The Data Model prescribes how XMP metadata can be
organized; it is independent of file format or specific usage. The Serialization Model prescribes how
the Data Model is represented in XML, specifically RDF.

This document also provides details needed to implement a metadata manipulation system such as
the XMP Toolkit (which is available from Adobe).

➤ Part 2, Standard Schemas, provides detailed property lists and descriptions for standard XMP metadata
schemas; these include general-purpose schemas such as Dublin Core, and special-purpose schemas
for Adobe applications such as Photoshop. It also provides information on extending existing schemas
and creating new schemas.

➤ Part 3, Storage in Files, provides information about how serialized XMP metadata is packaged into XMP
Packets and embedded in different file formats. It includes information about how XMP relates to and
incorporates other metadata formats, and how to reconcile values that are represented in multiple
metadata formats.

http://www.adobe.com/products/xmp/

Preface The metadata workflow 5

The metadata workflow
With metadata as part of your workflow, flowing through all stages of production, you can speed up the
entire production process and open up new opportunities in marketing and search when delivering your
final product.

A simplified workflow of metadata from acquisition to output in Production Premium CS4 is as follows:

1. Metadata originates in either an Adobe OnLocation™ shot list or in an imported file-based format. You
can also manually enter metadata during the capture process in Premiere.

➣ When you capture from tape, you also generate some critical metadata (time, length, and so on).

➣ Other file formats, such as Adobe Photoshop® and Adobe Illustrator® files, can also contain
metadata.

2. Metadata can be modified or added to using the Metadata panels in any application. Metadata is
embedded directly into dynamic media files whenever possible. (When the file format or usage model
does not allow embedding, the metadata can be in a sidecar file.)

3. Metadata is used by various applications in their own workflows. For example:

➣ Premiere Pro displays metadata and uses it for sorting and finding clips (quicksearch).

➣ Premiere Pro, Soundbooth, and After Effects use speech data to find specific parts of a clip.

4. Metadata can be accessed and used directly by scripters and plug-in developers.

➣ After Effects provides scripting support for metadata, so that users or plug-in developers can use it
to extend the application’s built-in functionality.

➣ Metadata can also be accessed and used in Flash® and Flex™ applications.

5. Metadata flows out through (and is compiled together) when rendering using Adobe Media Encoder.

Production Premium CS4 is focused on capturing metadata during the creation of media. This method is
more favorable than trying to retrieve metadata from a finished product. Extracting metadata from
finished media is expensive, time-consuming, and prone to error due to heavy reliance on user input. In
contrast, capturing metadata during creation is automatic, fast, and more accurate.

 6

1 Asset Management for Composed Documents

Dynamic-media objects such as movies are typically composites. A composed document is created by
building up a collection of individual parts, or by importing content from one document into another.
Even a static document can contain an imported image, for example, whose metadata should be available
through the new parent document. A dynamic document, such as a video, can include parts of other
resources, which can range from, for example, a single frame to an extended clip from another file.

Each included part, called a resource or asset, can have its own XMP metadata. When an asset is added to or
imported into a document using an application such as Adobe® Premiere® Pro, its metadata is also
included in a hierarchy that reflects its position and history. The asset inclusion hierarchy allows you to
reference and access metadata for both still and moving images that are included in the parent document.

When compositing occurs, it is important that metadata from the included assets is not simply flattened
into the top-level document metadata, but retains its original association with the data it describes. The
XMP metadata inclusion model retains the hierarchical structure of the assets. You can traverse the full
structure of the original information, even after the rendering process has flattened the data itself.

For video and audio inclusions, the parent document’s metadata also provides access to the timed values
in its components, and the mapping between the timeline of the source and that of the destination. See
Chapter 2, “Temporal Information in Dynamic Media.”

Composed-document metadata
The XMP model for composed documents uses the metaphor of a composed dish that has ingredients. The
ingredients are the assets used in the composition. Continuing the cooking metaphor, the composed
document contains a pantry, where you can find the metadata for ingredients. This inclusion model can be
used for print documents and workflows, as well as for dynamic media.

Final Movie

a.swf

b.flv

f.flv

c.mp3

d.mp3

g.flv h.wav

CHAPTER 1: Asset Management for Composed Documents Composed-document metadata 7

The properties that are used for this model are defined in the XMP Media Management namespace,
http://ns.adobe.com/xap/1.0/mm/, with the preferred schema namespace prefix of xmpMM.

➤ The metadata for the top-level object (the movie, for example) contains a property
xmpMM:Ingredients, which references all of the assets used in the composition (such as audio tracks
or video clips contained in a movie). The referenced assets might in turn be composed, and contain
their own ingredients lists.

➤ The metadata for the top-level object contains a property xmpMM:Pantry, whose value is an array that
contains a copy of the XMP metadata for all of the ingredients, enumerated recursively with duplicate
entries excluded. See “Retaining metadata from ingredients” on page 9.

Resource references

Each asset in the ingredients list is represented by resource reference (the ResourceRef datatype). The
properties used for this type are defined in the namespace,
http://ns.adobe.com/xap/1.0/sType/ResourceRef#, with the preferred schema namespace prefix of
stRef.

The resource reference for an asset contains the management information from the original document’s
media-management metadata; the xmpMM:manager becomes the stRef:manager, for example.

This information includes the unique identifiers for the asset (document, instance, and version ID). Each
asset used in the construction of a document has, at the time of inclusion, one and only one instance ID,
which uniquely identifies it. The instanceID value can be used as a unique key to find the appropriate
pantry entry for any ingredient. See “Identifying documents and parts uniquely” on page 16.

Document parts

When creating a composed dynamic-media document, an author typically includes only a part of another
document; a clip or even a single frame of a video, for instance; or an excerpt of a speech or song. When
this occurs, it is important to identify the part used, and, if possible, trim the included metadata to that
pertaining to the part used. Otherwise (particularly if the included asset comes from another composed
document) the metadata recursion can quickly get out of hand.

In the example show above, for instance, the part of c.mp3 that is used in Final Movie does not overlap
with the part that uses d.mp3. This means you do not need to retain the metadata of d.mp3 in the pantry of
Final Movie.

The Part datatype identifies a portion of a document. The resource reference identifies both the part of
the asset used in the composed document (stRef:fromPart), and the part of the composed document
that incorporates the asset (stRef:toPart).

http://ns.adobe.com/xap/1.0/mm/
http://ns.adobe.com/xap/1.0/sType/ResourceRef#

CHAPTER 1: Asset Management for Composed Documents Composed-document metadata 8

For dynamic media, the part specifications must include temporal information, identifying the exact
stretch that is included, and the destination in the timeline of the parent. A resource reference can also
specify a mapping function (stRef:partMapping) that is used to transform the time sequence of the
fromPart into a new time sequence in the toPart. See “Timed ingredients” on page 21.

A Part value is also used in the event history to identify a position at which the document has been
changed; see “Tracking document history” on page 14.

Part specifications

Part names are a hierarchy of arbitrary depth, specified using path syntax where levels in the hierarchy are
indicated by the slash “/” character. The slash may not be used for any other purpose in these strings.

Paths (including partial paths) must always start from “/” (meaning all or root). A partial path is assumed to
encompass all further descendents of the last level specified. For example, /metadata includes all
descendants of metadata, whereas /metadata/crs includes all camera raw settings, but excludes
metadata that is not descendent from camera raw settings. Additional levels of sub-parts or alternatives
for existing levels may be defined; for example /content/audio/channels/left or
/content/audio/FFTaudio/high.

NOTE: This syntax description is not normative; for definitive syntax, see the XMP Specification Part 2,
Standard Schemas.

The following part specifications are explicitly defined:

Part specification Part that changed or is referenced

/ Any (specific part unknown) or all (all parts of the content and
metadata).

/metadata Portions of the metadata.

/content Any or all of the content (non-metadata).

/content/audio Any or all sound.

/content/visual Some image data (video or still).

/content/visual/video Video or animation.

/content/visual/raster Static raster image.

/content/visual/vector Static vector image.

