OASIS 🕅

MQTT and the NIST Cybersecurity Framework Version 1.0

Committee Note Draft 01 / Public Review Draft 01

10 April 2014

Specification URIs

This version: http://docs.oasis-open.org/mgtt/mgtt-nist-cybersecurity/v1.0/cnprd01/mgtt-nistcybersecurity-v1.0-cnprd01.doc (Authoritative) http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/cnprd01/mqtt-nistcybersecurity-v1.0-cnprd01.html http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/cnprd01/mqtt-nistcybersecurity-v1.0-cnprd01.pdf **Previous version:** N/A Latest version: http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nistcybersecurity-v1.0.doc (Authoritative) http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nistcybersecurity-v1.0.html http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nistcybersecurity-v1.0.pdf **Technical Committee:** OASIS Message Queuing Telemetry Transport (MQTT) TC Chairs: Raphael J Cohn (raphael.cohn@stormmq.com), Individual

Richard J Coppen (<u>coppen@uk.ibm.com</u>), IBM

Editors:

Geoff Brown (geoff.brown@m2mi.com), Machine-To-Machine Intelligence (M2Mi) Corporation Louis-Philippe Lamoureux (louis.lamoureux@m2mi.com), Machine-To-Machine Intelligence (M2Mi) Corporation

This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not apply.

Related work:

This document is related to:

 MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

Abstract:

This document provides guidance for organizations wishing to deploy MQTT in a way consistent with the NIST Framework for Improving Critical Infrastructure cybersecurity.

Status:

This document was last revised or approved by the OASIS Message Queuing Telemetry Transport (MQTT) TC on the above date. The level of approval is also listed above. Check the "Latest version" location noted above for possible later revisions of this document.

Technical Committee members should send comments on this document to the Technical Committee's email list. Others should send comments to the Technical Committee by using the "<u>Send A Comment</u>" button on the Technical Committee's web page at <u>https://www.oasis-open.org/committees/mqtt/</u>.

Citation format:

When referencing this document the following citation format should be used:

[mqtt-nist-cybersecurity-v1.0]

MQTT and the NIST Cybersecurity Framework Version 1.0. Edited by Geoff Brown and Louis-Philippe Lamoureux. 10 April 2014. OASIS Committee Note Draft 01 / Public Review Draft 01. <u>http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/cnprd01/mqtt-nist-cybersecurity-v1.0-cnprd01.html</u>. Latest version: <u>http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html</u>.

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full <u>Policy</u> may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1	Introducti	on	. 5
1	.1 Termino	logy	. 5
1	.2 Referenc	ces (non-normative)	. 5
1	.3 NIST Cyb	ersecurity Framework	. 6
	1.3.1 The	Framework Core	. 6
	1.3.2 Fram	nework Implementation Tiers	. 6
		nework Profile	
1	.4 NIST Cyb	ersecurity Framework for MQTT	. 7
	1.4.1 MQ1	IT Cybersecurity Framework Core	. 7
	1.4.2 MQ1	IT Cybersecurity Framework Implementation Tiers	. 7
	1.4.3 MQ1	IT Cybersecurity Framework Profile	. 8
	1.4.4 Esta	blishing or Improving a Cybersecurity Program	. 8
	1.4.5 Docu	ument Overview	. 9
2	MQTT Cyb	persecurity Framework Core Functions	11
	2.1.1 Iden	tify	11
	2.1.2 Prot	ect	12
	2.1.3 Dete	ect	12
	2.1.4 Resp	pond	13
	2.1.5 Reco	over	13
Арр	oendix A.	Example Implementation	14
Арр	oendix B.	Acknowledgments	20
Арр	oendix C.	Revision History	21

