
Systems Reference Library

IBM System/360 Operating System:

.Concepts and Facilities

This publication describes the basic concepts
of the IBMSystem/360 Operating System (the
operating system) and guides the programmer in the
use of its facilities.

The operating system is a comprehensive set of
language translators and service programs
operating under the supervision and coordination
of an integrated control program. It assists the
programmer by extending the performance and
application of the computing system.

I Information concerning Model 195 support is for
planning purposes only.

File No. S360-20
GC28-6535-7

Preface

This publication introduces the facilities
of the IBM System/360 Operating system, and
explains how they work together.

The first section is a general
discussion designed to familiarize you with
operating system concepts and terminology.
A section on designing programs is followed
by detailed discussions of the three main
operating system functions. Language
translator facilities are compared, and
examples illustrating the efficient use of
the system are given. The two final
sections discuss ~ecovery management and
mUltiprocessing. A summary of the
publication and a glossary of new terms are
included at the end of the publication.

Seventh Editi6n (June, 1970)

The emphasis in thi~ book is on what
elements are contained in the operating
system and how these elements work
together.

PREREQUISITE PUBLICATION

IBM System/360 Operating System:
Introduction, GC28-6534

This publication describes the general
organization, function, and application of
the operating system. It also introduces
other related publications and describes
their contents.

This is a major reV1S1on of, and obsoletes, GC28-6535-5.
Information added for this new edition includes: extensions
to System Management Facilities; Alternate Path Retry and
Dynamic Device Reconfiguration; Operating System Volume
Statistics; Remote Job Entry; 7094/Model 85 Integrated
Emulator; MFT with subtasking; a new system utility program,
IEHATLAS; in-stream procedures; direct system output writers;
handling of machine malfunctions on the Model 195 by SER
routines (Model 195 information is for planning purposes
only); Channel-Check Handler Dynamic Loading; SER1 Wait State
support; new sections on the Error Recovery Procedures and
the OLTEP programs, and the STAE and SPIE macro instructions;
corrections to FORTRAN H data management capabilities. The
document should be reviewed in its entirety. Other changes
to the text, and small changes to illustrations, are indi
cated by a vertical line to the left of the change; changed
or added illustrations are denoted by the symbol • to the
left of the caption.

This edition applies to release 19, of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein; before
using this pUblication in connection with the operation of
IBM systems, consult the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

© Copyright International Business Machines Corporation 1965,1967,1968,1969,1970

I SUMMARY OF MAJOR CHANGES - RELEASE 19

SECTION 1: INTRODUCTION.
The Operating System and the
Concept of Work • • • •
Operating System Concepts
What the User Must Do • • • •
What the System Does • • •
Service Programs • • • •
Operating System Control Program
Options • • • • • • •.•
S'lllIUDary • • • • • • • • • • • •

7

9

9

• 10
• 10
• 13
• 15

• 16
• 17

SECTION 2: PROGRAM DESIGN '. 18
segmenting Programs • 18

Combining Subprograms at
compilation Time • • • • • • 18
combining Subprograms at
Linkage Editing Time • • • • • • • • 18
Combining Programs at Job Entry
Time . . • • • . • • • . . .• • . • • 18
Combining Programs at Execution
Time . '. • . • • . I.

What the User Must Do • • • • '.
What the system Does in Response •

Load Module Execution • • • •

• 19
• 19
• 20
• 21
• 24 Program Design Facilities • • • •

Libraries ••••
Reusability • • • • •
Checkpoint/Restart • •

• • 24

I Service Aids • • • • • • • • •
Language Comparison: Program Design
Facilities • • • • • • •

SECTION 3: DATA MANAGEMENT
What the User Must Do • • • •

When and/or Where to Specify
Information • • • • • • • • • • • •

The Data Definition Statement
Data Set Labels
The Data Control Block.

Access Techniques ••••
Queued Access Technique • • • • •
The Basic Access Technique •

Device Independence
The Shared Direct Access Device

• 24
• 25
• 25

• 26

• 27
27

• 27
27

• 28
• 28
• 29
• 29
• 29
• 29

(Shared DASD) Option • • • • • • 30
What the System Does • • • • 30

Direct Access, Labels • • •••• 30
Magnetic Tape Labels • • • • • • • • 30
Data Set Retrieval Services • 31
Generation Data Groups • • • • • 31
collecting Data Set Information • '. 32
Other Functions OI OPEN • • • • • • 33

Accessing Data • • • • • • • • • • • • 33
Managing Buffers • • • • • • • • • • • 36

Allocating Main Storage for Buffers 36
Buffer scheduling • • • • • 37
TransmittalModes • • • • • • • • • 37

Data Processing Techniques • • • • • • 39
Operating System Volume Statistics • • 40

Contents

Language Comparison: Data Management
Facilities • • • • • • 41

SECTION 4: JOB MANAGEMENT
What the User Must Do

• • • • • 42

Job Control Statements •
Summary of Job Control Statements
Uses of the JOB, EXEC~ and DD

• • 42
• 42
• 42

Statements • • • • • • • • • 43
What the System Does • • • • • • • • • • 43

The Job Scheduler • • • • • 43
The Master Scheduler • • • • 44
SUIl'lllary of Job and Master Scheduler
Functions •• • • • _ • • • 45

Scheduling in PCP • • • 45
Scheduling in MFT • 46
Scheduling in MVT • 46
Multijob Initiation • 46

Language Comparison: Job Management
Facilities • • • • • • • 46

SECTION 5: TASK MANAGEMENT • 48
What the User Must Do 48

Establishing Priority 48
Creating Tasks • • • • • • • 48
Synchronizing Events • • • • 49
Allocating Main Storage • • • • • • 49
Protection of Storage • 49
Passing and Sharing Main Storage • • 49
Establishing Intervals • • • • • 49
Terminating Tasks • 50
Time Slicing • • • • • • • • • 50

Wha t the System Doe s '. • • • • • 51
Resource Allocation • • • 51
Supervising a Task • • • 51

The Environments of a Task • • • 52
A Single-Task Environment (PCP) • 53
A Multitask Environment • • • • • 53

• 54

• 55
• 55

MultprogramniingWith a Fixed
Number OI Tasks (MFT) ••••
Multiprogramming With a Variable
Number of Tasks (MVT) ••••
Rollout/Rollin (RO/RI) • • • •
System Management Facilities •
Step Restart • • • • • •

• • • 56
• 56

Language Comparison: Task Management
Facilities • • • • • • • • • • • • • 56

SECTION 6: RECOVERY MANAGEMENT
What the User 'Must Do
What the System Does • •

SERO •
SER1 ••
MCB/65
MCH/85
CCH • • • •
APR
DDR

Error Recovery Procedures and The
Online Test Executive Program

Error Recovery Procedures
Online Test Executive Program

• • 58
• 59
• 59

• • • 59
• 59

• • • 59
60

• 61
• 61

• • • 61

• 61
• 61
• 62

Language Comparison: Recovery
Management Facilities • 62

SECTION 7: MULTIPROCESSING • 63
Advantages • • • • • • • • • 63
The Model 65 Multiprocessing system 63
Data Management in a
Multiprocessing Environment • • • .• 64
Job Management in a Multiprocessing
Environment • • • • • • • • • • • • 64

Task Management in a
Multiprocessing Environment
Recovery Management in a
Multiprocessing Environment

SECTION 8: SUMMARY

GLOSSARY •

INDEX

• 64

64

• 65

• 67

• 77

Illustrations

Figures

Figure 1. Work to the User and to the Figure 12. Dynamic Execution, More
Operating System · · · · · .. · · · 9 Than One Task per Job Step · .. · · · · 23
Figure 2. User Requests and System Figure 13. Direct Access Label · 30
Response . · · · · · · · · .. · · 10 Figure 14. standard Magnetic Tape
Figure 3. User Requests · · · · · · · 11 Label · · · · '. · · · · · 31
Figure 4. Producing an Object Module 12 Figure 15. Data set Retrieval Through
Figure 5. Producing a Load Module 13 the Catalog . · · · · · · · · 32
Figure 6. User's Input to the Figure 16. How OPEN Fills a Data
Operating System · · · .. · · 'OO · · · · 13 Control Block · · · · · 33
Figure 7. User Requests for System Figure 17. Data Organized
services 'OO · 'oo 'OO · · · · · 15 Sequentially · · · · · · .. · 34
Figure 8. System Logic Flow for a Figure 18 .. Partitioned Data Set .. 35
simple structure · .. · · .. · · · · · · 20 Figure 19. Indexed Sequential Data
Figure 9. Storage Allocation for a Set . . · · · · · · · · · 36
Planned Overlay structure · · .. · 20 Figure 20. Exchange Buffering
Figure 10. System Response for a Substitute Mode · · · · · · · · · 38
Planned Overlay Structure · · · · · 21 Figure 21. Scheduling in PCP · 45
Figure 11. Dynamic Execution, One Figure 22. scheduling in MFT and MVT · 47
Task per Job step · · · · · · · 22 Figure 23. Resource Queues · · · .. · · 52

Figure 24. Conceptual Flow of System
Respcnses to User Requests · · · · · · 66

Tables

Table 1. IBM system/360 Operating Table 4. Data Access Methods · · 39
System Elements · · 10 Table 5. Access Method Summary · 39
Table lA. Operating system Elements · · 11 Table 6. Language Comparison: Data
Table lB. Operating system Elements · · 12 Management Facilities . · · · · · 41
Table lC. Operating system Elements · · 15 Table 7. Language Comparison: Task
Table 1. Operating System Elements · · 16 Management Facilities . · · · · · 57
Table 2. Load Module Attributes · 19 Table 8. Synopsis of Recovery
Table 3. Language Comparison: Management Capabilities · · · · . · 60
Program Design Facilities . · . . · 26 Table 9. Operating System Elements . · 65

Summary of Major Changes--Release 19

r-----------------T--T--------------,
I Item I Description IAreas Affected I
~-----------------+--+--------------~
ISystem Management I This facility has been expanded and is now available 150,52,,56 I
I Facilities Iwith MFT. Job step CPU timing now functions in MFT asl I
1 lit did in MVT. You may limit the number of logical I I
1 lrecords processed by SYSOUT. SMF routines can now be I I
1 lused to determine data set activity for each problem I I
1 Iprogram and also to acquire volume usage information I I
I Ifor direct access devices. Output supplied by the SMFI I
I Iroutines can be used to create and maintain I I
I linventories on direct access and tape devices. I I
~-----------------+--+--------------~
11/0 RMS IAlternate Path Retry ensures that a different channel 158,59,61, I
I (Alternate Path Iwill be tried on retry of channel-detected errors. 164,67,69 I
IRetry and DynamiclThis is done by marking failing paths offline and I I
I Device lindicating the offline paths to the I/O supervisor. I I
I Reconfiguration) IDynamic Device Reconfiguration can be requested by the I I
I loperator any time during execution, or by the system I I
I lafter a permanent error for all demountable volumes. I I
I IDynamic Device Reconfiguration monitors the validity I I
I lof the requests and responses of the operator, and I I
I lattempts to force the operator to complete I I
I Isystem-requested swaps before initiating his own. I I
~-----------------+--+--------------~
10perating System IThis facility monitors read and write errors. Through I 40,69 I
IVolume Statisticslits two options -- Error Statistics by Volume and I I
I IError Volume Analysis -- statistics such as volume I I
I I serial number and the number of temporary and/or I I
I Ipermanent read or write errors, may be collected and al I
I Ilimit placed on the number of temporary read or write I I
I I errors. Currently, this facility supports only tape I I
I I volumes. I I
~-----------------+--+--------------~
IRemote Job Entry IThis facility provides job entry capability for users 134,74 I
I (RJE) lat remote keyboard terminals connected to a System/3601 I
I Iby communications lines. Once a job is entered into I I
I Ithe job stream by RJE, execution of the job proceeds I I
I lunder supervision of the operating system. I I
~-----------------+--+----------~---~
17094/Model 85 IIntegrated emulator programs allow object programs 134,74 I
I Integrated Iwritten for one system to be executed on another I I
I Emulator Isystem using a compatibility feature that consists of I I
I ladded hardware and microprogrammed routines that aid I I
I I emulation. The integrated emulator program is I I
I lexecuted under the control of the operating system in I I
I la multiprogramming environment. I I
~-----------------+--+--------------~
IMFT IThe ATTACH macro instruction may now be used in an MFT116,17,21,48, I
ISubtasking Isystem to create subtasks. 150,51,53,54, I
I I 155 I L _________________ ~ __ ~ ______________ J

(Continued)

Summary of Major Changes - Release 19 7

(Continued)
r-----------------T-------------~--T--------------,
I Item I Description IAreas Affected I
~----------------+--+--------------~
IIEHATLAS IA new system utility program: it is used to recover 115,10 I
I lusable data from a defective track, assign an I I
I I alternate track, and merge replacement data with the I I
I Irecovered data onto an alternate track. I I
~----------------+--+--------------~
lIn-Stream IAn in-stream procedure is a set of job control 143,10 I
I Procedures I stateme'nts placed in the input stream. They can be I I
I lused any number of times during the job by naming the I I
I I procedure in an EXEC statement. I I
~----------------+--+--------------~
IDirect SYSOUT IDirect system output writers control the writing of 144,41,54,69 I
I Writers loutput data sets directly to the system output device I I
I Iduring execution of the job. I I
~-----------------+--+--------------~
Isystem/360 IMachine malfunctions on the Model 195 are recorded by 158 I
IModel 195 Ithe SER routines. Note: This information is for I I
I I planning purposes only. I I
~----------------t----------------~--------~----------------------------+--------------~
I Channel-Check ICCH routines may now be loaded dynamically at Initial 161 I
IHandler Dynamic Iprogram Loading (IPL) time or at nucleus I I
I Loading linitialization (NIP) time. I 1
~----------------+--+--------------~
ISER1 Wait state ISERl ability to recover from machine checks has been 161 I
I I extended. 1 I
~----------------+--------------------------------~---------------------+--------------~
10nline Test 10LTEP has been added to this publication, although it 162,12 1
IExecutive Programlhas nothing specifically to do with this Release. It I I
I (OLTEP) Iwas added to give operating system recovery management 1 1
I Imore perspective. OLTEP is a part of a set of I I
I Iprograms that can be used to test I/O devices, control I I
I lunits, and channels concurrently during the execution I 1
I lof programs. I I
~-----------------+--+--------------~
IError Recovery IERPs have been added to this publication. Although 160,61,69 1
IProcedures (ERPs) I they have nothing specifically to do with this I I
I IRelease, they were added to give operating system I I
I Irecovery procedures more perspective. Error Recovery 1 I
I IProcedures are standard procedures designed to ensure I I
I Ithat all the routines that test particular devices I 1
I Iprovide a uniform type and quality of information. I I
~----------------+--+--------------~
Iset Program ISPIE has been added to this publication. Although it 150 I
I Interrupt Exit Ihas not been modified for this release, it was added I I
I (SPIE) macro Ito expand the discussion on task termination. SPIE I I
I instruction I allows the user to request program error exits. I I
~----------------+--+--------------~
ISpecify Task ISTAE has been added to this publication. Although it 150 I
I Abnormal Exit I has not been modified for this release, it was added I I
I (STAE) macro Ito expand the discussion on task termination. STAE I I
I instruction lallows the user to exit to a routine before ABEND I I
I I processing.. I I
~-----------------+--+--------------~
I FORTRAN H ICorrections are made to the data management language 141 I
I I comparison table for FORTRAN H which may be used for I I
I I scheduling for I/O operations, processing a direct I I
I Idata set, record overflow, and write validity checks. 1 I
~-----------------+--+--------------~
I Service Aids ISeven new programs designed to aid diagnosis of 125 I
I I problems. 1 I L _________________ ~ __ ~ ______________ J

8 Concepts and Facilities (Release 19)

A data processing installation exists for
one main purpose: to do work,. To fulfill
this purpose economically and efficiently,
all the installation's machine facilities
should be kept as busy as possible. An
operating system also exists for one
purpose: to increase the productivity of a
computer installation. It achieves its
purpose by managing the allocation of all
available resources, including the central
processing unit, main storage, input/output
devices, and any programs that are in, or
are part of, the system. Therefore,
getting work done is the common denominator
of an installation and an operating system.

The large volume of work that an
installation must do cannot all be done at
the same time, simply because there are not
enough resources. Therefore, the work load
is divided into independent jobs. When a
job is introduced to the IBM System/360
Operating System (the operating system),
the required resources are allocated to the
job. Now the operating system has a task
to perform, which is your job. Thus, the
same unit of work is viewed differently by
the user and by the operating system# as
depicted in Figure 1.

To User To Operating System

A Task

AJob

Figure 1. Work to the User and to the
Operating system

Section 1: Introduction

A certain machine configuration and a
certain operating system configuration are
selected at an installation, depending on
the type and volume of work that must be
done there. The machine configuration must
have certain components, such as a central
processing unit and I/O devices; the
operating syst.em configuration must also
have a certain component: a control
program (the routines in the operating
system that manage resources, implement
data organization and communications
conventions, and contain privileged
operations). This control program may
handle one task at a time, it may supervise
execution of a fixed number of tasks at the
same time, or it may supervise execution of.
a variable number of tasks at the same
time. The type of control program selected
depends on how much computing power is
needed. However, regardless of the type of
control program selected, its major
functions are the same.

The Operating System and the
Concept of Work
Getting work done is actually problem
solving. The operating system enables you
to conceBtrate on this goal by performing
many routine data processing operations for
you.

To be effective, the operating system
must be general enough to accommodate a
variety of applications on a wide range of
hardware configurations. It is, therefore,
made up of a general library of programs
that can be tailored to the installation's
requirements. Required system programs are
selected, user-written programs added, and
existing programs updated to meet the
installation's needs.

The programs that compose the operating
system are classified as a control program
and processing programs. The three main
functions of the control program are to:

1. Accept and schedule jobs in a
continuous flow (job management);

2. Supervise, on a sequential or priority
basis, each unit of work to be done
(task management);

3. Simplify storage, retrieval, and
maintenance of all data, regardless of
the way it is organized and stored
(data management).

Section 1: Introduction 9

The processing programs consist of
language translators (such as the FORTRAN
compiler) " service programs (such as the
Linkage Editor), and problem programs (such
as your programs). You use the processing
programs to define the work that the
computing system is to do and to simplify
program preparation.

The elements of the operating system are
shown in Table 1. How these elements work
together is described in general in the
remainder of this section, and in more
detail throughout the publication. Note
that the description includes facilities
that may optionally be omitted from the
system.

-Table 1. IBM System/360 Operating system
Elements

r---,
I Control Program Elements I
~---~
I r-----------, r-----------, I
I I Job I 'Task II
I 'Management I ,Management 'I I L ___________ J r-----------, L ___________ J I
I I Data I I
I IManagement I I I L ___________ J I

~---~ I Processing Program Elements ,
~------------T-------------T-------------~
I I Service , Application I
'Languages I Programs I Programs I
~-------------+-------------+-------------i
I ALGOL Data Set , User I

Assembler utilities I Written I
COBOL Independent I • I
FORTRAN Utilities I I
PL/I Linkage I I
RPG Editor I I

Sort/Merge I ,
S~~m' I
Utilities I I

TESTRAN I ,
7094/M85 I I
Integrated , ,
Emulator' I L _____________ ~ _____________ ~ ___________ _J

Operating System Concepts

To illustrate operating-system concepts,
you will be introduced to the system by
following the flow of one job through the
system. The job involves compiling a
program, loading it, and executing it. The
emphasis is on what you must do and what
the system will do in response.

Two illustrations are used to help you
understand the flow of work through the
system. The first is a table, which has
already been shown in its completed form.
How it reached this form will be shown as
the example proceeds.

10 Concepts and Facilities (Release 19)

The second is a diagram to be developed
along with the exaniple. Figure 2 is first
shown in its completed form. This diagram
will be used and detailed throughout the
remainder of the publication, both as a
memory aid and to illustrate more clearly
the unity of the system.

Figure 2. User Requests and System
Response

What the User Must Do
Before any problems are solved and work is
done, the necessary operating system
compcnents must be selected. This is done
through system generation.. The operating
system produced is composed of the standard
component included in every operating
system (a control program), those optional
components selected from available
processing programs, and any additions you
provide. The control program and most
processors have a variety of optional
features that may be selected for
particular needs. The resulting system is
tailored to your installation's work load
and machine configuration. Furthermore,
through the use of the nucleus
initialization program (NIP), last-minute
changes can be made to certain options
specified during system generation. The
operator makes these changes through the
console.

Now that you have your system, you want
to begin getting work done. You are given
a problem and you must solve it; that is,
design and code a program. To design a
program that makes the most efficient use
of the operating system's facilities, you
must consider many factors. Some of the
more important ones are the amount of main
storage available, the programming and
machine resources required, and whether
this program is to be a resource for other
programs.

In the simplest case, there may be
enough main storage available so that your
program can be self-contained: the program
does not need to call any other programs
during execution. Tbis is called a simple
structure; the program is loaded and
executed as an entity.

However, your program may be too large
to be in storage at one time. You can
handle this situation by dividing the
program into smaller, more easily managed
subprograms. These subprograms could be
designed so that one segment -- a root
segment -- is always resident in storage,
while the other segments overlay each other
as required. This is called a planned
overl ay structure; the subprograms are
loaded and executed serially.

Another possibility is to design your
program so that the subprograms are
executed one after the other., while
programming resources are called when
needed during execution. This is called a.
dynamic structure. It is advantageous
where existing programs must be
incorporated into a larger program.

One type of dynamic structure is one in
which your program executes in parallel
with other tasks in the system: the
subprograms are loaded as required and
programming resources are called
dynamically, while the same process is
going on at the same time for one or more
other tasks.

A final pOint to consider when designing
your program is whether it is to be a
system program. There are three kinds of
programs:

1. If the program modifies itself during
execution, a fresh copy must be
brought in every time the resource is
needed. This is a non-reusable
program.

2. If the program nullifies any changes
during execution, a single copy may be
used over and over again, as long as
each request is completely honored
before another is entertained. This
is a serially reusable program.

3. Finally, you can design your program
so that it does not modify itself
during execution. In this case, a
single copy may begin execution for
request A, then completely honor a
request from B, and then go back to
finish executing for request A. This
is a reenterable program.

During execution your program could be
depicted as shown in Figure 3.

Once you have designed your program, you
can code it. The source languages
available are shown in Table lA.

WORK DONE? PROGRAM NEEDED? DATA NEEDED?

I' USER PROGRAM

Figure 3. User Requests

Table lA. Operating System Elements
r---,
I Control Program Elements I
t---~
I I
~---~
I Processing Program Elements I
~-------------T-------------T-------------~
I I I Application I
I Languages I I Programs I
~-------------+-------------+-------------~
I ALGOL I I I
I Assembler I I I
I COBOL I I I
I FORTRAN I I I
I PL/I I I I
I RPG I I I L _____________ ~ _____________ ~ _____________ J

When your coding is complete,
source program or source module,
transcribed onto cards or tape.
then be processed by the system,
the system knows:

you have a
which is
It can
as long as

1. What resources the compiler needs to
translate your source language program
into machine language. (The output of
a compilation or assembly is in
machine language and is called an
object module.)

2. What must be done to put the object
module into a loadable format.

3. What resources your program needs and
where your data is.

You provide this type of information
through a job control language (JCL).

section 1: Introduction 11

The primary purpose of the job control
language is to communicate with the
scheduling components of the operating
system. You tell the system how you have
divided your jobs into job steps (those
units of work, each of which is associated
with one processing program and related
data), where your data is, and what
resources are needed to execute each step.

The first step in the example is to
process your source module. ~'he processing
is illustrated in Figure 4.

Since a language translator does not
resolve all addresses, symbolic references,
etc., an object module cannot be executed.
It must be processed by a service program
called the linkage editor that resolves
these references and places the object
module in a form suitable for loading. The
output of the linkage editor is called a
load module. Figure 5 depicts the
production of a load module.

The linkage editor is one service
program provided by the operating system,
as shown in Table lC. An alternate way of
processing an object module is through the
loader. The loader will load into main
storage for execution object modules
produced by a language processor and load
modules produced by the linkage editor.
Optionally, it can resolve external
references. The loader does not produce
load modules for program libraries. The
loader is another service program provided
by the operating system.

To obtain first an object module, then a
load module, the system had to know what
resources the language translator and the

User Input Sou",. P.-ogrom + ~
Control Statements

Transcribed to

Operating System Component

Output of Language Translator

Figure 4. Producing an Object Module

12 Concepts and Facilities (Release 19)

linkage editor required. To execute a
program, you must tell the system~ in your
control statements, how you have divided
your work into jobs and job steps, what
resources they will need, and where your
data is. This information is used before
the system gives control to your program
and during execution.

Table lB. Operating System Elements
r---,
I Control Program Elements I
~---~
I I
.-------------T-------------T-------------~
I I service I Application I
I Languages I Programs I Programs I
.-------------+-------------+-------------~
I ALGOL I Linkage I User I
I Assembler I Editor I Written I
I COBOL I Loader I I
I FORTRAN I I I
I PL/I I I t
I RPG I I I L _____________ ~ _____________ ~ _____________ J

Your input, either on cards or tape, may
now be viewed in three parts:

1. Control statements that inform the
system of required resources,

2. Your program, structured according to
its purpose and coded in a source
language,

3. Optionally, data, which your program
will process.

Figure 6 now shows your input ready for
entry into the system.. This completes your
preparation. It is now up to the system to
honor your requests and supervise the
execution of your work.

> GJ] 8 or

Ie)

Processed
by a
Language
Translator

Which Yields

r
, // ,

/ , /

- --- ~----
// "

// ,
an Object Module

User Input

Operating System
Component

Output of Language
Translator and Input
to Linkage Editor

Operating System
Component

Output of Linkage
Editor

Source Program +
Translator Control Statements

Linkage Editor
Control Statements

Figure 5. Producing a Load Module

JOB EXAMPLE

,----,
\---, I
\- -, I I
} I I I

I-..J I I
f--...J I

L __ -1

JOB STEP

COMPILE

JOB CONTROL
STATEMENTS

,---,

m-, ~
) I I

/-.J I
I L __ --1

JOB STEP 2

LINK EDIT

YOUR PROGRAM

USER INPUT CARDS OR TAPE

JOB STEP 3

EXECUTE

YOUR DATA

Transcribed to or

y

Processed
by a
Language
Translator

I

~ Which Yields

", / " / " / -- -*---
/ "

8

// "
"'-----.-_:.J An Object Module

Processed
by the
Linkage·
Editor

I ! Which Yields

®
A Load Module

JOB MANAGEMENT

)

Figure 6. User's Input to the Operating system

What the System Does

The system must first read your source
program into main storage and prepare it

for execution. It must also make provision
for allocation of resources.