Final Movie

a.swf

fromPart fromPart

toParttoPart

CHAPTER 1: Asset Management for Composed Documents Composed-document metadata 9

A part specification for a dynamic document can include a time-range specification appended to the path,
or can consist entirely of a time-range specification. If the time range is specified instead of a path, the
asset includes all parts starting at the time or within the range specified. If it is added to the path, only
those parts of the specified data that fall within the range are part of the included asset.

See “Timed ingredients” on page 21 for details of how to specify a time range in a part.

Retaining metadata from ingredients

The ingredients of a composite document form a hierarchy, since each ingredient can itself be a composed
document that contains ingredients. The ingredients tree is formed indirectly, however; both the
ingredients and pantry metadata properties contain simple lists, with no nesting. The ingredients list of a
top-level document contains only those ingredients that have been directly included in that document.
The hierarchy is formed through pointers from each ingredient to its pantry entry, which contains the
ingredients list for that ingredient.

The pantry is a simple array of entries. Each pantry entry corresponds to exactly one instance ID. Instance
IDs are found in the ingredients lists. Each pantry entry encapsulates the metadata for the corresponding
ingredient, including the xmpMM:Ingredients property that lists the documents used in its composition.
It also contains its own xmpMM:Pantry property, but to avoid duplication and redundancy as much as
possible, the ingredient metadata from the contained pantry items has been moved out to the top-level
document.

When you add an ingredient to a composite document, all of the metadata for that ingredient is added to
the pantry of the new container. If the component was itself a composed document, its pantry contains a
set of entries for the metadata of each ingredient. When an Adobe application imports a document into a
new container, the pantry entries for ingredients are all moved to the top level of the new container’s
pantry. When you perform such import operations, you should use the same technique to maintain the
integrity of the metadata.

Except for moving pantry entries into the metadata of the top-level document on import or inclusion, an
application should consider the pantry entries of ingredients to be invariant (read-only). If you made any
changes to the metadata for an included document, it would no longer match the unique instance
identified by the ID.

The following example shows the process of promoting pantry entries, using this inclusion hierarchy
which results from a series of import operations:

/content/visual/form/data Form field data.

/content/visual/form/template Form template.

/content/visual/annots Applied annotations (comments).

Part specification Part that changed or is referenced

CHAPTER 1: Asset Management for Composed Documents Composed-document metadata 10

➤ The identifying information for a newly imported document becomes an entry in the new container’s
xmpMM:Ingredients. The metadata for that ingredient is imported into the new container’s metadata
by adding an entry to xmpMM:Pantry.

➤ The ingredients of a newly imported document are included in its own metadata, in the
xmpMM:Ingredients property contained in its pantry entry. If that metadata includes any pantry
entries, they are moved into new entries in the container’s pantry, and removed from the pantry entry
for the ingredient.

Stepping through this process at each stage of this series of import operations, the documents with no
ingredients contain no pantry entries. When each component was imported into Doc D, an entry was
added to the pantry of Doc D, containing the instance ID and metadata of that ingredient. Each pantry
entry is associated with exactly one instance ID in the ingredients list of Doc D:

The pantry entry contains the serialized XMP Packet from the ingredient, with the x:xmpmeta and rdf:RDF
wrappers removed.

When Doc D is imported into Doc E, an entry for D is added to the pantry for E, containing Doc D’s
metadata. The metadata for Doc D includes that document’s xmpMM:Pantry property, which in this case
does contain entries. These pantry entries from Doc D’s metadata (for A, B, and C) must be moved to the
pantry of the new container, becoming individual entries in Doc E:

To avoid duplication, the entire xmpMM:Pantry property must be removed from the pantry entry for Doc D.
The entry for Doc D should contain only the metadata for Doc D, not for any of its ingredients.

Doc F Ingredients:
Doc E

Ingredients:
Doc D

Ingredients:
Doc A
Doc B
Doc C

Doc E Ingredients:
Doc D

Ingredients:
Doc A
Doc B
Doc C

Doc A
no ingredients

Doc B
no ingredients

Doc C
no ingredients

Doc D Ingredients
Doc A
Doc B
Doc C

Doc D Pantry
[1] metadata from ingredient A
[2] metadata from ingredient B
[3] metadata from ingredient C

Doc D Ingredients
Doc A
Doc B
Doc C

InstanceID

Pantry for Doc E
[1] metadata from ingredient D
[2] metadata from ingredient A
[3] metadata from ingredient B
[4] metadata from ingredient C

Metadata for Doc D
Pantry for Doc D
[1] metadata from ingredient A
[2] metadata from ingredient B
[3] metadata from ingredient C

import

CHAPTER 1: Asset Management for Composed Documents Composed-document metadata 11

The process continues up the chain of inclusions:

For dynamic-media documents, the metadata contains temporal information associating it with a
particular part of the resource it describes. This adds a layer of complexity to the process of moving the
metadata into a new container. For details of this process, see “Retaining markers from nested
ingredients” on page 28.

Excluding metadata from unused parts

The pantry allows an application to encapsulate all of the metadata for an asset and carry it into the
composed document. To reduce overhead, however, you can include only the metadata for visible
components. Visible components are those that can be seen (or heard) by the user; they appear in the
timeline for the document. Most components have short portions before the actual visible portion that are
included in the clip to allow for transitions or minor adjustments in the editing; if these are not present in
the end result (that is, not used in a transition) they are typically not visible.

In the previous example, if Doc F contains only a fragment of the timespan of Doc D that does not include
any of the data imported from Docs A and C, then the pantry for Doc F can exclude the entries for Docs A
and C altogether. The ingredients list must still contain entries for Docs A and C, which are part of the
composition history for Doc D.

To give another example, here is the inclusion diagram for Final Movie again.

Pantry for Doc F
[1] metadata from ingredient E
[2] metadata from ingredient D
[3] metadata from ingredient A
[4] metadata from ingredient B
[5] metadata from ingredient C

Metadata for Doc E
Pantry for Doc E

[1] metadata from ingredient D
[2] metadata from ingredient A
[3] metadata from ingredient B
[4] metadata from ingredient C

Final Movie

a.swf

b.flv

f.flv

c.mp3

d.mp3

g.flv h.wav

CHAPTER 1: Asset Management for Composed Documents Composed-document metadata 12

➤ The ingredients list for Final Movie includes the file a.swf twice, referencing the different parts that
are used in the movie (see “Document parts” on page 7), and the file b.flv.

➤ The pantry list contains metadata from the used parts of those files, and also retains metadata from
parts of files used in their composition (c.mp3, f.flv, and h.wav),and in turn from the files used in the
composition of the components (d.mp3, f.mp3). The pantry would have these entries:

In this case, you can remove the pantry entry for the file d.mp3, because the part of c.mp3 derived from
that file is not used in the final composition.

For a further discussion of metadata for timed ingredients, see “Retaining markers from nested
ingredients” on page 28.

Finding metadata for an ingredient

Because of the way pantry entries are promoted when one document is imported into another, the pantry
entries for all of the ingredients of a document are in the top-level metadata property, xmpMM:Pantry.
However, the ingredients list in the top-level metadata (xmpMM:Ingredients), contains only the
documents that have been directly imported into the outermost document. To find an ingredient at a
deeper level of nesting, you must find the parent document, locate its pantry entry in the outermost
document’s metadata, and retrieve the ingredients list stored in the pantry entry. If you have a tree of
nested documents, you must perform this operation recursively to get to the metadata of the document
you want.

Suppose, for example, you have an Flash file, myMovie.flv, that contains a sequence created from an
image (myImage.jpg) that was touched up in Photoshop (myImage.psd), animated in After Effects, and
then exported as Flash (myImageAnimation.flv).

Pantry entry contains pantry entries from ingredients

[1] a.swf f.flv

[2] b.flv c.mp3

[3] c.mp3 d.mp3, f.mp3

[4] d.mp3 none

[5] f.flv g.flv, h.wav

[6] g.flv none

[7] h.wav none

CHAPTER 1: Asset Management for Composed Documents Composed-document metadata 13

When you created myImageAnimation.flv, its ingredients included myImage.psd, whose ingredients
included myImage.jpg. When you imported myImageAnimation.flv into myMovie.flv, the animation
file instance became an ingredient of myMovie, and each entry in its pantry was moved to the myMovie
pantry list.

