

oreilly.comSpreading the knowledge of innovators

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

http://www.android.com/market/
http://amazon.com
http://www.oreilly.com
http://shop.oreilly.com/product/0636920013754.do

Clojure Programming
by Chas Emerick, Brian Carper, and Christophe Grand

Copyright © 2012 Chas Emerick, Brian Carper, and Christophe Grand. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Julie Steele
Production Editor: Teresa Elsey
Copyeditor: Nancy Reinhardt
Proofreader: Linley Dolby

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

April 2012: First Edition.

Revision History for the First Edition:
2012-03-28 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449394707 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Clojure Programming, the image of a painted snipe, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39470-7

[LSI]

1332955528

Table of Contents

Preface . xi

1. Down the Rabbit Hole . 1
Why Clojure? 1
Obtaining Clojure 3
The Clojure REPL 3
No, Parentheses Actually Won’t Make You Go Blind 6
Expressions, Operators, Syntax, and Precedence 7
Homoiconicity 9
The Reader 12

Scalar Literals 13
Comments 18
Whitespace and Commas 19
Collection Literals 19
Miscellaneous Reader Sugar 20

Namespaces 20
Symbol Evaluation 23
Special Forms 23

Suppressing Evaluation: quote 24
Code Blocks: do 25
Defining Vars: def 26
Local Bindings: let 27
Destructuring (let, Part 2) 28
Creating Functions: fn 36
Conditionals: if 42
Looping: loop and recur 43
Referring to Vars: var 44
Java Interop: . and new 44
Exception Handling: try and throw 45
Specialized Mutation: set! 45
Primitive Locking: monitor-enter and monitor-exit 45

Putting It All Together 46

iii

eval 46
This Is Just the Beginning 48

Part I. Functional Programming and Concurrency

2. Functional Programming . 51
What Does Functional Programming Mean? 52
On the Importance of Values 52

About Values 53
Comparing Values to Mutable Objects 54
A Critical Choice 58

First-Class and Higher-Order Functions 59
Applying Ourselves Partially 65

Composition of Function(ality) 68
Writing Higher-Order Functions 71
Building a Primitive Logging System with Composable Higher-Order
Functions 72

Pure Functions 76
Why Are Pure Functions Interesting? 78

Functional Programming in the Real World 81

3. Collections and Data Structures . 83
Abstractions over Implementations 84

Collection 87
Sequences 89
Associative 99
Indexed 103
Stack 104
Set 105
Sorted 106

Concise Collection Access 111
Idiomatic Usage 112
Collections and Keys and Higher-Order Functions 113

Data Structure Types 114
Lists 114
Vectors 115
Sets 117
Maps 117

Immutability and Persistence 122
Persistence and Structural Sharing 123
Transients 130

Metadata 134

iv | Table of Contents

Putting Clojure’s Collections to Work 136
Identifiers and Cycles 137
Thinking Different: From Imperative to Functional 138
Navigation, Update, and Zippers 151

In Summary 157

4. Concurrency and Parallelism . 159
Shifting Computation Through Time and Space 160

Delays 160
Futures 162
Promises 163

Parallelism on the Cheap 166
State and Identity 168
Clojure Reference Types 170
Classifying Concurrent Operations 172
Atoms 174
Notifications and Constraints 176

Watches 176
Validators 178

Refs 180
Software Transactional Memory 180
The Mechanics of Ref Change 181
The Sharp Corners of Software Transactional Memory 191

Vars 198
Defining Vars 198
Dynamic Scope 201
Vars Are Not Variables 206
Forward Declarations 208

Agents 209
Dealing with Errors in Agent Actions 212
I/O, Transactions, and Nested Sends 214

Using Java’s Concurrency Primitives 224
Locking 225

Final Thoughts 226

Part II. Building Abstractions

5. Macros . 229
What Is a Macro? 229

What Macros Are Not 231
What Can Macros Do that Functions Cannot? 232
Macros Versus Ruby eval 234

Table of Contents | v

Writing Your First Macro 235
Debugging Macros 237

Macroexpansion 237
Syntax 239

quote Versus syntax-quote 240
unquote and unquote-splicing 241

When to Use Macros 243
Hygiene 244

Gensyms to the Rescue 246
Letting the User Pick Names 248
Double Evaluation 249

Common Macro Idioms and Patterns 250
The Implicit Arguments: &env and &form 251

&env 252
&form 254
Testing Contextual Macros 258

In Detail: -> and ->> 259
Final Thoughts 262

6. Datatypes and Protocols . 263
Protocols 264
Extending to Existing Types 266
Defining Your Own Types 270

Records 272
Types 277

Implementing Protocols 280
Inline Implementation 281
Reusing Implementations 285

Protocol Introspection 289
Protocol Dispatch Edge Cases 290
Participating in Clojure’s Collection Abstractions 292
Final Thoughts 299

7. Multimethods . 301
Multimethods Basics 301
Toward Hierarchies 304
Hierarchies 306

Independent Hierarchies 308
Making It Really Multiple! 311
A Few More Things 313

Multiple Inheritance 313
Introspecting Multimethods 314
type Versus class; or, the Revenge of the Map 314

vi | Table of Contents

The Range of Dispatch Functions Is Unlimited 316
Final Thoughts 317

Part III. Tools, Platform, and Projects

8. Organizing and Building Clojure Projects . 321
Project Geography 321

Defining and Using Namespaces 322
Location, Location, Location 332
The Functional Organization of Clojure Codebases 334

Build 336
Ahead-of-Time Compilation 337
Dependency Management 339
The Maven Dependency Management Model 339
Build Tools and Configuration Patterns 344

Final Thoughts 353

9. Java and JVM Interoperability . 355
The JVM Is Clojure’s Foundation 356
Using Java Classes, Methods, and Fields 357
Handy Interop Utilities 360
Exceptions and Error Handling 362

Escaping Checked Exceptions 364
with-open, finally’s Lament 364

Type Hinting for Performance 366
Arrays 370
Defining Classes and Implementing Interfaces 371

Instances of Anonymous Classes: proxy 372
Defining Named Classes 374
Annotations 381

Using Clojure from Java 385
Using deftype and defrecord Classes 388
Implementing Protocol Interfaces 390

Collaborating Partners 392

10. REPL-Oriented Programming . 393
Interactive Development 393

The Persistent, Evolving Environment 397
Tooling 398

The Bare REPL 399
Eclipse 403
Emacs 405

Table of Contents | vii

Debugging, Monitoring, and Patching Production in the REPL 411
Special Considerations for “Deployed” REPLs 414

Limitations to Redefining Constructs 415
In Summary 417

Part IV. Practicums

11. Numerics and Mathematics . 421
Clojure Numerics 421

Clojure Prefers 64-bit (or Larger) Representations 422
Clojure Has a Mixed Numerics Model 422
Rationals 424
The Rules of Numeric Contagion 425

Clojure Mathematics 427
Bounded Versus Arbitrary Precision 428
Unchecked Ops 430
Scale and Rounding Modes for Arbitrary-Precision Decimals Ops 432

Equality and Equivalence 433
Object Identity (identical?) 433
Reference Equality (=) 434
Numeric Equivalence (==) 435

Optimizing Numeric Performance 436
Declare Functions to Take and Return Primitives 438
Use Primitive Arrays Judiciously 442

Visualizing the Mandelbrot Set in Clojure 449

12. Design Patterns . 457
Dependency Injection 459
Strategy Pattern 462
Chain of Responsibility 463
Aspect-Oriented Programming 466
Final Thoughts 470

13. Testing . 471
Immutable Values and Pure Functions 471

Mocking 472
clojure.test 473

Defining Tests 474
Test “Suites” 477
Fixtures 479

Growing an HTML DSL 481
Relying upon Assertions 486

viii | Table of Contents

Preconditions and Postconditions 487

14. Using Relational Databases . 491
clojure.java.jdbc 491

with-query-results Explained 494
Transactions 496
Connection Pooling 496

Korma 498
Prelude 498
Queries 499
Why Bother with a DSL? 500

Hibernate 503
Setup 503
Persisting Data 506
Running Queries 506
Removing Boilerplate 507

Final Thoughts 509

15. Using Nonrelational Databases . 511
Getting Set Up with CouchDB and Clutch 512
Basic CRUD Operations 512
Views 514

A Simple (JavaScript) View 514
Views in Clojure 516

_changes: Abusing CouchDB as a Message Queue 520
À la Carte Message Queues 522
Final Thoughts 525

16. Clojure and the Web . 527
The “Clojure Stack” 527
The Foundation: Ring 529

Requests and Responses 529
Adapters 531
Handlers 532
Middleware 534

Routing Requests with Compojure 535
Templating 545

Enlive: Selector-Based HTML Transformation 546
Final Thoughts 554

17. Deploying Clojure Web Applications . 557
Java and Clojure Web Architecture 557

Web Application Packaging 560

Table of Contents | ix

Running Web Apps Locally 565
Web Application Deployment 566

Deploying Clojure Apps to Amazon’s Elastic Beanstalk 567
Going Beyond Simple Web Application Deployment 570

Part V. Miscellanea

18. Choosing Clojure Type Definition Forms Wisely . 573

19. Introducing Clojure into Your Workplace . 577
Just the Facts… 577
Emphasize Productivity 579
Emphasize Community 580
Be Prudent 582

20. What’s Next? . 583
(dissoc Clojure 'JVM) 583

ClojureCLR 583
ClojureScript 584

4Clojure 584
Overtone 585
core.logic 585
Pallet 586
Avout 587
Clojure on Heroku 587

Index . 589

x | Table of Contents

CHAPTER 1

Down the Rabbit Hole

If you’re reading this book, you are presumably open to learning new programming
languages. On the other hand, we assume that you expect reciprocity for the time and
effort you’ll expend to learn a new language, some tangible benefits that can make you
more productive, your team more effective, and your organization more flexible.

We believe that you will find this virtuous cycle in effect as you learn, apply, and lev-
erage Clojure. As we are fond of saying, Clojure demands that you raise your game, and
pays you back for doing so.

As software developers, we often build up a complex and sometimes very personal
relationship with our tools and languages. Deciding which raw materials to use is
sometimes dominated by pragmatic and legacy concerns. However, all other things
being equal, programmers prefer using whatever maximally enhances their productivity
and hopefully enables us to fulfill our potential to build useful, elegant systems. As the
old saying goes, we want whatever makes the easy stuff easy, and the hard stuff possible.

Why Clojure?
Clojure is a programming language that lives up to that standard. Forged of a unique
blend of the best features of a number of different programming languages—including
various Lisp implementations, Ruby, Python, Java, Haskell, and others—Clojure pro-
vides a set of capabilities suited to address many of the most frustrating problems pro-
grammers struggle with today and those we can see barreling toward us over the hori-
zon. And, far from requiring a sea-change to a new or unfamiliar architecture and run-
time (typical of many otherwise promising languages over the years), Clojure is hosted
on the Java Virtual Machine, a fact that puts to bed many of the most pressing pragmatic
and legacy concerns raised when a new language is considered.

To whet your appetite, let’s enumerate some of Clojure’s marquee features and
characteristics:

1

Clojure is hosted on the JVM
Clojure code can use any Java library, Clojure libraries can in turn be used from
Java, and Clojure applications can be packaged just like any Java application and
deployed anywhere other Java applications can be deployed: to web application
servers; to desktops with Swing, SWT, or command-line interfaces; and so on. This
also means that Clojure’s runtime is Java’s runtime, one of the most efficient and
operationally reliable in the world.

Clojure is a Lisp
Unlike Java, Python, Ruby, C++, and other members of the Algol family of pro-
gramming languages, Clojure is part of the Lisp family. However, forget everything
you know (or might have heard rumored) about Lisps: Clojure retains the best of
Lisp heritage, but is unburdened by the shortcomings and sometimes anachronistic
aspects of many other Lisp implementations. Also, being a Lisp, Clojure has mac-
ros, an approach to metaprogramming and syntactic extension that has been the
benchmark against which other such systems have been measured for decades.

Clojure is a functional programming language
Clojure encourages the use of first-class and higher-order functions with values
and comes with its own set of efficient immutable data structures. The focus on a
strong flavor of functional programming encourages the elimination of common
bugs and faults due to the use of unconstrained mutable state and enables Clojure’s
solutions for concurrency and parallelization.

Clojure offers innovative solutions to the challenges inherent in concurrency and
parallelization

The realities of multicore, multi-CPU, and distributed computing demand that we
use languages and libraries that have been designed with these contexts in mind.
Clojure’s reference types enforce a clean separation of state and identity, providing
defined concurrency semantics that are to manual locking and threading strategies
what garbage collection is to manual memory management.

Clojure is a dynamic programming language
Clojure is dynamically and strongly typed (and therefore similar to Python and
Ruby), yet function calls are compiled down to (fast!) Java method invocations.
Clojure is also dynamic in the sense that it deeply supports updating and loading
new code at runtime, either locally or remotely. This is particularly useful for en-
abling interactive development and debugging or even instrumenting and patching
remote applications without downtime.

Of course, we don’t expect you to understand all of that, but we do hope the gestalt
sounds compelling. If so, press on. By the end of this chapter, you’ll be able to write
simple programs in Clojure, and be well on your way to understanding and leveraging
it to help realize your potential.