1 1 Introduction

- 2 The purpose of this supplemental publication is to introduce implementors and senior
- 3 executives to the NIST Framework for Improving Critical Infrastructure Cybersecurity (herein
- 4 referred as the NIST Cybersecurity Framework) and its relationship with the MQTT security
- 5 recommendations. The NIST Cybersecurity Framework provides a common language and
- 6 mechanism for organizations to: 1) describe current cybersecurity posture; 2) describe their
- 7 target state for cybersecurity; 3) identify and prioritize opportunities for improvement within
- 8 the context of risk management; 4) assess progress toward the target state; 5) foster
- 9 communications among internal and external stakeholders.
- 10 The NIST Cybersecurity Framework complements, and does not replace, an organization's
- 11 existing business or cybersecurity risk management process and cybersecurity program. Rather,
- 12 the organization can use its current processes and leverage the NIST Cybersecurity Framework
- 13 to identify opportunities to improve an organization's cybersecurity risk management. It also
- 14 provides a consensus description of what's needed for a comprehensive cybersecurity program.
- 15 This supplemental document focuses solely on the MQTT protocol's integration within the NIST
- 16 Cybersecurity Framework. Keep in mind that a complete cybersecurity management framework
- 17 can include a wide variety of topics that must be tailored for specific needs according to the
- 18 organization's missions, environments of operation, and technologies used. Please refer to the
- 19 NIST Cybersecurity Framework for more information: http://www.nist.gov/cyberframework/

20 1.1 Terminology

21 1.2 References (non-normative)

- 22 Information regarding Informative References may be found at the following locations:
- Control Objectives for Information and Related Technology (COBIT).
 <u>http://www.isaca.org/COBIT/Pages/default.aspxNIST Cybersecurity Framework</u>
- Council on CyberSecurity (CCS) Top 20 Critical Security Controls (CSC).
 <u>http://www.counciloncybersecurity.org</u>
- ANSI/ISA-62443-2-1 (99.02.01)-2009, Security for Industrial Automation and Control
 Systems: Establishing an Industrial Automation and Control Systems Security Program:
 http://www.isa.org/Template.cfm?Section=Standards8&Template=/Ecommerce/Productions10
 http://www.isa.org/Template.cfm?Section=Standards8&Template=/Ecommerce/Productions20
 http://www.isa.org/Template.cfm?Section=Standards8&Template=/Ecommerce/Productions20
- ANSI/ISA-62443-3-3 (99.03.03)-2013, Security for Industrial Automation and Control
 Systems: System Security Requirements and Security Levels.
 http://www.isa.org/Template.cfm?Section=Standards2&template=/Ecommerce/Produc
- 34 tDisplay.cfm&ProductID=13420

- ISO/IEC 27001, Information technology -- Security techniques -- Information security
 management systems Requirements.
 <u>http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber</u>
 <u>=54534</u>
- NIST SP 800-53 Rev. 4: NIST Special Publication 800-53 Revision 4, Security and Privacy
 Controls for Federal Information Systems and Organizations. April 2013.
 http://dx.doi.org/10.6028/NIST.SP.800-53r4

42 1.3 NIST Cybersecurity Framework

The NIST Cybersecurity Framework is a risk-based approach to managing cybersecurity risk, and is composed of three parts: the Framework Core, the Framework Implementation Tiers, and the Framework Profiles. Each Framework component reinforces the connection between business

46 drivers and cybersecurity activities. The components are described below.

47 1.3.1 The Framework Core

48 The Framework Core is a set of cybersecurity activities, desired outcomes, and applicable

- 49 references that are common across critical infrastructure sectors. The Core presents industry
- 50 standards, guidelines, and practices in a manner that allows for communication of cybersecurity
- 51 activities and outcomes across the organization from the executive level to the implementation
- 52 and operations level. The Framework Core consists of five concurrent and continuous functions:
- 53 Identify, Protect, Detect, Respond, Recover. When considered together, these Functions provide
- a high-level, strategic view of the lifecycle of an organization's management of cybersecurity
- risk. The Framework Core then identifies underlying key Categories and Subcategories for each
- 56 Function, and matches them with example Informative references such as existing standards,
- 57 guidelines, and practices for each Subcategory.