The metadata is retained through each step of this process, so the metadata for each component has a
pantry entry in the metadata for myMovie.flv. To find the value of an XMP property from myImage.jpg,
you must work through the ingredients lists in each parent to find the instance ID for myImage.jpg, and
match that ID to a pantry entry in myMovie.flv.

Chapter 3, “Code Example: Walking the Ingredient/Pantry Tree provides a complete code example (using
the XMP Toolkit API) of how to recurse through the ingredients within the pantry entries to find the
instance ID for a particular component, and then iterate through the pantry list to find a metadata value
for that component. This is the basic procedure, as it applies to the example document:

➤ The metadata for the outermost document, myMovie.flv, is accessible directly through an accessor
such as SXMPMeta.GetProperty(). Use such an accessor to retrieve the ingredients list from the
top-level property xmpMM:Ingredients, and the pantry list from the top-level property
xmpMM:Pantry.

➤ Find the instanceID (note lowercase 'i') for the component that is a direct ingredient
(myImageAnimation.flv).

➤ Find the pantry entry with an InstanceID (note uppercase 'I') that matches the ingredient’s
instanceID.

➤ In that entry (which contains the metadata for myImageAnimation.flv), find the
xmpMM:Ingredients property, and get the instanceID for the ingredient at the next level of nesting
(myImage.psd).

➤ Find the pantry entry with a matching InstanceID.

➤ In that entry (which contains the metadata for myImage.psd), find the xmpMM:Ingredients property,
and get the instanceID for the ingredient at the next level of nesting (myImage.jpg).

➤ Find the pantry entry with a matching InstanceID. Use an XMP accessor to retrieve the desired
property value (dc:title) from that pantry entry.

myMovie.flv

myImageAnimation.flv

myImage.psd

myImage.jpg dc:title

CHAPTER 1: Asset Management for Composed Documents Tracking document history 14

You can use the same technique to find metadata for any ingredient at any step of the composition. You
can find, for instance, the file type of a component file, the path where it was last stored, and the history of
changes to that file; see “Tracking document history” on page 14.

Tracking document history
In addition to the ingredients list of assets, the metadata for a composed document tracks the history of
how the document was created. You can track both the change history (modifying operations performed
on the document), and the derivation history (other documents from which the document was derived
through branching).

➤ The xmpMM:History property contains an ordered array of high-level user actions that resulted in this
instance of the document. These actions are represented by the ResourceEvent data type; see
“Recording change events” on page 15. This history is intended to give human readers a description of
the steps taken to make the changes from the previous version to this one. It is an abstract list, not an
exhaustive keystroke or other detailed history. The description is intended to be sufficient for
metadata management and workflow enhancement.

➤ The xmpMM:DerivedFrom property references the source document from which this one is derived,
typically through a Save As operation that changes the file name or format. It is a minimal reference;
missing components can be assumed to be unchanged. For example, a new version might only need
to specify the instance ID and version number of the previous version, or a rendition might only need
to specify the instance ID and rendition class of the original.

Tracking document history correctly requires meticulous use of correct document identifications; see
“Identifying documents and parts uniquely” on page 16.

Using document history

“Finding metadata for an ingredient” on page 12 gave the example of a movie that contains an animated
sequence derived from a still image through several steps. Suppose that, after some time and work on the
client side, you wanted to determine if a later version of the animation exists, requiring an update of the
movie.

You could look in your asset management system for later versions of the animation (that is, the one with
the same document ID as the movie ingredient). You could then walk through the change history of the
animation, back to the instance that is currently included (as identified by the instance ID), in order to
determine whether the changes warrant an update. You may need to do more detailed comparisons to

myMovie.flv myImageAnimation.flv

myImage.psd

myImage.jpg

xmpMM:Ingredients [InstanceID]

xmpMM:Pantry [instanceID]: xmpMM:Ingredients [InstanceID]

xmpMM:Pantry [instanceID]: xmpMM:Ingredients [InstanceID]

xmpMM:Pantry [instanceID]: dc:title

identifies ingredient

selects pantry entry

CHAPTER 1: Asset Management for Composed Documents Tracking document history 15

determine whether a specific change warrants an update. The history records only the general nature of a
change from one instance to another, and the order of instances.

Alternatively, you could look in your asset management system for an earlier form of the document, who's
instance ID corresponds to one stored in the derivation history. You could then find the
OriginalDocumentID and DocumentID for that source document, and use them to determine if later
versions exist in the source thread, in order to choose whether the document you currently have should
be reconverted from one of those later versions.

Recording change events

Modifying actions in the xmpMM:History property are represented by the ResourceEvent data type,
whose fields are defined in the namespace http://ns.adobe.com/xap/1.0/sType/ResourceEvent#,
with the preferred field namespace prefix of stEvt.

Event information includes the instance ID of the modified resource, a timestamp, and the agent
(application) that performed the action.

The modifying action itself (stEvt:action) is described by a verb in the past tense. Applications can
define their own actions; these action values are predefined in the schema:

converted
copied
created
cropped
edited
filtered
formatted
version_updated
printed
published
managed
produced
resized
saved

Each history entry can also contain an optional list of specific parts of the document that were changed
since the previous event (stEvt:changed). This is a semicolon-separated list of Part objects, each of which
can indicate a hierarchy of any depth (see “Part specifications” on page 8).

If no changed-parts list is present, it can mean that the scope of changed components is unknown, or that
every part of the document has changed. To be safe when tracking changes, you must assume that if no
changed-parts list is present, anything in the document might have changed.

An application can use the parts-changed list together with the timestamp (stEvt:when) to avoid
performing costly operations unnecessarily. For example, a video editor can use this information to avoid
re-rendering the data from a clip if the metadata was changed, but the content was not. In this case, the
file time stamp will have changed, but the metadata event record shows that it was a metadata-only
change, so the full re-rendering of the video/audio data is not required.

Maintaining the history list

It is easy for nested document editing histories to grow to an unmanageable size. You should trim the list
whenever possible by removing intermediate entries that are referenced by some specific operation. You
can further condense the list by accumulating the changed parts from all merged entries.

http://ns.adobe.com/xap/1.0/sType/ResourceEvent#

CHAPTER 1: Asset Management for Composed Documents Identifying documents and parts uniquely 16

For example, a sequence such as "new/created, saved, edited, saved, edited, saved, edited,
saved, edited, saved, edited, saved, branch/converted, saved" could be collapsed by
removing most of the redundant "edit, save" pairs, resulting in "new/created, edited, saved,
branch/converted, saved" or even "new/created, branch/converted, saved". This is especially
true if the save operations were auto-saves.

Identifying documents and parts uniquely
Globally unique identifier (GUIDs) are generally used to identify objects unambiguously. The contents of
the identified file, however, can change over time. Depending on the situation, it might be desirable to
refer to either:

➤ a specific state of the file as it exists at a point in time, or

➤ the file in general, as a persistent container whose content can change.

Some characteristics of a file (such as the application that created it) would normally be expected to be
persistent over its life. Other characteristics (such as word count) would be expected to change as the
content of the file changes. Some characteristics (such as copyright information or authors’ names) would
not normally be expected to change, but might change due to the addition of new copyrighted material,
or some external event such as the copyright holder being acquired by another company.

For composed dynamic-media projects, the question of what constitutes a uniquely identifiable
document becomes even more complicated. You must be able to track assets in various workflows. You
might need to decide, for instance, how a document was derived, what other documents were used in its
composition, or whether it was used in the composition of some other document; or you might want to
track how many times you have used a particular asset in various projects throughout a suite of
applications.