The first functions performed by the
control program are to read and analyze the

section 1: Introduction 13

control statements, and initiate the work.
Note that the system also has tasks.
Getting your job ready for execution is a
task to the system. (A task is the
smallest, independent unit of work that can
compete for the resources of the system.)
Therefore, until your program is actually
given control, it is treated as data by the
system.

The same functional area of the control
program that reads and analyzes the control
statements also:

1. Schedules the job step for execution,
on either a priority or sequential
basis.

2. Allocates input/output devices.
3. Initiates the work.
4. Handles the termination of the job

step. .
5. Handles communication with the

operator.
6. Controls the output writers, write

output on a system output device
independently of the program that
produced the output.

In our example" these procedures would
apply for the compiling and linkage editing
phases of the job, as well as for the
actual execution of your program. This
functional area of the control program is
known as job management. It is the first
and last portion of the control program
encountered by your jobs.

One means of direct communication with
the operating system is the job control
language, and the flow of control
statements and data entering the system is
known as the input stream. When your
program, in the form of object modules, is
read into storage~ it is routed first to a
direct access device (disk or drum).
(Object modules may appear in the input
stream, but load modules come only from
direct access devices, where the linkage
editor puts them.)

Your program must be loaded into main
storage, other resources allocated to it,
and tables and records maintained about it
so that processing may be resumed from the
appropriate point in case of an
interruption. These supervisor functions
are handled by a group of programs known as
task management.

The task management programs acquire all
resources for your program other than I/O
devices through assembler language macro
instructions. These macro instruction
names are mnemonic, descriptive, and always
capitalized (for example, GETMAIN).
Control is passed from job management to
task management.

14 Concepts and Facilities (Release 19)

Finally, the operating system must store
and retrieve data as requested. All named
collections of data are called data sets
and the general name for the operating
system programs that control I/O and
related operations (operations are
requested by macro instructions) is data
manageIr:ent •

Data management has two techniques for
transmitting data between main and
secondary storage -- the queued technique
and the basic technique. These techniques
offer you a wide variety of automatic
services. With them you can retrieve and
store logical records (or records defined
in terffiS of the information they contain),
hereafter simply called records. Blocking
and deblocking may be left to the data
management programs. Also, I/O operations
can be synchronized with processing, and
I/O overlap is automatically arranged.
Furthermore, through the use of the Shared
Direct Access Device option (Shared DASD)
independently operating computing systems
can share common data residing on shared
direct access storage devices.

If the features of these access
techniques do not meet your particular
requiremen~s, you can control I/O directly
by writing your own channel programs.
scheduling and indication of completion are
handled by the system.

Data transmitted to main storage may be
placed in buffers., which are areas of main
storage set aside to receive the data.
Data management provides a wide variety of
methods to handle these buffers. For
example, you can process records while they
stand in the buffers. or data management
programs will move them to your work area.
With the latter method, you need never be
concerned with buffer location.

The buffering methods let you exchange
your work area for a buffer so that you can
continue processing while more records are
being read or written.. If you use eXChange
buffering" the data is not moved in main
storage.

Thus, the final control program entry is
made in Table 1C and the general diagram,
Figure 7, is expanded to include the
control program functions .•

The example introduced all the control
program functional areas, all the available
source languages, a service program (the
linkage editor), and the concept of user
programs as system resources. However,
there are other service programs available.

Table lC. Operating System Elements

r--, I Control Program Elements I
~-----------------------------------~
I r-----------, r----------, I
I I Job I I Task II
I I Management I I Management II 1 L __________ J r--------, L _________ J 1

I lData I 1
1 I Management 1 I I L ___________ J I

~-------------T-------------T-------------~
I 1 Service I Application I
1 Languages lprograms I Programs I
~------------+-------------+-------------~
I ALGOL I Linkage I User I
I Assembler I Editor I Written I
I COBOL I Loader I 1
I FORTRAN 1 I I
I PL/I I I I
I RPG I I I L _____________ ..L ____________ ..L ______ , _______ J

Figure 7. User Requests for System
services

Service Programs
Included also among the service programs
are three types of utility programs:
system utility programs~ data set utility
programs, and independent utility programs.

System utility programs, executed under
control of the operating system:

• Modify system control data by building
and maintaining catalogs and volume
structures.

• Move and copy collections of data to
rearrange data and create backup
copies.

• List the system control data, such as a
catalog, a directory of a partitioned
data set, or a volume table of

ccntents. (These terms are fully
defined in section 3.)

• Place a character set into a printer
control area.

• Retrieve, edit, and write previously
generated error environment records.

• Initialize and assign alternate tracks
to a direct access volume; dump and
restore the data contents of a direct
access volume.

• Recover usable data from a defective
track, assign an alternate track" and
merge replacement data with the
recovered data onto an alternate track.
(This program is called IEHATLAS.)

Data set utility programs, also executed
under control of the operating system:

• Copy and merge partitioned data set
meIrlbers.

• Copy records from sequential data sets
(tape-like organization) and convert
sequential data sets to partitioned
organization.

• Compare records in sequential or
partitioned data sets.

• Print or punch records in sequential or
partitioned data sets.

• Update symbolic library modules at the
source-language level.

• Create multiple data sets within one
job for the sequential and partitioned
access methods.

• Compress the me~bers of a PDS within
its original extent and provide a
su~mary of remaining space.

Independent utility programs executed
outside the operating system:

• Initialize and assign alternate tracks
to direct access volumes.

• Dump and restore the data contents of a
direct access volume.

• Recover usable data from a defective
track, assign an alternate track, and
merge replacement data with the
recovered data onto the alternate
track.

The sort/merge program is a generalized
program that can arrange fixed- or
variable-length records into ascending or
descending order. The process can employ

Section 1: Introduction 15

either magnetic-tape or direct access
storage devices for input, output, and
intermediate storage. The program is
adaptable in the sense that it takes
advantage of all input/output resources
allocated to it by the control program.
The sort/merge program can be used
independently of other programs or it can
be called directly by t'hemi it can also be
called through COBOL and PL/I.

The 7094/M85 Integrated Emulator allows
object programs written for one system to
be executed on another system using a
compatibility feature. The compatibility
feature consists of added hardware and
microprogrammed routines that aid
emulation. The integrated emulator program
is executed under the control of the
operating system in a multiprogramming
environment,.

Finally, to aid in testing programs, the
operating system has a test translator
facility: TESTRAN (available only to
assembly language programs). TESTRAN helps
uncover faulty logic by providing printed
information about the actual working of a
program. At the programmer's direction"
TESTRAN describes the changing contents of
storage areas, registers, and control
blocks, and also describes control flow
from one group of instructions to another.

Here is Table 1 in final form.

Table 1. Operating System Elements
r---,
j Control Program Elements I
~--~
I ,----------, r-----------, I
I I Job I I Task II
I I Management 1 lManagement II IL-----------J r-----------, L ___________ JI
I I Data 1 I
1 1 Management 1 I I L ___________ J 1

~-------------T------------~-------------~
I I Service I Application I
I Languages I Programs i Programs I
~------------+-------------+-------------~

ALGOL I Linkage I User
Assembler I Editor I Written
COBOL I Loader I
FORTRAN . I System 1
PL/I I utilities I
RPG lData Set 1

I Utilities I
lIndependent 1
1 utilities I
ISort/Merge 1
lTESTRAN I
17094/M85 I
I Integrated I
I Emulator I _____________ ~ _____________ ~ _____________ J

16 Concepts and Facilities (Release 19)

Operating System Control Program OptiOJ

There are three types of control programs:
the primary contr'ol program (PCP),
multiprogramming with a fixed number of
tasks (MFT), and multi'programming with a
variable number of tasks (MVT).

The primary ,control program (PCP)
schedules and executes job steps one at a
time. This configuration is well suited
for the installation that does not need a
more powerful System/360 now, but may
later.

MFT reduces the problem of CPu wait-time
by supervising the execution of more than
one job at a time. Each job is executed in
its own area of main storage. The size of
each of these areas, or partitions, is
established when the system is generated,
but may be changed by the operator if
required. MFT is especially useful to
users who must process a wide variety of
jobs that .require a corresponding variety
of ccmputing system resources. The
system's capability of providing partitions
as small as 8K bytes is a distinct
advantage to the user with many small jobs.

MFT systems with subtasking (optional)
allow the user to execute more than one
task within a partition. Thus, MFT (with
subtasking) extends the idea of priorities
beyond between-job competition for
resources to competition within jobs, that
is, different priorities can be given to
separate task~ of a job step.

MVT also supervises execution of more
than one job step at a time. In addition,
it allocates main storage dynamically to
each job. MVT supports the large job
customer and the customer who has many
small jobs.

Be~:ore MVT can schedule a job, the
programmer must request, through a control
language, the amount of main storage
required and the devices required. Since a
single job will probably not require all of
main storage nor all devices, the remaining
resources can be given to other jobs. The
programmer also has some control over the
sequence of job scheduling. Instead of
scheduling jobs in the order in which they
are submitted, MVT schedules jobs according
to specified priorities.

When two or more jobs are being executed
concurrently, each job competes for the
machine and program resources it needs,
unless the j cbs are being executed under

MVT with Model 65 multiprocessing. In that
case, each job competes for use of one of
the CPUs and the program resources it
needs. The main factor in resolving the
competition for machine resources is the
scheduling priority of the job. When two
jobs are being executed, the job with the
higher priority uses the CPU when it needs
it. When two jobs are being executed under
MVT with Model 65 multiprocessing (i.e.,.
one job in each CPU), each job uses one
cpu. Both jobs can share reenterable
program resources.

MVT also extends job-step competition
for resources to competition within jobs,
as discussed in the preceding description
of MFT systems with subtasking .•

Summary

The operating system is modular in concept
to serve a wide variety of applications and
to support a broad range of hardware
configurations. Its control program
functions of data management, job
management, and task management allow
closer supervision of all your jobs. Its
processing programs allow you to add,
modify, or delete functions, according to
your changing needs. The operating system
establishes a direct line of communication
between the programmer and the computing
system and keeps this line open with
minimal clerical assistance from the
programmer.

Section 1: Introduction 17

Section 2: Program Design

Program designing is of optimum importance
because an efficient and economical
installation is achieved only when all its
facilities are as busy as possible.

Remember that your program mayor may
not need other programs to complete
execution: the program may contain all the
code necessary to complete execution or it
may have to call another program. This is
an illustration of the concept of
modularity.

To obtain maximum efficiency, you should
design your programs as easily implemented
subprograms and structure them in one of
three ways: simple, planned overlay,
and/or dynamic. In any case, any load
module on a library can be a prograIf:Ir.ing
resource for another load module. Thus,
another way of looking at your programs is
that they can be non-reusable, serially
reusable, or reenterable.

Segmenting Programs
Designing large programs as smaller, more
easily managed subprograms is a normal
method of programming efficiency. It
allows you to:

• Write programs that lend themselves to
variations in parameters. Hence, you
can defer specifications of ·particular
I/O devices, control units, and
channels •

• Write programs that may be somewhat
inefficient if run separately, but
provide maximum efficiency when run
together. FO~ example, if your
programs are being executed in a
multitasking environment, you might
wish to process one task which makes
heavy use of I/O with a task that uses
little I/O, but that does a great deal
of CPU processing.

The operating system expands this
capability: your programs can be combined
during compilation, linkage editing, job
entry, or execution (see Figure 5). Thus,
with little or no change, you can use any
load module as a resource for any other
load module. The net result is increased
efficiency.

Combining SUbprograms at Compilation Time

A program named EXAMPLE 1 is to .be coded by
two programmers.

18 Concepts and Facilities (Release 19)

Duhon codes subprogram A.
Wright codes subprogram B.

Subprograms A and B are keypunched and the
decks combined for compilation:

This is a "batched
compilation."

Combining Subprograms at
Linkage Editing Time

The FORTRAN compiler
processes a source
module and produces
an object module.

This object module
is ccmbined with one
other object module

and one load module

to produce a single
load module ready
for execution

Combining Programs at Job Entry Time

You have a job

divided into
three job steps

job step one

passes its results
to job step 2

Job step 2 passes
its results to job
step three, which
completes the job.

Combining Programs at Execution Time

Your job step

has been attached
as task

,---,
, I
/ I L __ ..J

Another program is needed to complete
execution of this task. Your program
issues the appropriate macro instruction
and the program is brought into main
storage and given control asa subtask of
the job step task.

What the User Must Do
You are given a problem to solve. Because
you must solve this problem in light of the
programming and machine resources at your
installation, you divide your program into
more easily managed subprograms. Each
subprogram is processed by a language
translator, which produces an object
module. In turn~ the object module is
processed by the linkage editor (and may be
combined with other subprograms), which
puts the object module into load-module
form.

Job control statements describe the load
module as a job or job step and indicate
the location, organization, etc., of the
data. The job step is read into storage
and, when the system is ready, it is given
control as a task in the system.

When a new task is created, the control
program is given the name of the first load
module that is to be executed. Depending
on the structure you select, the named load
module may be loaded into storage in one
operation, or it may call upon other load
modules during execution.

A Simple Structure: One load module
contains all the user code necessary for
task performance, that is the module
doesn't pass control to any other modules

during its execution. It is loaded into
storage as an entity. Note that the
requirement to use system code is not
considered by this definition.

A Planned Overlay Structure: A planned
overlay structure is a single load module
created by the linkage editor program in
response to overlay control statements.
Unlike simple structures, however, it is
not loaded into main storage all at once.
Only one control section (called the root
segment) remains in storage at all times.

A Dynaroic Structure: In a dynamic
structure j, more than one load module is
called upon during task perfor.mance. The
control program acts as the intermediary,
and program execution may be serial or
parallel. Each of the load modules to
which control is passed can be one of the
three structure types. Table 2 summarizes
the characteristics of these load module
structures.

Table 2. Load Module Attributes
r-------------T-------------T-------------,
I I I Passes Con- I
I structure ILoaded All Atltrol to Other I
I Type lOne Time ILoad Modules I
~-------------+-----------+-------------~
I Simple I Yes I No I
~~------------+-------------+-------------~
I Planned I No I No or Yes~ I
I Overlay I I I
~-------------+-------------+-------------~
I Dynamic I Yes or No~ I Yes I
~-------------~-------------~-------------~
11A segment of a load module can I
I dynamically call another load module. I L ___ J

For many applications, a simple
structure and a planned overlay would be
inadequate. For example, too many control
sections (the smallest separately
relocatable unit of a program) may be
called upon during execution to have them
all in storage at the same time.. .
FUrthermore, the effectively random order
in which they are called may make the
planned overlay structure difficult or
impossible.

The operating system therefore permits
load modules to be called dynamically
(during the performance of a task). This
is possible because:

• Program retrieval by name is a normal
control program service.

• Main storage is allocated dynamically.
• Programs are treated as resources .•
• Standard linkage conventions permit any

lead module to be executed by any other
load module.

section 2: Program Design 19

What the System Does in Response
For a simple structure: If a load module
contains all the code necessary for task
performance, it follows that a program
designed as a simple structure does not
dynamically employ another load module.
That is" such programs do not issue a LINK,
LOAD, XCTL (transfer control), or ATTACH
macro instruction. These macro
instructions require control program
intervention, thus decreasing efficiency.
(Note: Other load modules could be called
upon indirectly, through control program
intervention.) However" a simple structure
program could itself be dynamically
employed by some other (dynamic) load
module.

You can associate the same load module
with a number of different programs, each
of which can '.' corres pond to a different
entry pOint (any location to which control
can be passed). During linkage editing, a
primary program name and as many as 16
aliases (alternate names or entry points)
may be specified. All names and the
corresponding entry points are contained in
the directory of the library in which the
load module is stored. In addition, a load
module can dynamically specify other names
and entry points. However, these are not
retained when the main storage space used
by the load module is released.

Figure 8 illustrates what the system
does for a simple structure called SIMPLE.

Find the Allocate Load the
Program Space .. Entire
SIMPLE for it Module

Terminate - Supervise Give Control
Task Execution to Module

Figure 8. System Logic Flow for a Simple
Structure

Note: SIMPLE could be a composite of
several load modules that were combined
into a single load module by the linkage
editor. This does not change the fact that
SIMPLE is a program with a simple
structure: it is, at execution time, a
single load module, all of which is in main
storage.

For a planned over lay structure: The root
segment is loaded, and the other logical
control sections of a planned overlay

20 Concepts and Facilities (Release 19)

program are loaded into main storage as
required, each occupying an area of storage
that may at some time be used by a
different segment. Of course, since
control sections are executed serially, you
must plan the relationship of control
sections in advance.

Figure 9 shows what storage might look
like as the various segments of a program,
OVERLAY, are loaded and overlaid. Note:
The root segment -- A -- contains the entry
point of the overlay progr~ and tables
(inserted by the linkage editor) needed to
control the overlay execution. Note that
storage must be large enough to accommodate
the largest segment of an overlay, plus the
root segment.

Storage Available to OVERLAY

Storage Occupied by Segment A (the Root Segment)

Storage When Segments A and B are Resident

Storage After Segment C Overlays Segment B

Figure 9. Storage Allocation for a
Planned Overlay Structure

During the execution of an overlay
program, overlaid segments are, destroyed
rather than saved on secondary storage and
then restored. When a previously overlaid
segment is needed again, a fresh copy is
loaded.

Figure 10 illustrates What the system
does for a planned overlay structure called
OVERLAY.

,d the Allocate
Load the
Root Segment

:>gram ~ Space ~ ----.. Supervise
and Give It Execution IIERLAY for it
Control

Load
Segment B

erminate
~

Supervise
~

Overlay Seg-
~

Supervise
ment B with

ask Execution
Segment C

Execution

Figure 10. system Response for a Planned
Overlay Structure

For a Dynamic structure: A dynamic
structure requires more than one load
module during execution,. Each load module
required can operate as either a simple
structure, a planned overlay structure, or
another dynamic structure. The advantages
of a dynamic structure over a planned
overlay structure increase as the program
becomes more complex, particularly when the
logical path of the program depends on the
data being processed. The load modules
required in a dynamic structure are brought
into main storage when required, and can be
deleted from main storage when their use is
completed. <Note in a dynamic structure
with more than one task per job step,
storage management is more complicated.)

LOAD MODULE EXECUTION

Depending on the configuration of the
operating system and the macro instructions
used to pass control, execution of the load
modules is serial or in parallel.
Execution of the load modules is always
serial in an operating system with the

I primary control program or with MFT
<without subtasking): there is only one
task in the job step. Execution is also
serial in an operating system with MVT,
unless an ATTACH macro instruction is used
to pass control. When an ATTACH macro
instruction is used, a new task is created,
and the load module to which control is
passed is executed in parallel with the
load module containing the ATTACH macro
instruction. The execution of the load
modules is serial within each task.

Figure 11 shows a dynamic execution when
there is only one task per job step. This
task involves three load modules: the
program DYNAMIC. subprogram A. and
subprogram B. Execution of DYNAMIC
proceeds until the macro instruction LINK A

is reached. In this example, subprogram B
is used twice, once at the third level of
control and once at the second level. If B
is still available when called for the
second time, the same copy of B is used,
rather than a new copy (which would require
additional loading).

Figure 12 shows a dynamic execution when
there are two tasks per, job step. During
the execution of Task A, the system detects
the need for execution of Task B. B
continues processing until it must wait for
the conpletion of an I/O event. Control is
passed back to A. Note that A must wait
for the completion of B, before it can
complete processing.

Planned OVerlay Versus Dynamic Structures:
The control program facilities for planned
overlay structures and for dynamic fetching
of load modules are both designed to meet
the need for executing programs larger than
the storage areas available. Each method
has its advantages.

Planned overlay structures can be more
efficient in terms of execution speeds,
because the linkage editing procedure
permits direct references by one control
section to values whose locations are
identified by external symbols in another
control section. In a dynamic structure,
the values of their locations would have to
be passed as parameters between separate
load modules. Furthermore, when using a
planned overlay, supervisory assistance is
needed only to locate a single load module
in the library. When using a dynamic
structure, many load modules need to be
located in order to execute an equivalent
program. Also, with a planned overlay,
supervisory assistance may be less frequent
when going from control section to control
section than if each section was a load
module.

These advantages tend to diminish as
problems get roore and more complex,
particularly when the logical selection of
load modules depends on the data being
processed. In this situation, the use of
dynamically constructed programs is usually
a better solution than planned overlay
programs. Furthermore. load modules
fetched dynamically may be reused ina job
step: sections of load modules fetched
using the planned overlay structure cannot
be reused.

Although both approaches are solutions
to the same problem, there is no
prohibition against using combinations of
the twO. A load module, linked to
dynamically. may itself operate in the
overlay mode. The LINK macro instruction
may also be used within a planned overlay
program.

Section 2: Program Design 21

USER'S REQUEST

A B

SAVE
SAVE

RETURN

LINK A

L1NKB

8

RETURN

SYSTEM RESPONSE

2 Intervention 3 Intervention 4 Intervention

Find and Load Find, Load, and Find, Load, and
Return Control to DYNAMIC; Give Control Give Control
Program A at Instr Give It Control; to Program A; to Program B;
Following LINK; Supervise Supervise Supervise
Superv ise Executi on Execution Execution Execution

7 Intervention 6 Intervention 5 Intervention

8 Return Control Return Control
to DYNAMI C at Give Control

to DYNAMI C at Terminate
Instr Following to Program B; Yes

Instr Following Job Step Supervise
B in Storage

LIN K; Supervise LINK; Supervise
Execution Execution

Execution
No

Find and
Load B

Figure 11. Dynamic Execution, One Task per Job Step

22 concepts and Facilities (Release 19)

User Requests

System Response

Find, Load, and
Give Control to
Task A:
Supervise
Execution

®
Terminate Job Step

1'--1
1 I
I I
I I

tJ
I I
I I
1 1
I 1

Task A

Attach
Task B

CD CD Task B

1!-=--0-
4

... • IT=[]

0
1 1f5\ I 1 I 1

'U 1 1 1 I
I I I I
I I 1 I

I I
I I

t1
: i CD 1[lJ]1 I I (I/O Completed]

WaH Took B D ~

CD CD
Give Control to

Task B in Yes Task B,
Task B Needed -

~
Supervise
Execution

No
I

Find and
Load Task B

CD 0
0

Task B I/O Terminate Yes Task B
Task B and Give.

~
Completed; Give

Control to Task A Control to Task B

No

Wait Until
Task B Completed t---

Task B Must
Wait for
Completion of
an I/O Event

CD
Give Control
to Task A;
Supervise
Execution

Figure 12. Dynamic Execution~ More Than One Task per Job step

Section 2: Program Design 23

Program Design Facilities

One of the salient concepts pointed out in
the first part of this section is that
programs are resources. Once your program
is in load module form and placed in a
library, it can be made available to other
tasks in the system. Hence. even though a
program is executed by itself only once, it
could be reused time and time again •.
Therefore, before coding any program, you
should be familiar with the techniques
involved in producing reusable programs and
the special facilities you can request.

Libraries

Programs in load module form are placed in
libraries. There are three types of
libraries:

1. Temporary libraries are partitioned
data sets created to temporarily
contain a program until it is used in
a later job step of the same job.
This type of library is particularly
useful for containing the program
output of a linkage editor run until
it is executed by a later job step.

2. Private libraries are partitioned data
sets that house groups of programs not
used frequently enough to warrant
their inclusion in the system library.
Private libraries are made available
to a job or job step with special DD
(data definition> job control
statements.

3. The system library is a partitioned
data set named SYS1.LINKLIB and SVCLIB
that houses frequently-used programs,
including compilers. This library is
always open to users of the system.

Reusability

All load modules in any library are placed
in one of three categories, as specified by
the programmer at linkage editing time:
not reusable, serially reusable, and
reenterable. (This discussion is pointed
toward program design concepts, not toward
system use of reusable programs. You
should note, however, that when a problem
program calls another program, only MVT
utilizes reusability attributes of the
programs. The primary control program and
the MFT control program treat all programs
as non-reusable, unless they are brought
into storage via a LOAD macro instruction.
In that case, PCP and MFT assume that the
programs are reentrant.)

24 Concepts and Facilities (Release 19)

Not reusable: Programs in this category
are fetched directly from the library when
requested. These programs alter themselves
during execution, and will not execute
correctly if entered again.

serially reusable: A load module of
this type is designed to be
self...; initializing" so that any portion
modified during execution is restored
before it is reused.. The same copy of the
load module may, therefore" be used
repeatedly during performance of a task.
In addition, a serially reusable load
module may be shared between different
tasks, provided that both tasks were
created from the same job step. A further
condition for use of the load module by
more than one task is that it not be in use
by one task at the time it is called for by
another. If it is, the task requests are
placed in a queue" waiting for the load
module to become available.

Reenterable: Such a program is designed
so that it does not in any way modify
itself during execution, that is, it is
"read-only." Reenterable load modules
fetched from the system library are loaded
in storage areas protected with the same
storage key that is used for the supervisor
program.

Since only the control program operates
with a matching PSW protection key,
reenterable programs are protected against
accidental modification by any other user
programs. Since a reenterable load module
is never modified during its execution, it
can be loaded once and used freely by any
task in the system at any time.
Specifically, it can be used concurrently
by two or more tasks in multitask
operations, that is, in MFT and MVT. One
task may use it, and before the module
execution is completed, an interruption may
give control to a second task~ which, in
turri, may reenter the module. This in no
way interferes with the first task resuming
its execution of the module at a later
time.

In MFT and MVT, simultaneous use of a
load module is considered to be normal
operation. such use is an important factor
in minimizing main storage space
requirements and program reloading time.
Many of the control program routines are
written in reenterable form, so that they
can be shared between tasks and reused
within a single task. A load module of
this category can be executed correctly
even though the protection key in the
program status word during task execution

is different from the supervisor storage
key. This is possible because the
protection key comparison must be satisfied
only when the contents of the addressed
storage area are to'be altered. The
contents of storage areas containing
reenterable programs are not altered in any
way during execution.

Design of Reenterable Programs: A
reenterable program is designed to use the
general purpose and floating point
registers for addressability and variables
where practical, and to use temporary
storage areas that "belong" to the task,
and are protected with the task's storage
protection key. Temporary or working
storage areas of this sort can be provided
to the reenterable program by the calling
program, which uses a linkage parameter as
a pointer to the area. Temporary storage
areas can also be obtained dynamically by
the reenterable program itself.

Note that the storage area obtained is
assigned to the task, not to the program
that requested the space. The space may
subsequently be returned to the
supervisor's control by a macro instruction
or by task completion.