58 1.3.2 Framework Implementation Tiers

- 59 Framework Implementation Tiers ("Tiers") provide context on how an organization views
- 60 cybersecurity risk and the processes in place to manage that risk. Tiers describe the degree to
- 61 which their cybersecurity risk management practices exhibit the characteristics defined in the
- 62 Framework (e.g., risk and threat aware, repeatable, and adaptive). The Tiers characterize an
- 63 organization's practices over a range, from Partial (Tier 1) to Adaptive (Tier 4). These Tiers
- 64 reflect a progression from informal, reactive responses to approaches that are agile and risk-
- 65 informed. During the Tier selection process, an organization should consider its current risk
- 66 management practices, threat environment, legal and regulatory requirements,
- 67 business/mission objectives, and organizational constraints.

68 1.3.3 Framework Profile

- 69 A Framework Profile ("Profile") represents the outcomes based on business needs that an
- 70 organization has selected from the Framework Categories and Subcategories. The Profile can be
- characterized as the alignment of standards, guidelines, and practices to the Framework Core in
- 72 a particular implementation scenario. Profiles can be used to identify opportunities for

- 73 improving cybersecurity posture by comparing a *Current* Profile (the "as is" state) with a *Target*
- 74 Profile (the "to be" state). To develop a Profile, an organization can review all of the Categories
- 75 and Subcategories and, based on business drivers and a risk assessment, determine which are
- 76 most important; they can add Categories and Subcategories as needed to address the
- 77 organization's risks. The Current Profile can then be used to support prioritization and
- 78 measurement of progress toward the Target Profile, while factoring in other business needs
- 79 including cost-effectiveness and innovation. Profiles can be used to conduct self-assessments
- 80 and communicate within an organization or between organizations.

81 1.4 NIST Cybersecurity Framework for MQTT

- 82 In the context of the MQTT protocol, each NIST Cybersecurity component has been reduced to
- 83 solely reflect security considerations of the protocol and are renamed accordingly: MQTT
- 84 cybersecurity Framework Core, MQTT cybersecurity Framework Implementation Tiers, and
- 85 MQTT cybersecurity Framework Profile.

86 1.4.1 MQTT Cybersecurity Framework Core

- 87 The MQTT cybersecurity Framework Core consists of the same five Functions (Identify, Protect,
- 88 Detect, Respond, Recover) which can provide a high-level, strategic view of an organization's
- 89 management of MQTT related cybersecurity risk. The MQTT cybersecurity Framework Core then
- 90 identifies underlying key Categories and Subcategories for each of these Functions described in
- 91 Section 2. Because the MQTT cybersecurity Framework is smaller in scope it is unnecessary to
- 92 provide references for every Category and Subcategory. A non-exhaustive list of informative
- 93 references is provided in Section 1.2.

94 1.4.2 MQTT Cybersecurity Framework Implementation Tiers

- 95 The MQTT cybersecurity Framework Implementation Tiers demonstrate the implementation of
- 96 the MQTT cybersecurity Framework Core Functions and Categories and indicate how
- 97 cybersecurity risk is managed. Organizations should determine the desired Tiers at the Category
- 98 level, ensuring that the selected levels meet the organizational goals, mitigate cybersecurity risk,
- and are feasible to implement. External guidance will be helpful, such as information that could
- 100 be obtained from OASIS Security Assertion Markup Language (SAML), the Federal Information
- 101 Processing Standards (FIPS), and Payment Card Industry Data Security Standard (PCI DSS). The
- 102 Tier definitions are described below.

103 1.4.2.1 Tier 1: Partial

- 104 The organization has not yet implemented a formal, threat-aware MQTT risk management
- 105 process to determine a prioritized list of cybersecurity activities. The organization might
- 106 implement some portions of the Framework on an ad hoc basis due to varied experience or
- 107 information gained from outside sources.