When files and parts of files can be included in a composite, you must identify each instance of an object,
which can easily branch from another instance that originated from the same file. If a portion of document
A is included in document B, then document A is edited, the portion that was included has diverged from
the original. Whether the two versions are considered to be the same document depends on the context
of the task at hand. It is very important that, when an application creates or edits any dynamic-media
document, you create or maintain the various identifiers in strict accordance with the requirements
described here.

TERMINOLOGY NOTE: The XMP media-management schema uses the term resource to refer to the “thing
the metadata is about” in a general sense. Depending on the context, properties may refer to either
specific or persistent aspects of the described file. In order to refer unambiguously to a specific state of
the file, we use the term instance.

This terminology should be distinguished from HTTP terminology, where resource is most often used
in the sense of “container”, while entity or entity-part is always used to mean “the current content of
all or part of a resource at some point in time.”

Assigning document identifiers

The XMP Media Management schema defines these different identifiers:

➤ xmpMM:OriginalDocumentID: As media is imported and projects is started, an original-document ID
must be created to identify a new document. This identifies a document as a conceptual entity.

CHAPTER 1: Asset Management for Composed Documents Identifying documents and parts uniquely 17

➤ xmpMM:DocumentID: When a document is copied to a new file path or converted to a new format with
Save As, another new document ID should usually be assigned. This identifies a general version or
branch of a document. You can use it to track different versions or extracted portions of a document
with the same original-document ID.

➤ xmpMM:InstanceID: To track a document’s editing history, you must assign a new instance ID
whenever a document is saved after any changes. This uniquely identifies an exact version of a
document. It is used in resource references (to identify both the document or part itself and the
referenced or referencing documents), and in document-history resource events (to identify the
document instance that resulted from the change).

NOTE: The Media Management schema defines the VersionID and Version properties, as well as the
specific document identifiers. These are not GUIDs for the document. They are meant to associate the
document with a product version that is part of a release process. They can be useful in tracking the
document history, but should not be used to identify a document uniquely in any context.

There are three change states that determine when these IDs should be assigned as the document is
opened, edited, and saved. Follow these guidelines in assigning identifiers

➤ When a new document is created (including when it is created from a template), create a new GUID as
the value of both documentID and originalDocumentID. This indicates that this is the first document
in the history/derivation chain. This document should also receive a new instanceID (which might or
might not match the documentID).

➤ As the document is modified or worked on, create a new instanceID every time the file is saved or
checkpointed.

➤ If the document is modified sufficiently that it is no longer similar to the original, create a new
documentID, and insert a DerivedFrom record into the document.

➤ If the document is saved to a new name, but then stripped sufficiently that it no longer would be
considered a derivation of the original document, create a new originalDocumentID and copy it to
documentID.

State ID status

Opened Clean, no changes since the file was
opened and its metadata retrieved.

Save is not required, the object maintains the
existing DocumentID and InstanceID.

Edited Dirty, there are unsaved changes in the file,
or the file has been newly created but not
yet saved.

Save is required. Upon save the object gets a
new InstanceID.

➤ If it was loaded and edited, this new ID
distinguishes it from the version of the file
that was loaded.

➤ If it was created, this is the initial
InstanceID.

CHAPTER 1: Asset Management for Composed Documents Identifying documents and parts uniquely 18

The following state-transition diagram illustrates implementation considerations for responses to
particular events, and the resulting states.

Branched This state results when:

➤ A clean or edited file was copied
(SaveAs), but not saved.

➤ Upon opening the file, the XMP parser
found external changes in the
metadata. External changes can be:

➣ Third-party (Unknown)

➣ File format (Converted)

➣ File move or copy (Copied)

Save is required. Upon SaveAs, the clone
always gets a new DocumentID and
InstanceID.

➤ If the original document was branched
while clean, maintains its instanceID.

➤ If the original document was changed
before branching, changes are still
flagged in the original file, and it becomes
Edited again, and gets a new instanceID
when saved.

➤ If external changes are found upon load,
the document gets a new InstanceID
immediately, and retains it until edited. If
it is branched before editing, the original
can still be saved as a unique instance.

State ID status

CHAPTER 1: Asset Management for Composed Documents Identifying documents and parts uniquely 19

Generating identifiers

An ID should be guaranteed to be globally unique (in practical terms, this means that the probability of a
collision is so remote as to be effectively impossible). Typically 128- or 144-bit numbers are used, encoded
as hexadecimal strings.

XMP does not require any specific scheme for generating the unique number. There are various common
schemes available for that purpose, such as:

➤ Using physical information such as a local Ethernet address and a high resolution clock. When creating
a unique ID, applications must consider trade-offs between privacy and the desire to create an audit
trail. Adobe applications favor privacy and do not include Ethernet addresses.

➤ Using a variety of locally unique and random data, then computing an MD5 hash value. This avoids
privacy concerns about the use of Ethernet addresses. It also allows for regeneration of the ID in some
cases; for example if the MD5 hash is computed using the image contents for a resource that is a
digital photograph.

Identifier URI schemes

The following URI schemes are used in some versions of XMP software to ensure unambiguous ID
references:

➤ xmp.iid: Used for InstanceID

➤ xmp.did: Used for DocumentID

These have the same syntax as InstanceID and DocumentID; globally unique 128-bit numbers
encoded in hexadecimal. However, each is used only in the correct context. For example, the
following unambiguously refers to “a file that has this ID as its InstanceID in its XMP Packet”:

xmpMM:InstanceId="xmp.iid:b9db20421f30bb3fe10e5f90"

Similarly:

xmpMM:DocumentId="xmp.did:b9db20421f30bb3fe10e5f90"
xmpMM:OriginalDocumentId="xmp.did:b9db20421f30bb3fe10e5f90"

The xmp.iid and xmp.did URIs are used only for files that have XMP actually stored in the file, not in
sidecar files. Files that do not have embedded XMP still have InstanceID and DocumentID, but not in
this form. Some documents that do have embedded XMP might still have a DocumentID that does not
use xmp.did, because the document started out as a file without XMP but with some other kind of
unique document identifier.

These are URIs (that is, they uniformly identify resources), but they are only useful as URLs (Uniform
Resource Locators) if there is an index of files with XMP indexed by the IDs found within them. In the
case of xmp.did:, it might be necessary to examine modification dates and history to determine which
is the latest of multiple instances with the same document ID.

CHAPTER 1: Asset Management for Composed Documents Identifying documents and parts uniquely 20

In addition, the following URI scheme may be found within XMP applications:

➤ hashuri: Of the form hashuri:xxxxxxxxxxxxxxxxxxxxxxx.

Generated by taking a URI (either absolute or relative), hashing it (using MD5), and representing the
result as a hexadecimal string. Identifies the same resource that was originally identified by the URI
that was hashed.

This might be used anywhere you would otherwise use a URI but need to obscure the actual URI string
for privacy reasons. A URI is only useful as a URL if you have an index that caches the URI and the
associated files. However a hashuri can be compared to another (calculated with the same hash
scheme) to determine if you have the same file.

 21

2 Temporal Information in Dynamic Media

Temporal information in metadata is used to track two different kinds of temporal relationships:

➤ There are time relationships between a parent document and its ingredients. For instance, the
included part of an ingredient video clip might be a stretch from the 15th to the 30th frame, and this
might be copied into the 110th to 115th frame of the containing movie. Temporal metadata gives you
the ability to track the placement sequence of assets into the parent object

The ways in which XMP specifies these relationship are discussed in “Timed ingredients” on page 21.

➤ Within any dynamic-media document or component, you need to mark specific points or spans of
time within the timeline of that document. XMP accomplishes this with time markers, which can
contain descriptions of events, indicate go-to points in the document, record synchronized speech or
lyrics, and so on. Markers can be grouped into named tracks that hold markers of a specific type or
from a specific source or stage of production.

The syntax and usage of markers and tracks are discussed in “Representing temporal markers in
metadata” on page 23.

➤ These usages interact when you need to retain timed values (markers) from ingredients in the
metadata of composite documents. In order to enhance performance, or to retain editability in parts
that would otherwise be invariant, you may need to flatten the marker hierarchy when copying
ingredient metadata into the pantry of a new container.

