SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 19(6), 553-578 (JUNE 1989)

The Joyce Language Report

PER BRINCH HANSEN
School of Computer and Information Science, Syracuse University, Syracuse,
New York 13244, U.S.A.

SUMMARY

This paper defines a programming language for distributed processing called Joyce. Joyce is
based on CSP and Pascal. A Joyce program defines concurrent agents which communicate
through synchronous channels. The agents may be recursive.

KEY WORDS Programming languages Concurrent programming Communicating agents Input/output channels
Polling Recursion

INTRODUCTION

This paper defines a small programming language called Joyce, designed for teaching
the principles and practice of distributed processing. Joyce is a semantic variant of
CSP with Pascal notation.'™

A Joyce program consists of nested procedures which define abstract machines known
as agents. The agent procedures may be recursive.

The execution of a program activates an initial agent. Agents may activate subagents
dynamically. A subagent and its creator run concurrently.

The variables of an agent are inaccessible to other agents.

Agents communicate by means of symbols transmitted through channels. Every
channel has an alphabet — a fixed set of symbols that can be transmitted through the
channel. A symbol has a name and may carry a message of a fixed type.

Two agents match when one of them is ready to output a symbol to a channel and
the other is ready to input the same symbol from the same channel. When this happens,
a communication takes place in which a message from the sending agent is assigned to
a variable of the receiving agent.

The communications on a channel take place one at a time. A channel can transfer
symbols in both directions between two agents.

A channel may be used by two or more agents. If more than two agents are ready
to communicate on the same channel, it may be possible to match them in several
different ways. The channel arbitrarily selects two matching agents at a time and lets
them communicate.

A polling statement enables an agent to examine one or more channels until it finds
a matching agent. Both sending and receiving agents may be polled.

Agents create channels dynamically and access them through local port variables.
When an agent creates a channel, a channel pointer 1s assigned to a port variable. The
agent may pass the pointer as a parameter to subagents.

© 1989 Per Brinch Hansen Received 12 September 1988

554 PER BRINCH HANSEN

When an agent reaches the end of its defining procedure, it waits until all its
subagents have terminated before terminating itself. At this point, the local variables
and any channels created by the agent cease to exist.

BNF NOTATION

The context-free grammar is defined in extended BNF notation.
A production

N=E.

defines a class of sentences named N by means of a syntax expression E. N consists of
one or more letters. Example:

AssignmentStatement = VariableAccess “:=" Expression .

A syntax expression AB|C defines sentences which are either A, B or C sentences,
for example

=" "or”

A syntax expression ABC defines sentences consisting of an A sentence followed by
a B sentence followed by a C sentence, for example

u

VariableAccess “:=" Expression

A syntax expression [A] defines sentences which are either A sentences or empty, for
example

[“{” ActualParameterList “)”]

A syntax expression {A} defines sentences which are finite (possibly empty) sequences
of A sentences, for example

{ Digit }

A syntax expression N denotes sentences defined by the production named N, for
example

Digit

A syntax expression “xyz" defines a text string xyz as a basic symbol in the language
(called a token). Examples:

"begin" SR “true” “1984"

THE JOYCE LANGUAGE REPORT 555
TOKENS AND SEPARATORS
Every sentence in the language is a sequence of tokens and separators.

Graphic characters

GraphicCharacter = Letter | Digit | SpecialCharacter | Space .
Letter = SmallLetter | CapitalLetter .

SmallLetter = “a” | “b” | “c” | “d” | "e” | “t" | “g” | "h” | “i" | “|" | "k" | “I"
[“m” L “n” | “o" | "p" | “q" | “r" | “s” | "t "u" | v twr X y”
“z"

CapitalLetter = “A” | “B” | “C" | “D" | "E" | “F" | “G" | "H" [“I" | "J" | "K"
[“L" | “M" | “N" | “O" | “P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X"

| Y| "Z" .
Digit = “0" | “1”

u7u

1121! | 11311 | 11411

11511 I “6”

“8” ‘ 1191!

SpeciaICharaCter = | | g u$u nop | g | i u(n u)u s war |y
" "__o l “on ' u/n | o ", P " | "u__n | " i Huon u@u ‘ u[u u\u '
’ . . ' H
u]n | "aA o ' "o l o u{u l "l u}ll H o~

"o

Space =
Graphic characters are used to form tokens and separators.

Tokens

Token = WordToken | SpecialToken | Name | Numeral | GraphicToken |
ControlToken | StringToken .

WordToken = “agent” | “and” | “array” | "begin” | “const” | “div” “do”
“else” | “end” | “if" | “mod” | “nil” | “not” | “of” | “or" | “ord” | “poll”
“record” | “then” | “type” | “var” | “while" .

SpecialToken = "(" | “)" | “*" | "+" [" | "=~ A YA R I
S = T S L e R A S B I B P =] re="] "
o= |

Numeral = SimpleNumeral | RealNumeral .

