

oreilly.comSpreading the knowledge of innovators

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

http://www.android.com/market/
http://amazon.com
http://www.oreilly.com
http://shop.oreilly.com/product/9780596004927.do

Programming Perl, Fourth Edition
by Tom Christiansen, brian d foy & Larry Wall, with Jon Orwant

Copyright © 2012 Tom Christiansen, brian d foy, Larry Wall, and Jon Orwant. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Holly Bauer
Proofreader: Marlowe Shaeffer
Indexer: Lucie Haskins

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

January 1991: First Edition.
September 1996: Second Edition.
July 2000: Third Edition.
February 2012: Fourth Edition.

Revision History for the Fourth Edition:
2011-02-13 First release

See http://oreilly.com/catalog/errata.csp?isbn=9780596004927 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Perl, the image of a dromedary camel, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-0-596-00492-7

[M]

1329160875

Table of Contents

Preface . xxiii

Part I. Overview

1. An Overview of Perl . 3
Getting Started 3
Natural and Artificial Languages 4

Variable Syntax 5
Verbs 17

An Average Example 18
How to Do It 20

Filehandles 21
Operators 24

Some Binary Arithmetic Operators 25
String Operators 25
Assignment Operators 26
Unary Arithmetic Operators 28
Logical Operators 29
Some Numeric and String Comparison Operators 30
Some File Test Operators 31

Control Structures 31
What Is Truth? 32
The given and when Statements 34
Looping Constructs 35

Regular Expressions 39
Quantifiers 43
Minimal Matching 44
Nailing Things Down 44
Backreferences 45

iii

List Processing 47
What You Don’t Know Won’t Hurt You (Much) 49

Part II. The Gory Details

2. Bits and Pieces . 53
Atoms 53
Molecules 54
Built-in Data Types 56
Variables 58
Names 60

Name Lookups 62
Scalar Values 65

Numeric Literals 67
String Literals 67
Pick Your Own Quotes 70
Or Leave Out the Quotes Entirely 72
Interpolating Array Values 73
“Here” Documents 73
Version Literals 75
Other Literal Tokens 76

Context 76
Scalar and List Context 76
Boolean Context 78
Void Context 79
Interpolative Context 79

List Values and Arrays 79
List Assignment 82
Array Length 83

Hashes 84
Typeglobs and Filehandles 86
Input Operators 87

Command Input (Backtick) Operator 87
Line Input (Angle) Operator 88
Filename Globbing Operator 91

3. Unary and Binary Operators . 95
Terms and List Operators (Leftward) 97
The Arrow Operator 99
Autoincrement and Autodecrement 100

iv | Table of Contents

Exponentiation 101
Ideographic Unary Operators 101
Binding Operators 103
Multiplicative Operators 104
Additive Operators 105
Shift Operators 105
Named Unary and File Test Operators 106
Relational Operators 111
Equality Operators 111
Smartmatch Operator 112

Smartmatching of Objects 117
Bitwise Operators 118
C-Style Logical (Short-Circuit) Operators 119
Range Operators 120
Conditional Operator 123
Assignment Operators 125
Comma Operators 126
List Operators (Rightward) 127
Logical and, or, not, and xor 127
C Operators Missing from Perl 128

4. Statements and Declarations . 129
Simple Statements 130
Compound Statements 131
if and unless Statements 133
The given Statement 133

The when Statement and Modifier 137
Loop Statements 139

while and until Statements 139
Three-Part Loops 140
foreach Loops 142
Loop Control 144
Bare Blocks as Loops 147
Loopy Topicalizers 149

The goto Operator 149
Paleolithic Perl Case Structures 150
The Ellipsis Statement 152
Global Declarations 153
Scoped Declarations 155

Scoped Variable Declarations 156

Table of Contents | v

Lexically Scoped Variables: my 159
Persistent Lexically Scoped Variables: state 160
Lexically Scoped Global Declarations: our 161
Dynamically Scoped Variables: local 162

Pragmas 164
Controlling Warnings 165
Controlling the Use of Globals 165

5. Pattern Matching . 167
The Regular Expression Bestiary 168
Pattern-Matching Operators 171

Pattern Modifiers 175
The m// Operator (Matching) 181
The s/// Operator (Substitution) 184
The tr/// Operator (Transliteration) 189

Metacharacters and Metasymbols 192
Metasymbol Tables 193
Specific Characters 199
Wildcard Metasymbols 200

Character Classes 202
Bracketed Character Classes 202
Classic Perl Character Class Shortcuts 204
Character Properties 207
POSIX-Style Character Classes 210

Quantifiers 214
Positions 217

Beginnings: The \A and ^ Assertions 218
Endings: The \z, \Z, and $ Assertions 218
Boundaries: The \b and \B Assertions 219
Progressive Matching 219
Where You Left Off: The \G Assertion 220

Grouping and Capturing 221
Capturing 221
Grouping Without Capturing 229
Scoped Pattern Modifiers 230

Alternation 231
Staying in Control 232

Letting Perl Do the Work 233
Variable Interpolation 234
The Regex Compiler 239

vi | Table of Contents

The Little Engine That /Could(n’t)?/ 241
Fancy Patterns 247

Lookaround Assertions 247
Possessive Groups 249
Programmatic Patterns 251
Recursive Patterns 260
Grammatical Patterns 262
Defining Your Own Assertions 270
Alternate Engines 271

6. Unicode . 275
Show, Don’t Tell 280
Getting at Unicode Data 282

The Encode Module 285
A Case of Mistaken Identity 287
Graphemes and Normalization 290
Comparing and Sorting Unicode Text 297

Using the UCA with Perl’s sort 303
Locale Sorting 305

More Goodies 306
Custom Regex Boundaries 308
Building Character 309

References 313

7. Subroutines . 315
Syntax 315
Semantics 317

Tricks with Parameter Lists 318
Error Indications 320
Scoping Issues 321

Passing References 324
Prototypes 326

Inlining Constant Functions 331
Care with Prototypes 332
Prototypes of Built-in Functions 333

Subroutine Attributes 335
The method Attribute 335
The lvalue Attribute 336

Table of Contents | vii

8. References . 339
What Is a Reference? 339
Creating References 342

The Backslash Operator 342
Anonymous Data 342
Object Constructors 345
Handle References 346
Symbol Table References 347
Implicit Creation of References 348

Using Hard References 348
Using a Variable As a Variable Name 348
Using a BLOCK As a Variable Name 349
Using the Arrow Operator 350
Using Object Methods 352
Pseudohashes 352
Other Tricks You Can Do with Hard References 353
Closures 355

Symbolic References 359
Braces, Brackets, and Quoting 360

References Don’t Work As Hash Keys 361
Garbage Collection, Circular References, and Weak References 362

9. Data Structures . 365
Arrays of Arrays 365

Creating and Accessing a Two-Dimensional Array 366
Growing Your Own 366
Access and Printing 368
Slices 370
Common Mistakes 371

Hashes of Arrays 374
Composition of a Hash of Arrays 374
Generation of a Hash of Arrays 374
Access and Printing of a Hash of Arrays 375

Arrays of Hashes 376
Composition of an Array of Hashes 376
Generation of an Array of Hashes 377
Access and Printing of an Array of Hashes 377

Hashes of Hashes 378
Composition of a Hash of Hashes 378
Generation of a Hash of Hashes 379

viii | Table of Contents

Access and Printing of a Hash of Hashes 380
Hashes of Functions 381
More Elaborate Records 382

Composition, Access, and Printing of More Elaborate Records 382
Composition, Access, and Printing of Even More Elaborate Records 383
Generation of a Hash of Complex Records 384

Saving Data Structures 385

10. Packages . 387
Symbol Tables 389
Qualified Names 393
The Default Package 394
Changing the Package 395
Autoloading 397

11. Modules . 401
Loading Modules 402
Unloading Modules 404
Creating Modules 405

Naming Modules 405
A Sample Module 405
Module Privacy and the Exporter 406

Overriding Built-in Functions 411

12. Objects . 415
Brief Refresher on Object-Oriented Lingo 415
Perl’s Object System 417
Method Invocation 418

Method Invocation Using the Arrow Operator 419
Method Invocation Using Indirect Objects 421
Syntactic Snafus with Indirect Objects 421
Package-Quoted Classes 423

Object Construction 424
Inheritable Constructors 425
Initializers 427

Class Inheritance 429
Inheritance Through @ISA 430
Alternate Method Searching 432
Accessing Overridden Methods 433
UNIVERSAL: The Ultimate Ancestor Class 435

Table of Contents | ix

Method Autoloading 438
Private Methods 440

Instance Destructors 440
Garbage Collection with DESTROY Methods 441

Managing Instance Data 442
Generating Accessors with Autoloading 444
Generating Accessors with Closures 445
Using Closures for Private Objects 446
New Tricks 449

Managing Class Data 450
The Moose in the Room 453
Summary 455

13. Overloading . 457
The overload Pragma 458
Overload Handlers 459
Overloadable Operators 460
The Copy Constructor (=) 468
When an Overload Handler Is Missing (nomethod and fallback) 469
Overloading Constants 470
Public Overload Functions 472
Inheritance and Overloading 472
Runtime Overloading 473
Overloading Diagnostics 473

14. Tied Variables . 475
Tying Scalars 477

Scalar-Tying Methods 478
Magical Counter Variables 483
Cycling Through Values 483
Magically Banishing $_ 484

Tying Arrays 486
Array-Tying Methods 487
Notational Convenience 491

Tying Hashes 492
Hash-Tying Methods 493

Tying Filehandles 498
Filehandle-Tying Methods 499
Creative Filehandles 506

A Subtle Untying Trap 510

x | Table of Contents

Tie Modules on CPAN 512

Part III. Perl as Technology

15. Interprocess Communication . 517
Signals 518

Signalling Process Groups 520
Reaping Zombies 521
Timing Out Slow Operations 522
Blocking Signals 522
Signal Safety 523

Files 523
File Locking 524
Passing Filehandles 528

Pipes 531
Anonymous Pipes 531
Talking to Yourself 533
Bidirectional Communication 536
Named Pipes 538

System V IPC 540
Sockets 543

Networking Clients 545
Networking Servers 547
Message Passing 550

16. Compiling . 553
The Life Cycle of a Perl Program 554
Compiling Your Code 556
Executing Your Code 562
Compiler Backends 564
Code Generators 565

The Bytecode Generator 566
The C Code Generators 566

Code Development Tools 567
Avant-Garde Compiler, Retro Interpreter 569

17. The Command-Line Interface . 575
Command Processing 575

#! and Quoting on Non-Unix Systems 578
Location of Perl 580

Table of Contents | xi

Switches 580
Environment Variables 594

18. The Perl Debugger . 603
Using the Debugger 604
Debugger Commands 606

Stepping and Running 607
Breakpoints 607
Tracing 609
Display 609
Locating Code 610
Actions and Command Execution 611
Miscellaneous Commands 613

Debugger Customization 615
Editor Support for Debugging 615
Customizing with Init Files 616
Debugger Options 616

Unattended Execution 619
Debugger Support 620

Writing Your Own Debugger 622
Profiling Perl 623

Devel::DProf 623
Devel::NYTProf 627

19. CPAN . 629
History 629
A Tour of the Repository 630

Creating a MiniCPAN 632
The CPAN Ecosystem 633

PAUSE 633
Searching CPAN 635
Testing 635
Bug Tracking 635

Installing CPAN Modules 636
By Hand 637
CPAN Clients 638

Creating CPAN Distributions 640
Starting Your Distribution 640
Testing Your Modules 642

xii | Table of Contents

Part IV. Perl as Culture

20. Security . 647
Handling Insecure Data 648

Detecting and Laundering Tainted Data 651
Cleaning Up Your Environment 656
Accessing Commands and Files Under Reduced Privileges 657
Defeating Taint Checking 660

Handling Timing Glitches 661
Unix Kernel Security Bugs 662
Handling Race Conditions 663
Temporary Files 665

Handling Insecure Code 668
Changing Root 669
Safe Compartments 670
Code Masquerading As Data 675

21. Common Practices . 679
Common Goofs for Novices 679

Universal Blunders 680
Frequently Ignored Advice 682
C Traps 683
Shell Traps 684
Python Traps 685
Ruby Traps 687
Java Traps 689

Efficiency 691
Time Efficiency 691
Space Efficiency 697
Programmer Efficiency 698
Maintainer Efficiency 698
Porter Efficiency 699
User Efficiency 700

Programming with Style 701
Fluent Perl 705
Program Generation 715

Generating Other Languages in Perl 716
Generating Perl in Other Languages 717
Source Filters 718

Table of Contents | xiii

22. Portable Perl . 721
Newlines 723
Endianness and Number Width 724
Files and Filesystems 725
System Interaction 727
Interprocess Communication (IPC) 727
External Subroutines (XS) 728
Standard Modules 728
Dates and Times 729
Internationalization 729
Style 730

23. Plain Old Documentation . 731
Pod in a Nutshell 731

Verbatim Paragraphs 733
Command Paragraphs 733
Flowed Text 737

Pod Translators and Modules 740
Writing Your Own Pod Tools 742
Pod Pitfalls 747
Documenting Your Perl Programs 748