2 | Chapter 1: Down the Rabbit Hole

Obtaining Clojure
You’ll need two things to work with the code in this chapter and otherwise explore
Clojure on your own:

1. The Java runtime. You can download the Oracle JVM for free for Windows and
Linux (http://java.com/en/download/); it is bundled with or automatically installed
by all versions of Mac OS X. Clojure requires Java v1.5 or higher; the latest releases
of v1.6 or v1.7 are preferable.

2. Clojure itself, available from clojure.org (http://clojure.org/downloads). All of the
code in this book requires v1.3.0 or higher, and has been tested against v1.4.0 as
well.1 Within the zip file you download, you’ll find a file named something like
clojure-1.4.0.jar; this is all you’ll need to get started.

There are a number of different Clojure plug-ins for popular develop-
ment environments like Eclipse and Emacs; see “Tool-
ing” on page 398 for an overview of Clojure tooling. While Clojure’s
command-line REPL is sufficient for your first few steps in understand-
ing Clojure, we encourage you to use your favorite text editor or IDE if
it has quality Clojure support, or to pick up one that does.

If you don’t yet want to commit to a particular editor or IDE for Clojure
development, you should at least use Leiningen, the most popular
project management tool for Clojure. It will download Clojure for you,
give you a better REPL than Clojure’s default, and you’ll likely be using
it on a daily basis for your own projects in short order anyway. See
“Leiningen” on page 347 for an introduction to it.

If you want to avoid downloading anything right now, you can run many
of the samples in this book in the online, in-browser Clojure imple-
mentation available at http://tryclj.com.

The Clojure REPL
Many languages have REPLs, often also referred to as interpreters: Ruby has irb; Python
has its command-line interpreter; Groovy has its console; even Java has something akin
to a REPL in BeanShell. The “REPL” acronym is derived from a simple description of
what it does:

1. Read: code is read as text from some input (often stdin, but this varies if you’re
using a REPL in an IDE or other nonconsole environment).

2. Eval: the code is evaluated, yielding some value.

1. Given Clojure’s history with regard to backwards compatibility, the code and concepts in this book should
remain applicable to future versions of Clojure as well.

The Clojure REPL | 3

3. Print: the value is printed to some output device (often stdout, sometimes preceded
by other output if the code in question happened to print content itself).

4. Loop: control returns to the read step.

Clojure has a REPL too, but it differs from many other languages’ REPLs in that it is
not an interpreter or otherwise using a limited or lightweight subset of Clojure: all code
entered into a Clojure REPL is compiled to JVM bytecode as part of its evaluation, with
the same result as when code is loaded from a Clojure source file. In these two scenarios,
compilation is performed entirely at runtime, and requires no separate “compile”
step.2 In fact, Clojure is never interpreted. This has a couple of implications:

1. Operations performed in the REPL run at “full speed”; that is to say, there is no
runtime penalty or difference in semantics associated with running code in the
REPL versus running the same code as part of a “proper” application.

2. Once you understand how Clojure’s REPL works (in particular, its read and eval
phases), you’ll understand how Clojure itself works at the most fundamental level.

With this second point in mind, let’s dig into the Clojure REPL and see if we can find
bedrock.

The optimal workflow for programming in Clojure makes much more
use of the REPL than is typical in other languages to make the develop-
ment process as interactive as possible. Taking advantage of this is a
significant source of the enhanced productivity—and really, fun!—that
Clojure enables. We talk about this extensively in Chapter 10.

Example 1-1. Starting a Clojure REPL on the command line

% java -cp clojure-1.4.0.jar clojure.main
Clojure 1.4.0
user=>

This incantation starts a new JVM process, with a classpath that includes the clo-
jure.jar file in the current directory, running the clojure.main class as its main entry
point.3 See “A classpath primer” on page 331 if you don’t yet know what the classpath
is; for now, you can just think of the classpath as the JVM’s analogue to Python’s
PYTHONPATH, Ruby’s $:, and your shell’s PATH, the set of files and directories from which
the JVM will load classes and resources.

When you see the user=> prompt, the REPL is ready for you to enter some Clojure code.
The portion of the Clojure REPL prompt preceding => is the name of the current

2. If necessary, you can ahead-of-time compile Clojure to Java class files. See “Ahead-of-Time
Compilation” on page 337 for details.

3. Alternatively, you can use java -jar clojure.jar, but the -cp flag and the clojure.main entry point are
both important to know about; we talk about both in Chapter 8.

4 | Chapter 1: Down the Rabbit Hole

namespace. Namespaces are like modules or packages; we discuss them extensively
later in this chapter in “Namespaces” on page 20. Clojure REPL sessions always start
in the default user namespace.

Let’s look at some real code, a function that calculates the average of some numbers in
Java, Ruby, and Python:

Example 1-2. Averaging numbers in Java, Ruby, and Python

public static double average (double[] numbers) {
 double sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 }
 return sum / numbers.length;
}

def average (numbers)
 numbers.inject(:+) / numbers.length
end

def average (numbers):
 return sum(numbers) / len(numbers)

Here is the Clojure equivalent:

(defn average
 [numbers]
 (/ (apply + numbers) (count numbers)))

defn defines a new function named average in the current namespace.

The average function takes one argument, referred to within its body as numbers.
Note that there is no type declaration; this function will work equally well when
provided with any collection or array of numbers of any type.

The body of the average function, which sums the provided numbers with (apply +
numbers),4 divides that sum by the number of numbers provided—obtained with
(count numbers)—and returns the result of that division operation.

We can enter that defn expression at the REPL, and then call our function with a vector
of numbers, which yields the expected result:

user=> (defn average
 [numbers]
 (/ (apply + numbers) (count numbers)))
#'user/average
user=> (average [60 80 100 400])
160

4. Note that + here is not a special language operator, as in most other languages. It is a regular function,
no different in type than the one we’re defining. apply is also a function, which applies a function it is
provided with to a collection of arguments (numbers here); so, (apply + [a b c]) will yield the same value
as (+ a b c).

The Clojure REPL | 5

A Word about REPL Interaction Styles
From here on, we will adopt a simple convention for listings that show REPL interac-
tions so you can identify the different types of REPL output. The return value of eval-
uated expressions will be printed with a ;= prefix:

(average [60 80 100 400])
;= 160

And content that is written to stdout by an expression—aside from what the REPL
prints for the expression’s return value—will be shown with a single semicolon prefix:

(println (average [60 80 100 400]))
; 160
;= nil

There are the two differently prefixed lines of REPL output because println returns
nil after printing the provided value(s) to stdout.

Lines prefixed with semicolons are comments in Clojure, so you can copy and paste
these interactions into your REPL with relative abandon. We’ll not include the name
space=> prompt in listings, as they are not valid Clojure code and will cause an error if
they are accidentally pasted into a REPL.

No, Parentheses Actually Won’t Make You Go Blind
Many programmers who don’t already use a Lisp or secretly harbor fond memories of
their last usage of Lisp from university blanch at the sight of Lisp syntax. Typical reasons
offered for this reaction include:

1. The particular usage of parentheses to delimit scope, rather than the more familiar
braces {...} or do ... end blocks

2. The use of prefix notation indicating the operation being performed; e.g., (+ 1
2) rather than the familiar infix 1 + 2

These objections are born first out of simple unfamiliarity. The braces that Java (and
C and C++ and C# and PHP and…) uses for delimiting scope seem perfectly fine—
why bother with what appears to be an ill-conceived animal? Similarly, we’ve all known
and used infix notation for mathematics since early childhood—why work to use an
unusual notation when what we’ve been using seems to have been so reliable? We are
creatures of habit, and outside of building an understanding of why any particular
difference may be significant, we understandably prefer the familiar and reliable.

In both cases, the answer is that Clojure did not import its syntactic foundations from
other Lisp implementations on a whim; their adoption carries powerful benefits that
are worth a minor shift in perspective:

6 | Chapter 1: Down the Rabbit Hole

• Prefixed operations used uniformly simplify the language’s syntax significantly and
eliminate potential ambiguity from nontrivial expressions.

• The use of parentheses (as a textual representation of lists) is an outgrowth of
Clojure being a homoiconic language. We’ll see what this means in “Homoiconic-
ity” on page 9, but the ramifications of it are manifold: homoiconicity enables
the development and use of metaprogramming and domain-specific language con-
structs simply unavailable in any programming language that is not homoiconic.

After getting through an initial period of unfamiliarity, you will very likely find that
Clojure’s syntax reduces the cognitive load necessary to read and write code. Quick: is
<< (bit-shift left) in Java executed before or after & (bitwise and) in order of operations?
Every time a programmer has to pause and think about this (or look it up in a manual),
every time a programmer has to go back and add grouping parentheses “just in case,”
a mental page fault has occurred. And, every time a programmer forgets to think about
this, a potential error has entered his code. Imagine a language with no order of oper-
ations to worry about at all; Clojure is that language.

You might be saying, “But there are so many parentheses!” Actually, there aren’t.

In places where it makes sense, Clojure has borrowed a lot of syntax from other lan-
guages—like Ruby—for its data literals. Where other Lisps you might have seen use
parenthesized lists everywhere, Clojure provides a rich set of literals for data and col-
lections like vectors, maps, sets, and lists, as well as things like records (roughly, Clo-
jure’s corollary to structs).

If you count and compare the number of delimiting characters and tokens of all kinds
((), [], {}, Ruby’s || and end, and so on) in Clojure, Java, Ruby, and Python codebases
of similar sizes, you will find that the Clojure code won’t have appreciably more than
the others—and will often have many fewer thanks to its concision.

Expressions, Operators, Syntax, and Precedence
All Clojure code is made up of expressions, each of which evaluates to a single value.
This is in contrast to many languages that rely upon valueless statements—such as if,
for, and continue—to control program flow imperatively. Clojure’s corollaries to these
statements are all expressions that evaluate to a value.

You’ve already seen a few examples of expressions in Clojure:

• 60

• [60 80 100 400]

• (average [60 80 100 400])

• (+ 1 2)

These expressions all evaluate to a single value. The rules for that evaluation are ex-
traordinarily simple compared to other languages:

Expressions, Operators, Syntax, and Precedence | 7

1. Lists (denoted by parentheses) are calls, where the first value in the list is the op-
erator and the rest of the values are parameters. The first element in a list is often
referred to as being in function position (as that’s where one provides the function
or symbol naming the function to be called). Call expressions evaluate to the value
returned by the call.

2. Symbols (such as average or +) evaluate to the named value in the current scope—
which can be a function, a named local like numbers in our average function, a Java
class, a macro, or a special form. We’ll learn about macros and special forms in a
little bit; for now, just think of them as functions.

3. All other expressions evaluate to the literal values they describe.

Lists in Lisps are often called s-expressions or sexprs—short for symbolic
expressions due to the significance of symbols in identifying the values
to be used in calls denoted by such lists. Generally, valid s-expressions
that can be successfully evaluated are often referred to as forms: e.g.,
(if condition then else) is an if form, [60 80 100 400] is a vector
form. Not all s-expressions are forms: (1 2 3) is a valid s-expression—
a list of three integers—but evaluating it will produce an error because
the first value in the list is an integer, which is not callable.

The second and third points are roughly equivalent to most other languages (although
Clojure’s literals are more expressive, as we’ll see shortly). However, an examination
of how calls work in other languages quickly reveals the complexity of their syntax.

Table 1-1. Comparison of call syntax between Clojure, Java, Python, and Ruby

Clojure expression Java equivalent Python equivalent Ruby equivalent

(not k) !k not k not k or ! k

(inc a) a++, ++a, a += 1, a + 1a a += 1, a + 1 a += 1

(/ (+ x y) 2) (x + y) / 2 (x + y) / 2 (x + y) / 2

(instance?
java.util.List al)

al instanceof
java.util.List

isinstance(al,
list)

al.is_a? Array

(if (not a) (inc b)
(dec b)) b

!a ? b + 1 : b - 1 b + 1 if not a else
b - 1

!a ? b + 1 : b - 1

(Math/pow 2 10) c Math.pow(2, 10) pow(2, 10) 2 ** 10

(.someMethod some
Obj "foo" (.otherMe
thod otherObj 0))

someObj.someMe
thod("foo", other
Obj.otherMethod(0))

someObj.someMe
thod("foo", other
Obj.otherMethod(0))

someObj.someMe
thod("foo", other
Obj.otherMethod(0))

a In-place increment and decrement operations have no direct corollary in Clojure, because unfettered mutability isn’t available. See
Chapter 2, particularly “On the Importance of Values” on page 52 for a complete discussion of why this is a good thing.

b Remember, even forms that influence control flow in Clojure evaluate to values just like any other expression, including if and when.
Here, the value of the if expression will be either (inc b) or (dec b), depending on the value of (not a).

c Here’s your first taste of what it looks like to call Java libraries from Clojure. For details, see Chapter 9.

8 | Chapter 1: Down the Rabbit Hole

Notice that call syntax is all over the map (we’re picking on Java here the most, but
Python and Ruby aren’t so different):

• Infix operators are available (e.g., a + 1, al instanceof List), but any nontrivial
code ends up having to use often-significant numbers of parentheses to override
default precedence rules and make evaluation order explicit.