A capital letter in a word token is equivalent to the corresponding small letter. In
this paper, word tokens are printed in boldface.

Names, numerals, graphic tokens, control tokens and string tokens will be defined
later.

Separators

Separator = Space | Newline | Comment .
Comment = “{" CommentText “}" .
CommentText = { GraphicCharacter | Newline | Comment } .

Every program line ends with a newline character.

Any token may be preceded by one or more separators. There must be at least
one separator between two adjacent word tokens, names, numerals or control
tokens.

556 PER BRINCH HANSEN

The characters { and } cannot occur in a comment text (except as part of other
comments within the comment text).

Example

{This is a { nested } comment
that extends over two lines}

BLOCKS

The standard names
integer boolean char real false true

denote predefined entities which may be used in any program.

All other named entities must be described by definitions. A definition is a sentence
which introduces the names of similar entities and describes their common properties.

Related definitions and statements are combined into sentences called blocks. The
standard entities are considered defined at the beginning of an imaginary block (the
standard block) which contains the program. Any other block is either a program or
a procedure. Blocks are nested as follows: the standard block contains every program,;
a program contains a single procedure; and a procedure may contain other procedures.

Names

Name = Letter { Letter | Digit } .

The word tokens cannot be used as names. Apart from that, names may be chosen
freely. A capital letter used in a name is equivalent to the corresponding small letter.

Examples

X
true

RC4000
ConcurrentPascal

Scope rules

Constants, types, variables and procedures defined in the same block must have
distinct names.

The use of a name to denote an entity is called a reference to the entity. That part
of the program text in which a named entity can be referenced is called the scope of
the entity. The entity is said to be known in its scope.

The following defines the scopes of named entities in terms of their apparent scopes
and possibly homonyms. Homonyms are distinct entities with the same name defined
in different blocks.

THE JOYCE LANGUAGE REPORT 557

Constants, types and variables are non-recursive entities. Consider a non-recursive
entity x introduced by a definition D in a block B: the apparent scope of x extends
from the end of D to the end of B.

Procedures may be recursive. Consider a procedure x defined in a block B: the
apparent scope of x extends from the beginning of x to the end of B.

If the apparent scope of a named entity x does not contain any blocks which define
homonyms of x, the scope of x is the apparent scope. Otherwise, the scope is the
apparent scope minus the scopes of the homonyms.

An entity x defined in a block B is said to be local to B and global to any blocks
contained 1n 1ts scope.

The scope rules do not apply to fields and symbols. A field or symbol is a subentity
of another entity and cannot be identified by a single name only. (This will be explained
later.)

Block activation

The language has one kind of procedures only, known as agent procedures.

An agent procedure P defines a class of abstract machines called agents. The creation
and start of an agent defined by P is called an activation of P (or the activation of a P
agent).

The activation of a P agent creates a new instance of every variable defined in the
procedure P. These variable instances are called the own variables of the new agent.
When the agent refers to a variable defined in the procedure, it refers to its own
instance of the variable. The own variables of an agent are inaccessible to other agents.
When an agent terminates, its own variables cease to exist.

An agent is always activated by another agent (called the creator). The new agent
is called a subagent of its creator. After the creation, the subagent and its creator run
concurrently at unpredictable speeds. When an agent reaches the end of the agent
procedure, it waits until all its subagents have terminated before terminating itself.

The effect of executing a program is to activate and execute an initial agent. The
initial agent is activated by an agent defined in another program (an operating system).

CONSTANTS

A constant denotes a fixed value of a fixed type.

Constant definitions

ConstantDefinitionPart = “const” ConstantDefinition { ConstantDefinition } .
ConstantDefinition = ConstantName “=" Constant ;" .

ConstantName = Name .

Constant = SimpleConstant | RealConstant | StructuredConstant .

A constant definition

c = d;

558 PER BRINCH HANSEN

introduces a name ¢ to denote a constant d. The type of the constant name ¢ is the
type of the constant d.

Example

const on = true; n = 10; nl = 10C; If = nl; e = 2.718; none = nil stream;

Simple constants

SimpleConstant = SimpleNumeral | CharacterConstant | ConstantName .

A simple constant denotes a simple value. A constant name must denote a known,
simple constant.

Simple numerals

SimpleNumeral = Digit { Digit } .
A simple numeral is a conventional decimal notation for a non-negative integer value.
Examples

0
1351

Character constants

CharacterConstant = GraphicToken | ControlToken .

GraphicToken = GraphicCharacter
ControlToken = SimpleNumeral “C"” .

Hin

A character constant denotes a value of type character. A graphic token denotes a
graphic character. A control token denotes a character by its ordinal number.
Examples

1

X
10C

Real constants

RealConstant = RealNumeral | ConstantName .

A real constant denotes a real value. A constant name must denote a known, real
constant.

THE JOYCE LANGUAGE REPORT 559

Real numerals

RealNumeral = Mantissa [Radix Exponent | .
Mantissa = Digit { Digit } “.” { Digit } .