If a reenter able program is interrupted
for any reason, the register contents and
program status word (PSW) are saved by the
supervisor in an area associated with the
interrupted task, and restored later when
program execution is to continue for that
task. No matter what use is then made of
the reenterable module, the interrupted
task can resume its use of the module at a
later time. The supervisor merely keeps
the task's working storage area intact~ and
when required, restores the contents of the
saved registers and the program status
word. The reenterable load module is not
affected and is unaware of which task is
using it at any instant. Each task will
have its own temporary storage area for use
by the reenterable module.

Checkpoint/Restart

The checkpoint/restart facility is
available with the PCP., MFT, and MVT
control programs. By restarting from a
checkpoint or from the beginning of a job
step, this facility can be used to minimize
time lost in reprocessing a job step that
terminated abnormally due to a program or
system failure. (A checkpoint restart,
that is, one initiated by issuing a CHKPT
macro instruction, may be either automatic
or deferred. Checkpoint restart is
described in the text below. A step

restart, that is, one initiated through the
use of special parameters on either the JOB
or EXEC statements, may also be either
automatic or deferred. step restart is
described in Section 5 of this
publication.)

When the CHKPT macro instruction is
executed, the control program saves all
main storage areas, control information,
and floating point and general registers
needed to restart from the checkpoint,.
After execution of the CHKPT macro
instruction, control is returned to the
user's program and processing continues at
the next sequential instruction after the
CHKPT macro instruction.

The restart procedure is used to restore
and run a previously checkpointed job step.
This restart may be automatic (depending on
an eligible ABEND code and the operator's
consent) or deferred, where a deferred
restart involves resubmitting the job.

At the checkpoint restart, the control
program retrieves the checkpoint control
information, ensures that volumes are
correctly mounted, and repositions tapes.
All programs and data are restored to the
locations occupied at checkpoint time, and
the job step continues. Control is
returned at the instruction immediately
following the CHKPT macro instruction.

Note: The checkpoint/restart facility does
not copy any data sets. The programmer
should locate checkpoints at those points
where he can ensure data set integrity.

service Aids

To aid in the diagnosis of problems, seven
service aid programs are provided with the
operating system: IMAPTFLE (used to create
job control statements for applying a
Product Temporary Fix -- Pl'F -- to a system
library); IMAPTFLS (provides formatted
lists of members of a library to which PTFs
have been applied" or of all members of a
library); IMASPZAP (allows the user to
inspect and modify data in a load module);
IMBMDMAP (produces formatted maps of load
modules previously link edited into a
partitioned data set, or link pack or
resident reenterable load module areas, and
of the nucleus); IMCJQDMP (provides
formatted job queue dumps); IMDPRDMP
(format and prints the output of the high
speed version of IMDSADMP); IMDSADMP (can
dump main storage to tape at high speed,
and to either tape or a printer at low
speed). These programs can be used to

section 2: ProgramDesign 25

gather information about the cause of a
failure~ to format and print the
information in a readily usable form; and
to aid in developing and applying a fix for
a problem. For a detailed discussion of
these service aids see the publication, IBM
system/360 ~peratinq System: Service Aids,
GC28-6719.

Language Comparison: Program Design
Facilities
All program design facilities are available
to users of the assembler language. Table
3 indicates which of the facilities are
available to users of the higher-level
languages.

-Table 3. Language Comparison: Program Design Facilities
r------------------r---------T-----------------T-----------------T------------T---------,
I Program Design I I COBOL I FORTRAN I I I
I Facilities I ALGOL ~-----T----T----+-----T-----T-----~ PL/I I RPG I

II I I ElF I ANS~I E I G I H I I I
~-----------------+---------+-----+----+-----+-----+----+-----+------------+---------~
ISimple structure I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I
~----------------+---------+-----+-----+-----+-----+-----+-----+------------+---------~
I Planned Overlay I I I I I I I I I I
I structure I No I Yes I Yes I Yes I Yes I Yes I YeS I Yes I No I
~-----------------+---------+-----+-----+-----+-----+-----+-----+------------t---------~
I Dynamic structure I Yes I No I No I Yes I No I No I No I No I No I
~-----------~------+---------+-----+-----+-----+-----+-----+-----+------------+---------~
I serially Reusable I I I I I I I I I I
I Programs I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I No I
~------------------+---------+-----+-----+----+-----+-----+-----+------------+---------~
I Reenterable I I I I I I I I I I
I Programs I No I No I No I No I No I No I No I Yes I No I
~------------------+---------+-----+-----+----+-----+-----+-----+------------+---------~
I Checkpoint/Restart I No I Yes I Yes I Yes I No I No I No I Yes I No I
~-----------------~---------~----~-----~----~-----~-----~-----~------------~---------~

II~American National Standard COBOL. I L ___________________________ ~ ___ -J

26 Concepts and Facilities (Release 19)

The data management programs are primarily
responsible for moving information between
main storage and external storage and
maintaining it in external storage. These
programs are capable of locating data,
preparing main storage areas for it,
reading it, and writing it. As a user, you
can write your own channel programs and
buffer handling routines, or you can let
the data management routines control the
flow of data.

What the User Must Do
To manipulate your data, the data
management routines must have. a great deal
of information about it. You supply some
of this information when the data is first
recorded, some when you enter your job
control statements, and some at execution
time. The data management programs must
collect this information before they can
work with your data. Gi ving the data a
name enables the data management routines
to identify it and find the information
that describes it. When a logically
related collection of data has been named
and described to the system, we call that
data a data set.

The term "data set" is used to describe
all named, organized information presented
to the system. The content of a data set
may be a load module, data records to be
processed, or a library of algorithms. The
information in data sets is structured into
records, which are logical groups of
information, and blocks, which are physical
groups of information separated by physical
spaces.

Records may be in one of three formats:
fixed-length, variable-length;, or undefined
length. The size of a fixed-length record
is constant for all records in the data
set. A variable-length record specifies
its own length in its first four bytes.
You provide this control information when
creating the record; the system checks this
information and uses it to block and
unblock the records. Undefined-length
records permit processing any records that
do not conform to the fixed- and
variable-length formats. Since the system
does not perform length checking on
undefined-length records, your program must
deblock them.

Blocks contain one or more records.
Data sets may be contained on any

Section 3: Data Management

appro~riate I/O device. When data sets are
contained on direct access or magnetic tape
devices, they are stored on volumes, which
are standard physical units of secondary
storage. Examples of volumes are:

• A reel of tape
• A disk pack
• A data cell
• A drum
• ~he part of an IBM 2302 Disk Storage

Drive served by one access mechanism.

WHEN AND/OR WHERE TO SPECIFY INFORMATION

The data management programs can move data
from secondary storage to main storage and
place it back on secondary storage.
However, before manipulating data, the
routines must have a complete description
of it. How then do you supply this
information?

The Data Definition statement

A major source of data set information is
the data definition (DD) job control
statement, which describes the data sets to
be used in a job step. You must provide a
DD statement for every data set you plan to
use or create.

The information on a DD statement may be
divided into two general categories -
parameters that describe the place where
data resides or will reside, and parameters
that describe attributes of the data. The
parameter of the first category answers:

• what is the status of the data set
being described? Is it a new one about
to be created, or does it exist now?
Do you wish to save the data set for
future use, or do you need it only for
this job or job step?

• Which I/O device or devices must be
allocated for this data set? Do you
need a particular device, or will any
device (tape, disk, etc.) be
s at is factory?

• Which particular volume or volumes
contain an existing data set? Which
are desired for a new data set?

• How much space is required to contain a
new data set on a direct access device?
What should the system do if you

Section 3: Data Management 27

underestimate space requirements? What
should be done with extra space if you
overestimate? Must the space be
contiguous? Must it begin at a
specific address?

You can also provide information about
the data itself, rather than its location:

• What is the name of the data set? The
name may be given here or as a
reference to another DD statement. If
you omit the name, the system gives a
unique name to the data set; the data
set is known by this unique name only
for the duration of one, job" so you
should include a name for all but
temporary data sets.

• What is the format of your data? Are
the records blocked or unblocked, fixed
length, variable length, or undefined?
If blocked, what is the block size?
What is the record length? How are the
records organized within the data set?
(Information on data set organization
appears later in this section.)

The data control block (DCB) parameter
answers these questions. It also provides
a means of specifying the way you want I/O
buffers built and controlled, as well as
device dependent information.

The advantage of specifying this
information on a DD statement is that the
parameters may be modified without
reassembling or recompiling the program
that uses the data set. However, most of
the information on data set attributes may
come from other sources. For example,
information that remains constant may be
stored with the data set itself in a data
set label.

Data Set Labels

Labels are used by the operating system to
identify volumes and the data sets they
contain, as well as to store data set
attributes. Data management routines
automatically fill standard labels with
data set characteristics when the labels
are created. The information must
originally come from the DD statement or
your program. Once the label is written,
however, you need not specify the
information again. If the data set
characteristics change., you simply supply
the changes through another information
source, and the system modifies your label.

Now we shall examine another important
source of information -- the data control
block (DCB).

28 Concepts and Facilities (Release 19)

The Data Control Block

The data control block is an area of main
storage in your problem program that serves
as the central collection point for the
information about your data set. Every
data set to be processed must have an
associated data control block (DCB).

Programs written in a higher-level
language also contain a data control block
for each data set; however, the processor
for each language is responsible for
creating data control blocks. Since the
higher level language programmer does not
directly create data control blocks, he
cannot directly fill them. Instead, he can
use the data control block parameter of the
DD statement to supply information. The
assembler language programmer can use the
data control block parameter and' must use
the data control block macro instruction.

Using the DCB macro instruction you can
directly create a data control block and
place information into it. You can also
change the contents of some data control
block fields dynamically, as your program
is executing.

A data control block contains three
categories of information: data set
attributes, processing description, and
exit information.

Data Set Attributes: Attribute fields
contain information about record length,
record format, block size., and data set
organization (the organizations are
discussed later in this section). For some
organizations, information on a key portion
of the records is also included.

Processing Description: This information
describes buffer construction and handling
methods, device dependent information
(e.g., printer spacing or magnetic tape
density), and special processing options
available for some data organizations.

Exit Information: This category contains
the address of routines you may want to use
for special I/O purposes. For example, you
may have a routine to do some processing
after all of an input data set has been
read, or a routine to do special label
processing.

Separate input data sets may be
logically connected (concatenated) for the
duration of a job step. For example, five
data sets, one produced on each day of a
week, might be used as input to a single
sort. To concatenate data sets, describe
each by a separate DD statement, but give a
name (ddname) to the first statement only;
each data set in the group shares this
common ddname. (The ddname is the name of

the DD statement and it provides a logical
relationship to the data control block that
specifies the same ddname. The ddname
should not be confused with the data set
name -- DSNAME -- which specifies the name
of a newly defined data set, or refers to a
previously defined data set.} Whenever
this ddname is used, each data set is
automatically used, in the same sequence as
the DD statements describing them.

ACCESS TECHNIQUES

The data management programs provide two
general techniques for moving data; they
are the queued technique and the basic
technique. The queued technique offers you
the maximum amount of automatic I/O
facilities. The basic technique places
some of the responsibility for data
handling on the programmer, but gives him
more direct control of I/O operations.

Queued.Access Technique

The queued access technique deals with
individual records. A record is retrieved
by the GET macro instruction and written
out by the PUT macro instruction. The
first time you issue a GET, the data
management programs move a block of one or
more records into input buffers and either
give you the address of the first logical
record or place the record into your work
area, whichever you specify. Each
succeeding time you issue GET, you receive
another record. When an input buffer is
exhausted, it is automatically refilled
with another block. Similarly" the PUT
macro instruction places records into
output buffers and, when a buffer is full,
writes out the records.

When using the queued access technique,
you can concentrate on data processing
alone; the data management routi,nes handle
most I/O considerations,. For example, I/O
is automatically synchronized with your
processing. When you issue a GET, the
record you want is already in an input
buffer, so processing may continue without
delay. When a buffer is exhausted, the
data management routines automatically
refill it. The same principle applies for
output records. They are collected in an
output buffer and written when the buffer
is full. If you are operating under a
priority scheduling system, and if output
is directed to a system output class (a
class of system output units shared by all
jobs) " your data may be first written on a
direct access device. When scheduling
permits, the data is transferred to the
proper device by the output writer, a job
management program.

Since the queued access technique nrings
records into main storage before you
actually request them, the data management
prograrrs need a method of anticipating your
demands. Therefore, the queued access
technique may be used only to retrieve
records in a sequential order, as, for
example, records on magnetic tape.

The Basic Access Technique

The basic access technique provides you
with the READ and WRITE macro instructions
for input and output. These instructions
move blGcks, not records. When you issue a
READ, the data management programs fill an
input buffer with a block. If the block
contains more than one record" you must
deblock it (isolate the individual record)
yourself. Similarly, the WRITE macro
instruction transmits a block to secondary
storage. (As with the queued access
technique, actual transmission to your
specified device may be deferred and done
by the system output writer if you are
working under a priority system and output
is going to a system output class.)

Unlike the queued access technique, the
basic technique does not provide automatic
synchronization of program processing and
I/O. When you issue a READ, you cannot
assume that the record is in main storage
as you can with GET. You have the
responsibility for determining that the I/O
operation has been completed before you
attemft to use the desired record. Data
management provides macro instruction
facilities to check for successful
completion of I/O operations and, if
necessary, to wait for completion of them.

DEVICE INDEPENDENCE

By selecting those functions of the access
techniques that deal with the data
transmission rather than device control,
and by organizing data sequentially, you
can write programs that are independent of
the I/O devices they use. Such a device
independent program could, for example,
accept an input data set from any magnetic
tape or direct access device~ or from any
card reader; output could be recorded on
any appropriate I/O device. All device
dependent information" such as device type
and identification, may be supplied through
job control statements.

Therefore" you are not tied to any I/O
conf iguration after assembling or cOlnpiling
your program. A program may be designed
and tested with the programmer having no
knowledge of the I/O devices to be used for
execution. In fact, new devices may be
added to an installation and used by the
program without reprogramming or

Section 3: Data ~ahagement 29

recompilation. Finally" you may experiment
with different combinations and types of
I/O devices to achieve optimum performance
with your device-independent programs.

Programs that do not use sequentially
organized data, or that must use device
control facilities, still have some degree
of device independence. such a program is
not tied to any specific device, although
it may require a specific type., such as a
disk drive or a magnetic tape drive.

THE SHARED DIRECT ACCESS DEVICE (SHARED
DASD) OPTION

The Shared DASD option is selected at
system generation time.. It enables
independently operating computing systems
to share common data residing on shared
direct access storage devices. This option
is available with PCP, MFT and MVT
(excluding MVT with Model 65
multiprocessing), and it provides control
program functions needed to control device
reservation and release.

System performance in a Shared DASD
environment is highly application
dependent, but., for most applications, you
can expect:

• A reduction in data set creation and
maintenance time and costs, and a
reduction in space requirements,
whenever a single data set can service
multiple users.

• Flexibility in scheduling jobs on any
CPU that has access to the common data
base ..

• Improved system availability through
the continuation of job scheduling in
the event of a malfunction in any CPU.

• An increase in the amount of work
processed against a specific collection
of data.

These general advantages are gained at the
cost of a somewhat increased overhead time.

Use of the Shared DASD option requires a
substantial planning effort on the part of
the system programmer and may increase the
operator's responsibility. For further
information on the Shared DASD option and
specific details concerning its use see the
System Programmer's Guide publication.

What the System Does
Labels are used by the operating system to
identify volumes and the data sets they
contain, as well as to store data set
attributes. Magnetic tape volumes can have
standard or nonstandard labels, or they can

30 Concepts and Facilities (Release 19)

be unlabeled. Direct access volumes used
by the operating system must have standard
labels. (Specific information on the
contents and formats of standard labels is
contained in the following publications IBM
System/360 Operating system: Supervisor
and Data Management Services, Form C28-6646
and IBM System/360 operating system: Tape
Labels, GC28-6680.)

Direct Access Labels

Each direct access volume is identified by
a volume label, which is stored in a
standard location. This label contains a
volume serial number and the address of a
volume table of contents (VTOC). The table
of contents, in turn, contains a data set
label for each data set stored on the
volume. Data set labels on direct access
devices are called data set control blocks
(DSCB). The system builds a DSCB for each
output data set on a direct access volume.

Each direct access volume must be
initialized by an IBM-supplied utility
prograro before being used on the system.
This utility program generates a volume
label and prepares the table of contents.
(See Figure 13.)

The Volume Label

The Volume Table
of Contents - VTOC

Figure 13. Direct Access Label

Magnetic Tape Labels

Standard magnetic tape labels consist of
two parts: the volume label group, and
header and trailer labels. The volume
label group consists of a standard initial
volume label and up to seven additional
volume labels. These additional labels are
optional and, if used., must be processed by
your own routines. The initial volume
label identifies a volume and its owner.

The header and trailer labels precede and
follow each data set on the volume. Header
labels contain system information,
device-dependent information and data set
characteristics. Trailer labels are almost
identical to header labels and are used for
the read backward feature on tape devices.
(See Figure 14.)

Data set Retrieval services

Until now, we have been concerned with the
data management programs that help your
program manipulate data. But" as a
programmer, you must also be concerned with
your data when it is not being used. You
must know which volume contains the data,
and where that data is placed on the
volume. Because these chores can quickly
become tiresome and time-consuming, data
management has facilities for automatically
recording the serial number of a volume
containing your data set, and the type of
device on which the data set should be
mounted. If more than one data set is
recorded on a tape volume, each is assigned
a seguenCe number to identify its relative
position on the volume.

This information is associated with your
data set's name and recorded on a direct
access device in a logical structure called
the catalog,. When you need the data set,
you supply its name through your job
control language statements, and the system
retrieves it. You must remember only the
name. The system searches the catalog for
the information associated with the name,
then, acting on the information it finds,

Volume Label Group
Function: Identify Volume

Data Set Header Label Group
Function: Contain Data Set Characteristics

asks the operator to mount your volume on a
device.

Because duplication of data set names in
the catalog is not allowed, data management
provides a scheme to help you establish
unique names. The scheme works this way.
Instead of supplying a one-word name, you
can build a COIr'posite narr,e of many words,
each s~parated by a period. For example,
the first name of a data set might be
INPUT. Then you might want to qualify it
with a more specific name -- perhaps
PAYROLL -- followed by an even more
specific name like APRIL. Its full name
would then be INPU~.PAYROLL.APRIL (see
Figure 15).

Generation Data Groups

A special facility is provided to name data
sets that are updated periodically or are
logically part of a group of data sets,
each of which is created at a different
tirre. Each update of the data set is
called a generation; ~e number associated
with it is called a generation number; a
generation data group is the entire
collection of chronologically related data
sets that can be referred to by the same
data set name. A particular generation can
be referred to ny either the absolute
generaticn name or a relative generation
number.

For example, the external name for all
data sets within a generation data group
for a payroll might be named A.YTDPAY.
Each data set is also automatically

User Header Label Group
Function: Contain User Information Tape Mark

Initial Volume Label HDRl HDR2
User header Labels
Maximum of Eight

TM DATA

)
/

.r-- -- ---- -- -- -- -- -- -- -- - -- ---- -- ---- -- -- -- -- -- - - --"
I
\

DATA TM

EOVl EOV2
or

EOF2

User trai ler labels
Maximum of Eight

Data Set railer Group I Group

TM TM

Tape M~rks:
Function: Same as Function: Contain User Information Two At End-Of-Volume,

One at End-Of-Data Set Header Group; Also
Contains Data Set Block Count

Figure 14. Standard Magnetic Tape Label

Section 3: Data Management 31

Catalog Volume

Search for
Input. Payroll.
April ---Catalog (Major Entries)
Begins Here

.. Index (Input.)

.. Index (Input. Payro II •)

This Volume (21) Contains
Data Set Input. Payroll. April

Yes

Tape
Check Seq
Number and
Position

Seq No.

Search Vol Index
and Position

Figure 15. Data Set Retrieval Through the Catalog

assigned a simple name in the form of a
generation and version number" e. g • ,
G0032VOO~ which represents generation 32,
version o. The next data set name which is
assigned automatically is G0033VOO. The
external name qualifies the generation and
version number. This automatic naming
pernats you to refer to this data set by
its absolute name (A.YTDPAY.G0033VOO) or by
a relative name, e.g., A.YTDPAY(O). This
latter refers to the latest cataloged
version. A. YTDPAY (+1) identifies a new
data set to be added to the group, and
A.YTDPAY(-1) identifies the
next -to-the-Iatest generation,.

When the index for the generation data
group is established, you specify how many
generations you want saved. The
generations have constant attributes. As a
new generation is cataloged, the oldest
generation is either automatically
destroyed or is deleted from the catalog.

32 Concepts and Facilities (Release 19)

Alternatively, you may specify that all old
generations of a full generation data group
series be deleted from the catalog when the
succeeding generation is added, so that the
new entry effectively becomes the newest
and only member of the series~

When the generation data group index is
established, a model data set label is
built for it. This model is used for each
succeeding generation to supply uniform
attributes.

For a complete discussion of generation
data groups, see the Utilities publication.

Collecting Data set Information

We have discussed the facilities for
supplying data set information and the
central collection point for· the
information. Only one link is missing Irom
the chain of communication between you and

data management: the information must be
collected and physically placed in the data
control block. Data management's OPEN
routines do this collecting and perform
important housekeeping operations necessary
to begin I/O operations. The OPEN routines
are brought into storage by the OPEN macro
instruction in assembler language programs"
and by compiler-generated instructions in
programs written in higher-level languages.

The OPEN routines first search the data
control block to determine what information
is already present -- placed there during
assembly -- and what is still missing.
They go to your DD statement for
information to fill vacant data control
block fields, and finally they go to the
data set'label. (Labels do not yet exist
for new data sets, so the OPEN routines
begin to create them and fill them with
information from the other sources.)

Once a data control block field is full,
it is not changed by OPEN routines. (These
fields can be changed dynamically in an
assembler language program.) If the DD
statement or the label contains information
already in a data control block field, the
new information is disregarded and the
field remains unchanged. (See Figure 16.)

Step 1

DO Statement

When you are through processing a data
set, its related data control block is
restored to its original condition, i.e.,
information the OPEN routines put in it is
deleted. Construction of labels for new
data sets is completed, and existing labels
may be updated. The data control block is
restored so that it may be used for other
data sets to be processed.

Other Functions of OPEN

In addition to completing the communication
chain between you and data management, the
OPEN routines do all the initialization
necessary to begin actual data transfer.

Data Set Security: The data set security
facility of the operating system prevents
unauthorized manipulation of protected data
sets. TO be protected, a data set must be
recorded on a magnetic tape volume with
standard labels, or on a direct access
device, which always has a standard DSCB.
A flag is set "on" in the label to signal
protection. The OPEN routines test the
flag and, if it is on, they request a
password from the operator. Unless he
enters the proper password, the OPEN
routines cannot continue, and, therefore,
the data set cannot be used. If the
operator enters an incorrect password (he
has two chances), the program terminates
abnormally.

Volume Checking: The initiator program of
job management is responsible for directing
the computer operator to mount specific
volumes. The OPEN routines check the
volume serial of direct access volumes and
standard-label tapes to verify that the
proper volume was mounted. If an error is
found, the OPEN routines issue mounting
instructions again.

Buffer Creation: The creation and
manipulation of I/O buffers is a subject
discussed later in this section. You

Step 2 should be aware, however" that the OPEN
routines are capable of obtaining buffers
for you if you do not choose another method
of acquiring them.

Data Set Label

D

Label Completes
DCB Area

DCB Area

A Step 3

Figure 16. How OPEN Fills a Data Control
Block

Buffer Priming: When you use t~e queued
access technique to manipulate sequential
records, the OPEN routines anticipate your
input requests and fill your input buffers
automatically. Before you issue the first
GET for the data set, the records are being
read into main storage.

ACCESSING DATA

After the OPEN routines finish processing,
data management is ready to permit
accessing of data. Data management can
access data organized in many ways. The

Section 3: Data Management 33

following paragraphs explain these
organizations.

Sequential: The records of a sequential
data set are consecutive, as are the
records on magnetic tape. sequential
organization is the only one possible for
tape drives" printers" and card readers and
punches. The location of each record in a
sequential data set does not depend on its
contents. Normally, no record can be read
or written until all preceding records are
read or written, but special facilities are
available to permit arbitrary positioning.
Records cannot be lengthened, shortened, or
deleted without rewriting the subsequent
portion of the data set. Both the queued
and the basic access technique may be used
for sequential data sets. (see Figure 17.)

Figure 17. Data Organized sequentially

Partitioned: The partitioned organization
is simply a convenient way to arrange
sequential data on a direct access device.
A partitioned data set consists of
independent groups of sequentially
organized data sets, each identified by a
member name in the directory. (Earlier we
referred to a partitioned data set as a
library.) Each member consists of
sequentially organized records identified
by a single, simple name and, optionally,
by alternate names called aliases. The
directory is a list of the member and alias
names and contains the starting address of
each member; the address associated with an
alias can be the location of any record in
a member. Directory entries are maintained
in order of the collating sequence of
member names. (See Figure 18.)

Indexed Sequential Organization: Neither
the sequential nor the partitioned
organization allows convenient access to
any particular record without first reading
the preceding records or without
maintaining a special, separate record that
gives the position of the desired record.
The indexed sequential organization
overcomes this difficulty by making the
location of each record in the data set
depend on the contents of a key portion of
each record. If you supply the contents of
the record's key, the system can find the
record directly.

To create an indexed sequential data set
you must sort the records on a key. These
ordered records are then written on a
direct access device. Each time a track is
filled, the highest key on the track is
stored in a track index. When all the
tracks of a cylinder are filled, the

34 concepts and Eacilities (Release 19)

highest key on the cylinder is stored in a
cylinder index.

To read a record, you supply the
record's key. Data management then
searches the cylinder index for the
cylinder containing that key. When the
cylinder is located, its track index is
searched for the track containing the key
of the desired record. Finally, the track
is searched for the record containing the
key you specified, and the record is
retrieved.

This organization lets you insert
records without rewriting the entire data
set. For example, suppose you wish to
insert a record with a key of 599. Further
suppose that each track of your data set is
completely filled by two records; the new
record belongs on the track between records
of key value 598 and 600. Since the track
is already full, the new record is written
after record 598, and record 600 is
rewritten on an overflow track. The track
index is marked to indicate that an
overflow track exists. If there are no
overflow tracks available or if they are
all full, the record is not written and you
are notified.

The indexed sequential organization may
be used with both access techniques.
Records may be processed sequentially using
the queued technique, or individual records
may be processed directly using the basic
technique. (See Figure 19.)

Direct: If the org-anizations above do not
meet your specific requirements, you can
organize records on a direct access device
using direct organization., which allows
nonsequential data processing.