• Unary operators are seemingly arbitrary in regard to whether they use prefix
(e.g., !k and ++a) or postfix position (e.g., a++).

• Static method calls have prefix position, such as Math.pow(2, 10), but…

• Instance method calls use an unusual variety of infix positions, where the target of
the method (which will be assigned to this within the body of the method being
called) is specified first, with the formal parameters to the method coming after the
method name.5

In contrast, Clojure call expressions follow one simple rule: the first value in a list is
the operator, the remainder are parameters to that operator. There are no call expres-
sions that use infix or postfix position, and there are no difficult-to-remember prece-
dence rules. This simplification helps make Clojure’s syntax very easy to learn and
internalize, and helps make Clojure code very easy to read.

Homoiconicity
Clojure code is composed of literal representations of its own data structures and
atomic values; this characteristic is formally called homoiconicity, or more casually,
code-as-data.6 This is a significant simplification compared to most other languages,
which also happens to enable metaprogramming facilities to a much greater degree
than languages that are not homoiconic. To understand why, we’ll need to talk some
about languages in general and how their code relates to their internal representations.

Recall that a REPL’s first stage is to read code provided to it by you. Every language
has to provide a way to transform that textual representation of code into something
that can be compiled and/or evaluated. Most languages do this by parsing that text into
an abstract syntax tree (AST). This sounds more complicated than it is: an AST is simply
a data structure that represents formally what is manifested concretely in text. For
example, Figure 1-1 shows some examples of textual language and possible transfor-
mations to their corresponding syntax trees.7

5. Python uses the same sort of infix position for its instance methods, but varies from Algol-family brethren
by requiring that methods explicitly name their first parameter, usually self.

6. Clojure is by no means the only homoiconic language, nor is homoiconicity a new concept. Other
homoiconic languages include all other Lisps, all sorts of machine language (and therefore arguably
Assembly language as well), Postscript, XSLT and XQuery, Prolog, R, Factor, Io, and more.

7. The natural language parse tree was mostly lifted from http://en.wikipedia.org/wiki/Parse_tree.

Homoiconicity | 9

Figure 1-1. Sample transformations from textual language to formal models

These transformations from a textual manifestation of language to an AST are at the
heart of how languages are defined, how expressive they are, and how well-suited they
are to the purpose of relating to the world within which they are designed to be used.
Much of the appeal of domain-specific languages springs from exactly this point: if you
have a language that is purpose-built for a given field of use, those that have expertise
in that field will find it far easier to define and express what they wish in that language
compared to a general-purpose language.

10 | Chapter 1: Down the Rabbit Hole

The downside of this approach is that most languages do not provide any way to control
their ASTs; the correspondence between their textual syntax and their ASTs is defined
solely by the language implementers. This prompts clever programmers to conjure up
clever workarounds in order to maximize the expressivity and utility of the textual
syntax that they have to work with:

• Code generation

• Textual macros and preprocessors (used to legendary effect by C and C++ pro-
grammers for decades now)

• Compiler plug-ins (as in Scala, Project Lombok for Java, Groovy’s AST transfor-
mations, and Template Haskell)

That’s a lot of incidental complexity—complexity introduced solely because language
designers often view textual syntax as primary, leaving formal models of it to be im-
plementation-specific (when they’re exposed at all).

Clojure (like all Lisps) takes a different path: rather than defining a syntax that will be
transformed into an AST, Clojure programs are written using Clojure data structures
that represent that AST directly. Consider the requiresRole... example from Fig-
ure 1-1, and see how a Clojure transliteration of the example is an AST for it (recalling
the call semantics of function position in Clojure lists).

The fact that Clojure programs are represented as data means that Clojure programs
can be used to write and transform other Clojure programs, trivially so. This is the basis
for macros—Clojure’s metaprogramming facility—a far different beast than the glori-
ously painful hack that are C-style macros and other textual preprocessors, and the
ultimate escape hatch when expressivity or domain-specific notation is paramount. We
explore Clojure macros in Chapter 5.

In practical terms, the direct correspondence between code and data means that the
Clojure code you write in the REPL or in a text source file isn’t text at all: you are

Homoiconicity | 11

programming using Clojure data structure literals. Recall the simple averaging function
from Example 1-2:

(defn average
 [numbers]
 (/ (apply + numbers) (count numbers)))

This isn’t just a bunch of text that is somehow transformed into a function definition
through the operation of a black box; this is a list data structure that contains four
values: the symbol defn, the symbol average, a vector data structure containing the
symbol numbers, and another list that comprises the function’s body. Evaluating that
list data structure is what defines the function.

The Reader
Although Clojure’s compilation and evaluation machinery operates exclusively on
Clojure data structures, the practice of programming has not yet progressed beyond
storing code as plain text. Thus, a way is needed to produce those data structures from
textual code. This task falls to the Clojure reader.

The operation of the reader is completely defined by a single function, read, which
reads text content from a character stream8 and returns the next data structure encoded
in the stream’s content. This is what the Clojure REPL uses to read text input; each
complete data structure read from that input source is then passed on to be evaluated
by the Clojure runtime.

More convenient for exploration’s sake is read-string, a function that does the same
thing as read but uses a string argument as its content source:

(read-string "42")
;= 42
(read-string "(+ 1 2)")
;= (+ 1 2)

The operation of the reader is fundamentally one of deserialization. Clojure data struc-
tures and other literals have a particular textual representation, which the reader de-
serializes to the corresponding values and data structures.

You may have noticed that values printed by the Clojure REPL have the same textual
representation they do when entered into the REPL: numbers and other atomic literals
are printed as you’d expect, lists are delimited by parentheses, vectors by square brack-
ets, and so on. This is because there are duals to the reader’s read and read-string
functions: pr and pr-str, which prints to *out*9 and returns as a string the readable
textual representation of Clojure values, respectively. Thus, Clojure data structures and

8. Technically, read requires a java.io.PushbackReader as an implementation detail.

9. *out* defaults to stdout, but can be redirected easily. See “Building a Primitive Logging System with
Composable Higher-Order Functions” on page 72 for an example.

12 | Chapter 1: Down the Rabbit Hole

values are trivially serialized and deserialized in a way that is both human- and reader-
readable:

(pr-str [1 2 3])
;= "[1 2 3]"
(read-string "[1 2 3]")
;= [1 2 3]

It is common for Clojure applications to use the reader as a general-
purpose serialization mechanism where you might otherwise choose
XML or java.io.Serializable serialization or pickling or marshaling,
especially in cases where human-readable serializations are desirable.

Scalar Literals
Scalar literals are reader syntax for noncollection values. Many of these are bread-and-
butter types that you already know intimately from Java or very similar analogues in
Ruby, Python, and other languages; others are specific to Clojure and carry new
semantics.

Strings

Clojure strings are Java Strings (that is, instances of java.lang.String), and are repre-
sented in exactly the same way, delimited by double quotes:

"hello there"
;= "hello there"

Clojure’s strings are naturally multiline-capable, without any special syntax (as in, for
example, Python):

"multiline strings
are very handy"
;= "multiline strings\nare very handy"

Booleans

The tokens true and false are used to denote literal Boolean values in Clojure, just as
in Java, Ruby, and Python (modulo the latter’s capitalization).

nil

nil in Clojure corresponds to null in Java, nil in Ruby, and None in Python. nil is also
logically false in Clojure conditionals, as it is in Ruby and Python.

Characters

Character literals are denoted by a backslash:

(class \c)
;= java.lang.Character

The Reader | 13

Both Unicode and octal representations of characters may be used with corresponding
prefixes:

\u00ff
;= \ÿ
\o41
;= \!

Additionally, there are a number of special named character literals for cases where the
character in question is commonly used but prints as whitespace:

• \space

• \newline

• \formfeed

• \return

• \backspace

• \tab

Keywords

Keywords evaluate to themselves, and are often used as accessors for the values they
name in Clojure collections and types, such as hash maps and records:

(def person {:name "Sandra Cruz"
 :city "Portland, ME"})
;= #'user/person
(:city person)
;= "Portland, ME"

Here we create a hashmap with two slots, :name and :city, and then look up the value
of :city in that map. This works because keywords are functions that look themselves
up in collections passed to them.

Syntactically, keywords are always prefixed with a colon, and can otherwise consist of
any nonwhitespace character. A slash character (/) denotes a namespaced keyword,
while a keyword prefixed with two colons (::) is expanded by the reader to a name-
spaced keyword in the current namespace—or another namespace if the keyword
started by a namespace alias, ::alias/kw for example. These have similar usage and
motivation as namespaced entities in XML; that is, being able to use the same name
for values with different semantics or roles:10

(def pizza {:name "Ramunto's"
 :location "Claremont, NH"
 ::location "43.3734,-72.3365"})
;= #'user/pizza
pizza
;= {:name "Ramunto's", :location "Claremont, NH", :user/location "43.3734,-72.3365"}

10. Namespaced keywords are also used prominently with multimethods and isa? hierarchies, discussed in
depth in Chapter 7.

14 | Chapter 1: Down the Rabbit Hole

(:user/location pizza)
;= "43.3734,-72.3365"

This allows different modules in the same application and disparate groups within the
same organization to safely lay claim to particular names, without complex domain
modeling or conventions like underscored prefixes for conflicting names.

Keywords are one type of “named” values, so called because they have an intrinsic name
that is accessible using the name function and an optional namespace accessible using
namespace:

(name :user/location)
;= "location"
(namespace :user/location)
;= "user"
(namespace :location)
;= nil

The other named type of value is the symbol.

Symbols

Like keywords, symbols are identifiers, but they evaluate to values in the Clojure run-
time they name. These values include those held by vars (which are named storage
locations used to hold functions and other values), Java classes, local references, and
so on. Thinking back to our original example in Example 1-2:

(average [60 80 100 400])
;= 160

average here is a symbol, referring to the function held in the var named average.

Symbols must begin with a non-numeric character, and can contain *, +, !, -, _,
and ? in addition to any alphanumeric characters. Symbols that contain a slash (/)
denote a namespaced symbol and will evaluate to the named value in the specified
namespace. The evaluation of symbols to the entity they name depends upon their
context and the namespaces available within that context. We talk about the semantics
of namespaces and symbol evaluation extensively in “Namespaces” on page 20.

Numbers

Clojure provides a plethora of numeric literals (see Table 1-2). Many of them are pe-
destrian, but others are rare to find in a general-purpose programming language and
can simplify the implementation of certain algorithms—especially in cases where the
algorithms are defined in terms of particular numeric representations (octal, binary,
rational numbers, and scientific notation).

The Reader | 15

While the Java runtime defines a particular range of numeric primi-
tives, and Clojure supports interoperability with those primitives, Clo-
jure has a bias toward longs and doubles at the expense of other widths,
including bytes, shorts, ints, and floats. This means that these smaller
primitives will be produced as needed from literals or runtime values
for interop operations (such as calling Java methods), but pure-Clojure
operations will default to using the wider numeric representations.

For the vast majority of programming domains, you don’t need to worry
about this. If you are doing work where mathematical precision and
other related topics is important, please refer to Chapter 11 for a com-
prehensive discussion of Clojure’s treatment of operations on primitives
and other math topics.

Table 1-2. Clojure numeric literals

Literal syntax Numeric type

42, 0xff, 2r111, 040 long (64-bit signed integer)

3.14, 6.0221415e23 double (64-bit IEEE floating point decimal)

42N clojure.lang.BigInt (arbitrary-precision integera)

0.01M java.math.BigDecimal (arbitrary-precision signed floating point decimal)

22/7 clojure.lang.Ratio
a clojure.lang.BigInt is automatically coerced to java.math.BigInteger when needed. Again, please see Chapter 11 for the

in-depth details of Clojure’s treatment of numerics.

Any numeric literal can be negated by prefixing it with a dash (-).

Let’s take a quick look at the more interesting numeric literals:

Hexadecimal notation
Just as in most languages, Clojure supports typical hexadecimal notation for inte-
ger values; 0xff is 255, 0xd055 is 53333, and so on.

Octal notation
Literals starting with a zero are interpreted as octal numbers. For example, the octal
040 is 32 in the usual base-10 notation.

Flexible numeral bases
You can specify the base of an integer in a prefix BrN, where N is the digits that
represent the desired number, and B is the base or radix by which N should be
interpreted. So we can use a prefix of 2r for binary integers (2r111 is 7), 16r for
hexadecimal (16rff is 255), and so on. This is supported up to base 36.11

11. The implementation limit of java.math.BigInteger’s radix support. Note that even though BigInteger is
used for parsing these literals, the concrete type of the number as emitted by the reader is consistent with
other Clojure integer literals: either a long or a big integer if the number specified requires arbitrary
precision to represent.

16 | Chapter 1: Down the Rabbit Hole

Arbitrary-precision numbers
Any numeric literal (except for rational numbers) can be specified as arbitrary-
precision by suffixing it appropriately; decimals with an M, integers with an N. Please
see “Bounded Versus Arbitrary Precision” on page 428 for a full exploration of
why and when this is relevant.

Rational numbers
Clojure directly supports rational numbers, also called ratios, as literals in the
reader as well as throughout its numeric operators. Rational number literals must
always be two integers separated by a slash (/).