108 1.4.2.2 Tier 2: Risk-Informed

- 109 The organization uses a formal, threat-aware MQTT risk management process to develop an
- 110 MQTT Profile of the Framework. In addition, risk-informed, management approved processes
- 111 and procedures are defined and implemented. Staff have adequate resources to perform their
- 112 cybersecurity duties.

113 1.4.2.3 Tier 3: Repeatable

114 The organization updates its Profile based on regular application of its MQTT risk management 115 process to respond to a changing cybersecurity landscape. Risk informed policies, processes, and 116 procedures are defined, implemented as intended, and validated. The organization will also

117 have consistent methods in place to provide updates when a risk change occurs.

118 1.4.2.4 Tier 4: Adaptive

- 119 The organization updates its Profile based on predictive indicators derived from previous and
- 120 anticipated cybersecurity activities. These updates to the Profile enable the organization to
- adapt to an evolving cybersecurity landscape and address emerging threats. Risk-informed
- policies, processes, and procedures are part of the organizational culture and are reviewed
- 123 regularly including feedback from lessons learned and information shared from other sources -
- 124 to predict and address potential cybersecurity events.

125 1.4.3 MQTT Cybersecurity Framework Profile

An MQTT cybersecurity Framework Profile enables organizations to establish a roadmap for
 reducing MQTT related cybersecurity risk that is well-aligned with organization and sector goals,
 considers legal and regulatory requirements, and reflects risk management priorities. An MQTT
 cybersecurity Framework Profile can be used to describe both the current state and the desired
 target state of specific MQTT cybersecurity activities, thus revealing gaps that could be

- addressed to meet MQTT cybersecurity risk management objectives.
- 132 The Profile is the selection of the Functions, Categories, and Subcategories that are aligned with 133 the business requirements, risk tolerance, and resources of the organization. The Target Profile
- the business requirements, risk tolerance, and resources of the organization. The Target Profile
- 134 should support business requirements and aid in the communication of risk within and between 135 organizations. Identifying the gaps between the Current Profile and the Target Profile allows the
- 135 organizations. Identifying the gaps between the Current Profile and the Target Profile allows the
- 136 creation of a roadmap that organizations could implement to reduce MQTT related
- 137 cybersecurity risk.

138 1.4.4 Establishing or Improving a Cybersecurity Program

- 139 Together, the three MQTT Cybersecurity Framework components allow organizations to
- 140 understand and shape their cybersecurity program. The following sub sections illustrate how
- 141 this can be done.

142 1.4.4.1 Prioritize and Scope

- 143 The organization identifies its business/mission objectives and high-level organizational
- 144 priorities. With this information, the organization makes strategic decisions regarding

- 145 cybersecurity implementations and determines the scope of systems and assets that support
- 146 the selected business line or process.

147 1.4.4.2 Orient

148 Once the scope of the cybersecurity program has been determined for the business line or

149 process, the organization identifies related systems and assets, regulatory requirements, and

- their overall risk approach. The organization then identifies threats to, and vulnerabilities of,
- 151 those systems and assets.

152 1.4.4.3 Create a Current Profile

153 The organization develops a Current Profile by indicating which Category and Subcategory 154 outcomes from the Framework Core are currently being achieved.

155 1.4.4.4 Conduct a Risk Assessment

This assessment could be guided by the organization's overall risk management process or previous risk assessment activities. The organization analyzes the operational environment in order to discern the likelihood of a cybersecurity event and the impact that the event could have on the organization. It is important that organizations seek to incorporate emerging risks and threat and vulnerability data to facilitate a robust understanding of the likelihood and impact of cybersecurity events.

162 1.4.4.5 Create a Target Profile

163 The organization creates a Target Profile that focuses on the assessment of the Framework 164 Categories and Subcategories describing the organization's desired cybersecurity outcomes. 165 Organization may develop their own additional Categories and Subcategories to account for 166 unique organizational risks. The organization also consider influences and requirements of 167 external stakeholders such as sector entities, customers, and business partners when creating a 168 Target Profile.