To read or write a block, you must
specify an actual address <i.e., device,
cylinder, track, and block position) or an
address that is relative to the beginning
of the data set. If your blocks contain a
key, you can have the data management
routines search for a block with the key
you specify. The search begins at an
actual or relative address that you supply.

The direct organization is permitted on
direct access devices only. The queued
access technique cannot be used.

Telecommunications: Transmission of data
to and from a telecommunications device is
considerably different from transmission to
and from local I/O devices. However, once
telecowmunication messages are in input or
output buffers, they are similar to

I

conventional records and therefore, can be
handled with the queued or basic technique
(QTAM or BTAM).

Telecommuncations data transmission
techniques can be used by a central
computing installation to process jobs
entered from remote locations. Remote Job
Entry (RJE) is a program that uses the
basic technique (BTAM) to provide access to
the data processing facilities of a central
system for authorized users at remote
terminals. RJE provides users with the

Data Set Address

Data Set Name

Partitioned Data Set

Figure 18. Partitioned Data set

I

facility to execute jobs submitted from
remote terminals. Execution is under the
control of operating system job management
routines.

For further information on RJE see IBM
System/360 Operating System: Remote J~
Entry, GC30-2006.

Directory

Optional B
Information

C Address
of C

Members

section 3: Data Management 35

Records Sorted on Key

Cylinder One -----------I---...::~

Cylinder Zero
Cylinder
Index

Track
Index

I I
I I
I I
I I
I I
\ /
\ /
" / "" /'"

.............. -- ..-/ -----
Figure 19. Indexed Sequential Data Set

MANAGING BUFFERS

An important part of I/O operations is
providing areas of main storage to hold
data after input and before output. Data
management provides facilities that enable
you to structure main storage for buffers,
schedule these buffers to receive input or
output, and make the data in the buffers
available to your program.

Allocating Main storage for Buffers

Before main storage can be used for
buffers" information must be specified
describing the size and number of buffers
required. The process of storing this

36 Concepts and Facilities (Release 19)

information is called constructing a buffer
pool.

Three methods are provided for
constructing buffer pools. The first
method is to declare an area to be used as
a buffer pool. The area is either defined
at assembly time or acquired by a GETMAIN
macro instruction. The second method is to
obtain a buffer pool dynamically at
execution time. The third method is to let
the OPEN routines automatically obtain main
storage and construct the pool for you. A
special macro instruction, BUFFER, is
available when you use the queued access
technique for telecommunications data.

Buffer Scheduling

Simple Buffering: With simple buffering,
one or more buffers are taken from the pool
assigned to a data set. These buffers are
long enough to hold the maximum length
block. They are used only for the data set
to which they are assigned, e.g., a buffer
assigned to an input data set cannot be
used for an output data set.

Exchange Buffering: Exchange buffering can
be used for input or output, or both. It
is available only with the queued
sequential access method (QSAM). Access
methods are described under "Data
Processing Techniques" in this section.
Each buffer is large enough to hold one
block; the buffer may be divided into
segments, each containing one record. When
you request a record, the segment
containing that record is logically
isolated from the buffer and made available
to you. However, you must give the buffer
a piece of your work area. This piece is
logically added to the buffer to restore it
to the proper size. When you want to write
the record, you give the segment containing
the record to the output buffer, in
exchange for an equal-sized piece of the
output buffer 'that you can use as a work
area.

The advantage of exchange buffering is
that records are not physically moved in
main storage. A record is written into an
input buffer segment, worked on while it is
in the segment, and written from the
segment. In contrast, simple buffering
requires at least one data move, as we will
see in the discussion of transmittal modes.
Figure 20 illustrates exchange buffering in
the substitute mode.

Chained segment Buffering: This assignment
technique is used for telecommunications
applications. Since the length of
telecommunications messages is unknown,
buffer segments are assigned dynamically,
during data transfer. Messages wi 11 not
normally fit in one segment, so ad9ress
chaining techniques are used to connect the
physically separate segment~ that contain a
message.

Dynamic Buffering: This technique is used
only for the access techniq~es that allow
multiple READ requests to be queued. In
such cases, a buffer is not assigned to
each READ request befor~ the request is
executed. Instead, a buffer is
automatically taken from a pool and

assigned just before data transfer begins.
The buffer remains in use until it is
returned to the pool. It is returned
automatically when its contents are
written, or under programmer control with a
macro instruction. After returning to the
pool, the buffer can be dynamically
assigned to another active READ request.
The advantage of dynamic buffering is that
relatively few buffers are needed since the
READ requests waiting in the queue do not
monopolize buffers.

Transmittal Modes

The following discussion applies only to
the queued access technique.

Move Mode: When you issue a GET ma.cro
instruction using this mode, an input
record from an input buffer is physically
moved into your work area. A PUT macro
instruction moves an output record from
your work area or input area to an output
buffer.

Locate Mode: When you issue a GET in this
mode, you receive the starting address of a
record. You can process the record in the
buffer, or move it to your work area. A
PUT gives you the address of an output
buffer area; you must move the record to
the buffer yourself, or tell the system to
use it for the next GET-move.

Data Mode: When you issue a GET macro
instruction using this mode, the data
portion of an entire record will be moved
from the input buffer to your work area.
This record is composed of the data
portions of one or more segments within the
data set. A PUT macro instruction using
this mode moves the contents of your work
area into the output buffer and records the
entire record as one or more segments
within the data set.

substitute Mode: When you use exchange
buffering you receive data in the
substitute mode. It is similar to the
locate mode in that a GET gives you the
address of an input record. You may work
with the record as though it were in your
work area, but you must give the buffer an
area of main storage equal in size to the
one you take. With a PUT" you give the
output butfer the area of main storage
containing your output record and, in
exchange, you receive a piece of output
buffer equal in size. Data is never
physically moved with this mode. (See
Figure 20.)

Section 3: Data Management 37

All Segments Assigned to
Input Buffer

Record 1 Record 2

Record 3 Record 4

(

This Segment Now Assigned
to Work Area

·· .. ····::t~·········

ljliljl~i!~ti~;~lIlll:
Record 3

Record 2

Record 4

This Segment Now Assigned
to Output Buffer

Record 2

Record 3 Record 4

Original Buffer Assignments

After A " GET"

\" ~h;, Segment Now A..i",ed

\ to Input Buffe,

After A " PUT "

Figure 20. Exchange Buffering -- Substitute Mode

38 Concepts and Facilities (Release 19)

All Segments Assigned to
Output Buffer

This Segment Now Assigned
to Work Area

DATA PROCESSING TECHNIQUES

The operating system allows you to
concentrate your efforts on processing the
records read or written by the data
management routines. Your main
responsibility is to describe the data set
to be processed, the buffering techniques
to be used, and the access method. An
access method can be defined as the
combination of data set organization and
the technique used to process the data. As
previously d~fined, data access techniques
are divided into two categories -- queued
and basic.

Access methods are identified primarily
by the data set organization to which they
apply. For instance, we speak of a basic
access method for direct organization
(BDAM). Nevertheless, an access method
identified with one organization can be
used to process a data set usually thought
of as organized in a different manner. For
example, BSAM and QSAM can easily be used
to process partitioned and direct
organization data sets. Thus, a data set
considered to be in a direct organization
is created using the basic access method

Table 5. Access Method Summary

for sequential organization (BSAM). It is
processed using the basic direct access
method (ED~l). If the queued access
technique is used to process a sequential
data set, the access method is referred to
as QSAM.

The basic access methods are used for
all data organizations., while the queued
access methods apply only to sequential and
indexed sequential data sets and
telecommunications, as shown in Table 4.

Table 4. Data Access Methods
r---------------------T-------------------,
I I Access Technique I
I Data set ~---------T---------~
I Organization I Basic I Queued I
~---------------------+---------+---------~
I Sequential I BSAM I QSAM I
I Partitioned I BPAM I I
I Indexed sequential I BISAM I QISAM I
I Direct I EDAM' I I
I Telecommunications I BTAM I QTAM I L _____________________ L _________ ~ _________ J

A summary of access methods is shown in
Table 5.

r-------------------T----------------------,-----------T-----------------------------------T----------,
I Organization I sequential I Partitioned I Indexed Sequential I Direct I

~-------------------+----------_r----------+_----------+-----------------------T-----------+----------~
I I I I I QISAM I , I
I 'I I ~----------~T----------_I , I
, Access Method I QSAM 'BSAM , BPAM I LOAD I SCAN 'BlSAM 'EDAM I

~-------------------+-----------+----------+------7----+-----------+-----------+-----------+----------~
,Primary IGET, PUT, I READ IREAD,WRlTE , ISETL,GET, I READ I READ I
I macro instructions1 1 PUTX I WRITE I FIND, STOW , PUT I PUTX I WRITE I WRITE I
I I I I I I I I ,
~-------------------+-----------+----------+-----------+-----------+-----------+-----------+----------~
ISynchronization of I , I , , I I ,
I program with I/O I Automat.ic I CHECK I CHECK ,Automatic I Automatic I WAIT I WAIT I
I I I I I I I I I
~-------------------+-----------+----------+-----------+-----------+-----------+-----------+------~---~
I Record format I Logical F ~ V I Block I Block (Part, I I I Block I
I transmitted IBlock U IF,V,U lof member) ,Logical F,VILogical F,VILogical F,VIF,V,U ,
I I I IF,V,U I 1 I I ,
~-------------------+-----------+----------t-----------+-----------+-----------+-----------+----------i
,Buffer creation and, BUILD 'BUILD , BUILD J BUILD , BUILD , BUILD , BUILD ,
I construction I GETPOOL I GETPOOL \ GETPOOL I GET POOL I GETPOOL I GETPCOL I GETPOOL \
I \ Automatic IAutomatic IAutomatic I Automatic I Automatic I Automatic IAutomatic I

~-------------------+-----------+----------+_----------t-----------+-----------+-----------+----------~
I ,Automatic IGETBUF IGETBUF I Automatic, IAutomatic IGETBUF, IGETBUF, I
I Buffer technique I Simple I FREEBUF I FREEBUF J Sireple I Simple , FREEBUF I FREEBUF ,
I I Exchange I I I I I Dynamic I Dynamic ,
I I I I I I I FREEDBUF , FREEDBUF I

~-------------------+-----------+----------t-----------+-----------+-----------+-~---------+----------i
I Transmi ttal modes I Move, data, I I I Move, I Move, I I I
I (work area/buffer) I locate, I I I Locate I Locate I I I
I I substitute I I I I I I I
~-------------------~----------~----------~------~----~-----------~-----------~-----------~----------~
I 1AII macro instructions introduced in this table are defined in the publication IBM System/360 \
I Operating System: supervisor and Data Management Macro Instructions, GC28-6647. I L __ ~ __ J

section 3: Data Management 39

OPERATING SYSTEM VOLUME STATISTICS

Operating system efficiency is affected by
the condition of volumes stored on a medium
subject to deterioration with use, such as
magnetic tape. During use, tape is
stretched, flexed, and rubbed, causing its
oxide coating to crack or to be eroded.
Eroded particles of oxide, fingerprints~
and dust contaminate its surface,
multiplying erosion and breaking contact
between tape and the read/write station.
In due time, there will be failures in the
read/write process.

A rapidly rising rate of read and write
errors, if detected, would signal the
probability of a deteriorating tape. If
the failure rate could be monitored" it
would be possible to judge the condition of
the volume and rescue its contents. This
could be done before system performance
could be seriously affected by
reconditioning, by transfer to a different
volume, or by a combination of both
processes.

Read and write errors can be monitored
by a facility called Operating System
Volume Statistics. This facility has two
options: Error Statistics by Volume (ESV);
Error Volume Analysis (EVA). Both options
can be specified at the same time.

ESV causes the system to collect
statistics for each tape volume during any
interval that the volume is open. However,
the volumes must be labeled (or be an
unlabeled tape whose serial number has been
identified to the system) and only an
abridged set of these statistics is
collected if the ESV records are to be
printed at the console rather than on a
line printer. These statistics include:

~ The volume serial number.

• The CPU serial number.

G The System model number.

• The date and time of day this set of
statistics was collected.

• The address of the unit on which this
volume was mounted and the channel
through which it wa s operating.

40 Concepts and Facilities (Release 19)

• The number of temporary read or write
errors that occurred.

• The number of permanent read or write
errors that occurred.

• The number of noise blocks encountered.

• The number of erase gaps written while
trying to correct write errors.

• The number of cleaner actions initiated
while trying to correct read or write
errors.

• The number of Start I/O operations
encountered.

• The bit density of the volume (in bits
per inch).

• The physical record length of the
volume for fixed length records; the
length value is forced to zero for
undefined or variable length records,
and when the EXCP access method issued.

The system operator can select 'one of two
standard output formats at system
generation. One of these options, called
SMF (for System Managoement Facilities; SMF
is discussed in section 5 of this
publication) causes the ESV statistics to
be entered, with other system information,
into one of the SMF data sets. The user
can provide his own access method, specify
his own record format~ and select his own
recording data set. If he chooses to do
this, he must specify ESV=CON at system
generation time in order to obtain unit
control blocks (UCBs) in the proper format
for collecting volume statistics.

The EVA option requires the system
operator to specify two minimum values (at
system generation), one for the number of
temporary read errors and one for the
number of temporary write errors. If the
nUK~er of read or write errors for a volume
currently being accessed equals the
corresponding values specified by the
system operator, the system will print a
message to this effect at the console. EVA
can be used both for labeled and unlabeled
volumes.

Language Comparison: Data Management Facilities
All data management facilities are available to users of the assembler language. Table 6
indicates which of the facilities are available to users of higher-level languages. The
table assumes the use of the job control language •

• Table 6. Language Comparison: Data Management Facilities
r----------------------r-----T-----------------r-----------------T------------T---------,
I I I COBOL I FORTRAN I , I
I Data Management IALGOL~-----T-----T-----+-----T-----T-----~ PL/I I RPG I

I I I I ElF I ANSJ..I E I G I H I I I
~----------------------+-----+-----+-----+-----+-----+-----+-----+------------+---------~
I Automatic Buffer I I I I I I I I J ,
I Pool Construction I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I
~-------~--------------+-----+-----+-----+-----+-----+-----+-----+------------+---------~
I Basic Access I I I I I I I' , ,
I Technique I Yes I Yes I Yes I Yes I Yes I Yes , Yes I Yes 'Yes'
t----------------------+-----+-----+-----+-----+-----+-----+-----+------------+---------i
I Buffer Control I Yes I Yes I Yes I Yes I Yes , Yes I Yes I Yes I No ,
~---------------------+-----t-----+-----t-----+-----+-----+-----+------------t---------~
I Buffer Pool "I I I I I I I I
I Construction I No I No I No I No I No I No I No I No , No I
t----------------------+-----t-----+-----+-----+-----+-----+-----+------------+---------~
I Chained scheduling I I I I I I I I I I I I for I/O Operations I No I No I Yes I Yes I Yes I Yes I Yes, Yes I Yes I
~---------------------t-----t-----+-----+-----+-----+-----+-----+------------+---------~
I Concatenating Seq- I I I I I I 'I I I
I uential Data sets I Yes I Yes I Yes I Yes I Yes , Yes I Yes I Yes I Yes ,
~---------------------+-----t-----+-----t-----+-----+-----+-----+------------+---------~
, Control of Confi- , I , I I I I I I I
I dential Data: I I I I I I I I I I
I Password Protection I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes 'Yes'
t----------------------t-----t-----t-----t-----+-----+-----+-----+------------+---------i
, Multi-Volume Data Set, , I I I I I I I ,
I Processing , Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I
t----------------------t-----t-----t-----+-----+-----+-----+-----+------------+---------~
I Entering a Genera- I I I I I I I I I I
I ti on Data Group I I I I I I I I I I
I in the Catalog I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I
~---------------------+-----+-----+-----+-----t-----+-----t-----+------------+---------~
I Exchange Buffering I No I NO, No I No I No I No I No, No I No I
~--------~--L----------t-----+-----t-----t-----+-----+-----+-----+------------+---------~
I Processing a I I I I I I I I I I

I I Direct Data set I No I Yes I Yes I Yes I Yes I Yes I Yes I Yes I Yes I
t----------------------t-----+-----+-----+-----+-----+-----+-----+------------+---------i
I Processing a I I I I I I I I I I
I Partitioned Data Set, NO' No I No I No I No I No I No I No , No I
~----------------------t-----+-----t-----+-----+-----+-----+-----+------------+---------i

I I Processing an Indexed, I I I I I I I I I
I Sequential Data Set I No I Yes I Yes I Yes I No I No I No I Yes 'Yes I
~----------------------+-----+-----+-----+-----+-----+-----+-----+------------+---------i
I Queued Access I I I I I I I' I I
I Technique I No I Yes , Yes I Yes I No I No I No I Yes I Yes I
~----------------------+-----+-----+-----+-----+-----+-----+-----+------------+---------i
I sequential Data sets: I I I I I I I I I I
I Device Control I Yes I Yes I Yes I Yes , Yes I Yes I Yes I Yes ,Yes I
~----------------------+-----+-----+-----+-----t-----+-----+-----+------------+---------i
I sequential Data Sets: I I I I , , I I , I
I Device Independence I Yes I Yes I Yes , Yes , Yes , Yes , Yes I Yes 'Yes I
t-----~----------------t-----+-----+-----+-----+-----+-----+-----+------------+---------i
I Simple Buffering I Yes I Yes I Yes I Yes I Yes I Yes I Yes' Yes I Yes I
~---------------------+-----+-----t-----+-----+-----+-----+-----+------------+---------~
, Record Overflow I No I No I No I Yes I Yes I Yes I Yes I Yes I No I
~----------------------+----_+-----+-----+-----+-----+-----+-----+------------f---------i
I Write Validity Check I Yes I No I No I No I Yes I Yes I Yes I Yes I Yes 1
~---~-----------------~-----i-----~-----~-----~-----~-----~ _____ ~ ____________ ~ _________ ~
11 American National Standard COBOL. I L ___ J

Section 3: Data Management 41

Section 4: Job Management

Because the purpose of the operating system
is to keep the computing system as busy as
possible, the work to be done must be
available when the system is ready to
handle it. The job management programs
direct and control the flow of one or more
jobs through the computing system. The job
control statements provide the
communication link to the system.

A job is a total processing application
comprising one or more related processing
programs, such as a weekly payroll, a day's
business transactions, or the reduction of
a collection of test data. Jobs comprise
one or more job steps: that unit of work
associated with one processing program.
The sequence of control statements and data
submitted to the operating system on an
input unit especially activated for this
purpose is called the input stream.

This section will' expand the job
management processing block into more
detail,. In general, the job management
functions are:

1. Analysis of the input stream:
scanning the input data to identify
control statements; interpreting and
analyzing the control statements;
preparing the necessary control tables
that describe each job to the system.

2. Allocation of I/O devices: ensuring
that all necessary I/O devices are
allocated; ensuring that direct access
storage space is allocated as
required; ensuring that the operator
has mounted any required tape and
direct access volumes.

3. Overall scheduling: selecting jobs
for execution, either on a sequential
or priority basis.

4. Transcription of input data onto, and
user output from, a direct access
device.

5. Communication between the operator and
the system.

What the User Must Do
The user tells the system about his job and
job steps through the job control language.

Using the job control language, you must
provide job and program information" data

42 Concepts and Facilities (Release 19)

characteristics, and device requirements at
the time the program is executed rather
than when you assembled or compiled it.
Other facilities of the language allow you
to:

• Copy existing data set names, control
statements, and control blocks with a
tack reference facility to reduce
recoding.

• Retrieve data sets by name using the
system cataiog, eliminating the
necessity of identifying the unit type
and volume serial numbers.

• Optimize use of channels, units,
volumes, and direct access space.

• Pass data sets from one step to another
to reduce mounting and retrieval time.

• Share data sets between two or more
jobs operating independently in
multiprogramming environments.

Job Centrol Statements

communication between the operating-system
user and the job scheduler is effected by
six job control statements:

1. Job statement
2. Execute statement
3. Data Definition statement
4. Command statement
5. Delimiter statement
6. Null statement

Parameters coded on these statements aid
the job scheduler in regulating the
execution of jobs and job steps, retrieving
and disposing of data~ allocating
input/output resources, and communicating
with the operator.

summary of Job Control statements

The job statement (the JOB statement) marks
the beginning of a job and, when jobs are
stacked in the input stream, marks the end
of the control statements for the preceding
job.

The execute statement (the EXEC
statement) marks the beginning of a job
step and identifies the first load module
to be executed, or the cataloged procedure.

The data definition statement (the DD
statement) describes the data sets to be
used in the job step.

The command statement is used by the
operator to enter commands through the
input stream. Commands can activate or
deactivate system input and output units,
request printouts and displays, and perform
a number of other operator functions.

The delimiter statement and the null
statement are markers in an input stream.
The delimiter statement is used, when data
is included in the input stream, to
separate the data from subsequent control
statements. The null statement is used to
mark the end of a job whose last DD
statement defines a data set in an input
stream.

We shall briefly consider the first
three control statements. For full
information on the job control language,
see the publication IBM system/36 0
Operating System: Job Control Language"
GC28-6539 ..

Uses of the JOB" EXEC, and DO·Statements

The job statement identifies your job and
may contain accounting information for use
by your installation's accounting routines,
give conditions for early termination of
the job, and regulate the display of job
scheduler messages. With priority
schedulers, you can use additional
parameters to assign job priority, to
assign a job class (the job class
determines where your job will be placed on
the input work queue. The priority
parameter determines the job's initiation
priority within its job class), to request
a specific output class for job scheduler
messages (this applies to PCP also), and to
specify the amount of main storage to be
allocated to the job. The job statement

I may also be used to specify step restart
for all steps in the job ..

The execute statement may provide job
step accounting information, give
conditions for bypassing the job step, and
pass control information to a processing
program. With priority schedulers,
additional parameters allow you to assign a
time limit for the execution of the job
step and to specify the amount of main
storage to be allocated. The execute
statement may also be used to specify step
restart for a particular step.

The data definition statemerit describes
a data set and requests the allocation of
input/output resources.. DD statement
parameters identify the data set, give
volume and unit information and
disposition, and describe the data set's
labels and physical attributes.

Applications that require many control
statements and are used on a regular basis

can be considerably simplified through the
use of cataloged procedures. A cataloged
procedure is a set of job control
statements that are placed in a partitioned
data set known as the procedure library •.
(The procedure library is a system data set
named SYS1.PROCLIB.)

Before putting a cataloged procedure on
the procedure library~ you may want to test
it. This can be done by converting the
procedure to an in-stream procedure. An
in-stream procedure is a set of job control
statements placed in the input stream that
can be used any number of times during a
job by naming that procedure in an execute
(EXEC). statement. Another advantage to
in-stream procedures is that they can give
you the facility of a cataloged procedure
without being placed on the procedure
library. After testing the pr,ocedure, you
may keep it in card form and simply insert
it in the input stream whenever you want to
use it. For a detailed description of
in-stream procedures, see the publication
IBM System/360 Operating system: Job
Control Language Reference" GC28-6704 ..

What the System Does
Job management contains different
functional areas. We have described these
areas briefly; now we can discuss them in
more detail -- as facilities.

First, we will examine the functions
performed by the/ job scheduler and master
scheduler. This will pave the way for a
dis~ussion of sequential and priority
scheduling, and a closer examination of
what you can specify through the job
control language.

The Job Scheduler

The job scheduler prepares jobs for
execution and schedules their execution on
either a sequential or priority basis. In
general, the job scheduler portion of the
control program performs three types of
functions: read/interpret, initiate/termi
nate, and the h~ndling of output writers.

Read/Interpret: Each reader/interpreter is
responsible for reading one input stream.
rhe reader/interpreter reads job control
statements, analyzes their contents, and
builds tables that are used during
initiation and execution of job steps. In
a priority scheduling system, the reader/
interpreter ensures that the control
information is placed on an input work
queue by priority and transcribes data from
the input stream to a direct access device.

Section 4: Job Management 43

Initiate/Terminate: The initiator/termina
tor selects (either from the input stream
or the input work queue) the next job step
to be executed. The initiator/terminator
analyzes the I/O device requirements of job
steps, allocates devices to them, issues
volume mounting instructions, and verifies
that the volumes were mounted on the
correct device. (For magnetic tape
volumes, the OPEN routines verify this.)

As mentioned, the initiator/terminator
can issue volume mounting instructions to
the operator. When the operator has to

. perform setups, time is lost. To help
minimize the time lost by operator setup,
an optional feature is available for
Automatic Volume Recognition.

Automatic Volume Recognition: The operator
can premount labeled volumes on any
available tape or disk device; the job
scheduler records the identification of
each volume and the device used. When a
particular volume is needed for job setup,
the table is searched. If the needed
volume is already mounted, the usual
procedure of issuing a volume mounting
message is bypassed. This feature is
particularly advantageous in production
installations where work schedules normally
are set in advance and follow a repeated
pattern~ In this situation, the operator
usually knows which volumes are to be used
and the sequence in which they will be
used.

Write: During task execution in a
multiprogramming system, output data sets
may be stored on a direct access device, or
they may be written to an output device
while the job is executing. Direct system
output writers control the writing of
output data sets directly to the output
device during execution of the job. system
output writers can transcribe the data to a
system output device (usually a printer or
punch). Each system output device is
controlled by an output writer task.
Moreover, output devices can be grouped
into usage classes. For example, a single
printer may be designated as a class for
high-priority, low-volume printed'output;
two other printers may be designated as a
class for high-volume printed output.

The DD statement allows output data sets
to be directed to a class of devices and
places a reference to the data on the
output work queue. Because the queue is
maintained in priority sequence~ the system
output writers can select jobs in the
output work queue on a priority pasis.

In systems with input and output work
queues, the system output writers are the

44 Concepts and Facilities (Release 19)

final link in the chain of control
routines. While the execution of one task
is proceeding, the output of another task
can be written. This increases throughput,
that is, the total volume of work performed
by the system over a period of time. At
two intermediate stages of the work flow,
data is accessible from direct access
devices, without any unit record
requirements. These stages occur when the
job has just entered the input work queue,
and when the job is completed and placed on
the output work queue. At each of these
stages, priorities are used to place
important work ahead of less important work
that might have been prepared earlier.
This improves turnaround time, that is, the
time elapsed from submitting a problem to
receiving an answer.

A multiprogramming system permits
managing the concurrent execution of system
input readers. system output writers"
direct system output writers, and user
jobs.

The Master Scheduler

The master scheduler handles operator
commands and messages. Messages to the
operator from a user's program are
initiated by use of the write-to-operator
(WTO) macro instruction or the
write-to-operator-with-reply (WTOR) macro
instruction. You can, therefore, supply
information to the operator by using WTO or
request information from the operator by
using WTOR.