These techniques are discussed in “Retaining markers from nested ingredients” on page 28.

Timed ingredients
All or part of one dynamic document can be included in another, as in the example given in “Finding
metadata for an ingredient” on page 12, where a movie contains an animation derived from a still image.
In this case, the ingredient list for parent document (the movie) contains a ResourceReference entry for
the included component (the animation). The entry must specify the time stretch that is included (in the
stRef:fromPart), while the stRef:toPart must specify the time location where the part now resides in
the parent document (the movie).

Specifying time values for parts

A time-range specification can be the entire Part value, or it can be appended to the specification. For
example, a part can be specified as "/content/time:0d15", or simply as "time:0d15". If there is no time
modifier, the default time range is "all".

The time-range value takes one of these forms:

[/]time:##d## A duration, specified by a start time, and a duration time (a frame-count
value).

CHAPTER 2: Temporal Information in Dynamic Media Timed ingredients 22

➤ In these syntax statements, the ## notation can be replaced by any form of a frame-count specifier, as
described in “Specifying time values for markers” on page 27.

➤ In a fromPart or toPart value, the leading / is optional. For an stEvt:changed part descriptor in a
history record, the leading / is required.

➤ For a fromPart value, the start time is an offset from the start of the current ingredient’s file. For a
toPart value, the start time is measured from the start of the destination file.

If time values are not specifically given, the default start time is 0, meaning the beginning of the relevant
file. The default duration for a member of the ingredients list is "maximum", meaning the full length of the
part. (This differs from the default duration for a marker, which is 0.)

Mapping times from source to target parts

A resource reference can specify a mapping function (stRef:partMapping) that is used to transform the
time sequence of the fromPart into a new time sequence in the toPart.

The default for time mappings is "linear", meaning that the fromPart time sequence is mapped into a
specified portion in the timeline of the file in which it now resides. Depending on frame-rate and duration,
the result may be a frame-by-frame mapping, or a rough-motion/slow-motion playback. The linear
mapping scales the part uniformly to fill the new duration. A mapping of "linear-reversed" results in
backward motion, which is also uniformly scaled in time if necessary.

The following figure shows some ways in which parts can be mapped into the timeline of a composed
dynamic-media document.

[/]time:##r## A range, specified by a start time and an end time, both expressed as a
number of frames relative to the beginning of the part.

[/]time:## A frame count, as for a time value in a marker. This specifies a start time, with
the default end time of "maximum".

CHAPTER 2: Temporal Information in Dynamic Media Representing temporal markers in metadata 23

These are the fromPart, toPart, and partMapping entries for the ingredients at the various levels of
composition:

Representing temporal markers in metadata
An audio or moving image sequence is synchronized with other elements through the use of marked
times or spans on a timeline. A marked time can be a simple point of reference that the editor or viewer
can display or find. Timed sequences can be lyrics, captions, recognized speech, original scripts, and so on.

Temporal metadata provides a way for applications to represent the time-related data in its proper timed
context. For example, assets that have audio tracks can have their audio transcribed to text, and the
transcript written to the file’s metadata. The Speech-to-Text feature of Adobe Premiere and Adobe
Soundbooth™ allows these transcripts to be viewed in the Main Metadata panel. Similarly, Adobe After
Effects® displays text-over-time using temporal markers which are derived from metadata and shown in
the Timeline view.

Recognized speech, for example, is attached to the timeline of a dynamic-media document:

This particular speech fragment could be represented like this, using the format word[start\duration]:

There[0.31\0.14], are[0.45\0.6], some[0.51\0.22], words[0.73\0.37], here[1.1\0.4]

Document Ingredients Mapping

Result A Clip C fromPart = /time:5d40'
toPart = /time:15d40'
partMapping = 'linear'

Clip B fromPart = '/time:5d45'
toPart = '/time:50d45'
partMapping = 'linear'

Clip B Clip D fromPart = '/time:5d20'
toPart = '/time:5d45'
partMapping = 'linear'

Clip C Clip E fromPart = '/time:5d35'
toPart = '/time:25d10'
partMapping = 'linear'

Clip D Clip E fromPart = '/time:30d25'
toPart = '/time:5d20'
partMapping = 'linear-reversed'

Clip E none

There are some words here

0 0.31 0.45 0.51 0.73 1.0

CHAPTER 2: Temporal Information in Dynamic Media Representing temporal markers in metadata 24

Tracks and markers

To maintain temporal marking information about dynamic media, such as audio and video, the XMP
model uses the concepts of tracks and markers. The properties that are used for this model are defined in
the XMP Dynamic Media namespace, http://ns.adobe.com/xmp/1.0/DynamicMedia/, with the
preferred schema namespace prefix of xmpDM.

➤ A Track is a named set of markers, as for a clip in a video, or a song in an album. An unordered list of all
tracks in a document is kept in xmpDM:Tracks. A track can specify a default frame rate and default
marker type that apply to all markers in the set.

➤ A Marker is a datatype that contains information about a specific location in a timed sequence, with a
start time, an optional duration, and other optional information, such as a name and type. Markers are
generally contained in tracks. An ordered list of all markers in a track is kept in xmpDM:markers.

The example speech sequence, when recorded as a track in Premiere Pro, is described in the XMP
metadata as follows. Each word is described by a value of the xmpDM:markers array. The times are given in
milliseconds. The syntax and usage of the xmpDM:Tracks and xmpDM:markers properties are discussed in
the following sections.

<xmpDM:Tracks>
<rdf:Bag>

<rdf:li>
<rdf:Description

xmpDM:trackName="Text transcription aggregated by Premiere Pro CS4"
xmpDM:trackType="Speech"
xmpDM:frameRate="f1000">
<xmpDM:markers>

<rdf:Seq>
<rdf:li

xmpDM:startTime="310"
xmpDM:duration="140"
xmpDM:name="there"
xmpDM:speaker="Speaker0"
xmpDM:probability="30"/>

<rdf:li
xmpDM:startTime="450"
xmpDM:duration="60"
xmpDM:name="are"
xmpDM:speaker="Speaker0"
xmpDM:probability="80"/>

<rdf:li
xmpDM:startTime="510"
xmpDM:duration="220"
xmpDM:name="some"
xmpDM:speaker="Speaker0"
xmpDM:probability="41"/>

<rdf:li
xmpDM:startTime="730"
xmpDM:duration="370"
xmpDM:name="words"
xmpDM:speaker="Speaker0"
xmpDM:probability="61"/>

<rdf:li
xmpDM:startTime="1100"
xmpDM:duration="340"
xmpDM:name="here"
xmpDM:speaker="Speaker0"

http://ns.adobe.com/xmp/1.0/DynamicMedia/

CHAPTER 2: Temporal Information in Dynamic Media Representing temporal markers in metadata 25

xmpDM:probability="29"/>
</rdf:Seq>

</xmpDM:markers>
</rdf:Description>

</rdf:li>
</rdf:Bag>

</xmpDM:Tracks>

This model allows you to search the metadata of, for example, song lyrics, without regard to the timing
information, while still retaining the time-code values.

The model is extensible. The data representation can be extended to cover language alternatives
(translated captions, for example). Attributes can be merged, combined (to make all the captions a single
string, for instance), split (to break lyrics up into stanzas, for example) or otherwise manipulated. If there
are multiple attributes for a given object that have time-code markers (for example, both recognized
speech and lyrics), you could choose to interleave the values or to treat them as separate layers.)

Marker types

Markers are used in audio and video editing for many purposes. The simplest marker has neither a specific
type nor a duration, and is used simply to mark a time (the xmpDM:startTime value). When editing, you
can snap things, such as the current time indicator, to such a marker, or use it as a reminder or placeholder.

You can specify an optional type value to indicate how a marker or set of markers is intended to be used.
The type tells you what other information is associated with it.

➤ An xmpDM:trackType value in a Track specifies a default type for all of the markers in the track. In the
example, all of the markers in the track represent speech values, as specified by
xmpDM:trackType="Speech".

➤ You can also specify one or more types for an individual Marker, using the xmpDM:type value. This
overrides the type given in the track, if any.