For a full discussion of rational numbers in Clojure and how they interact with the rest
of Clojure’s numerical model, please see “Rationals” on page 424.

Regular expressions

The Clojure reader treats strings prefixed with a hash character as regular expression
(regex) literals:

(class #"(p|h)ail")
;= java.util.regex.Pattern

This is exactly equivalent to Ruby’s /.../ regex syntax, with a minor difference of
pattern delimiters. In fact, Ruby and Clojure are very similar in their handling of regular
expressions:

Ruby
>> "foo bar".match(/(...) (...)/).to_a
["foo bar", "foo", "bar"]

;; Clojure
(re-seq #"(...) (...)" "foo bar")
;= (["foo bar" "foo" "bar"])

Clojure’s regex syntax does not require escaping of backslashes as required in Java:

(re-seq #"(\d+)-(\d+)" "1-3") ;; would be "(\\d+)-(\\d+)" in Java
;= (["1-3" "1" "3"])

The instances of java.util.regex.Pattern that Clojure regex literals yield are entirely
equivalent to those you might create within Java, and therefore use the generally ex-
cellent java.util.regex regular expression implementation.12 Thus, you can use those
Pattern instances directly via Clojure’s Java interop if you like, though you will likely
find Clojure’s related utility functions (such as re-seq, re-find, re-matches, and others
in the clojure.string namespace) simpler and more pleasant to use.

12. See the java.util.regex.Pattern javadoc for a full specification of what forms the Java regular expression
implementation supports: http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

The Reader | 17

Comments
There are two comment types that are defined by the reader:

• Single-line comments are indicated by prefixing the comment with a semicolon
(;); all content following a semicolon is ignored entirely. These are equivalent
to // in Java and JavaScript, and # in Ruby and Python.

• Form-level are available using the #_ reader macro. This cues the reader to elide the
next Clojure form following the macro:

(read-string "(+ 1 2 #_(* 2 2) 8)")
;= (+ 1 2 8)

What would have been a list with four numbers—(+ 1 2 4 8)—yields a list of only
three numbers because the entire multiplication form was ignored due to the #_ prefix.

Because Clojure code is defined using data structure literals, this comment form can
be far more useful in certain cases than purely textual comments that affect lines or
character offsets (such as the /* */ multiline comments in Java and JavaScript). For
example, consider the time-tested debugging technique of printing to stdout:

(defn some-function
 […arguments…]
 …code…
 (if …debug-conditional…
 (println …debug-info…)
 (println …more-debug-info…))
 …code…)

Making those println forms functionally disappear is as easy as prefixing the if form
with the #_ reader macro and reloading the function definition; whether the form spans
one or a hundred lines is irrelevant.

There is only one other way to comment code in Clojure, the comment
macro:

(when true
 (comment (println "hello")))
;= nil

comment forms can contain any amount of ignored code, but they are not
elided from the reader’s output in the way that #_ impacts the forms
following it. Thus, comment forms always evaluate to nil. This often is
not a problem; but, sometimes it can be inconvenient. Consider a re-
formulation of our first #_ example:

(+ 1 2 (comment (* 2 2)) 8)
;= #<NullPointerException java.lang.NullPointerException>

That fails because comment returns nil, which is not a valid argument
to +.

18 | Chapter 1: Down the Rabbit Hole

Whitespace and Commas
You may have noticed that there have been no commas between forms, parameters to
function calls, elements in data structure literals, and so on:

(defn silly-adder
 [x y]
 (+ x y))

This is because whitespace is sufficient to separate values and forms provided to the
reader. In addition, commas are considered whitespace by the reader. For example, this
is functionally equivalent to the snippet above:

(defn silly-adder
 [x, y]
 (+, x, y))

And to be slightly pedantic about it:

(= [1 2 3] [1, 2, 3])
;= true

Whether you use commas or not is entirely a question of personal style and preference.
That said, they are generally used only when doing so enhances the human readability
of the code in question. This is most common in cases where pairs of values are listed,
but more than one pair appears per line:13

(create-user {:name new-username, :email email})

Collection Literals
The reader provides syntax for the most commonplace Clojure data structures:

'(a b :name 12.5) ;; list

['a 'b :name 12.5] ;; vector

{:name "Chas" :age 31} ;; map

#{1 2 3} ;; set

Since lists are used to denote calls in Clojure, you need to quote (') the list literal in
order to prevent the evaluation of the list as a call.

The specifics of these data structures are explored in detail in Chapter 3.

13. Questions of style are notoriously difficult to answer in absolutes, but it would be very rare to see more
than two or three pairs of values on the same line of text in any map literal, set of keyword arguments,
and so on. Further, some forms that expect pairs of values (such as bindings in let) are essentially
always delimited by linebreaks rather than being situated on the same line.

The Reader | 19

Miscellaneous Reader Sugar
The reader provides for some additional syntax in certain cases to improve concision
or regularity with other aspects of Clojure:

• Evaluation can be suppressed by prefixing a form with a quote character ('); see
“Suppressing Evaluation: quote” on page 24.

• Anonymous function literals can be defined very concisely using the #() notation;
see “Function literals” on page 40.

• While symbols evaluate to the values held by vars, vars themselves can be referred
to by prefixing a symbol with #'; see “Referring to Vars: var” on page 44.

• Instances of reference types can be dereferenced (yielding the value contained
within the reference object) by prefixing @ to a symbol naming the instance; see
“Clojure Reference Types” on page 170.

• The reader provides three bits of special syntax for macros: `, ~, and ~@. Macros
are explored in Chapter 5.

• While there are technically only two Java interop forms, the reader provides some
sugar for interop that expands into those two special forms; see “Java Interop: .
and new” on page 44.

• All of Clojure’s data structures and reference types support metadata—small bits
of information that can be associated with a value or reference that do not affect
things like equality comparisons. While your applications can use metadata for
many purposes, metadata is used in Clojure itself where you might otherwise use
keywords in other languages (e.g., to indicate that a function is namespace-private,
or to indicate the type of a value or return type of a function). The reader allows
you to attach metadata to literal values being read using the ^ notation; see “Met-
adata” on page 134.

Namespaces
At this point, we should understand much of how the nontrivial parts of the Clojure
REPL (and therefore Clojure itself) work:

• Read: the Clojure reader reads the textual representation of code, producing the
data structures (e.g., lists, vectors, and so on) and atomic values (e.g., symbols,
numbers, strings, etc.) indicated in that code.

• Evaluate: many of the values emitted by the reader evaluate to themselves (includ-
ing most data structures and scalars like strings and keywords). We explored earlier
in “Expressions, Operators, Syntax, and Precedence” on page 7 how lists evaluate
to calls to the operator in function position.

The only thing left to understand about evaluation now is how symbols are evaluated.
So far, we’ve used them to both name and refer to functions, locals, and so on. Outside

20 | Chapter 1: Down the Rabbit Hole

of identifying locals, the semantics of symbol evaluation are tied up with namespaces,
Clojure’s fundamental unit of code modularity.

All Clojure code is defined and evaluated within a namespace. Namespaces are roughly
analogous to modules in Ruby or Python, or packages in Java.14 Fundamentally, they
are dynamic mappings between symbols and either vars or imported Java classes.

One of Clojure’s reference types,15 vars are mutable storage locations that can hold any
value. Within the namespace where they are defined, vars are associated with a symbol
that other code can use to look up the var, and therefore the value it holds.

Vars are defined in Clojure using the def special form, which only ever acts within the
current namespace.16 Let’s define a var now in the user namespace, named x; the name
of the var is the symbol that it is keyed under within the current namespace:

(def x 1)
;= #'user/x

We can access the var’s value using that symbol:

x
;= 1

The symbol x here is unqualified, so is resolved within the current namespace. We can
also redefine vars; this is critical for supporting interactive development at the REPL:

(def x "hello")
;= #'user/x
x
;= "hello"

Vars are not variables
Vars should only ever be defined in an interactive context—such as a
REPL—or within a Clojure source file as a way of defining named func-
tions, other constant values, and the like. In particular, top-level vars
(that is, globally accessible vars mapped within namespaces, as defined
by def and its variants) should only ever be defined by top-level expres-
sions, never in the bodies of functions in the normal course of operation
of a Clojure program.

See “Vars Are Not Variables” on page 206 for further elaboration.

14. In fact, namespaces correspond precisely with Java packages when types defined in Clojure are compiled
down to Java classes. For example, a Person type defined in the Clojure namespace app.entities will
produce a Java class named app.entities.Person. See more about defining types and records in Clojure
in Chapter 6.

15. See “Clojure Reference Types” on page 170 for a full discussion of Clojure’s reference types, all of which
contribute different capabilities to its concurrency toolbox.

16. Remember that the Clojure REPL session always starts in the default user namespace.

Namespaces | 21

Symbols may also be namespace-qualified, in which case they are resolved within the
specified namespace instead of the current one:

ns
;= #<Namespace user>
(ns foo)
;= nil
ns
;= #<Namespace foo>
user/x
;= "hello"
x
;= #<CompilerException java.lang.RuntimeException:
;= Unable to resolve symbol: x in this context, compiling:(NO_SOURCE_PATH:0)>

The current namespace is always bound to *ns*.

Here we created a new namespace using the ns macro (which has the side effect of
switching us to that new namespace in our REPL), and then referred to the value of x
in the user namespace by using the namespace-qualified symbol user/x. Since we only
just created this new namespace foo, it doesn’t have a mapping for the x symbol, so
attempting to resolve it fails.

You need to know how to create, define, organize, and manipulate
namespaces in order to use Clojure effectively. There is a whole suite of
functions for this; please refer to “Defining and Using Namespa-
ces” on page 322 for our guidelines in their use.

We mentioned earlier that namespaces also map between symbols and imported Java
classes. All classes in the java.lang package are imported by default into each Clojure
namespace, and so can be referred to without package qualification; to refer to un-
imported classes, a package-qualified symbol must be used. Any symbol that names a
class evaluates to that class:

String
;= java.lang.String
Integer
;= java.lang.Integer
java.util.List
;= java.util.List
java.net.Socket
;= java.net.Socket

In addition, namespaces by default alias all of the vars defined in the primary namespace
of Clojure’s standard library, clojure.core. For example, there is a filter function
defined in clojure.core, which we can access without namespace-qualifying our ref-
erence to it:

filter
;= #<core$filter clojure.core$filter@7444f787>

22 | Chapter 1: Down the Rabbit Hole

These are just the barest basics of how Clojure namespaces work; learn more about
them and how they should be used to help you structure your projects in “Defining
and Using Namespaces” on page 322.

Symbol Evaluation
With a basic understanding of namespaces under our belt, we can turn again to the
example average function from Example 1-2 and have a more concrete idea of how it
is evaluated:

(defn average
 [numbers]
 (/ (apply + numbers) (count numbers)))

As we learned in “Homoiconicity” on page 9, this is just a canonical textual represen-
tation of a Clojure data structure that itself contains other data. Within the body of this
function, there are many symbols, each of which refers to either a var in scope in the
current namespace or a local value:

• /, apply, +, and count all evaluate to functions held in vars defined and so named
in the clojure.core namespace

• numbers either defines the sole argument to the function (when provided in the
argument vector [numbers]),17 or is used to refer to that argument’s value in the
body of the function (when used in the (apply + numbers) and (count numbers)
expressions).

With this information, and recalling the semantics of lists as calls with the operator in
function position, you should have a nearly complete understanding of how calls to
this function are evaluated:

(average [60 80 100 400])
;= 160

The symbol average refers here to the value of #'average, the var in the current name-
space that holds the function we defined. That function is called with a vector of num-
bers, which is locally bound as numbers within the body of the average function. The
result of the operations in that body produce a value—160—which is then returned to
the caller: in this case, the REPL, which prints it to stdout.

Special Forms
Ignoring Java interoperability for a moment, symbols in function position can evaluate
to only two things:

17. We’ll get into all the details of how to define functions and therefore their arguments in “Creating
Functions: fn” on page 36.

Special Forms | 23

1. The value of a named var or local, as we’ve already seen.

2. A Clojure special form.18

Special forms are Clojure’s primitive building blocks of computation, on top of which
all the rest of Clojure is built. This foundation shares a lineage with the earliest Lisps,
which also defined a limited set of primitives that define the fundamental operations
of the runtime, and are taken as sufficient to describe any possible computation.19

Further, special forms have their own syntax (e.g., many do not take arguments per se)
and evaluation semantics.

As you’ve seen, things that are often described as primitive operations or statements in
most languages—including control forms like when and operators like addition and
negation—are not primitives in Clojure. Rather, everything that isn’t a special form is
implemented in Clojure itself by bootstrapping from that limited set of primitive op-
erations.20 The practical effect of this is that, if Clojure doesn’t provide a language
construct that you want or need, you can likely build it yourself.21

Though all of Clojure is built on top of its special forms, you need to understand what
each one does—as you’ll use many of them constantly. Let’s now discuss each one in
turn.