The operator himself can issue various
commands. These commands are of the
following types:

• Job action commands cause a change in
the status of a job (for example,
canceling or suspending a job, or
modifying its priority).

• System action commands cause changes in
the actions taken by the job scheduler.
These commands may inform the system of
a new device to be used in the input
stream, or of a device that is no
lenger available for allocation.

• Information requests allow the operator
to inquire about the status of the
system or of certain jobs.

• Information entries allow the operator
to, provide the system w.ith the current
date and time ll to enter information in
the system log, and to reply to system
or program requests for information (as
a consequence of a WTOR macro
instruction) •

Operator commands, though they are
normally entered into the system from a
device such as a console typewriter, can
also be placed as separate statements in an
input stream.

By selecting optional scheduler
features, you can tailor job management's
capabilities to your requirements .•

SCHEDULING IN PCP

summary of Job and Master Scheduler
Functions

The input stream is read and analyzed by
the job scheduler portion of the control
program. The job scheduler allocates the
I/O devices needed, and then requests the
task management programs to initiate
execution of the job step defined in the
control statements. The master scheduler
carries out operator commands which control
or inquire about system functions.

In PCP, the reader/interpreter scans the
control statements for one job step at a
time. The initiator allocates I/O devices
and notifies the operator of any physical
volumes to be mounted: the job step is then
ready for execution. Figure 21 depicts
scheduling in PCP.

The commands handled by the master
scheduler depend on the control program
configuration, as discussed in the IBM
System/360 Operating System: OperatOr's
Reference, GC28-6691.

r---,
1)

Job Stream

r Card
Reader

I
I

or

Tape

I 5)

I
I
I
I
I
I

i
I

r;::-
I ~:~:~e

Commands

Commands Master
Scheduler

Messages

Messages

I r--- - - -------- ------------- ---

I
I 2) ,----I.-----"----,

I
I

I

I
I
I

Reader/
I nter-
preter

3)

Initiator/
--'" Terminator

4)
Task Mgmnt

Control to Supervise .
Job Step
Execution

~---~---------~
1. Your programs, in the form of jobs or job steps defined through the job control I

language, may enter the system in the input stream from a ,card or tape device. I
Input data may be entered into the system with the control statements. I

2. The reader/interpreter reads in the control statements for one job step.

3. The initiator/terminator allocates the required I/O devices, notifies the operator
of volumes to be mounted (if any>, and requests the task management programs to
supervise execution of the named job step.

4. The task management programs turn control over to the first load module and
supervise its execution,.

I
I
I
I
I
I
I
I
I
I

5. The master scheduler accepts and takes action on commands. I L ___ J

Figure 21. scheduling in PCP

Section 4: Job Management 45

SCHEDULING IN MFT

In PCP, one job at a time is brought from
the input stream into main storage. That
job uses all of main storage beyond an area
set aside for the control program routines
that make up the nucleus of the system. No

.. other job can be brought into storage until
the first job is terminated.

In MFT, on the other hand, main storage
beyond the nucleus area is separated into
one or more areas called partitions. The
number and size of these partitions can be
redefined at any time. Each partition can
service as many as three job queues. The
priority of the queues is based on the
order in which they were initially
specified' (at system generation, system
initialization, or during operation). That
is, if a partition is assigned to service
work in job class ~ and .!!, all ~ jobs are
scheduled into that partition first;B jobs
are scheduled only when there are no more A
jobs. Additionally, several partitions may
be assigned to service the same job class
queues to keep the partitions busy.

The MFT scheduler consists of a master
scheduler and a job scheduler. The MFT job
scheduler reads input job streams and
enqueues jobs on one of fifteen available
job queues, corresponding to the class
specified in the JOB statement. position
on a queue is determined by the priority
specified in the JOB statement. Jobs of
equal priority are enqueued on a first-in,
first-out (FIFO) basis. Jobs are de queued
from the input queues and initiated
according to their place on the queue.
(Note: The priority parameter is only a
scheduling priority, as such, it has no
meaning after the job is initiated. See
the nTask Management" section for further
details .•)

For information on operator actions see
the Operator's Guide publication.

SCHEDULING IN MVT

In MVT.. jobs are not executed as
encountered in the input stream. Instead,
control information associated with a job

46 Concepts and Facilities (Release 19)

enters an input work queue that is kept on
a direct access device. The input on each
queue is arranged according to the job
class, the initiation of a job within a
queue is determined by the priority within
the class.

Use of these queues, which can be fed by
more than one input stream, permits the
system to react to job classes and
priorities within the class; and delays
caused by the mounting and demounting of
I/O volumes. The priority is then applied
to the tasks themselves and, in
multiprogramming operations, is used to
resolve contention between tasks for the
system's resources.

Figure 22 depicts scheduling in MFT and
MVT.

MULTIJOB INITIATION

The MVT initiator/terminator permits
multijob initiation. Under operator
control, a maximum number of 15 jobs can be
underway at the same time. Each job
selected is run one step at a time. Jobs
are selected from the input work queue and
initiated as long as all the following
conditions are met:

• Availability of data sets.

• Availability of main storage.

• Availability of I/O devices.

• Jobs are in the input work queue, ready
for execution.;.

• An initiator is available to initiate
the job.

Language Comparison: Job Management
Facilities
All job management facilities are available
to the users of any programming language.
The system responds to the requests you
make when describing your jobs through the
job control language.

r---,

Job Stream Commands

Commands

or 2

Reader /
Interpreter

System
Console 7

Master
Scheduler

3

Input
Queue

Output
Queue

8

Messages

6
Messages

4 5

InitiatoV
Terminator Job Step

9

~--~
1. Your programs, defined as jobs or job steps by the job control language, enter I

2.

3.

4.

5.

the system through an input stream from a card or tape device. (MFT also I
supports an input stream from certain direct access devices.) I

The reader/interpreter reads in control statements for one or more jobs and
places them on the input work queue. The input on each queue is arranged by job
class, the initiation of a job within a queue is determined by the priority
within the class.

The job with the highest priority is selected for execution by the
initiator/terminator.

The initiator/terminator turns your job step over to the task management
programs, which supervise its execution.

The master scheduler accepts and takes action on commands.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

6. Output is written (by job priority) when the job has terminated and while other I

I

I jobs are being processed~ if output data sets are being processed by the system I
I output writer. If output data sets are being processed as direct system output, I
I then the output data sets are written while the job is executing. I L ___ ~ _______________________ J

• Figure 22. Scheduling in MFT and MVT

section 4: Job Management 47

Section S: Task Management

Your programming goal is to get work done.
The task management programs supervise
execution of all work done in the system.
They receive a job step from the job
scheduler, which initiates a task; the task
then may compete for the resources of the
system. The task management programs
allocate these resources on a job class and
priority basis in a multiprogramming
environment, or as requested in a
single-task environment. When execution is
completed, the job scheduler is notified
and again takes control.

What the User Must Do
All work submitted for processing must be
formalized as a task -- the smallest
independent unit of work that can\compete
for the resources of the system. It is
task management's purpose to provide all
the requested resources; i.e., both machine
resources, such as CPU control, and
programming resources, such as a merrber of
the subroutine library. In a PCP
environment, it provides these resources as
requested. In an MFT or MVT environment,
it provides them on a priority basis.

To make effective use of the task
management facilities you should be
concerned with the following areas:

1. Establishing priorities
2. Creating tasks
3.. Synchronizing events
4. Allocating main storage
5. Protection of storage
6. Passing and sharing main storage
7. Establishing intervals
8. Terminating tasks
9. Time slicing

Establishing Priority

In a multitasking environment, the order in
which jobs are selected for execution, and
requests for resources are resolved by job
class and priority. Initially., you specify
a job's class and priority in the JOB
statement. Classifying jobs allows you to
control the types of jobs running
concurrently in the system. The operator
can modify the scheduling priority up to
the time the job is actually selected for
execution.

In MVT and MFT with subtasking,
dispatching priorities may even be changed
by the program during execution: you can

48 Concepts and Facilities (Release 19)

lower/raise the priority of an active task
or any of its subtasks (tasks created by a
job step during execution). when the job
scheduler initiates a job step, the job
priority within a class is used to
establish a dispatching priority and a
limit priority. The dispatching priority
is used by the resource managers to resolve
requests for main storage and CPU
resources; the limit priority is used to
control dynamic priority assignments.
(Note: In MFT without subtasking the
dispatching priorit~ is determined by the
storage address of the partition in which
the task is being executed: that is, the
higher the storage address of a partition,
the higher the dispatching priority of all
work in that partition. Therefore, without
subtasking, limit priority has no meaning
in MFT.)

Creating Tasks

Effectively, you are the one who creates a
task. 'This is done when:

1. The operator performs the IPL
operation or uses commands that start
components (reader/interpreter, etc.)
of the job scheduler; or

2. The system processes your EXEC
statement; or

3. In MVT and MFT with subtasking, an
ATTACH macro instruction is executed
in your program. Creating a new task
by means of the ATTACH macro
instruction (subtasking) is the most
dynamic control you can exercise.
This facility is available with MVT
and optionally with MFT. MFT systems
with the ATTACH option are referred to
as MFT with subtasking.

The ATTACH macre instruction causes the
control program to create a new task and
indicates the entry point in the program to
be given control when the new task becomes
active. The new task is a subtask of the
originating task; the originating task is
the task which was active when the ATTACH
macro instruction was issued. The limit
and dispatching priorities of the new task
are the same as those of the originating
task, unless modified in the ATTACH macro
instruction.

Resource queue elements.represent
requests that a resource be made available
to a routine in a task.. They are created
only for active tasks. Similarly, task
centrol blocks (TCBs) which contain all the
control information required to supervise a

task and which represent subtasks. are
created only for active tasks as a result
of the ATTACH macro instruction. The
originating task can wait for the
completion of a subtask" just as it can
wait for the completion of other events.

Synchronizing Events

Event synchronization is delaying task
execution until some specified event
occurs.. For example, don' t do anything
until the last output record is written.

An active task can enter a waiting state
directly by a macro instruction, or
indirectly in anticipation of some event.
After the event occurs" notification is
made. If the event is governed by the
control program, as it is when performing
I/O, the supervisor makes the notification;
otherwise you must do it by use of a macro
instruction. (You can delay execution
until a number of events have occurred.>

Another form of synchronization allows
tasks to share resources in a serially
reusable way. (See section 2 for a
detailed description of serially reusable
programs.) For example, the resource may
be a table that is updated during the
execution of many tasks. To avoid errors
that would arise from simultaneous
updating, each task must complete its use
of the table before another task gains
access to it. To control access to such a
resource, you can create a queue of all
tasks requiring access, and then limit
their access to a one-at-a-time basis.

Allocating Main Storage

The supervisor controls and allocates
storage space dynamically, that is, when
requested by a task or the control program
itself. In your jobs, you can make
explicit requests to allocate main storage
and to release main storage. There may
also be an implicit request for main
storage when a program has to be brought
from a library. The supervisor must
allocate main storage space for the
program. In turn, when the program is no
longer in use, there will be an implicit
release of main storage.

Your request for main storage can be for
either fixed or variable amounts. You can
also make the request conditional or
uncondi tional (i. e., the task cannot
proceed without the requested space).

You can significantly expand the dynamic
area by adding the IBM 2361 Core Storage
unit to your current processor storage.
This unit is designed to provide large
capacity storage and, when it is included

in your system, main storage consists of
both processor storage and the 2361. That
is, all processor and 2361 storage is
directly addressable. If necessary, you
can distinguish between processor storage
and 2361 storage, through the use of Main
Storage Hierarchy Support, which is
provided with the IBM 2361 Models 1 and 2.
Processor storage is identified as
hierarchy 0 and the 2361 is identified as
hierarchy 1. This identification is made
through'the REGION parameter in either the
job or execute statement; certain macro
instructions are also extended so that you
can sp~cify hierarchy 0 or 1, as desired.
For full information on hierarchy
identification through job control
statements, see the Job Control Language
publication. For the macro instructions
affected, see the supervisor and Data
Management Macro Instructions publication.

Protection of Storage

Main storage is protected in blocks of 2048
(2K) bytes. Each block can be given a
storage protection key in the range of 0
through 15. Protection keys 1-15 are used
for jobs, and key 0 is used for the control
program. (Every task in one job operates
with the same protection key.)

storage protection is a vital element in
a multitasking environment. Jobs are
executed in their own regions, and other
jobs cannot violate other regions. As a
benefit, program testing may be carried on
at the same time as productive work.

Passing and Sharing Main Storage

In an MVT environment., areas of storage can
be passed or shared between tasks. Since
the area of storage no longer required by a
subtask may still be needed by the
originating task, your jobs may call for
the creation of subpools. A subpool is all
the 2K blocks of main storage allocated for
a particular task under one label (called
the subpool number). When the subtask is
attached, a subpool can be made available
to it by passing or sharing. When a
subpool is passed, termination of the
subtask results in release of the subpool.
When a subpool is shared, termination of
the subtask does not result in release of
the s ubpool.

Establishing Intervals

The interval timer is optional on some
models of System/360 and standard on
others. The control programs make use of
the timer in two ways: to ensure that the
maximurr time for a job step specified in

section 5: Task Management 49

the EXEC control statement is not exceeded,
and to make the job step time available for
accounting procedures. You can use this
interval timer:

• To query the supervisor at any time
during program execution; the response
is date and time.

• To request that the supervisor
communicate with your program after a
stated period of time. Intervals are
requested in real time (actual time
elapsed) or task time (the time the
task is actually using the CPU, not
including waiting time). You can
request that a task be placed in a wait
state until a'real time interval is
completed. You can also request that
the task be allowed to continue, but
that at the end of either a real-time
or task-time interval, control be given
to a specified entry in your executing
module.

• To ascertain how much of the time
requested has elapsed or to cancel a
previously specified interval.

Some of the possible applications for
these facilities are:

• Time and date nstampingn of messages,
data sets, and printouts. The
telecommunications package (QTAM) uses
the timer in this way.

• Restarting a task after a predetermined
time. Telecommunications line-polling
can be done on a periodic basis, rather
than continuously, during low-traffic
hours.

• Program execution analysis and program
debugging. Phases of a long program
can be timed individually under a
variety of conditions. In program
debugging, the timer can be used to
limit the amount of time spent in
executing each section of the program,
thus allowing a single test run to
continue in spite of loops or other
time consuming action that might occur
unexpectedly.

In both MFT and MVT, the interval timer
can be used to limit the time that each job
may execute by including the optional job
step CPU timing feature. If you do select
this feature, you can include your own
accounting routine or the System Management
Facilities option to process this
information. (When you select the Syste:n
Management Facilities option, you must also
select the job step CPU timing option.)
The supervisor times each job step and
passes this value to your System Management
Facilities or accounting routine. The

50 Concepts and Facilities (Release 19)

accumulated value for the entire job is
also passed to the System Management
Facilities or accounting routine.

Terminating Tasks

The system is notified when a task has
completed execution whether normally or
abnormally. Any program operating on
behalf of a task can discontinue task
execution abnormally. The MFT and MVT
control programs then free resources and if
included, can process this information
further. program removes the TCE. In MFT
with subtasking, all TCBs created as a
result of an ATTACH are also removed.
However, in MFT with and without
subtasking, the TCEs set during system
generation (one TCE per partition), are not
removed, but rather made non-dispatchable.
Although abnormal termination of a task
causes abnormal termination of all its
subtasks, it is possible for a subtask to
terminate abnormally without causing
termination of the originating task. (You
can request a dump by use of an appropriate
macro instruction. The dump is placed in
the data set described by the DD statement
you provide.)

Program error exits are requested by the
set program interrupt exit (SPIE) macro
instruction. The programmer may specify
the types of program interruptions h~s
subroutine will handle, and the types the
supervisor is to handle. The programmer
most likely will want to handle conditions
such as overflow and underflow from
ar ithmetic operations" and let the
supervisor take normal action for the
others, such as execution of a privileged
instruction and violation of storage
protection.

An abnormal end of task exit is set up
by the specify task abnormal exit (STAE)
macro instruction. This exit is taken if
the task is abnormally terminated
internally or externally. An internal
termination is one resulting ~rom the
execution of the abnormal end of task
(AEEND) macro instruction. This may be
issued by the user's program after the
determination is made that anuncorrectable
~rror has occurred. An external
termination is one initiated by the
supervisor program, for example, in the
event of a storage protection violation or
the expiration of the specified time for
the job step.

Time Slicing

Time slicing in an optional feature
available to users of MFT and MVT,. At
systett generation time" your installation
may specify that all tasks with a certain

priority (MVT) or that all tasks within a
specific group of partitions (MFT without
subtasking>, or within a certain range of
priorities (MFT with subtasking) are to
share the use of the CPU for an equal"
predetermined length of time. The
installation can modify the group of tasks
or partitions to be time sliced, the length
of the time slice, and in MVT the priority
of the time-sliced tasks. This can be done
at system initialization time and in MFT,
it can also be done with the DEFINE
command.

When a member of the time-slice group
has been active for a certain length of
time, it is interrupted and control is
given to another member of the group which
will, in turn, have control of the CPU for
the same amount of time. In this way, all
member tasks or partitions are given an
equal slice of CPU time and no task or
partition within this group can monopolize
the CPU. In MVT only tasks in the group
are time-sliced, and they are time-sliced
only when the priority level of the group
is the highest priority level that has a
ready task. Dispatching of tasks continues
within the group until: all tasks are in a
waiting state, or a task of higher priority
than the one assigned to the group becomes
ready.

In MFT, only partitions that are
assigned to the time-slice group will be
time sliced, and they are time sliced only
when the first partition in the group is
the highest-priority, ready task.
Dispatching of the partitions continues
within the group until all the partitions
are in a waiting state or until a partition
with a higher priority is in a ready state.

A task in the system that is not defined
within the time-slice group is dispatched
under the current priority structure: that
is, the task is dispatched only when it is
the highest priority task on the input work
queue that is ready.

What the System Does
The system responds to your requests in two
gen er al wa'ys:

1. It handles resource allocation.
2. It supervises execution of the task.

Resource Allocation

System resources, such as control of the
CPU and main storage allocation" are

assigned only to tasks. This assignment
takes place on a priority basis or as
requested,. Even with a single-task control
program, some resource allocation is
necessary and, of course, with a multitask
control program, it is required.
Therefore, the task management programs
must supervise allocation, keep track of
all assignments, and ensure that resources
are freed upon task completion.

TO supervise its allocation, each
resource has a manager. For example, the
manager of the CPU, which is the most
important resource allocated to a task, is
called the task dispatcher. Figure 23
illustrates the logical relationship
between tasks in the system and the
resource managers that manage queues.

In a multitasking environment, more than
one task may be contending for the same
resource at the same time.. Hence, queueing
of requests is an essential part of
resource allocation. When main storage
and/or the CPU becomes available, it is
given to the ranking member of the queue.
Rank is determined by priority or, in the
case of equal priority, by the order of
entry onto the queue.

To keep track of assignments, the
control program maintains queues that
represent unsatisfied requests for
resources and tables that identify
available resources.

supervising a Task

To supervise each task, the control program
groups all control information that
pertains to that task in a TCB. There is,
therefore, one TCB for each task in the
system and it contains such information as
register contents and the location of
storage areas allocated to the task. In
MVT, the TCB is built when the task is
created, that is, when it is attached by
the initiator portion of the job management
programs. The task given control by the
initiator/terminator is called the job step

I task. In MFT without subtasking, TCBs are
created at system generation. These TCBs
may be made active or inactive as the
result of redefining partitions during
operation, but no TCBs are created. In MFT
with subtasking, the system TeEs and a job
step TeE for each partition are created
during system generation. These TCEs may
be made active or inactive as the result of
redefining partitions.. New TCBs may be
created whenever the user executes an
ATTACH macro instruction to give control to
a subtask.

Section 5: Task Management 51

Task Queues

D C B ..
PR = 3 PR =4 PR = 10

Queued Resource Requests C

Queued Resource Requests

Figure 23. Resource Queues

Once control is passed to the task, the
task management programs must keep track of
the task's current state. The task's
current state depends on the task's
readiness to use the cpu. If the task can
make immediate use of the CPU, it is ready.
If the task is using the CPU, it is active.
Otherwise, the task is waiting. That is,
waiting is the opposite of ready. The
first two states are self-explanatory, but
the concept of a waiting state needs more
explanation .•

A task can enter the waiting state
directly or indirectly. It enters the
waiting state directly via the WAIT macro
instruction., and indirectly as a result of
other macro instructions. For example, an
indirect wait may occur as a result of a
GET macro instruction that requests the
next input record. If the record is
already in a main storage buffer, no
waiting occurs; otherwise, the GET routine
issues a WAIT and the task is delayed until
the record is available.

The completed use of a resource is
always indicated by an interruption,
whereupon the appropriate resource manager
takes control. Therefore, if an active
task -- task 1 -- is interrupted, it will
only get control back (after the supervisor
processes the interruption) if all other
ready tasks are of equal or lower priority.
If, however. a higher priority task -- task
2 -- is now ready, it is given control,
regardless of the point at which task 1 was
interrupted. This does not mean that task'
1 is put in the waiting state; it is still
ready. Allocating resources by priority
extends beyond giving control to a ready
task when all others are waiting: it
resolves the conflict of who should get

52 Concepts and Facilities (Release 19>

A Manager of
p CPU Time

PR = 12

-[A

1 -I
,v'\anager of
Main Storage

·1 -I
A

Manager of
I/O Channels

control when there are two or more ready
tasks.

Note: Through the use of the TIME
parameter in the execute statement, you can
find out how much CPU time a job step used.
This value is exclusive of wait and I/O
time. A job step that uses job step CPU
timing is canceled if every task in the
step is in a wait state for more than
thirty consecutive minutes. (Through the
System Management Facilities -- SMF -
option, CPU and wait time may be extended.>
To invoke job step CPU timing., you must
have specified the interval timer. At
system generation time" you can include the
SMF option, or your own accounting routine
to process the information. (If you
selected SMF, you must also have selected
the job step CPU timing feature and your
accounting routine must be added to the
appropriate routine.) The supervisor will
calculate the amount of time each job step
has control of the CPU. This value is then
passed, along with the accumulated value
for the entire job, via an exit, to the SMF
or user-supplied accounting routine, which
can process this information further.

The Environments of a Task
Although the requirement that all work be
performed under task control has no
exception, the manner of controlling tasks
is sutject to considerable variation. The
most significant choice of options
available to an installation is that choice
between single-task and multi task control
progra~s -- either with a fixed or variable
nuwber of tasks. In a single-task
environment, no more than one task can
exist at anyone time. On the other hand,

several tasks may coexist in the multi task
environment and compete for resources on a
priority basis. since both environments
are concerned with task control, a program
that is written for the single-task
environment and follows normal system
conventions will work equally well in the
multitask environment.

A SINGLE-TASK ENVIRONMENT (PCP)

In a single-task environment, the job
scheduler programs are tasks. Each job
step is executed as part of this task, and,
since it is the only task in the system, it
can have all available resources. The job
step's program can, of course, have any of
the program structures previously
mentioned, except a dynamic structure with
more than one task per job step.

A brief look at execution in a
single-task environment will help to
clarify these concepts.

The control program first locates the
load module that you specified in your EXEC
statement. It allocates main storage space
according to program attributes stated in
the library directory entry for the load
module, then loads the program into main
storage. Once the load module is available
in main storage, control is passed to the
entry point. If the load module fetched is
the first subprogram of a dynamic serial
structure, the subsequent load modules
required are fetched in the same way as the
first, with one exception: if the needed
module is reusable or reenterable (that is "
self-initializing so that any portion
modified in the course of execution is
restored before it is reused), and a copy
is already in main storage, that copy may
be used for the new requirement. When the
job step is complete, the supervisor
informs the job scheduler whether the
completion was normal or abnormal.

A MULTI TASK ENVIRONMENT

Although the resource allocation function
is not absent in a single-task environment.
The task management programs must assign
resources to tasks, keep track of all
assignments, and ensure that resources are
properly freed upon task completion. If
several tasks are waiting for the same
resource, queueing of requests is required.
By clearly distinguishing among tasks, the
supervisor can allow tasks to share
resources where advantageous to do so.

Before discussing the more apparent
benefits of a multitasking environment,
let's take a look at one that might easily
escape us. Multitasking reduces your

system overhead time, even if you are
running only single-task applications. You
will recall that we have used the terms
"single-task control program" and
"multitask control program." The
significance here is that in a multitasking
environment, the control program itself is
multitasking. Thus, you are deriving
time-saving benefits from it, even though
you are running only single-task
applications.

The visible benefits include fast
throughput in job-shop operations. This is
achieved by allowing concurrent operation
of in~ut readers, output writers, and your
jobs. It is possible to handle a wide
variety of telecommunications activities,
each of which is characterized by many
tasks often in the waiting state. Also,
you can use the dynamic structure for your
complex problems. Hence, the various
segments of your program can share system
resources concurrently and thus optimize
the use of these resources. Under operator
control, multitask operations permit job
steps from several different jobs to be
established as concurrent tasks.

Up to 15 jobs can be competing for
resources concurrently under MVT and MFT.
Each job, consisting of one or more
processing programs (steps), is selected
for execution from an input work queue by
its priority within a class. Just as in
PCP, the steps of each job are executed
sequentially. Each region (in MVT) or
partition (in MFT) is a single, contiguous
area of main storage and is assigned a
unique storage protection key. The
supervisor uses protection key zero. Thus,
15 regions or partitions of main storage
can be assigned to processing programs at
any cne time. (Note: In MFT, storage
protection is optional: therefore, a
protection key is assigned only when the
feature is included in the system.)

A step being executed can communicate
with succeeding steps in the same job
through condition codes and passed data
sets. It cannct pass data to a succeeding
step by leaving it in its region.

A job, by definition, is independent of
all other jobs. This is an essential
characteristic in a multiprogramming
environment, where jobs are executed on a
priority basis with no attempt to
synchronize the execution of one job with
another. A job step cannot communicate
directly with a competing ste~ in a
different region or partition. It cannot
cause a new region or partition to be
established. Commands given by the
operator, or, in MV'I, supplied in the job
strearrs, control the number of regions or
partitions to be used.

section 5: Task Management 53

As mentioned l MFT and MVT users can
select the time-slicing facility at system
generation time and modify it at system
initialization time (MFT users can also
modify the time-slicing specification via
the DEFINE command). Time-slicing of equal
priority tasks (in MVT) or of a group of
partitions (in MFT) prevents one task or
partition from monopolizing the cpu. This
facility is especially useful when one or
more tasks or partitions are involved
conversation-type applications in which the
user is interacting with the application
program through a terminal.