The type of a marker can control how an editor behaves when editing or exporting it. For example,
xmpDM:type="FLVCuePoint" means that it is intended as a cue point when exported to Flash, and that it
has cue-point information in it. Markers of particular types are typically displayed differently in an editor; in
a particular color, or in a particular part of the UI, for instance.

A track or marker can have multiple types; for example, xmpDM:type="Chapter,WebLink" indicates a
marker that is both a chapter marker and a link.

Predefined types for XMP markers and tracks include:

AlertAudio...

(various types)

An audio marker with no duration, which associates a point in time with
a condition, enabling the application to warn when that condition is
encountered. For example, a clipping alert can warn when the top of the
scale is reached. Audio alerts are used in OnLocation.

AlertUserNote The marker contains a user-supplied description in the xmpDM:comment
field.

AlertVideoTooLow
AlertVideoTooHigh

A video marker with a duration, which allows an application to respond
to the brightness level within the marked segment. This type of marker
is displayed in OnLocation and After Effects.

CHAPTER 2: Temporal Information in Dynamic Media Representing temporal markers in metadata 26

This example shows the XMP for a sequence that contains markers of various types:

<xmpDM:Tracks>
<rdf:Bag>

<rdf:l rdf:parseType="Resource">
<xmpDM:trackName>layer_markers</xmpDM:trackName>
<xmpDM:frameRate>f30</xmpDM:frameRate>
<xmpDM:markers>

<rdf:Seq>
<rdf:li rdf:parseType="Resource">

<xmpDM:startTime>0</xmpDM:startTime>
</rdf:li>
<rdf:li rdf:parseType="Resource">

<xmpDM:startTime>10</xmpDM:startTime>
<xmpDM:duration>6</xmpDM:duration>
<xmpDM:comment>flyingthroughtheair</xmpDM:comment>

Beat An audio marker (cue type) that is set when Adobe Audition®
automatically detects beats; the duration is always zero.

Chapter Marks the start of a chapter, for example in a DVD.

Corresponds to the "Encore Chapter Marker" option in Premiere Pro’s
Marker dialog.

Cue A basic audio marker type, which can have a duration or not. This type
maps directly to the RIFF standard cue chunk used for WAV and AVI
formats.

FLVCuePoint The marker will be converted to a Cue Point when exported to Flash
(FLV), using the xmpDM:cuePointType and xmpDM:cuePointParams
values in this marker. See following example.

Corresponds to the "Flash Cue Point" option in Premiere Pro’s Marker
dialog.

Index An audio marker (cue type) that identifies an index within a CD audio
track, used by some high-end audio CD players. Adobe Audition writes
these when burning CDs. The duration is always zero. This type of
marker must be aligned on 75 fps boundaries.

Speech The marker contains text created by speech-recognition technology,
manually entered, or by other means. The marker’s xmpDM:name
contains the phrase, word, or syllable. The marker can also contain an
xmpDM:speaker value, and, if created through speech recognition, an
xmpDM:probability value.

Track An audio marker (cue type) that identifies a CD audio track delimiter.
The duration is that of the audio track. This type of marker must be
aligned on 75 fps boundaries.

WebLink The marker is a link to the URL specified in this marker’s
xmpDM:location value (such as "http://www.mysite.com"). The
marker can also contain an xmpDM:target value with a specific frame
that should be set to view the URL. See following example.

Corresponds to the "Web Link" option in Premiere Pro’s Marker dialog.

http://www.mysite.com

CHAPTER 2: Temporal Information in Dynamic Media Representing temporal markers in metadata 27

</rdf:li>
<rdf:li rdf:parseType="Resource">

<xmpDM:startTime>40</xmpDM:startTime>
<xmpDM:name>Chapter1</xmpDM:name>
<xmpDM:type>Chapter</xmpDM:type>

</rdf:li>
<rdf:li rdf:parseType="Resource">

<xmpDM:startTime>60</xmpDM:startTime>
<xmpDM:name>myfavoritecuepoint</xmpDM:name>
<xmpDM:type>FLVCuePoint</xmpDM:type>
<xmpDM:cuePointType>Event</xmpDM:cuePointType>
<xmpDM:cuePointParams>

<rdf:Seq>
<rdf:li rdf:parseType="Resource">

<xmpDM:key>param1</xmpDM:key>
<xmpDM:value>777</xmpDM:value>

</rdf:li>
<rdf:li rdf:parseType="Resource">

<xmpDM:key>secondparam</xmpDM:key>
<xmpDM:value>888</xmpDM:value>

</rdf:li>
</rdf:Seq>

</xmpDM:cuePointParams>
</rdf:li>
<rdf:li rdf:parseType="Resource">

<xmpDM:startTime>70</xmpDM:startTime>
<xmpDM:name>Chapter2</xmpDM:name>
<xmpDM:type>Chapter,WebLink</xmpDM:type>
<xmpDM:location>http://www.adobe.com</xmpDM:location>
<xmpDM:target>right_frame</xmpDM:target>

</rdf:li>
</rdf:Seq>

</xmpDM:markers>
</rdf:li>

</rdf:Bag>
</xmpDM:Tracks>

Specifying time values for markers

A time value in a marker (xmpDM:startTime or xmpDM:duration) is specified as a frame count, which must
be associated with a frame rate. The default frame rate is 1 frame per second (fps).

A different frame rate can be included in the time specification (a FrameCount value), or the frame-count
value can be interpreted according to the frame rate of the containing track. Thus, a FrameCount
specification can take any of these forms:

"##" For a marker that is not in a track (or for a time value in a Part) a simple integer value is
a number of frames, which is also a number of seconds, at the default frame rate of 1
fps.

For a marker in a track, an integer value is interpreted as ticks/frames in the timescale
specified by the track’s xmpDM:frameRate.

When the count is zero, no frame rate should be specified. The default start time and
duration for a marker are both 0. The start time of a marker is measured from the start
of the file that contains the track.

http://www.adobe.com</xmpDM:location

CHAPTER 2: Temporal Information in Dynamic Media Retaining markers from nested ingredients 28

These examples show how a FrameCount value of 15 is expressed for common video and audio frame
rates:

Retaining markers from nested ingredients
The simple inclusion hierarchy for metadata can become complicated when an item that already has
complex, hierarchical, temporal metadata is used in another composition.

The markers in the metadata for each ingredient contain time-code values that reference the timeline of
that ingredient. When part of a dynamic document is imported, all of the markers must be mapped to the
timeline of the outermost document, as described in “Mapping times from source to target parts” on
page 22.

"##f###"
"##f###s###"

A number of frames specified together with a frame rate, which can contain an
optional rate basis. The rate basis defaults to 1.

"maximum" Allowed for a duration value; indicates that the time span is unlimited, or is determined
automatically up to the full duration of the source.

Film at 24 fps "15f24" 0.625 seconds, frame rate = 24, rate basis = 1

Can be read as "15 24ths of a second or "15 frames at 24 fps"

Speech-to-text in
milliseconds

"15f1000" 0.015 seconds, frame rate = 1000, rate basis = 1

NTSC at 29.97 fps "15f30000s1001" 0.5005 seconds, frame rate = 30000, rate basis = 1001

DVATicks "15f254016000000" 0.000000000059051398+ seconds, frame rate =
254016000000, rate basis = 1

CHAPTER 2: Temporal Information in Dynamic Media Retaining markers from nested ingredients 29

When you add an ingredient or part to the timeline of a document, you typically flatten the markers from
the hierarchical ingredient structure of the part and its components into a simple set of markers, where
each marker corresponds to some metadata start event. To flatten a set of markers:

➤ Walk the ingredient hierarchy and extract all markers from the pantry entries that pertain to the
sequence used in the current container.

➤ Remap the times of these markers onto the time scale of the outermost document.

Normally, the resulting flattened view would be used for read-only data in an application; that is, a view
that does not allow editing, and is not actually used during rendering. However, it is possible to promote
the markers from an included hierarchy, so that the complex metadata tree from an original source is
flattened into one or more sets of markers for the current container. To do this:

➤ Collect the extracted markers into a track.