24. Perl Culture . 751
History Made Practical 751
Perl Poetry 754
Virtues of the Perl Programmer 756
Events 757
Getting Help 758

Part V. Reference Material

25. Special Names . 763
Special Names Grouped by Type 763

Regular Expression Special Variables 763
Per-Filehandle Variables 764
Per-Package Special Variables 764
Program-Wide Special Variables 765
Per-Package Special Filehandles 766
Per-Package Special Functions 766

Special Variables in Alphabetical Order 767

xiv | Table of Contents

26. Formats . 793
String Formats 793
Binary Formats 799

pack 800
unpack 809

Picture Formats 810
Format Variables 814
Footers 817
Accessing Formatting Internals 817

27. Functions . 819
Perl Functions by Category 822
Perl Functions in Alphabetical Order 824

28. The Standard Perl Library . 991
Library Science 991
A Tour of the Perl Library 993

Roll Call 995
The Future of the Standard Perl Library 997
Wandering the Stacks 998

29. Pragmatic Modules . 1001
attributes 1002
autodie 1003
autouse 1004
base 1005
bigint 1006
bignum 1006
bigrat 1007
blib 1007
bytes 1007
charnames 1008

Custom Character Names 1009
Runtime Lookups 1010

constant 1012
Restrictions on constant 1013

deprecate 1014
diagnostics 1014
encoding 1017
feature 1017

Table of Contents | xv

fields 1018
filetest 1018
if 1019
inc::latest 1019
integer 1019
less 1020
lib 1021
locale 1022
mro 1023
open 1023
ops 1024
overload 1025
overloading 1025
parent 1026
re 1026
sigtrap 1029

Signal Handlers 1029
Predefined Signal Lists 1030
Other Arguments to sigtrap 1030
Examples of sigtrap 1031

sort 1032
strict 1032

strict "refs" 1033
strict "vars" 1033
strict "subs" 1034

subs 1035
threads 1035
utf8 1037
vars 1037
version 1037
vmsish 1038

exit 1038
hushed 1038
status 1039
time 1039

warnings 1039
User-Defined Pragmas 1042

xvi | Table of Contents

Glossary . 1045

Index of Perl Modules in This Book . 1083

Index . 1091

Table of Contents | xvii

CHAPTER 1

An Overview of Perl

Getting Started
We think that Perl is an easy language to learn and use, and we hope to convince
you that we’re right. One thing that’s easy about Perl is that you don’t have to
say much before you say what you want to say. In many programming languages,
you have to declare the types, variables, and subroutines you are going to use
before you can write the first statement of executable code. And for complex
problems demanding complex data structures, declarations are a good idea. But
for many simple, everyday problems, you’d like a programming language in
which you can simply say:

print "Howdy, world!\n";

and expect the program to do just that.

Perl is such a language. In fact, this example is a complete program,1 and if you
feed it to the Perl interpreter, it will print “Howdy, world!” on your screen. (The
\n in the example produces a newline at the end of the output.)

And that’s that. You don’t have to say much after you say what you want to say,
either. Unlike many languages, Perl thinks that falling off the end of your program
is just a normal way to exit the program. You certainly may call the exit function
explicitly if you wish, just as you may declare some of your variables, or even
force yourself to declare all your variables. But it’s your choice. With Perl you’re
free to do The Right Thing, however you care to define it.

There are many other reasons why Perl is easy to use, but it would be pointless
to list them all here, because that’s what the rest of the book is for. The devil may
be in the details, as they say, but Perl tries to help you out down there in the hot

1. Or script, or application, or executable, or doohickey. Whatever.

3

place, too. At every level, Perl is about helping you get from here to there with
minimum fuss and maximum enjoyment. That’s why so many Perl programmers
go around with a silly grin on their face.

This chapter is an overview of Perl, so we’re not trying to present Perl to the
rational side of your brain. Nor are we trying to be complete, or logical. That’s
what the following chapters are for. Vulcans, androids, and like-minded humans
should skip this overview and go straight to Chapter 2 for maximum information
density. If, on the other hand, you’re looking for a carefully paced tutorial, you
should probably get Learning Perl. But don’t throw this book out just yet.

This chapter presents Perl to the other side of your brain, whether you prefer to
call it associative, artistic, passionate, or merely spongy. To that end, we’ll be
presenting various views of Perl that will give you as clear a picture of Perl as the
blind men had of the elephant. Well, okay, maybe we can do better than that.
We’re dealing with a camel here (see the cover). Hopefully, at least one of these
views of Perl will help get you over the hump.

Natural and Artificial Languages
Languages were first invented by humans, for the benefit of humans. In the annals
of computer science, this fact has occasionally been forgotten.2 Since Perl was
designed (loosely speaking) by an occasional linguist, it was designed to work
smoothly in the same ways that natural language works smoothly. Naturally,
there are many aspects to this, since natural language works well at many levels
simultaneously. We could enumerate many of these linguistic principles here,
but the most important principle of language design is that easy things should
be easy, and hard things should be possible. (Actually, that’s two principles.)
They may seem obvious to you, but many computer languages fail at one or the
other.

Natural languages are good at both because people are continually trying to ex-
press both easy things and hard things, so the language evolves to handle both.
Perl was designed first of all to evolve, and indeed it has evolved. Many people
have contributed to the evolution of Perl over the years. We often joke that a
camel is a horse designed by a committee, but if you think about it, the camel is
pretty well adapted for life in the desert. The camel has evolved to be relatively
self-sufficient. (On the other hand, the camel has not evolved to smell good.
Neither has Perl.) This is one of the many strange reasons we picked the camel
to be Perl’s mascot, but it doesn’t have much to do with linguistics.

2. More precisely, this fact has occasionally been remembered.

4 | Chapter 1: An Overview of Perl

Now when someone utters the word “linguistics”, many folks focus in on one of
two things. Either they think of words, or they think of sentences. But words and
sentences are just two handy ways to “chunk” speech. Either may be broken
down into smaller units of meaning or combined into larger units of meaning.
And the meaning of any unit depends heavily on the syntactic, semantic, and
pragmatic context in which the unit is located. Natural language has words of
various sorts: nouns and verbs and such. If someone says “dog” in isolation, you
think of it as a noun, but you can also use the word in other ways. That is, a noun
can function as a verb, an adjective, or an adverb when the context demands it.
If you dog a dog during the dog days of summer, you’ll be a dog tired dog-
catcher.3 Perl also evaluates words differently in various contexts. We will see how
it does that later. Just remember that Perl is trying to understand what you’re
saying, like any good listener does. Perl works pretty hard to try to keep up its
end of the bargain. Just say what you mean, and Perl will usually “get it”. (Unless
you’re talking nonsense, of course—the Perl parser understands Perl a lot better
than either English or Swahili.)

But back to nouns. A noun can name a particular object, or it can name a class
of objects generically without specifying which one is currently being referred to.
Most computer languages make this distinction, only we call the particular one
a value and the generic one a variable. A value just exists somewhere, who knows
where, but a variable gets associated with one or more values over its lifetime.
So whoever is interpreting the variable has to keep track of that association. That
interpreter may be in your brain or in your computer.

Variable Syntax
A variable is just a handy place to keep something, a place with a name, so you
know where to find your special something when you come back looking for it
later. As in real life, there are various kinds of places to store things, some of them
rather private, and some of them out in public. Some places are temporary, and
other places are more permanent. Computer scientists love to talk about the
“scope” of variables, but that’s all they mean by it. Perl has various handy ways
of dealing with scoping issues, which you’ll be happy to learn later when the time
is right. Which is not yet. (Look up the adjectives local, my, our, and state in
Chapter 27, when you get curious, or see “Scoped Declarations” on page 155 in
Chapter 4.)

3. And you’re probably dog tired of all this linguistics claptrap. But we’d like you to understand why Perl is
different from the typical computer language, doggone it!

Natural and Artificial Languages | 5

But a more immediately useful way of classifying variables is by what sort of data
they can hold. As in English, Perl’s primary type distinction is between singular
and plural data. Strings and numbers are singular pieces of data, while lists of
strings or numbers are plural. (And when we get to object-oriented programming,
you’ll find that the typical object looks singular from the outside but plural from
the inside, like a class of students.) We call a singular variable a scalar, and a
plural variable an array. Since a string can be stored in a scalar variable, we might
write a slightly longer (and commented) version of our first example like this:

my $phrase = "Howdy, world!\n"; # Create a variable.
print $phrase; # Print the variable.

The my tells Perl that $phrase is a brand new variable, so it shouldn’t go and look
for an existing one. Note that we do not have to be very specific about what kind
of variable $phrase is. The $ character tells Perl that phrase is a scalar variable;
that is, one containing a singular value. An array variable, by contrast, would
start with an @ character. (It may help you to remember that a $ is a stylized “s”
for “scalar”, while @ is a stylized “a” for “array”.)4

Perl has some other variable types, with unlikely names like “hash”, “handle”, and
“typeglob”. Like scalars and arrays, these types of variables are also preceded by
funny characters, commonly known as sigils. For completeness, Table 1-1 lists all
the sigils you’ll encounter.

Table 1-1. Variable types and their uses

Type Sigil Example Is a Name For

Scalar $ $cents An individual value (number or string)

Array @ @large A list of values, keyed by number

Hash % %interest A group of values, keyed by string

Subroutine & &how A callable chunk of Perl code

Typeglob * *struck Everything named struck

Some language purists point to these sigils as a reason to abhor Perl. This is
superficial. Sigils have many benefits, not least of which is that variables can be
interpolated into strings with no additional syntax. Perl scripts are also easy to
read (for people who have bothered to learn Perl!) because the nouns stand out
from verbs. And new verbs can be added to the language without breaking old
scripts. (We told you Perl was designed to evolve.) And the noun analogy is not

4. This is a simplification of the real story of sigils, which we’ll tell you more about in Chapter 2.

6 | Chapter 1: An Overview of Perl

frivolous—there is ample precedent in English and other languages for requiring
grammatical noun markers. It’s how we think! (We think.)

Singularities

From our earlier example, you can see that scalars may be assigned a new value
with the = operator, just as in many other computer languages. Scalar variables
can be assigned any form of scalar value: integers, floating-point numbers,
strings, and even esoteric things like references to other variables, or to objects.
There are many ways of generating these values for assignment.

As in the Unix5 shell, you can use different quoting mechanisms to make different
kinds of values. Double quotation marks (double quotes) do variable interpola-
tion6 and backslash interpolation (such as turning \n into a newline), while single
quotes suppress interpolation. And backquotes (the ones leaning to the left) will
execute an external program and return the output of the program, so you can
capture it as a single string containing all the lines of output.

my $answer = 42; # an integer
my $pi = 3.14159265; # a "real" number
my $avocados = 6.02e23; # scientific notation
my $pet = "Camel"; # string
my $sign = "I love my $pet"; # string with interpolation
my $cost = 'It costs $100'; # string without interpolation
my $thence = $whence; # another variable's value
my $salsa = $moles * $avocados; # a gastrochemical expression
my $exit = system("vi $file"); # numeric status of a command
my $cwd = `pwd`; # string output from a command

And while we haven’t covered fancy values yet, we should point out that scalars
may also hold references to other data structures, including subroutines and ob-
jects.

my $ary = \@myarray; # reference to a named array
my $hsh = \%myhash; # reference to a named hash
my $sub = \&mysub; # reference to a named subroutine

my $ary = [1,2,3,4,5]; # reference to an unnamed array
my $hsh = {Na => 19, Cl => 35}; # reference to an unnamed hash
my $sub = sub { print $state }; # reference to an unnamed subroutine

5. Here and elsewhere, when we say Unix we mean any operating system resembling Unix, including BSD,
Mac OS X, Linux, Solaris, AIX, and, of course, Unix.

6. Sometimes called “substitution” by shell programmers, but we prefer to reserve that word for something
else in Perl. So please call it interpolation. We’re using the term in the textual sense (“this passage is a
Gnostic interpolation”) rather than in the mathematical sense (“this point on the graph is an interpolation
between two other points”).

Natural and Artificial Languages | 7

my $fido = Camel–>new("Amelia"); # reference to an object

When you create a new scalar variable, but before you assign it a value, it is
automatically initialized with the value we call undef, which as you might guess
means “undefined”. Depending on context, this undefined value might be in-
terpreted as a slightly more defined null value, such as "" or 0. More generally,
depending on how you use them, variables will be interpreted automatically as
strings, as numbers, or as “true” and “false” values (commonly called Boolean
values). Remember how important context is in human languages. In Perl, var-
ious operators expect certain kinds of singular values as parameters, so we will
speak of those operators as “providing” or “supplying” scalar context to those
parameters. Sometimes we’ll be more specific and say it supplies a numeric con-
text, a string context, or a Boolean context to those parameters. (Later we’ll also
talk about list context, which is the opposite of scalar context.) Perl will auto-
matically convert the data into the form required by the current context, within
reason. For example, suppose you said this:

my $camels = "123";
print $camels + 1, "\n";

The first assigned value of $camels is a string, but it is converted to a number to
add 1 to it, and then converted back to a string to be printed out as 124. The
newline, represented by "\n", is also in string context, but since it’s already a
string, no conversion is necessary. But notice that we had to use double quotes
there—using single quotes to say '\n' would result in a two-character string
consisting of a backslash followed by an “n”, which is not a newline by anybody’s
definition.