Radix = "E”
Exponent = [Sign] SimpleNumeral .
Sign = “+" | "=" .

A real numeral is a decimal notation for a non-negative real value. The letter E
denotes the radix 10.

Examples
2.
572
23.1E-7

Structured constants

StructuredConstant = NilConstant | ConstantName .

A structured constant denotes a value of a structured type. A constant name must
denote a known, structured constant.

Nil constants

NilConstant = “nil” TypeName .

The port value nil denotes a non-existing channel.
The constant

nil T

denotes a nil value of type T. T must be the name of a known port type.

Example

nil stream

TYPES

Every constant, variable, expression and symbol has a fixed type. The type of an
operand is the set of all possible values which the operand may possess.

560 PER BRINCH HANSEN

Type definitions
TypeDefinitionPart = “type” TypeDefinition { TypeDefinition } .

TypeDefinition = TypeName “=" NewType “;"
TypeName = Name .

NewType = EnumeratedType | StructuredType .

A type definition
T =NT,

introduces a name T to denote a new type NT which is distinct from all other types.

Example

type
task = (log, flow, scan);
table = array [1. .n] of integer;
str = array [1. .80] of char;
buffer = record
contents: table;
head, tail, length: integer
end,
stream = [int(integer), eos];

Simple types

A simple type is a finite, ordered set of values (called simple values). The simple
types are integer, boolean, character and enumerated types.

The values of a simple type can be mapped onto a set of successive integer values
called ordinal numbers. The ordinal number of a simple value x is denoted

integer(x)

Type integer

The type name integer denotes the whole numbers in a system-dependent range.
The ordinal number of an integer x is x itself, that is

integer(x) = x

Type boolean

The type name boolean denotes the truth values false and true. The ordinal numbers
of these values are

integer(false) = 0 integer(true) = 1

THE JOYCE LANGUAGE REPORT 561
Type character

The type name char denotes the ASCII character set.

Enumerated types

EnumeratedType = “(” ConstantName { “,” ConstantName Py
ConstantName = Name .

A type definition
T =1(c0, cl, ..., cn);

defines an enumerated type named T. The type introduces the constant names c0, c1,
., cn to denote the values of T.
The ordinal numbers of these values are

integer{cO) = 0 integer(c1) = 1 ... integercn} = n
Example

(log, flow, scan)

Type real

The type name real denotes a system-dependent subset of the real numbers.
The results of real expressions are system-dependent approximations to the corre-

sponding mathematical results.
Structured types
StructuredType = ArrayType | RecordType | PortType .

A structured type T is defined in terms of other types (the subtypes of T).

Array types

ArrayType = “array” “[" IndexRange “|” “of” ElementType .
IndexRange = LowerBound “..” UpperBound .

LowerBound = SimpleConstant .

UpperBound = SimpleConstant .

ElementType = TypeName .

A type definition

T = array [min. .max] of E;

defines an array type named T. Every array value is a sequence of max — min + 1 other
values known as array elements. The number of elements is called the array length |T].

562 PER BRINCH HANSEN

Every array element is of type E and has an index which defines its position in the
array value. The indices are the values

min, min+1, ..., max

The array type comprises every possible sequence of |T| elements of type E.

The index range must be defined by two simple constants min and max of the same
type (the index type), such that min =< max. E must be the name of a known type.

An array type in which the elements are of type char is called a string type. A string
type defines an ordered set of values called strings.

Any other array type defines a set of unordered array values.

Examples

array [1. .n] of integer
array [1..80] of char

Record types

RecordType = “record” FieldList “end” .

FieldList = RecordSection { “;” RecordSection } .
RecordSection = FieldName { “,” FieldName } “:" FieldType .
FieldName = Name .

FieldType = TypeName .

A type definition
T = record f1:T1; f2:T2; ... fn:Tn end;

defines a record type named T. Every record value is a sequence of n other values
known as fields. Every field has a name fi that defines its position in the record value
and a type Ti.

The record type comprises every possible sequence consisting of a value of type T1
followed by a value of type T2, and so on, ending with a value of type Tn. The record
values are unordered.

The field names f1, f2, . . ., fn must be distinct, and T1, T2, . . . Tn must be names
of known types.

A record section

f1, f2, ..., fj:Tk
defines fields f1, f2, . . ., fj of the same type Tk.
Example
record
contents: table;

head, tail, length: integer
end

THE JOYCE LANGUAGE REPORT 563

Port types
PortType = “[” Alphabet “}” .
Alphabet = SymbolClass { “,” SymbolClass } .
SymbolClass = SymbolName [“(" MessageType “)"] .

SymbolName = Name .
MessageType = TypeName .

Agents communicate by means of values called symbols transmitted through entities
called channels. The set of possible symbols that can be transmitted through a channel
is called its alphabet.

Agents create channels dynamically and access them through variables known as port
variables. The types of these variables are called port types.