169 1.4.4.6 Determine, Analyze, and Prioritize Gaps

The organization compares the Current Profile and the Target Profile to determine gaps. Next it creates a prioritized action plan to address those gaps that draws upon mission drivers, a "cost benefit" analysis, and understanding of risk to achieve the outcomes in the Target Profile. The organization then determines resources necessary to address the gaps. Using Profiles in this manner enables the organization to make informed decisions about cybersecurity activities, supports risk management, and enables the organization to perform cost-effective, targeted improvements.

177 1.4.5 Document Overview

- 178 The remainder of this supplemental document contains the following sections:
- Section 2 describes the MQTT cybersecurity Framework Core Functions.
- Appendix A is an Example Implementation of the MQTT cybersecurity Framework.

- 181 Appendix B are Acknowledgements
- 182 Appendix C is the Revision History

183

184 2 MQTT Cybersecurity Framework Core Functions

185 This section describes the five MQTT cybersecurity Framework Core Functions and how they can 186 be used to assess an organization's cybersecurity level where the MQTT protocol is used. The list

- 187 of components associated with each function presented here is non-exhaustive and provided as
- a starting point for a cybersecurity Management Framework. Implementors should modify
- 189 Categories and Subcategories as they see fit such as to tailor the MQTT Cybersecurity
- 190 Framework functions for their organization. Informative References described in Section 1.2
- 191 should also be modified to reflect an organization's regulatory requirements.

192 2.1.1 Identify

197

- 193 The purpose of this function is to:
- Develop the institutional understanding of which MQTT related organizational systems,
 assets, data, and capabilities need to be protected;
- 196 2. determine priority in light of organizational mission;
 - 3. establish processes to achieve risk management goals.

Function	Category	Subcategory
Identify	Asset Management	 List of hardware devices Software inventory Network mapping Lifecycle tracking
	Risk Management	 Defining Risk Tolerance Risk Identification Risk Assessment Authentication of the Server by the Clients Analysis of Alternatives
	Compliance	 Business Requirements Legislative and Regulatory Contractual Requirements Technology Certification
	Information Sharing and Communications	 Understand Data Flows Internal Communications External Communications Cryptographic suites versioning and implementation how-to
	Environmental Awareness	 Location of (client-side) end-devices Location of end-to-end communication infrastructures Location of (server-side) brokers and vicinity

198 2.1.2 Protect

199 The purpose of this function is to develop and implement the appropriate MQTT safeguards,

200 prioritized through the organization's risk management process, to ensure delivery of critical

201 infrastructure services.

Function	Category	Subcategory
Protect	Security Awareness	 User Awareness Training Formal Training Exercise and Evaluation
	Identity, Credential and Access Management	 Use of PKI (e.g. TLS, VPN) Choose a well-known Certificate Authority Authentication of Clients by the Server Authentication of the Server by the Clients Authorization of Clients by the Server
	Information Protection	 Use of cryptographic suites (e.g. TLS, VPN) Integrity of Application Messages and Control Packets Privacy of Application Messages and Control Packets Non-repudiation of message transmission Secure Random Number Generation for all involved devices
	Server-side Protection	 Compliance with MQTT specification Automatic Client disconnect mechanisms Suspicious behavior detection Dynamic Access Control Listing (e.g. IP address or Client ID) Rate limiting and/or blocking (e.g. IP address) Data-at-rest encryption Frequent session renegotiation to establish new cryptographic parameters (e.g. replace session keys or change cipher suites)
	Client-side Protection	 Tamper proof end-devices Proper storage of the client certificate (key management considerations) Two-factor authentication

202

203 2.1.3 Detect

The purpose of this function is to develop and implement the appropriate activities to identifythe occurrence of an MQTT related cybersecurity event.