Suppressing Evaluation: quote
quote suppresses evaluation of a Clojure expression. The most obvious impact of this
relates to symbols, which, if they name a var, evaluate to that var’s value. With quote,
evaluation is suppressed, so symbols evaluate to themselves (just like strings, numbers,
and so on):

(quote x)
;= x
(symbol? (quote x))
;= true

There is reader syntax for quote; prefixing any form with a quote character (') will
expand into a usage of quote:

18. Special forms are always given precedence when resolving symbols in function position. For example,
you can have a var or local named def, but you will not be able to refer to the value of that var or local in
function position—though you can refer to that value anywhere else.

19. Paul Graham’s The Roots of Lisp (http://www.paulgraham.com/rootsoflisp.html) is a brief yet approachable
precis of the fundamental operations of computation, as originally discovered and enumerated by John
McCarthy. Though that characterization of computation was made more than 50 years ago, you can see
it thriving in Clojure today.

20. If you were to open the core.clj file from Clojure’s source repository, you will see this bootstrapping in
action: everything from when and or to defn and = is defined in Clojure itself. Indeed, if you were so
motivated, you could implement Clojure (or another language of your choosing) from scratch, on your
own, on top of Clojure’s special forms.

21. This sort of syntactic extension generally requires macros, which are treated in detail in Chapter 5.

24 | Chapter 1: Down the Rabbit Hole

'x
;= x

Any Clojure form can be quoted, including data structures. Doing so returns the data
structure in question, with evaluation recursively suppressed for all of its elements:

'(+ x x)
;= (+ x x)
(list? '(+ x x))
;= true

While lists are usually evaluated as calls, quoting a list suppresses that evaluation,
yielding the list itself; in this case, a list of three symbols: '+, 'x, and 'x. Note that this
is exactly what we get if we “manually” construct the list without using a list literal:

(list '+ 'x 'x)
;= (+ x x)

You can usually have a peek at what the reader produces by quoting a
form. Let’s go meta for a moment and try it first on quote itself:

''x
;= (quote x)

It’s informative to use this trick on other reader sugars:

'@x
;= (clojure.core/deref x)
'#(+ % %)
;= (fn* [p1__3162792#] (+ p1__3162792# p1__3162792#))
'`(a b ~c)
;= (seq (concat (list (quote user/a))
;= (list (quote user/b))

;= (list c)))

clojure.core namespace-prefixes elided for legibility.

Code Blocks: do
do evaluates all of the expressions provided to it in order and yields the last expression’s
value as its value. For example:

(do
 (println "hi")
 (apply * [4 5 6]))
; hi
;= 120

The values of all but the last expression are discarded, although their side effects do
occur (such as printing to standard out as we’re doing here, or manipulations of a
stateful object available in the current scope).

Special Forms | 25

Note that many other forms (including fn, let, loop, and try—and any derivative of
these, such as defn) wrap their bodies in an implicit do expression, so that multiple
inner expressions can be evaluated. For example, let expressions—like this one that
defines two locals—provide an implicit do context to their bodies:

(let [a (inc (rand-int 6))
 b (inc (rand-int 6))]
 (println (format "You rolled a %s and a %s" a b))
 (+ a b))

This allows any number of expressions to be evaluated within the context of the let
form, with only the final one determining its ultimate result. If let didn’t wrap its body
with a do form, you would have to add it explicitly:22

(let [a (inc (rand-int 6))
 b (inc (rand-int 6))]
 (do
 (println (format "You rolled a %s and a %s" a b))
 (+ a b)))

Defining Vars: def
We’ve already seen def in action;23 it defines (or redefines) a var (with an optional value)
within the current namespace:

(def p "foo")
;= #'user/p
p
;= "foo"

Many other forms implicitly create or redefine vars, and therefore use def internally. It
is customary for such forms to be prefixed with “def,” such as defn, defn-, defproto
col, defonce, defmacro, and so on.

Although forms that create or redefine vars have names that start with
“def,” unfortunately not all forms that start with “def” create or redefine
vars. Examples of the latter include deftype, defrecord, and defmethod.

22. The other alternative would be for let (and all other forms that utilize do) to (re?) implement its own
semantics of “do several things and return the value of the last expression”: hardly a reasonable thing
to do.

23. See “Namespaces” on page 20 for a discussion of the typical usage of vars as stable references to values
in namespaces; see “Vars” on page 198 for more a more comprehensive treatment of them, including
esoteric usages related to dynamic scope and thread-local references.

26 | Chapter 1: Down the Rabbit Hole

Local Bindings: let
let allows you to define named references that are lexically scoped to the extent of the
let expression. Said another way, let defines locals. For example, this rudimentary
static method in Java:

public static double hypot (double x, double y) {
 final double x2 = x * x;
 final double y2 = y * y;
 return Math.sqrt(x2 + y2);
}

is equivalent to this Clojure function:

(defn hypot
 [x y]
 (let [x2 (* x x)
 y2 (* y y)]
 (Math/sqrt (+ x2 y2))))

The x2 and y2 locals in the respective function/method bodies serve the same purpose:
to establish a named, scoped reference to an intermediate value.

There are many terms used to talk about named references established
by let in Clojure parlance:

• locals

• local bindings

• particular values are said to be let-bound

Bindings and bound used in connection with let are entirely distinct
from the binding macro, which controls scoped thread-local variables;
see “Dynamic Scope” on page 201 for more about the latter.

Note that let is implicitly used anywhere locals are required. In particular, fn (and
therefore all other function-creation and function-definition forms like defn) uses let
to bind function parameters as locals within the scope of the function being defined.
For example, x and y in the hypot function above are let-bound by defn. So, the vector
that defines the set of bindings for a let scope obeys the same semantics whether it is
used to define function parameters or an auxiliary local binding scope.

Special Forms | 27

Occasionally, you will want evaluate an expression in the binding vector
provided to let, but have no need to refer to its result within the context
of the let’s body. In these cases, it is customary to use an underscore
as the bound name for such values, so that readers of the code will know
that results of such expressions are going unused intentionally.

This is only ever relevant when the expression in question is side-
effecting; a common example would be printing some intermediate
value:

(let [location (get-lat-long)
 _ (println "Current location:" location)
 location (find-city-name location)]
 …display city name for current location in UI…)

Here we’re retrieving our current latitude and longitude using a hypo-
thetical API, and we’d like to print that out before converting the loca-
tion data to a human-recognizable city name. We might want to rebind
the same name a couple of times in the course of the let’s binding vector,
paving over those intermediate values. To print out that intermediate
value, we add it to the binding vector prior to rebinding its name, but
we indicate that we are intentionally ignoring the return value of that
expression by naming it _.

let has two particular semantic wrinkles that are very different from locals you may be
used to in other languages:

1. All locals are immutable. You can override a local binding within a nested let form
or a later binding of the same name within the same binding vector, but there is
no way to bash out a bound name and change its value within the scope of a single
let form. This eliminates a source of common errors and bugs without sacrificing
capability:

• The loop and recur special forms provide for looping cases where values need
to change on each cycle of a loop; see “Looping: loop and recur”
on page 43.

• If you really need a “mutable” local binding, Clojure provides a raft of reference
types that enforce specific mutation semantics; see “Clojure Reference
Types” on page 170.

2. let’s binding vector is interpreted at compile time to provide optional destructur-
ing of common collection types. Destructuring can aid substantially in eliminating
certain types of verbose (and frankly, dull) code often associated with working with
collections provided as arguments to functions.

Destructuring (let, Part 2)
A lot of Clojure programming involves working with various implementations of data
structure abstractions, sequential and map collections being two of those key

28 | Chapter 1: Down the Rabbit Hole

abstractions. Many Clojure functions accept and return seqs and maps generally—
rather than specific implementations—and most Clojure libraries and applications are
built up relying upon these abstractions instead of particular concrete structures,
classes, and so on. This allows functions and libraries to be trivially composed around
the data being handled with a minimum of integration, “glue code,” and other inci-
dental complexity.

One challenge when working with abstract collections is being able to concisely access
multiple values in those collections. For example, here’s a collection, a Clojure vector:

(def v [42 "foo" 99.2 [5 12]])
;= #'user/v

Consider a couple of approaches for accessing the values in our sample vector:

(first v)
;= 42
(second v)
;= "foo"
(last v)
;= [5 12]
(nth v 2)
;= 99.2
(v 2)
;= 99.2
(.get v 2)
;= 99.2

Clojure provides convenience functions for accessing the first, second, and last
values from a sequential collection.

The nth function allows you pluck any value from a sequential collection using an
index into that collection.

Vectors are functions of their indices.

All of Clojure’s sequential collections implement the java.util.List interface, so
you can use that interface’s .get method to access their contents.

All of these are perfectly fine ways to access a single “top-level” value in a vector, but
things start getting more complex if we need to access multiple values to perform some
operation:

(+ (first v) (v 2))
;= 141.2

Or if we need to access values in nested collections:

(+ (first v) (first (last v)))
;= 47

Clojure destructuring provides a concise syntax for declaratively pulling apart collec-
tions and binding values contained therein as named locals within a let form. And,

Special Forms | 29

because destructuring is a facility provided by let, it can be used in any expression that
implicitly uses let (like fn, defn, loop, and so on).

There are two flavors of destructuring: one that operates over sequential collections,
and another that works with maps.

Sequential destructuring

Sequential destructuring works with any sequential collection, including:

• Clojure lists, vectors, and seqs

• Any collection that implements java.util.List (like ArrayLists and LinkedLists)

• Java arrays

• Strings, which are destructured into their characters

Here’s a basic example, where we are destructuring the same value v discussed above:

Example 1-3. Basic sequential destructuring

(def v [42 "foo" 99.2 [5 12]])
;= #'user/v
(let [[x y z] v]
 (+ x z))
;= 141.2

In its simplest form, the vector provided to let contains pairs of names and values, but
here we’re providing a vector of symbols—[x y z]—instead of a scalar symbol name.
What this does is cause the value v to be destructured sequentially, with the first value
bound to x within the body of the let form, the second value bound to y, and the third
value bound to z. We can then use those destructured locals like any other locals. This
is equivalent to:

(let [x (nth v 0)
 y (nth v 1)
 z (nth v 2)]
 (+ x z))
;= 141.2

Python has something similar to Clojure’s sequential destructuring,
called unpacking. The equivalent to the preceding code snippet in
Python would be something like:

>>> v = [42, "foo", 99.2, [5, 12]]
>>> x, y, z, a = v
>>> x + z
141.19999999999999

The same goes for Ruby:

>> x, y, z, a = [42, "foo", 99.2, [5, 12]]
[42, "foo", 99.2, [5, 12]]

30 | Chapter 1: Down the Rabbit Hole

>> x + z
141.2

Clojure, Python, and Ruby all seem pretty similar on their face; but, as
you’ll see as we go along, Clojure goes quite a long ways beyond what
Python and Ruby offer.

Destructuring forms are intended to mirror the structure of the collection that is being
bound.24 So, we can line up our destructuring form with the collection being destruc-
tured and get a very accurate notion of which values are going to be bound to which
names:25

[x y z]
[42 "foo" 99.2 [5 12]]

Destructuring forms can be composed as well, so we can dig into the nested vector in
v with ease:26

(let [[x _ _ [y z]] v]
 (+ x y z))
;= 59

If we visually line up our destructuring form and the source vector again, the work
being done by that form should again be very clear:

[x _ _ [y z]]
[42 "foo" 99.2 [5 12]]

If our nested vector had a vector inside of it, we could destructure it as
well. The destructuring mechanism has no limit to how far it can de-
scend into a deeply nested data structure, but there are limits to good
taste. If you’re using destructuring to pull values out of a collection four
or more levels down, chances are your destructuring form will be diffi-
cult to interpret for the next person to see that code—even if that next
person is you!

There are two additional features of sequential destructuring forms you should know
about:

Gathering extra-positional sequential values
You can use & to gather values that lay beyond the positions you’ve named in your
destructuring form into a sequence; this is similar to the mechanism underlying
varargs in Java methods and is the basis of rest arguments in Clojure functions:

24. Thus the term: destructuring is undoing (de-) the creation of the data structure.

25. Values in the source collection that have no corresponding bound name are simply not bound within the
context of the let form; you do not need to fully match the structure of the source collection, but
sequential destructuring forms do need to be “anchored” at the beginning of the source.

26. Again, note the use of underscores (_) in this destructuring form to indicate an ignored binding, similar
to the idiom discussed in the note earlier in this chapter.

Special Forms | 31

(let [[x & rest] v]
 rest)
;= ("foo" 99.2 [5 12])

This is particularly useful when processing items from a sequence, either via re-
cursive function calls or in conjunction with a loop form. Notice that the value of
rest here is a sequence, and not a vector, even though we provided a vector to the
destructuring form.