A type definition

T = [sUT1), s2(T2), ..., sn(Tn)l;

defines a port type named T. The port value nil T is of type T and denotes a non-existing
channel. All other port values of type T denote distinct channels with the given
alphabet. The port values (also known as channel pointers) are unordered.

The alphabet is the union of a fixed number of disjoint symbol classes named s1,
s2, ..., sn.

A symbol class

si(Ti)
consists of every possible value of type Ti prefixed with the name si. The Ti values are
called messages.
A symbol class
s

consists of a single symbol named sj without a message. The symbol is called a signal.
The symbol names s1, s2, . . ., sn must be distinct, and T1, T2, . . ., Tn must be
names of known types. The message types cannot be (or include) port types.

Example

lint(integer), eos]

VARIABLES

A variable is an entity that has a changeable value of a fixed type.

Variable definitions

VariableDefinitionPart = “var” VariableDefinition { VariableDefinition } .
VariableDefinition = VariableGroup “;" .

VariableGroup = VariableName { “,” VariableName } “:" TypeName .
VariableName = Name .

564 PER BRINCH HANSEN

A variable definition
vl, v2, ... vn:T;

in a procedure introduces names v1, v2, . . ., vn to denote distinct classes of variables
of type T. T must be the name of a known type.

Every activation of the procedure creates a new instance of each of these variables,
with unpredictable initial values.

Examples

var buf: buffer;
var x, y: integer; more: boolean; f: real; s: str; inp, succ: stream:

Variable access
VariableAccess = NamedVariableAccess | IndexedAccess | FieldAccess .
A variable access denotes a variable used as an operand.
When an agent executes a variable access, any index expressions occurring in the

variable access are evaluated one at a time in the order written. Following this, the
agent locates the variable among its own variables.

Named variables
NamedVariableAccess = VariableName .
A variable accessed by a name only is called a named variable. The type of a named

variable is given by a variable or parameter definition.
An agent procedure P cannot access a variable which is global to P.

Example
X

Indexed variables

IndexedAccess = ArrayVariableAccess “[” IndexExpression “]” .
ArrayVariableAccess = VariableAccess .
IndexExpression = Expression .

A variable v:T of type
T = array [min. max] of E;
holds an array value. The variable is composed of |T| other variables called indexed
variables. Every indexed variable holds a distinct element of the array value.

An indexed access vle| denotes the indexed variable of v which holds the array
element with index e. The variable access v must be of type T, and the index expression

THE JOYCE LANGUAGE REPORT 565

e must be of the index type of T. The type of the indexed access is the element type
E.

An indexed access is undefined if the index expression e denotes a value outside the
index range min. .max.

Example

buf.contents[buf.head]

Field variables
FieldAccess = RecordVariableAccess ”.” FieldName .
RecordVariableAccess = VariableAccess .

A variable v:T of type
T = record f1:T1; f2:72; ... fn:Tn end,

holds a record value. The variable is composed of n other variables called field variables.
Every field variable holds a distinct field of the record value.

A field access v.fi denotes the field variable of v which holds the field named fi. The
variable access v must be of type T, and fi must be one of the field names 1, 2, . . |
fn. The type of the field access is the type Ti of the field fi.

Example
buf.head
Port varables
PortAccess = VariableAccess .
A variable v:T of type
T = [s1(T1), s2(T2), ..., sn(Tn)];
holds a port value.
If the value of v is nil T, a port access v denotes a non-existing channel; otherwise,
it denotes a channel with the alphabet given by T. The type of the port access is T.

The channel itself is not a variable, but a communication device shared by two or
more agents.

EXPRESSIONS
Expression = SimpleExpression | SimpleExpression RelationalOperator
SimpleExpression.
RelationalOperator = “<" | "="] “>" | "<=" | "<>" | ">="

An expression is a rule for computing a value of a fixed type.

566 PER BRINCH HANSEN

The value of an expression is either the value of a simple expression or the value
obtained by applying a relational operator to the values of two simple expressions:

1. 1f x and y are simple (or real) operands of the same type, the following expressions
denote boolean values:
X <y less

X =y equal

X >y greater

X <=y not greater
X <>y not equal
X >=1y not less

If x and y are integer (or real) operands, the value of x < vy is true if x is less
than y, and is false otherwise. If x and y are operands of the same simple type,
the value of x < y is the same as the value of
integer(x) < integerly)
The other expressions are defined similarly.
2. If x and vy are array (or record) operands of the same type, the following
expressions denote boolean values:
X=y x<>y
The value of x = y is true if x and y consist of the same sequence of elements
(or fields), and is false otherwise. The value of x <> vy is the same as the value
of not (x = vy}.
3. If x and y are string operands of the same type, the following expressions denote
boolean values:
X<y x=y x>y x<=y x<>y x>=y
The elements of x and y are examined in the order of their indices until the index
i = max or x[i] <> y[i]. The value of x <y is the same as the value of x[i] < y[il.
The other expressions are defined similarly. String operands are defined in the
following.
4. If x and y are port operands of the same type, the following expressions denote
boolean values:
X=y x<>y
The value of x =y is true if x and y denote the same channel (or nil value), and
is false otherwise. The value of x <>y is the same as the value of not (x = y).