So, in a sense, double quotes and single quotes are yet another way of specifying
context. The interpretation of the innards of a quoted string depends on which
quotes you use. (Later, we’ll see some other operators that work like quotes
syntactically but use the string in some special way, such as for pattern matching
or substitution. These all work like double-quoted strings, too. The double-
quote context is the “interpolative” context of Perl, and it is supplied by many
operators that don’t happen to resemble double quotes.)

Similarly, a reference behaves as a reference when you give it a “dereference” con-
text, but otherwise acts like a simple scalar value. For example, we might say:

my $fido = Camel–>new("Amelia");
if (not $fido) { die "dead camel"; }
$fido–>saddle();

Here we create a reference to a Camel object and put it into a new variable,
$fido. On the next line, we test $fido as a scalar Boolean to see if it is “true”, and

8 | Chapter 1: An Overview of Perl

we throw an exception (that is, we complain) if it is not true, which in this case
would mean that the Camel–>new constructor failed to make a proper Camel ob-
ject. But on the last line, we treat $fido as a reference by asking it to look up the
saddle method for the object held in $fido, which happens to be a Camel, so Perl
looks up the saddle method for Camel objects. More about that later. For now,
just remember that context is important in Perl because that’s how Perl knows
what you want without your having to say it explicitly, as many other computer
languages force you to do.

Pluralities

Some kinds of variables hold multiple values that are logically tied together. Perl
has two types of multivalued variables: arrays and hashes. In many ways, these
behave like scalars—new ones can be declared with my, for instance, and they are
automatically initialized to an empty state. But they are different from scalars in
that, when you assign to them, they supply list context to the right side of the
assignment rather than scalar context.

Arrays and hashes also differ from each other. You’d use an array when you want
to look something up by number. You’d use a hash when you want to look
something up by name. The two concepts are complementary—you’ll often see
people using an array to translate month numbers into month names, and a
corresponding hash to translate month names back into month numbers.
(Though hashes aren’t limited to holding only numbers. You could have a hash
that translates month names to birthstone names, for instance.)

An array is an ordered list of scalars, accessed7 by the scalar’s position in
the list. The list may contain numbers, strings, or a mixture of both. (It might
also contain references to subarrays or subhashes.) To assign a list value to an
array, simply group the values together (with a set of parentheses):

my @home = ("couch", "chair", "table", "stove");

Conversely, if you use @home in list context, such as on the right side of a list
assignment, you get back out the same list you put in. So you could create four
scalar variables from the array like this:

my ($potato, $lift, $tennis, $pipe) = @home;

These are called list assignments. They logically happen in parallel, so you can
swap two existing variables by saying:

($alpha,$omega) = ($omega,$alpha);

Arrays.

7. Or keyed, or indexed, or subscripted, or looked up. Take your pick.

Natural and Artificial Languages | 9

As in C, arrays are zero-based, so while you would talk about the first through
fourth elements of the array, you would get to them with subscripts 0 through
3.8 Array subscripts are enclosed in square brackets [like this], so if you want to
select an individual array element, you would refer to it as $home[n], where n is
the subscript (one less than the element number) you want. See the example that
follows. Since the element you are dealing with is a scalar, you always precede it
with a $.

If you want to assign to one array element at a time, you can; the elements of the
array are automatically created as needed, so you could write the earlier assign-
ment as:

my @home;
$home[0] = "couch";
$home[1] = "chair";
$home[2] = "table";
$home[3] = "stove";

Here we see that you can create a variable with my without giving it an initial value.
(We don’t need to use my on the individual elements because the array already
exists and knows how to create elements on demand.)

Since arrays are ordered, you can do various useful operations on them, such as
the stack operations push and pop. A stack is, after all, just an ordered list with a
beginning and an end. Especially an end. Perl regards the end of your array as
the top of a stack. (Although most Perl programmers think of an array as hori-
zontal, with the top of the stack on the right.)

A hash is an unordered set of scalars, accessed9 by some string value that
is associated with each scalar. For this reason hashes are often called associative
arrays. But that’s too long for lazy typists, and we talk about them so often that
we decided to name them something short and snappy. The other reason we
picked the name “hash” is to emphasize the fact that they’re disordered. (They
are, coincidentally, implemented internally using a hash-table lookup, which is
why hashes are so fast and stay so fast no matter how many values you put into
them.) You can’t push or pop a hash, though, because it doesn’t make sense. A
hash has no beginning or end. Nevertheless, hashes are extremely powerful and
useful. Until you start thinking in terms of hashes, you aren’t really thinking in
Perl. Figure 1-1 shows the ordered elements of an array and the unordered (but
named) elements of a hash.

Hashes.

8. If this seems odd to you, just think of the subscript as an offset; that is, the count of how many array
elements come before it. Obviously, the first element doesn’t have any elements before it, and so it has
an offset of 0. This is how computers think. (We think.)

9. Or keyed, or indexed, or subscripted, or looked up. Take your pick.

10 | Chapter 1: An Overview of Perl

Since the keys to a hash are not automatically implied by their position, you must
supply the key as well as the value when populating a hash. You can still assign
a list to it like an ordinary array, but each pair of items in the list will be interpreted
as a key and a value. Since we’re dealing with pairs of items, hashes use the % sigil
to mark hash names. (If you look carefully at the % character, you can see the key
and the value with a slash between them. It may help to squint.)

Suppose you wanted to translate abbreviated day names to the corresponding full
names. You could write the following list assignment:

my %longday = ("Sun", "Sunday", "Mon", "Monday", "Tue", "Tuesday",
 "Wed", "Wednesday", "Thu", "Thursday", "Fri",
 "Friday", "Sat", "Saturday");

But that’s rather difficult to read, so Perl provides the => (equals sign, greater-than
sign) sequence as an alternative separator to the comma. Using this syntactic
sugar (and some creative formatting), it is much easier to see which strings are
the keys and which strings are the associated values.

Figure 1-1. An array and a hash

Natural and Artificial Languages | 11

my %longday = (
 "Sun" => "Sunday",
 "Mon" => "Monday",
 "Tue" => "Tuesday",
 "Wed" => "Wednesday",
 "Thu" => "Thursday",
 "Fri" => "Friday",
 "Sat" => "Saturday",
);

Not only can you assign a list to a hash, as we did above, but if you mention a
hash in list context, it’ll convert the hash back to a list of key/value pairs, in a
weird order. This is occasionally useful. More often people extract a list of just
the keys, using the (aptly named) keys function. The key list is also unordered,
but can easily be sorted if desired, using the (aptly named) sort function. Then
you can use the ordered keys to pull out the corresponding values in the order
you want.

Because hashes are a fancy kind of array, you select an individual hash element
by enclosing the key in braces (those fancy brackets also known as “curlies”). So,
for example, if you want to find out the value associated with Wed in the hash
above, you would use $longday{"Wed"}. Note again that you are dealing with a
scalar value, so you use $ on the front, not %, which would indicate the entire hash.

Linguistically, the relationship encoded in a hash is genitive or possessive, like the
word “of” in English, or like “’s”. The wife of Adam is Eve, so we write:

my %wife;
$wife{"Adam"} = "Eve";

Complexities

Arrays and hashes are lovely, simple, flat data structures. Unfortunately, the world
does not always cooperate with our attempts to oversimplify. Sometimes you
need to build not-so-lovely, not-so-simple, not-so-flat data structures. Perl lets
you do this by pretending that complicated values are really simple ones. To put
it the other way around, Perl lets you manipulate simple scalar references that
happen to refer to complicated arrays and hashes. We do this all the time in
natural language when we use a simple singular noun like “government” to rep-
resent an entity that is completely convoluted and inscrutable. Among other
things.

To extend our previous example, suppose we want to switch from talking about
Adam’s wife to Jacob’s wife. Now, as it happens, Jacob had four wives. (Don’t
try this at home.) In trying to represent this in Perl, we find ourselves in the odd

12 | Chapter 1: An Overview of Perl

situation where we’d like to pretend that Jacob’s four wives were really one wife.
(Don’t try this at home, either.) You might think you could write it like this:

$wife{"Jacob"} = ("Leah", "Rachel", "Bilhah", "Zilpah"); # WRONG

But that wouldn’t do what you want, because even parentheses and commas are
not powerful enough to turn a list into a scalar in Perl. (Parentheses are used for
syntactic grouping, and commas for syntactic separation.) Rather, you need to
tell Perl explicitly that you want to pretend that a list is a scalar. It turns out that
square brackets are powerful enough to do that:

$wife{"Jacob"} = ["Leah", "Rachel", "Bilhah", "Zilpah"]; # ok

That statement creates an unnamed array and puts a reference to it into the hash
element $wife{"Jacob"}. So we have a named hash containing an unnamed array.
This is how Perl deals with both multidimensional arrays and nested data struc-
tures. As with ordinary arrays and hashes, you can also assign individual ele-
ments, like this:

$wife{"Jacob"}[0] = "Leah";
$wife{"Jacob"}[1] = "Rachel";
$wife{"Jacob"}[2] = "Bilhah";
$wife{"Jacob"}[3] = "Zilpah";

You can see how that looks like a multidimensional array with one string sub-
script and one numeric subscript. To see something that looks more tree-struc-
tured, like a nested data structure, suppose we wanted to list not only Jacob’s
wives but all the sons of each of his wives. In this case we want to treat a hash as
a scalar. We can use braces for that. (Inside each hash value we’ll use square
brackets to represent arrays, just as we did earlier. But now we have an array in
a hash in a hash.)

my %kids_of_wife;
$kids_of_wife{"Jacob"} = {
 "Leah" => ["Reuben", "Simeon", "Levi", "Judah", "Issachar", "Zebulun"],
 "Rachel" => ["Joseph", "Benjamin"],
 "Bilhah" => ["Dan", "Naphtali"],
 "Zilpah" => ["Gad", "Asher"],
};

That would be more or less equivalent to saying:

my %kids_of_wife;
$kids_of_wife{"Jacob"}{"Leah"}[0] = "Reuben";
$kids_of_wife{"Jacob"}{"Leah"}[1] = "Simeon";
$kids_of_wife{"Jacob"}{"Leah"}[2] = "Levi";
$kids_of_wife{"Jacob"}{"Leah"}[3] = "Judah";
$kids_of_wife{"Jacob"}{"Leah"}[4] = "Issachar";
$kids_of_wife{"Jacob"}{"Leah"}[5] = "Zebulun";
$kids_of_wife{"Jacob"}{"Rachel"}[0] = "Joseph";

Natural and Artificial Languages | 13

$kids_of_wife{"Jacob"}{"Rachel"}[1] = "Benjamin";
$kids_of_wife{"Jacob"}{"Bilhah"}[0] = "Dan";
$kids_of_wife{"Jacob"}{"Bilhah"}[1] = "Naphtali";
$kids_of_wife{"Jacob"}{"Zilpah"}[0] = "Gad";
$kids_of_wife{"Jacob"}{"Zilpah"}[1] = "Asher";

You can see from this that adding a level to a nested data structure is like adding
another dimension to a multidimensional array. Perl lets you think of it either
way, but the internal representation is the same.

The important point here is that Perl lets you pretend that a complex data struc-
ture is a simple scalar. On this simple kind of encapsulation, Perl’s entire object-
oriented structure is built. When we earlier invoked the Camel constructor like
this:

my $fido = Camel–>new("Amelia");

we created a Camel object that is represented by the scalar $fido. But the inside of
the Camel is more complicated. As well-behaved object-oriented programmers,
we’re not supposed to care about the insides of Camels (unless we happen to be
the people implementing the methods of the Camel class). But, generally, an object
like a Camel would consist of a hash containing the particular Camel’s attributes,
such as its name (“Amelia” in this case, not “fido”), and the number of humps
(which we didn’t specify, but probably defaults to 1; check the front cover).

Simplicities

If your head isn’t spinning a bit from reading that last section, then you have an
unusual head. People generally don’t like to deal with complex data structures,
whether governmental or genealogical. So, in our natural languages, we have
many ways of sweeping complexity under the carpet. Many of these fall into the
category of topicalization, which is just a fancy linguistics term for agreeing with
someone about what you’re going to talk about (and by exclusion, what you’re
probably not going to talk about). This happens on many levels in language. On
a high level, we divide ourselves into various subcultures that are interested in
various subtopics, and we establish sublanguages that talk primarily about those
subtopics. The lingo of the doctor’s office (“indissoluble asphyxiant”) is different
from the lingo of the chocolate factory (“everlasting gobstopper”). Most of us
automatically switch contexts as we go from one lingo to another.

On a conversational level, the context switch has to be more explicit, so our lan-
guage gives us many ways of saying what we’re about to say. We put titles on
our books and headers on our sections. On our sentences, we put quaint phrases
like “In regard to your recent query” or “For all X”. Usually, though, we just say

14 | Chapter 1: An Overview of Perl

things like, “You know that dangly thingy that hangs down in the back of your
throat?”