Multprogramminq With a Fixed Number of
Tasks - (MFT)

In an MFT environment, storage is divided
into two major areas: the system areas and
the dynamic area. The dynamic area is our
concern.

The dynamic area is divided into a
number of discrete areas called partitions
(the maximum number of partitions is 52).
The user defines the number of partitions
in the dynamic area at system generation
time or at initial program loading (IPL)
time. He can redefine them at any time.
As many as 52 partitions can exist. Each
partition can contain one active task at a
time; therefore, as many as 52 tasks can be
executing concurrently. 0 f the 52
partitions, up to fifteen may be used for
executing jobs. Each of these 15
partitions may also contain, in addition to
a job., a transient reader and as many
direct system output writers as desired.
However, there can only be a total of three
readers started in the system at one time.
In addition, up to 36 system output writers
may operate in the system. If the system
has the subtasking optio:., the total number
of tasks and subtasks executing
concurrently can be as large as the
limiting value of 255. (Note: the number
255 must include the number of system
tasks, the number of attached system
subtasks, and the number of user tasks and
subtasks.)

MFT allows the user to direct jobs to a
given partition or group of partitions
through.the CLASS parameter of the JOB
statement. Up to three alphabetic job
classes (A-a) are assigned to each
partition at system generation time; these
job classes may be modified at system
initialization or by using the DEFINE
command. Using the CLASS parameter on the
JOB statement enables the user to define
the ~ of job that each partition may
process. As an additional feature , the
MFT control program offers partition
definition. With this feature, the

54 concepts and Facilities (Release 19)

operator can change the number, size~ and
job class of any or all partitions in the
system at any time after initial program
loading.

In MFT without subtasking, the highest
storage address is the highest priority
partition. The preceding rule does not
hold true in MFT systems with subtasking,
because the user can change the priority of
problem programs by using system macro
instructions.

Jobs are scheduled into partitions
through the use of the CLASS parameter in
the JOB statement" in conjunction with the
PRTY (priority) parameter. With the
optional storage protection feature, each
of the 15 possible jobs is protected from
damage by the other jobs, and the system
areas are protected from all problem
programs.

All partitions are independent with
respect to job scheduling and initiation.
Jobs are scheduled into the first available
problerr program partition that services the
job class specified in the JOB statement.
Execution then proceeds concurrently for
all tasks in the system. That is,
execution is not simultaneous or overlapped
or alternated in a fixed pattern. A task
gains control when another task must wait
for the completion of some event, such as
an input/output operation.. Only then is a
lower priority task allowed to proceed.
When a higher priority task is ready to
resume, the lower priority task's
processing is suspended and control of the
CPU is returned to the higher priority
task. (The priority of each task is
determined by the partition in which it
resides.) The high-priority task then
proceeds until another event causes it to
relinquish control. The relinquishing of
control by one task and another task's
receipt of control is called a task switch.

If you select the subtasking option
during system generation, then a job step
may attach one or more subtasks using the
ATTACH macro instruction. The subtasks may
be assigned priorities using the parameters
of the ATTACH macro intruction. In
addition, you may alter the priority of
your subtask by using the change-priority
(CHAP) macro instruction. All tasks must
terminate before the job step can
terminate.

In MFT~ when you select the time-slicing
facility, you should be aware of the
following. The time-slice group is
composed of a group of contiguous
partitions. All tasks scheduled into these
partitions will be time-sliced. Also,
since each partition in the system is
assigned to at least one job class, and

since a job is scheduled into a partition
according to the job class specified in the
CLASS parameter on the JOB card , careful
consideration should be given to the job
class assigned. If you want the job to be
time sliced, direct it to a partition (via
the CLASS parameter) that has been assigned
to a time-slice group.

In MFT with subtasking, any task that
has a dispatching priority falling within
the range of priorities assigned to a
time-slice group will be considered a
member of that group. A task can have a
dispatching priority equal to that of the
time slice group as a result of the
priority parameter on the JOB statement or
by specifying the appropriate parameters in
the ATTACH or the change-priority (CHAP)
macro instruction. Therefore, when using
an ATTACH or CHAP macro instruction if the
subtask is assigned a priority number that
designates a time-slice group, the new task
is included in the group regardless of
whether the original task is.

Use of this control program requires
that of consideration be given to the way
the user defines different types of jobs
and directs those jobs to partitions
consistent with the job's characteristics.
Taking some simple cases: CPU-bound jobs
can pe directed to low priority partitions
so that they do not interfere with
efficient processing of jobs that do not
require the CPU as often.
TelecommQDications jobs can be directed to
the highest-priority partitions so that
system response time to the terminal user
is minimal.

For further information on MFT" see the
publication: IBM System/3600perating
System: MFT Guide!, GC27-6939.

Multiprogramming With a Variable Nunher of
Tasks (MVT)

Although MVT offers the same advantages
(discussed under wA Multitask EnvironmentW)

as MFT, there are significant differences
between the two programs, especially in
their use of storage and the additional
facilities available through MVT.

Within MFT and MVT, a certain amount of
ma~n storage is reserved for control
program modules. The remainder of storage,
the dynamic area, is available to user
programs. In MFT, the dynamic area of
storage is divided into a number of
discrete areas called partitions. In MVT,
the dynamic area is divided into regions.

The MVT configuration reads one or more
input streams and schedules the jobs
(classed on an input work queue) according

to priority. Each job initiated operates
in a region and up to 15 independent jobs
can be performed concurrently. The job
steps within a single job are performed in
sequential order, since one step may depend
on the successful completion of another.
However, unlike PCP, where each step is
limited to a single task, a job step in MVT
(which is itself considered to be a task)

may attach one or more subtasks using the
ATTACH macro instruction. 'The job step
task and its subtasks execute independently
within the same region and use the same
storage protection key. All tasks must
terminate before the step can terminate.
Note that in MVT, any task that has a
dispatching pr·iority number equal to the
time-slicing dispatching priority number
will be a member of the time-slice group.
A task can have a dispatching priority
equal to that of the time-slice group as a
result of the priority parameter on the JOB
statement or by specifying the appropriate
parameters in the ATTACH or change-priority
(CHAP) macro instructions. Thus, when
using the ATTACH m~cro instruction, if the
sub task has a priority number that
designates a time-slice group~ the new task
is included in the time-slice group
regardless of whether originating task is.

Region size is determined by the REGION
parameter on the JOB or EXEC card. If
supplied on the JOB card, each step of the
job will be given a region of that size
regardless of any region size specified in
the EXEC cards. If the region parameter is
omitted from the JOB card, each EXEC card
can specify the region size desired for
that step. An installation-specified
default region size will be used if neither
the JOB nor the EXEC card has a REGION
parameter. Once a region is established
for a job step, no additional storage can
be allocated to that region, unless the
rollout/rollin feature is available.

Rollout/Rollin (RO/RI)

An additional feature available to the MVT
user is rollout/rollin. Rollout/rollin
allows the temporary, dynamic expansion of
a particular job beyond its originally
specified region. When a job needs more
space, rollout/rollin attempts to obtain
unassigned storage for the job's use. If
there is no such unassigned storage,
another job is rolled out -- i.e., is
transferred to auxiliary storage -- so that
its region may be used by the first job.
When released by the first job, this
additional storage is again available,
either (1) as unassigned storage, if that
was its source, or (2) to receive the job
to be transferred back into main storage
(rolled in).

Section 5: Task Management 55

system Management Facilities

Also available to the MVT and MFT user are
data collection routines and exit linkages
provided by the System Management
Facilities (SMF) option.. Through SMF data
collection routines. this option can be
used as a system resource distribution and
evaluation tool. By providing your own
exit routines at the appropriate locations,
this option can be used in a monitoring
capacity. Since the data collection and
exit facilities are independent of one
another once SMF is included in the system
at system generation time, they may be used
in combination or separately.

SMF data collection routines gather job
and direct access and volume information
for management information programs. They
provide the manager and system programmer
with the information necessary to make a
variety of analyses. SMF routines can be
used to determine each job step's use of
the CPU. I/O devices, and storage. They
can be used to determine data set activity
for each problem program and also to
acquire volume usage information for direct
access devices. Output created by the SMF
routines can also be used to create and
maintain inventories on direct access and
tape devices.

The manager and system programmers can
use this information in various ways. In
generaL. they can measure system usage
against their own standards of efficiency
and performance and in comparison to those
at other installations. They then have a
data base (recorded data in a permanent
format) to use to improve their
installation's standards.

SMF is not, however, confined to
after-the-fact analysis. This option also
allows the user to write exit routines;
these routines can monitor a job or job
step at various points during its
processing cycle, that is,. from control
statement analysis to termination of the
job. (All linkages for thes~ exits are
supplied when the option is included in the
system at system generation time.)
Therefore, by adding installation routines
at the appropriate exits, the installation
manager can enforce standards of
identification, priority" resource

56 Concepts and Facilities (Release 19)

allocation, and maximum execution time.
The maximum number of logical records
written to a system output device can be
limited through use of the OUTLIM parameter
on the SYSOUT DD statement.

Here's an example of using both
facilities provided by SMF. By using and
analyzing the information obtained by the
data collection routines the installation
manager determines. the average time each
job step uses the cPU. In general. he
finds that job steps exceeding this time
limit are in a loop or unending wait state.
Time is being wasted and overall efficiency
impaired. Therefore the average is used to
establish a time limit for each job or job
step running on the system; a job exceeding
its expected time limit will be terminated.
However, there must be some way to allow a
job to exceed its expected time limit .•
Therefcre~ a routine is coded for the time
limit exit; this allows him to extend the
run time for selected jobs, such as the
inventory program at year's end.

step Restart

step restart is similar to checkpoint
restart in purpose and effect. However.
with step restart, no CHKPT macro
instructions need be issued to initiate the
restart4 The programmer may specify that
he wants step restart in effect for all
steps in his job (by using a special
parameter on the JOB statement) or that he
wants it in effect for a particular step
(by using a special parameter on the EXEC
statement). Restart of an abnormally
terminated job step may be automatic (if
the job or job step has an eligible ABEND
code and the operator consents) or
deferred, where a deferred restart involves
resubmitting the job.

Language Comparison: Task Managemen'
Facilities
All task management facilities are
available to users of the assembler
language, except that MVT is not available
to the users of Assembler E. Table 7
indicates which of the facilities are
available to users of higher-level
languages.

-Table 7. Language Comparison: Task Management Facilities

r-----------------~---------T----------------T----------------~------------T---------,
ITask Management I I COBOL I FORTRAN I I I
I Facilities I ALGOL ~-----T---T------+-----T-----~----~ PLII I RPG I

I I I I ElF I ANS1 I E I G I H I I I
~------------------+----------+-----+---+------+-----+-----+-----+------------+---------~
IAllocating Main I I I I I I I I I I
I Storage I No I No I Nol No I No I No I No I Yes I No I
~-----------------_+_---------+-----+---+------+-----+-----+-----+------------+---------i
I I I I I I I I I I I
I Creating Tasks I No I No I Nol No I No I No I No I Yes I No I
r------------------+----------+-----+---+_----+-----+-----+-----t-----------t-----'----~
I Establ ishing I I I I I I I I I I
I Priorities I No I No I Nol No I No I No I No I Yes I No I
r-----------------_+_---------+-----+_--+------+-----+-----+-----+------------t---------~
I I I I I I I I I I I
I MFT I Yes I Yes I Yesl Yes I Yes I Yes I Yes I Yes I Yes I
~------------------+__--------t----_+_--+_----+-----t-----+-----t------------t---------i
I I I I I I I I I I I
I MVT I Yes I Yes I Yesl Yes I Yes I Yes I Yes I Yes I Yes I
~----------------_+_---------t-----+_--+------t----_+-----+-----+------------+---------~
IPassing and I I I I I I I I I I
I Sharing Main I I I I I I I I I I
I Storage I No I No I Nol No I No I No I No I No I No I
~-----------------+----------+-----+---+------+-----+-----+-----+------------+---------~
I Protection of I Yes I Yes I Yesl Yes I Yes I Yes I Yes I Yes I Yes I
I storage I I I I I I I I I I
~-----------------~---------~----~---i------~-----~-----~ _____ L-___________ ~ _________ ~

I 11American National Standard COBOL. I L ___ J

Section 5: Task Management 57

Section 6: Recovery Management

The most efficient use of your programming
and machine resources is impaired when you
cannot minimize the duration and effect of
unscheduled interruptions caused by a
machine malfunction. To effect higber
availability of the computing system you
must have records that detail the
environment of the system at the time tbe
machine malfunction occurred. Recovery
Management facilities, which are designed
to support Models 65, 65 Multiprocessing,
and 85 of the IBM System/360, help you
increase computing system efficiency by
recording environmental data at the time of
the machine malfunction andw in some cases,
by providing an analysis of this data.

Recovery from a machine rna If uncti on is
possible at one of four levels. First, an
interrupted instruction or I/O operation
may be successfully retried (instruction
retry is part of the recovery management
process for Model 65, but is handled
directly by the machine recovery facilities
for Model 85). If this is not possible,
the system operation may be continued by
repairing program damage to prevent further
interruptions or by associating the damage
with a particular task to allow selective
termination of the affected job. The
system operation may, if necessary, be
restarted by an IPL procedure that uses
system job and data queues preserved by
system restart facilities. Or, recovery
management error records can facilitate
rapid diagnosis and repair of a
non-recoverable machine malfunction.

The following Recovery Management
facilities record (on the SYS1.LOGREC data
set) the environment of the system at the
time of a machine malfunction:

• system Environment Recording (SER) is a
set of control program routines that
record machine malfunctions in the CPU
and channels of Models 40" 50, 65, 75,
91/95, and 195. SER includes two
model-dependent programs called SERO
and SERle Your installation may have
either SERO or SER1, depending on the
model and storage size. see the system
Generation publication for the level of
SER provided as a default during system
generation, and the alternate choices
available.

• Machine-Check Handler for Model 65
(MCB/65) analyzes the error and
attempts a recovery by retrying the
failing instructionw if possible. If
retry is not possible, or if it is

58 Concepts and Facilities (Release 19)

unsuccessful, MCH will attempt to
repair the malfunction, or isolate it
to a task" or both. This facili ty is
o~ional for MFT and MVT in a Model 65,
but standard with Model 65
multiprocessing.

• Machine-Check Handler for Model 85
(MCR/85) is standard programming
support for MFT and MVTi it records the
machine failure environment and, in the
case of an unsuccessful machine retry,
analyzes the error and attempts repair
and/or isolation and termination of the
affected task.

• Channel-Check Handler (CCH) is an
optional feature (exception: it is
standard for MVT with Model 65
multiprocessing and Model 85) which
analyzes the error and produces an
interface that aids in setting up for a
retry of the failing operation by the
Input/Output Supervisor. CCH is
available with Model 65 and higher.

SERO, SER1, MCH/65 and MCH/85 are
mutually exclusive facilities that receive
control when a machine check is detected.
CCH receives control When certain channel
check conditions occur. However, if CCH is
not present in the system, one of the other
Recovery Management facilities chosen at
system generation time will receive control
and write an error record for the channel
failure. CCH routines can be loaded
dynamically at IPL or NIP time.

Note: Not all the Recovery Management
facilities can recover from an error at
each of the four levels.

In addition, two facilities exist that
provide the capability to bypass various
I/O errors. .Both facilities are optional
support for MFT and MVT. Both are
automatically included for Model 65
Multiprocessing.

• Alternate Path.Retry (APR) allows an
I/O operation that has developed an
error on one channel to be retried on
another channel (if another channel is
ass igned to the device performing the
I/O operation). APR also provides the
capability to VARY a path to a device
online or offline. While not model -
dependent, APR only performs its
function usefully in systems that have
alternate paths and include the Channel
Check Handler,.

• Dynamic Device Reconfiquration (DDR)
allows a demountable volume to be moved
from one device to another, and
repositioned if necessary, without
abnormally terminating the affected job
or reperforming IPL. A request to move
a volume~ay be initiated by either the
operator or the system, for system
residence or non-system residence
devices.

What the User Must Do
Recovery Management processing is
independent of user parameters and other
system facilities. Recovery Management
facilities are initiated as the result of
an unscheduled interruption caused by a
machine malfunction.

To ensure more efficien~ use of the
Recovery Management facilities, the
programmer must code refreshable.modules.
A refreshable module cannot be modified by
itself or by any other module during
execution; i .. e., a refreshable module can
be replaced by a new copy during execution
by a recovery management routine without
changing either the sequence or results of
processing.

You must specify the refreshable
attribute (REFR) in the parameter field of
the linkage editor EXEC statement. If an
entire load module is to be marked
refreshable, each control section within
the load module must be refreshable.

What the System Does
When a machine malfunction causes an
unscheduled interruption, control is passed
to one of the Recovery Management
facilities. (Table 8 illustrates the
capabilities of each of the Recovery
Management facilities.) These programs
record the system environment when a
machine malfunction occurs in the CPU, main
storage, or channels. An analysis of this
environmental data determines the level at
which recovery is feasible.

Before Recovery Management releases
control, it formats and records on the
primary system residence volume the data
associated with the malfunction. The
dynamic output from the environment
recording and Recovery Management
facilities is recorded on SYS1.LOGREC, a
data set on the system residence volume
used exclusively for error records. The
data contained on SYS1.LOGREC is edited and
printed by the Environment Record Editing

and Printing (EREP) system utility program.
(For more specific information on the EREP
system utility program see the publication"
IBM System/360 operatinq·system:
Utilities" GC28-6586.)

SERO

System Environment Recording" Option 0,
(SERO) is the least complex option of the
Recovery Management facilities. SERO
determines the type of malfunction and, if
possible, writes the error record on
SYS1.LOGREC. The system is placed in the
wait state and a message is issued to the
operator requesting him to reload the
operating system. (The Initial Program
Load (IPL) procedure must be followed to
reinitialize the system.)

If the error record cannot be written,
the system is placed in the wait state and
a message is issued to the operator
requesting the use of the stand-alone
diagnostic program System Environment
Recording I, Editing, and Printing (SEREP).

SER1

System Environment Recording, Option 1
(SER1), performs the same data collection
functions as SERO. SER1 also performs a
selective termination analysis that
attempts to associate the error with a
specific task. If a task/error
relationship is established and if
additional failures do not occur after SER
1 has filled in the record entry:

1. The affected task is terminated
abnormally.

2. The record entry is formatted and
written onto SYS1.LOGREC.

3. System operation continues.

If a task/error relationship is not
established or if additional failures occur
after the record is complete or if I/O
errors prevent the reading of the header
record on SYS1.LOGREC" the system is placed
in a wait state and the operator is issued
a message requesting him to reload the
operating system.

MCH/65

The Machine-Check Handler for Model 65
(MCH/65) is a more complex option of the
Recovery Management facilities that support
multiprograF~ing versions of the operating
system (MFT and MVT). It is standard to
MVT with Model 65 multiprocessing.

section 6: Recovery Management 59

.Table 8. Synopsis of Recovery Management Capabilities
r------------------------------T-------------T-------------T--------------T-------------,
I Facili ty I I I I I
I I SERO I SERl I MCH I CCH I
I Capability I I I I I
r------------------------------+-------------+~------------+--------------+-------------~
I Determine error type I I I I I
I (CPU/CHAN) I Yes I Yes I Yes I No I
r------------------------------+-------------+-----------~-+--------------+-------------~
I Record environment I Yes I Yes I Yes I Yes I
~------------------------------+-------------+-------------+--------------+~------------i
I Analyze malfunction I No I Yes 1 I Yes2 I Yes I
r------------------------------+-------------+-------------+--------------+-------------~
I Repair program damage I No I No I Ye s I No I
~------------------------------+__-----------+----------~--+--------------+-------------i
I Retry interrupted I I I I I
I instruction I No I No I Ye S3 I No I
~------------------------------+-------------+-------------+--------------+-------------i
I Initiate selective I I I I I
I termination of the I No I Yes1 I Yes2 I No I
I affected task I ! I I I
r------------------------------+-------------+-------------+--------------+-------------~
I Generate error record I I I I I
I for SYS1.LOGREC I Yes I Yes I Yes I Yes I
~------------------------------+-------------+-------------+--------------+-------------~
I Place system in wait I I I I I
I state I Yes I Yes I Yes I Yes I
r------------------------------+-------------+-------------+--------------+-------------~
I Provide information for I I I I I
I error recovery procedures I No I No I No I Yes I
r-------~----------------------i-------------i-----------__ i ______________ i _____________ ~
I 1Limited. I
I 2Extensive testing. I
I 3Initially handled by machine recovery facilities in Model 85. I L ___ J

When there is a failure in the CPU or in
main storage, MCH/65 receives control and
records the system environment. The MCH/65
modules analyze this data and determine the
level at which recovery is feasible.

If recovery is not possible at the
functional level (by repairing the failure
and/or retrying the interrupted
instruction), MCH/65" like the SER1 option,
attempts, at the system level, to associate
the damage with a particular task thereby
allowing the selective termination of the
affected job. If recovery is successful at
either the functional or system level,
system operation continues.

However, recovery must be attempted at
either the system-supported restart or
system repair level when anyone of the
following occur:

1. The failure affects a critical task.
2. Pertinent data is indeterminate.
3. The failure cannot be corrected.

Recovery at the system-supported restart
level consists of a re-IPL procedure, using
system job, and data queues that have been
preserved by system restart facilities.

60 Concepts and Facilities (Release 19)

Recovery at the system repair level
involves placing the system in the wait
state. (Exception: For Model 65
Multiprocessing, a permanent storage
failure in a non-critical operating system
component (e.g., problem program storage)
can be logically removed by Storage
Reconfiguration and normal system operation
can continue.) Use of pertinent diagnostic
data formatted by MCH/65 and written onto
SYS1.LOGREC facilitates repair of the
machine malfunction.

MCH/85

The Machine-Check Handler for the Model 85
(MCH/85) differs only in that machine
recovery facilities handle instruction
retry. If the machine-check interruption
is successfully retried by the machine
recovery facilities, MCH/85 is entered
solely to format an error record (and, in
some cases, to perform error analysis to
aid the customer engineer) and to place the
record on SYS1.LOGREC.

If the interruption is not successfully
retried, by machine recovery facilities,
MCH/85 receives control and attempts the
following functions, essentially the same

as the equivalent MCH/6S functions: (1)
identification and analysis; (2) repair or
task termination; (3) the formatting of an
error record.

High availability of the Model 85 is
further enhanced through the combined
efforts of MCR/aS and an operator command,
MODE, by which he may control the method of
error recording for machine malfunctions.

CCH

When a channel failure is detected, the
Channel-Check Handler (CCH) receives
control from the Input/Output Supervisor.
The two major functions performed by CCB
are the completion of the error routine
interface bytes and the completion of the
record entry~ The analysis performed by
CCB aids the appropriate IBM-supplied error
routine (Error Recovery Procedure -- ERP)
in setting up for a retry of the failing
operation by the Input/Output Supervisor.

The error record CCB formats contain the
environment of the channel failure and is
written onto SYS1.LOGREC by a routine
within lOS.

APR

When Alternate Path Retry is not in the
system, the retry of channel errors occurs
randomly on the available paths. APR
ensures that a different channel will be
tried (if one exists, is online, and ready)
on retry of channel-detected errors. This
is done by marking failing paths offline
and indicating the offline paths to the I/O
Supervisor. Since lOS will check the
status of the path before attempting to
initiate I/O to that path, time will not be
spent trying paths that have reported
not-operational or have been varied
offline.

APR also allows the operator to vary
paths online or offline. This facility can
be used to vary a path online that
previously reported not-operational, or to
vary a path offline that has been receiving
channel-detected errors.

APR supports alternate subselector
channel paths on the 2870 channel and
alternate selector channel paths. It does
not support teleprocessing.

DDR

Dynamic Device Reconfiguration can be
requested by the operator any time during
execution, or by the system after a

permanent error for all supported
demountable volumes. DDR monitors the
validity of the requests and responses of
the operator, and requires the operator to
complete system-requested swaps before
initiating his own.

Operator-requested DDR is initiated by
the use of the SWAP command.
system-requested DDR receives control,
following a permanent error, through
OBR/SDR for non-system residence devices
and through Transient Error Fetch, the
Error Fetch Sequence~ Finch, or the
resident DASD ERP for system residence
devices.

DDR supports the 2400, 2311, 2314, and
2321. Shared direct access data sets may
not be swapped, except to themselves. DDR
may be applied across channels. It can be
requested only by the operator for readers,
printers, and punches during ftintervention
required ft conditions. Two volumes may be
completely swapped following a permanent
error, or a volume can be demounted for
cleaning and then remounted on the same
device.

Error Recovery Procedures and the

Online Test Executive Program

To put operating system recovery support in
better perspective, the following
paragraphs discuss Error Recovery
Procedures and the Online Test Executive
Program.

Error Recovery Procedures

Error Recovery Procedures (ERPs) are
designed to maintain device performance and
to ensure that all the routines that
implement these procedures provide a
uniform type and quality of information.
IBM supplies the routines, which are device
dependent: they attempt error recovery for
particular device types according to the
error recovery procedures. The routines:

• Define intermittent and unrecoverable
errors.

• Detect and attempt recovery from errors
encountered during read or write
o};:erations.

• Detect and recover from errors
encountered during control operations.

Use of error recovery procedures may
differ from installation to installation.
For one, at system generation time, the
installation will select only those

section 6: Recovery Management 61

routines needed for the devices in its
system. For another, the standard number
of retries defined for each recovery
routine may not meet an installation's
particular requirements. Hence" the
standard number can be modified to suit
installation needs.

Once selected, recovery routines reside
in the SVC library, except for the portion
of the direct access error routine needed
for the system residence device and for
frequent, unusual conditions (such as,
end-of-cylinder, head switching, alternate
track procedures, etc.), which resides in
main storage. Thereafter, whenever an I/O
interruption occurs and an error is
detected that requires error recovery
procedures, the system deter,mines if an
IBM-supplied routine is to be used. .If so,
the appropriate routine is brought into
main storage. After it receives control,
the error routine determines the type of
error and, where possible, attempts to
retry the channel program and to recover
from the error. At the completion of error
processing -- successful or unsuccessful -
the routine causes termination of the I/O
request, notifies the user of completion
and returns control to the task supervisor .•

Online.Test Executive Program

An online test system provides a set of
programs (OLT's) that can be used to test
I/O devices" control units, and channels
within the operating system environment.
These programs, together with the Online
Test Executive Program (OLTEP), form the
Online Test System (OLTS).

62 Concepts and Facilities (Release 19)

OLTEP schedules and controls the
activities of OLTS. It also provides
communication with the operator. CLTEP
resides on SYS1.LINKLIB, is called by
standard job control statements, and is
under control of the operating system at
all times.