Examples
x —1
x>0

s <> str{"edit”)
inp = nil stream

Simple expressions

SimpleExpression = Term | SignOperator Term | SimpleExpression
AddingOperator Term.

SignOperator = '+' | '=" .

AddingOperator = +' | ‘=" | “or" .

THE JOYCE LANGUAGE REPORT 567

The value of a simple expression is either the value of a term, or the value obtained
by applying a sign operator to the value of a term, or the value obtained by applying
an adding operator to the values of another simple expression and a term:

1. If x and y are integer operands, the following simple expressions also denote

integer values:

+ X identity

- X complementation
X + vy addition

X =y subtraction

If x and y are real operands, the above expressions denote real values.
2. If x and y are boolean operands, the following simple expression also denotes a
boolean value:
X ory disjunction
The value is true if either x or y denotes true, and 1s false otherwise.

Examples
10

—{x + 1)
buf.tail mod n + 1

Terms

Term = Factor | Term MultiplyingOperator Factor.

MultiplyingOperator = “*” | “/" | “div" | “mod” | “and” .

The value of a term is either the value of a factor, or the value obtained by applying
a multiplying operator to the values of another term and a factor:

1. If x and y are integer operands, the following terms also denote integer values:
x*y multiplication
x divy division (truncated quotient)
x mod y division (remainder)
The following relation holds for division
x = (xdivy) *vy + {(x mody)
2. If x and y are real operands, the following terms also denote real values:

x*y multiplication
x/y division

3. If x and v are boolean operands, the following term also denotes a boolean value:
x and y

The value is true if x and y both denote true, and is false otherwise.

Examples

10
buf.tail mod n

568 PER BRINCH HANSEN

Factors

Factor = Constant | VariableRetrieval | Constructor | “(" Expression “}" | “not”
Factor

The value of a factor is either the value of a constant, variable, constructor or
expression or the value obtained by applying a not operator to the value of another
factor:

If x is a boolean operand, the following factor also denotes a boolean value:

not x

The value is true if x denotes false, and is false otherwise.

Examples

10

X

x+ 1)
not more

Variable retrieval
VariableRetrieval = VariableAccess .
A variable retrieval denotes the value of a variable.

The retrieval is undefined if no value has been assigned to the variable after its
creation.

Constructors
Constructor = TypeName “(" ConstructorOperand “)" .
ConstructorOperand = Expression | StringToken .
StringToken = “"" { GraphicCharacter } """ .

1. If x 1s a szmple operand, the constructor
integer(x)
denotes the ordinal number of x.
2. 1f x is a simple operand and T is the name of a known simple type, the constructor
T{x)
denotes the simple value of type T with the ordinal number
integer(x)
3. If x is an integer operand, the constructor
real(x)
denotes the real value corresponding to x.
4. If x is a real operand, the constructor
integer(x)
denotes the integer value corresponding to x.

THE JOYCE LANGUAGE REPORT 569

An operand which is either an expression of a string type or a string token is called a
string operand. A string token denotes a (possibly empty) sequence of graphic charac-
ters. The number of characters in a string operand x is called the string length |x.

5. If x is a string operand and T is the name of a known string type, the constructor
Tix)
denotes a string of type T. If [T| > x|, the string T(x) consists of x followed by |T|
— |x| null characters; otherwise, it consists of the first |T| characters of x. The
null character is denoted
char(0)

Examples

char(x + integer('0))

real(2)

integeri(e)

str(“This is a string of type str”)

STATEMENTS

Statement =
EmptyStatement | AssignmentStatement |
AgentStatement | PortStatement |
InputOutputStatement | IfStatement |
WhileStatement | PollingStatement |
CompoundStatement .

EmptyStatement = .

A statement denotes an action performed by an agent. 'The empty statement denotes
the empty action.

Assignment statements

"

AssignmentStatement = VariableAccess ;=" Expression .

An assignment statement
vi=e

denotes the assignment of a value to a variable. The variable access v and the expression
e must be of the same type.
The assignment statement is executed in three steps:

1. The variable v is located.
2. A value is obtained by evaluating the expression e.
3. The value is assigned to v.

Example

buf.contents[buf.head] := x

570 PER BRINCH HANSEN

Agent statements
AgentStatement = AgentName [“(" ActualParameterList ")
ActualParameterList = ActualParameter { “,” ActualParameter .
ActualParameter = Expression .
An agent statement

Ple1, e2, ..., em)

denotes activation of a new agent. P must be the name of a known agent procedure

agent P(al:T1; a2:T2; ... ; am:Tm);
var x1:U1; x2:U2; ... : xn:Un;
begin SL end;

The actual parameter list
el, e2, ..., em

must contain an actual parameter ei for every formal parameter ai in the formal
parameter list

al:T1; a2:T2; .. .; am:Tm

The order in which the actual and formal parameters are listed defines a one-to-one
correspondence between them.