Perl also has several ways of topicalizing. One important topicalizer is the pack
age declaration. Suppose you want to talk about Camels in Perl. You’d likely start
off your Camel module by saying:

package Camel;

This has several notable effects. One of them is that Perl will assume from this
point on that any global verbs or nouns are about Camels. It does this by auto-
matically prefixing any global name10 with the module name “Camel::”. So if you
say:

package Camel;
our $fido = &fetch();

then the real name of $fido is $Camel::fido (and the real name of &fetch is
&Camel::fetch, but we’re not talking about verbs yet). This means that if some
other module says:

package Dog;
our $fido = &fetch();

Perl won’t get confused, because the real name of this $fido is $Dog::fido, not
$Camel::fido. A computer scientist would say that a package establishes a name-
space. You can have as many namespaces as you like, but since you’re only in one
of them at a time, you can pretend that the other namespaces don’t exist. That’s
how namespaces simplify reality for you. Simplification is based on pretending.
(Of course, so is oversimplification, which is what we’re doing in this chapter.)

Now it’s important to keep your nouns straight, but it’s just as important to keep
your verbs straight. It’s nice that &Camel::fetch is not confused with
&Dog::fetch within the Camel and Dog namespaces, but the really nice thing about
packages is that they classify your verbs so that other packages can use them.
When we said:

my $fido = Camel–>new("Amelia");

we were actually invoking the &new verb in the Camel package, which has the full
name of &Camel::new. And when we said:

$fido–>saddle();

10. You can declare global variables using our, which looks a lot like my, but tells people that it’s a shared
variable. A my variable is not shared and cannot be seen by anyone outside the current block. When in
doubt, use my rather than our since unneeded globals just clutter up the world and confuse people.

Natural and Artificial Languages | 15

we were invoking the &Camel::saddle routine, because $fido remembers that it is
pointing to a Camel. This is how object-oriented programming works.

When you say package Camel, you’re starting a new package. But sometimes you
just want to borrow the nouns and verbs of an existing package. Perl lets you do
that with a use declaration, which not only borrows verbs from another package,
but also checks that the module you name is loaded in from disk. In fact, you
must say something like:

use Camel;

before you say:

my $fido = Camel–>new("Amelia");

because otherwise Perl wouldn’t know what a Camel is.

The interesting thing is that you yourself don’t really need to know what a
Camel is, provided you can get someone else to write the Camel module for you.
Even better would be if someone had already written the Camel module for you.
It could be argued that the most powerful thing about Perl is not Perl itself, but
CPAN (Comprehensive Perl Archive Network; see Chapter 19), which contains
myriad modules that accomplish many different tasks that you don’t have to
know how to do. You just have to download whatever module you like and say:

use Some::Cool::Module;

Then you can use the verbs from that module in a manner appropriate to the topic
under discussion.

So, like topicalization in a natural language, topicalization in Perl “warps” the
language that you’ll use from there to the end of the scope. In fact, some of the
built-in modules don’t actually introduce verbs at all, but simply warp the Perl
language in various useful ways. We call these special modules pragmas (see
Chapter 29). For instance, you’ll often see people use the pragma strict, like this:

use strict;

What the strict module does is tighten up some of the rules so that you have to
be more explicit about various things that Perl would otherwise guess about,
such as how you want your variables to be scoped.11 Making things explicit is
helpful when you’re working on large projects. By default, Perl is optimized for
small projects, but with the strict pragma, Perl is also good for large projects
that need to be more maintainable. Since you can add the strict pragma at any

11. More specifically, use strict requires you to use my , state, or our on variable declarations; otherwise, it
just assumes undeclared variables are package variables, which can get you into trouble later. It also
disallows various constructs that have proven to be error-prone over the years.

16 | Chapter 1: An Overview of Perl

time, Perl is also good for evolving small projects into large ones, even when you
didn’t expect that to happen. Which is usually.

As Perl evolves, the Perl community also evolves, and one of the things that
changes is how the community thinks Perl should behave by default. (This is in
conflict with the desire for Perl to behave as it always did.) So, for instance, most
Perl programmers now think that you should always put “use strict” at the
front of your program. Over time we tend to accumulate such “culturally re-
quired” language-warping pragmas. So another built-in pragma is just the version
number of Perl, which is a kind of “metapragma” that tells Perl it’s okay to behave
like a more modern language in all the ways it should:

use v5.14;

This particular declaration turns on several pragmas including “use strict”;12

it also enables new features like the say verb, which (unlike print) adds a newline
for you. So we could have written our very first example above as:

use v5.14;
say "Howdy, world!";

The examples in this book all assume the v5.14 release of Perl; we will try to
remember to include the use v5.14 for you when we show you a complete pro-
gram, but when we show you snippets, we will assume you’ve already put in that
declaration yourself. (If you do not have the latest version of Perl, some of our
examples may not work. In the case of say, you could change it back to a print
with a newline—but it would be better to upgrade. You’ll need to say at least
use v5.10 for say to work.)

Verbs
As is typical of your typical imperative computer language, many of the verbs in
Perl are commands: they tell the Perl interpreter to do something. On the other
hand, as is typical of a natural language, the meanings of Perl verbs tend to mush
off in various directions depending on the context. A statement starting with a
verb is generally purely imperative and evaluated entirely for its side effects. (We
sometimes call these verbs procedures, especially when they’re user-defined.) A
frequently seen built-in command (in fact, you’ve seen it already) is the say com-
mand:

say "Adam's wife is $wife{'Adam'}.";

12. The implicit strictures feature was added in v5.12. Also see the feature pragma in Chapter 29.

Natural and Artificial Languages | 17

This has the side effect of producing the desired output:

Adam's wife is Eve.

But there are other “moods” besides the imperative mood. Some verbs are for
asking questions and are useful in conditionals such as if statements. Other verbs
translate their input parameters into return values, just as a recipe tells you how
to turn raw ingredients into something (hopefully) edible. We tend to call these
verbs functions, in deference to generations of mathematicians who don’t know
what the word “functional” means in normal English.

An example of a built-in function would be the exponential function:

my $e = exp(1); # 2.718281828459 or thereabouts

But Perl doesn’t make a hard distinction between procedures and functions. You’ll
find the terms used interchangeably. Verbs are also sometimes called operators
(when built-in), or subroutines (when user-defined).13 But call them whatever
you like—they all return a value, which may or may not be a meaningful value,
which you may or may not choose to ignore.

As we go on, you’ll see additional examples of how Perl behaves like a natural
language. But there are other ways to look at Perl, too. We’ve already sneakily
introduced some notions from mathematical language, such as subscripts, ad-
dition, and the exponential function. But Perl is also a control language, a glue
language, a prototyping language, a text-processing language, a list-processing
language, and an object-oriented language. Among other things.

But Perl is also just a plain old computer language. And that’s how we’ll look at
it next.

An Average Example
Suppose you’ve been teaching a Perl class, and you’re trying to figure out how to
grade your students. You have a set of exam scores for each member of a class,
in random order. You’d like a combined list of all the grades for each student,
plus their average score. You have a text file (imaginatively named grades) that
looks like this:

13. Historically, Perl required you to put an ampersand character (&) on any calls to user-defined subroutines
(see $fido = &fetch(); earlier). But with Perl v5, the ampersand became optional, so user-defined verbs
can now be called with the same syntax as built-in verbs ($fido = fetch();). We still use the ampersand
when talking about the name of the routine, such as when we take a reference to it ($fetcher =
\&fetch;). Linguistically speaking, you can think of the ampersand form &fetch as an infinitive, “to fetch”,
or the similar form “do fetch”. But we rarely say “do fetch” when we can just say “fetch”. That’s the real
reason we dropped the mandatory ampersand in v5.

18 | Chapter 1: An Overview of Perl

Noël 25
Ben 76
Clementine 49
Norm 66
Chris 92
Doug 42
Carol 25
Ben 12
Clementine 0
Norm 66
...

You can use the following script to gather all their scores together, determine each
student’s average, and print them all out in alphabetical order. This program
assumes rather naïvely that you don’t have two Carols in your class. That is, if
there is a second entry for Carol, the program will assume it’s just another score
for the first Carol (not to be confused with the first Noël).

By the way, the line numbers are not part of the program, any other resemblances
to BASIC notwithstanding.

 1 #!/usr/bin/perl
 2 use v5.14;
 3
 4 open(GRADES, "<:utf8", "grades") || die "Can't open grades: $!\n";
 5 binmode(STDOUT, ':utf8');
 6
 7 my %grades;
 8 while (my $line = <GRADES>) {
 9 my ($student, $grade) = split(" ", $line);
10 $grades{$student} .= $grade . " ";
11 }
12
13 for my $student (sort keys %grades) {
14 my $scores = 0;
15 my $total = 0;
16 my @grades = split(" ", $grades{$student});
17 for my $grade (@grades) {
18 $total += $grade;
19 $scores++;
20 }
21 my $average = $total / $scores;
22 print "$student: $grades{$student}\tAverage: $average\n";
23 }

Now, before your eyes cross permanently, we’d better point out that this example
demonstrates a lot of what we’ve covered so far, plus quite a bit more that we’ll
explain presently. But if you let your eyes go just a little out of focus, you may
start to see some interesting patterns. Take some wild guesses now as to what’s
going on, and then later on we’ll tell you if you’re right.

An Average Example | 19

We’d tell you to try running it, but you may not know how yet.

How to Do It
Gee, right about now you’re probably wondering how to run a Perl program. The
short answer is that you feed it to the Perl language interpreter program, which
coincidentally happens to be named perl. The long answer starts out like this:
There’s More Than One Way To Do It.14

The first way to invoke perl (and the way most likely to work on any operating
system) is to simply call perl explicitly from the command line.15 If you are doing
something fairly simple, you can use the –e switch (% in the following example
represents a standard shell prompt, so don’t type it). On Unix, you might type:

% perl –e 'print "Hello, world!\n";'

On other operating systems, you may have to fiddle with the quotes some. But
the basic principle is the same: you’re trying to cram everything Perl needs to
know into 80 columns or so.16

For longer scripts, you can use your favorite text editor (or any other text editor)
to put all your commands into a file and then, presuming you named the script
gradation (not to be confused with graduation), you’d say:

% perl gradation

You’re still invoking the Perl interpreter explicitly, but at least you don’t have to
put everything on the command line every time. And you no longer have to fiddle
with quotes to keep the shell happy.

The most convenient way to invoke a script is just to name it directly (or click on
it), and let the operating system find the interpreter for you. On some systems,
there may be ways of associating various file extensions or directories with a
particular application. On those systems, you should do whatever it is you do to
associate the Perl script with the perl interpreter. On Unix systems that support
the #! “shebang” notation (and most Unix systems do, nowadays), you can make
the first line of your script be magical, so the operating system will know which
program to run. Put a line resembling line 1 of our example into your program:

14. That’s the Perl Slogan, and you’ll get tired of hearing it, unless you’re the Local Expert, in which case you’ll
get tired of saying it. Sometimes it’s shortened to TMTOWTDI, pronounced “tim-toady”. But you can
pronounce it however you like. After all, TMTOWTDI.

15. Assuming that your operating system provides a command-line interface. If not, you should upgrade.

16. These types of scripts are often referred to as “one-liners”. If you ever end up hanging out with other Perl
programmers, you’ll find that some of us are quite fond of creating intricate one-liners. Perl has
occasionally been maligned as a write-only language because of these shenanigans.

20 | Chapter 1: An Overview of Perl

#!/usr/bin/perl

(If perl v5.14 isn’t in /usr/bin, you’ll have to change the #! line accordingly.17). Then
all you have to say is:

% gradation

Of course, this didn’t work because you forgot to make sure the script was exe-
cutable (see the manpage for chmod(1)) and in your PATH. If it isn’t in your PATH,
you’ll have to provide a complete filename so that the operating system knows
how to find your script. Something like:

% /home/sharon/bin/gradation

Finally, if you are unfortunate enough to be on an ancient Unix system that doesn’t
support the magic #! line, or if the path to your interpreter is longer than 32
characters (a built-in limit on many systems), you may be able to work around
it like this:

#!/bin/sh –– # perl, to stop looping
eval 'exec /usr/bin/perl –S $0 ${1+"$@"}'
 if 0;

Some operating systems may require variants of this to deal with /bin/csh, DCL,
COMMAND.COM, or whatever happens to be your default command interpreter.
Ask your Local Expert.

Throughout this book, we’ll just use #!/usr/bin/perl to represent all these no-
tions and notations, but you’ll know what we really mean by it.

A random clue: when you write a test script, don’t call your script test. Unix
systems have a built-in test command, which will likely be executed instead of
your script. Try try instead.

Now that you know how to run your own Perl program (not to be confused with
the perl program), let’s get back to our example.

Filehandles
Unless you’re using artificial intelligence to model a solipsistic philosopher, your
program needs some way to communicate with the outside world. In lines 4 and
8 of our Average Example you’ll see the word GRADES, which exemplifies another
of Perl’s data types, the filehandle. A filehandle is just a name you give to a file,
device, socket, or pipe to help you remember which one you’re talking about,

17. If your /usr/bin/perl is an old version, you can compile a new one and put it elsewhere, such as /usr/local/
bin, as long as you fix the #! line to point to it.