➤ Insert the track into the pantry of the new container, in the pantry entry for the document being
imported.

➤ Set the stRef:maskMarkers property in each ingredient in the outermost document to "All" (the
default value is "None"), to prevent redundant processing of these same markers in those ingredients.

Promoting markers in this manner creates copies of them; these same markers are still to be found in the
pantry entries for documents further down the ingredient hierarchy. If you do not mark the ingredients
properly, the nested markers can be redundantly processed, next time this data is included somewhere.

This is how Adobe applications treat markers in metadata when parts are added to timelines, so if you
mark included parts correctly, they will behave correctly when used with those applications. You should
also check the mask-markers flag when walking the ingredient subtrees, and avoid regathering duplicated
markers.

 30

3 Code Example: Walking the Ingredient/Pantry Tree

This code example shows how to iterate through the inclusion hierarchy of nested ingredients of a
composed document, and their associated pantry entries, to find a specific metadata value (dc:title) in
each included document.

//---
// The Debug_PrintIngredientTree routine recursively walks the XMP object
// and prints a tree of all nested ingredients.
//---
// Call as follows:
//
// Debug_PrintIngredientTree(
// *var_XMPMetaPtr, // const SXMPMeta & in_BaseXMPMeta
// NULL, // XMP_StringPtr in_PathToSelectedPantryEntry,
// 0 // int in_NestLevel,
//);
//---
// Output for the sample case of Docs A-F, illustrated in previous chapters:
//---
// 0: Base Document:
// dc:title='DocF',
// InstanceID='xmp.iid:961EBA74072068119457FF67DE63A97D'
// Ingredient[1]: instanceID='xmp.iid:951EBA74072068119457FF67DE63A97D'
// 1: PantryEntry for ingredient was found:
// dc:title='DocE',
// InstanceID='xmp.iid:951EBA74072068119457FF67DE63A97D'
// Ingredient[1]: instanceID='xmp.iid:941EBA74072068119457FF67DE63A97D'
// 2: PantryEntry for ingredient was found:
// dc:title='DocD',
// InstanceID='xmp.iid:941EBA74072068119457FF67DE63A97D'
// Ingredient[1]: instanceID='xmp.iid:911EBA74072068119457FF67DE63A97D'
// 3: PantryEntry for ingredient was found:
// dc:title='DocA',
// InstanceID='xmp.iid:911EBA74072068119457FF67DE63A97D'
// Has no ingredients
// Ingredient[2]: instanceID='xmp.iid:921EBA74072068119457FF67DE63A97D'
// 3: PantryEntry for ingredient was found:
// dc:title='DocB',
// InstanceID='xmp.iid:921EBA74072068119457FF67DE63A97D'
// Has no ingredients
// Ingredient[3]: instanceID='xmp.iid:931EBA74072068119457FF67DE63A97D'
// 3: PantryEntry for ingredient was found:
// dc:title='DocC',
// InstanceID='xmp.iid:931EBA74072068119457FF67DE63A97D'
// Has no ingredients
//---
// Function prototype
static void Debug_PrintIngredientTree(

const SXMPMeta & in_BaseXMPMeta, // The outermost doc's xmpMeta.
XMP_StringPtr in_PathToSelectedPantryEntry, // Path to selected Ingredient's
// pantryEntry. The path is
// initially NULL for outermost
// doc. It is filled in by this
// routine and passed to the

CHAPTER 3: Code Example: Walking the Ingredient/Pantry Tree 31

// recursive calls to access
// the pantry entries.
int in_NestLevel // Used in formatting printf
// output, not needed for the
// actual traversal.

);

// The following additional XMP namespace identifiers are used.
#define kXMP_NS_IngredientsArray kXMP_NS_XMP_MM
#define kXMP_NS_IngredientsEntry kXMP_NS_XMP_ResourceRef
#define kXMP_NS_PantryArray kXMP_NS_XMP_MM
#define kXMP_NS_PantryEntry kXMP_NS_XMP_MM

// The following additional XMP property name identifiers are used.
#define kXMP_Property_IngredientsArray "Ingredients"
#define kXMP_Property_PantryArray "Pantry"

// Function implementation
void Debug_PrintIngredientTree(

const SXMPMeta & in_BaseXMPMeta, // The outermost doc's xmpMeta.
XMP_StringPtr in_PathToSelectedPantryEntry, // Path to selected Ingredient's
// pantryEntry. The path is
// initially NULL for outermost
// doc. It is filled in by this
// routine and passed to the
// recursive calls to access
// the pantry entries.
int in_NestLevel // Used in formatting printf
// output, not needed for the
// actual traversal.

)
{

// This code shows the differences in how to access data that is held directly in
// the base document's XMPMeta object (var_isTopLevel==true), as opposed to
// accessing the same data if it is held within a pantry entry
// (var_isTopLevel==false).

bool var_isTopLevel = true;
if(

(in_PathToSelectedPantryEntry == NULL)
||
(in_PathToSelectedPantryEntry == "")

)
{

// If the in_PathToSelectedPantryEntry entry is NOT supplied, it is
// accessing the baseDocument (sets var_isTopLevel=true).
var_isTopLevel = true;

}
else
{

// If the in_PathToSelectedPantryEntry entry is supplied, this routine
// is accessing a pantryEntry (sets var_isTopLevel=false).
var_isTopLevel = false;

}

// The var_ThisLevel_PrintIndent & var_NextLevel_PrintIndent variables
// are used in the formatting of the printf output,
// they are not needed for the actual traversal.
TXMP_STRING_TYPE var_ThisLevel_PrintIndent = "";

CHAPTER 3: Code Example: Walking the Ingredient/Pantry Tree 32

for(
int i = 0;
i < in_NestLevel;
++i

)
{

var_ThisLevel_PrintIndent += " ";
}
TXMP_STRING_TYPE var_NextLevel_PrintIndent = var_ThisLevel_PrintIndent;
var_NextLevel_PrintIndent += " ";

// This next block prints the InstanceID and dc:title of the baseDoc or
// PantryEntry currently being processed.
if(var_isTopLevel)
{

//---
// This is how to access simple properties in the baseDoc (topLevel)
//---

// Find instanceID of base file
TXMP_STRING_TYPE var_BaseDocInstanceID = "";
in_BaseXMPMeta.GetProperty(

kXMP_NS_XMP_MM, // Base NS differs between top-level and within-pantry.
// (The Base NS and the Field NS are the same for
// baseDoc access.)
"InstanceID",
&var_BaseDocInstanceID,
NULL

);

// The title is not needed in the traversal, but is much more humanly
// readable than the InstanceID. It is used only in the printf output.
TXMP_STRING_TYPE var_BaseDocTitle = "";
in_BaseXMPMeta.GetProperty(

kXMP_NS_DC, // Base NS differs between top-level and within-pantry.
"title",
&var_BaseDocTitle,
NULL

);

printf(
"%s%d: Base Document: \n",
var_ThisLevel_PrintIndent.c_str(),
in_NestLevel

);
printf(

"%s dc:title='%s',\n",
var_NextLevel_PrintIndent.c_str(),
var_BaseDocTitle.c_str()

);
printf(

"%s InstanceID='%s'\n",
var_NextLevel_PrintIndent.c_str(),
var_BaseDocInstanceID.c_str()

);
}
else
{

//---
// This is how to access simple properties in a pantryEntry.