An actual parameter ei is an expression which must be of the same type Ti as the
corresponding formal parameter ai.

When an agent executes the agent statement, a subagent is activated in two steps:

1. The own variables of the subagent are created as follows:

(@) The formal parameters al, a2, . . ., am are created one at a time in the
order listed in the formal parameter list. Every formal parameter ai is
assigned the value obtained by evaluating the corresponding actual par-
ameter ei.

(b) The variables x1, x2, . . ., xn defined in the procedure body are created
with unpredictable initial values.

2. The subagent is started.

A port operand used as an actual parameter denotes a channel which is accessible
both to the subagent and its creator. It is known as an external channel of the subagent.

After the execution of the agent statement, the subagent and its creator run concur-
rently.

An agent defined by a procedure may activate the procedure recursively. Several
agents may also activate the same procedure simultaneously. Every activation creates
a new agent with its own variables.

THE JOYCE LANGUAGE REPORT 571

Example

sort(succ, out)

Port statements

PortStatement = “+" PortAccess .

The creation of a new channel is called the activation of the channel.
A port statement

+C

denotes activation of a new channel. The variable access ¢ must be of a known port
type T.

When an agent executes the port statement, a new channel with the alphabet given
by T is created and a pointer to the channel is assigned to the port variable c. The
agent is called the creator of the channel. The channel itself is known as an internal
channel of the agent. The channel ceases to exist when its creator terminates. This 1s
called the termination of the channel.

Example
+inp

Input/output statements

InputOutputCommand = OutputCommand | InputCommand .
OutputCommand = PortAccess “!” OutputSymbol .
OutputSymbol = SymbolName [“(* OutputExpression “)" 1.
OutputExpression = Expression .

InputCommand = PortAccess “?” InputSymbol .
InputSymbol = SymbolName [“(" InputVariable)"].
InputVariable = VariableAccess .

InputOutputStatement = InputOutputCommand .

A communication is the transfer of a symbol from one agent to another through a
channel. The sending agent is said to output the symbol, and the receiving agent is
said to input the symbol. The agents access the channel through local port variables.

Consider an agent p which accesses a channel through a port variable b, and another
agent q which accesses the same channel through a different port variable ¢. The port
variables must be of the same type

T = [sHT1), s2(T2), ..., sn(Tn)];

An output command

blsilei)

572 PER BRINCH HANSEN

denotes output of a symbol sifei) through the channel denoted by the port variable b.
si must be the name of one of the symbol classes of T, and the expression ei must be
of the corresponding message type Ti.

An input command

c?si(vi)

denotes input of a symbol si(vi) through the channel denoted by the port variable c. si
must be the name of one of the symbol classes of T, and the variable access vi must
be of the corresponding message type Ti.

When an agent p is ready to output the symbol si on a channel, and another agent
q is ready to input the same symbol from the same channel, the two agents are said
to match and a communication between them is said to be feasible. If and when this
happens, the two agents execute the output and input commands simultaneously. The
combined effect is defined by the following sequence of actions:

1. p obtains a value by evaluating the output expression ei,
2. q assigns the value to its input variable vi.

(If the symbol si is a signal, steps 1 and 2 denote empty actions.)

After a communication, the communicating agents proceed concurrently.

When an agent reaches an input/output command which denotes a communication
that is not feasible, the behaviour of the agent depends on whether the command is
used as an input/output statement or as a polling command (defined in the following).

The effect of an input/output statement is to delay an agent until the communication
denoted by the statement has taken place.

The communications on a channel take place one at a time. A channel can transfer
symbols in both directions between two agents.

A channel may be used by two or more agents. If more than two agents are ready
to communicate on the same channel, it may be possible to match them in several
different ways. The channel arbitrarily selects two matching agents at a time and lets
them communicate.

An input/output command is undefined if the port value does not denote an existing
channel.

Examples

inp?eos
succlint(x)

If statements

IfStatement = “if” BooleanExpression “then” Statement [“else” Statement l.
BooleanExpression = Expression .

An if statement

if B then S1 else S2

THE JOYCE LANGUAGE REPORT 573

denotes execution of exactly one of the statements S1 and S2. The expression B must
be of type boolean.
The if statement is executed in two steps:

1. A boolean value is obtained by evaluating the expression B.
2. If the value is true, S1 is executed; otherwise, S2 is executed. (If S2 is omitted,
it denotes the empty action.)

Examples
if succ <> none then outleos

if x > y then
begin succlint(x); x := y end
else succlintly)

While statements

WhileStatement = “while” BooleanExpression “do” Statement .

A while statement

while B do S

denotes zero or more executions of the statement S. The expression B must be of type
boolean.
The while statement is executed by following these steps:

1. A boolean value is obtained by evaluating the expression B.
2 If the value is true, S is executed and afterwards steps 1 and 2 are repeated;
otherwise, the execution of the while statement ends.