Filehandles | 21

and to hide some of the complexities of buffering and such. (Internally, filehan-
dles are similar to streams from a language like C++ or I/O channels from BA-
SIC.)

Filehandles make it easier for you to get input from and send output to many
different places. Part of what makes Perl a good glue language is that it can talk
to many files and processes at once. Having nice symbolic names for various
external objects is just part of being a good glue language.18

You create a filehandle and attach it to a file by using open. The open function
takes at least two parameters: the filehandle and filename you want to associate
it with. Perl also gives you some predefined (and preopened) filehandles. STDIN
is your program’s normal input channel, while STDOUT is your program’s normal
output channel. And STDERR is an additional output channel that allows your
program to make snide remarks off to the side while it transforms (or attempts
to transform) your input into your output.19 In lines 4 and 5 of our program, we
also tell our new GRADES filehandle and the existing STDOUT filehandle to assume
that text is encoded in UTF-8, a common representation of Unicode text.

Since you can use the open function to create filehandles for various purposes
(input, output, piping), you need to be able to specify which behavior you want.
As you might do on the command line, you can simply add characters to the
filename:

open(SESAME, "filename") # read from existing file
open(SESAME, "< filename") # (same thing, explicitly)
open(SESAME, "> filename") # create file and write to it
open(SESAME, ">> filename") # append to existing file
open(SESAME, "| output–pipe–command") # set up an output filter
open(SESAME, "input–pipe–command |") # set up an input filter

However, the recommended three-argument form of open allows you to specify
the open mode in an argument separate from the filename itself. This is useful
when you’re dealing with filenames that aren’t literals and so might already con-
tain characters that look like open modes or significant whitespace.

18. Some of the other things that make Perl a good glue language are: it handles non-ASCII data, it’s
embeddable, and you can embed other things in it via extension modules. It’s concise, and it “networks”
easily. It’s environmentally conscious, so to speak. You can invoke it in many different ways (as we saw
earlier). But most of all, the language itself is not so rigidly structured that you can’t get it to “flow” around
your problem. It comes back to that TMTOWTDI thing again.

19. These filehandles are typically attached to your terminal, so you can type to your program and see its
output, but they may also be attached to files (and such). Perl can give you these predefined handles
because your operating system already provides them, one way or another. Under Unix, processes inherit
standard input, output, and error from their parent process, typically a shell. One of the duties of a shell
is to set up these I/O streams so that the child process doesn’t need to worry about them.

22 | Chapter 1: An Overview of Perl

open(SESAME, "<", $somefile) # read from existing file
open(SESAME, ">", $somefile) # create file and write to it
open(SESAME, ">>", $somefile) # append to existing file
open(SESAME, "|–", "output–pipe–command") # set up an output filter
open(SESAME, "–|", "input–pipe–command") # set up an input filter

As we did in our program, this form of open also lets you specify the character
encoding of the file.

open(SESAME, "< :encoding(UTF–8)", $somefile)
open(SESAME, "> :crlf", $somefile)
open(SESAME, ">> :encoding(MacRoman)", $somefile)

As you can see, the name you pick for the filehandle is arbitrary. Once opened,
the filehandle SESAME can be used to access the file or pipe until it is explicitly
closed (with, you guessed it, close(SESAME)), or until the filehandle is attached
to another file by a subsequent open on the same filehandle. Opening an already
opened filehandle implicitly closes the first file, making it inaccessible to the
filehandle, and opens a different file. You must be careful that this is what you
really want to do. Sometimes it happens accidentally, like when you say
open($handle,$file), and $handle happens to contain a constant string. Be sure
to set $handle to something unique, or you’ll just open a new file on the same
filehandle.

A much better idea is to leave $handle undefined, letting Perl fill it in for you. This
is handy for when you get tired of choosing your own names for filehandles: if
you pass open an undefined variable (such as my creates), Perl will pick the file-
handle for you and fill it in automatically:

open(my $handle, "< :crlf :encoding(cp1252)", $somefile)
 || die "can't open $somefile: $!";

If the open succeeds, the $handle variable is now defined, and you can use it
wherever a filehandle is expected.

Once you’ve opened a filehandle for input, you can read a line using the line
reading operator, <>. This is also known as the angle operator because it’s made
of angle brackets. The angle operator encloses the filehandle (<SESAME> if a literal
handle, and <$handle> for an indirect one) you want to read lines from. The empty
angle operator, <>, will read lines from all the files specified on the command
line, or STDIN if no arguments were specified. (This is standard behavior for many
filter programs.) An example using the STDIN filehandle to read an answer sup-
plied by the user would look something like this:

print STDOUT "Enter a number: "; # ask for a number
$number = <STDIN>; # input the number
say STDOUT "The number is $number."; # print the number

Filehandles | 23

Did you see what we just slipped by you? What’s that STDOUT doing there in those
print and say statements? Well, that’s just one of the ways you can use an output
filehandle. A filehandle may be supplied between the command and its argument
list, and if present, tells the output where to go. In this case, the filehandle is
redundant because the output would have gone to STDOUT anyway. Much as
STDIN is the default for input, STDOUT is the default for output. (In line 22 of our
Average Example, we left it out to avoid confusing you until now.)

If you try the previous example, you may notice that you get an extra blank line.
This happens because the line-reading operation does not automatically remove
the newline from your input line (your input would be, for example, "9\n"). For
those times when you do want to remove the newline, Perl provides the chop and
chomp functions. chop will indiscriminately remove (and return) the last character
of the string, while chomp will only remove the end of record marker (generally,
"\n") and return the number of characters so removed. You’ll often see this idiom
for inputting a single line:

chomp($number = <STDIN>); # input a number, then remove its newline

which means the same thing as:

$number = <STDIN>; # input a number
chomp($number); # remove trailing newline

One last thing, just because we called our variable $number doesn’t mean it was
one. Any string will do. Perl only cares whether something is a number if you try
to operate on that string as though it were a number—down which road lie
operators, our next topic.

Operators
As we alluded to earlier, Perl is also a mathematical language. This is true at several
levels, from low-level bitwise logical operations, up through number and set ma-
nipulation, on up to larger predicates and abstractions of various sorts. And as
we all know from studying math in school, mathematicians love strange symbols.
What’s worse, computer scientists have come up with their own versions of these
strange symbols. Perl has a number of these strange symbols, too—but take
heart, as most are borrowed directly from C, FORTRAN, sed(1) or awk(1), so
they’ll at least be familiar to users of those languages.

The rest of you can take comfort in knowing that, by learning all these strange
symbols in Perl, you’ve given yourself a head start on all those other strange
languages.

24 | Chapter 1: An Overview of Perl

Perl’s built-in operators may be classified by number of operands into unary, bi-
nary, and trinary (or ternary) operators. They may be classified by whether
they’re prefix operators (which go in front of their operands) or infix operators
(which go in between their operands). They may also be classified by the kinds
of objects they work with, such as numbers, strings, or files. Later, we’ll give you
a table of all the operators, but first here are some handy ones to get you started.

Some Binary Arithmetic Operators
Arithmetic operators do what you would expect from learning them in school.
They perform some sort of mathematical function on numbers; see Table 1-2.

Table 1-2. Mathematical operators

Example Name Result

$a + $b Addition Sum of $a and $b

$a * $b Multiplication Product of $a and $b

$a % $b Modulus Remainder of $a divided by $b

$a ** $b Exponentiation $a to the power of $b

Yes, we left out subtraction and division—we suspect you can figure out how they
should work. Try them and see if you’re right. (Or cheat and look in Chap-
ter 3.) Arithmetic operators are evaluated in the order your math teacher taught
you (exponentiation before multiplication; multiplication before addition). You
can always use parentheses to make it come out differently.

String Operators
There is also an “addition” operator for strings that performs concatenation (that
is, joining strings end to end). Unlike some languages that confuse this with
numeric addition, Perl defines a separate operator (.) for string concatenation:

$a = 123;
$b = 456;
say $a + $b; # prints 579
say $a . $b; # prints 123456

There’s also a “multiply” operator for strings, called the repeat operator. Again,
it’s a separate operator (x) to keep it distinct from numeric multiplication:

$a = 123;
$b = 3;
say $a * $b; # prints 369
say $a x $b; # prints 123123123

Operators | 25

These string operators bind as tightly as their corresponding arithmetic operators.
The repeat operator is a bit unusual in taking a string for its left argument but a
number for its right argument. Note also how Perl is automatically converting
from numbers to strings. You could have put all the literal numbers above in
quotes, and it would still have produced the same output. Internally, though, it
would have been converting in the opposite direction (that is, from strings to
numbers).

A couple more things to think about. String concatenation is also implied by the
interpolation that happens in double-quoted strings. And when you print out a
list of values, you’re also effectively concatenating strings. So the following three
statements produce the same output:

say $a . " is equal to " . $b . "."; # dot operator
say $a, " is equal to ", $b, "."; # list
say "$a is equal to $b."; # interpolation

Which of these you use in any particular situation is entirely up to you. (But in
our opinion interpolation is often the most readable.)

The x operator may seem relatively worthless at first glance, but it is quite useful
at times, especially for things like this:

say "–" x $scrwid;

which draws a line across your screen, presuming $scrwid contains your screen
width, and not your screw identifier.

Assignment Operators
Although it’s not exactly a mathematical operator, we’ve already made extensive
use of the simple assignment operator, =   . Try to remember that = means “gets
set to” rather than “equals”. (There is also a mathematical equality operator ==
that means “equals”, and if you start out thinking about the difference between
them now, you’ll save yourself a lot of headache later. The == operator is like a
function that returns a Boolean value, while = is more like a procedure that is
evaluated for the side effect of modifying a variable.)

Like the operators described earlier, assignment operators are binary infix oper-
ators, which means they have an operand on either side of the operator. The right
operand can be any expression you like, but the left operand must be a valid
lvalue (which, when translated to English, means a valid storage location like a
variable, or a location in an array). The most common assignment operator is
simple assignment. It determines the value of the expression on its right side, and
then sets the variable on the left side to that value:

26 | Chapter 1: An Overview of Perl

$a = $b;
$a = $b + 5;
$a = $a * 3;

Notice the last assignment refers to the same variable twice; once for the compu-
tation, once for the assignment. There’s nothing wrong with that, but it’s a com-
mon enough operation that there’s a shortcut for it (borrowed from C). If you say:

lvalue operator= expression

it is evaluated as if it were:

lvalue = lvalue operator expression

except that the lvalue is not computed twice. (This only makes a difference if
evaluation of the lvalue has side effects. But when it does make a difference, it
usually does what you want. So don’t sweat it.)

So, for example, you could write the previous example as:

$a *= 3;

which reads “multiply $a by 3”. You can do this with almost any binary operator
in Perl, even some that you can’t do it with in C:

$line .= "\n"; # Append newline to $line.
$fill x= 80; # Make string $fill into 80 repeats of itself.
$val ||= "2"; # Set $val to 2 if it isn't already "true".

Line 10 of our Average Example20 contains two string concatenations, one of
which is an assignment operator. And line 18 contains a +=.

Regardless of which kind of assignment operator you use, the final value of the
variable on the left is returned as the value of the assignment as a whole.21 This
will not surprise C programmers, who will already know how to use this idiom
to zero out variables:

$a = $b = $c = 0;

You’ll also frequently see assignment used as the condition of a while loop, as in
line 8 of our Average Example.

What will surprise C programmers is that assignment in Perl returns the actual
variable as an lvalue, so you can modify the same variable more than once in a
statement. For instance, you could say:

($temp –= 32) *= 5/9;

20. Thought we’d forgotten it, didn’t you?

21. This is unlike, say, Pascal, in which assignment is a statement and returns no value. We said earlier that
assignment is like a procedure, but remember that in Perl, even procedures return values.

Operators | 27

to do an in-place conversion from Fahrenheit to Celsius. This is also why earlier
in this chapter we could say:

chop($number = <STDIN>);

and have it chop the final value of $number. Generally speaking, you can use this
feature whenever you want to copy something and at the same time do some-
thing else with it.

Unary Arithmetic Operators
As if $variable += 1 weren’t short enough, Perl borrows from C an even shorter
way to increment a variable. The autoincrement (and autodecrement) operators
simply add (or subtract) one from the value of the variable. They can be placed
on either side of the variable, depending on when you want them to be evaluated;
see Table 1-3.

Table 1-3. Increment operators

Example Name Result

++$a, $a++ Autoincrement Add 1 to $a

––$a, $a–– Autodecrement Subtract 1 from $a

If you place one of these “auto” operators before the variable, it is known as a
preincremented (predecremented) variable. Its value will be changed before it is
referenced. If it is placed after the variable, it is known as a postincremented
(postdecremented) variable, and its value is changed after it is used. For example:

$a = 5; # $a is assigned 5
$b = ++$a; # $b is assigned the incremented value of $a, 6
$c = $a––; # $c is assigned 6, then $a is decremented to 5

Line 15 of our Average Example increments the number of scores by one so that
we’ll know how many scores we’re averaging. It uses a postincrement operator
($scores++), but in this case it doesn’t matter since the expression is in void con-
text, which is just a funny way of saying that the expression is being evaluated
only for the side effect of incrementing the variable. The value returned is being
thrown away.22

22. The optimizer will notice this and optimize the postincrement into a preincrement, because that’s a bit
faster to execute. (You didn’t need to know that, but we hoped it would cheer you up.)