Retaining the destructured value
You can establish a local binding for the original collection being destructured by
specifying the name it should have via the :as option within the destructuring form:

(let [[x _ z :as original-vector] v]
 (conj original-vector (+ x z)))
;= [42 "foo" 99.2 [5 12] 141.2]

Here, original-vector is bound to the unchanged value of v. This comes in handy
when you are destructuring a collection that is the result of a function call, but you
need to retain a reference to that unaltered result in addition to having the benefit
of destructuring it. Without this feature, doing so would require something like
this:

(let [some-collection (some-function …)
 [x y z [a b]] some-collection]
 …do something with some-collection and its values…)

Map destructuring

Map destructuring is conceptually identical to sequential destructuring—we aim to
mirror the structure of the collection being bound. It works with:

• Clojure hash-maps, array-maps, and records27

• Any collection that implements java.util.Map

• Any value that is supported by the get function can be map-destructured, using
indices as keys:

— Clojure vectors

— Strings

— Arrays

Let’s start with a Clojure map and a basic destructuring of it:

(def m {:a 5 :b 6
 :c [7 8 9]
 :d {:e 10 :f 11}
 "foo" 88
 42 false})
;= #'user/m

27. See “Records” on page 272 to learn more about records.

32 | Chapter 1: Down the Rabbit Hole

(let [{a :a b :b} m]
 (+ a b))
;= 11

Here we’re binding the value for :a in the map to a, and the value for :b in the map to
b. Going back to our visual alignment of the destructuring form with the (in this case,
partial) collection being destructured, we can again see the structural correspondence:

{a :a b :b}
{:a 5 :b 6}

Note that there is no requirement that the keys used for map lookups in destructuring
be keywords; any type of value may be used for lookup:

(let [{f "foo"} m]
 (+ f 12))
;= 100
(let [{v 42} m]
 (if v 1 0))
;= 0

Indices into vectors, strings, and arrays can be used as keys in a map destructuring
form.28 One place where this can be helpful is if you are representing matrices by using
vectors, but only need a couple of values from one. Using map destructuring to pull
out two or three values from a 3×3 matrix can be much easier than using a potentially
nine-element sequential destructuring form:

(let [{x 3 y 8} [12 0 0 -18 44 6 0 0 1]]
 (+ x y))
;= -17

Just as sequential destructuring forms could be composed, so can the map variety:

(let [{{e :e} :d} m]
 (* 2 e))
;= 20

The outer map destructuring—{{e :e} :d}—is acting upon the top-level source col-
lection m to pull out the value mapped to :d. The inner map destructuring—{e :e}—
is acting on the value mapped to :d to pull out its value for :e.

The coup de grâce is the composition of both map and sequential destructuring, how-
ever they are needed to effectively extract the values you need from the collections at
hand:

(let [{[x _ y] :c} m]
 (+ x y))
;= 16
(def map-in-vector ["James" {:birthday (java.util.Date. 73 1 6)}])
;= #'user/map-in-vector
(let [[name {bd :birthday}] map-in-vector]

28. This is due to the polymorphic behavior of get, which looks up values in a collection given a key into that
collection; in the case of these indexable sequential values, get uses indices as keys. For more about
get, see “Associative” on page 99.

Special Forms | 33

 (str name " was born on " bd))
;= "James was born on Thu Feb 06 00:00:00 EST 1973"

Map destructuring also has some additional features.

Retaining the destructured value. Just like sequential destructuring, adding
an :as pair to the destructuring form to hold a reference to the source collection, which
you can use like any other let-bound value:

(let [{r1 :x r2 :y :as randoms}
 (zipmap [:x :y :z] (repeatedly (partial rand-int 10)))]
 (assoc randoms :sum (+ r1 r2)))
;= {:sum 17, :z 3, :y 8, :x 9}

Default values. You can use an :or pair to provide a defaults map; if a key specified
in the destructuring form is not available in the source collection, then the defaults map
will be consulted:

(let [{k :unknown x :a
 :or {k 50}} m]
 (+ k x))
;= 55

This allows you to avoid either merging the source map into a defaults map ahead of
its destructuring, or manually setting defaults on destructured bindings that have nil
values in the source collection, which would get very tiresome beyond one or two
bindings with desired default values:

(let [{k :unknown x :a} m
 k (or k 50)]
 (+ k x))
;= 55

Furthermore, and unlike the code in the above example, :or knows the difference be-
tween no value and a false (nil or false) value:

(let [{opt1 :option} {:option false}
 opt1 (or opt1 true)
 {opt2 :option :or {opt2 true}} {:option false}]
 {:opt1 opt1 :opt2 opt2})
;= {:opt1 true, :opt2 false}

Binding values to their keys’ names. There are often stable names for various
values in maps, and it’s often desirable to bind those values by using the same names
in the scope of the let form as they are mapped to in the source map. However, doing
this using “vanilla” map destructuring can get very repetitive:

(def chas {:name "Chas" :age 31 :location "Massachusetts"})
;= #'user/chas
(let [{name :name age :age location :location} chas]
 (format "%s is %s years old and lives in %s." name age location))
;= "Chas is 31 years old and lives in Massachusetts."

Having to type the content of each key twice is decidedly contrary to the spirit of de-
structuring’s concision. In such cases, you can use the :keys, :strs, and :syms options

34 | Chapter 1: Down the Rabbit Hole

to specify keyword, string, and symbol keys (respectively) into the source map and the
names the corresponding values should be bound to in the let form without repetition.
Our sample map uses keywords for keys, so we’ll use :keys for it:

(let [{:keys [name age location]} chas]
 (format "%s is %s years old and lives in %s." name age location))
;= "Chas is 31 years old and lives in Massachusetts."

…and switch to using :strs or :syms when we know that the source collection is using
strings or symbols for keys:

(def brian {"name" "Brian" "age" 31 "location" "British Columbia"})
;= #'user/brian
(let [{:strs [name age location]} brian]
 (format "%s is %s years old and lives in %s." name age location))
;= "Brian is 31 years old and lives in British Columbia."

(def christophe {'name "Christophe" 'age 33 'location "Rhône-Alpes"})
;= #'user/christophe
(let [{:syms [name age location]} christophe]
 (format "%s is %s years old and lives in %s." name age location))
;= "Christophe is 31 years old and lives in Rhône-Alpes."

You will likely find yourself using :keys more than :strs or :syms; keyword keys are
by far the most common key type in Clojure maps and keyword arguments, and are
the general-purpose accessor by dint of their usage in conjunction with records.

Destructuring rest sequences as map key/value pairs. We’ve already seen how
extra-positional values in sequential destructuring forms can be gathered into a “rest”
seq, and map and sequential destructuring can be composed as needed to drill into any
given data structure. Here’s a simple case of a vector that contains some positional
values, followed by a set of key/value pairs:

(def user-info ["robert8990" 2011 :name "Bob" :city "Boston"])
;= #'user/user-info

Data like this isn’t uncommon, and handling it is rarely elegant. The “manual” ap-
proach in Clojure is tolerable as these things go:

(let [[username account-year & extra-info] user-info
 {:keys [name city]} (apply hash-map extra-info)]
 (format "%s is in %s" name city))
;= "Bob is in Boston"

We can destructure the original vector into its positional elements, gathering the
remainder into a rest seq.

That rest seq, consisting of alternating keys and values, can be used as the basis for
creating a new hashmap, which we can then destructure as we wish.

However, “tolerable” isn’t a very high bar given the prevalence of sequences of key/
value pairs in programming. A better alternative is a special variety of the compositional
behavior offered by let’s destructuring forms: map destructuring of rest seqs. If a rest

Special Forms | 35

seq has an even number of values—semantically, key/value pairs—then it can be des-
tructured as a map of those key/value pairs instead of sequentially:

(let [[username account-year & {:keys [name city]}] user-info]
 (format "%s is in %s" name city))
;= "Bob is in Boston"

That is a far cleaner notation for doing exactly the same work as us manually building
a hash-map out of the rest seq and destructuring that map, and is the basis of Clojure
functions’ optional keyword arguments described in “Keyword arguments” (page
39).

Creating Functions: fn
Functions are first-class values in Clojure; creating them falls to the fn special form,
which also folds in the semantics of let and do.

Here is a simple function that adds 10 to the number provided as an argument:

(fn [x]
 (+ 10 x))

fn accepts a let-style binding vector that defines the names and numbers of argu-
ments accepted by the function; the same optional destructuring forms discussed in
“Destructuring (let, Part 2)” on page 28 can be applied to each argument here.

The forms following the binding vector constitute the body of the function. This
body is placed in an implicit do form, so each function’s body may contain any
number of forms; as with do, the last form in the body supplies the result of the
function call that is returned to the caller.

The arguments to a function are matched to each name or destructuring form based
on their positions in the calling form. So in this call:

((fn [x] (+ 10 x)) 8)
;= 18

8 is the sole argument to the function, and it is bound to the name x within the body
of the function. This makes the function call the equivalent of this let form:

(let [x 8]
 (+ 10 x))

You can define functions that accept multiple arguments:

((fn [x y z] (+ x y z))
 3 4 12)
;= 19

In this case, the function call is the equivalent of this let form:

(let [x 3
 y 4
 z 12]
 (+ x y z))

36 | Chapter 1: Down the Rabbit Hole

Functions with multiple arities can be created as well; here, we’ll put the function in a
var so we can call it multiple times by only referring to the var’s name:

(def strange-adder (fn adder-self-reference
 ([x] (adder-self-reference x 1))
 ([x y] (+ x y))))
;= #'user/strange-adder
(strange-adder 10)
;= 11
(strange-adder 10 50)
;= 60

When defining a function with multiple arities, each arity’s binding vector and imple-
mentation body must be enclosed within a pair of parentheses. Function calls dispatch
based on argument count; the proper arity is selected based on the number of arguments
that we provide in our call.

In this last example, notice the optional name that we’ve given to the function, adder-
self-reference. This optional first argument to fn can be used within the function’s
bodies to refer to itself—in this case, so that the single-argument arity can call the two-
argument arity with a default second argument without referring to or requiring any
containing var.

Mutually recursive functions with letfn
Named fns (like the above adder-self-reference) allow you to easily
create self-recursive functions. What is more tricky is to create mutu-
ally recursive functions.

For such rare cases, there is the letfn special form, which allows you to
define several named functions at once, and all these functions will
know each other. Consider these naive reimplementations of odd? and
even?:

(letfn [(odd? [n]
 (even? (dec n)))
 (even? [n]
 (or (zero? n)

 (odd? (dec n))))]
 (odd? 11))
;= true

The vector consists of several regular fn bodies, only the fn symbol
is missing.

defn builds on fn. We’ve already seen defn used before, and the example above
should look familiar; defn is a macro that encapsulates the functionality of def and fn
so that you can concisely define functions that are named and registered in the current
namespace with a given name. For example, these two definitions are equivalent:

(def strange-adder (fn strange-adder
 ([x] (strange-adder x 1))

Special Forms | 37

 ([x y] (+ x y))))

(defn strange-adder
 ([x] (strange-adder x 1))
 ([x y] (+ x y))))

and single-arity functions can be defined, with the additional parentheses eliminated
as well; these two definitions are also equivalent:

(def redundant-adder (fn redundant-adder
 [x y z]
 (+ x y z)))

(defn redundant-adder
 [x y z]
 (+ x y z))

We’ll largely use defn forms to illustrate fn forms for the rest of this section, simply
because calling functions bound to named vars is easier to read than continually defin-
ing the functions to be called inline.

Destructuring function arguments

defn supports the destructuring of function arguments thanks to it reusing let for
binding function arguments for the scope of a function’s body. You should refer to the
prior comprehensive discussion of destructuring to remind yourself of the full range of
options available; here, we’ll discuss just a couple of destructuring idioms that are
particularly common in conjunction with functions.

Variadic functions. Functions can optionally gather all additional arguments used
in calls to it into a seq; this uses the same mechanism as sequential destructuring does
when gathering additional values into a seq. Such functions are called variadic, with
the gathered arguments usually called rest arguments or varargs. Here’s a function that
accepts one named positional argument, but gathers all additional arguments into a
remainder seq:

(defn concat-rest
 [x & rest]
 (apply str (butlast rest)))
;= #'user/concat-rest
(concat-rest 0 1 2 3 4)
;= "123"

The seq formed for the rest arguments can be destructured just like any other sequence;
here we’re destructuring rest arguments to make a function behave as if it had an ex-
plicitly defined zero-arg arity:

(defn make-user
 [& [user-id]]
 {:user-id (or user-id
 (str (java.util.UUID/randomUUID)))})
;= #'user/make-user
(make-user)

38 | Chapter 1: Down the Rabbit Hole

;= {:user-id "ef165515-6d6f-49d6-bd32-25eeb024d0b4"}
(make-user "Bobby")
;= {:user-id "Bobby"}

Keyword arguments. It is often the case that you would like to define a function
that can accept many arguments, some of which might be optional and some of which
might have defaults. Further, you would often like to avoid forcing a particular argu-
ment ordering upon callers.29

fn (and therefore defn) provides support for such use cases through keyword argu-
ments, which is an idiom built on top of the map destructuring of rest sequences that
let provides. Keyword arguments are pairs of keywords and values appended to any
strictly positional arguments in a function call, and if the function was defined to accept
keyword arguments, those keyword/value pairs will be gathered into a map and des-
tructured by the function’s map destructuring form that is placed in the same position
as the rest arguments seq:

(defn make-user
 [username & {:keys [email join-date]
 :or {join-date (java.util.Date.)}}]
 {:username username
 :join-date join-date
 :email email
 ;; 2.592e9 -> one month in ms
 :exp-date (java.util.Date. (long (+ 2.592e9 (.getTime join-date))))})
;= #'user/make-user
(make-user "Bobby")
;= {:username "Bobby", :join-date #<Date Mon Jan 09 16:56:16 EST 2012>,
;= :email nil, :exp-date #<Date Wed Feb 08 16:56:16 EST 2012>}
(make-user "Bobby"
 :join-date (java.util.Date. 111 0 1)
 :email "bobby@example.com")
;= {:username "Bobby", :join-date #<Date Sun Jan 01 00:00:00 EST 2011>,
;= :email "bobby@example.com", :exp-date #<Date Tue Jan 31 00:00:00 EST 2011>}

The make-user function strictly requires only one argument, a username. The rest of
the arguments are assumed to be keyword/value pairs, gathered into a map, and
then destructured using the map destructuring form following &.