Example

while i <= n do
begin
io?readint{x); inplint(x);
=i+
end

Polling statements

PollingStatement = “poll” GuardedStatementList “end” .
GuardedStatementList = GuardedStatement { “|” GuardedStatement } .
GuardedStatement = Guard “->" Statementlist .

Guard = PollingCommand [“&” PollingExpression].

PollingCommand = InputOutputCommand .

PollingExpression = BooleanExpression .

574 PER BRINCH HANSEN
A polling statement

poll
C1 & B1-> SL1 |
C2 & B2 ->SL2 |

Cn & Bn -> SLn
end

denotes execution of exactly one of the guarded statements
Ci & Bi -> SLi
An agent executes a polling statement in two phases, known as the polling and

completion phases:

1. Polling: the agent examines the guards C1 & B1, C2 & B2, . . ., Cn & Bn cyclically
until it finds one with a polling command Ci that denotes a feasible communication
and a polling expression Bi that denotes true (or is omitted).

2. Completion: the agent executes the selected polling command Ci followed by the
corresponding statement list SLi.

While an agent is polling, it can be matched only by another agent that is ready to
execute an input/output statement. Two agents polling at the same time do not match.

Example

poll
user’P & x >0 ->x :=x — 1|
user?V -> x 1= x + 1

end

Compound statements

CompoundStatement = “begin” StatementList “end” .
StatementList = Statement { “;” Statement } .

A compound statement
begin SL end

denotes execution of the statement list SL.
A statement list

$1;,82; ...:8n

denotes execution of the statements S1, S2, ..., Snone at a time in the order written.

THE JOYCE LANGUAGE REPORT 575

Example

begin succlint{x); x := y end

AGENT PROCEDURES

AgentProcedure = “agent” AgentName ProcedureBlock “;" .
ProcedureBlock = FormalParameterPart “;"” ProcedureBody .
FormalParameterPart = [“(" FormalParameterlist)"] .
FormalParameterlList = ParameterDefinition { ;" ParameterDefinition } .
ParameterDefinition = VariableName { “,” VariableName } ”:” TypeName .

ProcedureBody = [ConstantDefinitionPart] [TypeDefinitionPart]
{ AgentProcedure } [VariableDefinitionPart | CompoundStatement .

An agent procedure
agent P@a1:T1; a2:T72; ... am:Tmj;
begin SL end;

introduces a name P to denote a block which defines a class of agents.

A new agent of this class is activated when another agent executes an agent statement
that refers to the procedure.

The formal parameter list

al:T1; a2:T2; ... am:Tm

defines the formal parameters of the agent. T1, T2, ..., Tm must be the names of
known types.
A parameter definition

ai:Ti

introduces a name ai to denote a formal parameter of type Ti.
A parameter definition

al, a2, ..., aj:Tk

defines formal parameters al, a2, . . ., aj of the same type Tk.

Every formal parameter is a local variable that is assigned the value of an actual
parameter (an expression) when the agent is activated.

After its activation, the new agent executes the procedure body in two steps:

1. The agent executes the compound statement SL.

2. The agent waits until all its subagents (if any) have terminated. At this point,
the own variables and internal channels of the agent cease to exist, and the agent
terminates.

576 PER BRINCH HANSEN

Example

agent semaphore(x: integer; user: PV);
begin
while true do
poll
user’P & x > 0->x :1=x — 1]
user?V -> x := x + 1
end
end;

PROGRAMS
Program = [ConstantDefinitionPart] [TypeDefinitionPart] AgentProcedure .

A program is a block which contains a single agent procedure.

A program denotes activation and execution of a single agent defined by the procedure
(the initial agent). The activation of the initial agent is the result of executing an agent
statement in another program (an operating system). A program communicates with
its operating system through the external channels of the initial agent (the system
channels). The program execution terminates when the initial agent terminates.

Example

{ The program uses a recursive pipeline to sort and output n integers. The port
variable 0 denotes a system channe! to the operating system. The sorting
agent is explained in Reference 3. }

type iosym = [readint(integer), writeint(integer)];

agent sortprogramlio: iosymj;
type stream = [int{integer), eos];

agent sort(inp: stream; out: iosym);
var more: boolean; x, y: integer;
succ: stream;
begin
poll
inp?int(x} -> +succ;
sort{succ, out); more := true |
inp?eos -> more ;= false

end;
while more do
poll
inp?intly) ->

if x > vy then
begin succlintly); x := y end
else succlintly) |
inp?eos -> outlwriteint(x);
succ!eos; more := false
end
end,

THE JOYCE LANGUAGE REPORT 577

var i, n, x: integer; inp: stream;

begin
+inp; sort(inp, io);
io?readint(n); i := 1,
while i <= n do
begin
io?readint(x); inplint(x);
=0+
end;
inpleos
end;
GRAMMAR
Program = [ConstantDefinitionPart | [TypeDefinitionPart | AgentProcedure .
AgentProcedure = “agent” AgentName ProcedureBlock ;" .
ProcedureBlock = FormalParameterPart “;" ProcedureBody .
FormalParameterPart = [“{” FormalParameterList “)" | .
FormalParameterlList = ParameterDefinition { “;” ParameterDefinition } .