Function	Category	Subcategory		
Detect	Network Monitoring	٠	Repeated connection attempts	

	Abnormal termination of connections
Physical Monitoring	Client availability verification
, 0	End-devices and their vicinity physical inspection
	Repeated authentication attempts
Intrusion Detection	 Topic scanning (attempts to send or subscribe to many topics)
	• Sending undeliverable messages (no subscribers to the topics)
	Clients that connect but do not send data

206

207 2.1.4 Respond

- 208 The purpose of this function is to develop and implement the appropriate activities, prioritized
- 209 through the organization's risk management process, to take action in response to a detected
- 210 cybersecurity event.

Function	Category	Subcategory	
Respond	Response Planning	 Revoke lost and/or compromised certificates Revoke lost and/or compromised Client or Server authentication credentials Disconnect suspicious or compromised end- devices Block compromised telemetry channels Increase Firewall policies Shutdown compromised brokers and servers 	

211 2.1.5 Recover

212 The purpose of this function is to develop and implement the appropriate activities, prioritized

through the organization's risk management process, to restore the appropriate capabilities thatwere impaired through a cybersecurity event.

Function	Category	Subcategory
Recover	Recover Planning	 Perform information system recovery (e.g. restart broker, create new telemetry channels, etc.) Perform reconstitution activities Provide alternate work site to recover work activities Review Firewall policies Reissue certificates and authentication credentials Inspect end-devices Review Key Management and cryptographic deployments Backup systems Updated contingency plan

215 Appendix A. Example Implementation

216 Large Energy Provider MQTT Bus Architecture

217

218 This section provides a worked example to show how the Framework can be applied to help

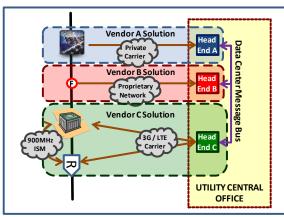
219 manage MQTT cybersecurity risk. A large energy provider intends to implement an open-source,

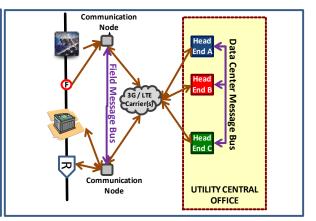
broker-agnostic, and distributed field message bus architecture based on the MQTT protocol.

Protecting the bus architecture is essential because the energy provider is a criticalinfrastructure.

223 Context

The organization is looking to build a new architecture around an open-source, broker agnostic /communication node' concept and is running a pilot project to assess feasibility, and integration


225 communication node concept and is furning a prior project to assess reasibility, and integration


within its wider message bus. Its primary role is to facilitate interoperability between the various

227 operational technologies deployed (i.e. SCADA, EMS, DMS, OMS, MDM, etc.) and also augment

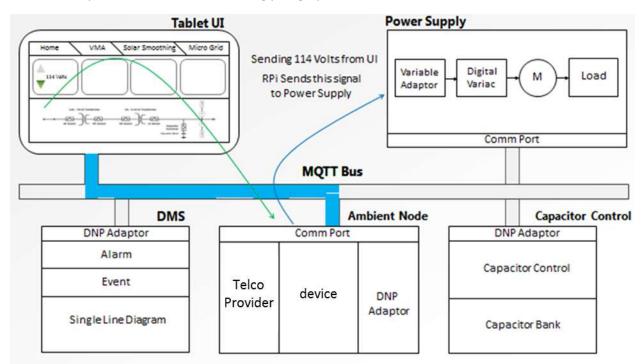
228 these technologies by using the MQTT protocol for the efficient sharing and processing of data

closer to the asset(s) required for the rapid, reliable, and safe execution of operational functionsof all priorities on the electric grid.