Essentially, OLTS allows a user to test
I/O devices concurrently with the execution
of programs. Testing an I/O device
ordinarily does not interfere with system
input and output, although the unit being
tested must be made unavailable for
operating system use (that is, prior to
testing a device, the user must vary it
offline so that it is not accessible to the
operating system). After OLTEP is called,
it notifies the operator that it is active
and provides continuing communication with
him during testing.

Tests may be run to diagnose I/O errors,
verify repairs, verify engineering changes,
or just to periodically check devices.
OLTEP has built in safeguards to ensure the
protection of data in external storage.
During testing, operating system error
recovery procedures are invoked only for
recovery from a seek check on a direct
access device. They are bypassed for all
other online test operations.

Language Comparison: Recovery
Management Facilities
Recovery Management facilities are
available to all programming language
users, if his operation system includes
Recovery Management support.

The term -multiprogramming" implies the
concurrent execution of two or more tasks
by a single cpu. The term
-multiprocessing" generally implies two or
more interconnected processors or CPUs.
More specifically, in the operating system
context, multiprocessing implies the
simultaneous execution of two or more tasks
by two CPUs operating under the same
control program, sharing the same main
storage, and with each cpu able to
communicate with the other without manual
intervention. Furthermore., in a
multiprocessing system" devices are
accessible from either cpu through the use
of two-channel switches. Those devices in
the system that do not have the two-channel
switch capability (logically or physically
connected to only one CPU) depend on CPU to
CPU communication if the non-connected CPU
is to have access to those devices.
(However, a device without the two-channel
switch cannot be accessed from the
non-connected CPU.)

Advantages

What are the advantages of a
multiprocessing system? The resources of a
multiprocessing system have a higher degree
of availability; they allow flexibility in
the use of resources; and, since tasks can
be executed simultaneously, there is a
potential increase in throughput. HOW,
then, are these advantages achieved?

In a system with a single CPU (a
uniprocessing system), the failure of the
CPU means that none of the system's
facilities will be available to you until
the failure is corrected. Failure of a
system resource other than the CPU
(channel, control unit, or I/O
device) ••• and sometimes main
storage ••• means, at best, a degraded mode
of operation. To achieve availability, the
installation must be configured with a
redundancy of most system resources,
including CPUs and main storage. In other
words, this user should have two of
everything.

Installing two completely independent
uniprocessing systems, each consisting of a
single CPU with associated main and
secondary storage does solve the problem of
,availability. When one component in a
system fails, the user goes to the other
system. However, this solution achieves
availability at the price of flexibility.
By dividing the system into two totally

Section 7: Multiprocessing

different subsystems, all resources of the
failing system become unavailable, not just
the faulty resource. Furthermore, in an
installation having two independent,
uniprocessing systems" it is possible that
certain jobs cannot be run on one of the
systems, because that system lacks
sufficient storage space or a required
secondary storage device. At the same
time, the other system might have a surplus
of main or secondary storage.
Multiprocessing allows pooling of resources
to improve flexibility without sacrificing
availability. Note that this includes
pooling of CPUs, which was not possible
,prior to multiprocessing.

The Model 65 Multiprocessing' System

To alleviate these problems and to achieve
availability~ flexibility, and increased
throughput, the Model 65 Multiprocessing
system was developed. In this System,
resources such as m.ain and secondary
storage, and CPUs themselves can be pooled.
Thus improved use of total resources, along
with interprocessor communication and
supporting hardware features are the basis
of this system. More specifically, the
Model 65 Multiprocessing System has the
following characteristics:

1. It has two CPUs that can communicate
without manual intervention.

2. The two CPUs share the same main
storage.

3. It uses a version of MVT (called MVT
with Model 65 multiprocessing').

4. TWo tasks can be executed
simultaneously; to prevent access to
critical supervisor data by both CPUs
at the same time" a programming
technique called lockout is used.

5. Most devices are available from either
CPU through the use of two-channel
switches; devices that do not have the
two-channel switch capability
(logically or physically connected to
only one CPU) depend on CPU to CPU
communication for the non-connected
CPU to have accessibility. (However"
a device without the two-channel
switch cannot be accessed from the
non-connected CPU.)

6. At IPL time, faulty or missing
components are marked offline

section 7: Multiprocessing 63

automatically by the Nucleus
Initialization Program (NIP).
Thereafter, reconfiguration is under
operator control via use of the VARY
command. For multiprocessing, the
VARY command function has been
expanded to include CPU" channel, and
storage elements. The VARY command
extensions allow reconfiguration to
occur without disruption of normal job
processing.

The following sections describe the
differences, if any, of data, job, task,
and recovery management in a
multiprocessing environment.

Data Management in a Multiprocessing
Environment

Data management in a multiprocessing
environment is the same as discussed
earlier in the book, with the exception of
I/O Supervisor functions. With two CPUs,
these functions have been expanded to keep
track of up to twice the maximum number of
channels.

Job Management in a Multiprocessing
Environment

Basic job management functions are not
changed essentially for a multiprocessing
environment. There are no changes required
to your job control statements. However,
command processing routines process: an
extended VARY command, which allows you to
place a CPU, an area of storage, or a
channel offline; a QUIESCE command, which
allows you to stop system activity prior to
removal of an I/O device from the system.
(NOTE: QUIESCE and VARY should not be used
in a system that includes active
teleprocessing, since the results may be
unpredictable.)

Task Management in a Multiprocessing
Environment

MVT Model 65 multiprocessing uses the
productive capability of two CPUs so that
two tasks are executed simultaneously.

Selection of tasks for execution is done
in the same manner as in MVT; the highest
priority ready tasks are always selected
first. However, when execution begins in
MVT with Model 65 multiprocessing, the two
highest priority ready tasks are selected
and made active, one for CPU A and the
other for CPU B. Processing of the tasks
proceeds as in a uniprocessing system.

64 Concepts and Facilities (Release 19)

(NOTE: Any load module that can be
processed with MVT on a uniprocessing
system can be processed on Model 65
Multiprocessing System without changing the
code, the job control statements, or the
data.)

When-, for example, a task running on one
CPU must suspend operation until the
occurrence of some other event (termination
of a subtask, I/O completion, etc.) the
current control level of the task is
flagged as nwaitingn, and the CPU
dispatches the task of next highest
priority (not counting the task running on
the other CPU). When the awaited event
occurs, it may occur on either CPU (unless
the event is CPU-bound, as in the case of
I/O completions). The task is generally
reactivated by the CPU on which the awaited
event occurs.

If the reactivated task is one of the
two highest-priority tasks, it will be
resumed. Resumption will occur on the
reactivating CPU unless the other highest
ready task is already running or assigned
to run on the same CPU. In the latter
case, (that is, if the reactivated task
displaces the task previously assigned to
the other CPU) resumption of the
reactivated task is delegated to the other
CPU by means of a dispatcher "shoulder
tap", an external signal (WRD) which will
cause the other CPU to take over resumption
of the task.

The above "shoulder tap" is also used
when there is no task assigned to the other
cpu. In this case, the other CPU leaves
its current task in the ready state and
searches the input queue for the next
highest priority ready task. If this task
is of higher priority than its current
task, it will be made active and processed.
If it is not, the CPU continues processing
the current task.

Recovery Management in a Multiprocessing
Environment

All functions perfor.med by the Machine
Check Handler (MCH) routine, the Channel
Check Handler (CCH) routine, the Alternate
Path Retry (APR) routine" and the Dynamic
Device Reconfiguration (DDR) routines (as
described in Section 6) are performed in
the multiprocessing environment. In
addition, when a failure does occur, the
nonfailing CPU is placed into a timed wait
loop, pending successful completion of
recovery management operations. MCH and
CCH are standard in MVT with Model 65
multiprocessing.

The IBM System/360 Operating System
in~roduces your programs to the computing
system, initiates their execution, and
provides them with all the resources and
services necessary for them to do their
work. To be effective., the operating
system must be general enough to
accommodate a variety of applications on a
wide range of hardware configurations. It
is, therefore, made up of a general library
of programs that can be tailored to your
requirements. You can select those
portions that you need~ add your own
procedures to them, and update any
procedures as your needs change.

For illustrative purposes" the programs
and routines that compose the operating
system are classified as a control program
and processing programs. The three main
functions of the control program are to
accept and schedule jobs in a continuous
flow (job management); supervise on either
a sequential or parallel basis each unit of
work to be done (task management); and
simplify retrieval of all data, regardless
of the way it is organized and stored (data
management). The processing programs
consist of language translators (such as
the FORTRAN compiler), service programs
(such as the Linkage Editor), and problem
programs (such as your programs). You use
the processing programs to define the work
that the computing system is to do, and to
simplify program preparation.

The elements of the operating system are
shown in Table 9.

However, the most important facility of
the operating system is its unity. This
unity establishes a direct line of
communication between you and the operating
system and, within the system, between the
control program and the processing
programs. The net result of this effective
communication is a reduction in the time

Section 8: Summary

from submitting a problem to receiving a
solution.

The ability of all these elements to
work together is what allows the operating
system to increase the productivity of an
entire computer installation and, in turn,
allows the installation to get its work
done with both efficiency and economy.

-Table 9. Operating system Elements
r---,
I Control Program Elements I
~---i Ir-----------, r-----------,I
IIJob I ITask II
I I Management I I Management II IL-----------J r-----------, L ___________ JI
I I Data I I
I JManagement I I I L ___________ J I

~-------------T-------------T-------------i
I I Service I Application I
I Languages I Programs I Programs I
~-------------+-------------+-------------i

ALGOL I Independent User
Assemble I Utili ties Written
COBOL IData set
FORTRAN I Utilities
PL/I I System
RPG I Utili tie s

I Linkage
I Editor
I Sort/Merge
ITESTRAN
I Loader
17094/M85
I Integrated
I Emulator _____________ ~ _____________ ~ _____________ J

Figure 24 depicts the final form of the
illustration we've been developing since
the introduction.

Section 8: 65

0\
0\

n
g
n
~
rt
CJ)

~

&
"I'J
~
n
~.

\-I
~.

rt
~.

CD
CJ)

i
~
~
CJ)
CD
,...
\0 -

__ ~ READ AND
S+~~r, I NTERPRET ~ __ JOB

SCHEDULE
JOB

j----.
SELECT

JOB
STEP

r---- ASSIGN
I/O

DEVICES

1
m
JOB MANAGEMENT

m
DATA MANAGEMENT

SCHEDULE NO INITIATE
JOB

STEP
OUTPUT FOR

WRITERS

[t§
TASK MANAGEMENT

DISPOSE OF H TERMINATE
DATA SETS JOB STEP

I

I
I
I
I
I
I
I
~

SET UP
REQUIRED
CONTROL
BLOCKS

PROGRAM YES LINKAGE AND
NEEDED FETCH

PROGRAM ~
SETUPREQ'

~------~ NO

r-~----

I
I
I

TASK MGMT U I
HAS CONTROL _J
f/60J~~i:~

i
I
IL I I TERMINATE
---+-\ IIO I----

OPERATION

IGIVE CONTROLI YES ~ TASK:y NO • I I
TO JOB • COMPLETE I

MANAGEMENT

RESTORE
DCB

SETUP_. Y~I
LINKAGE ANO I 1 ~ NEEDED FETCH

PROGRAM Nv

•• ~rn INJrIALIZE
DCB

USER PROGRAM

Figure 24. Conceptual Flow of System Responses to User Requests

PRIME

BUFFERS

RELEASE
CONTROL
BLOCKS

~

ACQUIRE
AN ACCESS

METHOD

BUILD
CONTROL
BLOCKS

access method: Any of the data management
techniques available to the user for
transferring data between main storage and
an input/output device.

address constant: A value, or an
expression representing a value, used in
the calcUlation of storage addresses.

alias: An alternate name that may be used
to refer to a member of a partitioned data
set; an alternate entry point at which
execution of a program can begin.

allocate: To grant a resource to, or

Alternate Path Retry (APR): Allows an I/O
operation that has developed an error on
one channel to be retried on another
channel (if another channel is assigned to
the device performing the I/O operation).
APR also provides the capability to VARY a
path to a device online or offline.

asynchronous: Without regular time
relationship; hence, as applied to program
execution, unpredictable with respect to
instruction sequence.

attach (task): To create a task control
block and present it to the supervisor.

attribute: A characteristic; e.g.,
attributes of data include record length,
record format, data set name, associated
device type and volume identification, use,
creation date, etc.

automatic restart: A restart that is
initiated either by issuing a CHKFT macro
instruction or through the use of special
parameters on either the JOB· or EXEC
statements and that takes place during the
current run, that is, without resubmitting
the job. An automatic restart is always
dependent on an eligible ABEND code and·the
operator's consent.

auxiliary storage: Data storage other than
main storage.

basic access method: Any access method in
which each input/output statement causes a
corresponding machine input/output
operation to occur. (The primary macro
instructions used are READ and WRITE.)

Glossary

batch processing: (See stacked job
processing.)

block· (records) :
1. To group records for the purpose of

cons~rving storage space or increasing
the efficiency of access or
processing. :

2. A physical record so constituted, or a
portion of a telecommunications
message defined to be a unit of data
transmission.

block loading: The form of fetch that
brings the control sections of a load
module into contiguous positions of main
storage.

buffer (program input/output): A portion
of main storage into which data is read, or
from which it is written.

catalog:
1. The collection of all data set indexes

maintained by data management.
2. To include the volume identification

of a data set in the catalog.

cataloged: The quality attributed to a
data set whose name and location are stored
in the system catalog.

cataloged dataset: A data set that is
represented in an index or hierarchy of
indexes which provide the means for
locating it.

cataloged proc'edure: A set of job control
statements that has been placed in a
special data set named SYS1.PROCLIB and
that can be retrieved by naming it in an
execute (EXEC) statement.

channel: A hardware device that connects
the CPU and main storage with the I/O
control units,.

Channel-Check Handler (CCH): Is an
optional feature (exception: it is
standard for MVT with Model 65
multiprocessing and Model 85); it analyzes
the error and produces an interface that
aids in setting up for a retry of the
failing operation by the Input/Output
Supervisor.

Glossary 67

checkpoint:
1. A point at which information about the

status of a job step can be recorded
so that the job step can be restarted.

2. To record such information.

Checkpoint/Restart: A facility of the
operating system that can minimize time
lost in reprocessing a job step that
terminated abnormally due to a program or
system failure. This restart may begin
from a checkpoint or from the beginning of
a job step.

checkpoint restart: A restart that is
initiated by issuing a CHKPT macro
instruction. The restart may be automatic
(depending on an eligible ABEND code and
the operator's consent) or deferred, where
deferred involves resubmitting the job.

command-processing: The reading,
analyzing, and performing of commands via
the console device or an input job stream.

contents directory: A series of queues
that indicate the routines either in a
given region of main storage or in the link
pack area.

conCatenated data set: A collection of
10giGally connected data sets.

control block: A storage area through
which a particular type of information
required for control of the operating
system is communicated among its part.

control dictionary: The external symbol
dictionary and relocation dictionary,
collectively, of an object or load module.

control program: A collective or general
term for all routines in the operating
system that contribute to the management of
resources, implement the data organization
or communications conventions of the
operations.

control section: The smallest separately
relocatable unit of a program; that portion
of text specified by the programmer to be
an entity, all elements of which are to be
loaded into contiguous main storage
locations.

control volume: A volume that contains one
or more indexes of the catalog.

68 Concepts and Facilities (Release 19)

CPU-(central processing unit): The unit of
a system that contains the circuits that
control and perform the execution of
instructions.

data base: Recorded data in a permanent
format.

data control block: A control block
through which the information required by
access routines to store and retrieve data
is communicated to them.

data definition name (ddname): A name
appearing in the data control block of a
program which corresponds to the name field
of a data definition statement.

data definition (DD) statement: A job
control statement that describes a data set
associated with a particular job step.

Data Generator: A data set utiiity program
that creates multiple data sets within one
job for the sequential and partitioned
access methods.

data management: A general term that
collectively describes those functions of
the control program that provide access to
data sets, enforce data storage
conventions, and regulate the use of
input/output devices.

data mode: When you issue a GET macro
instruction using the data mode, the data
portion of an entire record will be moved
from the input buffer to your work area.
This record is composed of the data
portions of one or more segments within the
data set. A PUT macro instruction using
this mode moves the contents of your work
area into the output buffer and records the
entire record as one or more segments
within the data set.

data organization: A term that refers to
anyone of the data management conventions
for the arrangement of a data set.

data set: The major unit of data storage
and retrieval in the operating system,
consisting of a collection of data in one
of several prescribed arrangements and
described by control information that is
accessible by the system.

data set control block (DSCB): A data set
label for a data set in direct access
storage.

data set label (DSL): A collection of
information that describes the attributes
of a data set, and that is normally stored
with the data set; a general term for data
set control blocks and tape data set
labels.

deferred entry: An entry into a subroutine
that occurs as a result of a deferred exit
from the program that passed control to it.

deferred exit: The passing of control to a
subroutine at a time determined by an
asynchronous event rather than at a
predictable time.

deferred restart: A restart that is
initiated either by issuing a CHKPT macro
instruction or through the use of special
parameters on either the JOB or EXEC
statements and involves resubmitting the
job.

device-independence: The ability to
command input/output operations without
regard to the characteristics of the
input/output devices.

device name: Usually, the general name for
a kind of device, specified at the time the
system is generated. For example, 2311 or
2400 or TAPE.

direct access: Retrieval or storage of
data by a reference to its location on a
volume, rather than relative to the
previously retrieved or stored data.

direct system output writer: The job
scheduler function that controls the
writing of a job's output data sets
directly to an output device during
execution of that job. This function is
available only in a multiprogramming
environment,.

dispatching priority: A number assigned to
tasks,. and used to determine precedence for
use of the central processing unit in a
multitask situation.

dump
1.

2.
3.

(main storage):
To copy the contents of all or part of
main storage onto an output device. so
that it can be examined.
The data resulting from 1.
A routine that will accomplish 1.

dynamic area: That portion, of main storage
that is subdivided into regions or
partitions for use by the programs
performing job steps and system tasks. The
dynamic area of storage is all the storage
between the supervisor queue area and the
link pack area.

Dynamic Device Reconfiquration (DDR):
Allows a demountable volume to be moved
from one device to another, and
repositioned if necessary, without
abnormally terminating the affected job or
reperforrning IPL. A request to move a
volume may be initiated by either the
operator or the system, for SYSRES or
non-SYSRES devices.

entry point: Any location in a program to
which control can be passed by another
program.

Error Recovery Procedures (ERPs): These
are standard procedures designed to ensure
that all the routines that test particular
devices provide a uniform type and quality
of information.

Error Statistics by Volume (ESV): An
option of the Volume statistics facility.
ESV causes the system to collect statistics
for each tape volume in the system at any
time that volume is open. Some of the
statistics you can collect are: volume and
CPU serial number, the number of temporary
and/or permanent read and write errors, and
the number of Start I/O operations
encountered. This option only supports
labeled volumes, or unlabeled volumes whose
serial numbers have been identified to the
system.

Error Volume Analysis (EVA): An option of
the VoluIr.e statistics facility. The EVA
option requires the system operator to
specify two minimum values. one for the
number o£ temporary read errors and one for
the number of temporary write errors. If
the number of read or write errors for'a
volume currently being accessed exceeds the
values specified by the system operator,
the system will print a message to this
effect at the console. EVA can be used
with both labeled and unlabeled volumes.

event: An occurrence of significance to a
task; typically, the completion of an
asynchronous operation, such as
input/output.

event control block (ECE): A control block
'used to represent the status of an event.

exchange bu£ferinq: A technique using'data
chaining for eliminating the need to move
data in main storage. Control buffer
segments and user program work areas is
passed between data management and the user
program according to the requirements for
work areas, input buffers, and output
buffers, and according to of their
availability.

exclusive segments: Segments in the s.ame
region of an overlay program, neither of
which is in the path of the other. They
cannot be in main storage simultaneously.

execute (EXEC) statement: A job control
statereent that designates a job step by
identifying the load module or cataloged
procedure to be fetched and executed.

extent: The physical locations on
input/output devices occupied by or
reserved for a particular data set.

Glossary 69

external reference: A reference to a
symbol defined in another module.

external symbol: A control section name,
entry point name, or external reference; a
symbol contained in the external symbol
dictionary.

external symbol dictionary (ESD): Control
information associated with an object or
load module which identifies the external
symbols in the module.

fetch (program):
1. To obtain requested load modules and

load them into main storage,
relocating them as necessary.

2. A control routine that accomplishes 1.

F-format: A data set format in which the
logical records are the same length.

fixed area: That portion of main storage
occupied by the resident portion of the
control program (nucleus).

generation data group: A collection of
successive, historically related data sets.

hierarchy: A division of main storage that
provides addressing distinction between
processor storage, referred to as hierarchy

IEHATLAS: A system utility program used to
recover usable data from a defective track,
assign an alternate track, and merge
replacement data with the recovered data
onto an alternate track.

in-stream procedure: An in-stream
procedure is a set of job control
statements placed in the input stream that
can be used any number of times during a
job by naming that procedure in an execute
(EXEC) statement.

inclusive segments: OVerlay segments in
the same region that can be in main storage
simul taneously.

index (data management):
1. A table in the catalog structure used

to locate data sets.
2. A table used to locate the records of

an indexed sequential data set.

initial program loading (IPL): As applied
to the operating system, the initialization
procedure which loads the nucleus and
begins normal operations.

initiating task: The job management task
of selecting jobs and preparing jobs for
execution.

initiator/terminator: The job scheduler
function that selects jobs and job steps to

. be executed" allocates input/output devices

70 Concepts and Facilities (Release 19)

for them, places them under task control,
and, at completion of the job, supplies
control information for writing job output
on a system output unit.

input stream: The sequencepf control
statements and data submitted to the
operating system on an input unit
especially activated for this purpose by
the operator.

input work queue: A queue of summary
information of job control statements
maintained by the job scheduler, from which
it selects the jobs and job steps to be
processed.

installation: A general term for a
particular computing system, in the context
of the overall function it serves.and the
individuals who manage it. operate it,
apply it to problems" service it, and use
the results it produces.

integrated emulator program: A problem
program under the control of an operating
system that al~ows programs written for one
system to be executed on another system.

IPL: (See initial program loading.)

job: A total processing application
comprising one or more related processing
programs, such as a weekly payroll, a' day's
business transactions, or the reduction of
a collection of test data.

job class: A parameter on the JOB
statement that allows you to define the
type of job to be processed, with a maximum
of three types per region or partition. In
multiprogramming systems;, jobs within a job
class are initiated according to their
priority numbers.

job·· control statement: Anyone of the
control statements in the input job stream
that identifies a job or defines its
requirements.

job library: A concatenation of
user-identified partitioned data sets, used
as the primary source of load modules for a
given job.

job management: A general term that
collectively describes the functions of the
job scheduler and master scheduler.

job processing: The reading of control
statements from an input stream, the
initiating of job steps defined in these
statements, and the writing of SYSOUT
messages.

job queue: (See input work queue.)

job. scheduler: The control program
function that controls input job streams
and system output, obtains input/output
resources for jobs and job steps, attaches
tasks corresponding to job steps, and
otherwise regulates the use of the
computing system by jobs. (See
reader/inter- preter, initiator/terminator,
output writer.)

job (JOB) statement: The control statement
in the input job stream that identifies the
beginning of a series of job control
statements for a single job.

job step: That unit of work associated
with one processing program and related
data. A cataloged procedure can comprise
many job steps.

job step task2 The first task created for
a job step. That task created in response
to an ATTACH macro instruction issued by an
initiator routine.

language trans lator: A general term for
any assembler, compiler, or other routine
that accepts statements in one language and
produces equivalent statements in another
l.anguage.

l.ibrary:
1. In general, a collection of objects

(e.g., data sets, volumes. card decks)
associated with a particular use, and
the location of which is identified in
a directory of some type. In this
context" see job library, link
library, system library.

2. Any partitioned data set.

limit priority: A priority specification
associated with every task in an MVT
operation, representing the highest
dispatching priority that the task may
assign to itself or to any of its subtasks.

l.ink library: A generally accessible
partitioned data set which, unless
otherwise specified, is used in fetching
l.oad modules referred to in execute (EXEC)
statements and in ATTACH, LINK, LOAD, and
transfer control (XCTL) macro instructions.

link pack area: The area of main storage
that contains selected reenterable routines
from SYS1.SVCLIB and SYS1.LINKLIB. The
routines are l.oaded at IPL time, and can be
used for all tasks in the system.

linkage: The means by which communication
is effected between two routines or
modules.

linkage editor: A program that produces a
load module by transforming object modules
into a format that is acceptable to fetch;
combining separately produced object

modules and previously processed load
modules into a single load module;
resolving symbolic cross references among
them; replacing, deleting" and adding
control sections ,automatically on request;
and providing overlay facilities for
modules requesting them.

load: To fetch, i.e.~ to read a load
module into main storage preparatory to
executing it.

loader: A service program that combines
the basic editing and loading functions of
the linkage editor and program fetch in one
job step. It loads object and load modules
into main storage for execution; however,
it does not produce load modules.

load module: The output of the linkage
editor; a program in a format suitable for
loading into main storage for execution.

locate mode: ~ transmittal mode in which
data is pointed to rather than moved.

lockout: A programming technique used to
prevent access to critical data by both
CPUs at the same time,. (In a
multiprocessing environment.)

logical record: A record from the
standpoint of its content" function, and
use rather than its physical attributes;
i.e., one that is defined in terms of the
information it contains.

Machine-Chec~Handler for Model 65
(MCH/65): Is an optional feature for MFT
and MVT (exception: it is standard for MVT
with Model 65 multiprocessing) which
analyzes the error and attempts recovery by
retrying the failing instruction, if
possible. If retry is not possible, or if
it is unsuccessful, MCH/65 will attempt to
repair the malfunction, or isolate the
task, or both.

Machine-Check Handler for Model 85
(MCR/85): Is a standard feature for MFT
and MVT; it constructs a record of errors
successfully retried by machine recovery
facilities, and, in the case of an
unsuccessful machine retry, analyzes the
error and attempts repair and/or isolation
and termination of the affected task.

macro instruction: A general term used to
collectively describe a roacro instruction
statement, the corresponding macro
instruction definition, the resulting
assembler language statements, and the
machine language instructions and other
data produced from the assembler language
statements; loosely, anyone of these
representations ofa machine language
instruction sequence.

Glossary 71

main storage: All addressable storage from
which instructions can be executed or from
which data can be loaded directly into
registers.

master scheduler: The control program
component that responds to operator
commands, initiates actions requested
thereby, and returns requested or required
information; thus, the overriding medium
for controlling the use of the computing
system.

master scheduler task: The
command-processing task of searching a
queue of pending commands and of attaching
a task to execute these commands.