28 | Chapter 1: An Overview of Perl

Logical Operators
Logical operators, also known as “short-circuit” operators, allow the program to
make decisions based on multiple criteria without using nested if statements.
They are known as short-circuit operators because they skip (short circuit) the
evaluation of their right argument if they decide the left argument has already
supplied enough information to decide the overall value. This is not just for ef-
ficiency. You are explicitly allowed to depend on this short-circuiting behavior
to avoid evaluating code in the right argument that you know would blow up if
the left argument were not “guarding” it. You can say “California or bust!” in
Perl without busting (presuming you do get to California).

Perl actually has two sets of logical operators: a traditional set borrowed from C
and a newer (but even more traditional) set of ultralow-precedence operators
borrowed from BASIC. Both sets contribute to readability when used appropri-
ately. C’s punctuational operators work well when you want your logical oper-
ators to bind more tightly than commas, while BASIC’s word-based operators
work well when you want your commas to bind more tightly than your logical
operators. Often they work the same, and which set you use is a matter of per-
sonal preference. (For contrastive examples, see the section “Logical and, or, not,
and xor” on page 127 in Chapter 3.) Although the two sets of operators are not
interchangeable due to precedence, once they’re parsed, the operators them-
selves behave identically; precedence merely governs the extent of their argu-
ments. Table 1-4 lists logical operators.

Table 1-4. Logical operators

Example Name Result

$a && $b And $a if $a is false, $b otherwise

$a || $b Or $a if $a is true, $b otherwise

! $a Not True if $a is not true

$a and $b And $a if $a is false, $b otherwise

$a or $b Or $a if $a is true, $b otherwise

not $a Not True if $a is not true

$a xor $b Xor True if $a or $b is true, but not both

Since the logical operators “short circuit” the way they do, they’re often used in
Perl to conditionally execute code. The following line (line 4 from our Average
Example) tries to open the file grades:

open(GRADES, "<:utf8", "grades") || die "Can't open file grades: $!\n";

Operators | 29

If it opens the file, it will jump to the next line of the program. If it can’t open the
file, it will provide us with an error message and then stop execution.

Literally, this line means “Open grades or bust!” Besides being another example
of natural language, the short-circuit operators preserve the visual flow. Impor-
tant actions are listed down the left side of the screen, and secondary actions are
hidden off to the right. (The $! variable contains the error message returned by
the operating system—see Chapter 25.) Of course, these logical operators can
also be used within the more traditional kinds of conditional constructs, such as
the if and while statements.

Some Numeric and String Comparison Operators
Comparison, or relational, operators tell us how two scalar values (numbers or
strings) relate to each other. There are two sets of operators: one does numeric
comparison and the other does string comparison. (In either case, the arguments
will be “coerced” to have the appropriate type first.) Assuming left and right
arguments of $a and $b, Table 1-5 shows us what we have.

Table 1-5. Comparison operators

Comparison Numeric String Return Value

Equal == eq True if $a is equal to $b

Not equal != ne True if $a is not equal to $b

Less than < lt True if $a is less than $b

Greater than > gt True if $a is greater than $b

Less than or equal <= le True if $a not greater than $b

Greater than or equal >= ge True if $a not less than $b

Comparison <=> cmp 0 if equal, 1 if $a greater, −1 if $b greater

The last pair of operators (<=> and cmp) are entirely redundant with the earlier
operators. However, they’re incredibly useful in sort subroutines (see Chap-
ter 27).23

23. Some folks feel that such redundancy is evil because it keeps a language from being minimalistic, or
orthogonal. But Perl isn’t an orthogonal language; it’s a diagonal language. By this we mean that Perl
doesn’t force you to always go at right angles. Sometimes you just want to follow the hypotenuse of the
triangle to get where you’re going. TMTOWTDI is about shortcuts. Shortcuts are about programmer
efficiency.

30 | Chapter 1: An Overview of Perl

Some File Test Operators
The file test operators allow you to test whether certain file attributes are set before
you go and blindly muck about with the files. The most basic file attribute is, of
course, whether the file exists. For example, it would be very nice to know
whether your mail aliases file already exists before you go and open it as a new
file, wiping out everything that was in there before. Table 1-6 gives a few of the
file test operators.

Table 1-6. File test operators

Example Name Result

–e $a Exists True if file named in $a exists

–r $a Readable True if file named in $a is readable

–w $a Writable True if file named in $a is writable

–d $a Directory True if file named in $a is a directory

–f $a File True if file named in $a is a regular file

–T $a Text File True if file named in $a is a text file

You might use them like this:

–e "/usr/bin/perl" or warn "Perl is improperly installed.\n";
–f "/vmlinuz" and say "I see you are a friend of Linus.";

Note that a regular file is not the same thing as a text file. Binary files
like /vmlinuz are regular files, but they aren’t text files. Text files are the opposite
of binary files, while regular files are the opposite of “irregular” files like direc-
tories and devices.

There are a lot of file test operators, many of which we didn’t list. Most of the file
tests are unary Boolean operators, which is to say they take only one operand (a
scalar that evaluates to a filename or a filehandle), and they return either a true
or false value. A few of them return something fancier, like the file’s size or age,
but you can look those up when you need them in the section “Named Unary
and File Test Operators” on page 106 in Chapter 3.

Control Structures
So far, except for our one large example, all of our examples have been completely
linear; we executed each command in order. We’ve seen a few examples of using
the short-circuit operators to cause a single command to be (or not to be) exe-
cuted. While you can write some very useful linear programs (a lot of CGI scripts

Control Structures | 31

fall into this category), you can write much more powerful programs if you have
conditional expressions and looping mechanisms. Collectively, these are known
as control structures. So you can also think of Perl as a control language.

But to have control, you have to be able to decide things, and to decide things,
you have to know the difference between what’s true and what’s false.

What Is Truth?
We’ve bandied about the term truth,24 and we’ve mentioned that certain operators
return a true or a false value. Before we go any further, we really ought to explain
exactly what we mean by that. Perl treats truth a little differently than most com-
puter languages, but after you’ve worked with it a while, it will make a lot of
sense. (Actually, we hope it’ll make a lot of sense after you’ve read the following.)

Basically, Perl holds truths to be self-evident. That’s a glib way of saying that you
can evaluate almost anything for its truth value. Perl uses practical definitions of
truth that depend on the type of thing you’re evaluating. As it happens, there are
many more kinds of truth than there are of nontruth.

Truth in Perl is always evaluated in scalar context. Other than that, no type co-
ercion is done. So here are the rules for the various kinds of values a scalar can
hold:

1. Any string is true except for "" and "0".

2. Any number is true except for 0.

3. Any reference is true.

4. Any undefined value is false.

Actually, the last two rules can be derived from the first two. Any reference (rule
3) would point to something with an address and would evaluate to a number
or string containing that address, which is never 0 because it’s always defined.
And any undefined value (rule 4) would always evaluate to 0 or the null string.

And, in a way, you can derive rule 2 from rule 1 if you pretend that everything is
a string. Again, no string coercion is actually done to evaluate truth, but if the
string coercion were done, then any numeric value of 0 would simply turn into
the string "0" and be false. Any other number would not turn into the string
"0", and so would be true. Let’s look at some examples so we can understand this
better:

24. Strictly speaking, this is not true.

32 | Chapter 1: An Overview of Perl

0 # would become the string "0", so false.
1 # would become the string "1", so true.
10 – 10 # 10 minus 10 is 0, would convert to string "0", so false.
0.00 # equals 0, would convert to string "0", so false.
"0" # is the string "0", so false.
"" # is a null string, so false.
"0.00" # is the string "0.00", neither "" nor "0", so true!
"0.00" + 0 # would become the number 0 (coerced by the +), so false.
\$a # is a reference to $a, so true, even if $a is false.
undef() # is a function returning the undefined value, so false.

Since we mumbled something earlier about truth being evaluated in scalar con-
text, you might be wondering what the truth value of a list is. Well, the simple
fact is none of the operations in Perl will return a list in scalar context. They’ll
all notice they’re in scalar context and return a scalar value instead, and then you
apply the rules of truth to that scalar. So there’s no problem, as long as you can
figure out what any given operator will return in scalar context. As it happens,
both arrays and hashes return scalar values that conveniently happen to be true
if the array or hash contains any elements. More on that later.

The if and unless statements

We saw earlier how a logical operator could function as a conditional. A slightly
more complex form of the logical operators is the if statement. The if statement
evaluates a truth condition (that is, a Boolean expression) and executes a block
if the condition is true:

if ($debug_level > 0) {
 # Something has gone wrong. Tell the user.
 say "Debug: Danger, Will Robinson, danger!";
 say "Debug: Answer was '54', expected '42'.";
}

A block is one or more statements grouped together by a set of braces. Since the
if statement executes a block, the braces are required by definition. If you know
a language like C, you’ll notice that this is different. Braces are optional in C if
you have a single statement, but the braces are not optional in Perl.

Sometimes just executing a block when a condition is met isn’t enough. You may
also want to execute a different block if that condition isn’t met. While you could
certainly use two if statements, one the negation of the other, Perl provides a
more elegant solution. After the block, if can take an optional second condition,
called else, to be executed only if the truth condition is false. (Veteran computer
programmers will not be surprised at this point.)

Control Structures | 33

At times you may even have more than two possible choices. In this case, you’ll
want to add an elsif truth condition for the other possible choices. (Veteran
computer programmers may well be surprised by the spelling of “elsif”, for
which nobody here is going to apologize. Sorry.)

if ($city eq "New York") {
 say "New York is northeast of Washington, D.C.";
}
elsif ($city eq "Chicago") {
 say "Chicago is northwest of Washington, D.C.";
}
elsif ($city eq "Miami") {
 say "Miami is south of Washington, D.C. And much warmer!";
}
else {
 say "I don't know where $city is, sorry.";
}

The if and elsif clauses are each computed in turn, until one is found to be true
or the else condition is reached. When one of the conditions is found to be true,
its block is executed and all remaining branches are skipped. Sometimes, you
don’t want to do anything if the condition is true, only if it is false. Using an
empty if with an else may be messy, and a negated if may be illegible; it sounds
weird in English to say “if not this is true, do something”. In these situations,
you would use the unless statement:

unless ($destination eq $home) {
 say "I'm not going home.";
}

There is no elsunless though. This is generally construed as a feature.

The given and when Statements
To test a single value for a bunch of different alternatives, recent versions of Perl
have what other languages sometimes call switch and case. Because we like to
make Perl work like a natural language, however, we call these given and when.
(Since you’re already putting use v5.14 at the top, you should have this func-
tionality, which was introduced in 5.10.)

#!/usr/bin/perl
use v5.14;

print "What is your favorite color? ";
chomp(my $answer = <STDIN>);

given ($answer) {
 when ("purple") { say "Me too." }

34 | Chapter 1: An Overview of Perl

 when ("green") { say "Go!" }
 when ("yellow") { say "Slow!" }
 when ("red") { say "Stop!" }

 when ("blue") { say "You may proceed." }
 when (/\w+, no \w+/) { die "AAAUUUGHHHHH!" }

 when (42) { say "Wrong answer." }

 when (['gray','orange','brown','black','white']) {
 say "I think $answer is pretty okay too.";
 }

 default {
 say "Are you sure $answer is a real color?";
 }
}

First the given part takes the value of its expression and makes it the topic of
conversation, so the when statements know which value to test. The cases are then
evaluated by matching the argument of each when against the topic to find the
first when statement that thinks the topic’s value matches. The when statements try
to match in order, and as soon as one matches, it doesn’t try any of the subsequent
statements, but drops out of the whole given construct.

The form of each when argument ("red" vs 42 vs /\w+, no \w+/) determines the
type of match performed, so strings match as strings, numbers match as numbers,
and patterns match as, well, patterns. Lists of values match if any of them match.
The when statement uses an underlying operation called “smartmatching” that is
designed to match the way you expect most of the time, except when it doesn’t.
See “Smartmatch Operator” on page 112 in Chapter 3 for more on that.

Looping Constructs
These statements allow a Perl program to repeatedly execute the same code, so
they are often known as iterative constructs. There are several kinds, which differ
primarily in how you know when you’re done with the loop and can go on to
other things.

Conditional loops

The while and until statements test an expression for truth just as the if and
unless statements do, except that they’ll execute the block repeatedly as long as
the condition is satisfied each time through. The condition is always checked
before each iteration. If the condition is met (that is, if it is true for a while or
false for an until), the block of the statement is executed.