In the map destructuring form, we define a default of “now” for the join-date value.

Calling make-user with a single argument returns the user map, populated with de-
faulted join- and expiration-date values and a nil email value since none was pro-
vided in the keyword arguments.

Additional arguments provided to make-user are interpreted by the keyword de-
structuring map, without consideration of their order.

29. Python is a language that supports this usage pervasively, where every argument may be named and
provided in any order in a function call, and argument defaults can be provided when a function is defined.

Special Forms | 39

Because keyword arguments are built using let’s map destructuring,
there’s nothing stopping you from destructuring the rest argument map
using types of key values besides keywords (such as strings or numbers
or even collections). For example:

(defn foo
 [& {k ["m" 9]}]
 (inc k))
;= #'user/foo
(foo ["m" 9] 19)
;= 20

["m" 9] is being treated here as the name of a “keyword” argument.

That said, we’ve never actually seen non-keyword key types used in
named function arguments. Keywords are overwhelmingly the most
common argument key type used, thus the use of keyword arguments to
describe the idiom.

Pre- and postconditions. fn provides support for pre- and postconditions for per-
forming assertions with function arguments and return values. They are valuable fea-
tures when testing and for generally enforcing function invariants; we discuss them in
“Preconditions and Postconditions” on page 487.

Function literals

We mentioned function literals briefly in “Miscellaneous Reader Sugar” on page 20.
Equivalent to blocks in Ruby and lambdas in Python, Clojure function literals’ role is
straightforward: when you need to define an anonymous function—especially a very
simple function—they provide the most concise syntax for doing so.

For example, these anonymous function expressions are equivalent:

(fn [x y] (Math/pow x y))

#(Math/pow %1 %2)

The latter is simply some reader sugar that is expanded into the former; we can clearly
see this by checking the result of reading the textual code:30

(read-string "#(Math/pow %1 %2)")
;= (fn* [p1__285# p2__286#] (Math/pow p1__285# p2__286#))

The differences between the fn form and the shorter function literal are:

No implicit do form. “Regular” fn forms (and all of their derivatives) wrap their
function bodies in an implicit do form, as we discussed in “Creating Functions:
fn” on page 36. This allows you to do things like:

30. Since the name of the arguments to the function is irrelevant, the function literal generates a unique
symbol for each argument to refer to them; in this case, p1__285# and p2__286#.

40 | Chapter 1: Down the Rabbit Hole

(fn [x y]
 (println (str x \^ y))
 (Math/pow x y))

The equivalent function literal requires an explicit do form:

#(do (println (str %1 \^ %2))
 (Math/pow %1 %2))

Arity and arguments specified using unnamed positional symbols. The fn ex-
amples above use the named symbols x and y to specify both the arity of the function
being defined, as well as the names of the arguments passed to the function at runtime.
In contrast, the literal uses unnamed positional % symbols, where %1 is the first argu-
ment, %2 is the second argument, and so on. In addition, the highest positional symbol
defines the arity of the function, so if we wanted to define a function that accepted four
arguments, we need only to refer to %4 within the function literal’s body.

There are two additional wrinkles to defining arguments in function literals:

1. Function literals that accept a single argument are so common that you can refer
to the first argument to the function by just using %. So, #(Math/pow % %2) is equiv-
alent to #(Math/pow %1 %2). You should prefer the shorter notation in general.

2. You can define a variadic function31 and refer to that function’s rest arguments
using the %& symbol. These functions are therefore equivalent:

(fn [x & rest]
 (- x (apply + rest)))

#(- % (apply + %&))

Function literals cannot be nested. So, while this is perfectly legal:

(fn [x]
 (fn [y]
 (+ x y)))

This is not:

#(#(+ % %))
;= #<IllegalStateException java.lang.IllegalStateException:
;= Nested #()s are not allowed>

Aside from the fact that the bodies of function literals are intended to be terse, simple
expressions, making the prospect of nested function literals a readability and compre-
hension nightmare, there’s simply no way to disambiguate which function’s first ar-
gument % is referring to.

31. See “Variadic functions” (page 38).

Special Forms | 41

Conditionals: if
if is Clojure’s sole primitive conditional operator. Its syntax is simple: if the value of
the first expression in an if form is logically true, then the result of the if form is the
value of the second expression. Otherwise, the result of the if form is the value of the
third expression, if provided. The second and third expressions are only evaluated as
necessary.

Clojure conditionals determine logical truth to be anything other than nil or false:

(if "hi" \t)
;= \t
(if 42 \t)
;= \t
(if nil "unevaluated" \f)
;= \f
(if false "unevaluated" \f)
;= \f
(if (not true) \t)
;= nil

Note that if a conditional expression is logically false, and no else expression is pro-
vided, the result of an if expression is nil.32

Many refinements are built on top of if, including:

• when, best used when nil should be returned (or no action should be taken) if a
condition is false.

• cond—similar to the else if construction in Java and Ruby, and elif in Python—
allows you to concisely provide multiple conditions to check, along with multiple
then expressions if a given conditional is true.

• if-let and when-let, which are compositions of let with if and when, respectively:
if the value of the test expression is logically true, it is bound to a local for the extent
of the then expression.

Clojure provides true? and false? predicates, but these are unrelated
to if conditionals. For example:

(true? "string")
;= false
(if "string" \t \f)
;= \t

true? and false? check for the Boolean values true and false, not the
logical truth condition used by if, which is equivalent to (or (not (nil?
x)) (true? x)) for any value x.

32. when is far more appropriate for such scenarios.

42 | Chapter 1: Down the Rabbit Hole

Looping: loop and recur
Clojure provides a number of useful imperative looping constructs, including doseq
and dotimes, all of which are built upon recur. recur transfers control to the local-most
loop head without consuming stack space, which is defined either by loop or a function.
Let’s take a look at a very simple countdown loop:

(loop [x 5]
 (if (neg? x)
 x
 (recur (dec x))))
;= -1

loop establishes bindings via an implicit let form, so it takes a vector of binding
names and initial values.

If the final expression within a loop form consists of a value, that is taken as the value
of the form itself. Here, when x is negative, the loop form returns the value of x.

A recur form will transfer control to the local-most loop head, in this case the loop
form, resetting the local bindings to the values provided as arguments to recur. In
this case, control jumps to the beginning of the loop form, with x bound to the value
(dec x).

Loop heads are also established by functions, in which case recur rebinds the function’s
parameters using the values provided as arguments to recur:

(defn countdown
 [x]
 (if (zero? x)
 :blastoff!
 (do (println x)
 (recur (dec x)))))
;= #'user/countdown
(countdown 5)
; 5
; 4
; 3
; 2
; 1
;= :blastoff!

Appropriate use of recur. recur is a very low-level looping and recursion operation
that is usually not necessary:

• When they can do the job, use the higher-level looping and iteration forms found
in Clojure’s core library, doseq and dotimes.

• When “iterating” over a collection or sequence, functional operations like map,
reduce, for, and so on are almost always preferable.

Because recur does not consume stack space (thereby avoiding stack overflow errors),
recur is critical when implementing certain recursive algorithms. In addition, because

Special Forms | 43

it allows you to work with numerics without the overhead of boxed representations,
recur is very useful in the implementation of many mathematical and data-oriented
operations. See “Visualizing the Mandelbrot Set in Clojure” on page 449 for a live
example of recur within such circumstances.

Finally, there are scenarios where the accumulation or consumption of a collection or
set of collections is complicated enough that orchestrating things with a series of purely
functional operations using map, reduce, and so on is either difficult or inefficient. In
these cases, the use of recur (and sometimes loop in order to set up intermediate loop
heads) can provide an important escape hatch.

Referring to Vars: var
Symbols that name a var evaluate to that var’s value:

(def x 5)
;= #'user/x
x
;= 5

However, there are occasions when you’d like to have a reference to the var itself, rather
than the value it holds. The var special form does this:

(var x)
;= #'user/x

You’ve seen a number of times now how vars are printed in the REPL: #', followed by
a symbol. This is reader syntax that expands to a call to var:

#'x
;= #'user/x

You’ll learn a lot more about vars in “Vars” on page 198.

Java Interop: . and new
All Java interoperability—instantiation, static and instance method invocation, and
field access—flows through the new and . special forms. That said, the Clojure reader
provides some syntactic sugar on top of these primitive interop forms that makes Java
interop more concise in general and more syntactically consistent with Clojure’s notion
of function position for method calls and instantiation. Thus, it’s rare to see . and
new used directly, but you will nevertheless come across them out in the wild at some
point:

44 | Chapter 1: Down the Rabbit Hole

Table 1-3. Sugared Java interop forms and their fully expanded equivalents

Operation Java code Sugared interop form Equivalent special form usage

Object instantiation new java.util.Array
List(100)

(java.util.ArrayList.
100)

(new java.util.Array
List 100)

Static method
invocation

Math.pow(2, 10) (Math/pow 2 10) (. Math pow 2 10)

Instance method
invocation

"hello".sub
string(1, 3)

(.substring "hello" 1
3)

(. "hello" substring 1
3)

Static field access Integer.MAX_VALUE Integer/MAX_VALUE (. Integer MAX_VALUE)

Instance field access someObject.some
Field

(.someField some-
object)

(. some-object some-
field)

The sugared syntax shown in Table 1-3 is idiomatic and should be preferred in every
case over direct usage of the . and new special forms. Java interop is discussed in depth
in Chapter 9.

Exception Handling: try and throw
These special forms allow you to participate in and use the exception-handling and
-throwing mechanisms in Java from Clojure. They are explained in “Exceptions and
Error Handling” on page 362.

Specialized Mutation: set!
While Clojure emphasizes the use of immutable data structures and values, there are
contexts where you need to effect an in-place mutation of state. The most common
settings for this involve the use of setter and other stateful methods on Java objects you
are using in an interop setting; for the remaining cases, Clojure provides set!, which
can be used to:

• Set the thread-local value of vars that have a non-root binding, discussed in “Dy-
namic Scope” on page 201

• Set the value of a Java field, demonstrated in “Accessing object fields” (page 359)

• Set the value of mutable fields defined by deftype; see “Types” on page 277 for
details of that usage

Primitive Locking: monitor-enter and monitor-exit
These are lock primitives that allow Clojure to synchronize on the monitor associated
with every Java object. You should never need to use these special forms, as there’s a
macro, locking, that ensures proper acquisition and release of an object’s monitor. See
“Locking” on page 225 for details.

Special Forms | 45

Putting It All Together
We’ve continued to pick at the running example from Example 1-2 throughout our
first explorations of Clojure:

(defn average
 [numbers]
 (/ (apply + numbers) (count numbers)))

We learned how this expression is simply a canonical representation of Clojure data
structures in “Homoiconicity” on page 9. In the beginning, in “Expressions, Operators,
Syntax, and Precedence” on page 7, we established that lists are evaluated as calls, with
the value in function position as the operator. After exploring namespaces, we saw in
“Symbol Evaluation” on page 23 how the symbols in that data structure are evaluated
at runtime in the course of a call. Now, after we’ve learned about special forms—in
particular, def and fn—we have the final pieces in hand to comprehensively understand
what happens when you evaluate this expression (whether at the REPL or as part of
loading a Clojure source file from disk in a production application).

defn is simply a shorthand for:

(def average (fn average
 [numbers]
 (/ (apply + numbers) (count numbers))))

So, fn creates the average function (recall from “Creating Functions: fn” on page 36
that the first argument to fn here, average, is a self-reference, so the function can be
called recursively if necessary without looking up the value of the corresponding var
again), and def registers it as the value of the average var in the current namespace.

eval
All of the evaluation semantics we’ve been discussing are encapsulated within eval, a
function that evaluates a single argument form. We can see very clearly that, for ex-
ample, scalars and other literals evaluate to the values they describe:

(eval :foo)
;= :foo
(eval [1 2 3])
;= [1 2 3]
(eval "text")
;= "text"

…and a list will evaluate to the return value of the call it describes:

(eval '(average [60 80 100 400]))
;= 160

46 | Chapter 1: Down the Rabbit Hole

While eval’s semantics underly all of Clojure, it is itself very rarely used
within Clojure programs. It provides the ultimate in flexibility—allow-
ing you to evaluate any data that represents a valid Clojure expression—
that you simply don’t need most of the time. In general, if you’re using
eval in application code, it’s likely that you’re working with far more
rope than you need, and might end up hanging yourself in the process.

Most problems where eval is applicable are better solved through judi-
cious application of macros, which we explore in Chapter 5.