CHAPTER 3: Code Example: Walking the Ingredient/Pantry Tree 33

//---

// Find instanceID of requested pantry entry from current Ingredient entry
TXMP_STRING_TYPE var_PantryEntryInstanceID = "";
in_BaseXMPMeta.GetStructField(

kXMP_NS_PantryArray, // Base NS differs between top-level and
// within-pantry.
in_PathToSelectedPantryEntry,
kXMP_NS_XMP_MM, // Field NS does not differ between top-level
// and within-pantry.
"InstanceID",
&var_PantryEntryInstanceID,
NULL

);

// The title is not needed in the traversal, but is much more humanly
// readable than the InstanceID. It is used only in the printf output.
TXMP_STRING_TYPE var_PantryEntryTitle = "";
in_BaseXMPMeta.GetStructField(

kXMP_NS_PantryArray, // Base NS differs between top-level and
// within-pantry
in_PathToSelectedPantryEntry,
kXMP_NS_DC, // Field NS does not differ between top-level
// and within-pantry.
"title",
&var_PantryEntryTitle,
NULL

);

printf(
"%s%d: PantryEntry for ingredient was found:\n",
var_ThisLevel_PrintIndent.c_str(),
in_NestLevel

);
printf(

"%s dc:title='%s',\n",
var_NextLevel_PrintIndent.c_str(),
var_PantryEntryTitle.c_str()

);
printf(

"%s InstanceID='%s'\n",
var_NextLevel_PrintIndent.c_str(),
var_PantryEntryInstanceID.c_str()

);
}

//---
// To find all ingredients and nested ingredients in the current doc/pantryEntry,
// find each ingredient's ingredietnEntry, then get its pantryEntry and
// recursivly process the ingredients in the pantryEntry.
//---
// 1.) Get the path to the Ingredients (this is different for top-level
// and pantry access).
// 2.) Get the ingredient count
// 3.) For each entry in the IngredientList,
// find the path to that IngredientEntry.
// 4.) Using that path, look up the ingredient's "instanceID"
// (Note lowercase 'i')
// 5.) Now, given the path to the Pantry

CHAPTER 3: Code Example: Walking the Ingredient/Pantry Tree 34

// (always in the top-level document),
// find the count of the number of entries in the pantry.
// 6.) For each entry in the Pantry, find the path to that PantryEntry.
// 7.) Using that path, look up the PantryEntry's "InstanceID"
// (Note uppercase 'I')
// 8.) If the ingredient's instanceID matches the
// PantryEntry's InstanceID, you have the correct
// PantryEntry to process further (recursively).
//---
// These steps are implemented in the following code
//---

// 1.) Get the path to the Ingredients (this is different for top-level
// and pantry access).
TXMP_STRING_TYPE var_PathToIngredientsArray = "";
if(var_isTopLevel)
{

// Set "IngredientArrayPath" within base file
var_PathToIngredientsArray = kXMP_Property_IngredientsArray;

}
else
{

// Set "IngredientArrayPath" within pantry entry
SXMPUtils::ComposeStructFieldPath(

kXMP_NS_PantryArray,
in_PathToSelectedPantryEntry,
kXMP_NS_IngredientsArray,
kXMP_Property_IngredientsArray,
&var_PathToIngredientsArray

);
}

// 2.) Get the ingredient count
int var_IngredientCount = 0;
var_IngredientCount = in_BaseXMPMeta.CountArrayItems(

kXMP_NS_IngredientsArray,
var_PathToIngredientsArray.c_str()

);
if(var_IngredientCount == 0)
{

printf(
"%sHas no ingredients\n",
var_NextLevel_PrintIndent.c_str()

);
}
for(

int var_IngredientIndex = 1; // WARNING: This is a 1-based index
var_IngredientIndex <= var_IngredientCount;
++var_IngredientIndex

)
{

// 3.) For each entry in the IngredientList,
// find the path to that IngredientEntry.
TXMP_STRING_TYPE var_PathToIngredientEntry = "";
SXMPUtils::ComposeArrayItemPath(

kXMP_NS_IngredientsArray,
var_PathToIngredientsArray.c_str(),
var_IngredientIndex,
&var_PathToIngredientEntry

);

CHAPTER 3: Code Example: Walking the Ingredient/Pantry Tree 35

// 4.) Using that path, look up the ingredient's "instanceID"
// (Note lowercase 'i')
TXMP_STRING_TYPE var_IngredientInstanceID = "";
in_BaseXMPMeta.GetStructField(

kXMP_NS_IngredientsArray,
var_PathToIngredientEntry.c_str(),
kXMP_NS_IngredientsEntry,
"instanceID",
&var_IngredientInstanceID,
NULL

);
printf(

"%sIngredient[%d]: instanceID='%s'\n",
var_NextLevel_PrintIndent.c_str(),
var_IngredientIndex,
var_IngredientInstanceID.c_str()

);

//---
// Find the pantryEntry that corresponds to that ingredient's instanceID.
// (This code written for clarity, not for performance. May be slow for
// files with large numbers of pantry entries.)
//---

// 5.) Now, given the path to the Pantry
// (always in the top-level document),
// find the count of the number of entries in the pantry.
XMP_Index var_PantrySearchCount = in_BaseXMPMeta.CountArrayItems(

kXMP_NS_PantryArray,
kXMP_Property_PantryArray

);
bool var_MatchingPantryEntryWasFound = false;
for(

XMP_Index var_PantrySearchIndex = 1; // WARNING: This is a 1-based index
var_PantrySearchIndex <= var_PantrySearchCount;
++var_PantrySearchIndex

)
{

// 6.) For each entry in the Pantry,
// find the path to that PantryEntry.
TXMP_STRING_TYPE var_PathToPantrySearchEntry = "";
SXMPUtils::ComposeArrayItemPath(

kXMP_NS_PantryArray,
kXMP_Property_PantryArray,
var_PantrySearchIndex,
&var_PathToPantrySearchEntry

);

// 7.) Using that path, look up the PantryEntry's "InstanceID"
// (Note uppercase 'I')
TXMP_STRING_TYPE var_PantrySearchEntryInstanceID = "";
in_BaseXMPMeta.GetStructField(

kXMP_NS_PantryArray,
var_PathToPantrySearchEntry.c_str(),
kXMP_NS_XMP_MM,
"InstanceID",
&var_PantrySearchEntryInstanceID,
NULL

);

CHAPTER 3: Code Example: Walking the Ingredient/Pantry Tree 36

if(var_PantrySearchEntryInstanceID == var_IngredientInstanceID)
{

// 8.) If the ingredient's instanceID matches the
// PantryEntry's InstanceID, you have the correct
// PantryEntry to process further (recursively).

var_MatchingPantryEntryWasFound = true;

// Recursively call for each matching/found pantry entry
Debug_PrintIngredientTree(

in_BaseXMPMeta, // outermost doc's xmpMeta
// const SXMPMeta & in_BaseXMPMeta,

var_PathToPantrySearchEntry.c_str(), // path to pantryEntry
// XMP_StringPtr in_PathToSelectedPantryEntry,
(in_NestLevel + 1) // int in_NestLevel,

);
} // if(var_PantrySearchInstanceID == var_IngredientInstanceID)

} // for(XMP_Index var_PantrySearchIndex = 1; ...)

if(var_MatchingPantryEntryWasFound == false)
{

// This is not an error. The pantry can optionally be purged
// of entries where the timespan of the ingredient falls
// outside the visible timespan in of the result.
printf(

"%s%d: PantryEntry for Ingredient='%s' was not found.\n",
var_NextLevel_PrintIndent.c_str(),
(in_NestLevel + 1),
var_IngredientInstanceID.c_str()

);
}

} // for(int var_IngredientIndex = 1; ...)
}
// End of sample code

	Preface
	How this document is organized
	Additional documentation
	The metadata workflow

	Asset Management for Composed Documents
	Composed-document metadata
	Resource references
	Document parts
	Part specifications

	Retaining metadata from ingredients
	Excluding metadata from unused parts

	Finding metadata for an ingredient

	Tracking document history
	Using document history
	Recording change events
	Maintaining the history list

	Identifying documents and parts uniquely
	Assigning document identifiers
	Generating identifiers
	Identifier URI schemes

	Temporal Information in Dynamic Media
	Timed ingredients
	Specifying time values for parts
	Mapping times from source to target parts

	Representing temporal markers in metadata
	Tracks and markers
	Marker types
	Specifying time values for markers

	Retaining markers from nested ingredients

	Code Example: Walking the Ingredient/Pantry Tree

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [594.000 792.000]
>> setpagedevice