ParameterDefinition = VariableGroup .

ProcedureBody = [ConstantDefinitionPart] [TypeDefinitionPart |

{ AgentProcedure } [VariableDefinitionPart } CompoundStatement .

ConstantDefinitionPart = “const” ConstantDefinition { ConstantDefinition } .

ConstantDefinition = ConstantName “=" Constant “;" .

TypeDefinitionPart = “type” TypeDefinition { TypeDefinition } .

TypeDefinition = TypeName “=" NewType “;" .

NewType = EnumeratedType | ArrayType | RecordType | PortType .

EnumeratedType = “(” ConstantName { “,” ConstantName } “)" .

ArrayType = “array” “[” IndexRange “]” “of” TypeName .

IndexRange = SimpleConstant “..” SimpleConstant .

RecordType = “record” FieldList "end” .

FieldList = RecordSection { ”;” RecordSection } .

RecordSection = FieldName { “,” FieldName } “:” TypeName .

PortType = “["” Alphabet “]" .

Alphabet = SymbolClass { “,” SymbolClass } .

SymbolClass = SymbolName [“{" TypeName “)" | .

VariableDefinitionPart = “var” VariableDefinition { VariableDefinition } .

VariableDefinition = VariableGroup “;" .

VariableGroup = VariableName { “,” VariableName } “." TypeName .

Statement = Empty | AssignmentStatement | AgentStatement | PortStatement
| InputOutputStatement | IfStatement | WhileStatement | PollingStatement |
CompoundStatement .

AssignmentStatement = VariableAccess “:=" Expression .

AgentStatement = AgentName [“(" ActualParameterList “)" | .

ActualParameterList = Expression { “," Expression } .

PortStatement = "+" PortAccess .

PortAccess = VariableAccess .

InputOutputStatement = InputOutputCommand .

578 PER BRINCH HANSEN

InputOutputCommand = OutputCommand | InputCommand .

OutputCommand = PortAccess “!” OutputSymbol .

OutputSymbol = SymbolName [“(" Expression “)" | .

InputCommand = PortAccess “?” InputSymbol .

InputSymbol = SymbolName ["(" VariableAccess)"] .

IfStatement = "if" Expression “then” Statement [“else” Statement | .

WhileStatement = “while” Expression “do” Statement.

PollingStatement = “poll” GuardedStatementList “end” .

GuardedStatementList = GuardedStatement { “|” GuardedStatement } .

GuardedStatement = Guard "->" StatementList .

Guard = InputOutputCommand [“&" Expression].

CompoundStatement = "begin” StatementList “end” .

StatementlList = Statement { “;" Statement } .

Expression = SimpleExpression | RelationalOperator SimpleExpression | .

RelationalOperator = “< =" =T T | =T

SimpleExpression = [SignOperator | Term { AddingOperator Term } .

SignOperator = "+ | "="

AddingOperator = “+" or” .

Term = Factor { MultiplyingOperator Factor }.

MultiplyingOperator = “*" | “/" | “div" | “mod” | “and” .

Factor = Constant | VariableAccess | Constructor | “(" Expression “)” | "not”
Factor .

Constructor = TypeName “(” ConstructorOperand)

ConstructorOperand = Expression | StringToken .

StringToken = “"” { GraphicCharacter } """ .

VariableAccess = VariableName { Selector } .

Selector = IndexedSelector | FieldSelector .

IndexedSelector = “[” Expression “}”

FieldSelector = “.” FieldName .

Constant = SimpleConstant | RealConstant | StructuredConstant .

SimpleConstant = SimpleNumeral | GraphicToken | ControlToken |

] " # " ”"

" “

"

ConstantName.
SimpleNumeral = Digit { Digit } .
GraphicToken = " GraphicCharacter “'" .

"

ControlToken = SimpleNumeral “C
RealConstant = RealNumeral | ConstantName .
RealNumeral = Mantissa [“E” Exponent | .

Mantissa = Digit { Digit } “.” { Digit } .

Exponent = [“+" | “=" | SimpleNumeral .
StructuredConstant = “nil” TypeName | ConstantName .
Name = Letter { Letter | Digit } .

REFERENCES

1. C. A. R. Hoare, ‘Communicating sequential processes’, Comm. ACM, 21, 666-677 (1978).

2. N. Wirth, ‘The programming language Pascal’, Acta Inform., 1, 35-63 (1971).

3. P. Brinch Hansen, ‘Joyce — a programming language for distributed systems’, Software—Practice and
Experience, 17, 29-50 (1987).