231

Current State – Message Bus at Data Center

Future State – Message Bus in Field and Data Center


232 Consequently, using the MQTT protocol will not only improve the simplicity and the integrity of

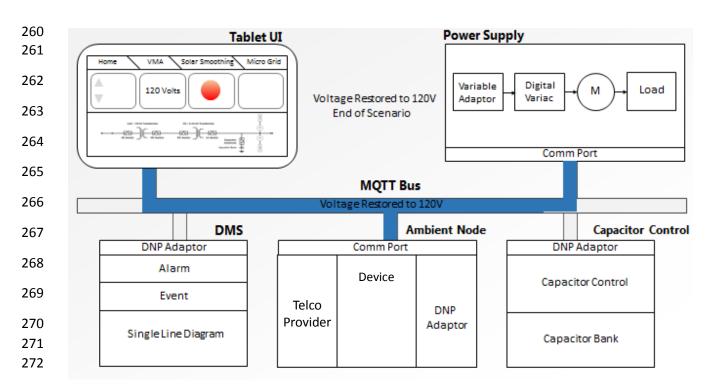
the information exchanges between disparate assets in the field, but also inherently filter a

- significant amount of unused data overhead and, more importantly, will eliminate the need to
- backhaul all raw data to a central data center. Fundamentally, these benefits will translate into
- vast savings in the cost of operating the IT systems and telecommunication networks, but can
- also achieve further value by enabling deployed control schemes that are not presently feasible
- 238 without distributed decision-making closer to the electric grid assets.

239 Test Lab Scenario

- 240 The energy provider is running the following Field Message Bus scenario, based on MQTT. The
- 241 initial and final state of the system is shown in picture form. The intermediate publish and
- 242 subscribe steps are described the following paragraph.

243


244

Initial State: Scenario starts when the Tablet UI publishes low voltage – 114V.

245 A Tablet PC is used to control the voltage of a power supply that feeds input voltage to a smart 246 meter. The scenario starts when the Tablet UI publishes low voltage – 114V. The smart meter 247 sees the low voltage and publishes its voltage status change to the distribution management 248 system (DMS). The DMS subscribes and updates its status. The DMS publishes a control 249 command to the cap bank controller to close the cap bank, thus raising the voltage. The cap 250 bank controller publishes its status change – closed – back to the DMS. The DMS subscribes to 251 the cap bank controller status change; it updates its single-line diagram and publishes a raise 252 voltage volt-120 command to the Power Supply who subscribes and makes the change. The 253 meter publishes its voltage status change – 120V. The DMS publishes an updated single-line 254 diagram to the Tablet UI showing the closed cap bank. This scenario is complete when the 255 Tablet UI subscribes to and displays the updated single-line diagram from the DMS. 256 This simple test scenario reveals the richness, flexibility, and ease of use of publish and subscribe

Field Message Bus, MQTT technology. Future plans for the Field Message Bus is to include the necessary security layers: authentication, authorization, encryption, intrusion detection, and

259 quality of trust behavior analytics to the distributed enterprise.

273 MQTT Cybersecurity Framework

The NIST Cybersecurity Framework document in section 3.2 provides guidance on the steps an organization can take to establish or improve a cybersecurity program.

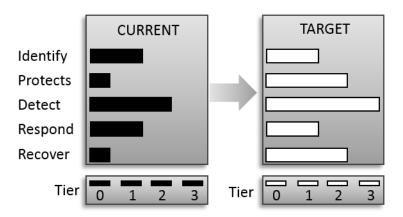
276 Following the initial steps the energy provider has developed a Framework Core informed by

277 several recommendation publications such as NIST Special publication 800-26 (Security Self-

278 Assessment Guide for Information Technology Systems" for advice on how to manage IT security

and ISO 15408 (Evaluation criteria for IT security) to test the security of the bus architecture.

280 The energy provider has also a list of standards it must comply with imposed by the US


281 government. The Framework Core established for the current MQTT bus architecture is defined

282 below.