Control Structures | 35

print "How many tickets have we sold so far? ";
my $before = <STDIN>;

my $sold = $before;
while ($sold < 10000) {
 my $available = 10000 – $sold;
 print "$available tickets are available. How many would you like: ";
 my $purchase = <STDIN>;
 if ($purchase > $available) {
 say "Too many! Try again.";
 $purchase = 0;
 }
 $sold += $purchase;
}

say "This show is sold out, please come back later.";

Note that if the original condition is never met, the loop will never be entered at
all. For example, if we’ve already sold 10,000 tickets, we will report the show to
be sold out immediately.

In our Average Example earlier, line 8 reads:

while (my $line = <GRADES>) {

This assigns the next line to the variable $line and, as we explained earlier, returns
the value of $line so that the condition of the while statement can evaluate
$line for truth. You might wonder whether Perl will get a false negative on blank
lines and exit the loop prematurely. The answer is that it won’t. The reason is
clear if you think about everything we’ve said. The line input operator leaves the
newline on the end of the string, so a blank line has the value "\n". And you know
that "\n" is not one of the canonical false values. So the condition is true, and the
loop continues even on blank lines.

On the other hand, when we finally do reach the end of the file, the line input
operator returns the undefined value, which always evaluates to false. And the
loop terminates, just when we wanted it to. There’s no need for an explicit test
of the eof function in Perl, because the input operators are designed to work
smoothly in a conditional context.

In fact, almost everything is designed to work smoothly in a conditional (Boolean)
context. If you mention an array in scalar context, the length of the array is re-
turned. So you often see command-line arguments processed like this:

while (@ARGV) {
 process(shift @ARGV);
}

36 | Chapter 1: An Overview of Perl

The shift operator removes one element from the argument list each time
through the loop (and returns that element). The loop automatically exits when
array @ARGV is exhausted; that is, when its length goes to 0. And 0 is already false
in Perl. In a sense, the array itself has become “false”.25

The three-part loop

Another iterative statement is the three-part loop, also known as a C-style for
loop. The three-part loop runs exactly like the while loop above, but it looks a
bit different because two of the statements get moved into the official definition
of the loop. (C programmers will find it very familiar though.)

print "How many tickets have we sold so far? ";
my $before = <STDIN>;

for (my $sold = $before; $sold < 10000; $sold += my $purchase) {
 my $available = 10000 – $sold;
 print "$available tickets are available. How many would you like: ";
 $purchase = <STDIN>;
 if ($purchase > $available) {
 say "Too many! Try again.";
 $purchase = 0;
 }
}

say "This show is sold out, please come back later.";

Within the loop’s parentheses, the three-part loop takes three expressions (hence
the name), separated by two semicolons. The first expression sets the initial state
of the loop variable. The second is a condition to test the loop variable; this works
just like the while statement’s condition. The third expression modifies the state
of the loop variable; this expression is effectively executed at the end of each
iteration, just as we did explicitly in the previous while loop.

When the three-part loop starts, the initial state is set and the truth condition is
checked. If the condition is true, the block is executed. When the block finishes,
the modification expression is executed, the truth condition is again checked,
and, if true, the block is rerun with the next value. As long as the truth condition
remains true, the block and the modification expression will continue to be ex-
ecuted. (Note that only the middle expression is evaluated for its value. The first

25. This is how Perl programmers think. So there’s no need to compare 0 to 0 to see if it’s false. Despite the
fact that other languages force you to, don’t go out of your way to write explicit comparisons like while
(@ARGV != 0). That’s just inefficient for both you and the computer. And anyone who has to maintain your
code.

Control Structures | 37

and third expressions are evaluated only for their side effects, and the resulting
values are thrown away!)

Each of the three expressions may be omitted, but the two semicolons are always
required. If you leave out the middle expression, it assumes you want to loop
forever, so you can write an infinite loop like this:

for (;;) {
 say "Take out the trash!";
 sleep(5);
}

The foreach loop

The last of Perl’s iterative statements is known as the foreach loop.26 This loop
executes the same code for each of a known list of scalars, such as you might get
from an array:

for my $user (@users) {
 if (–f "$home{$user}/.nexrc") {
 say "$user is cool... they use a perl–aware vi!";
 }
}

Unlike the if and while statements, which provide scalar context to a conditional
expression, the foreach statement provides list context to the expression in
parentheses. So the expression is evaluated to produce a list, if possible (and, if
not, a single scalar value will be considered a list of one element). Then each
element of the list is aliased to the loop variable in turn, and the block of code is
executed once for each list element. Note that the loop variable refers to the
element itself, rather than a copy of the element. Hence, modifying the loop
variable also modifies the original array.

You’ll find many more of these loops in the typical Perl program than traditional
three-part for loops, because it’s very easy in Perl to generate the kinds of lists
that a foreach wants to iterate over. (That’s partly why we stole for’s keyword,
since we’re lazy and think commonly used words should be short.) One idiom
you’ll often see is a loop to iterate over the sorted keys of a hash:

for my $key (sort keys %hash) {

In fact, line 13 of our Average Example does precisely that, so we can print out
the students in alphabetical order.

26. Historically, it was written with the foreach keyword, hence the name. These days we tend to use the
for keyword instead, since it reads more like English when you include a my declaration (and because the
syntax cannot be confused with the three-part loop). So many of us never write foreach anymore, though
you can still do that if you like.

38 | Chapter 1: An Overview of Perl

Breaking out: next and last

The next and last operators allow you to modify the flow of your loop. It is not
at all uncommon to have a special case; you may want to skip it, or you may want
to quit when you encounter it. For example, if you are dealing with Unix ac-
counts, you may want to skip the system accounts (like root or lp). The next
operator would allow you to skip to the end of your current loop iteration and
start the next iteration. The last operator would allow you to skip to the end of
your block, as if your loop’s test condition had returned false. This might be
useful if, for example, you are looking for a specific account and want to quit as
soon as you find it.

for my $user (@users) {
 if ($user eq "root" || $user eq "lp") {
 next;
 }
 if ($user eq "special") {
 print "Found the special account.\n";
 # do some processing
 last;
 }
}

It’s possible to break out of multilevel loops by labeling your loops and specifying
which loop you want to break out of. Together with statement modifiers (another
form of conditional which we’ll talk about later), this can make for extremely
readable loop exits (if you happen to think English is readable):

LINE: while (my $line = <EMAIL>) {
 next LINE if $line eq "\n"; # skip blank lines
 last LINE if $line =~ /^>/; # stop on first quoted line
 # your ad here
}

You may be saying, “Wait a minute, what’s that funny ^> thing there inside the
leaning toothpicks? That doesn’t look much like English.” And you’re right.
That’s a pattern match containing a regular expression (albeit a rather simple
one). And that’s what the next section is about. Perl is just about the best text-
processing language in the world, and regular expressions are at the heart of Perl’s
text processing.

Regular Expressions
Regular expressions (a.k.a. regexes, regexps, or REs) are used by many search pro-
grams such as grep and findstr, text-munging programs like sed and awk, and
editors like vi and emacs. A regular expression is a way of describing a set of strings

Regular Expressions | 39

without having to list all the strings in your set.27 Many other computer languages
incorporate regular expressions (some of them even advertise “Perl5 regular ex-
pressions”!), but none of these languages integrates regular expressions into the
language the way Perl does. Regular expressions are used several ways in Perl.
First and foremost, they’re used in conditionals to determine whether a string
matches a particular pattern, because in a Boolean context they return true and
false. So when you see something that looks like /foo/ in a conditional, you know
you’re looking at an ordinary pattern-matching operator:

if (/Windows 7/) { print "Time to upgrade?\n" }

Second, if you can locate patterns within a string, you can replace them with
something else. So when you see something that looks like s/foo/bar/, you know
it’s asking Perl to substitute “bar” for “foo”, if possible. We call that the substi-
tution operator. It also happens to return true or false depending on whether it
succeeded, but usually it’s evaluated for its side effect:

s/IBM/lenovo/;

Finally, patterns can specify not only where something is, but also where it isn’t.
So the split operator uses a regular expression to specify where the data isn’t.
That is, the regular expression defines the separators that delimit the fields of
data. Our Average Example has a couple of trivial examples of this. Lines 9 and
16 each split strings on whitespace in order to return a list of words. But you can
split on any separator you can specify with a regular expression:

my ($good, $bad, $ugly) = split(/,/, "vi,emacs,teco");

(There are various modifiers you can use in each of these situations to do exotic
things like ignore case when matching alphabetic characters, but these are the
sorts of gory details that we’ll cover in Part II when we get to the gory details.)

The simplest use of regular expressions is to match a literal expression. In the case
of the split above, we matched on a single comma character. But if you match
on several characters in a row, they all have to match sequentially. That is, the
pattern looks for a substring, much as you’d expect. Let’s say we want to show
all the lines of an HTML file that contain HTTP links (as opposed to FTP links).
Let’s imagine we’re working with HTML for the first time, and we’re being a
little naïve. We know that these links will always have “http:” in them some-
where. We could loop through our file with this:

27. A good source of information on regular expression concepts is Jeffrey Friedl’s book, Mastering Regular
Expressions.

40 | Chapter 1: An Overview of Perl

while (my $line = <FILE>) {
 if ($line =~ /http:/) {
 print $line;
 }
}

Here, the =~ (pattern binding) is telling Perl to look for a match of the regular
expression “http:” in the variable $line. If it finds the expression, the operator
returns a true value and the block (a print statement) is executed.28

By the way, if you don’t use the =~ binding operator, Perl will search a default string
instead of $line. It’s like when you say, “Eek! Help me find my contact lens!”
People automatically know to look around near you without your actually having
to tell them that. Likewise, Perl knows that there is a default place to search for
things when you don’t say where to search for them. This default string is actually
a special scalar variable that goes by the odd name of $_. In fact, it’s not the default
just for pattern matching; many operators in Perl default to using the $_ variable,
so a veteran Perl programmer would likely write the last example as:

while (<FILE>) {
 print if /http:/;
}

(Hmm, another one of those statement modifiers seems to have snuck in there.
Insidious little beasties.)

This stuff is pretty handy, but what if we wanted to find all of the link types, not
just the HTTP links? We could give a list of link types, like “http:”, “ftp:”,
“mailto:”, and so on. But that list could get long, and what would we do when a
new kind of link was added?

while (<FILE>) {
 print if /http:/;
 print if /ftp:/;
 print if /mailto:/;
 # What next?
}

Since regular expressions are descriptive of a set of strings, we can just describe
what we are looking for: a number of alphabetic characters followed by a colon.
In regular expression talk (Regexese?), that would be /[a–zA–Z]+:/, where the
brackets define a character class. The a–z and A–Z represent all ASCII alphabetic
characters (the dash means the range of all characters between the starting and
ending character, inclusive). And the + is a special character that says “one or
more of whatever was before me”. It’s what we call a quantifier, meaning a gizmo

28. This is very similar to what the Unix command grep 'http:' file would do.

Regular Expressions | 41

that says how many times something is allowed to repeat. (The slashes aren’t
really part of the regular expression, but rather part of the pattern-match oper-
ator. The slashes are acting like quotes that just happen to contain a regular
expression.)

Because certain classes like the alphabetics are so commonly used, Perl defines
shortcuts for them, as listed in Table 1-7.

Table 1-7. Shortcuts for alphabetic characters

Name ASCII Definition Unicode Definition Shortcut

Whitespace [\t\n\r\f] \p{Whitespace} \s

Word character [a–zA–Z_0–9] [\p{Alphabetic}\p{Digit}\p{Mark}

\p{Pc}]

\w

Digit [0–9] \p{Digit} \d

Note that these match single characters. A \w will match any single word character,
not an entire word. (Remember that + quantifier? You can say \w+ to match a
word.) Perl also provides the negation of these classes by using the uppercased
character, such as \D for a nondigit character.

We should note that \w is not always equivalent to [a–zA–Z_0–9] (and \d is not
always [0–9]). Some locales define additional alphabetic characters outside the
ASCII sequence, and \w respects them. Versions of Perl newer than 5.8.1 also know
about Unicode letter and digit properties and treat Unicode characters with those
properties accordingly. (Perl also considers ideographs and combining marks to
be \w characters.)

There is one other very special character class, written with a “.”, that will match
any character whatsoever.29 For example, /a./ will match any string containing
an “a” that is not the last character in the string. Thus, it will match “at” or
“am” or even “a!”, but not “a”, since there’s nothing after the “a” for the dot to
match. Since it’s searching for the pattern anywhere in the string, it’ll match
“oasis” and “camel”, but not “sheba”. It matches “caravan” on the first “a”. It could
match on the second “a”, but it stops after it finds the first suitable match, search-
ing from left to right.

29. Except that it won’t normally match a newline. When you think about it, a “.” doesn’t normally match a
newline in grep(1) either.

42 | Chapter 1: An Overview of Perl

Quantifiers
The characters and character classes we’ve talked about all match single charac-
ters. We mentioned that you could match multiple “word” characters with \w+.
The + is one kind of quantifier, but there are others. All of them are placed after
the item being quantified.

The most general form of quantifier specifies both the minimum and maximum
number of times an item can match. You put the two numbers in braces, sepa-
rated by a comma. For example, if you were trying to match North American
phone numbers, the sequence \d{7,11} would match at least seven digits, but no
more than eleven digits. If you put a single number in the braces, the number
specifies both the minimum and the maximum; that is, the number specifies the
exact number of times the item can match. (All unquantified items have an im-
plicit {1} quantifier.)