MFT: Multiprogramming with a fixed number
of tasks.

module (programming): The input'to, or
output from, a single execution of an
assembler, compiler, or linkage editor; a
source, object, or load module; hence, a
program unit that is discrete and
identifiable with respect to compiling,
combining .with other units, and loading.

move mode: A transmittal mode in which
data is moved between the buffer and the
user's work area.

multijob operation: A term that describes
concurrent execution of job steps from two
or more jobs.

multiprocessing system: A computing system
employing two or more interconnected
processing units to execute programs
simultaneously.

mUltiprogramming: A general term that
expresses use of the computing system to
fulfill two or more different requirements
concurrently. Thus, it includes MFT and
MVT.

multi task operation: Multiprogramming;
called multitask operation to express
parallel processing not only of many
programs, but also of a single reenterable
program used by many tasks.

MVT: Multiprogramming with a variable
number of tasks.

name: A 1- to 8-character alphameric term
that identifies a data set, a control
statement, a program l or a cataloged
procedure. The first character of the name
must be alphabetic.

nucleus: That portion of the control
program that is loaded into the fixed area
of main storage from SYS1.NUCLEUS at IPL
time and is never overlaid by another part
of the operating system.

72 Concepts and Facilities (Release 19)

nucleus initialization program (NIP): 'The
program that initializes the resident
control program. Through it, you may
request last minute changes to certain
options specified during system generation.
The o~erator makes these changes through
the console.

object module: The output of a single
execution of an assembler or compiler,
which constitutes input to the linkage
editor. An object module consists of one
or more control sections in relocatable,
though not executable~ form and an
associated control dictionary.

Online Test Executive Program (OLTEP): An
operating system facility that schedules
and controls the activities on the Online
Test System (q.v.) and provides
communication with the operator. This
program is part of a set that can be used
to test I/O devices, control units, and
channels concurrently during the execution
of programs. See also, nOnline Test
system. n

Online Test System (OLTS): OLTS allows a
user to test I/O devices concurrently with
the execution of programs. Tests may be
run to diagnose I/O errors, verify repairs"
verify engineering changes, or just to
periodically check devices. See also,
nOnline Test Executive Program. n

operator corrroand: A statement to the
control program, issued via a console
device, which causes the control program to
provide requested information" alter normal
operations, initiate new operations, or
terminate existing operations.

output stream: Diagnostic messages and
other output data issued by the operating
system or the processing program on output
units especially activated for this purpose
by the operator.

output work queue: A queue of control
information describing system output data
sets, which specifies to an output writer
the lccation and disposition of system
output.

overlay: To place a load module or a
segment of a load module into main storage
locations occupied by another load module
or segment.

overlay (load) module: A load module that
has been divided into overlay segments, and
has been provided by the linkage editor
with information that enables the overlay
supervisor to implement the desired loading
of segments when requested.

overlay segment: (See segment.)

overlay supervisor: A control routine that
initiates and controls fetching of overlay
segments on the basis of information
recorded in the overlay module by the
linkage editor.

parallel processing: Concurrent execution
of one or more programs.

partition: A subdivision of the dynamic
area that i p allocated to a job step or a
system task.

partitioned data set: independent groups
of sequentially organized data sets, each
identified by a member name ir. the
directory.

path: A ser ies of segments which, as
represented in an overlay tree, form the
shortest distance in a region between a
given segment and the root segment.

PDS Compression: A data set utility that
compresses a partitioned data set within
its original extent and provides a summary
of remaining space.

physical record: A record from the
standpoint of the manner or form in which
it is stored, retrieved, and moved; i.e.,
one that is defined in terms of physical
qualities.

polling: A technique by which each of the
terminals sharing a communications line is
periodically interrogated to determine if
it requires servicing.

post: To note the occurrence of an event.

priority.schedulingsystem: A form of job
scheduler which uses input and output work
queues to improve system performance.

private library (of a job step): Any
partitioned data set which is neither the
link library nor any part of the job
library.

problem program: Any of the class of
routines that perform processing of the
type for which a computing system is
intended" and including routines that solve
problems, monitor and control industrial
processes, sort and merge records, perform
computations, process transactions against
stored records, etc.

processing program: Any program capable of
operating in the problem program mode.
This includes IBM-distributed language
processors" application programs, service
and utility programs and user-written
programs.

,protection key: An indicator associated
with a task which appears in the program
status word whenever the task is in
contrel, and which must match the storage
keys of all storage blocks the task is to
use.

gualified name: A control statement term
that comprises one or more names, each
qualifying the name that follows it.
Levels of qualification are separated by
periods. For example" the term
stepname.procstepname represents a
procedure step name qualified by a job step
name.

guaiifier: Each component name in a
qualified name other than the rightmost
(which is called the simple name).

queue control block (QCB): A control block
that is used to regulate the sequential use
of a programmer-defined facility among
requesting tasks.

queued access method: Any access method
that automatically synchronizes the
transfer of data between the program using
the access method and input/output devices,
thereby eliminating delays for input/output
operations. (The primary macro
instructions used are GET and PUT.)

reader/interpreter: A job scheduler
function that services an input job stream.

ready condition: The condition of a task
that is in contention for the central
processing unit, all other requirements for
its activation having been satisfied.

real time (interval timer): Actual time.

record: A general term for any unit of
data that is distinct from all others when
considered in a particular context.

reenterable: The attribute of a load
module that allows the same copy of the
load module to be used concurrently by two
or more tasks.

refreshable: A refreshable module cannot
be modified by itself or by any other
module during execution; i. e,., a
refreshable module can be replaced by a new
copy during execution by a recovery
management routine without changing either
the sequence or the results of processing.

region: A subdivision of the dynamic area
that is allocated to a job step or a system
task.

relocation: The modification of address
constants required to compensate for a
change of origin of a module or control
section.

Glossary 73

relocation dictionary: That part.of an
object or load module which identifies all
relocatable address constants in the
module.

Remote Job Entry (RJE): This f aci li ty
provides., for a System/360 with attached
communication lines, an efficient and
convenient method of entering jobs
submitted from remote work stations into
the job stream.' Once a job is entered into
the job stream by RJE, execution of the job
proceeds under the supervision of the
operating system job management routines.
All data sets created by the job are
handled by operating system data management
routines.

resource: Any facility of the computing
system or operating system required by a
job or task'and including main storage,
input/output devices, the central
processing unit, data sets, and control and
processing programs.

resource manager: A general term for any
control program function responsible for
the allocation of a resource.

restart: To reestablish the status of a
job using the information recorded at a
checkpoint,.

return -code': A value that is by system
convention placed in a designated register
(the "return code register") at the
completion of a program. The value of the
code, which is established by
user-convention" may be used to influence
the executioJ;l of succeeding programs or, in
the case of an abnormal end-of-task~ it may
simply be printed for programmer analysis.

return.code register: A register
identified by system convention in which a
user-specified condition code is placed at
the completion of a program.

reusable: The attribute of a routine that
permits the same copy of the routine to be
used by two or more tasks. (See
reenterable" serially reusable.)

root seqment: That segment of an overlay
program that remains in main storage at all
times during execution of the overlay
program; the first segment in an overlay
program.

scatter loading: The form of fetch that
may place the control sections of a load
module into noncontiguous positions of main
storage.

scheduler: (See master scheduler and job
scheduler.)

secondary storage: Auxiliary storage.

74 Concepts and Facili~ies (Release 19)

seek: To position the access mechanism of
a direct access device at a specified
location.

segment:
1. The smallest functional unit (one or

more control sections) that can be
loaded as orie logical entity during
execution of an overlay program.

2. In telecommunications, a portion of a
message that can be contained in a
buffer of specified size.

sequential scheduling system: A form of
the job scheduler that reads one input
stream and executes only one job step at a
time from that input stream.

serially reusable: The attribute of a
routine that, when in main storage the same
copy of the routine can be used by another
task after the current use has been
concluded.

service program: Any of the class of
standard routines that assist in the use of
a computing system and in the successful
execution of problem programs, without
contributing directly to control of the
system or production of results, and
including utilities, simulators, test and
debugging routines, etc.

Shared DASD Option: An operating system
option that enables independently operating
corr.puting systems to share common data
residing on shared direct access storage
devices. The option is selected at system
generation time, available with PCP, MFT,
MVT (exception: MVT with Model 65
multiprocessing), and it provides the
control program functions needed to control
device reservation and release.

short block: A block of F-format data
which contains fewer logical records than
are standard for a block.

shoulder tap: A processing technique that
uses the Write Direct instruction to enable
one CPU to communicate with another CPU.
(In a multiprocessing environment.)

simple buffering: A technique for
controlling buffers in such a way that the
buffers are assigned to a single data
control block and remain so assigned until
the data control block is closed.

simple name: The rightmost component of a
qualified name (e.g., APPLE is the simple
name in TREE.FRUIT.APPLE).

source module: A series of statements (in
the symbolic language of an assembler or
compiler) which constitutes the entire
input to a single execution of the
assembler or compiler.

stacked job processing: A technique that
permits multiple job definitions to be
grouped (stacked) for presentation to the
system, which automatically recognizes the
jobs, one after the other. More advanced
systems allow job definitions to be added
to the group (stack) at any time and from
any source, and also honor priorities.

step library: A concatenation of
user-identified partitioned data sets used
as the primary source of load modules for a
given job step.

step restart: A restart that is initiated
through the use of special parameters on
either the JOB or EXEC statements. The
restart may be automatic (depending on an
eligible ABEND code and the operator's
consent) or deferred, where deferred
involves resubmitting the job.

storage-block: A contiguous area of main
storage consisting of 2048 bytes to which a
storage key can be assigned.

storage key: An indicator associated with
a storage block or blocks, which requires
that tasks have a matching protection key
to use the blocks.

StoraqeReconfiguration: For MVT with
Model 65 multiprocessing a permanent
storage failure in a non-critical operating
system component (e.g., problem program
storage) can be logically removed by
Storage Reconfiguration and normal system
operation can continue.

substitute mode: A transmittal mode used
with exchange buffering in which segments
are pointed to and exchanged with user work
areas.

subtask: A task that is created by another
task by means of the ATTACH macro
instruction.

subpool: All the 2048 (2K) blocks of main
storage allocated under a subpool number
for a particular task.

supervisor: As applied to the operating
system, a routine or routines executed in
response to a requirement for altering or
interrupting the flow of operations through
the central processing unit, or for
performance of input/output operations,
and, therefore, the medium through which
the use of resources is coordinated and the
flow of operations through the central
processing unit is maintained; hence, a
control routine that is executed in
supervisor state.

supervisor queue area: The main storage
area, adjacent to the fixed area, that is
reserved for control blocks and tables
built by the control program.

SVC routine: A control program routine
that performs or initiates a control
program service specified by a supervisor
call.

synchronous: Occurring concurrently" and
with a regular or predictable time
relationship.

SYSIN: A name conventionally used as the
data definition name of a data set in the
input job stream.

SYSOUT: An indicator used in data
definition statements to signify that a
data set is to be written on a system
output unit.

system input unit: A device specified as a
source of an input job stream.

system library: The collection of. all
cataloged data sets at an installation.

system macro instruction: A predefined
macro instruction that provides access to
operating system facilities.

system Management Facilities: An optional
control program feature that provides the
means for gathering/and recording
information that can be used to evaluate
system usage.

system outPUt unit: An output device,
shared by all jobs, onto which specified
output data is transcribed.

system output writer: A job scheduler
function that transcribes specified output
data sets onto a system output unit,
independently of the program that produced
such data sets.

system residence volume: The volume on
which the nucleus of the operating system
and the highest level index of the catalog
are located.

system task: A control program function
that is performed under control of a task
control block.

SYS1.LINKLIB: The partition~d data set
that contains the IBM-supplied processing
programs and part of the nonresident
portion of the control program. It may
also contain user-written programs.

SYS1.PROCLIB: The partitioned data set
that contains cataloged procedures.

. Glossary 75

SYS1.SVCLIB: The partitioned data set that
contains the nonresident SVC routines,
nonresident error-handling routines" and
access method routines.

task: A unit of work for the central
processing unit from the standpoint of the
control program; therefore, the basic
multiprogramming unit under the control
program.

task control block (TCB): The
consolidation of control information
related to a task.

task dispatcher: The control program
function that selects from the task queue
the task that is to have control of the
central processing unit and gives control
to the task.

task management: A general term that
collectively describes those functions of
the control program that regulate the use
by tasks of the central processing unit and
other resources (except for input/output
devices) •

task queue: A queue of all the task
control blocks present in the system at any
one time.

telecommunications: A general term
expressing data transmission between a
computing system and remotely located
devices via a unit that performs the
necessary format conversion and controls
the rate of transmission.

Teleprocessing: A term associated with IBM
telecommunications equipment and systems.

test translator: A facility that allows
various debugging procedures to be
specified in assembler language programs.

text: The control sections of an object or
load module, collectively.

throughput: A measure of system
efficiency; the rate at which work can be
handled by a computing system.

time slicing: an option available to users
of MFT and MVT that allows them to
designate that all tasks with a certain
priority (MVT) or all tasks within a
specified group of partitions (MFT) are to
share the use of the CPU for an equal,
predetermined length of time. Specified at
either system generation or system
initialization time (MFT users may also
modify the specifications through the
DEFINE command), this facility allows the
user to prevent one task of a given
priority or one partitions from
monopolizing CPU time to the exclusion of

76 Concepts and Facilities (Release 19)

all other tasks of the same priority or
other partitions.

transient areas: Main storage areas
defined in the nucleus and reserved for
either nonresident SVC routines or
nonresident error-handling routines.

transmittal mode: The method by which the
contents of an input buffer are made
available to the program, and the method by
which a program makes records available for
output.

turn-around time: The elapsed time between
submission of a job to a computing center
and the return of results,.

,U-format: A data set format in which
blccks are of unspecified or otherwise
unknown length.

~: Anyone who requires the services of
a computing system.

V-format: A data set format in which
logical records are of varying length and
include a length indicator; and in which
V-format logical records may be blocked,
with each block containing a block length
indicator.

volume: All that portion of a single unit
of storage media which is accessible to a
single read/write mechanism.

Volu~e statistics: An operating system
facility that allows you to monitor read
and write errors. Operating System Volume
statistics has two options: Error
statistics by Volume (q.v.) and Error
Volume Analysis (q.v.).

volume table of contents (VTOC): A table
associated with a direct access volume,
which describes each data set on the
volume.

wait state (system): The condition of the
CPUs when all operations are suspended.
This condition is indicated by a bit
setting in the current program status word.

wait state (task): The condition of a task
when it is unperformable because some event
such as the completion of an I/O operation
has not occurred.

work queue entry: The control blocks and
tables created from one job in an input
stream and placed in the input work queue
or in one of the output work queues.

writing task: The job management task of
transferring system messages and SYSOUT
data sets from the direct access volume on
which they were initially written to a
specified output device.

Indexes to systems reference library
manuals are consolidated in the publication
IBM-System/360 Operating system: Systems
Reference Library Master Index, GC28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

Where more than one page reference is
given, the major reference is first.

Access method summary 39
Access techniques 29
Accessing data 33
Active state 52
Actual address 34
ALGOL 10

with Program Design Facilities 26
with Data Management Facilities 41
with Task Management Facilities 57

Aliases 20,34
Allocate I/O devices (see job management)
Allocating main storage 49

explicit requests 49
implicit requests 49

Allocating main storage for buffers 36
Alternate Path Retry (APR) 58

definition 67
use 61
with Multiprocessing 64

Assembler language 10
with Program Design Facilities 26
with Data Management Facilities 41
with Task Management Facilities 57

Associating load modules 20
ATTACH macro instruction (see creating
tasks)

Automatic restart
definition 67
(see also checkpoint restart and
step restart)

Automatic I/O synchronization 29
Automatic Volume Recognition 44

Basic access technique 29
BDAM 39
BISAM 39
Blocks 27
BPAM 39
BSAM 39
BTAM 39
Buffer creation 33
Buffer priming 33
Buffer scheduling 37

Calls during task performance (see dynamic
calls)

Catalog 31

Cataloged procedures 43
Chained segment buffering 37
Channel-Check Handler 58,61

definition 67
Channel program 14
Checkpoint restart 25

definition 67
COBOL 10

Index

with Program Design Facilities 26
with Data Management Facilities 41
with Task Management Facilities 57

Collecting data set information 32-33
Combining programs

at execution time 19
at job entry time 18

Combining subprograms
at compilation time 18
at linkage editing time 18

Command statement 43
Competition for machine resources 16
Compilation output

(see object module)
Concatenated data sets

logically connected 28
Constructing a buffer pool 36
Control of I/O operations (see data

management)
Control output writers

(see job management)
Control program

definition 9
types available 9

Control program intervention
for dynamic calls 19

Control sections 19
Creating tasks 48

Data access methods 39
Data base 56,68
Data control block 28

data set attributes 28
exit information 28
processing description 28

Data definition (DD) statement 27
Data Generator 15

definition 68
Data management 27
Data mode 37

definition 68
Data processing techniques 39
Data set attributes (see data control

block)
Data set control block 30
Data set labels 28
Data set retrieval services 31
Data set security 33
Data sets 14,27
Data set utility programs 15
DCB macro instruction 28
ddname 28

Index 77

Deferred restart
definition 69
(see also checkpoint restart and
step restart)

Delaying task execution (see event
synchronization)

Delimiter statement 43
Describing your data 27-28
Designing a program

factors to consider 10
Device dependent information

supplied through job control
statements 29

Device independence 29
Device independent programs 30
Direct access devices 27
Direct access labels 30

as storage for load modules 30
Direct organization 34
Direct System Output Writer 44

definition 69
scheduling in MFT and MVT 47
wi th ~.IFT 54

Dispatching priority 48
DSCB (see data set control block)
DSNAME

differs from ddname 29
Dynamic buffering 37
Dynamic calls 19
Dynamic Device Reconfiguration (DDR) 59

definition 69
use 61
with Multiprocessing 64

Dynamic structure 11,19
load module execution 21
more than one task per job step 23
one task per job step 22
what the system does for it 21

Entering the waiting state 52
Entry point 20
Environments of a task 52
Error Recovery Procedures (ERPs) 61

definition 69
with CCH 61
with MCH 60
with SERO and SERl 60

Establishing intervals 48
Establishing priority 49

(see also limit priority and
dispatching priority)

Exchange buffering 37
Execute (EXEC) statement 42,43

what you must tell the system 12
Exit information (see data control block)

F-format (see fixed length records)
Fixed length records 27
FORTRAN 8

with Program Design Facilities
with Data Management Facilities
with Task Management Facilities

Generation data groups 31

26
41
57

78 Concepts and Facilities (Release 19)

Handle job step ter~ination (see job
management)

IBM 2361 Core storage 49
IEBATLAS 15

definition 70
In-stream. procedures 43

definition 70
Independent utility programs 15
Indexed sequential organization 34
Inforrr.ation entries 44
Information requests 44
Initiate job step (see job management)
Initiator-terminator 44
Input stream 14
Input work queue 46
Integrated emulator program 70
Interval timer 49

Job 42
Job action commands 44
Job class 43
Job control language 11-12

primary purpose 11-12
statements 42,43

Job management 42
Job scheduler 43

initiator/terminator 44
output writers 44
reader/interpreter 43

JOB statement 42,43
Job step 42
Job step task 51
Jot/step CPU timing 50,52

Language comparison
data management facilities 41
job management facilities 46
program design facilities 26
task management facilities 57

Language translators (see appropriate
language; see Table 1)

Libraries 24
private 24
system 24
temporary 24

Limit priority 48
LINK macro instruction 20
Linkage editor 12
Linkage editor output (see load module)
LOAD macro instruction 20
Load module

as a programming resource
definition 12

Load module attributes 19
Load module execution 21

with MVT 21
with PCP and MFT 21

Loader 12,71
Locate mode 37
Lockout 63

definition 71
Logical records 14

19

Machine Check Handler for Model 65
(MCH/65) 58

definition 71
in a multiprocessing environment 64
use 60

Machine Check Handler for Model 85
(MCH/85) 58

definition 72
in a multiprocessing environment 64
use 59

Macro instruction names 14
Magnetic tape labels 30
Main storage Hierarchy support 49
Managing buffers 36
Master scheduler 44
Modifying DO statement parameters

advantages 28
Model 85 (See also Machine Check Handler

for Model 85;7094/M85 Integrated
Emulator) 58

Modularity
concept of 18

Move mode 37
Multijob initiation 46
Multiprocessing 63

definition 72
Multitask environment 53
Multiprogramming with a fixed number of
tasks (MFT) 54-55

a multitask environment 53
control program option 14
establishing priority 48
language comparison 57
load module execution 19
reenter able modules 22
reusable modules 22
scheduling 44
supervising a task 51
time slicing 51
terminating tasks 50
use of the interval timer 50
with System Management Facilities (SMF)

56
Multiprogramming with a variable nurrber of
tasks (MVT) 55

a multitask environment 53
control program option 15
establishing priority 48
language comparison 57
load module execution 19
passing main storage 49
reenter able modules 22
reusable modules 22
scheduling 46
supervising a task 51
time slicing 51
terminating tasks 50
use of the interval timer 50
with rollout/rollin 55
with System Management Facilities (SMF)

56

Named collections of data (see data set)
Non-reusable programs 24
Non-reusable resources 11
Nucleus initialization program (NIP) 10
Null statement 43

Object module 11
example 12

On Line Test Program (OLTEP) 62,72
OPEN routine 33
Operating system

elements 10
purpose 9
requirements 9

Operating system control program
options 16

Operating System Volume statistics 40,69
Operator communication (see master
scheduler)

Optional components 10
Originating task 48
Output writer 44

Parallel execution (see load module
execution)

Partitioned organization 34
Partitions 54,72
Passing and sharing main storage 49
Passing control 18
PDS compression 15

definition 73
PL/I 10

with Program Design Facilities 26
with D~ta Management Facilities 41
with Task Management Facilities 57

Planned overlay structure 11,19
use of storage 20
what the system does for it 21

Planned overlay versus dynamic
structures 21

Primary Control Program (PCP) 53
control program option 16
load module execution 21
reusable modules 22
scheduling 45 /

Private libraries 24
Processing description (see data control
block)

Processing programs 9-10
Producing reusable programs 24
Program design 18

factors 11
imfortance of 18

Program design facilities 24
Program structures

dynamic' 11,19
planned overl~y 11,19
simple 11,19

Programs as resources 24
Protection of storage 49

QISAM 39
QSAM 39
QTAM 39
Queued access technique 29

Read/only programs (see reenterable
programs)

Reader/interpreter 43
Ready state' 52

Index 79

Record format transmitted 37
Records 14

fixed-length 27
undefined-length 27
variable length 21

Recovery management 58
Reenterable programs 24

design of 25
Reenterable resources 11
Refreshable modules 59
Regions 55.73
Remote Job Entry (RJE) 34,14
Resource allocation 51
Resource queue elements 48
Resource queues 51

example 52
Reusability 24
Rollout/rollin 55
Root segment 10.19
Report Program Generator (RPG) 10

with Program Design Facilities 26
with Data Management Facilities 41
with Task Management Facilities 57

Schedule job step for execution (see job
management)

Scheduling
in MFT 46
in MVT 46
in PCP 45

Segmenting programs 18
benefits 18

self-initializing load module (see serially
reusable programs)

Sequence number 31
sequential data sets 34
sequential organization 34
Serial execution (see load module
execution)

serially reusable programs 24
Serially reusable resources 11
service· Aids 25
Service programs 15
SERO 58,59
SERl 58.59
Set Program Interrupt Exit (SPIE)

macro instruction 50
Shared DASD 14.30
Shoulder tap 64

definition 14
Simple buffering 37
Simple structure 11,19

as a resource 19
logic flow 19
what the system does for it 19

single tas~ environment 53
Solving a problem

factors involved 19
Sort/merge program 16
Source module 11-12
Specify Task Abnormal Exit (STAE)

macro instruction 50
Subpools 49
step Program Library 24

definition 15

80 Concepts and Facilities (Release 19)

Step restart 25,55
definition 75

Storage Reconfiguration 60,15
Subprograms 11,18

as a program division 18-19
Substitute mode 31
Subtask 48
Supervising a task 51
Synchronizing events 49
System action commands 44
System environment recording 58,59
System generation 10
System library 24
System Management Facilities 56,15
System utility programs 15

Tailoring a system 10-11
Task 9.48

definition 76
Task control block 51
Task management 48

acquiring resources 13
Task switch 54
Telecommunications 34
Temporary libraries 24
Terminating tasks 50
TESTRAN 16
Throughput 44
Time and date stamping 50
Time slicing 50

in MFT 50,55
in MVT 50.55

Transmittal modes 31
Transmitting data between main and

secondary storage 14
Turnaround time 44
Types of control programs (see operating

system control program options)

U-format (see undefined-length records)
Undefined-length records 27
Use of main storage (see sequential
scheduling system and priority scheduling
system)

V-format (see variable length records)
Variable-length records 27
Volume checking 33
Volumes

definition 21
examples 27

Waiting for an event (see event
synchronization)

Waiting state 52
Work

concept of 9
to user, to system 9

Write-to-operator-with-reply macro
instruction 44

XCTL macro instruction 20

1094/Model 85 Integrated Emulator 16.65

GC28-6535-7

International Businfiss Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.106Ot
IUSA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

VI

~
CD

~
W
0-
o
o
VI

()
o
:J
o
CD

]-
Q
:J
0..
-n
Q
o

....
~.

VI
W
0-
o
I
">
.8

READER'S COMMENT FORM

IBM System/360 Operating System
Concepts and Facilities

Order No. GC28-6535-7

• Is the material : Yes No
Easy to read? .. D D
Well organized? .. D D
Complete? .. D D
Well illustrated? D D
Accurate? .. D D
Suitable for its intended audience? .. D D

• How did you use this publication?
D As an introduction to the subject
o For additional knowledge

Other

• Please check the itenlS that describe your position:
o Customer personnel 0 Operator o Sales Representative
o IBM personnel 0 Programmer o Systems Engineer
o Manager 0 Customer Engineer o Trainee
o Systems Analyst 0 Instructor Other

• Please check specific criticism (s), give page number (s), and explain below:
o Clarification on page (s) 0 Deletion on page (s)
o Addition on page (s) 0 Error on page (s)

Explanation:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6535-7

YOUR COMMENTS, PLEASE •••

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your mM representative or to the mM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Progromming Systems Publications

Department 058

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

Intern'ational Busin-ess Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
IUSAOnly]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International!

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

Fold

v
~
ro
~
c..:
0-
C

C
v
r
o
::::l
o
(1)

~
a
::::l
a. .,.
o
o

....
~'

v
c..:
0-
C
I

I-.:

.s

c
v
l>