Knowing everything we do now, we can reimplement the Clojure REPL quite easily.
Remember that read (or read-string) is used to produce Clojure values from their
textual representations:

(eval (read-string "(average [60 80 100 400])"))
;= 160

…and we can construct a control loop using a recur within a function (a loop form
would work as well). Just a sprinkling of I/O-related functions for printing results and
the REPL prompt, and we have a functioning REPL:

Example 1-4. A naive reimplementation of Clojure’s REPL

(defn embedded-repl
 "A naive Clojure REPL implementation. Enter `:quit`
 to exit."
 []
 (print (str (ns-name *ns*) ">>> "))
 (flush)
 (let [expr (read)
 value (eval expr)]
 (when (not= :quit value)
 (println value)
 (recur))))

(embedded-repl)
; user>>> (defn average2
; [numbers]
; (/ (apply + numbers) (count numbers)))
; #'user/average2
; user>>> (average2 [3 7 5])
; 5
; user>>> :quit
;= nil

This REPL implementation is ill-behaved in a variety of ways—for example, any thrown
error leaks out of the loop in embedded-repl—but it’s a start.33

33. Clojure’s actual REPL is also implemented in Clojure, in the clojure.main namespace, and is waiting for
you if you are interested in seeing how the REPL you’ll use every day is built.

Putting It All Together | 47

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY—that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

O’Reilly Ebooks—Your bookshelf on your devices!

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
Android Marketplace, and Amazon.com.

oreilly.comSpreading the knowledge of innovators

iBookstore, the

http://oreilly.com/store/index.html
http://oreilly.com/ebooks/
http://www.android.com/market/
http://amazon.com
http://www.oreilly.com

This Is Just the Beginning
What we’ve explored here is the bedrock of Clojure: the fundamental operations of
computation (special forms), the interchangeability of code and data, and the tip of the
iceberg that is interactive development. On top of this foundation, and in conjunction
with the facilities of its JVM host, Clojure provides immutable data structures; con-
currency primitives with defined, tractable semantics; macros; and much, much more.

We’ll help you understand much of it throughout the rest of the book, and hopefully
tie Clojure into your day-to-day life as a programmer with the practicums in Part IV.

There are some key resources you’ll may want to keep close at hand along the way:

• The core API documentation, available at http://clojure.github.com/clojure

• The main Clojure mailing list, available at http://groups.google.com/group/clojure,
and the #clojure IRC channel on Freenode,34 both friendly places to get quality
help with Clojure, no matter your skill or experience level

• The companion site for this book, http://clojurebook.com, which will be maintained
over time with additional resources to help you along in learning and using Clojure
effectively

Are you ready to take the next step?

34. You can use http://webchat.freenode.net/?channels=#clojure if you aren’t on IRC regularly enough to
maintain a desktop client.

48 | Chapter 1: Down the Rabbit Hole

	Table of Contents
	Preface
	Who Is This Book For?
	Engaged Java Developers
	Ruby, Python, and Other Developers

	How to Read This Book
	Start with Practical Applications of Clojure
	Start from the Ground Up with Clojure’s Foundational Concepts

	Who’s “We”?
	Chas Emerick
	Brian Carper
	Christophe Grand

	Acknowledgments
	And Last, but Certainly Far from Least

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Down the Rabbit Hole
	Why Clojure?
	Obtaining Clojure
	The Clojure REPL
	No, Parentheses Actually Won’t Make You Go Blind
	Expressions, Operators, Syntax, and Precedence
	Homoiconicity
	The Reader
	Scalar Literals
	Strings
	Booleans
	nil
	Characters
	Keywords
	Symbols
	Numbers
	Regular expressions

	Comments
	Whitespace and Commas
	Collection Literals
	Miscellaneous Reader Sugar

	Namespaces
	Symbol Evaluation
	Special Forms
	Suppressing Evaluation: quote
	Code Blocks: do
	Defining Vars: def
	Local Bindings: let
	Destructuring (let, Part 2)
	Sequential destructuring
	Map destructuring

	Creating Functions: fn
	Destructuring function arguments
	Function literals

	Conditionals: if
	Looping: loop and recur
	Referring to Vars: var
	Java Interop: . and new
	Exception Handling: try and throw
	Specialized Mutation: set!
	Primitive Locking: monitor-enter and monitor-exit

	Putting It All Together
	eval

	This Is Just the Beginning

	Part I. Functional Programming and Concurrency
	Chapter 2. Functional Programming
	What Does Functional Programming Mean?
	On the Importance of Values
	About Values
	Comparing Values to Mutable Objects
	A Critical Choice

	First-Class and Higher-Order Functions
	Applying Ourselves Partially

	Composition of Function(ality)
	Writing Higher-Order Functions
	Building a Primitive Logging System with Composable Higher-Order Functions

	Pure Functions
	Why Are Pure Functions Interesting?

	Functional Programming in the Real World

	Chapter 3. Collections and Data Structures
	Abstractions over Implementations
	Collection
	Sequences
	Sequences are not iterators
	Sequences are not lists
	Creating seqs
	Lazy seqs
	Head retention

	Associative
	Beware of nil values

	Indexed
	Stack
	Set
	Sorted
	Comparators and predicates to define ordering

	Concise Collection Access
	Idiomatic Usage
	Collections and Keys and Higher-Order Functions

	Data Structure Types
	Lists
	Vectors
	Vectors as tuples

	Sets
	Maps
	Maps as ad-hoc structs
	Other usages of maps

	Immutability and Persistence
	Persistence and Structural Sharing
	Visualizing persistence: lists
	Visualizing persistence: maps (and vectors and sets)
	Tangible benefits

	Transients

	Metadata
	Putting Clojure’s Collections to Work
	Identifiers and Cycles
	Thinking Different: From Imperative to Functional
	Revisiting a classic: Conway’s Game of Life
	Maze generation

	Navigation, Update, and Zippers
	Manipulating zippers
	Custom zippers
	Ariadne’s zipper

	In Summary

	Chapter 4. Concurrency and Parallelism
	Shifting Computation Through Time and Space
	Delays
	Futures
	Promises

	Parallelism on the Cheap
	State and Identity
	Clojure Reference Types
	Classifying Concurrent Operations
	Atoms
	Notifications and Constraints
	Watches
	Validators

	Refs
	Software Transactional Memory
	The Mechanics of Ref Change
	Understanding alter
	Minimizing transaction conflict with commute
	Clobbering ref state with ref-set
	Enforcing local consistency by using validators

	The Sharp Corners of Software Transactional Memory
	Side-effecting functions strictly verboten
	Minimize the scope of each transaction
	Readers may retry
	Write skew

	Vars
	Defining Vars
	Private vars
	Docstrings
	Constants

	Dynamic Scope
	Vars Are Not Variables
	Forward Declarations

	Agents
	Dealing with Errors in Agent Actions
	Agent error handlers and modes

	I/O, Transactions, and Nested Sends
	Persisting reference states with an agent-based write-behind log
	Using agents to parallelize workloads

	Using Java’s Concurrency Primitives
	Locking

	Final Thoughts

	Part II. Building Abstractions
	Chapter 5. Macros
	What Is a Macro?
	What Macros Are Not
	What Can Macros Do that Functions Cannot?
	Macros Versus Ruby eval

	Writing Your First Macro
	Debugging Macros
	Macroexpansion

	Syntax
	quote Versus syntax-quote
	unquote and unquote-splicing

	When to Use Macros
	Hygiene
	Gensyms to the Rescue
	Letting the User Pick Names
	Double Evaluation

	Common Macro Idioms and Patterns
	The Implicit Arguments: &env and &form
	&env
	&form
	Producing useful macro error messages
	Preserving user-provided type hints

	Testing Contextual Macros

	In Detail: -> and ->>
	Final Thoughts

	Chapter 6. Datatypes and Protocols
	Protocols
	Extending to Existing Types
	Defining Your Own Types
	Records
	Constructors and factory functions
	When to use maps or records

	Types

	Implementing Protocols
	Inline Implementation
	Inline implementations of Java interfaces
	Defining anonymous types with reify

	Reusing Implementations

	Protocol Introspection
	Protocol Dispatch Edge Cases
	Participating in Clojure’s Collection Abstractions
	Final Thoughts

	Chapter 7. Multimethods
	Multimethods Basics
	Toward Hierarchies
	Hierarchies
	Independent Hierarchies

	Making It Really Multiple!
	A Few More Things
	Multiple Inheritance
	Introspecting Multimethods
	type Versus class; or, the Revenge of the Map
	The Range of Dispatch Functions Is Unlimited

	Final Thoughts

	Part III. Tools, Platform, and Projects
	Chapter 8. Organizing and Building Clojure
 Projects
	Project Geography
	Defining and Using Namespaces
	Namespaces and files
	A classpath primer

	Location, Location, Location
	The Functional Organization of Clojure Codebases
	Basic project organization principles

	Build
	Ahead-of-Time Compilation
	Dependency Management
	The Maven Dependency Management Model
	Artifacts and coordinates
	Repositories
	Dependencies

	Build Tools and Configuration Patterns
	Maven
	Leiningen
	AOT compilation configuration
	Building mixed-source projects

	Final Thoughts

	Chapter 9. Java and JVM Interoperability
	The JVM Is Clojure’s Foundation
	Using Java Classes, Methods, and Fields
	Handy Interop Utilities
	Exceptions and Error Handling
	Escaping Checked Exceptions
	with-open, finally’s Lament

	Type Hinting for Performance
	Arrays
	Defining Classes and Implementing Interfaces
	Instances of Anonymous Classes: proxy
	Defining Named Classes
	gen-class

	Annotations
	Producing annotated JUnit tests
	Implementing JAX-RS web service endpoints

	Using Clojure from Java
	Using deftype and defrecord Classes
	Implementing Protocol Interfaces

	Collaborating Partners

	Chapter 10. REPL-Oriented Programming
	Interactive Development
	The Persistent, Evolving Environment

	Tooling
	The Bare REPL
	Introspecting namespaces

	Eclipse
	Emacs
	clojure-mode and paredit
	inferior-lisp
	SLIME

	Debugging, Monitoring, and Patching Production in the REPL
	Special Considerations for “Deployed” REPLs

	Limitations to Redefining Constructs
	In Summary

	Part IV. Practicums
	Chapter 11. Numerics and Mathematics
	Clojure Numerics
	Clojure Prefers 64-bit (or Larger) Representations
	Clojure Has a Mixed Numerics Model
	Rationals
	The Rules of Numeric Contagion

	Clojure Mathematics
	Bounded Versus Arbitrary Precision
	Unchecked Ops
	Scale and Rounding Modes for Arbitrary-Precision Decimals Ops

	Equality and Equivalence
	Object Identity (identical?)
	Reference Equality (=)
	Numeric Equivalence (==)
	Equivalence can preserve your sanity

	Optimizing Numeric Performance
	Declare Functions to Take and Return Primitives
	Type errors and warnings

	Use Primitive Arrays Judiciously
	The mechanics of primitive arrays
	Automating type hinting of multidimensional array operations

	Visualizing the Mandelbrot Set in Clojure

	Chapter 12. Design Patterns
	Dependency Injection
	Strategy Pattern
	Chain of Responsibility
	Aspect-Oriented Programming
	Final Thoughts

	Chapter 13. Testing
	Immutable Values and Pure Functions
	Mocking

	clojure.test
	Defining Tests
	Test “Suites”
	Fixtures

	Growing an HTML DSL
	Relying upon Assertions
	Preconditions and Postconditions

	Chapter 14. Using Relational Databases
	clojure.java.jdbc
	with-query-results Explained
	Transactions
	Connection Pooling

	Korma
	Prelude
	Queries
	Why Bother with a DSL?

	Hibernate
	Setup
	Persisting Data
	Running Queries
	Removing Boilerplate

	Final Thoughts

	Chapter 15. Using Nonrelational Databases
	Getting Set Up with CouchDB and Clutch
	Basic CRUD Operations
	Views
	A Simple (JavaScript) View
	Views in Clojure

	_changes: Abusing CouchDB as a Message Queue
	À la Carte Message Queues
	Final Thoughts

	Chapter 16. Clojure and the Web
	The “Clojure Stack”
	The Foundation: Ring
	Requests and Responses
	Adapters
	Handlers
	Middleware

	Routing Requests with Compojure
	Templating
	Enlive: Selector-Based HTML Transformation
	Testing the waters
	Selectors
	Iterating and branching
	Putting everything together

	Final Thoughts

	Chapter 17. Deploying Clojure Web Applications
	Java and Clojure Web Architecture
	Web Application Packaging
	Building .war files with Maven
	Building .war files with Leiningen

	Running Web Apps Locally
	Web Application Deployment
	Deploying Clojure Apps to Amazon’s Elastic Beanstalk

	Going Beyond Simple Web Application Deployment

	Part V. Miscellanea
	Chapter 18. Choosing Clojure Type Definition Forms Wisely
	Chapter 19. Introducing Clojure into Your
 Workplace
	Just the Facts…
	Emphasize Productivity
	Emphasize Community
	Be Prudent

	Chapter 20. What’s Next?
	(dissoc Clojure 'JVM)
	ClojureCLR
	ClojureScript

	4Clojure
	Overtone
	core.logic
	Pallet
	Avout
	Clojure on Heroku

	Index