If you put the minimum and the comma but omit the maximum, then the max-
imum is taken to be infinity. In other words, it will match at least the minimum
number of times, plus as many as it can get after that. For example, \d{7} will
match only the first seven digits (a local North American phone number, for
instance, or the first seven digits of a longer number), while \d{7,} will match
any phone number, even an international one (unless it happens to be shorter
than seven digits). There is no special way of saying “at most” a certain number
of times. Just say .{0,5}, for example, to find at most five arbitrary characters.

Certain combinations of minimum and maximum occur frequently, so Perl de-
fines special quantifiers for them. We’ve already seen +, which is the same as
{1,}, or “at least one of the preceding item”. There is also *, which is the same as
{0,}, or “zero or more of the preceding item”, and ?, which is the same as {0,1},
or “zero or one of the preceding item” (that is, the preceding item is optional).

You need to be careful of a couple things about quantification. First of all, Perl
quantifiers are by default greedy. This means that they will attempt to match as
much as they can as long as the whole pattern still matches. For example, if you
are matching /\d+/ against “1234567890”, it will match the entire string. This is
something to watch out for especially when you are using “.”, any character.
Often, someone will have a string like:

larry:JYHtPh0./NJTU:100:10:Larry Wall:/home/larry:/bin/bash

and will try to match “larry:” with /.+:/. However, since the + quantifier is
greedy, this pattern will match everything up to and including “/home/larry:”,
because it matches as much as possible before the last colon, including all the
other colons. Sometimes you can avoid this by using a negated character class;

Regular Expressions | 43

that is, by saying /[^:]+:/, which says to match one or more noncolon characters
(as many as possible), up to the first colon. It’s that little caret in there that negates
the Boolean sense of the character class.30 The other point to be careful about is
that regular expressions will try to match as early as possible. This even takes
precedence over being greedy. Since scanning happens left to right, the pattern
will match as far left as possible, even if there is some other place where it could
match longer. (Regular expressions may be greedy, but they aren’t into delayed
gratification.) For example, suppose you’re using the substitution command
(s///) on the default string (variable $_, that is), and you want to remove a string
of x’s from the middle of the string. If you say:

$_ = "fred xxxxxxx barney";
s/x*//;

it will have absolutely no effect! This is because the x* (meaning zero or more
“x” characters) will be able to match the “nothing” at the beginning of the string,
since the null string happens to be zero characters wide and there’s a null string
just sitting there plain as day before the “f” of “fred”.31 There’s one other thing
you need to know. By default, quantifiers apply to a single preceding character,
so /bam{2}/ will match “bamm” but not “bambam”. To apply a quantifier to more
than one character, use parentheses. So to match “bambam”, use the pattern /(bam)
{2}/.

Minimal Matching
If you were using a prehistoric version of Perl and you didn’t want greedy match-
ing, you had to use a negated character class. (And, really, you were still getting
greedy matching of a constrained variety.)

In modern versions of Perl, you can force nongreedy, minimal matching by placing
a question mark after any quantifier. Our same username match would now
be /.*?:/. That .*? will now try to match as few characters as possible, rather
than as many as possible, so it stops at the first colon rather than at the last.

Nailing Things Down
Whenever you try to match a pattern, it’s going to try to match in every
location until it finds a match. An anchor allows you to restrict where the pattern
can match. Essentially, an anchor is something that matches a “nothing”, but a

30. Sorry, we didn’t pick that notation, so don’t blame us. That’s just how negated character classes are
customarily written in Unix culture.

31. Don’t feel bad. Even the authors get caught by this from time to time.

44 | Chapter 1: An Overview of Perl

special kind of nothing that depends on its surroundings. You could also call it
a rule, a constraint, or an assertion. Whatever you care to call it, it tries to match
something of zero width and either succeeds or fails. (Failure merely means that
the pattern can’t match that particular way. The pattern will go on trying to
match some other way, if there are any other ways left to try.)

The special symbol \b matches at a word boundary, which is defined as the
“nothing” between a word character (\w) and a nonword character (\W), in either
order. (The characters that don’t exist off the beginning and end of your string
are considered to be nonword characters.) For example:

/\bFred\b/

would match “Fred” in both “The Great Fred” and “Fred the Great”, but not in
“Frederick the Great” because the “d” in “Frederick” is not followed by a non-
word character.

In a similar vein, there are also anchors for the beginning and the end of the string.
If it is the first character of a pattern, the caret (^) matches the “nothing” at the
beginning of the string. Therefore, the pattern /^Fred/ would match “Fred” in
“Frederick the Great” but not in “The Great Fred”, whereas /Fred^/ wouldn’t
match either. (In fact, it doesn’t even make much sense.) The dollar sign ($) works
like the caret, except that it matches the “nothing” at the end of the string instead
of the beginning.32 So now you can probably figure out that when we said:

next LINE if $line =~ /^#/;

we meant “Go to the next iteration of LINE loop if this line happens to begin with
a # character.”

Earlier we said that the sequence \d{7,11} would match a number from seven to
eleven digits long. While strictly true, the statement is misleading: when you use
that sequence within a real pattern-match operator such as /\d{7,11}/, it does
not preclude there being extra unmatched digits after the 11 matched digits! You
often need to anchor quantified patterns on either or both ends to get what you
expect.

Backreferences
We mentioned earlier that you can use parentheses to group things for quantifiers,
but you can also use parentheses to remember bits and pieces of what you

32. This is a bit oversimplified, since we’re assuming here that your string contains no newlines; ^ and $ are
actually anchors for the beginnings and endings of lines rather than strings. We’ll try to straighten this
all out in Chapter 5 (to the extent that it can be straightened out).

Regular Expressions | 45

matched. A pair of parentheses around a part of a regular expression causes
whatever was matched by that part to be remembered for later use. It doesn’t
change what the part matches, so /\d+/ and /(\d+)/ will still match as many
digits as possible, but in the latter case they will be remembered in a special
variable to be backreferenced later.

How you refer back to the remembered part of the string depends on where you
want to do it from. Within the same regular expression, you use a backslash
followed by an integer. The integer corresponding to a given pair of parentheses
is determined by counting left parentheses from the beginning of the pattern,
starting with one. So, for example, to match something similar to an HTML tag
like “Bold”, you might use /<(.*?)>.*?<\/\1>/. This forces the two parts
of the pattern to match the exact same string, such as the “B” in this example.

Outside the regular expression itself, such as in the replacement part of a substi-
tution, you use a $ followed by an integer; that is, a normal scalar variable named
by the integer. So if you wanted to swap the first two words of a string, for ex-
ample, you could use:

s/(\S+)\s+(\S+)/$2 $1/

The right side of the substitution (between the second and third slashes) is mostly
just a funny kind of double-quoted string, which is why you can interpolate
variables there, including backreference variables. This is a powerful concept:
interpolation (under controlled circumstances) is one of the reasons Perl is a good
text-processing language. The other reason is the pattern matching, of course.
Regular expressions are good for picking things apart, and interpolation is good
for putting things back together again. Perhaps there’s hope for Humpty Dumpty
after all.

If you get tired of numbered backreferences, v5.10 or later also supports named
backreferences. This is the same substitution as just given but this time using
named groups:

s/(?<alpha>\S+)\s+(?<beta>\S+)/$+{beta} $+{alpha}/

Table 1-8. Regular expression backreferences

Where Numbered Group Named Group

Declare (...) (?<NAME> ...)

Inside same regex \1 \k<NAME>

In regular Perl code $1 $+{NAME}

46 | Chapter 1: An Overview of Perl

It may take longer to type in the code that way, but once your patterns grow in
size and complexity, you’ll be glad you can name your groups with meaningful
words instead of just numbers.

List Processing
Much earlier in this chapter, we mentioned that Perl has two main contexts: scalar
context (for dealing with singular things) and list context (for dealing with plural
things). Many of the traditional operators we’ve described so far have been
strictly scalar in their operation. They always take singular arguments (or pairs
of singular arguments for binary operators) and always produce a singular result,
even in list context. So if you write this:

@array = (1 + 2, 3 – 4, 5 * 6, 7 / 8);

you know that the list on the right side contains exactly four values, because the
ordinary math operators always produce scalar values, even in the list context
provided by the assignment to an array.

However, other Perl operators can produce either a scalar or a list value, depending
on their context. They just “know” whether a scalar or a list is expected of them.
But how will you know that? It turns out to be pretty easy to figure out, once you
get your mind around a few key concepts.

First, list context has to be provided by something in the “surroundings”. In the
previous example, the list assignment provides it. Earlier we saw that the list of
a foreach loop provides it. The print operator also provides it. But you don’t have
to learn these one by one.

If you look at the various syntax summaries scattered throughout the rest of the
book, you’ll see various operators that are defined to take a LIST as an argument.
Those are the operators that provide list context. Throughout this book, LIST is
used as a specific technical term to mean “a syntactic construct that provides list
context”. For example, if you look up sort, you’ll find the syntax summary:

sort LIST

That means that sort provides list context to its arguments.

Second, at compile time (that is, while Perl is parsing your program and trans-
lating to internal opcodes), any operator that takes a LIST provides list context
to each syntactic element of that LIST. So every top-level operator or entity in the
LIST knows at compile time that it’s supposed to produce the best list it knows
how to produce. This means that if you say:

sort @dudes, @chicks, other();

List Processing | 47

then each of @dudes, @chicks, and other() knows at compile time that it’s sup-
posed to produce a list value rather than a scalar value. So the compiler generates
internal opcodes that reflect this.

Later, at runtime (when the internal opcodes are actually interpreted), each of
those LIST elements produces its list in turn, and then (this is important) all the
separate lists are joined together, end to end, into a single list. And that squashed-
flat, one-dimensional list is what is finally handed off to the function that wanted
the LIST in the first place. So if @dudes contains (Fred,Barney), @chicks contains
(Wilma,Betty), and the other function returns the single-element list (Dino), then
the LIST that sort sees is:

(Fred,Barney,Wilma,Betty,Dino)

and the LIST that sort returns is:

(Barney,Betty,Dino,Fred,Wilma)

Some operators produce lists (like keys), while some consume them (like print),
and others transform lists into other lists (like sort). Operators in the last category
can be considered filters, except that, unlike in the shell, the flow of data is from
right to left, since list operators operate on arguments passed in from the right.
You can stack up several list operators in a row:

print reverse sort map {lc} keys %hash;

That takes the keys of %hash and returns them to the map function, which lower-
cases all the keys by applying the lc operator to each of them, and passes them
to the sort function, which sorts them, and passes them to the reverse function,
which reverses the order of the list elements, and passes them to the print func-
tion, which prints them.

As you can see, that’s much easier to describe in Perl than in English.

There are many other ways in which list processing produces more natural code.
We can’t enumerate all the ways here, but for an example, let’s go back to regular
expressions for a moment. We talked about using a pattern in scalar context to
see whether it matched, but if instead you use a pattern in list context, it does
something else: it pulls out all the backreferences as a list. Suppose you’re search-
ing through a log file or a mailbox, and you want to parse a string containing a
time of the form “12:59:59 am”. You might say this:

my ($hour, $min, $sec, $ampm) = /(\d+):(\d+):(\d+) *(\w+)/;

That’s a convenient way to set several variables simultaneously. But you could
just as easily say:

my @hmsa = /(\d+):(\d+):(\d+) *(\w+)/;

48 | Chapter 1: An Overview of Perl

and put all four values into one array. Oddly, by decoupling the power of regular
expressions from the power of Perl expressions, list context increases the power
of the language. We don’t often admit it, but Perl is actually an orthogonal lan-
guage in addition to being a diagonal language. Have your cake and eat it, too.

What You Don’t Know Won’t Hurt You (Much)
Finally, allow us to return once more to the concept of Perl as a natural language.
Speakers of a natural language are allowed to have differing skill levels, to speak
different subsets of the language, to learn as they go, and, generally, to put the
language to good use before they know the whole language. You don’t know all
of Perl yet, just as you don’t know all of English. But that’s Officially Okay in
Perl culture. You can work with Perl usefully, even though we haven’t even told
you how to write your own subroutines yet. We’ve scarcely begun to explain
how to view Perl as a system management language, or a rapid prototyping lan-
guage, or a networking language, or an object-oriented language. We could write
entire chapters about some of these things. (Come to think of it, we already did.)

But, in the end, you must create your own view of Perl. It’s your privilege as an
artist to inflict the pain of creativity on yourself. We can teach you how we paint,
but we can’t teach you how you paint. There’s More Than One Way To Do It.

Have the appropriate amount of fun.

What You Don’t Know Won’t Hurt You (Much) | 49

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY—that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

O’Reilly Ebooks—Your bookshelf on your devices!

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
Android Marketplace, and Amazon.com.

oreilly.comSpreading the knowledge of innovators

iBookstore, the

http://oreilly.com/store/index.html
http://oreilly.com/ebooks/
http://www.android.com/market/
http://amazon.com
http://www.oreilly.com