Function	Category	Subcategory
	Asset Management	 List of hardware devices Software inventory Network mapping
	Risk Management	 Defining Risk Tolerance Risk Identification Risk Assessment Analysis of Alternatives
ldentify	Information Sharing and Communications	 Understand Data Flows Internal Communications External Communications Cryptographic suites versioning and implementation how-to
	Environmental Awareness	 Location of (client-side) end-devices Location of end-to-end communication infrastructures Location of (server-side) brokers and vicinity
Protect	Information Protection	 User Awareness Training Identity, Credential and Access Management
Detect	Monitoring	NetworkPhysicalIntrusion
Respond	Response Planning	 Revoke lost and/or compromised certificates Revoke lost and/or compromised Client or Server authentication credentials Disconnect suspicious or compromised end-devices Block compromised telemetry channels Increase Firewall policies Shutdown compromised brokers and servers
	Recover Planning	• Perform information system recovery (e.g. restart broker, create new telemetry channels, etc.)
Recover	Post Recovery	 Perform reconstitution activities Provide alternate work site to recover work activities Review Firewall policies Backup systems

283

- 284 Using this Framework Core the energy provider assesses the current Implementation Tier status
- 285 (in this case at the Function level), conducts a risk assessment of the current operational
- 286 environment and creates a Target Profile indicating the desired Implementation Tier status for
- 287 each Function.

288

The differences between the current and target profiles are analyzed to determine the actionsrequired to bridge the gaps, the results of which are fed into the energy provider's existing

291 cybersecurity program.

292 Energy Provider Cybersecurity Program

While the majority of the cybersecurity program is concerned with security governance and risk
management, there are three distinct sections where MQTT critically interlocks with other
compliance processes.

296 Identify -> Information Sharing and Communications

- 297 Message Flow (internal & external communications)
- 298 o In order to provide resilience, an effect approach is to segregate the message
 299 system control plane from the message delivery system. This enables system
 300 management processes to analyze control information from message content.
- 301oIt is recommended that QoS levels for the system control plane have a higher302priority than the normal message delivery channel. This approach ensures that303reconfiguration, partitioning or isolation of internal and external304communications channels can be applied without hindrance from the message305delivery system.
- 306 Cryptography and versioning
- 307•Security within MQTT is predominantly TLS. However for the energy provider,
there are a number of small form factor/constrained devices such as SCADA309control systems that leverage existing light-weight cryptography as well as the
prolific AES standard. Thus the energy provider would use TLS, however higher311level security process would use PKI management to interoperate with existing
Cryptography suites.
- 313

314 Detect -> Monitoring -> Network

While MQTT is a backbone messaging system, the segregation of the system control
 plane (with QoS settings) and the message delivery system allows third party monitoring
 systems easy access to information flow.

318 Recover-> Post Recovery

- The use, placement and location of persistent and non-persistent MQTT queues has a
- 320 huge bearing on recovery. For the Energy power provider, MQTT uses non-persistent
- 321 queues on edge devices and persistent queues for all server side brokers. This approach
- allows the central services to recover much quicker as the edge devices are always
 synchronized with the server side MQTT persistent queues.

Appendix B. Acknowledgments

- 325 The following individuals have participated in the creation of this specification and are gratefully
- 326 acknowledged:

327 **Participants**:

- 328 Geoff Brown, Machine-To-Machine Intelligence (M2Mi) Corporation
- 329 Louis-P. Lamoureux, Machine-To-Machine Intelligence (M2Mi) Corporation
- 330 William Bathurst, Machine-To-Machine Intelligence (M2Mi) Corporation
- 331 Julien Niset, Machine-To-Machine Intelligence (M2Mi) Corporation
- 332 Sarah Cooper, Machine-To-Machine Intelligence (M2Mi) Corporation
- 333 Allan Stockdill-Mander, IBM
- 334 Richard Coppen, IBM
- 335 Andrew Schofield, IBM
- 336 Peter Niblett, IBM
- 337 Andrew Banks, IBM

338 Appendix C. Revision History

Revision	Date	Editor	Changes Made
2.0	03/31/2014	Geoff Brown	Incorporated latest JIRAs (200, 206, and 207).

339